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We introduce a number of tools for finding and studying hierarchically hy-
perbolic spaces (HHS), a rich class of spaces including mapping class groups
of surfaces, Teichmüller space with either the Teichmüller or Weil–Petersson
metrics, right-angled Artin groups, and the universal cover of any compact
special cube complex. We begin by introducing a streamlined set of axioms
defining an HHS. We prove that all HHS satisfy a Masur–Minsky-style dis-
tance formula, thereby obtaining a new proof of the distance formula in the
mapping class group without relying on the Masur–Minsky hierarchy ma-
chinery. We then study examples of HHS; for instance, we prove that when
M is a closed irreducible 3-manifold then π1 M is an HHS if and only if it is
neither Nil nor Sol. We establish this by proving a general combination theo-
rem for trees of HHS (and graphs of HH groups). We also introduce a notion
of “hierarchical quasiconvexity”, which in the study of HHS is analogous to
the role played by quasiconvexity in the study of Gromov-hyperbolic spaces.
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Introduction
One of the most remarkable aspects of the theory of mapping class groups of
surfaces is that the coarse geometry of the mapping class group, MCG(S), can
be fully reconstructed from its shadows on a collection of hyperbolic spaces —
namely the curve graphs of subsurfaces of the underlying surface. Each subsurface
of the surface S is equipped with a hyperbolic curve graph and a projection, the
subsurface projection, to this graph from MCG(S); there are also projections
between the various curve graphs. The powerful Masur–Minsky distance formula
[2000] shows that the distance between points of MCG(S) is coarsely the sum
over all subsurfaces of the distances between the projections of these points to the
various curve graphs. Meanwhile, the consistency/realization theorem [Behrstock
et al. 2012] tells us that tuples with coordinates in the different curve graphs that
obey “consistency” conditions characteristic of images of actual points in MCG(S)
are, coarsely, images of points in MCG(S). Finally, any two points in MCG(S) are
joined by a uniform-quality quasigeodesic projecting to a uniform unparameterized
quasigeodesic in each curve graph — a hierarchy path [Masur and Minsky 2000].

It is perhaps surprising that analogous behavior should appear in CAT(0) cube
complexes, since the mapping class group cannot act properly on such complexes,
cf. [Bridson 2010; Haglund 2007; Kapovich and Leeb 1996]. However, mapping
class groups enjoy several properties reminiscent of nonpositively/negatively curved
spaces, including: automaticity (and, thus, quadratic Dehn function) [Mosher 1995],
having many quasimorphisms [Bestvina and Fujiwara 2002], super-linear divergence
[Behrstock 2006], etc. Mapping class groups also exhibit coarse versions of some
features of CAT(0) cube complexes, including coarse centroids/medians [Behrstock
and Minsky 2011] and, more generally, a local coarse structure of a cube complex as
made precise in [Bowditch 2013], applications to embeddings in trees, [Behrstock
et al. 2011], etc. Accordingly, it is natural to seek a common thread joining these
important classes of groups and spaces.

In [Hagen 2014], it was shown that, for an arbitrary CAT(0) cube complex X , the
intersection-graph of the hyperplane carriers — the contact graph — is hyperbolic,
and in fact quasi-isometric to a tree. This object seems at first glance quite different
from the curve graph (which records, after all, non-intersection), but there are
a number of reasons this is quite natural, two of which we now mention. First,
the curve graph can be realized as a coarse intersection graph of product regions
in MCG. Second, the contact graph is closely related to the intersection graph of
the hyperplanes themselves; when X is the universal cover of the Salvetti complex
of a right-angled Artin group, the latter graph records commutation of conjugates
of generators, just as the curve graph records commutation of Dehn twists.

The cube complex X coarsely projects to its contact graph. Moreover, using
disc diagram techniques, it is not hard to show that any two 0-cubes in a CAT(0)
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cube complex are joined by a combinatorial geodesic projecting to a geodesic in the
contact graph; see our [Behrstock et al. 2017b], which we will henceforth abbreviate
as [Part I]. The observation that CAT(0) cube complexes have “hierarchy paths”
with very strong properties — motivated a search for an analogue of the theory of
curve graphs and subsurface projections in the world of CAT(0) cube complexes.
This was largely achieved in [Part I], where a theory completely analogous to
the mapping class group theory was constructed for a wide class of CAT(0) cube
complexes, with (a variant of) the contact graph playing the role of the curve graph.
(Results of this type for right-angled Artin groups, using the extension graph, were
obtained in [Kim and Koberda 2014]; see [Part I] for a comparison of the two
approaches.)

These results motivated us to define a notion of “spaces with distance formulae”,
which we did in [Part I], by introducing the class of hierarchically hyperbolic spaces
(HHS) to provide a framework for studying many groups and spaces which arise
naturally in geometric group theory, including mapping class groups and virtually
special groups, and to provide a notion of “coarse nonpositive curvature” which is
quasi-isometry invariant while still yielding some of those properties available via
local geometry in the classical setting of nonpositively curved spaces.

As mentioned above, the three most salient features of hierarchically hyperbolic
spaces are: the distance formula, the realization theorem, and the existence of
hierarchy paths. In the treatment given in [Part I], these attributes are part of the
definition of a hierarchically hyperbolic space. This is somewhat unsatisfactory
since, in the mapping class group and cubical settings, proving these theorems
requires serious work.

In this paper, we show that although the definition of hierarchically hyperbolic
spaces previously introduced identifies the right class of spaces, there exists a
streamlined set of axioms for that class of spaces which are much easier to verify
in practice than those presented in Section 13 of [Part I] and which don’t require
assuming a distance formula, realization theorem, or the existence of hierarchy paths.
Thus, a significant portion of this paper is devoted to proving that those results can
be derived from the simplified axioms we introduce here. Along the way, we obtain
a new, simplified proof of the actual Masur–Minsky distance formula for the map-
ping class group. We then examine various geometric properties of hierarchically
hyperbolic spaces and groups, including many reminiscent of the world of CAT(0)
spaces and groups; for example, we show, using an argument due to Bowditch,
that hierarchically hyperbolic groups have quadratic Dehn function. Finally, taking
advantage of the simpler set of axioms, we prove combination theorems enabling
the construction of new hierarchically hyperbolic spaces/groups from old.

The definition of a hierarchically hyperbolic space still has several parts, the
details of which we postpone to Section 1. However, the idea is straightforward:
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a hierarchically hyperbolic space is a pair (X ,S), where X is a metric space
and S indexes a set of δ-hyperbolic spaces with several features (for each U ∈S
the associated space is denoted CU ). Most notably, S is endowed with three
mutually exclusive relations, nesting, orthogonality, and transversality, respectively
generalizing nesting, disjointness, and overlapping of subsurfaces. For each U ∈S,
we have a coarsely Lipschitz projection πU : X → CU , and there are relative
projections CU → CV when U, V ∈S are nonorthogonal. These projections are
required to obey “consistency” conditions modeled on the inequality identified by
Behrstock [2006], as well as a version of the bounded geodesic image theorem and
large link lemma of [Masur and Minsky 2000], among other conditions. A finitely
generated group G is hierarchically hyperbolic if it can be realized as a group
of HHS automorphisms (“hieromorphisms”, as defined in Section 1) so that the
induced action on X by uniform quasi-isometries is geometric and the action on S

is cofinite. Hierarchically hyperbolic groups, endowed with word-metrics, are
hierarchically hyperbolic spaces, but the converse does not appear to be true.

Combination theorems. One of the main contributions in this paper is to provide
many new examples of hierarchically hyperbolic groups, thus showing that mapping
class groups and various cubical complexes/groups are just two of many interesting
families in this class of groups and spaces. We provide a number of combination
theorems, which we will describe below. One consequence of these results is
the following classification of exactly which 3-manifold groups are hierarchically
hyperbolic:

Theorem 10.1 (which 3-manifolds are hierarchically hyperbolic). Let M be a
closed 3-manifold. Then π1(M) is a hierarchically hyperbolic space if and only
if M does not have a Sol or Nil component in its prime decomposition.

This result has a number of applications to the many fundamental groups of
3-manifolds which are HHS. For instance, in such cases, it follows from results
in [Part I] that: except for Z3, the top dimension of a quasiflat in such a group
is 2, and any such quasiflat is locally close to a “standard flat” (this generalizes
one of the main results of [Kapovich and Leeb 1997, Theorem 4.10]); up to finite
index, Z and Z2 are the only finitely generated nilpotent groups which admit quasi-
isometric embeddings into π1(M); and, except in the degenerate case where π1(M)
is virtually abelian, such groups are all acylindrically hyperbolic (as also shown in
[Minasyan and Osin 2015]).

Remark (hierarchically hyperbolic spaces vs. hierarchically hyperbolic groups).
There is an important distinction to be made between a hierarchically hyperbolic
space, which is a metric space X equipped with a collection S of hyperbolic spaces
with certain properties, and a hierarchically hyperbolic group, which is a group
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acting geometrically on a hierarchically hyperbolic space in such a way that the
induced action on S is cofinite. The latter property is considerably stronger. For
example, Theorem 10.1 shows that π1 M , with any word-metric, is a hierarchically
hyperbolic space, but, as we discuss in Remark 10.2, π1 M probably fails to be a
hierarchically hyperbolic group in general; for instance we conjecture this is the
case for those graph manifolds which can not be cocompactly cubulated.

In the course of proving Theorem 10.1, we establish several general combination
theorems, including one about relative hyperbolicity and one about graphs of groups.
The first is:

Theorem 9.1 (hyperbolicity relative to HHGs). Let the group G be hyperbolic
relative to a finite collection P of peripheral subgroups. If each P ∈ P is a hierar-
chically hyperbolic space, then G is a hierarchically hyperbolic space. Further, if
each P ∈ P is a hierarchically hyperbolic group, then so is G.

Another of our main results is a combination theorem, Theorem 8.6, establishing
when a tree of hierarchically hyperbolic spaces is again a hierarchically hyperbolic
space. In the statement below, hierarchical quasiconvexity is a natural generalization
of both quasiconvexity in the hyperbolic setting and cubical convexity in the cubical
setting, which we shall discuss in some detail shortly. The remaining conditions
are technical and explained in Section 8, but are easily verified in practice.

Theorem 8.6 (combination theorem for HHS). Let T be a tree of hierarchically
hyperbolic spaces. Suppose that

• edge-spaces are uniformly hierarchically quasiconvex in incident vertex spaces,

• each edge-map is full,

• T has bounded supports,

• If e is an edge of T and Se is the v-maximal element of Se, then for all
V ∈Se± , the elements V and φ♦e±(Se) are not orthogonal in Se± . Moreover,
there exists K ≥ 0 such that for all vertices v of T and edges e incident to v, we
have dHaus(φv(Xe)), F

φ
♦
v (Se)
×{?})≤ K , where Se ∈Se is the unique maximal

element and ? ∈ E
φ
♦
v (Se)

.

Then X (T ) is hierarchically hyperbolic.

As a consequence, we obtain a set of sufficient conditions guaranteeing that a
graph of hierarchically hyperbolic groups is a hierarchically hyperbolic group.

Corollary 8.24 (combination theorem for HHG). Let G= (0, {Gv}, {Ge}, {φ
±
e }) be

a finite graph of hierarchically hyperbolic groups. Suppose that G equivariantly sat-
isfies the hypotheses of Theorem 8.6. Then the total group G of G is a hierarchically
hyperbolic group.
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Finally, we prove that products of hierarchically hyperbolic spaces admit natural
hierarchically hyperbolic structures.

As mentioned earlier, we will apply the combination theorems to fundamental
groups of 3-manifolds, but their applicability is broader. For example, they can be
applied to fundamental groups of higher dimensional manifolds such as the ones
considered in [Frigerio et al. 2015].

The distance formula and realization. As defined in [Part I], the basic definition of
a hierarchically hyperbolic space is modeled on the essential properties underlying
the “hierarchy machinery” of mapping class groups. In this paper, we revisit the
basic definition and provide a new, refined set of axioms; the main changes are the
removal of the “distance formula” and “hierarchy path” axioms and the replacement
of the “realization” axiom by a far simpler “partial realization”. These new axioms
are both more fundamental and more readily verified.

An important result in mapping class groups which provides a starting point for
much recent research in the field is the celebrated “distance formula” of Masur and
Minsky [2000] which provides a way to estimate distances in the mapping class
group, up to uniformly bounded additive and multiplicative distortion, via distances
in the curve graphs of subsurfaces. We give a new, elementary, proof of the distance
formula in the mapping class group. The first step in doing so is verifying that
mapping class groups satisfy the new axioms of a hierarchically hyperbolic space.
We provide elementary, simple proofs of the axioms for which elementary proofs
do not exist in the literature (most notably, the uniqueness axiom); this is done in
Section 11. This then combines with our proof of the following result which states
that any hierarchically hyperbolic space satisfies a “distance formula” (which in
the case of the mapping class group provides a new proof of the Masur–Minsky
distance formula):

Theorem 4.5 (distance formula for HHS). Let (X,S) be hierarchically hyperbolic.
Then there exists s0 such that for all s ≥ s0 there exist constants K ,C such that for
all x, y ∈ X ,

dX (x, y)�(K ,C)
∑
W∈S

{{dW (x, y)}}s,

where dW (x, y) denotes the distance in the hyperbolic space CW between the
projections of x, y and {{A}}B = A if A ≥ B and 0 otherwise.

Moreover, we show in Theorem 4.4 that any two points in X are joined by a
uniform quasigeodesic γ projecting to a uniform unparameterized quasigeodesic
in CU for each U ∈S. The existence of such hierarchy paths was hypothesized
as part of the definition of a hierarchically hyperbolic space in [Behrstock et al.
2017b], but now it is proven as a consequence of the other axioms.
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The realization theorem for the mapping class group was established by Behr-
stock, Kleiner, Minsky and Mosher in [Behrstock et al. 2012, Theorem 4.3]. This
theorem states that given a surface S and, for each subsurface W ⊆ S, a point in the
curve complex of W, this sequence of points arises as the projection of a point in the
mapping class group (up to bounded error), whenever the curve complex elements
satisfy certain pairwise “consistency conditions.” Thus the realization theorem
provides another sense in which all of the quasi-isometry invariant geometry of
the mapping class group is encoded by the projections onto the curve graphs of
subsurfaces.1 In Section 3 we show that an arbitrary hierarchically hyperbolic space
satisfies a realization theorem. Given our elementary proof of the new axioms for
mapping class groups in Section 11, we thus obtain a new proof of [Behrstock et al.
2012, Theorem 4.3].

Hulls and the coarse median property. Bowditch introduced a notion of coarse me-
dian space to generalize some results about median spaces to a more general setting,
and, in particular, to the mapping class group [Bowditch 2013]. Bowditch [2018]
observed that any hierarchically hyperbolic space is a coarse median space; for com-
pleteness we provide a short proof of this result in Theorem 7.3. Using Bowditch’s
results about coarse median spaces, we obtain a number of applications as corollaries.
For instance, Corollary 7.9 is obtained from [Bowditch 2014a, Theorem 9.1] and
says that any hierarchically hyperbolic space satisfies the rapid decay property and
Corollary 7.5 is obtained from [Bowditch 2013, Corollary 8.3] to show that all hierar-
chically hyperbolic groups are finitely presented and have quadratic Dehn functions.
This provides examples of groups that are not hierarchically hyperbolic, for example:

Corollary 7.6 (Out(Fn) is not an HHG). For n ≥ 3, the group Out(Fn) is not a
hierarchically hyperbolic group.

Indeed, Out(Fn) was shown in [Bridson and Vogtmann 1995; 2012; Handel and
Mosher 2013b] to have exponential Dehn function. This result is interesting as a
counter-point to the well-known and fairly robust analogy between Out(Fn) and
the mapping class group of a surface; especially in light of the fact that Out(Fn)

is known to have a number of properties reminiscent of the axioms for an HHS,
cf. [Bestvina and Feighn 2014a; 2014b; Handel and Mosher 2013a; Sabalka and
Savchuk 2012]. The coarse median property, via work of Bowditch, also implies that
asymptotic cones of hierarchically hyperbolic spaces are contractible. Moreover,
in Corollary 6.7, we bound the homological dimension of any asymptotic cone of a
hierarchically hyperbolic space. This latter result relies on the use of hulls of finite
sets of points in the HHS X . This construction generalizes the 6-hull of a finite set,

1In [Behrstock et al. 2012], the name consistency theorem is used to refer to the necessary and
sufficient conditions for realization; since we find it useful to break up these two aspects, we refer to
this half as the realization theorem, since anything that satisfies the consistency conditions is realized.
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constructed in the mapping class group context in [Behrstock et al. 2012]. (It also
generalizes a special case of the ordinary combinatorial convex hull in a CAT(0)
cube complex.) A key feature of these hulls is that they are coarse retracts of X (see
Proposition 6.3), and this plays an important role in the proof of the distance formula.

Hierarchical spaces. We also introduce the more general notion of a hierarchical
space (HS). This is the same as a hierarchically hyperbolic space, except that we do
not require the various associated spaces CU , onto which we are projecting, to be hy-
perbolic. Although we mostly focus on HHS in this paper, a few things are worth not-
ing. First, the realization theorem (Theorem 3.1) actually makes no use of hyperbol-
icity of the CU , and therefore holds in the more general context of HS; see Section 3.

Second, an important subclass of the class of HS is the class of relatively hierar-
chically hyperbolic spaces, which we introduce in Section 6B. These are hierarchical
spaces where the spaces CU are uniformly hyperbolic except when U is minimal
with respect to the nesting relation. As their name suggests, this class includes all
metrically relatively hyperbolic spaces; see Theorem 9.3. With an eye to future
applications, in Section 6B we prove a distance formula analogous to Theorem 4.5
for relatively hierarchically hyperbolic spaces, and also establish the existence of
hierarchy paths. The strategy is to build, for each pair of points x, y, in the relatively
hierarchically hyperbolic space, a “hull” of x, y, which we show is hierarchically
hyperbolic with uniform constants. We then apply Theorems 4.5 and 4.4.

Standard product regions and hierarchical quasiconvexity. In Section 5A, we
introduce the notion of a hierarchically quasiconvex subspace of a hierarchically
hyperbolic space (X ,S). In the case where X is hyperbolic, this notion coincides
with the usual notion of quasiconvexity. The main technically useful features of
hierarchically quasiconvex subspaces generalize key features of quasiconvexity:
they inherit the property of being hierarchically hyperbolic (Proposition 5.6) and
one can coarsely project onto them (Lemma 5.5).

Along with the hulls discussed above, the most important examples of hierarchi-
cally quasiconvex subspaces are standard product regions: for each U ∈S, one can
consider the set PU of points x ∈X whose projection to each CV is allowed to vary
only if V is nested into or orthogonal to U ; otherwise, x projects to the same place
in CV as CU does under the relative projection. The space PU coarsely decomposes
as a product, with factors corresponding to the nested and orthogonal parts. Product
regions play an important role in the study of boundaries and automorphisms of
hierarchically hyperbolic spaces in [Durham et al. 2017], as well as in the study
of quasiboxes and quasiflats in hierarchically hyperbolic spaces carried out in
[Behrstock et al. 2017b].

Some questions and future directions. Before embarking on the discussion out-
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lined above, we raise a few questions about hierarchically hyperbolic spaces and
groups that we believe are of significant interest.

The first set of questions concern the scope of the theory, i.e., which groups
and spaces are hierarchically hyperbolic and which operations preserve the class
of HHS:

Question A (cubical groups). Let G act properly and cocompactly on a CAT(0) cube
complex. Is G a hierarchically hyperbolic group? Conversely, suppose that (G,S)
is a hierarchically hyperbolic group; are there conditions on the elements of S
which imply that G acts properly and cocompactly on a CAT(0) cube complex?2

Substantial evidence for this conjecture was provided in [Behrstock et al. 2017b]
where we established that a CAT(0) cube complex X containing a factor system
is a hierarchically hyperbolic space, and the associated hyperbolic spaces are all
uniform quasitrees. (Roughly speaking, X contains a factor-system if the following
collection of subcomplexes has finite multiplicity: the smallest collection of convex
subcomplexes that contains all combinatorial hyperplanes and is closed under
collecting images of closest-point projection maps between its elements.) The class
of cube complexes that are HHS in this way contains all universal covers of special
cube complexes with finitely many immersed hyperplanes, but the cube complexes
containing factor systems have not been completely characterized. In [Durham
et al. 2017], we show that the above question is closely related to a conjecture
of Behrstock and Hagen on the simplicial boundary of cube complexes [2016,
Conjecture 2.8].

More generally, we ask the following:

Question B (factor systems in median spaces). Is there a theory of factor systems
in median spaces generalizing that in CAT(0) cube complexes, such that median
spaces/groups admitting factor systems are hierarchically hyperbolic?

Presumably, a positive answer to Question B would involve the measured
wallspace structure on median spaces discussed in [Chatterji et al. 2010]. One would
have to develop an analogue of the contact graph of a cube complex to serve as the
underlying hyperbolic space. One must be careful since, e.g., the Baumslag–Solitar
group BS(1, 2) acts properly on a median space but has exponential Dehn function
[Gersten 1992] and is thus not a hierarchically hyperbolic space, by Corollary 7.5.
On the other hand, if the answer to Question B is positive, one might try to do the
same thing for coarse median spaces.

There are a number of other groups and spaces where it is natural to inquire
whether or not they are hierarchically hyperbolic. For example:

2The first question was partially answered positively in [Hagen and Susse 2016] after this paper
was first posted.
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Question C (handlebody group). Let H be a compact oriented 3-dimensional
genus g handlebody, and let Gg ≤MCG(∂H) be the group of isotopy classes of
diffeomorphisms of H . Is Gg a hierarchically hyperbolic group?

Question D (graph products). Let G be a (finite) graph product of hierarchically
hyperbolic groups. Is G hierarchically hyperbolic?

The answer to Question C is presumably no, while the answer to D is most likely
yes. The positive answer to Question D would follow from a strengthened version
of Theorem 8.6.

There are other candidate examples of hierarchically hyperbolic spaces. For
example, it is natural to ask whether a right-angled Artin group with the syllable-
length metric, introduced in [Kim and Koberda 2014], which is analogous to a
Teichmüller space with the Weil–Petersson metric, is hierarchically hyperbolic.

As far as the difference between hierarchically hyperbolic spaces and groups is
concerned, we conjecture that the following question has a positive answer:

Question E. Is it true that the fundamental group G of a nongeometric graph
manifold is a hierarchically hyperbolic group if and only if G is virtually compact
special?

It is known that G as above is virtually compact special if and only if it is
chargeless in the sense of [Buyalo and Svetlov 2004]; see [Hagen and Przytycki
2015].

There remain a number of open questions about the geometry of hierarchically
hyperbolic spaces in general. Theorem 7.3 ensures, via work of Bowditch [2013],
that every asymptotic cone of a hierarchically hyperbolic space is a median space;
further properties in this direction are established in Section 6. Motivated by
combining the main result of [Sisto 2011] on 3-manifold groups with Theorem 10.1,
we ask:

Question F. Are any two asymptotic cones of a given hierarchically hyperbolic
space bi-Lipschitz equivalent?

The notion of hierarchical quasiconvexity of a subgroup of a hierarchically
hyperbolic group (G,S) generalizes quasiconvexity in word-hyperbolic groups and
cubical convex-cocompactness in groups acting geometrically on CAT(0) cube com-
plexes with factor-systems. Another notion of quasiconvexity is stability, defined by
Durham and Taylor [2015]. This is a quite different notion of quasiconvexity, since
stable subgroups are necessarily hyperbolic. In [Durham and Taylor 2015], the
authors characterize stable subgroups of the mapping class group; it is reasonable
to ask for a generalization of their results to hierarchically hyperbolic groups.

Many hierarchically hyperbolic spaces admit multiple hierarchically hyperbolic
structures. However, as discussed in [Behrstock et al. 2017b], a CAT(0) cube
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complex with a factor-system has a “minimal” factor-system, i.e., one that is
contained in all other factor systems. In this direction, it is natural to ask whether a
hierarchically hyperbolic space (X ,S) admits a hierarchically hyperbolic structure
that is canonical in some way.

Recent developments. Since we posted the first version of this paper, there has
been further progress on the theory of HHS and its applications.

More examples of HHS/HHG are now available, including a large class of CAT(0)
cubical groups [Hagen and Susse 2016], “small-cancellation” quotients of HHGs
[Behrstock et al. 2017a], and separating curve graphs of surfaces [Vokes 2017]. It
was also recently shown by Spriano that hyperbolic spaces/groups admit alternate
HHS structures that can be constructed from an arbitrary fixed collection of quasi-
convex subspaces/subgroups [Spriano 2017]. Spriano [2018] has proven additional
results on modifying hierarchically hyperbolic structures to include prespecified
subgroups, under natural conditions. This allows him to prove that a large class
of graphs of hierarchically hyperbolic groups are hierarchically hyperbolic. In the
latter vein, Berlai and Robbio [2018] have generalized the combination theorem
(Theorem 8.6) in this paper, and used this to show that the class of hierarchically
hyperbolic groups is closed under taking graph products.

Further developments of the theory include finiteness of the asymptotic dimension
(including a quadratic upper bound for mapping class groups) [Behrstock et al.
2017a]; a theory of boundaries generalizing the Gromov boundary of hyperbolic
groups [Durham et al. 2017; Mousley 2017; 2018]; proof of the existence of largest
acylindrical actions [Abbott et al. 2017]; and a theorem controlling quasiflats (new in
both mapping class groups and cubical groups) with many applications including, for
instance, a new proof of quasi-isometric rigidity for mapping class groups [Behrstock
et al. 2017c]. Mousley and Russell [2018] have recently studied Morse boundaries of
hierarchically hyperbolic groups, and Abbott and Behrstock [2018] have established
a linear bound on conjugator lengths in hierarchically hyperbolic groups.

We stress that the present paper is foundational for almost all of the above
developments; the results here are used as tools there.

Organization of the paper. Section 1 contains the full definition of a hierarchically
hyperbolic space (and, more generally, a hierarchical space) and some discussion
of background. Section 2 contains various basic consequences of the definition,
and some tricks that are used repeatedly. In Section 3, we prove the realization
theorem (Theorem 3.1). In Section 4 we establish the existence of hierarchy paths
(Theorem 4.4) and the distance formula (Theorem 4.5). Section 5 is devoted to
hierarchical quasiconvexity and product regions, and Section 6 to coarse convex
hulls and relatively hierarchically hyperbolic spaces. The coarse median property
and its consequences are detailed in Section 7. The combination theorems for trees
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of spaces, graphs of groups, and products are proved in Section 8, and groups
hyperbolic relative to HHG are studied in Section 9. This is applied to 3-manifolds
in Section 10. Finally, in Section 11, we prove that mapping class groups are
hierarchically hyperbolic.

1. The main definition and background on hierarchically hyperbolic spaces

1A. The axioms. We begin by defining a hierarchically hyperbolic space. We
will work in the context of a q-quasigeodesic space, X , i.e., a metric space where
any two points can be connected by a (q, q)-quasigeodesic. Obviously, if X is
a geodesic space, then it is a quasigeodesic space. Most of the examples we are
interested in are geodesic spaces, but in order to construct hierarchically hyperbolic
structures on naturally occurring subspaces of hierarchically hyperbolic spaces, we
must work in the slightly more general setting of quasigeodesic spaces.

Definition 1.1 (hierarchically hyperbolic space). The q-quasigeodesic space (X,dX )
is a hierarchically hyperbolic space if there exists δ ≥ 0, an index set S, and a set
{CW :W ∈S} of δ-hyperbolic spaces (CU, dU ), such that the following conditions
are satisfied:

(1) Projections. There is a set

{πW : X → 2CW
|W ∈S}

of projections sending points in X to nonempty sets of diameter bounded by
some ξ ≥ 0 in the various CW ∈ S. Moreover, there exists K so that for
all W ∈ S, the coarse map πW is (K , K )-coarsely Lipschitz and πW (X ) is
K -quasiconvex in CW .

(2) Nesting. S is equipped with a partial order v, and either S=∅ or S contains
a unique v-maximal element; when V vW , we say V is nested in W . (We
emphasize that W vW for all W ∈S.) For each W ∈S, we denote by SW

the set of V ∈S such that V vW . Moreover, for all V,W ∈S with V Ĺ W
there is a specified nonempty subset ρV

W ⊂ CW with diamCW (ρ
V
W )≤ ξ . There

is also a projection ρW
V : CW → 2CV . (The similarity in notation is justified by

viewing ρV
W as a coarsely constant map CV → 2CW .)

(3) Orthogonality. S has a symmetric and antireflexive relation called orthogo-
nality: we write V⊥W when V,W are orthogonal. Also, whenever V v W
and W⊥U , we require that V⊥U . We require that for each T ∈S and each
U ∈ST for which {V ∈ST | V⊥U } 6=∅, there exists W ∈ST −{T }, so that
whenever V⊥U and V v T , we have V v W . Finally, if V⊥W , then V,W
are not v-comparable.

(4) Transversality and consistency. If V,W ∈S are not orthogonal and neither is
nested in the other, then we say V,W are transverse, denoted V tW . There
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exists κ0 ≥ 0 such that if V tW , then there are sets ρV
W ⊆ CW and ρW

V ⊆ CV
each of diameter at most ξ and satisfying

min{dW (πW (x), ρV
W ), dV (πV (x), ρW

V )} ≤ κ0

for all x ∈ X .
For V,W ∈S satisfying V vW and for all x ∈ X , we have

min{dW (πW (x), ρV
W ), diamCV (πV (x)∪ ρW

V (πW (x)))} ≤ κ0.

The preceding two inequalities are the consistency inequalities for points
in X .

Finally, if U v V , then dW (ρ
U
W , ρ

V
W )≤ κ0 whenever W ∈S satisfies either

V Ĺ W or V tW and W 6⊥U .

(5) Finite complexity. There exists n ≥ 0, the complexity of X (with respect to S),
so that any set of pairwise-v-comparable elements has cardinality at most n.

(6) Large links. There exist λ ≥ 1 and E ≥ max{ξ, κ0} such that the following
holds. Let W ∈S and let x, x ′ ∈ X . Let N = λdW (πW (x), πW (x ′))+λ. Then
there exists {Ti }i=1,...,bNc ⊆SW −{W } such that for all T ∈SW −{W }, either
T ∈STi for some i , or dT (πT (x), πT (x ′)) < E . Also, dW (πW (x), ρ

Ti
W ) ≤ N

for each i .

(7) Bounded geodesic image. There exists E > 0 such that for all W ∈ S, all
V ∈ SW − {W }, and all geodesics γ of CW , either diamCV (ρ

W
V (γ )) ≤ E or

γ ∩NE(ρ
V
W ) 6=∅.

(8) Partial realization. There exists a constant α with the following property.
Let {Vj } be a family of pairwise orthogonal elements of S, and let pj ∈

πVj (X )⊆ CVj . Then there exists x ∈ X so that
• dVj (x, pj )≤ α for all j ,
• for each j and each V ∈S with Vj v V , we have dV (x, ρ

Vj
V )≤ α, and

• if W t Vj for some j , then dW (x, ρ
Vj
W )≤ α.

(9) Uniqueness. For each κ ≥ 0, there exists θu = θu(κ) such that if x, y ∈ X and
dX (x, y)≥ θu , then there exists V ∈S such that dV (x, y)≥ κ .

We say that the q-quasigeodesic metric spaces {Xi } are uniformly hierarchically
hyperbolic if each Xi satisfies the axioms above and all constants, including the
complexities, can be chosen uniformly. We often refer toS, together with the nesting
and orthogonality relations, and the projections as a hierarchically hyperbolic
structure for the space X . Observe that X is hierarchically hyperbolic with respect
to S=∅, i.e., hierarchically hyperbolic of complexity 0, if and only if X is bounded.
Similarly, X is hierarchically hyperbolic of complexity 1 with respect to S= {X },
if and only if X is hyperbolic.
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Notation 1.2. Where it will not cause confusion, given U ∈S, we will often sup-
press the projection map πU when writing distances in CU , i.e., given x, y ∈X and
p ∈ CU we write dU (x, y) for dU (πU (x), πU (y)) and dU (x, p) for dU (πU (x), p).
Note that when we measure distance between a pair of sets (typically both of
bounded diameter) we are taking the minimum distance between the two sets.
Given A ⊂ X and U ∈S we let πU (A) denote ∪a∈AπU (a).

Remark 1.3 (surjectivity of projections). In all of the motivating examples, and in
most applications, the maps πU are uniformly coarsely surjective.

One can always replace each CU with a thickening of πU (X ), and hence make
each πU coarsely surjective. This is first discussed in [Durham et al. 2017], where
this procedure gets used; the resulting spaces are termed normalized hierarchically
hyperbolic spaces.

More precisely, since each πU (X ) is K -quasiconvex, the subset CUnorm of CU
consisting of all geodesics that start and end in πU (X ) is uniformly quasiconvex, is
a (uniformly) hyperbolic geodesic metric space, and uniformly coarsely coincides
with πU (X ). (This “quasiconvex hull” procedure is discussed in more detail in
Section 6.) Hence we can endow X with a slightly different, normalized, hierar-
chically hyperbolic structure. Indeed, the index set is still S, each CU is replaced
by CUnorm, and the maps πU remain unchanged (but are now coarsely surjective).
Given U, V ∈S such that ρU

V is defined, we replace ρU
V (viewed as a coarse map

CU → CV ) with the composition pV ◦ ρ
U
V , where pV : CV → CUnorm is the coarse

closest-point projection.

Remark 1.4 (surjectivity/quasiconvexity of projections in the extant applications).
In the motivating examples (mapping class groups, Teichmüller space, virtually
special groups, hyperbolic spaces, etc.), the projections πU are uniformly coarsely
surjective, but it is convenient to relax that requirement. As is evident from
Theorem 3.1 and the key Lemma 2.6, the appropriate relaxation of coarse sur-
jectivity is the requirement, from Definition 1.1.(1), that each πU (X ) be uniformly
quasiconvex in CU .

In a few other places in the literature, this is not spelled out, but in each case
where an issue arises, it does not affect the arguments in question. In the interest of
clarity, we now summarize this as follows:

• In [Durham et al. 2017, p. 4, p. 19], the authors establish a standing assumption
that they are working with normalized HHSs — each πU is uniformly coarsely
surjective. In view of Remark 1.3 (or [Durham et al. 2017, Proposition 1.16]),
the results about normalized HHSs can be promoted to corresponding state-
ments about general HHSs.

• In [Behrstock et al. 2017a], Remark 1.3 allows one to assume that the HHSs
in question are normalized. However, there are three places where a new
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HHS is constructed from an old one, and one must observe that in each of
these cases, the new projections have quasiconvex image. In [Behrstock et al.
2017a, Proposition 2.4], this holds just because the projections used in the
new HHS structure coincide with those used in the old HHS structure, so
quasiconvexity persists. In Proposition 6.14 and Theorem 6.2 of [Behrstock
et al. 2017a], the projections in the new HHS structures are of two types: they
either coincide with projections from the old HHS structures, and thus have
quasiconvex images, or they are surjective by construction.

Remark 1.5 (large link function). It appears as though there is no actual need to
require in Definition 1.1.(6) that N depend linearly on dW (x, x ′). Instead, we could
have hypothesized that for any C ≥ 0, there exists N (C) so that the statement of
the axiom holds with N = N (C) whenever dW (x, x ′) ≤ C . However, one could
deduce from this and the rest of the axioms that N (C) grows linearly in C , so we
have elected to simply build linearity into the definition.

Remark 1.6 (summary of constants). Each hierarchically hyperbolic space (X ,S)
is associated with a collection of constants often, as above, denoted δ, ξ, n, κ0, E, θu ,
and K , where

(1) CU is δ-hyperbolic for each U ∈S,

(2) each πU has image of diameter at most ξ and each πU is (K , K )-coarsely Lip-
schitz, πU (X ) is K -quasiconvex in CU , and each ρU

V has (image of) diameter
at most ξ ,

(3) for each x ∈ X , the tuple (πU (x))U∈S is κ0-consistent,

(4) E is the larger of the constants from the bounded geodesic image axiom and
the large link axiom.

Whenever working in a fixed hierarchically hyperbolic space, we use the above
notation freely. We can, and shall, assume that E ≥q, E ≥ δ, E ≥ ξ, E ≥ κ0, E ≥ K ,
and E ≥ α.

Remark 1.7. We note that in Definition 1.1.(1), the assumption that the projections
are Lipschitz can be replaced by the weaker assumption that there is a proper
function of the projected distance which is a lower bound for the distance in the
space X . From this weaker assumption, the fact that the projections are actually
coarsely Lipschitz then follows from the fact that we assume X to be quasi-geodesic.
Since the Lipschitz hypothesis is cleaner to state and, in practice, fairly easy to
verify, we just remark on this for those that might find this fact useful in proving
that more exotic spaces are hierarchically hyperbolic.
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1B. Comparison to the definition in [Behrstock et al. 2017b]. Definition 1.1 is
very similar to the definition of a hierarchically hyperbolic space given in [Behrstock
et al. 2017b], with the following differences:

(1) The existence of hierarchy paths and the distance formula were stated as
axioms in [Behrstock et al. 2017b]; below, we deduce them from the other
axioms. Similarly, the below realization theorem was formerly an axiom, but
has been replaced by the (weaker) partial realization axiom.

(2) We now require X to be a quasigeodesic space. In [Behrstock et al. 2017b],
this follows from the existence of hierarchy paths, which was an axiom there.

(3) We now require the projections πU :X→CU to be coarsely Lipschitz; although
this requirement was not imposed explicitly in [Behrstock et al. 2017b], it
follows from the distance formula, which was an axiom there.

(4) In [Behrstock et al. 2017b], there were five consistency inequalities; there are
two in Definition 1.1.(4). The last three inequalities in the definition from
[Behrstock et al. 2017b] follow from Proposition 1.8 below. (Essentially, the
partial realization axiom has replaced part of the old consistency axiom.)

(5) In Definition 1.1.(4), we require that, if U v V , then dW (ρ
U
W , ρ

V
W ) ≤ κ0

whenever W ∈ S satisfies either V Ĺ W or V t W and W 6⊥ U . In the
context of [Behrstock et al. 2017b], this follows by considering the standard
product regions constructed using realization (see [Behrstock et al. 2017b,
Section 13.1] and Section 5B of the present paper).

Proposition 1.8 (ρ-consistency). There exists κ1 so that the following holds. Sup-
pose that U, V,W ∈S satisfy both of the following conditions: U Ĺ V or U t V ;
and U Ĺ W or U tW . Then, if V tW ,

min{dW (ρ
U
W , ρ

V
W ), dV (ρ

U
V , ρ

W
V )} ≤ κ1

and if V Ĺ W , then

min{dW (ρ
U
W , ρ

V
W ), diamCV (ρ

U
V ∪ ρ

W
V (ρ

U
W ))} ≤ κ1.

Proof. Suppose that U Ĺ V or U t V and U Ĺ W or U tW . Suppose that V tW
or V v W . Choose p ∈ πU (X ). There is a uniform α so that partial realization
(Definition 1.1.(8)) provides x ∈ X so that dU (x, p) ≤ α and dT (x, ρU

T ) ≤ α

whenever ρU
T is defined and coarsely constant. In particular, dV (x, ρU

V ) ≤ α and
dW (x, ρU

W )≤α. The claim now follows from Definition 1.1.(4), with κ1=κ0+α. �

In view of the discussion above, we have:

Proposition 1.9. The pair (X ,S) satisfies Definition 1.1 if and only if it is hierar-
chically hyperbolic in the sense of [Behrstock et al. 2017b].
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In particular, as observed in [Behrstock et al. 2017b]:

Proposition 1.10. If (X ,S) is a hierarchically hyperbolic space, and X ′ is a
quasigeodesic space quasi-isometric to X , then there is a hierarchically hyperbolic
space (X ′,S).

1C. A variant on the axioms. Here we introduce two slightly simpler versions
of the HHS axioms and show that in the case, as in most situations which arise
naturally, that the projections are coarsely surjective, it suffices to verify the simpler
axioms.

The following is a subset of the nesting axiom; here we remove the definition of
the projection map ρW

V : CW → 2CV in the case V Ĺ W .

Definition 1.1.(2)′ (nesting variant). S is equipped with a partial order v, and
either S=∅ or S contains a unique v-maximal element; when V vW , we say
V is nested in W . We require that W v W for all W ∈ S. For each W ∈ S, we
denote by SW the set of V ∈S such that V vW . Moreover, for all V,W ∈S with
V Ĺ W there is a specified subset ρV

W ⊂ CW with diamCW (ρ
V
W )≤ ξ .

The following is a subset of the transversality and consistency axiom.

Definition 1.1.(4)′ (transversality). If V,W ∈S are not orthogonal and neither is
nested in the other, then we say V,W are transverse, denoted V tW . There exists
κ0 ≥ 0 such that if V t W , then there are sets ρV

W ⊆ CW and ρW
V ⊆ CV each of

diameter at most ξ and satisfying

min{dW (πW (x), ρV
W ), dV (πV (x), ρW

V )} ≤ κ0

for all x ∈ X .
Finally, if U v V , then dW (ρ

U
W , ρ

V
W ) ≤ κ0 whenever W ∈ S satisfies either

V Ĺ W or V tW and W 6⊥U .

The following is a variant of the bounded geodesic image axiom:

Definition 1.1.(7)′ (bounded geodesic image variant). Suppose that x, y ∈ X and
V Ĺ W have the property that there exists a geodesic from πW (x) to πW (y) which
stays (E + 2δ)-far from ρV

W . Then dV (x, y)≤ E .

Proposition 1.11. Given a quasigeodesic space X and an index set S, then (X ,S)
is an HHS if it satisfies the axioms of Definition 1.1 with the following changes:

• Replace Definition 1.1.(2) by Definition 1.1.(2)′.

• Replace Definition 1.1.(4) by Definition 1.1.(4)′.

• Replace Definition 1.1.(7) by Definition 1.1.(7)′.

• Assume that for each CU the map πU is uniformly coarsely surjective.
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Proof. To verify Definition 1.1.(2), for each V,W ∈S with V Ĺ W , we define a
map ρW

V : CW→ 2CV as follows. If p ∈ CW−NE(ρ
V
W ), then let ρW

V (p)=πV (x) for
some x ∈ X with πW (x) (uniformly) coarsely coinciding with p. Since p does not
lie E-close to ρV

W , this definition is coarsely independent of x by Definition 1.1.(7)′.
On NE(ρ

V
W ), we define ρW

V arbitrarily. By definition, the resulting map satisfies
Definition 1.1.(4). Moreover, coarse surjectivity of πW and Definition 1.1.(7)′

ensure that Definition 1.1.(7) holds. The rest of the axioms hold by hypothesis. �

Remark 1.12. The definition of an HHS provided by Proposition 1.11 is convenient
because it does not require one to define certain maps between hyperbolic spaces:
Definition 1.1.(2)′ is strictly weaker than Definition 1.1.(2). On the other hand, it
is often convenient to work with HHS in which some of the projections πU are
not coarsely surjective; for example, this simplifies the proof that hierarchically
quasiconvex subspaces inherit HHS structures in Proposition 5.6. Hence we have
included both definitions.

In practice, we almost always apply consistency and bounded geodesic image
in concert, which involves applying bounded geodesic image to geodesics of CW
joining points in πW (X ). Accordingly, Definition 1.1.(7)′ is motivated by the
following easy observation:

Proposition 1.13. Let (X ,S) be an HHS. Then the conclusion of Definition 1.1.(7)′

holds for all x, y ∈ X and V,W ∈S with V Ĺ W .

1D. Hierarchical spaces. Although most of our focus in this paper is on hierar-
chically hyperbolic spaces, there are important contexts in which hyperbolicity
of the spaces CU,U ∈ S is not used; notably, this is the case for the realization
theorem (Theorem 3.1). Because of the utility of a more general definition in later
applications, we now define the following more general notion of a hierarchical
space; the reader interested only in the applications to the mapping class group,
3-manifolds, cube complexes, etc., may safely ignore this subsection.

Definition 1.14 (hierarchical space). A hierarchical space is a pair (X ,S) as in
Definition 1.1, with X a quasigeodesic space and S an index set, where to each
U ∈S we associate a geodesic metric space CU , which we do not require to be
hyperbolic. As before, there are coarsely Lipschitz projections

πU : X → CU

and relative projections
ρU

V : CU → CV

whenever U, V are nonorthogonal. We require all statements in the Definition 1.1
to hold, except for hyperbolicity of the CU .
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Remark 1.15. Let X be a quasigeodesic space that is hyperbolic relative to a
collection P of subspaces. Then X has a hierarchical space structure: the associated
spaces onto which we project are the various P , together with the space X̂ obtained
by coning off the elements of P in X . When the elements of P are themselves
hierarchically hyperbolic, we obtain a hierarchically hyperbolic structure on X
(see Section 9). Otherwise, the hierarchical structure need not be hierarchically
hyperbolic since X̂ is the only one of the elements of S known to be hyperbolic.

Remark 1.16. Other than hierarchically hyperbolic spaces, we are mainly interested
in hierarchical spaces (X ,S) where for all U ∈S, except possibly when U is v-
minimal, we have that CU is hyperbolic. This is the case, for example, in relatively
hyperbolic spaces.

1E. Consistency and partial realization points. The following definitions, which
abstract the consistency inequalities from Definition 1.1.(4) and the partial realiza-
tion axiom, Definition 1.1.(8), play important roles throughout our discussion. We
will consider this topic in depth in Section 3.

Definition 1.17 (consistent). Fix κ ≥ 0 and let Eb ∈
∏

U∈S 2CU be a tuple such that
for each U ∈S, the coordinate bU is a subset of CU with diamCU (bU ) ≤ κ . The
tuple Eb is κ-admissible if dU (bU , πU (X )) ≤ κ for all U ∈ S. The κ-admissible
tuple Eb is κ-consistent if, whenever V tW ,

min{dW (bW , ρ
V
W ), dV (bV , ρ

W
V )} ≤ κ

and whenever V vW ,

min{dW (bW , ρ
V
W ), diamCV (bV ∪ ρ

W
V (bW ))} ≤ κ.

In typical situations, where the maps πU are uniformly coarsely surjective, up to
a uniform enlargement of E , all tuples are admissible, so verifying consistency
amounts to verifying the second condition.

Definition 1.18 (partial realization point). Given θ ≥ 0 and a κ-consistent tuple Eb,
we say that x ∈ X is a θ -partial realization point for {Vj } ⊆S if

(1) dVj (x, bVj )≤ θ for all j ,

(2) for all j , we have dV (x, ρ
Vj
V )≤ θ for any V ∈S with Vj v V , and

(3) for all W such that W t Vj for some j , we have dW (x, ρ
Vj
W )≤ θ .

Observe that if Eb is consistent and {Vj } is a set of pairwise-orthogonal elements,
then partial realization (Definition 1.1.(8)) provides a partial realization point,
because of admissibility.
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1F. Levels. The following definition is very useful for proving statements about
hierarchically hyperbolic spaces inductively. Although it is natural, and sometimes
useful, to induct on complexity, it is often better to induct on the level:

Definition 1.19 (level). Let (X,S) be hierarchically hyperbolic. The level `U of
U ∈S is defined inductively as follows. If U is v-minimal then we say that its
level is 1. The element U has level k+ 1 if k is the maximal integer such that there
exists V v U with `V = k and V 6= U . Given U ∈S, for each ` ≥ 0, let S`

U be
the set of V vU with `U − `V ≤ ` and let T`U =S`

U −S`−1
U .

1G. Maps between hierarchically hyperbolic spaces.

Definition 1.20 (hieromorphism). Let (X ,S) and (X ′,S′) be hierarchically hyper-
bolic structures on the spaces X ,X ′ respectively. A hieromorphism, consists of a
map f : X → X ′, an injective map f ♦ :S→S′ preserving nesting, transversality,
and orthogonality, and, for each U ∈S, a map f ∗(U ) : CU → C( f ♦(U )) which
is a quasi-isometric embedding where the constants are uniform over all elements
of S and for which the following two diagrams coarsely commute (with uniform
constants) for all U, V ∈S with U Ĺ V or U t V :

X X ′

C(U ) C( f ♦(U ))

-f

?
πU ?

π f♦(U )

-f ∗(U )

and
CU C( f ♦(U ))

CV C( f ♦(V ))
?

ρU
V

-f ∗(U )

?ρ
f♦(U )
f♦(V )

-f ∗(V )

where ρU
V : CU → CV is the projection from Definition 1.1. As the functions

f, f ∗(U ), and f ♦ all have distinct domains, it is often clear from the context which
is the relevant map; in that case we periodically abuse notation slightly by dropping
the superscripts and just calling all of the maps f .

Definition 1.21 (automorphism, hierarchically hyperbolic group). An automor-
phism of the hierarchically hyperbolic space (X ,S) is a hieromorphism f :
(X ,S)→ (X ,S) such that f ♦ is bijective and each f ∗(U ) is an isometry; hence
f : X → X is a uniform quasi-isometry by the distance formula (Theorem 4.5).

Note that the composition of two automorphisms is again an automorphism.
We say that the automorphisms f, f ′ are equivalent if f ♦ = ( f ′)♦ and f ∗(U )=
( f ′)∗(U ) for each U ∈ S. In particular, equivalent automorphisms give equiva-
lent quasi-isometries. Given an automorphism f , any quasi-inverse f̄ of f is an
automorphism with f̄ ♦ = ( f ♦)−1 and each f̄ ∗(U )= f ∗(U )−1. Hence the set of
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equivalence classes of automorphisms forms a group, the full automorphism group
of (X ,S), denoted Aut(S).

The finitely generated group G is hierarchically hyperbolic if there exists a
hierarchically hyperbolic space (X ,S) and an action G → Aut(S) so that the
uniform quasiaction of G on X is metrically proper and cobounded and S contains
finitely many G-orbits. Note that if G is hierarchically hyperbolic by virtue of its
action on the hierarchically hyperbolic space (X ,S), then (G,S) is a hierarchically
hyperbolic structure with respect to any word-metric on G; for any U ∈ S the
projection is the composition of the projection X → CU with a G-equivariant
quasi-isometry G→ X . In this case, (G,S) (with the implicit hyperbolic spaces
and projections) is a hierarchically hyperbolic group structure.

Definition 1.22 (equivariant hieromorphism). Let (X ,S) and (X ′,G′) be hierar-
chically hyperbolic spaces and consider actions G→ Aut(S) and G ′→ Aut(S′).
For each g ∈ G, let ( fg, f ♦g , { f ∗g (U )}) denote its image in Aut(S), and for each
g′ ∈ G ′, let ( fg′, f ♦g′ , { f ∗g′(U )}) denote its image in Aut(S′). Let φ : G→ G ′ be
a homomorphism. The hieromorphism ( f, f ♦, { f ∗(U )}) : (X ,S)→ (X ′,S′) is
φ-equivariant if for all g ∈ G and U ∈S, we have f ♦( f ♦g (U ))= f ♦φ(g)( f ♦(U ))
and the following diagram (uniformly) coarsely commutes:

CU C( f ♦(U ))

C( f ♦g (U )) C( f ♦( f ♦g (U )))
?f ∗g (U )

-f ∗(U )

?
f ∗φ(g)(U ))

-
f ∗( f ♦g (U ))

In this case, f : X → X ′ is (uniformly) coarsely φ-equivariant in the usual sense.
Also, we note for the reader that f ♦g :S

�
, while f ♦φ(g) :S

′
�
, and f ♦ :S→S′.

2. Tools for studying hierarchically hyperbolic spaces

We now collect some basic consequences of the axioms that are used repeatedly
throughout the paper. However, this section need not all be read in advance. Indeed,
the reader should feel free to skip this section on a first reading and return to it later
when necessary. Throughout this section, we work in a hierarchically hyperbolic
space (X ,S).

2A. Handy basic consequences of the axioms.
Lemma 2.1 (“finite dimension”). Let (X ,S) be a hierarchically hyperbolic space
of complexity n and let U1, . . . ,Uk ∈S be pairwise-orthogonal. Then k ≤ n.

Proof. By Definition 1.1.(3), there exists W1 ∈ S, not v-maximal, such that
U2, . . . ,Uk v W1. Applying Definition 1.1.(3) inductively yields a sequence
Wk−1 vWk−2 v · · · vW1 v S of distinct elements, where S is v-maximal, so that
Ui−1, . . . ,Uk vWi for 1≤ i ≤ k− 1. Hence k ≤ n by Definition 1.1.(5). �
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Lemma 2.2. There exists χ so that |S′| ≤ χ whenever S′ ⊆S does not contain a
pair of transverse elements.

Proof. Let S′ ⊆ S be a collection of pairwise nontransverse elements, and let
n be large enough that any collection of pairwise orthogonal (resp. pairwise v-
comparable) elements of S has cardinality at most n; the complexity provides such
an n, by Definition 1.1.(5) and Lemma 2.1. By Ramsey’s theorem, there exists N
so that if |S′|> N then S′ contains a collection of elements, of cardinality at least
n+ 1, whose elements are either pairwise orthogonal or pairwise v-comparable.
Hence, |S′| ≤ N . �

Lemma 2.3 (consistency for pairs of points). Let x, y ∈ X and V,W ∈S satisfy
V tW and dV (x, y), dW (x, y) > 10E. Then, up to exchanging V and W , we have
dV (x, ρW

V )≤ E and dW (y, ρV
W )≤ E.

Proof. If dV (x, ρW
V ) > E , then Definition 1.1.(4) implies dW (x, ρV

W ) ≤ E . Then,
either dW (y, ρV

W )≤ 9E , in which case dW (x, y)≤ 10E , which is a contradiction,
or dW (y, ρV

W ) > E , in which case consistency implies that dV (y, ρW
V )≤ E . �

Corollary 2.4. For x, y, V,W as in Lemma 2.3, and any z ∈ X , there exists U ∈
{V,W } such that dU (z, {x, y})≤ 10E.

Proof. By Lemma 2.3, we may assume that dV (x, ρW
V ), dW (y, ρV

W ) ≤ E . Sup-
pose that dW (z, {x, y}) > 10E . Then dW (z, ρV

W ) > 9E , so that, by consistency,
dV (z, ρW

V )≤ E , whence dV (z, x)≤ 2E . �

The following is needed for Theorem 3.1 and in [Durham et al. 2017].

Lemma 2.5 (passing large projections up the v-lattice). For every C ≥ 0 there
exists N with the following property. Let V ∈S, let x, y ∈ X , and let {Si }

N
i=1 ⊆SV

be distinct and satisfy dSi (x, y)≥ E. Then there exists S ∈SV and i so that Si Ĺ S
and dS(x, y)≥ C.

Proof. The proof is by induction on the level k of a v-minimal S ∈SV into which
each Si is nested. The base case k = 1 is empty.

Suppose that the statement holds for a given N = N (k) when the level of S is at
most k. Suppose further that |{Si }| ≥ N (k+1) (where N (k+1) is a constant much
larger than N (k) that will be determined shortly) and there exists a v-minimal
S ∈SV of level k+ 1 into which each Si is nested. There are two cases.

If dCS(x, y)≥C , we are done. If not, then the large link axiom (Definition 1.1.(6))
yields K = K (C) and T1, . . . , TK , each properly nested into S (and hence of
level less than k + 1), so that any given Si is nested into some Tj . In particular,
if N (k + 1) ≥ K N (k), there exists a j so that at least N (k) elements of {Si }

are nested into Tj . By the induction hypothesis and the finite complexity axiom
(Definition 1.1.(5)), we are done. �
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The next lemma is used in the proof of Proposition 4.12, on which the existence
of hierarchy paths (Theorem 4.4) relies. It is used again in Section 7 to construct
coarse media.

Lemma 2.6 (centers are consistent). There exists κ with the following property. Let
x, y, z ∈ X . Let Eb = (bW )W∈S be such that bW is a point in CW with the property
that there exists a geodesic triangle in CW with vertices in πW (x), πW (y), πW (z)
each of whose sides contains a point within distance δ of bW . Then Eb is κ-consistent.

Proof. Recall that for w ∈ {x, y, z} the tuple (πV (w))V∈S is E-consistent. Let
U, V ∈S be transverse. Then, by E-consistency, up to exchanging U and V and
substituting z for one of x, y, we have dV (x, ρU

V ), dV (y, ρU
V )≤ E , so dV (x, y)≤3E

(recall that the diameter of ρU
V is at most E). Since bV lies at distance δ from the

geodesic joining πV (x), πV (y), we have dV (bV , ρ
U
V )≤ 3E+ δ, whence the lemma

holds with κ = 3E + δ.
Suppose now U Ĺ V . If bV is within distance 10E of ρU

V , then we are done. Other-
wise, up to permuting x, y, z, any geodesic [πV (x), πV (y)] is 5E-far from ρU

V . By
consistency of (πW (x)), (πW (y)) and bounded geodesic image (Definition 1.1.(7)),
we have diamU (ρ

V
U (πV (y))∪ πU (y)) ≤ E , diamU (ρ

V
U (bV ∪ πV (y))) ≤ 10E and

dU (x, y)≤10E . The first inequality and the definition of bU imply dU (bU ,y)≤20E ,
and taking into account the other inequalities, we get diamU (ρ

V
U (bV )∪bU )≤ 100E .

Moreover, since πW (X ) is K -quasiconvex, and bW lies δ-close to a geodesic
starting and ending in πW (X ), we see that bW lies (K + δ)-close to a point in
πW (X ). Hence, provided our initial choice of E was sufficiently large in terms of
the constants from Definition 1.1, Eb is admissible. �

2B. Partially ordering sets of maximal relevant elements of S. In this subsection,
we describe a construction used several times in this paper, including in the proof of
realization (Theorem 3.1), in the construction of hierarchy paths (Theorem 4.4), and
in the proof of the distance formula (Theorem 4.5). We expect that this construction
will have numerous other applications, as is the case with the corresponding partial
ordering in the case of the mapping class group, see for example [Behrstock et al.
2012; Behrstock and Minsky 2011; Clay et al. 2012].

Fix x ∈ X and a tuple Eb ∈
∏

U∈S 2im(πU ), where the U -coordinate bU is a set of
diameter at most some fixed ξ ≥ 0. For example, Eb could be the tuple (πU (y)) for
some y ∈ X .

In the remainder of this section, we choose κ≥0 and require that Eb is κ-consistent.
(Recall that if Eb is the tuple of projections of a point in X , then Eb is E-consistent.)

Definition 2.7 (relevant). First, fix θ ≥ 100 max{κ, E}. Then U ∈ S is relevant
(with respect to x, Eb, θ ) if dU (x, bU ) > θ . Denote by Rel(x, Eb, θ) the set of relevant
elements.
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U
πU (x)

πU (y)∼ ρ
V
U

V

πV (x)∼ ρ
U
V

πV (y)

x

y

Figure 1. Heuristic picture of U ≺V (for Eb the coordinates of y ∈X ,
for concreteness). The idea is that “on the way” from x to y one
“first encounters” U and is forced to change the projection from
πU (x) to πU (y)∼ρ

V
U . In doing so the projection to V is not affected.

Let Relmax(x, Eb, θ) be a subset of Rel(x, Eb, θ) whose elements are pairwise
v-incomparable (for example, they could all be v-maximal in Rel(x, Eb, θ), or
they could all have the same level). Define a relation � on Relmax(x, Eb, θ) as
follows. Given U, V ∈ Relmax(x, Eb, θ), we have U � V if U = V or if U t V and
dU (ρ

V
U , bU )≤ κ . Figure 1 illustrates U ≺ V.

Proposition 2.8. The relation � is a partial order. Moreover, either U, V are
�-comparable or U⊥V .

Proof. Clearly � is reflexive. Antisymmetry follows from Lemma 2.9. Suppose
that U, V are �-incomparable. If U⊥V , we are done, and we cannot have U v V
or V v U , so suppose U t V . Then, by �-incomparability of U, V , we have
dU (ρ

V
U , bU ) > κ and dV (ρ

U
V , bV ) > κ , contradicting κ-consistency of Eb. This

proves the assertion that transverse elements of Relmax(x, Eb, θ) are �-comparable.
Finally, transitivity follows from Lemma 2.10. �

Lemma 2.9. The relation � is antisymmetric.

Proof. If U �V and U 6=V , then dU (bU , ρ
V
U )≤κ , so dU (x, ρV

U )>θ−κ ≥99κ > E .
Then, dV (x, ρU

V )≤ E , by consistency. Thus dV (bV , ρ
U
V ) > κ , and so, by definition

V 6�U . �

Lemma 2.10. The relation � is transitive.

Proof. Suppose that U � V � W . If U = V or V = W , then U � W , and
by Lemma 2.9, we cannot have U = W unless U = V = W . Hence suppose
U t V and dU (ρ

V
U , bU )≤ κ , while V tW and dV (ρ

W
V , bV )≤ κ . By the definition

of Relmax(x, Eb, θ), we have dT (x, bT ) > 100κ for T ∈ {U, V,W }.
We first claim dV (ρ

U
V , ρ

W
V )>10E . Indeed, dU (bU , ρ

V
U )≤κ , so dU (ρ

V
U , x)≥90κ ,

whence dV (ρ
U
V , x)≤ E ≤κ by E-consistency of the tuple (πT (x))T∈S. On the other
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hand, dV (ρ
W
V , bV )≤ κ , so dV (ρ

U
V , ρ

W
V ) > 10E as claimed. Hence, by Lemma 2.11,

we have U tW .
Since diam(im(πW )) > 100κ — and notably, therefore, dW (x, bW ) > 100κ and

bW ∈ im(πW (X ))— partial realization (Definition 1.1.(8)) provides a ∈X satisfying
dW (a, {ρU

W , ρ
V
W })≥ 10κ .

We thus have dU (a, ρW
U ) ≤ E by E-consistency of (πT (a))T∈S, and the same

is true if we replace U with V . Hence dV (ρ
U
V , a) > E , so consistency implies

dU (a, ρV
U ) ≤ E . Thus dU (ρ

V
U , ρ

W
U ) ≤ 2E . Thus dU (bU , ρ

W
U ) ≤ 2E + κ < 10κ ,

whence dU (x, ρW
U ) > 50κ > E , so dW (x, ρU

W )≤ E by consistency and the fact that
U t W . It follows that dW (bW , ρ

U
W ) ≥ 100κ − E > κ , so, again by consistency,

dU (bU , ρ
U
W )≤ κ , i.e., U �W . �

Lemma 2.11. Let U, V,W ∈S be such that all of diam(im(πU )), diam(im(πV )),
diam(im(πW )), and dV (ρ

U
V , ρ

W
V ) are greater than 10E , and U t V,W t V . Sup-

pose moreover that U and W are v-incomparable. Then U tW .

Proof. If U⊥W , then by the partial realization axiom (Definition 1.1.(8)) and the
lower bound on diameters, there exists an E-partial realization point x for {U,W }
so that

dU (ρ
V
U , x), dW (ρ

V
W , x) > E .

This contradicts consistency since dV (ρ
U
V , ρ

W
V ) > 10E ; indeed, by consistency

dV (ρ
U
V , x)≤ E , dV (ρ

W
V , x)≤ E , i.e., dV (ρ

U
V , ρ

W
V )≤ 2E . Hence U tW . �

2C. Coloring relevant elements. In this subsection, the key result is Lemma 2.14,
which we will apply in proving the existence of hierarchy paths in Section 4C.

Fix x, y ∈ X . As above, let Rel(x, y, 100E) consist of those V ∈S for which
dV (x, y) > 100E . Recall that, given U ∈S, we denote by T`U the set of V ∈SU

such that `U − `V = `. In particular, if V, V ′ ∈ T`U and V v V ′, then V = V ′. Let
Rel`U (x, y, 100E) = Rel(x, y, 100E)∩T`U , the set of V v U so that dV (x, y) >
100E and `U − `V = `.

By Proposition 2.8, the relation � on Rel`U (x, y, 100E) defined as follows is a
partial order: V � V ′ if either V = V ′ or dV (y, ρV ′

V )≤ E .

Definition 2.12 (relevant graph). Denote by G the graph which has vertex-set
Rel`U (x, y, 100E), with two vertices adjacent if and only if the corresponding
elements of Rel`U (x, y, 100E) are orthogonal. Let Gc denote the complementary
graph of G, i.e., the graph with the same vertices and edges corresponding to
�-comparability.

The next lemma is an immediate consequence of Proposition 2.8:

Lemma 2.13. Elements of V, V ′ ∈ Rel`U (x, y, 100E) are adjacent in G if and only
if they are �-incomparable.
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Lemma 2.14 (coloring relevant elements). Let χ be the maximal cardinality of a
set of pairwise orthogonal elements of T`U . Then there exists a χ -coloring of the set
of relevant elements of T`U such that nontransverse elements have different colors.

Proof. Since each clique in G — i.e., each �-antichain in Rel`U (x, y, 100E)— has
cardinality at most χ , [Dilworth 1950, Theorem 1.1] implies that G can be colored
with χ colors in such a way that �-incomparable elements have different colors;
hence nontransverse elements have different colors. �

Remark 2.15. The constant χ provided by Lemma 2.14 is bounded by the com-
plexity of (X ,S), by Lemma 2.2.

3. Realization of consistent tuples

The goal of this section is to prove Theorem 3.1. In this section we will work with
a fixed hierarchical space (X ,S). We will use the concepts of consistency and
partial realization points; see Definitions 1.17 and 1.18.

Theorem 3.1 (realization of consistent tuples). For each κ ≥ 1 there exist θe, θu ≥ 0
such that the following holds. Let Eb ∈

∏
W∈S 2CW be κ-consistent; for each W , let

bW denote the CW -coordinate of Eb.
Then there exists x ∈X so that dW (bW , πW (x))≤ θe for all CW ∈S. Moreover, x

is coarsely unique in the sense that the set of all x which satisfy dW (bW , πW (x))≤θe

in each CW ∈S, has diameter at most θu .

Remark 3.2. In typical cases, where the πU are uniformly coarsely surjective, the
admissibility part of the consistency hypothesis is satisfied automatically.

Proof of Theorem 3.1. The main task is to prove the following claim about a
κ-consistent admissible tuple Eb:

Claim 1. Let {Vj } be a family of pairwise-orthogonal elements of S, all of level at
most `. Then there exists θe = θe(`, κ) > 100Eκα and pairwise-orthogonal {Ui }

such that

(1) each Ui is nested into some Vj ,

(2) for each Vj there exists some Ui nested into it, and

(3) any E-partial realization point x for {Ui } satisfies dW (bW , x) ≤ θe for each
W ∈S for which there exists j with W v Vj .

Applying Claim 1 when `= `S , where S ∈S is the unique v-maximal element,
along with the partial realization axiom (Definition 1.1.(8)), completes the existence
proof, giving us a constant θe. If x, y both have the desired property, then dV (x, y)≤
2θe+ κ for all V ∈S, whence the uniqueness axiom (Definition 1.1.(9)) ensures
that d(x, y)≤ θu , for an appropriate θu . Hence to prove the theorem it remains to
prove Claim 1, which we do now.
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The claim when ` = 1 follows from admissibility and the partial realization
axiom (Definition 1.1.(8)), so we assume that the claim holds for `− 1≥ 1, with
θe(`− 1, κ)= θ ′e, and prove it for level `.

Reduction to the case |{Vj }| = 1. It suffices to prove the claim in the case where
{Vj } has a single element, V . To see this, note that once we prove the claim for each
Vj separately, yielding a collection of pairwise-orthogonal sets {U j

i v Vj } with the
desired properties, then we take the union of these sets to obtain the claim for the
collection {Vj }.

The case {Vj } = {V }. Fix V ∈S so that `V = `. If for each x ∈ X that satisfies
dV (x, bV )≤ E we have dW (bW , x)≤ 100Eκα for W ∈SV , then the claim follows
with {Ui } = {V }. Hence, we can suppose that this is not the case.

We are ready for the main argument, which is contained in Lemma 3.3 below.
We will construct {Ui } incrementally, using Lemma 3.3, which essentially says that
either we are done at a certain stage or we can add new elements to {Ui }.

We will say that the collection U of elements of SV is totally orthogonal if any
pair of distinct elements of U are orthogonal. Given a totally orthogonal family U

we say that W ∈SV is U-generic if there exists U ∈ U so that W is not orthogonal
to U . Notice that no W is ∅-generic.

A totally orthogonal collection U⊆SV is C-good if any E-partial realization
point x for U has the property that for each W ∈ SV we have dW (x, bW ) ≤ C .
(Notice that our goal is to find such U.) A totally orthogonal collection U⊆SV is
C-generically good if any E-partial realization point x for U has the property that
for each U-generic W ∈SV we have dW (x, bW )≤ C (e.g., for U=∅).

We can now quickly finish the proof of the claim using Lemma 3.3 about
extending generically good sets, which we state and prove below. Start with U=∅.
If U is C-good for C = 100Eκα, then we are done. Otherwise we can apply
Lemma 3.3 and get U1 = U′ as in the lemma. Inductively, if Un is not 10nC-good,
we can apply the lemma and extend Un to a new totally orthogonal set Un+1. Since
there is a bound on the cardinality of totally orthogonal sets by Lemma 2.1, in finitely
many steps we necessarily get a good totally orthogonal set, and this concludes the
proof of the claim, and hence of the theorem. �

Lemma 3.3. For every C ≥ 100Eκα the following holds. Let U ⊆ SV − {V } be
totally orthogonal and C-generically good but not C-good. Then there exists a
totally orthogonal, 10C-generically good collection U′ ⊆SV with U( U′.

Proof. Let x0 be an E-partial realization point for U so that there exists some W v V
for which dW (bW , x0) > C .

The idea is to try to “move towards” Eb starting from x0, by looking at all relevant
elements of SV that lie between them and finding out which ones are the “closest”
to Eb.
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Let Vmax be the set of all W v V for which

(1) dW (bW , x0) > C , and

(2) W is not properly nested into any element of SV satisfying the above inequality.

We now establish two facts about Vmax.

Applying Proposition 2.8 to partially order Vmax. For U,U ′ ∈ Vmax, write
U �U ′ if either U =U ′ or U tU ′ and dU (ρ

U ′
U , bU )≤ 10Eκ; this is a partial order

by Proposition 2.8, which also implies that if U,U ′ ∈Vmax are transverse then they
are �-comparable. Hence any two �-maximal elements of Vmax are orthogonal,
and we denote by V′max the set of �-maximal (hence pairwise-orthogonal) elements
of Vmax.

Finiteness of Vmax. We now show that |Vmax|<∞. By Lemma 2.2 and Ramsey’s
theorem, if Vmax was infinite then it would contain an infinite subset of pairwise
transverse elements, so, in order to conclude that |Vmax|<∞, it suffices to bound
the cardinality of a pairwise-transverse subset of Vmax.

Suppose that W1≺· · ·≺Ws ∈Vmax are pairwise transverse. By partial realization
(Definition 1.1.(8)) and admissibility, there exists z ∈ X such that dWs (z, bWs )≤ α

and dWi (ρ
Ws
Wi
, z)≤ α for each i 6= s, and such that dV (z, ρ

Ws
V )≤ α. By consistency

of Eb and bounded geodesic image, ρWs
V has to be within distance 10Eκ of a geodesic

in CV from x0 to bV . In particular dV (x0, z) ≤ θ ′e + 100Eκα+ 10Eκ . Also, for
each i 6= s,

dWi (x0, z)≥ dWi (x0, bWi )− dWi (bWi , ρ
Ws
Wi
)− dWi (ρ

Ws
Wi
, z)

≥ 100Eκα− 10Eκ −α ≥ 50Eκα ≥ 50E .

Indeed, dWi (bWi , ρ
Ws
Wi
)≤ 10Eκ since Wi ≺Ws , while dWi (ρ

Ws
Wi
, z)≤α by our choice

of z. Lemma 2.5 now provides the required bound on s.

Choosing U′. Since `U < `V for all U ∈V′max, by induction there exists a totally
orthogonal set {Ui } so that any E-partial realization point x for {Ui } satisfies
dT (bT , x)≤ θ ′e for each T ∈S nested into some U ∈V′max. Let U′ = {Ui } ∪U.

Choose such a partial realization point x and let W v V be U′-generic. Our goal
is to bound dW (x, bW ), and we will consider four cases.

If there exists U ∈U that is not orthogonal to W , then we are done by hypothesis,
since any E-partial realization point for U′ is also an E-partial realization point for U.

Hence, from now on, assume that W is orthogonal to each U ∈ U, i.e., W is not
U-generic.

If W vU for some U ∈V′max, then we are done by induction.
Suppose that W tU for some U ∈V′max. For each Ui vU — and our induction

hypothesis implies that there is at least one such Ui — we have dW (x, ρ
Ui
W )≤ E
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since x is a partial realization point for {Ui } and either Ui vW or Ui tW (since
W is U′-generic but not U-generic). The triangle inequality therefore yields

dW (x, bW )≤ E + dW (ρ
Ui
W , ρ

U
W )+ dW (bW , ρ

U
W ).

By Definition 1.1.(4), dW (ρ
Ui
W , ρ

U
W )≤ E , and we will show that dW (bW , ρ

U
W )≤ 2C ,

so that dW (x, bW )≤ 2E + 2C .
Suppose, for a contradiction, that dW (bW , ρ

U
W ) > 2C . If dU (ρ

W
U , x0)≤ E , then

dU (ρ
W
U , bU )≥ C − E > κ,

by consistency, whence dW (ρ
U
W , bW )≤ κ , a contradiction.

On the other hand, if dU (ρ
W
U , x0) > E , then dW (x0, ρ

U
W ) ≤ E by consistency.

Hence dW (x0, bW )≥ 2C − E . Hence there exists a v-maximal W ′ 6= V with the
property that W v W ′ v V and dW ′(x0, bW ) > C (possibly W ′ = W ). Such a W ′

is in Vmax by definition.
Since W tU , and W ′ and U are v-incomparable, W ′ tU . Thus U and W ′ are
�-comparable, by Proposition 2.8. Since W ′ 6=U and U is �-maximal, we have
W ′ �U , i.e., dW ′(bW ′, ρ

U
W ′)≤ 10Eκ . Since � is antisymmetric, by Lemma 2.9, we

have dU (bU , ρ
W ′
U ) > 10Eκ . Since dU (ρ

W
U , ρ

W ′
U )≤ E (from Definition 1.1.(4)), we

have dU (bU , ρ
W
U )>10Eκ−E>κ , since E≥1, so, by consistency, dW (bW , ρ

U
W )≤κ ,

a contradiction.
Finally, suppose U Ĺ W for some U ∈V′max. Then, by v-maximality of U , we

have dW (x0, bW )≤C . Also, dW (x, ρ
Ui
W )≤ E for any Ui vU since x is a partial real-

ization point, so that dW (x, ρU
W )≤ 2E , since dW (ρ

U
W , ρ

Ui
W )≤ E by Definition 1.1.(4).

If dW (x, bW )> 2C , then we claim dU (x0, bU )≤ 10Eκ , a contradiction. Indeed, any
geodesic in CW from πW (x0) to bW does not enter the E-neighborhood of ρU

W . By
bounded geodesic image, diamU (ρ

W
U (πW (x0))∪ρ

W
U (bW ))≤ E and by consistency,

diamU (ρ
W
U (πW (x0))∪πU (x0))≤ E and diamU (ρ

W
U (bW )∪bU )≤ κ , and we obtain

the desired bound on dU (x0, bU ). This completes the proof of the lemma. �

4. Hierarchy paths and the distance formula

Throughout this section, fix a hierarchically hyperbolic space (X ,S).

4A. Definition of hierarchy paths and statement of main theorems. Our goal is
to deduce the existence of hierarchy paths (Theorem 4.4) from the other axioms
and to prove the distance formula (Theorem 4.5).

Definition 4.1 (quasigeodesic, unparameterized quasigeodesic). In the metric space
M , a (D, D)-quasigeodesic is a (D, D)-quasi-isometric embedding f : [0, `]→M ;
we allow f to be a coarse map, i.e., to send points in [0, `] to uniformly bounded sets
in M . A (coarse) map f : [0, `] → M is a (D, D)-unparameterized quasigeodesic
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if there exists a strictly increasing function g : [0, L]→ [0, `] such that g(0)= f (0),
g(L) = f (`), and f ◦ g : [0, L] → M is a (D, D)-quasigeodesic and for each
j ∈ [0, L] ∩N, we have diamM( f (g( j))∪ f (g( j + 1)))≤ D.

Definition 4.2 (hierarchy path). For D ≥ 1, a (not necessarily continuous) path
γ : [0, `] → X is a D-hierarchy path if

(1) γ is a (D, D)-quasigeodesic,

(2) for each W ∈S, the path πW ◦γ is an unparameterized (D, D)-quasigeodesic.

Notation 4.3. Given A, B∈R, we denote by {{A}}B the quantity which is A if A≥ B
and 0 otherwise. Given C, D, we write A�C,D B to mean C−1 A−D≤ B≤C A+D.

Theorem 4.4 (existence of hierarchy paths). Let (X ,S) be hierarchically hyper-
bolic. Then there exists D0 such that any x, y ∈ X are joined by a D0-hierarchy
path.

Theorem 4.5 (distance formula). Let (X,S) be hierarchically hyperbolic. Then
there exists s0 such that for all s ≥ s0 there exist constants K ,C such that for all
x, y ∈ X ,

dX (x, y)�(K ,C)
∑
W∈S

{{dW (x, y)}}s .

The proofs of the above two theorems are intertwined, and we give the proof
immediately below. This relies on several lemmas, namely Lemma 4.11, proved in
Section 4C, and Lemmas 4.19 and 4.18, proved in Section 4D.

Proof of Theorems 4.4 and 4.5. The lower bound demanded by Theorem 4.5 is
given by Lemma 4.19 below. By Lemmas 4.11 and 4.18, there is a monotone path
(see Definition 4.8) whose length realizes the upper bound on dX (x, y), and the
same holds for any subpath of this path, which is therefore a hierarchy path, proving
Theorem 4.4 and completing the proof of Theorem 4.5. �

4B. Good and proper paths: definitions. We now define various types of (non-
continuous) paths in X that will appear on the way to hierarchy paths.

Definition 4.6 (discrete path). A K -discrete path is a map γ : I → X , where I is
an interval in Z and dX (γ (i), γ (i + 1))≤ K whenever i, i + 1 ∈ I . The length |α|
of a discrete path α is max I −min I .

Definition 4.7 (efficient path). A discrete path α with endpoints x, y is K -efficient
if |α| ≤ KdX (x, y).

Definition 4.8 (monotone path). Given U ∈S, a K -discrete path α and a constant L ,
we say that α is L-monotone in U if whenever i ≤ j we have dU (α(0), α(i)) ≤
dU (α(0), α( j))+ L . A path which is L-monotone in U for all U ∈S is said to be
L-monotone.
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Definition 4.9 (good path). A K -discrete path that is L-monotone in U is said to
be (K , L)-good for U . Given S′⊆S, a path α that is (K , L)-good for each V ∈S′

is (K , L)-good for S′.

Definition 4.10 (proper path). A discrete path α : {0, . . . , n}→ X is (r, K )-proper
if for 0≤ i<n−1, we have dX (α(i), α(i+1))∈[r, r+K ] and dX (α(n−1), α(n))≤
r + K . Observe that (r, K )-properness is preserved by passing to subpaths.

4C. Good and proper paths: existence. Our goal in this subsection is to join
points in X with proper paths, i.e., to prove Lemma 4.11. This relies on the much
more complicated Proposition 4.12, which produces good paths (which are then
easily made proper).

Lemma 4.11. There exists K so that for any r ≥ 0, any x, y ∈ X are joined by a
K -monotone, (r, K )-proper discrete path.

Proof. Let α0 : {0, . . . , n0} → X be a K -monotone, K -discrete path joining x, y,
which exists by Proposition 4.12. We modify α0 to obtain the desired path in the
following way. Let j0 = 0 and, proceeding inductively, let ji be the minimal j ≤ n
such that either dX (α0( ji−1), α0( j))∈ [r, r+K ] or j = n. Let m be minimal so that
jm = n and define α : {0, . . . ,m}→X by α( j)=α0(i j ). The path α is (r, K )-proper
by construction; it is easily checked that K -monotonicity is not affected by the
above modification; the new path is again discrete, although for a larger discreteness
constant. �

It remains to establish the following proposition, whose proof is postponed until
the end of this section, after several preliminary statements have been obtained.

Proposition 4.12. There exists K so that any x, y ∈ X are joined by path that is
(K , K )-good for each U ∈S.

Definition 4.13 (hull of a pair of points). For each x, y ∈ X , θ ≥ 0, let Hθ (x, y)
be the set of all p ∈ X so that, for each W ∈S, the set πW (p) lies at distance at
most θ from a geodesic in CW joining πW (x) to πW (y). Note that x, y ∈ Hθ (x, y).

Remark 4.14. The notion of a hull is generalized in Section 6 to hulls of arbitrary
finite sets, but we require only the version for pairs of points in this section.

Lemma 4.15 (retraction onto hulls). There exist θ, K ≥ 0 such that, for each
x, y ∈ X , there exists a (K , K )-coarsely Lipschitz map r : X → Hθ (x, y) that
restricts to the identity on Hθ (x, y).

Proof. Let κ be the constant from Lemma 2.6, let θe be chosen as in the realization
theorem (Theorem 3.1), and let p ∈ X − Hθe(x, y). Define a tuple Eb = (bp

W ) ∈∏
W∈S 2CW so that bp

W is on a geodesic in CW from πW (x) to πW (y) and is within
distance δ of the other two sides of a triangle with vertices in πW (x), πW (y), πW (p).
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By Lemma 2.6, this is a consistent tuple. Hence, by the realization theorem
(Theorem 3.1), there exists r(p) ∈ Hθe(x, y) so that dW (πW (r(p)), bp

W )≤ θe. For
p ∈ Hθe(x, y), let r(p)= p.

To see that r is coarsely Lipschitz, it suffices to bound dX (r(p), r(q)) when
p, q ∈ X satisfy dX (p, q) ≤ 1. For such p, q we have dW (b

p
W , bq

W ) ≤ 100E , so
that Theorem 3.1 implies dX (r(p), r(q))≤ θu(100E), as required. �

Corollary 4.16. There exist θ, K ≥ 0 such that, for each x, y ∈ X , there exists a
K -discrete and K -efficient path that lies in Hθ (x, y) and joins x to y.

Proof. We can assume that dX (x, y)≥ 1. Since X is a quasigeodesic space, there
exists C = C(X ) ≥ 1 and a (C,C)-quasi-isometric embedding γ : [0, L] → X
with γ (0) = x, γ (L) = y. Let ρ be the path obtained by restricting r ◦ γ :
[0, L] → Hθ (x, y) to [0, L] ∩N, where r is the retraction obtained in Lemma 4.15.
Then dX (ρ(i), ρ(i + 1)) ≤ 10K C since r is (K , K )-coarsely Lipschitz and γ is
(C,C)-coarsely Lipschitz, i.e., ρ is 10K C-discrete. Finally, ρ is efficient because
L ≤ CdX (x, y)+C ≤ 2CdX (x, y). �

The efficiency part of the corollary is used in Lemma 4.19.

4C1. Producing good paths. We will need the following lemma, which is a special
case of Proposition 6.4.(2). We give a proof in the interest of a self-contained
exposition.

Lemma 4.17. For any θ0 there exists a constant θ such that for every x, y ∈ X and
every x ′, y′ ∈ Hθ0(x, y), we have Hθ0(x

′, y′)⊆ Hθ (x, y).

Proof. For any z ∈ Hθ0(x
′, y′) and W ∈S the projection πW (z) lies 2(δ+ θ0)-close

to a geodesic in CW from πW (x) to πW (y), by a thin quadrilateral argument. �

We now prove the main proposition of this subsection.

Proof of Proposition 4.12. Recall that, for ` ≥ 0 and U ∈S, the set S`
U consists

of those V ∈ SU with `U − `V ≤ `, and that T`U consists of those V ∈ SU with
`U − `V = `.

We prove by induction on ` that there exist θ, K such that for any `≥ 0, x, y ∈X
and U ∈S, there is a path α in Hθ (x, y) connecting x to y such that α is (K , K )-
good for S`

U . It then follows that for any x, y ∈X , there exists a path α in Hθ (x, y)
connecting x to y such that α is (K , K )-good for S; this latter statement directly
implies the proposition.

For a, b ∈ X , denote by [a, b]W a geodesic in CW from πW (a) to πW (b). Fix
U ∈S.

The case `= 0. In this case, S0
U = {U }. By Corollary 4.16, there exist θ0, K and

a K -discrete, K -efficient path α′0 : {0, . . . , k} → Hθ0(x, y) joining x to y.



HHS II: COMBINATION THEOREMS AND THE DISTANCE FORMULA 289

y→x← α′0(tj )

α′0(t
′

j )

Figure 2. This shows part of α′0 in X (top) and its projection
to U (bottom). The point tj is an omen, as witnessed by the point
marked with a square. Inserting the dashed path βj , and deleting
the corresponding subpath of α′0, makes tj cease to be an omen.

Similarly, for each x ′, y′ ∈ Hθ0(x, y) there exists a K -discrete path β contained
in Hθ0(x

′, y′), joining x ′ to y′, and recall that Hθ0(x
′, y′) is contained in Hθ (x, y)

for a suitable θ in view of Lemma 4.17.
We use the term straight path to refer to a path, such as β, which for each V ∈S

projects uniformly close to a geodesic of C(V ).
We now fix U ∈S, and, using the observation in the last paragraph explain how

to modify α′0 to obtain a K -discrete path α0 in Hθ (x, y) that is K -monotone in U ;
the construction will rely on replacing problematic subpaths with straight paths.

A point t ∈{0, . . . , k} is a U-omen if there exists t ′> t so that dU (α
′

0(0), α
′

0(t))>
dU (α

′

0(0), α
′

0(t
′))+ 5KE. If α′0 has no U -omens, then we can take α0 = α

′

0, so
suppose that there is a U -omen and let t0 be the minimal U -omen, and let t ′0 > t0 be
maximal so that dU (α

′

0(0), α
′

0(t0)) > dU (α
′

0(0), α
′

0(t
′

0)). Inductively define tj to be
the minimal U -omen with tj ≥ t ′j−1, if such tj exists; and when tj exists, we define t ′j
to be maximal in {0, . . . , k} satisfying dU (α

′

0(0), α
′

0(tj )) > dU (α
′

0(0), α
′

0(t
′

j )). For
each j ≥ 0, let x ′j = α

′

0(tj ) and let y′j = α
′

0(t
′

j ). See Figure 2.
For each j , there exists a K -discrete path βj which lies in Hθ0(x

′

j , y′j )⊆ Hθ (x, y)
and is a straight path from x ′j to y′j . Let α0 be obtained from α′0 by replacing each
α′0([tj , t ′j ]) with βj . Clearly, α0 connects x to y, is K -discrete, and is contained in
Hθ (x, y). For each j we have that diamCU (β j )≤ dU (x ′j , y′j )+ 2θ0.

Notice that dU (x ′j , y′j ) < 2KE+ 10θ0. In fact, since α′0(0), α
′

0(tj ), α
′

0(t
′

j ) lie θ0-
close to a common geodesic and dU (α

′

0(0), α
′

0(tj ))≥ dU (α
′

0(0), α
′

0(t
′

j )), we would
otherwise have

dU (α
′

0(0), α
′

0(tj ))− dU (α
′

0(0), α
′

0(t
′

j ))≥ dU (x ′j , y′j )− 5θ0 ≥ 2KE+ θ0.

However, dU (α
′

0(tj ), α
′

0(tj + 1))≤ 2KE because of K -discreteness and the pro-
jection map to CU being E-coarsely Lipschitz. Hence, the inequality above implies

dU (α
′

0(0), α
′

0(tj )) > dU (α
′

0(0), α
′

0(t
′

j ))+ 2KE ≥ dU (α
′

0(tj ), α
′

0(tj + 1)),
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which contradicts the maximality of t ′j . (Notice t ′j 6= k, and hence t ′j + 1 ∈ {0, . . . , k}
because dU (α

′

0(0), α
′

0(t
′

j ))+ θ0 < dU (α
′

0(0), α
′

0(tj ))≤ dU (α
′

0(0), α
′

0(k))+ θ0.)
In particular, we get diamCU (β j )≤ 2KE+12θ0, and it is then easy to check α0 is

max{5KE, 2KE+12θ0}-monotone in U . Replacing K with max{5KE, 2KE+12θ0},
we thus have a K -discrete path α0 ⊂ Hθ (x, y) that joins x, y and is K -monotone
in U .

We now proceed to the inductive step. Specifically, we fix `≥ 0 and we assume
there exist θind, K such that there is a path α in Hθind(x, y) connecting x to y such
that α is (K , K )-good for S`−1

U .

The coloring. For short, we will say that V ∈S is A-relevant if dU (x, y)≥ A; see
Definition 2.7. Notice that to prove that a path in Hθ (x, y) is monotone, it suffices
to restrict our attention to only those W ∈S which are, say, 10KE-relevant.

By Lemma 2.14, there exists χ ≥ 0, bounded by the complexity of X , and a
χ-coloring c of the 10KE-relevant elements of T`U such that c(V ) = c(V ′) only
if V t V ′. In other words, the set of 10KE-relevant elements of T`U has the form⊔χ−1

i=0 c−1(i), where c−1(i) is a set of pairwise-transverse relevant elements of T`U .

Induction hypothesis. Given p < χ − 1, assume by induction (on ` and p)
that there exist θp ≥ θind, K p ≥ K , independent of x, y,U , and a path αp :

{0, . . . , k} → Hθp(x, y), joining x, y, that is (K p, K p)-good for
⊔p

i=0 c−1(i) and
good for S`−1

U .

Resolving backtracks in the next color. Let θp+1 be provided by Lemma 4.17
with input θp. We will modify αp to construct a K p+1-discrete path αp+1 in
Hθp+1(x, y), for some K p+1 ≥ K p, that joins x, y and is (K p+1, K p+1)-good
in
⊔p+1

i=0 c−1(i)∪S`−1
U .

Notice that we can restrict our attention to the set Cp+1 of 100(K p E+θp)-relevant
elements of c−1(p+ 1).

A point t ∈ {0, . . . , k} is a (p+1)-omen if there exist V ∈ Cp+1 and t ′> t so that
dV (αp(0), αp(t)) > dV (αp(0), αp(t ′))+ 5K p E . If αp has no (p+ 1)-omens, then
we can take αp+1 = αp, since αp is good in each V with c(V ) < p+ 1. Therefore,
suppose that there is a (p + 1)-omen and let t0 be the minimal (p + 1)-omen,
witnessed by V0 ∈ Cp+1. We can assume that t0 satisfies dV0({x, y}, αp(t0)) >
10K p E . Let t ′0 > t0 be maximal so that dV0(αp(0), αp(t0)) > dV0(αp(0), αp(t ′0)).
In particular dV0(y, αp(t ′0))≥ 10E .

Let x ′0=α0(t0) and y′0=α0(t ′0). Inductively, define tj as the minimal (p+1)-omen,
witnessed by Vj ∈ Cp+1, with tj ≥ t ′j−1, if such tj exists and let t ′j be maximal so that
dVj (αp(0),αp(tj ))> dVj (αp(0),αp(t ′j )) and dVj (y,αp(t ′j ))> 10E . We can assume
that tj satisfies dVj ({x, y},αp(tj ))> 10K p E . Also, let x ′j =αp(tj ), y′j =αp(t ′j ).

Let βj be a path in Hθp(x
′

j , y′j ) joining x ′j to y′j that is (K p, K p)-good for each
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CW
x

y

ρ
Vj
W

x ′j

α0(t ′j − 1) y′j = α0(t ′j )

Figure 3. The situation in CW .

relevant V with c(V ) ≤ p and each relevant V ∈S`−1
U . Such paths can be con-

structed by induction. By Lemma 4.17, βj lies in Hθp+1(x, y). Let αp+1 be obtained
from αp by replacing each αp({tj , . . . , t ′j }) with βj . Clearly, αp+1 connects x to y,
is K p-discrete, and is contained in Hθp+1(x, y).

We observe that the same argument as in the case ` = 0 gives dVj (x
′

j , y′j ) ≤
2K p E + 10θp.

Verification that αp+1 is good for current colors We next check that each βj

is 103(K p E + θp)-monotone in each W ∈
⊔p+1

i=0 c−1(i). We have to consider the
following cases. (We can and shall assume below W is 100(K p E + θp)-relevant.)

• If W v Vj , then W = Vj , since `W = `Vj . Since the projections on CW of
the endpoints of the straight path βj coarsely coincide, βj is (2K p E + 12θp)-
monotone in W . (See the case `= 0.)

• Suppose Vj Ĺ W . We claim that the projections of the endpoints of βj lie at a
uniformly bounded distance in CW .

We claim that ρVj
W has to be E-close to either [x, x ′j ]W or [y′j , y]W . In fact,

if this was not the case, we would have

dVj (x, y)≤ dVj (x, x ′j )+ dVj (x
′

j , y′j )+ dVj (y
′

j , y)≤ 2E + 2K p E + 10θp,

where we applied bounded geodesic image (Definition 1.1.(7)) to the first and
last terms.

This is a contradiction with Vj being 100(K p E + θp)-relevant.
Suppose for a contradiction that dW (x ′j , y′j ) ≥ 500(K p E + θp). Suppose

first that ρVj
W is E-close to [x, x ′j ]W . Then, by monotonicity, ρVj

W is E-far
from [αp(t ′j ), y]W . By the bounded geodesic image axiom, this contradicts
dVj (y, αp(t ′j ))≥ 10E . If instead ρVj

W is E-close to [y′j , y]W , then by bounded
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geodesic image we have dVj (x, αp(tj ))≤ E , contradicting that tj is an omen
witnessed by Vj . See Figure 3.

Hence dW (x ′j , y′j ) ≤ 500(K p E + θp) and βj is 103(K p E + θp)-monotone
in W .

• Suppose W t Vj . We again claim that the projections of the endpoints of
βj are uniformly close in CW , by showing that they both coarsely coincide
with ρVj

W . Since V j is relevant, either dVj (x, ρ
W
Vj
)≥ E or dVj (y, ρ

W
Vj
)≥ E .

Thus, by consistency, dW (ρ
Vj
W , {x, y})≤ E . Suppose for a contradiction,

that dW (x ′j , y′j ) > 100(K p E + θp). We consider separately the cases where
dW (x,ρ

Vj
W )≤ E and dW (y, ρ

Vj
W )≤ E .

First, suppose that dW (x, ρ
Vj
W )≤ E . Then dW (y, ρ

Vj
W )≥ 10K p E − E > E ,

so by consistency, dVj (y, ρ
W
Vj
)≤ E . If dVj (x, {x

′

j , y′j }) > E , then consistency
implies dW (x ′j , ρ

Vj
W )≤ E and dW (y′j , ρ

Vj
W )≤ E , whence dW (x ′j , y′j ) ≤ 2E , a

contradiction. If dVj (x, {x
′

j , y′j })≤ E , then since dVj (x
′

j , y′j )≤ 2K p E + 10θp,
we have dVj (x, x ′j )≤ 5K p E + 10θp; contradicting that, dV j (x, x ′j ) > 5K p E ,
since t j was a (p+ 1)–omen witnessed by V j .

Second, suppose dW (y, ρ
Vj
W )≤ E . Then by relevance of W and consis-

tency, dVj (x, ρ
W
Vj
)≤ E . As above, we have dVj (x

′

j , x) > 5K p E + 10θp, so
dVj (x, {x

′

j , y′j }) > K p E > 3E (since dVj (x
′

j , y′j ) ≤ 2K p E + 10θp and we
may assume K p > 3), so dVj (ρ

W
Vj
, {x ′j , y′j }) > E . Thus, by consistency,

πW (x ′j ), πW (y′j ) both lie at distance at most E from ρ
Vj
W , so dW (x ′j , y′j )≤ 3E .

• Finally, suppose that W⊥Vj . Then either c(W )< c(Vj ) and βj is K p-monotone
in W , or W is irrelevant.

Hence, each βj is 103(K p E + θp)-monotone in each W ∈ c−1({0, . . . , p+ 1}).
Moreover, our above choice of βj ensures that βj is K p-monotone in each V ∈S`−1

U .

Verification that αp+1 is monotone. Suppose that there exist t, t ′ such that
t < t ′ and dV (αp+1(0), αp+1(t)) > dV (αp+1(0), αp+1(t ′))+ 104(K p E + θp) for
some V ∈ c−1({0, . . . , p+ 1})∪S`−1

U . We can assume t, t ′ 6∈ ∪i (ti , t ′i ). Indeed, if
t ∈ (ti , t ′i ) (respectively, t ′ ∈ (tj , t ′j )), then since all βm are 103(K p E + θp)-monotone,
we can replace t with t ′i (respectively, t ′ with tj ). After such a replacement, we still
have dV (αp+1(0), αp+1(t)) > dV (αp+1(0), αp+1(t ′))+ 5K p E .

Let i be maximal so that t ′i ≤ t (or let i =−1 if no such t ′i exists). By definition of
ti+1, we have ti+1 ≤ t , and hence ti+1 = t . But then t ′i+1 > t ′, which is not the case.

Conclusion. Continue this procedure as long as p<χ , to produce a path αχ which
is (K , K )–good for S`

U . In particular, when U = S is v-maximal and ` is the
length of a maximal v-chain, the proposition follows. �

4D. Upper and lower distance bounds. We now state and prove the remaining
lemmas needed to complete the proof of Theorems 4.4 and 4.5.
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Lemma 4.18 (upper bound). For every K , s there exists r with the following
property. Let α : {0, . . . , n} → X be a K -monotone, (r, K )-proper discrete path
connecting x to y. Then

|α| − 1≤
∑
W∈S

{{dW (x, y)}}s .

Proof. Let r = r(K , E, s) be large enough that, for any a, b ∈ X , if dX (a, b)≥ r ,
then there exists W ∈ S so that dW (a, b) ≥ 100KEs. This r is provided by
Definition 1.1.(9).

For 0 ≤ j ≤ n− 1, choose Vj ∈ S so that dVj (α( j), α( j + 1)) ≥ 100KEs. By
monotonicity of α in Vj , for any j ′ > j we have

dVj (α(0), α( j ′))≥ dVj (α(0), α( j))+ 50KEs.

It follows by induction on j ≤ n that
∑

W∈S{{dW (α(0), α( j))}}s ≥min{ j, n−1}. �

Lemma 4.19 (lower bound). There exists s0 such that for all s ≥ s0, there exists C
with the following property.

dX (x, y)≥
1
C

∑
W∈S

{{dW (x, y)}}s .

Proof. From Corollary 4.16, we obtain a K -discrete path α : {0, n}→X joining x, y
and having the property that the (coarse) path πV ◦α : {0, . . . , n} → CV lies in the
K -neighborhood of a geodesic from πV (x) to πV (y). Moreover, α is K -efficient,
by the same corollary.

Fix s0 ≥ 103KE. A checkpoint for x, y in V ∈S is a ball Q in CV so that πV ◦α

intersects Q and dV ({x, y}, Q) ≥ 10KE+ 1. Note that any ball of radius 10KE
centered on a geodesic from πV (x) to πV (y) is a checkpoint for x, y in V , provided
it is sufficiently far from {x, y}.

For each V ∈ Rel(x, y, 103KE), choose a set CV of ddV (x, y)/10e checkpoints
for x, y in V , subject to the requirement that dV (C1,C2) ≥ 10KE for all distinct
C1,C2 ∈ CV . For each V ∈ Rel(x, y, 103KE), we have 10|CV | ≥ dV (x, y), so∑

V∈S

|CV | ≥
1
10

∑
W∈S

{{dW (x, y)}}s0 .

Each j ∈ {0, . . . , n} is a door if there exists V ∈ Rel(x, y, 103KE) and C ∈ CV

such that πV (α( j)) ∈ C but πV (α( j − 1)) 6∈ C . The multiplicity of a door j is the
cardinality of the set M( j) of V ∈ Rel(x, y, 103KE) for which there exists C ∈ CV

with πV (α( j)) ∈ C and πV (α( j − 1)) 6∈ C . Since CV is a set of pairwise-disjoint
checkpoints, j is a door for at most one element of CV , for each V . Hence the
multiplicity of j is precisely the total number of checkpoints in ∪V∈Rel(x,y,103KE)CV

for which j is a door.
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We claim that the set M( j) does not contain a pair of transverse elements.
Indeed, suppose that U, V ∈M( j), satisfy U t V . Let QV ∈ CV , QU ∈ CU be the
checkpoints containing πV (α( j)), πU (α( j)) respectively, so that

dU (α( j), {x, y}), dV (α( j), {x, y})≥ 10KE+ 1> 10E,

contradicting Corollary 2.4. Lemma 2.2 thus gives |MV | ≤ χ . Now, |α| is at
least the number of doors in {0, . . . , n}, whence |α| ≥ 1

χ

∑
V∈S |CV |. Since α is

K -efficient, we obtain

dX (x, y)≥
1

10χK

∑
W∈S

{{dW (x, y)}}s0 .

For s ≥ s0,
∑

W∈S{{dW (x, y)}}s ≤
∑

W∈S{{dW (x, y)}}s0 , so the claim follows. �

5. Hierarchical quasiconvexity and gates

We now introduce the notion of hierarchical quasiconvexity, which is essential for
the discussion of product regions, the combination theorem of Section 8, and in
[Durham et al. 2017].

Definition 5.1 (hierarchical quasiconvexity). Let (X ,S) be a hierarchically hyper-
bolic space. Then Y ⊆X is k-hierarchically quasiconvex for some k : [0,∞)→[0,∞),
if the following hold:

(1) For all U ∈ S, the projection πU (Y) is a k(0)-quasiconvex subspace of the
δ-hyperbolic space CU .

(2) For all κ ≥ 0 and κ-consistent tuples Eb ∈
∏

U∈S 2CU with bU ⊆ πU (Y) for all
U ∈S, each point x ∈ X for which dU (πU (x), bU ) ≤ θe(κ) (where θe(κ) is
as in Theorem 3.1) satisfies d(x,Y)≤ k(κ).

Remark 5.2. Note that condition (2) in the above definition is equivalent to: For
each κ > 0 and every x ∈ X for which dU (πU (x), πU (Y))≤ κ for all U ∈S, the
point x has the property that d(x,Y)≤ k(κ).

Lemma 5.3. For each Q there exists κ so that the following holds. Let Y ⊆ X be
such that πV (Y) is Q-quasiconvex for each V ∈S. Let x ∈ X and, for each V ∈S,
let pV ∈ πV (Y) satisfy dV (x, pV )≤ dV (x,Y)+ 1. Then (pV ) is κ-consistent.

Proof. For each V , choose yV ∈ Y so that πV (yV )= pV .
Suppose that V t W or V v W . By Lemma 2.6 and Theorem 3.1, there

exists z ∈ X so that for all U ∈ S, the projection πU (z) lies C-close to each of
the geodesics [πU (x), πU (yV )], [πU (x), πU (yW )], and [πU (yW ), πU (yV )], where
C depends on X . Hence dV (pV , z) and dW (pW , z) are uniformly bounded, by
quasiconvexity of πV (Y) and πW (Y).
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Suppose that V t W . Since the tuple (πU (z)) is consistent, either yV lies uni-
formly close in CV to ρW

V , or the same holds with V and W interchanged, as required.
Suppose that V vW . Suppose that dW (pW , ρ

V
W ) is sufficiently large, so that we have

to bound diamV (ρ
W
V (pW )∪pV ). Since dW (z, pW ) is uniformly bounded, dW (z, ρV

W )

is sufficiently large that consistency ensures that diamV (ρ
W
V (πW (z))∪ πV (z)) is

uniformly bounded. Since any geodesic from pW to z lies far from ρV
W , the sets

ρW
V (πW (z)) and ρW

V (pV ) coarsely coincide. Since πV (z) coarsely coincides with
pV by construction of z, we have the required bound. Hence the tuple with V -
coordinate pV is κ-consistent for uniform κ . �

Definition 5.4 (gate). A coarsely Lipschitz map gY : X → Y is called a gate map
if for each x ∈ X it satisfies: gY(x) is a point y ∈ Y such that for all V ∈ S,
the set πV (y) (uniformly) coarsely coincides with the projection of πV (x) to the
k(0)-quasiconvex set πV (Y). The point g(x) is called the gate of x in Y . The
uniqueness axiom implies that when such a map exists it is coarsely well-defined.

We first establish that, as should be the case for a (quasi)convexity property,
one can coarsely project to hierarchically quasiconvex subspaces. The next lemma
shows that gates exist for k-hierarchically quasiconvex subsets.

Lemma 5.5 (existence of coarse gates). If Y ⊆ X is k-hierarchically quasiconvex
and nonempty, then there exists a gate map for Y , i.e., for each x ∈ X there exists
y ∈ Y such that for all V ∈S, the set πV (y) (uniformly) coarsely coincides with
the projection of πV (x) to the k(0)-quasiconvex set πV (Y).
Proof. For each V ∈S, let pV ∈ πV (Y) satisfy dV (x, pV ) ≤ dV (x,Y)+ 1. Then
(pV ) is κ-consistent for some κ independent of x by Lemma 5.3. (Note that (pv)
is admissible by construction.)

Theorem 3.1 and the definition of hierarchical quasiconvexity combine to supply
y′ ∈Nk(κ)(Y) with the desired projections to all V ∈S; this point lies at distance
k(κ) from some y ∈ Y with the desired property.

We now check that this map is coarsely Lipschitz. Let x0, xn ∈ X be joined
by a uniform quasigeodesic γ . By sampling γ , we obtain a discrete path γ ′ :
{0, . . . , n} → X such that dX (γ ′(i), γ ′(i + 1)) ≤ K for 0 ≤ i ≤ n − 1, where K
depends only on X , and such that γ ′(0)= x0, γ

′(n)= xn . Observe that

dX (gY(x0), gY(xn))≤

n−1∑
i=0

dX (gY(γ ′(i)), gY(γ ′(i + 1))),

so it suffices to exhibit C such that dX (gY(x), gY(x ′))≤ C whenever dX (x, x ′)≤
K . But if dX (x, x ′) ≤ K , then each dU (x, x ′) ≤ K ′ for some uniform K ′, by
Definition 1.1.(1), whence the claim follows from the fact that each CU → πU (Y)
is coarsely Lipschitz (with constant depending only on δ and k(0)) along with the
uniqueness axiom (Definition 1.1.(9)). �
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5A. Hierarchically quasiconvex subspaces are hierarchically hyperbolic.

Proposition 5.6. Let Y ⊆ X be a hierarchically k-quasiconvex subset of the hierar-
chically hyperbolic space (X ,S). Then (Y, d) is a hierarchically hyperbolic space,
where d is the metric inherited from X .

Proof. There exists K so that any two points in Y are joined by a uniform quasi-
geodesic. Indeed, any two points in Y are joined by a hierarchy path in X , which
must lie uniformly close to Y .

We now define a hierarchically hyperbolic structure. For each U , let rU :

CU → πU (Y) be the coarse projection, which exists by quasiconvexity. The index
set is S, and the associated hyperbolic spaces are the various CU . For each U ,
define a projection π ′U : →CU by π ′U = rU ◦ πU , and for each nonorthogonal
pair U, V ∈S, the corresponding relative projection CU→ CV is given by rV ◦ρ

U
V .

All of the requirements of Definition 1.1 involving only the various relations on S

are obviously satisfied, since we have only modified the projections. The consistency
inequalities continue to hold since each rU is uniformly coarsely Lipschitz. The same
is true for bounded geodesic image and the large link lemma. Partial realization holds
by applying the map gY to points constructed using partial realization in (X ,S). �

Remark 5.7 (alternative hierarchically hyperbolic structures). In the above proof,
one can replace each CU by a thickening CUY of πU (Y) (this set is quasiconvex;
the thickening is to make a hyperbolic geodesic space). This yields a hierarchically
hyperbolic structure with coarsely surjective projections.

5B. Standard product regions. In this section, we describe a class of hierarchically
quasiconvex subspaces called standard product regions that will be useful in future
applications. We first recall a construction from [Behrstock et al. 2017b, Section 13].

Definition 5.8 (nested partial tuple). Recall SU = {V ∈S : V v U }. Fix κ ≥ κ0

and let FU be the set of κ-consistent tuples in
∏

V∈SU
2CV .

Definition 5.9 (orthogonal partial tuple). Let S⊥U = {V ∈S : V⊥U } ∪ {A}, where
A is a v-minimal element A such that V v A for all V⊥U . Fix κ ≥ κ0, let EU be
the set of κ-consistent tuples in

∏
V∈S⊥U−{A}

2CV .

Construction 5.10 (product regions in X ). Given X and U ∈S, there is a coarsely
well-defined map φU : FU × EU →X , with hierarchically quasiconvex image, that
restricts to coarsely well-defined maps φv : FU→X and φ⊥ : EU→X . Indeed, for
each (Ea, Eb) ∈ FU × EU , and each V ∈S, define the coordinate (φU (Ea, Eb))V as fol-
lows. If V vU , then (φU (Ea, Eb))V =aV . If V⊥U , then (φU (Ea, Eb))V = bV . If V tU ,
then (φU (Ea, Eb))V = ρU

V . Finally, if U v V , and U 6= V , let (φU (Ea, Eb))V = ρU
V .

We now verify that the tuple φU (Ea, Eb) is consistent. If W, V ∈ S, and either
V or W is transverse to U , then the consistency inequality involving W and V is
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satisfied in view of Proposition 1.8. The same holds if U vW or U v V . Hence,
it remains to consider the cases where V and W are each either nested into or
orthogonal to U : if V,W vU or V,W⊥U then consistency holds by assumption;
otherwise, up to reversing the roles of V and W we have V v U and W⊥U , in
which case V⊥W and there is nothing to check. Theorem 3.1 thus supplies the map
φU : FU × EU → X . Fixing any e ∈ EU yields a map φv : FU × {e} → X , and
φ⊥ is defined analogously. Note that these maps depend on choices of basepoints
in EU , FU .

Where it will not introduce confusion (e.g., where the basepoints are understood
or immaterial), we abuse notation and regard FU , EU as subspaces of X , i.e.,
FU = imφv, EU = imφ⊥.

Proposition 5.11. When EU , FU ⊂ X are endowed with the subspace metric d,
the spaces (FU ,SU ) and (EU ,S

⊥

U ) are hierarchically hyperbolic; if U is not
v-maximal, then their complexity is strictly less than that of (X ,S). Moreover, φv

and φ⊥ determine hieromorphisms (FU ,SU ), (EU ,S
⊥

U )→ (X ,S).

Proof. For each V v U or V⊥U , the associated hyperbolic space CV is exactly
the one used in the hierarchically hyperbolic structure (X ,S). For A, use an
appropriate thickening C∗A of πA(imφ⊥) to a hyperbolic geodesic space. All of the
projections FU → CV, V ∈SU and EU → CV, V ∈S⊥U are as in (X ,S) (for A,
compose with a quasi-isometry πA(imφ⊥)→ C∗A). Observe that (FU ,SU ) and
(EU ,S

⊥

U ) are hierarchically hyperbolic (this can be seen using a simple version
of the proof of Proposition 5.6). If U is not v-maximal in S, then neither is A,
whence the claim about complexity.

The hieromorphisms are defined by the inclusions SU ,S
⊥

U →S and, for each
V ∈ SU ∪ S⊥U , the identity CV → CV , unless V = A, in which case we use
C∗A→ πA(imφ⊥) ↪→ CA. These give hieromorphisms by definition. �

Remark 5.12 (dependence on A). Note that A need not be the unique v-minimal
element of S into which each V⊥U is nested; the axioms don’t require uniqueness
of such v-minimal elements. Observe that EU (as a set and as a subspace of X )
is defined independently of the choice of A. It is the hierarchically hyperbolic
structure from Proposition 5.11 that a priori depends on A. However, note that
A 6vU , since there exists V v A with V⊥U , and we cannot have V vU and V⊥U
simultaneously. Likewise, A 6⊥U by definition. Finally, if U v A, then the axioms
guarantee the existence of B, properly nested into A, into which each V⊥U is
nested, contradicting v-minimality of A. Hence U t A. It follows that πA(EU )

is bounded — it coarsely coincides with ρU
A . Thus the hierarchically hyperbolic

structure on EU , and the hieromorphism structure of φ⊥, is actually essentially
canonical: we can take the hyperbolic space associated to the v-maximal element
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to be a point, whose image in each of the possible choices of A must coarsely
coincide with ρU

A .

Remark 5.13 (orthogonality and product regions). If U⊥V , then we have FU ⊆ EV

and FV ⊆ EU , so there is a hierarchically quasiconvex map φvU×φ
v

V : FU×FV→X
extending to φvU ×φ

⊥

U and φ⊥V ×φ
v

V .

Remark 5.14. Since FU , EU are hierarchically quasiconvex spaces, Definition 5.4
provides coarse gates gFU : X → FU and gEU : X → EU . These are coarsely the
same as the following maps: given x ∈X , let Ex be the tuple defined by xW =πW (x)
when W vU and xW =πW (x) when W⊥U and ρU

W otherwise. Then Ex is consistent
and coarsely equals gFU×EU (x).

Definition 5.15 (standard product region). For each U ∈S, let PU = imφU , which
is coarsely FU × EU . We call this the standard product region in X associated
to U .

The next proposition follows from the definition of the product regions and the
fact that, if U v V , then ρU

W , ρ
V
W coarsely coincide whenever V v W or V t W

and U 6⊥W , which holds by Definition 1.1.(4).

Proposition 5.16 (parallel copies). There exists ν ≥ 0 such that for all U ∈S, all
V ∈SU , and all u ∈ EU , there exists v ∈ EV so that φV (FV ×{v})⊆Nν(φU (FU×

{u})).

5B1. Hierarchy paths and product regions. Recall that a D-hierarchy path γ in
X is a (D, D)-quasigeodesic γ : I → X such that πU ◦ γ is an unparameterized
(D, D)-quasigeodesic for each U ∈S, and that Theorem 4.4 provides D≥ 1 so that
any two points in X are joined by a D-hierarchy path. In this section, we describe
how hierarchy paths interact with standard product regions.

In the next proposition and lemma, given x, y ∈ X , we declare V ∈ S to be
relevant ( for x, y) if dV (x, y)≥ 200DE .

Proposition 5.17 (“active” subpaths). There exists ν ≥ 0 so that for all x, y ∈ X ,
all V ∈S with V relevant for (x, y), and all D-hierarchy paths γ joining x to y,
there is a subpath α of γ with the following properties:

(1) α ⊂Nν(PV ).

(2) πU |γ is coarsely constant on γ −α for all U ∈SV ∪S
⊥

V .

Proof. We may assume γ : {0, n} → X is a 2D-discrete path. Let xi = γ (i) for
0 ≤ i ≤ n. Let S ∈ S be the v-maximal element. Since the proposition holds
trivially for V = S, assume V Ĺ S.

First consider the case where V is v-maximal among relevant elements of S.
Lemma 5.18 provides ν ′′ ≥ 0, independent of x, y, and also provides i ≤ n, such
that dS(xi , ρ

V
S ) ≤ ν

′′. Let i be minimal with this property and let i ′ be maximal
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with this property. Observe that there exists ν ′ ≥ ν ′′, depending only on ν ′′ and the
(uniform) monotonicity of γ in CS, such that dS(x j , ρ

V
S )≤ ν

′ for i ≤ j ≤ i ′.
For j ∈{i, . . . , i ′}, let x ′j = gPV (x j ). Let U ∈S. By definition, if U vV or U⊥V ,

then πU (x j ) coarsely coincides with πU (x ′j ), while πU (x ′j ) coarsely coincides with
ρV

U if V vU or V tU . We claim that there exist i1, i ′1 with i ≤ i1 ≤ i ′1 ≤ i ′ such
that for i1≤ j ≤ i ′1 and U ∈S with V vU or U t V , the points πU (x j ) and πU (x ′j )
coarsely coincide; this amounts to claiming πU (x j ) coarsely coincides with ρV

U .
If V vU and some geodesic σ in CU from πU (x) to πU (y) fails to pass through

the E-neighborhood of ρV
U , then bounded geodesic image shows that ρU

V (σ ) has
diameter at most E . On the other hand, consistency shows that the endpoints of
ρU

V (σ ) coarsely coincide with πV (x) and πV (y), contradicting that V is relevant.
Thus σ passes through the E-neighborhood of ρV

U . Maximality of V implies that
U is not relevant, so that πV (x), πV (y), and πV (x j ) all coarsely coincide, whence
πV (x j ) coarsely coincides with ρV

U .
If U t V and U is not relevant, then πU (x j ) coarsely coincides with both πU (x)

and πU (y), each of which coarsely coincides with ρV
U , for otherwise we would

have dV (x, y)≤ 2E by consistency and the triangle inequality, contradicting that
V is relevant. If U t V and U is relevant, then, by consistency, we can assume that
πU (y), ρV

U coarsely coincide, as do πV (x), ρU
V . Either πU (x j ) coarsely equals ρV

U ,
or πV (x j ) coarsely equals πV (x), again by consistency. If dV (x, x j ) ≤ 10E or
dV (y, x j ) ≤ 10E , discard x j . Our discreteness assumption and the fact that V is
relevant imply that there exist i1 ≤ i ′1 between i and i ′ so that x j is not discarded for
i1 ≤ j ≤ i ′1. For such j , the distance formula now implies that d(x j , x ′j ) is bounded
by a constant ν independent of x, y.

We thus have i1, i ′1 such that x j ∈ Nν(PV ) for i ≤ j ≤ i ′ and x j 6∈ Nν(PV ) for
j < i or j > i ′, provided V is v-maximal relevant. If W v V and W is relevant,
and there is no relevant W ′ 6=W with W vW ′ v V , then we may apply the above
argument to γ ′= gPV (γ |i,...,i ′) to produce a subpath of γ ′ lying ν-close to PW ⊆ PV ,
and hence a subpath of γ lying 2ν-close to PW . Finiteness of the complexity
(Definition 1.1.(5)) then yields assertion (1). Assertion (2) is immediate from our
choice of i1, i ′1. �

Lemma 5.18. There exists ν ′ ≥ 0 so that for all x, y ∈ X , all relevant V ∈S, and
all D-hierarchy paths γ joining x to y, there exists t ∈ γ so that dS(t, ρV

S )≤ ν
′.

Proof. Let σ be a geodesic in CS joining the endpoints of πS ◦ γ . Since

dV (x, y)≥ 200DE,

the consistency and bounded geodesic image axioms (Definition 1.1.(4) and 1.1.(7))
imply that σ enters the E-neighborhood of ρV

S in CS, whence πS◦γ comes uniformly
close to ρV

S . �
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6. Hulls

In this section we build “convex hulls” in hierarchically hyperbolic spaces. This
construction is motivated by, and generalizes, the concept in the mapping class group
called 6-hull, as defined by Behrstock, Kleiner, Minsky and Mosher [Behrstock
et al. 2012]. Recall that given a set A of points in a δ-hyperbolic space H , its
convex hull, denoted hullH (A), is the union of geodesics between pairs of points
in this set. We will make use of the fact that the convex hull is 2δ-quasiconvex
(since, if p ∈ [x, y], q ∈ [x ′, y′], then [p, q] ⊆ N2δ([p, x] ∪ [x, x ′] ∪ [x ′, q]) ⊆
N2δ([y, x] ∪ [x, x ′] ∪ [x ′, y′])).

The construction of these hulls is based on Proposition 6.3, which generalizes
Lemma 4.15; indeed, the construction of hulls in this section generalizes the hulls
of pairs of points used in Section 4 to prove the distance formula. The second part
of Proposition 6.3 (which is not used in Section 4) relies on the distance formula.

Definition 6.1 (hull of a set). For each set A ⊂ X and θ ≥ 0, let Hθ (A) be the set
of all p ∈ X so that, for each W ∈S, the set πW (p) lies at distance at most θ from
hullCW (A). Note that A ⊂ Hθ (A).

Lemma 6.2. There exists θ0 so that for each θ ≥ θ0 there exists k : R+→ R+ such
that for each A ⊆ X , we have that Hθ (A) is k-hierarchically quasiconvex.

Proof. For any θ and U ∈ S, due to δ-hyperbolicity we have that πU (Hθ (A)) is
2δ-quasiconvex, so we only have to check the condition on realization points.

Let A′ be the union of all D0-hierarchy paths joining points in A, where D0 is
the constant from Theorem 4.4. Then the Hausdorff distance between πU (A′) and
πU (A) is bounded by C=C(δ, D0) for each U ∈S. Also, πU (A′) is Q=Q(δ, D0)-
quasiconvex. Let κ be the constant from Lemma 5.3, and let θ0 = θe(κ) be as in
Theorem 3.1.

Fix any θ ≥ θ0, and any κ ≥ 0. Let (bU ) be a κ ′-consistent tuple with bU ⊆

Nθ (hullCU (A)) for each U ∈ S. Let x ∈ X project θe(κ
′)-close to each bU . We

have to find y ∈ Hθ (A) uniformly close to x . By Lemma 5.3, (pU ) is κ-consistent,
where pU ∈ hullCW (A) satisfies dU (x, pU ) ≤ dU (x, hullCW (A))+ 1. It is readily
seen from the uniqueness axiom (Definition 1.1.(9)) that any y ∈X projecting close
to each pU has the required property, and such a y exists by Theorem 3.1. To
check admissibility, note that each pU lies θ -close to hullCU (A), which in turn lies
uniformly close to πU (X ) by quasiconvexity of πU (X ). �

We denote the Hausdorff distance in the metric space Y by dHaus,Y ( · , · ). The
next proposition directly generalizes [Behrstock et al. 2012, Proposition 5.2] from
mapping class groups to general hierarchically hyperbolic spaces.

Proposition 6.3 (retraction onto hulls). For each sufficiently large θ there exists
C ≥ 1 so that for each set A ⊂ X there is a (K , K )-coarsely Lipschitz map
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r : X → Hθ (A) restricting to the identity on Hθ (A). Moreover, if A′ ⊂ X lies
at finite Hausdorff distance from A, then dX (rA(x), rA′(x)) is C-coarsely Lipschitz
in dHaus,X (A, A′).

Proof. By Lemma 6.2, for all sufficiently large θ , Hθ (A) is hierarchically quasi-
convex. Thus, by Lemma 5.5 there exists a map r : X → Hθ (A), which is coarsely
Lipschitz and which is the identity on Hθ (A).

We now prove the “moreover” clause. By Definition 1.1.(1), for each W the
projections πW are each coarsely Lipschitz and thus dHaus,CW (πW (A), πW (A′))
is bounded by a coarsely Lipschitz function of dHaus,X (A, A′). It is then easy to
conclude using the distance formula (Theorem 4.5) and the construction of gates
(Definition 5.4) used to produce the map r . �

6A. Homology of asymptotic cones. In this subsection we make a digression to
study homological properties of asymptotic cones of hierarchically hyperbolic
spaces. This subsection is not needed for the proof of distance formula, and in fact
we will use the distance formula in a proof.

Using Proposition 6.3, the identical proof as used in [Behrstock et al. 2012,
Lemma 5.4] for mapping class groups, yields:

Proposition 6.4. There exists θ0 ≥ 0 depending only on the constants of the hier-
archically hyperbolic space (X ,S) such that for all θ, θ ′ ≥ θ0 there exist K , C ,
and θ ′′ such that given two sets A, A′ ⊂ X , then:

(1) diam(Hθ (A))≤ K diam(A)+C.

(2) If A′ ⊂ Hθ (A) then Hθ (A′)⊂ Hθ ′′(A).

(3) dHaus,X (Hθ (A), Hθ (A′))≤ K dHaus,X (A, A′)+C.

(4) dHaus,X (Hθ (A), Hθ ′(A))≤ C.

Remark 6.5. Proposition 6.4 is slightly stronger than the corresponding [Behrstock
et al. 2012, Lemma 5.4], in which A, A′ are finite sets and the constants depend on
their cardinality. The source of the strengthening is just the observation that hulls
in δ-hyperbolic spaces are 2δ-quasiconvex regardless of the cardinality of the set
(see [Behrstock et al. 2012, Lemma 5.1]).

It is an easy observation that given a sequence A of sets An ⊂ X with bounded
cardinality, the retractions to the corresponding hulls Hθ (An) converge in any
asymptotic cone, Xω, to a Lipschitz retraction from that asymptotic cone to the
ultralimit of the hulls, H(A). A general argument, see e.g., [Behrstock et al. 2012,
Lemma 6.2] implies that the ultralimit of the hulls is then contractible. The proofs
in [Behrstock et al. 2012, Section 6] then apply in the present context using the
above proposition, with the only change needed being that the reference to the
rank theorem for hierarchically hyperbolic spaces as proven in [Behrstock et al.
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2017b, Theorem J] must replace the application of [Behrstock and Minsky 2008].
In particular, this yields the following two results:

Corollary 6.6. Let X be a hierarchically hyperbolic space and Xω one of its asymp-
totic cones. Let X ⊂ Xω be an open subset and suppose that for any sequence, A,
of finite subsets of X we have H(A)⊂ X. Then X is acyclic.

Corollary 6.7. If (U, V ) is an open pair in Xω, then Hk(U, V ) = {0} for all k
greater than the complexity of X .

6B. Relatively hierarchically hyperbolic spaces and the distance formula. In this
section, we work in the following context:

Definition 6.8 (relatively hierarchically hyperbolic spaces). The hierarchical space
(X ,S) is relatively hierarchically hyperbolic if there exists δ such that for all
U ∈S, either U is v-minimal or CU is δ-hyperbolic. If U is v-minimal and CU
is not hyperbolic, then we insist that πU is E-coarsely surjective.

Remark 6.9. One could, more generally, only insist that each πU (X ) is a uniformly
coarsely Lipschitz coarse retract. For hyperbolic CU , this is equivalent to the uniform
quasiconvexity from Definition 1.1, and is sufficient for our needs; for the present
applications Definition 6.8 is sufficiently general, as well as for applications in
[Behrstock et al. 2017a].

Our goal is to prove the following two theorems, which provide hierarchy paths
and a distance formula in relatively hierarchically hyperbolic spaces. We will not
use these theorems in the remainder of this paper, but they are required for future
applications.

Theorem 6.10 (distance formula for relatively hierarchically hyperbolic spaces).
Let (X ,S) be a relatively hierarchically hyperbolic space. Then there exists s0 such
that for all s ≥ s0, there exist constants C, K such that for all x, y ∈ X ,

dX (x, y)�K ,C

∑
U∈S

{{dU (x, y)}}s .

Proof. By Proposition 6.15 below, for some suitably chosen θ ≥ 0 and each x, y ∈X ,
there exists a subspace Mθ (x, y) of X (endowed with the induced metric) so that
(Mθ (x, y),S) is a hierarchically hyperbolic space (with the same nesting relations
and projections from (X ,S), so that for all U ∈S, we have that πU (Mθ (x, y))⊂
Nθ (γU ), where γU is an arbitrarily chosen geodesic in CU from πU (x) to πU (y).
We emphasize that all of the constants from Definition 1.1 (for Mθ (x, y)) are
independent of x, y. The theorem now follows by applying the distance formula
for hierarchically hyperbolic spaces (Theorem 4.5) to (Mθ (x, y),S). �
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Theorem 6.11 (hierarchy paths in relatively hierarchically hyperbolic spaces). Let
(X ,S) be a relatively hierarchically hyperbolic space. Then there exists D ≥ 0
such that for all x, y ∈ X , there exists a (D, D)-quasigeodesic γ in X joining x, y
so that πU (γ ) is an unparameterized (D, D)-quasigeodesic.

Proof. Proceed exactly as in Theorem 6.10, but apply Theorem 4.4 instead of
Theorem 4.5. �

We now define hulls of pairs of points in the relatively hierarchically hyperbolic
space (X ,S). Let θ be a constant to be chosen (it will be the output of the realization
theorem for a consistency constant depending on the constants associated to (X ,S)),
and let x, y ∈X . For each U ∈S, fix a geodesic γU in CU joining πU (x) to πU (y).
Define maps rU : CU → γU as follows: if CU is hyperbolic, let rU be the coarse
closest-point projection map. Otherwise, if CU is not hyperbolic (so U is v-
minimal), define rU as follows: parametrize γU by arc length with γU (0)= x , and
for each p ∈ CU , let m(p) = min{dU (x, p), dU (x, y)}. Then rU (p) = γU (m(p)).
This rU is easily seen to be an L-coarsely Lipschitz retraction, with L independent
of U and x, y. (When U is minimal, rU is 1-Lipschitz.)

Next, define the hull Mθ (x, y) to be the set of points x ∈X such that dU (x, γU )≤θ

for all U ∈S. In the next proposition, we show that Mθ (x, y) is a hierarchically
hyperbolic space, with the following hierarchically hyperbolic structure:

(1) The index set is S.

(2) The nesting, orthogonality, and transversality relations on S are the same as
in (X ,S).

(3) For each U ∈S, the associated hyperbolic space is γU .

(4) For each U ∈S, the projection π ′U : Mθ (x, y)→ γU is given by π ′U = rU ◦πU .

(5) For each pair U, V ∈S of distinct nonorthogonal elements, the relative pro-
jection CU → CV is given by rV ◦ ρ

U
V .

Since there are now two sets of projections (those defined in the original hierarchi-
cal space (X ,S), denoted π∗, and the new projections π ′

∗
), in the following proofs

we will explicitly write all projections when writing distances in the various CU .

Lemma 6.12 (gates in hulls). Let Mθ (x, y) be as above. Then there exists a
uniformly coarsely Lipschitz retraction r :X → Mθ (x, y) such that for each U ∈S,
we have, up to uniformly (independent of x, y) bounded error, πU ◦ r = rU ◦πU .

Remark 6.13. It is crucial in the following proof that CU is δ-hyperbolic for each
U ∈S that is not v-minimal.

Proof of Lemma 6.12. Let z ∈ X and, for each U , let tU = rU ◦πU (z); this defines
a tuple (tU ) ∈

∏
U∈S 2CU which we will check is κ-consistent for κ independent
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of x, y. The tuple (tU ) is admissible because of quasiconvexity of the images of pro-
jections to hyperbolic spaces, and coarse surjectivity of projections to nonhyperbolic
ones.

Realization (Theorem 3.1) then yields m ∈ X such that dU (πU (m), tU )≤ θ for
all U ∈ S. By definition, tU ∈ γU , so m ∈ Mθ (x, y) and we define gx,y(z) = m.
Note that up to perturbing slightly, we may take gx,y(z)= z when z ∈ Mθ . Hence
it suffices to check consistency of (tU ).

First let U, V ∈S satisfy U t V . Then dV (πV (x), πV (y))≤ 2E (up to exchang-
ing U and V ), and moreover each of πU (x), πU (y) is E-close to ρU

V . Since tV lies
on γV , it follows that dV (tV , ρ

U
V )≤ 2E .

Next, let U, V ∈S satisfy U Ĺ V . Observe that in this case, CV is δ-hyperbolic
because V is not v-minimal. First suppose that dV (γV , ρ

U
V ) > 1. Then by consis-

tency and bounded geodesic image, dU (x, y) ≤ 3E , and diamU (ρ
V
U (γV )) ≤ E . It

follows that diamU (tU ∪ ρU
V (tV ))≤ 10E .

Hence, suppose that dV (ρ
U
V , γV )≤ 10E but that dV (tV , ρ

U
V ) > E . Without loss

of generality, ρU
V lies at distance ≤ E from the subpath of γV joining tV to πV (y).

Let γ ′V be the subpath joining x to tV . By consistency, bounded geodesic image, and
the fact that CV is δ-hyperbolic and tV = rV ◦πV (z), the geodesic triangle between
πV (x), πV (z), and tV projects under ρV

U to a set, of diameter bounded by some
uniform ξ , containing πU (x), πU (z), and ρV

U (tV ). Hence, since tU = rU ◦πU (z), and
πU (x) ∈ γU , the triangle inequality yields a uniform bound on diamU (tU ∪ρV

U (tV )).
Hence there exists a uniform κ , independent of x, y, so that (tU ) is κ-consistent.
Finally, gx,y is coarsely Lipschitz by the uniqueness axiom (Definition 1.1.(9)),
since each rU is uniformly coarsely Lipschitz. �

Lemma 6.14. Let m,m′ ∈ Mθ (x, y). Then there exists C ≥ 0 such that m,m′ are
joined by a (C,C)-quasigeodesic in Mθ (x, y).

Proof. Since X is a quasigeodesic space, there exists K ≥ 0 so that m,m′ are joined
by a K -discrete (K , K )-quasigeodesic σ : [0, `] → X with σ(0)= m, σ (`)= m′.
Note that gx,y◦σ is a K ′-discrete, efficient path for K ′ independent of x, y, since the
gate map is uniformly coarsely Lipschitz. A minimal-length K ′-discrete efficient
path in Mθ (x, y) from x to y has the property that each subpath is K ′-efficient, and
is a uniform quasigeodesic, as needed. �

Proposition 6.15. For all sufficiently large θ , (1)–(5) above make (Mθ (x, y),S) a
hierarchically hyperbolic space, where Mθ (x, y) inherits its metric as a subspace
of X . Moreover, the associated constants from Definition 1.1 are independent
of x, y.

Proof. By Lemma 6.14, Mθ (x, y) is a uniform quasigeodesic space. We now verify
that the enumerated axioms from Definition 1.1 are satisfied. Each part of the
definition involving only S and the v,⊥,t relations is obviously satisfied; this
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includes finite complexity. The consistency inequalities hold because they hold in
(X ,S) and each rU is L-coarsely Lipschitz. The same holds for bounded geodesic
image and the large link lemma. We now verify the two remaining claims:

Uniqueness. Let m,m′ ∈ Mθ (x, y), so that dU (πU (m), γU ), dU (πU (m′), γU )≤ θ

for all U ∈S. The definition of rU ensures that dU (rU ◦ πU (m), rU ◦ πU (m′)) ≥
dU (πU (m), πU (m′))− 2θ , and uniqueness follows.

Partial realization. Let {Ui } be a totally orthogonal subset of S and choose, for
each i , some pi ∈ γUi . By partial realization in (X ,S), there exists z ∈ X so
that dUi (πUi (z), pi ) ≤ E for each i and dV (πV (z), ρ

Ui
V )≤ E provided Ui Ĺ V or

Ui t V . Let z′ = gx,y(z) ∈ Mθ (x, y). Then, by the definition of the gate map and
the fact that each rU is L-coarsely Lipschitz, there exists α, independent of x, y, so
that dUi (rUi ◦ πUi (z

′), pi ) ≤ α, while dV (rV ◦πV (z′), ρ
Ui
V )≤ α whenever Ui t V

or Ui v V . Hence z′ is the required partial realization point. This completes the
proof that (Mθ (x, y),S) is an HHS. �

7. The coarse median property

In this section, we study the relationship between hierarchically hyperbolic spaces
and spaces that are coarse median in the sense defined in [Bowditch 2013]. In
particular, this discussion shows that Out(Fn) is not a hierarchically hyperbolic
space, and hence not a hierarchically hyperbolic group, for n ≥ 3.

Definition 7.1 (median graph). Let 0 be a graph with unit-length edges and path-
metric d. Then 0 is a median graph if there is a map m : 03

→ 0 such that, for all
x, y, z ∈ 0, we have d(x, y) = d(x,m)+ d(m, y), and likewise for the pairs x, z
and y, z, where m =m(x, y, z). Note that if x = y, then m(x, y, z)= x .

Chepoi [2000] established that 0 is a median graph precisely when 0 is the
1-skeleton of a CAT(0) cube complex.

Definition 7.2 (coarse median space). Let (M, d) be a metric space and let m :
M3
→ M be a ternary operation satisfying the following:

(1) (triples) There exist constants κ, h(0) such that for all a, a′, b, b′, c, c′ ∈ M ,

d(m(a, b, c, ),m(a′, b′, c′))≤ κ(d(a, a′)+ d(b, b′)+ d(c, c′))+ h(0).

(2) (tuples) There is a function h :N∪{0}→ [0,∞) such that for any A⊆M with
1≤ |A| = p<∞, there is a CAT(0) cube complex Fp and maps π : A→ F (0)

p

and λ : F (0)
p → M such that d(a, λ(π(a)))≤ h(p) for all a ∈ A and such that

d(λ(mp(x, y, z)),m(λ(x), λ(y), λ(z)))≤ h(p)

for all x, y, z ∈ Fp, where mp is the map that sends triples from F (0)
p to their

median.
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Then (M, d,m) is a coarse median space. The rank of (M, d,m) is at most d if
each Fp above can be chosen to satisfy dimFp ≤ d, and the rank of (M, d,m) is
exactly d if d is the minimal integer such that (M, d,m) has rank at most d .

The next fact was observed by Bowditch [2018]; we include a proof for com-
pleteness.

Theorem 7.3 (hierarchically hyperbolic implies coarse median). Let (X ,S) be
a hierarchically hyperbolic space. Then X is coarse median of rank at most the
complexity of (X ,S).

Proof. Since the spaces CU,U ∈S are δ-hyperbolic for some δ independent of U ,
there exists for each U a ternary operation mU

: CU 3
→ CU so that (CU, dU ,m

U ) is
a coarse median space of rank 1, and the constant κ and function h :N∪{0}→[0,∞)
from Definition 7.2 can be chosen to depend only on δ (and not on U ).

Definition of the median. Define a map m : X 3
→ X as follows. Let x, y, z ∈ X

and, for each U ∈ S, let bU = mU (πU (x), πU (y), πU (z)). By Lemma 2.6, the
tuple Eb ∈

∏
U∈S 2CU whose U -coordinate is bU is κ-consistent for an appropriate

choice of κ . Hence, by the realization theorem (Theorem 3.1), there exists θe and
m = m(x, y, z) ∈ X such that dU (m, bU ) ≤ θu for all U ∈ S. Moreover, this is
coarsely well defined (up to the constant θe from the realization theorem).

Application of [Bowditch 2013, Proposition 10.1]. Note, by Definition 1.1.(1),
the projections πU : X → CU, U ∈S are uniformly coarsely Lipschitz. Moreover,
for each U ∈S, the projection πU : X → CU is a “quasimorphism” in the sense of
[Bowditch 2013, Section 10], i.e., dU (m

U (πU (x), πU (y), πU (z)), πU (m(x, y, z)))
is uniformly bounded, by construction, as U varies over S and x, y, z vary in X .
Proposition 10.1 of [Bowditch 2013] then implies that m is a coarse median on X ,
since that the hypothesis (P1) of that proposition holds in our situation by the
distance formula. �

The following is a consequence of Theorem 7.3 and work of Bowditch [2013;
2014a]:

Corollary 7.4 (contractibility of asymptotic cones). Let X be a hierarchically
hyperbolic space. Then all the asymptotic cones of X are contractible, and in fact
bi-Lipschitz equivalent to CAT(0) spaces.

Corollary 7.5 (HHGs have quadratic Dehn function). Let G be a finitely generated
group that is a hierarchically hyperbolic space. Then G is finitely presented and
has quadratic Dehn function. In particular, this conclusion holds when G is a
hierarchically hyperbolic group.

Proof. This follows from Theorem 7.3 and [Bowditch 2013, Corollary 8.3]. �
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Corollary 7.6. For n ≥ 3, the group Out(Fn) is not a hierarchically hyperbolic
space, and in particular is not a hierarchically hyperbolic group.

Proof. This is an immediate consequence of Corollary 7.5 and the exponential
lower bound on the Dehn function of Out(Fn) given by the combined results of
[Bridson and Vogtmann 1995; 2012; Handel and Mosher 2013b]. �

We also recover a special case of Theorem I of [Behrstock et al. 2017b], using
Corollary 7.5 and a theorem of Gersten, Holt and Riley [Gersten et al. 2003,
Theorem A]:

Corollary 7.7. Let N be a finitely generated virtually nilpotent group. Then G is
quasi-isometric to a hierarchically hyperbolic space if and only if N is virtually
abelian.

Corollary 7.8. Let S be a symmetric space of noncompact type, or a thick affine
building. Suppose that the spherical type of S is not Ar

1. Then S is not hierarchically
hyperbolic.

Proof. This follows from Theorem 7.3 and Theorem A of [Haettel 2016]. �

Finally, Theorem 9.1 of [Bowditch 2014a] combines with Theorem 7.3 to yield:

Corollary 7.9 (rapid decay). Let G be a group whose Cayley graph is a hierarchi-
cally hyperbolic space. Then G has the rapid decay property.

7A. Coarse media and hierarchical quasiconvexity. The natural notion of quasi-
convexity in the coarse median setting is related to hierarchical quasiconvexity.

Definition 7.10 (coarsely convex). Let (X ,S) be a hierarchically hyperbolic space
and let m : X 3

→ X be the coarse median map constructed in the proof of
Theorem 7.3. A closed subspace Y ⊆ X is µ-convex if for all y, y′ ∈ Y and
x ∈ X , we have m(y, y′, x) ∈Nµ(Y).

Remark 7.11. We will not use µ-convexity in the remainder of the paper. However,
it is of independent interest since it parallels a characterization of convexity in
median spaces: a subspace Y of a median space is convex exactly when, for
all y, y′ ∈ Y and x in the ambient median space, the median of x, y, y′ lies in Y .

Proposition 7.12 (coarse convexity and hierarchical quasiconvexity). Let (X ,S)
be a hierarchically hyperbolic space and let Y ⊆ X . If Y is hierarchically k-
quasiconvex, then there exists µ≥ 0, depending only on k and the constants from
Definition 1.1, such that Y is µ-convex.

Proof. Let Y ⊆ X be k-hierarchically quasiconvex, let y, y′ ∈ Y and x ∈ X .
Let m = m(x, y, y′). For any U ∈S, the projection πU (Y) is by definition k(0)-
quasiconvex, so that, for some k ′= k ′(k(0), δ), we have dU (mU , πU (Y))≤ k ′, where
mU is the coarse median of πU (x), πU (y), πU (y′) coming from hyperbolicity of CU .
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The tuple (mU )U∈S was shown above to be κ-consistent for appropriately chosen κ
(Lemma 2.6), and dU (mU ,m(x, y, y′))≤ θe(κ), so, by hierarchical quasiconvexity
dX (m(x, y, y′),Y) is bounded by a constant depending on k(κ) and k ′. �

8. Combination theorems for hierarchically hyperbolic spaces

The goal of this section is to prove Theorem 8.6, which enables the construction
of new hierarchically hyperbolic spaces and groups from a tree of given ones. We
postpone the statement of the theorem until after the relevant definitions.

Definition 8.1 (quasiconvex hieromorphism, full hieromorphism). Let

( f, f ♦, { f ∗(U )}U∈S)

be a hieromorphism (X ,S)→ (X ′,S′). We say f is k-hierarchically quasiconvex
if its image is k-hierarchically quasiconvex and f : X → X ′ is a quasi-isometric
embedding. The hieromorphism is full if

(1) there exists ξ ≥ 0 such that each f ∗(U ) : CU → C( f ♦(U )) is a (ξ, ξ)-quasi-
isometry, and

(2) for each U ∈S, if V ′ ∈S′ satisfies V ′v f ♦(U ), then there exists V ∈S such
that V vU and f ♦(V )= V ′.

Remark 8.2. Observe that Definition 8.1.(2) holds automatically unless V ′ is
bounded.

Definition 8.3 (tree of hierarchically hyperbolic spaces). Let V, E denote the vertex
and edge-sets, respectively, of the simplicial tree T . A tree of hierarchically
hyperbolic spaces is a quadruple

T = (T, {Xv}, {Xe}, {φe± : v ∈ V, e ∈ E})
satisfying:

(1) {Xv} and {Xe} are uniformly hierarchically hyperbolic: each Xv has index set
Sv, and each Xe has index set Se. In particular, there is a uniform bound on
the complexities of the hierarchically hyperbolic structures on the Xv and Xe.

(2) Fix an orientation on each e ∈ E and let e+, e− denote the initial and terminal
vertices of e. Then, each φe± :Xe→Xe± is a hieromorphism with all constants
bounded by some uniform ξ ≥ 0. (We adopt the hieromorphism notation from
Definition 1.20. Hence we actually have maps φe± : Xe → Xe± , and maps
φ♦e± :Se→Se± preserving nesting, transversality, and orthogonality, and
coarse ξ -Lipschitz maps φ∗e±(U ) : CU → C(φ♦e±(U )) satisfying the conditions
of that definition.)
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Given a tree T of hierarchically hyperbolic spaces, denote by X (T ) the metric
space constructed from

⊔
v∈V Xv by adding edges of length 1 as follows: if x ∈ Xe,

we declare φe−(x) to be joined by an edge to φe+(x). Given x, x ′ ∈ X in the same
vertex space Xv, define d′(x, x ′) to be dXv (x, x ′). Given x, x ′ ∈ X joined by an
edge, define d′(x, x ′)= 1. Given a sequence x0, x1, . . . , xk ∈ X , with consecutive
points either joined by an edge or in a common vertex space, define its length to be∑k−1

i=1 d′(xi , xi+1). Given x, x ′ ∈ X , let d(x, x ′) be the infimum of the lengths of
such sequences x = x0, . . . , xk = x ′.

Remark 8.4. Since the vertex spaces are (uniform) quasigeodesic spaces, (X , d)
is a quasigeodesic space.

Definition 8.5 (equivalence, support, bounded support). Let T be a tree of hier-
archically hyperbolic spaces. For each e ∈ E , and each We− ∈ Se−,We+ ∈ Se+ ,
write We− ∼d We+ if there exists We ∈Se so that φ♦e±(We)=We± . The transitive
closure ∼ of ∼d is an equivalence relation on

⋃
vSv . The ∼-class of W ∈

⋃
vSv

is denoted [W ].
The support of an equivalence class [W ] is the induced subgraph T[W ] of T

whose vertices are those v ∈ T so that Sv contains a representative of [W ]. Observe
that T[W ] is connected. The tree T of hierarchically hyperbolic spaces has bounded
supports if there exists n ∈ N such that each ∼-class has support of diameter at
most n.

We can now state the main theorem of this section:

Theorem 8.6 (combination theorem for hierarchically hyperbolic spaces). Let T
be a tree of hierarchically hyperbolic spaces. Suppose that:

(1) There exists a function k so that each edge-hieromorphism is k-hierarchically
quasiconvex.

(2) Each edge-hieromorphism is full.

(3) T has bounded supports of diameter at most n.

(4) If e is an edge of T and Se is the v-maximal element of Se, then for all
V ∈Se± , the elements V and φ♦e±(Se) are not orthogonal in Se± . Moreover,
there exists K ≥ 0 such that for all vertices v of T and edges e incident to v, we
have dHaus(φv(Xe)), F

φ
♦
v (Se)
×{?})≤ K , where Se ∈Se is the unique maximal

element and ? ∈ E
φ
♦
v (Se)

.

Then X (T ) is hierarchically hyperbolic.

We postpone the proof until after the necessary lemmas and definitions. For
the remainder of this section, fix a tree of hierarchically hyperbolic spaces T =
(T, {Xv}, {Xe}, {φe±}) satisfying the hypotheses of Theorem 8.6; let n be the con-
stant implicit in (3).
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Let S0
= {T } ∪

(⋃
vSv/∼

)
.

Definition 8.7 (nesting, orthogonality, transversality in S0). For all [W ] ∈ S,
declare [W ] v T . If [V ], [W ] are ∼-classes, then [V ] v [W ] if and only if there
exists v ∈ T such that [V ], [W ] are respectively represented by Vv,Wv ∈Sv and
Vv v Wv; this relation is nesting. For convenience, for A ∈ S, we write SA to
denote the set of B ∈S0 such that B v A.

Likewise, [V ]⊥[W ] if and only if there exists a vertex v ∈ T such that [V ], [W ]
are respectively represented by Vv,Wv ∈Sv and Vv⊥Wv; this relation is orthog-
onality. If [V ], [W ] ∈ S are not orthogonal and neither is nested into the other,
then they are transverse, written [V ] t [W ]. Equivalently, [V ] t [W ] if for all
v ∈ T[V ] ∩ T[W ], the representatives Vv,Wv ∈Sv of [V ], [W ] satisfy Vv tWv.

Fullness (Definition 8.1.(2)) was introduced to enable the following two lemmas:

Lemma 8.8. Let T be a tree of hierarchically hyperbolic spaces, let v be a vertex
of the underlying tree T , and let U,U ′ ∈Sv satisfy U vU ′. Then either U =U ′

or U 6∼U ′.

Proof. Suppose that U ∼U ′, so that there is a closed path v = v0, v1, . . . , vn = v

in T and a sequence U =U0,U1, . . . ,Un =U ′ such that Ui ∈Svi and Ui ∼d Ui+1

for all i . If U 6=U ′, then condition (2) (fullness) from Definition 8.1 and the fact
that hieromorphisms preserve nesting yields U ′′ ∈ Sv, different from U ′, such
that U ′′ ∼U and U ′′ Ĺ U ′ Ĺ U (where Ĺ denotes proper nesting). Repeating this
argument contradicts finiteness of complexity. �

Lemma 8.9. The relation v is a partial order on S0, and T is the unique v-
maximal element. Moreover, if [V ]⊥[W ] and [U ] v [V ], then [U ]⊥[W ] and
[V ], [W ] are not v-comparable.

Proof. Reflexivity is clear. Suppose that [Vv]v [Uu]v [Ww]. Then there are vertices
v1, v2 ∈ V and representatives Vv1 ∈ [Vv],Uv1 ∈ [Uu],Uv2 ∈ [Uu],Wv2 ∈ [Ww] so
that Vv1 vUv1 and Uv2 vWv2 . Since edge-hieromorphisms are full, induction on
dT (v1, v2) yields Vv2 vUv2 so that Vv2 ∼ Vv1 . Transitivity of the nesting relation
in Sv2 implies that Vv2 vWv2 , whence [Vv] v [Ww].

Suppose that [Uu] v [Vv] and [Vv] v [Uu], and suppose by contradiction that
[Uu] 6= [Vv]. Choose v1, v2 ∈ V and representatives Uv1,Uv2, Vv1, Vv2 so that
Uv1 v Vv1 and Vv2 v Uv2 . The definition of ∼ again yields Uv2 ∼ Uv1 with
Uv2 v Vv2 6=Uv2 . This contradicts Lemma 8.8. Hence v is antisymmetric, whence
it is a partial order. The underlying tree T is the unique v-maximal element by
definition.

Suppose that [V ]⊥[W ] and [U ] v [V ]. Then there are vertices v1, v2 and repre-
sentatives Vv1,Wv1,Uv2, Vv2 such that Vv1⊥Wv1 and Uv2⊥Vv2 . Again by fullness of
the edge-hieromorphisms, there exists Uv1 ∼Uv2 with Uv1 v Vv1 , whence Uv1⊥Wv1 .
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Thus [U ]⊥[W ] as required. Also, v-incomparability of [V ], [W ] follows from full-
ness and the fact that edge-hieromorphisms preserve orthogonality and nesting. �

Lemma 8.10. Let [W ] ∈S0 and let [U ] v [W ]. Suppose moreover that

{[V ] ∈S[W ] : [V ]⊥[U ]} 6=∅.

Then there exists [A] ∈S[W ]−{[W ]} such that [V ] v [A] for all [V ] ∈S[W ] with
[V ]⊥[U ].

Proof. Choose some v ∈ V so that there exist Vv ∈ Sv and Uv ∈ Sv with
[Uv] = [U ] and Vv⊥Uv . Then by definition, there exists Av ∈Sv so that Bv v Av
whenever Bv⊥Uv and so that [Bv] v [W ]. It follows from the fact that the edge-
hieromorphisms are full and preserve (non)orthogonality that [B] v [Av] when-
ever [B]⊥[U ]. �

The set S0 is not quite large enough to satisfy the orthogonality axiom, for the
following reason: in Lemma 8.10, we needed [W ] to be a∼-class, but since T ∈S0,
we need to be able to satisfy the axiom with [W ] replaced by T . To this end, we
add some new elements to S0, and extend the v,⊥,t relations, as follows.

Definition 8.11 (containers and S). We now define the index set S for the HHS
structure we will construct in order to prove Theorem 8.6. First, S contains S0.
Next, for each [W ] for which there exists [U ] with [U ]⊥[W ], let K⊥0 ([W ]) be a
new element of S, which we call the container of [W ]. We make the following
declarations:

• K⊥0 ([W ])v T .

• [U ] v K⊥0 ([W ]) if and only if [U ]⊥[W ].

• K⊥0 ([W ]) t K⊥0 ([U ]) if [U ] 6= [W ].

• K⊥0 ([W ])⊥[V ] if and only if [V ] v [W ].

• for all other [U ], we have [U ] t K⊥0 ([W ]).

Let K0 be the set of all K⊥0 ([W ]) as [W ] varies among those ∼-classes for which
there is at least one orthogonal ∼-class.

Next, for each K⊥0 ([W ]) ∈ K0, consider a ∼-class [U ] v K⊥0 ([W ]) such that
[U ]⊥[V ] for some other [V ] v K⊥0 ([W ]). Let K⊥1 ([W ], [U ]) be a new element
of S, and let K1 be the set of such containers, as [W ] varies and as [U ] varies over
those ∼-classes nested in K⊥0 ([W ]) (i.e., orthogonal to [W ]) that are orthogonal to
some other ∼-class nested in K⊥0 ([W ]).

We now make the following declarations:

• K⊥1 ([W ], [U ]) v K⊥0 ([W ]) and K⊥1 ([W ], [U ]) is transverse to every other
element of K0 ∪K1.
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• K⊥1 ([W ], [U ])v T .

• [V ] v K⊥1 ([W ], [U ]) if and only if [V ] v K⊥0 ([W ]) and [V ]⊥[U ].

• [V ]⊥K⊥1 ([W ], [U ]) if and only if either [V ] v [W ] (i.e., [V ]⊥K⊥0 ([W ])) or
[V ] v [U ].

• If none of the two preceding conditions is satisfied by [V ], then [V ] t
K⊥1 ([W ], [U ]).

We now proceed as above to inductively construct sets Kη, η≥1, of new “containers”,
where each K⊥η ([W ]1, . . . , [Wη]) is nested in K⊥i ([W ]1, . . . , [Wi ]) for i ≤ η− 1,
and also nested in T . Our inductive construction ensures that [W1], . . . , [Wη]

are pairwise-orthogonal. The ∼-classes [U ] nested in K⊥η ([W ]1, . . . , [Wη]) are
precisely those that are orthogonal to each of [W1], . . . , [Wη]. The ∼-classes U
orthogonal to K⊥η ([W1], . . . , [Wη]) are precisely those [U ] nested into some [Wi ].

Let S=S0
∪
⋃
η≥0 Kη.

Remark 8.12 (extension of v,⊥,t satisfies the axioms). Lemma 8.9 shows that
v is a partial order on S0, and Definition 8.11 shows how to extend v to all of S.
By construction, the extended v continues to be transitive. This follows from
Lemma 8.9, the definition, and induction on the η in Kη. By definition, T is still
the unique v-maximal element.

Now suppose that [U ] v K⊥η ([W1], . . . , [Wη]) and [V ]⊥K⊥η ([W1], . . . , [Wη]).
Then [V ] v [Wi ] for some i , and [U ]⊥[Wj ] for all j . Lemma 8.9 implies [U ]⊥[V ].
On the other hand, K⊥η ([W1], . . . , [Wη]) is never nested into any ∼-class or orthog-
onal to any element of

⋃
η Kη.

Lemma 8.13. There exists χ ≥ 0 such that if {V1, . . . , Vc} ⊂ S consists of pair-
wise orthogonal or pairwise v-comparable elements, then c ≤ χ . In particular,⋃
η≥0 Kη =

⋃(χ−1)/2
η=0 Kη.

Proof. For each v∈T , let χv be the complexity of (Xv,Sv) and let χ=2 maxv χv+1.
Let [V1], . . . , [Vc] ∈S−{T } be ∼-classes that are pairwise orthogonal or pairwise
v-comparable. The Helly property for trees yields a vertex v lying in the support of
each [Vi ]; let V v

i ∈Sv represent [Vi ]. Since edge-hieromorphisms preserve nesting,
orthogonality, and transversality, c ≤ χv.

Any pairwise-orthogonal set in S either has cardinality ≤ 1 or contains at most
one element that is not a ∼-class, so the bound on pairwise-orthogonal sets is
maxv χv + 1.

Hence it suffices to bound v-chains in S. Any v-chain V1 v V2 v · · · v Vk has
the property that, for some 0≤ m ≤ k, the first m elements are ∼-classes, and the
remaining elements lie in {T } ∪

⋃
η Kη. Hence it suffices to show that any v-chain
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in
⋃
η≥0 Kη has length at most χ . But by definition, any such chain has the form

K⊥0 ([W0])A K⊥1 ([W0], [W1])A · · ·A K⊥η ([W0], . . . , [Wη−1]),

where the [Wi ] are pairwise orthogonal. Hence η ≤ maxv χv ≤ (χ − 1)/2, as
required. This also proves the final assertion. �

Definition 8.14 (favorite representative, hyperbolic spaces associated to elements
of S). Let CT = T . For each ∼-class [W ], choose a favorite vertex v of T[W ] and
let Wv ∈SWv

be the favorite representative of [W ]. Let C[W ] = CWv. Note that
each C[W ] is δ-hyperbolic, where δ is the uniform hyperbolicity constant for T .

Finally, for each K⊥ ∈
⋃
η Kη, let CK⊥ be a single point.

Definition 8.15 (gates in vertex spaces). For each vertex v of T , define a gate map
gv :X →Xv as follows. Let x ∈Xu for some vertex u of T . We define gv(x) induc-
tively on dT (u, v). If u = v, then set gv(x)= x . Otherwise, u = e− for some edge e
of T so that dT (e+, v)= dT (u, v)−1. Then set gv(x)= gv(φe+(φ

−1
e− (gφe− (Xe)(x)))).

We also have a map βVv : X → CVv, defined by βVv (x) = πVv (gv(x)). (Here,
gφe− (Xe) : Xe− = Xu→ φe−(Xe) is the usual gate map to a hierarchically quasi-
convex subspace, described in Definition 5.4, and φ−1

e± is a quasi-inverse for the
edge-hieromorphism.)

Lemma 8.16. There exists K , depending only on E and ξ , such that the following
holds. Let e, f be edges of T and v a vertex so that e−= f −= v. Suppose for some
V ∈Sv that there exist x, y ∈ φe−(Xe)⊆ Xv with dV (gφ f− (X f )(x), gφ f− (X f )(y)) >
10K . Then V ∈ φ♦e−(Se)∩φ

♦

f −(S f ).

Proof. Let Ye = φe−(Xe) and let Y f = φ f −(X f ); these spaces are uniformly
hierarchically quasiconvex in Xv . Moreover, by fullness of the edge-hieromorphisms,
we can choose K ≥ 100E so that the map πV : Ye→ CV is K -coarsely surjective
for each V ∈ φ♦e−(Se), and likewise for φ♦f −(S f ) and Yv. If V ∈Sv −φ

♦

f −(S f ),
then πV is K -coarsely constant on Y f , by the distance formula, since X f is quasi-
isometrically embedded. Likewise, πV is coarsely constant on Ye if V 6∈ φ♦e−(Se).
(This also follows from consistency when V is transverse to some unbounded
element of φ♦e−(Se) and from consistency and bounded geodesic image otherwise.)

Suppose that there exists V ∈Sv such that dV (gφ f− (X f )(x), gφ f− (X f )(y)) > 10K .
Since gφ f− (X f )(x), gφ f− (X f )(y) ∈ X f , we therefore have that V ∈ φ♦f −(S f ). On the
other hand, the definition of gates implies that dV (x, y) > 8K , so V ∈ φ♦e−(Se). �

Lemma 8.17. There exists a constant K ′ such that the following holds. Let e, f
be edges of T and suppose that there do not exist Ve ∈Se, V f ∈S f for which
φ
♦

e−(Ve)∼ φ
♦

f −(V f ). Then ge−(X f ) has diameter at most K ′. In particular, the
conclusion holds if dT (e, f ) > n, where n bounds the diameter of the supports.
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Xe

X f

Xb−

Xb

Figure 4. Schematic of the subset of X near Xb− .

Proof. The second assertion follows immediately from the first in light of how n
was chosen.

We now prove the first assertion by induction on the number k of vertices on the
geodesic in T from e to f . The base case, k = 1, follows from Lemma 8.16.

For k ≥ 1, let v0, v1, . . . , vk be the vertices on a geodesic from e to f , in the
obvious order. Let b be the edge joining vk−1 to vk , with b− = vk .

It follows from the definition of gates that ge−(X f ) has diameter (coarsely)
bounded above by that of gφb− (Xb)(X f ) and that of ge−(Xb). Hence suppose that
diam(gφb− (Xb)(X f )) > 10K and diam(ge−(Xb)) > 10K . Then, by induction and
Lemma 8.16, we see that there exists Ve ∈ Se, V f ∈ S f for which φ♦e−(Ve) ∼

φ
♦

f −(V f ), a contradiction. �

Lemma 8.18. The map gv : X → Xv is coarsely Lipschitz, with constants indepen-
dent of v.

Proof. Let x, y ∈ X . If the projections of x, y to T lie in the ball of radius 2n+ 1
about v, then this follows since gv is the composition of a bounded number of
maps, each of which is uniformly coarsely Lipschitz by Lemma 5.5. Otherwise, by
Remark 8.4, it suffices to consider x, y with dX (x, y)≤ C , where C depends only
on the metric d. In this case, let vx , vy be the vertices in T to which x, y project.
Let v′ be the median in T of v, vx , vy . Observe that there is a uniform bound on
dT (vx , v

′) and dT (vy, v
′), so it suffices to bound dv(gv(gv′(x)), gv(gv′(y))). Either

dT (v, v
′)≤ 2n+1, and we are done, or Lemma 8.17 gives the desired bound, since

equivalence classes have support of diameter at most n. �

Definition 8.19 (projections). For each [W ] ∈ S, define the projection π[W ] :
X → C[W ] by π[W ](x)= βWv

(x), where Wv is the favorite representative of [W ].
Note that these projections take points to uniformly bounded sets, since the collection
of vertex spaces is uniformly hierarchically hyperbolic. Define πT : X → T to be
the usual projection to T . Finally, for each K⊥ ∈

⋃
η Kη, just let π⊥K : X → CK⊥

be a constant map.

Lemma 8.20 (comparison maps). There exists a uniform constant ξ ≥ 1 such that
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for all Wv ∈ Sv,Ww ∈ Sw with Wv ∼ Ww, there exists a (ξ, ξ)-quasi-isometry
c :Wv→Ww such that c ◦βv = βw up to uniformly bounded error.

Definition 8.21. A map c as given by Lemma 8.20 is called a comparison map.

Proof of Lemma 8.20. We first clarify the situation by stating some consequences of
the definitions. Let e+, e− be vertices of T joined by an edge e. Suppose that there
exists W+ ∈Se+,W− ∈Se− such that W+∼W−, so that there exists W ∈Se with
π(φe±)(W )=W±. Then the following diagram coarsely commutes (with uniform
constants):

X

Xe− Xe+

CW− Xe CW+

CW

�
�	

ge− @
@R

ge+

@
@R?

πW− �
�	 ?

πW−

@
@R

@
@I

�
��

?
πW �
�	@

@I
�
��

where Xe→ Xe± is the uniform quasi-isometry φe± , while Xe±→ Xe is the compo-
sition of a quasi-inverse for φe± with the gate map Xe±→ φe±(Xe), and the maps
CW ↔ CW± are the quasi-isometries implicit in the edge hieromorphism or their
quasi-inverses. The proof essentially amounts to chaining together a sequence of
these diagrams as e varies among the edges of a geodesic from v to w; an important
ingredient is played by the fact that such a geodesic has length at most n.

Let v= v0, v1, . . . , vm, vm+1=w be the geodesic sequence in T from v to w and
let ei be the edge joining vi to vi+1. For each i , choose Wi ∈Sei and W±i ∈Sei

±

such that (say) W−0 = Wv and W+m = Ww and such that φ♦
ei
±

(Wi )=W±i for all i .
For each i , let q±i : CWi → CW±i be qi = φ

∗

ei
±

(Wi ), which is the (ξ ′, ξ ′)-quasi-
isometry packaged in the edge-hieromorphism, and let q̄±i be a quasi-inverse; the
constant ξ ′ is uniform by hypothesis, and m ≤ n since T has bounded supports.
The hypotheses on the edge-hieromorphisms ensure that the W±i are uniquely
determined by Wv,Ww, and we define c by

c= qεm
m q̄ε

′
m

m · · · q
ε1
1 q̄

ε′1
1 ,

where εi , ε
′

i ∈ {±} depend on the orientation of ei , and ε′i =+ if and only if εi =−.
This is a (ξ, ξ)-quasi-isometry, where ξ = ξ(ξ ′n).

If v = w, then c is the identity and c ◦ βv = βv. Let d ≥ 1 = dT (v,w) and
let w′ be the penultimate vertex on the geodesic of T from v to w. Let c′ :

CWv → CWw′ be a comparison map, so that, by induction, there exists λ′ ≥ 0
so that dCWw′

(c′ ◦βv(x), βw′(x))≤ λ′ for all x ∈X . Let c′′ = q̄+k q−k : CWw′→ CWw



316 JASON BEHRSTOCK, MARK HAGEN AND ALESSANDRO SISTO

be the (ξ ′, ξ ′)-quasi-isometry packaged in the edge-hieromorphism, so that the
following diagram coarsely commutes:

X

Xv Xw′ Xw

CWv CWw′ CWw

�
��+

gv

?
gw′
Q
QQs
gw

-
gw′

?
πWv

-
gw

?
πW

w′ ?
πWw

-
c′

-
c′′

Since c = c′′ ◦ c′ and the constants implicit in the coarse commutativity of the
diagram depend only on the constants of the hieromorphism and on d ≤ n, the
claim follows. �

Lemma 8.22. There exists K such that each π[W ] is (K , K )-coarsely Lipschitz.

Proof. For each vertex v of T and each V ∈Sv, the projection πV : Xv→ CV is
uniformly coarsely Lipschitz, by definition. By Lemma 8.18, each gate map gv :

X→Xv is uniformly coarsely Lipschitz. The lemma follows since π[W ]= πWv
◦gv ,

where v is the favorite vertex carrying the favorite representative Wv of [W ]. �

Definition 8.23 (projections between hyperbolic spaces). If [V ] v [W ], then
choose vertices v, v′, w ∈ V so that Vv,Ww are respectively the favorite repre-
sentatives of [V ], [W ], while Vv′,Wv′ are respectively representatives of [V ], [W ]
with Vv′,Wv′ ∈Sv′ and Vv′ vWv′ . Let cV : CVv′→ CVv and cW : CWv′→ CWw be
comparison maps. Then define

ρ
[V ]
[W ] = cW (ρ

Vv′
Wv′
),

which is a uniformly bounded set, and define ρ[W ]
[V ] : C[W ] → C[V ] by

ρ
[W ]
[V ] = cV ◦ ρ

Wv′

Vv′
◦ c̄W ,

where c̄W is a quasi-inverse of cW and ρWv′

Vv′
: CWv′ → CVv′ is the map provided

by Definition 1.1.(2). Similarly, if [V ] t [W ], and there exists w ∈ T so that Sw

contains representatives Vw,Ww of [V ], [W ], then let

ρ
[V ]
[W ] = cW (ρ

Vw
Ww
).

Otherwise, choose a closest pair v,w so that Sv (respectively, Sw) contains a
representative of [V ] (respectively, [W ]). Let e be the first edge of the geodesic in
T joining v to w, so v = e− (say). Let S be the v-maximal element of Se, and let

ρ
[W ]
[V ] = cV

(
ρ
φ
♦

e−
(S)

Vv

)
.

This is well-defined by hypothesis (4).
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For each ∼-class [W ], let ρ[W ]T be the support of [W ] (a uniformly bounded set
since T has bounded supports). Define ρT

[W ] : T → CW as follows: given v ∈ T
not in the support of [W ], let e be the unique edge with e− (say) separating v from
the support of [W ]. Let S ∈Se be v-maximal. Then

ρT
[W ](v)= ρ

[φ
♦

e−
(S)]

[W ] .

If v is in the support of [W ], then let ρT
[W ](v) be chosen arbitrarily.

Finally, let K⊥,K⊥′ ∈
⋃
η Kη and let [W ] be a ∼-class. If K⊥ t K⊥′, then ρK⊥′

K⊥
is the single point CK⊥. If K⊥ v K⊥′, then ρK⊥′

K⊥ is a constant map and ρK⊥

K⊥′
is the

obvious single point. We never have K⊥ v [W ]. If [W ] v K⊥, then, again, ρ[W ]K⊥ is
the obvious single point, and we can define ρK⊥

[W ] : CK⊥→ C[W ] to be an arbitrary
constant map. Finally, ρT

K⊥ : T → CK⊥ is the constant map, and ρK⊥
T is the bounded

set defined as follows. By definition, there is a unique pairwise orthogonal set
[W1], . . . , [Wη] so that K⊥ = K⊥η ([W1], . . . , [Wη]). By the proof of Lemma 8.13,
the supports of the various [Wi ] all intersect in a subtree of T , which necessarily has
diameter at most n, by the bounded supports hypothesis; we take this intersection
to be ρK⊥

T .

We are now ready to complete the proof of the combination theorem.

Proof of Theorem 8.6. We claim that (X (T ),S) is hierarchically hyperbolic. We
take the nesting, orthogonality, and transversality relations for a tree of spaces given
by Definitions 8.7 and 8.11. In Lemmas 8.9, 8.10, and Remark 8.12, it is shown that
these relations satisfy all of the conditions (2) and (3) of Definition 1.1 not involving
the projections. Moreover, the complexity of (X (T ),S) is finite, by Lemma 8.13,
verifying Definition 1.1.(5). The set of δ-hyperbolic spaces {CA : A ∈ S} is
provided by Definition 8.14, while the projections π[W ] : X → C[W ] required
by Definition 1.1.(1) are defined in Definition 8.19 and are uniformly coarsely
Lipschitz by Lemma 8.22. Since π[W ](X ) uniformly coarsely coincides with the
image of an appropriately chosen vertex space Xv , it is quasiconvex since πWv

(Xv)
is uniformly quasiconvex by Definition 1.1.(1). The projections ρ[V ]

[W ] when [V ], [W ]
are nonorthogonal are described in Definition 8.23. To complete the proof, it thus
suffices to verify the consistency inequalities (Definition 1.1.(4)), the bounded
geodesic image axiom (Definition 1.1.(7)), the large link axiom (Definition 1.1.(6)),
partial realization (Definition 1.1.(8)), and uniqueness (Definition 1.1.(9)).

Consistency. Any consistency inequalities involving elements of
⋃
η Kη hold

trivially since in that case, at least one of the two associated hyperbolic spaces in
question is a point. Suppose that [U ] t [V ] or [U ] v [V ] and let x ∈ X . Choose
representatives Uu ∈Su, Vu ∈Sv of [U ], [V ] so that dT (u, v) realizes the distance
between the supports of [U ], [V ]. By composing the relevant maps in the remainder
of the argument with comparison maps, we can assume that Uu, Vv are favorite
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representatives. Without loss of generality, there exists a vertex w ∈ T so that
x ∈ Xw. If u = v, then consistency follows since it holds in each vertex space, so
assume that u, v have disjoint supports and in particular [U ] t [V ].

If w 6∈ [u, v], then (say) u separates w from v. Then π[V ](x)= πVv (gv(x)). Let e
be the edge of the geodesic [u, v] emanating from u, so that ρ[V ]

[U ] = ρ
S
Uu

, where S is
the image in Su of the v-maximal element of Se. If

dCUu (gu(x), ρS
Uu
)≤ E,

then we are done. Otherwise, by consistency in Su , we have

dCS(gu(x), ρ
Uu
S )≤ E,

from which consistency follows. Hence suppose that w ∈ [u, v]. Then without
loss of generality, there is an edge e containing v and separating w from v. As
before, projections to V factor through the v-maximal element of Se, from which
consistency follows.

We verify consistency for T, [W ] for each ∼-class [W ]. Choose x ∈ Xv. If
dT (v, T[W ])≥ n+ 1, then let e be the edge incident to T[W ] separating it from v, so
that (up to a comparison map) ρT

[W ](v)= ρ
S
W , where W ∈Se+ represents W , and

e+ ∈ T[W ], and S is the image in Se+ of the v-maximal element of Se. (Note that
W t S by hypothesis (4) of the theorem and the choice of e). On the other hand (up
to a comparison map) π[W ](x)= πW (ge+(x))� πW (ge+(Xv))� πW (FS)= ρ

S
W , as

desired. (The final coarse equality holds by hypothesis (4).)
Finally, suppose that [U ] v [V ] and that either [V ] Ĺ [W ] or [V ] t [W ] and
[U ] 6⊥ [W ]. We claim that d[W ](ρ

[U ]
[W ], ρ

[V ]
[W ]) is uniformly bounded. By definition,

T[U ] ∩ T[V ] 6= ∅ and we fix representatives Uu ∈ Su, Vu ∈ Su of [U ], [V ] with
Uu v Vu .

Next, suppose that T[V ] ∩ T[W ] 6=∅ and T[U ] ∩ T[W ] 6=∅, so that we can choose
vertices v,w of T and representatives Vw,Ww ∈ Sw so that Vw v Ww or Vw t
Ww according to whether [V ] v [W ] or [V ] t [W ], and choose representatives
Uv,Wv ∈ Sv of [U ], [W ] so that Uv v Wv or Uv t Wv according to whether
[U ] v [W ] or [U ]t [W ]. Let m ∈ T be the median of u, v, w. Since u, w lie in the
support of [U ], [W ], so does m, since supports are connected. Likewise, m lies in
the support of [V ]. Let Um, Vm,Wm be the representatives of [U ], [V ], [W ] in m.
Since edge-maps are full hieromorphisms, we have Um v Vm and Um 6⊥ Wm and
either Vm vWm or Vm tWm . Hence Definition 1.1.(4) implies that dWm (ρ

Um
Wm
, ρ

Vm
Wm
)

is uniformly bounded. Since the comparison maps are uniform quasi-isometries, it
follows that d[W ](ρ

[U ]
[W ], ρ

[V ]
[W ]) is uniformly bounded, as desired.

Next, suppose that T[U ] ∩ T[W ] = ∅. Then [U ] t [W ]. If there is an edge e
separating T[W ] from T[U ] ∪ T[V ], then ρ[U ]

[W ] = ρ
[V ]
[W ] by definition. Otherwise, [V ] t

[W ] (by transitivity of v and the fact that T[U ] ∩ T[W ] = ∅) but there exist some
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v ∈ T[V ] ∩ T[W ] and representatives Vv,Wv ∈ Sv of [V ], [W ] with Vv t Wv. But
by fullness of the hieromorphism and induction on dT (u, v), we find that v ∈ T[U ],
contradicting that T[U ] ∩ T[W ] =∅.

Bounded geodesic image and large link axiom in T and
⋃
η Kη. For bounded

geodesic image, in the case where one of the two nested elements of S in question
is in

⋃
η Kη, the claim holds trivially since the associated hyperbolic space has

diameter 0 and the associated map between hyperbolic spaces has either domain or
codomain a single point.

Let γ be a geodesic in T and let [W ] be a∼-class so that dT (γ, ρ
[W ]
T ) > 1, which

is to say that γ does not contain vertices in the support of [W ]. Let e be the terminal
edge of the geodesic joining γ to the support of [W ]. Then for all u ∈ γ , we have by
definition that ρT

[W ](u)= ρ
[S]
[W ] for some fixed ∼-class [S]. This verifies the bounded

geodesic image axiom for T, [W ].
By Lemma 8.17, there exists a constant K ′′ such that if x, x ′ ∈ X respectively

project to vertices v, v′, then any [W ] ∈S−{T } with d[W ](x, x ′)≥ K ′′ is supported
on a vertex v[W ] on the geodesic [v, v′] and is hence nested into [SvW ], where SvW is
maximal in Sv[W ] . Indeed, choose w in the support of [W ]. Then either d[W ](x, x ′)
is smaller than some specified constant, or dXw(gw(x), gw(x

′) > K ′. Thus gXw(Xm)

has diameter at least K ′, where m is the median of v, v′, w. Hence m lies in the
support of [W ], and m ∈ [v, v′], and [W ] v [S], where S is v-maximal in Sm .
Finally, for each such SvW , it is clear that dT (x, ρ

[SvW ]

T )≤ dT (x, x ′), verifying the
conclusion of the large link axiom for T .

Finally, we have to check that if K⊥ = K⊥([W1], . . . , [Wη]) and x, y ∈ X , then
there exist a uniformly bounded number of elements [Uj ] so that for any [V ] vK⊥

with d[V ](x, y)≥ E , the class [V ] is nested into some Uj . We have shown above
that any such [V ] is nested into the v-maximal Sv ∈Sv for some v on the geodesic
of T between πT (x) and πT (y). Now, since [V ] vK⊥, we have [V ]⊥[Wi ] for all i ,
so that the support of [V ] uniformly coarsely coincides with the support of [Wi ] for
each i . Hence v must be among the boundedly many vertices on [πT (x), πT (y)] that
lie in the intersection of the supports of the [Wi ]. Thus we can take our set of Uj to be
the set of such Sv , which has uniformly bounded cardinality (bounded in terms of n).

Bounded geodesic image and large link axiom in W @ T . Let [W ] be non-v-
maximal, let [V ] v [W ], and let γ be a geodesic in C[W ]. Then γ is a geodesic
in CWw, by definition, where w is the favorite vertex of [W ] with corresponding
representative Ww. Let Vw be the representative of [V ] supported on w, so that
ρ
[V ]
[W ] = ρ

Vw
Ww

, so that γ avoids the E-neighborhood of ρ[V ]
[W ] exactly when it avoids

the E-neighborhood of ρVw
Ww

. The bounded geodesic image axiom now follows
from bounded geodesic image in Sw, although the constant E has been changed
according to the quasi-isometry constant of comparison maps.
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Now suppose x, x ′ ∈ Xv,Xv′ and choose w to be the favorite vertex in the
support of [W ]. Suppose for some [V ] v [W ] that d[V ](x, x ′) ≥ E ′, where E ′

depends on E and the quasi-isometry constants of the edge-hieromorphisms. Then
dVw(gw(x), gw(x

′)) ≥ E , for some representative Vw ∈Sw of [V ], by our choice
of E ′. Hence, by the large link axiom in Sw, we have that Vw v Ti , where {Ti } is a
specified set of N = bdWw

(gw(x), gw(x ′))c = bd[W ](x, x ′)c elements of Sw, with
each Ti @Ww. Moreover, the large link axiom in Sw implies that

d[W ](x, ρ
[Ti ]
[W ])= dWw

(gw(x), ρ
Ti
Ww
)≤ N

for all i . This verifies the large link axiom for (X (T ),S).

Partial realization. Let [V1], . . . , [Vk] ∈S be pairwise-orthogonal, and, for each
i ≤ k, let pi ∈ C[Vi ]. For each i , let Ti ⊆ T be the induced subgraph spanned
by the vertices w such that [Vi ] has a representative in Sw. The definition of the
∼-relation implies that each Ti is connected, so by the Helly property of trees, there
exists a vertex v ∈ T such that for each i , there exists V i

v ∈Sv representing [Vi ].
Moreover, we have V i

v⊥V j
v for i 6= j , since the edge-hieromorphisms preserve the

orthogonality relation. Applying the partial realization axiom (Definition 1.1.(8))
to {p′i ∈ CV i

v }, where p′i is the image of pi under the appropriate comparison map,
yields a point x ∈ Xv such that πV i

v
(x) is coarsely equal to p′i for all i , whence

d[Vi ](x, pi ) is uniformly bounded. If [Vi ] v [W ], then W has a representative
Wv ∈Sv such that V i

v vW , whence d[W ](x, ρ
[Vi ]
W ) is uniformly bounded since x

is a partial realization point for {V i
v } in Sv. Finally, if [W ] t [Vi ], then either the

subtrees of T supporting [W ] and [Vi ] are disjoint, in which case d[W ](x, ρ
[Vi ]
[W ])

is bounded, or [W ] has a representative in Sv transverse to V i
v , in which case the

same inequality holds by our choice of x . There is nothing to check regarding
projections onto CK⊥ for K⊥ ∈

⋃
η Kη, since those spaces are single points.

It remains to consider pairwise orthogonal collections that include elements
of
⋃
η Kη. Since no two of these elements can be orthogonal, we must consider

K⊥=K⊥η ([W1], . . . , [Wη]), which is orthogonal to ∼-classes [V1], . . . , [Vk], which
themselves form an orthogonal collection. Let p be the unique point of CK⊥, and for
each i ≤ k, let pi ∈ CVi . Then the previous discussion provides a point x so that for
any i , we have π[Vi ])(x)� pi , and πT (x)� ρ

[Vi ]
T . Moreover, for any [U ] so that, for

some i , we have [U ] t [Vi ] or [Vi ] v [U ], we have π[U ](x)� ρ
[Vi ]
[U ] . We claim that

x also satisfies the conclusion of partial realization for the pairwise-orthogonal set
K⊥, [V1], . . . , [Vk]. Again, there is nothing to check regarding projections onto CK⊥

for K⊥ ∈
⋃
η Kη, since those spaces are single points, and this includes the statement

about πK⊥(x). So, it just remains to check that πT (x) uniformly coarsely coincides
with ρK⊥

T . But πT (x) coarsely coincides with ρ[Vi ]
T for any i , by the construction

of x . Since [Vi ]⊥K⊥, we have [Vi ] v [Wj ] for some j , so ρ[Vi ]
T coarsely coincides

with ρ[Wj ]

T . But ρ[Wj ]

T coarsely coincides, by definition, with ρK⊥
T , as required.
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Uniqueness of realization points. Suppose x, y ∈ X satisfy d[V ](x, y) ≤ K for
all [V ] ∈ S. Then, for each vertex v ∈ T , applying the uniqueness axiom in
Xv to gv(x), gv(y) shows that dXv (gv(x), gv(y)) ≤ ζ = ζ(K ). Indeed, other-
wise we would have dV (gv(x), gv(y)) > ξK + ξ for some V ∈ Sv, whence
d[V ](x, y) > K . There exists k ≤ K and a sequence v0, . . . , vk of vertices in
T so that x ∈ Xv0, y ∈ Xvk . For each j , let x j = gvj (x) and yj = gvj (y). Then
x = x0, y0, x1, y1, . . . , y j−1, x j , yj , . . . , xk, yk = y is a path of uniformly bounded
length joining x to y. Indeed, dXvj

(x j , yj )≤ ζ and k ≤ K by the preceding discus-
sion, while x j coarsely coincides with a point on the opposite side of an edge-space
from y j−1 by the definition of the gate of an edge-space in a vertex-space and the
fact that x j−1 and y j−1 coarsely coincide. This completes the proof. �

8A. Equivariant definition of (X (T ),S). Let T denote the tree of hierarchically
hyperbolic spaces (T , {Xv}, {Xe}, {πe±}), and let (X (T ),S) be the hierarchically
hyperbolic structure defined in the proof of Theorem 8.6. Various arbitrary choices
were made in defining the constituent hyperbolic spaces and projections in this
hierarchically hyperbolic structure, and we now insist on a specific way of making
these choices in order to describe automorphisms of (X (T ),S).

Recall that an automorphism of (X (T ),S) is determined by a bijection g :S→S

and a set of isometries g : CQ→ CgQ, for Q ∈S. Via the distance formula, this
determines a uniform quasi-isometry X (T )→ X (T ).

A bijection g :
⊔
v∈V Sv→

⊔
v∈V Sv is T -coherent if there is an induced isometry

g of the underlying tree, T , so that f g = g f , where f :
⊔
v∈V Sv→ T sends each

V ∈Sv to v, for all v ∈ V . The T -coherent bijection g is said to be T -coherent if it
also preserves the relation ∼. Noting that the composition of T -coherent bijections
is T -coherent, denote by PT the group of T -coherent bijections. For each g ∈ PT ,
there is an induced bijection g :S0

→S0.
Recall that the hierarchically hyperbolic structure (X (T ),S) was completely

determined except for the following three types of choices which were made
arbitrarily.

(1) For [V ] ∈S, the stabiliser of [V ] fixes a point in the (bounded) support tree,
which we can assume, by subdividing, to be a vertex v. This is the favorite
vertex for [V ].

(2) we chose an arbitrary favorite representative Vv ∈Sv with [V ] = [Vv]. (Note
that if, as is often the case in practice, edge-hieromorphisms Se → Sv are
injective, then Vv is the unique representative of its ∼-class that lies in Sv,
and hence our choice is uniquely determined.)

(3) For each [W ] ∈S, the point ρT
[W ](v) is chosen arbitrarily in CW , where W is

the favorite representative of [W ] and v is a vertex in the support of [W ].
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We now constrain these choices so that they are equivariant. For each PT -
orbit in S, choose a representative [V ] of that orbit, choose a favorite vertex v
in its support, and choose a favorite representative Vv ∈Sv of [V ]. Then declare
gVv ∈Sgv to be the favorite representative, and gv the favorite vertex, associated
to g[V ], for each g ∈ PT .

Recall that, for each [W ] ∈ S, we defined C[W ] to be CW , where W is the
favorite representative of [W ]. Suppose that we have specified a subgroup G ≤ PT
and, for each [W ] ∈ S and g ∈ PT , an isometry g : C[W ] → Cg[W ]. Then we
choose ρT

[W ] in such a way that ρT
g[W ] = gρT

[W ] for each [W ] ∈S and g ∈ G.

8B. Graphs of hierarchically hyperbolic groups. Recall that the finitely generated
group G is hierarchically hyperbolic if there is a hierarchically hyperbolic space
(X ,S) such that G ≤ Aut(S) and the action of G on X is metrically proper and
cobounded and the action of G on S is cofinite (this, together with the definition
of an automorphism, implies that only finitely many isometry types of hyperbolic
space are involved in the HHS structure). Endowing G with a word-metric, we see
that (G,S) is a hierarchically hyperbolic space.

If (G,S) and (G ′,S′) are hierarchically hyperbolic groups, then a homomor-
phism of hierarchically hyperbolic groups φ : (G,S)→ (G ′,S′) is a homomor-
phism φ : G→ G ′ that is also a φ-equivariant hieromorphism as in Definition 1.22.

Recall that a graph of groups G is a graph 0 = (V, E) together with a set
{Gv :v∈V } of vertex groups, a set {Ge : e∈ E} of edge groups, and monomorphisms
φ±e : Ge→ Ge± , where e± are the vertices incident to e. As usual, the total group
G of G is the quotient of (∗v∈V Gv) ∗ FE , where FE is the free group generated
by E , obtained by imposing the following relations:
• e = 1 for all e ∈ E belonging to some fixed spanning tree T of 0.

• φ+e (g)= eφ−e (g)e
−1 for e ∈ E and g ∈ Ge.

We are interested in the case where 0 is a finite graph and, for each v ∈ V, e ∈ E ,
we have sets Sv,Se so that (Gv,Sv) and (Ge,Se) are hierarchically hyperbolic
group structures for which φ±e : Ge→ Ge± is a homomorphism of hierarchically
hyperbolic groups. In this case, G is a finite graph of hierarchically hyperbolic
groups. If in addition each φ±e has hierarchically quasiconvex image, then G has
quasiconvex edge groups.

Letting 0̃ denote the Bass–Serre tree, observe that

T = G̃ = (0̃, {G ṽ}, {G ẽ}, {φ
±

ẽ })

is a tree of hierarchically hyperbolic spaces, where ṽ ranges over the vertex set
of 0̃, and each G ṽ is a conjugate in the total group G to Gv, where ṽ 7→ v under
0̃→ 0, and an analogous statement holds for edge-groups. Each φ±ẽ is conjugate
to an edge-map in G in the obvious way. We say G has bounded supports if T does.
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Corollary 8.24 (combination theorem for HHGs). Let G = (0, {Gv}, {Ge}, {φ
±
e })

be a finite graph of hierarchically hyperbolic groups, with Bass–Serre tree 0̃.
Suppose that:

(1) G has quasiconvex edge groups;

(2) each φ±e , as a hieromorphism, is full;

(3) G has bounded supports;

(4) if e is an edge of 0 and Se the v-maximal element of Se, then for all V ∈Se± ,
the elements V and φ♦e±(Se) are not orthogonal in Se± ;

(5) for each vertex v of 0, there are finitely many Gv-orbits of subsets U ⊂Sv for
which the elements of U are pairwise-orthogonal;

(6) there exists K ≥ 0 such that for all vertices v of 0̃ and edges e incident to v, we
have dHaus(φv(Ge)), F

φ
♦
v (Se)
×{?})≤ K , where Se ∈Se is the unique maximal

element and ? ∈ E
φ
♦
v (Se)

.

Then the total group G of G is a hierarchically hyperbolic group.

Remark 8.25. We have added hypothesis (5) because it is exactly what’s required.
In fact, it should follow from a stronger but more natural condition, namely that
for each V ∈ Sv, the stabilizer in Gv of the standard product region P V acts
cocompactly on P V . This holds, for example, in the mapping class group. On the
other hand, this stronger condition it is not a consequence of the definition of an
HHG since, for example, one can put exotic HHG structures on a free group where
this fails.

Proof of Corollary 8.24. By Theorem 8.6, (G,S) is a hierarchically hyperbolic
space. Observe that G ≤ PG , since G acts on the Bass–Serre tree 0̃, and this
action is induced by an action on

⋃
v∈V Sv preserving the ∼-relation. Hence

the hierarchically hyperbolic structure (G,S) can be chosen according to the
constraints in Section 8A, whence it is easily checked that G acts on S0 by HHS
automorphisms. Moreover, for any [V ], there are finitely many StabG([V ])-orbits
of ∼-classes nested in [V ].

The action on S0 is cofinite since each Gv is a hierarchically hyperbolic group.
Moreover, since G preserves nesting and orthogonality in S0, we have an induced

action of G on
⋃
η Kη defined by gK⊥([W1], . . . , [Wη])=K⊥([gW1], . . . , [gWn]).

We must show that this action (and hence the action of G on S obtained by
combining this with the action on S0) is cofinite.

Since each element of Kn corresponds to a n-element pairwise-orthogonal set
in S0, and this correspondence is injective, it suffices to show that there are only
finitely many G-orbits of such sets. This follows from hypothesis (5).

Finally, the maps of the form πK⊥ : G → CK⊥ and ρ∗K⊥ obviously satisfy the
conditions required of an action by HHS automorphisms, since they are constant
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maps. Finally, for all K⊥ ∈
⋃
η Kη and [W ], and g ∈ G, we can choose the arbi-

trary constant map ρK⊥
[W ] so that g(ρK⊥

[W ])= ρ
gK⊥
g[W ], where g : C[W ] → Cg[W ] is the

isometry from the automorphism action on S0. The same holds with W replaced
by T , since ρK⊥

T was defined to be an intersection of support trees associated to K⊥,
and ρgK⊥

T is, by the definition of the G-action on
⋃
η Kη and the G-equivariance of

the assignment of each∼-class to its support tree, the intersection of the g-translates
of these support trees, i.e., gρK⊥

T . This completes the proof. �

Remark 8.26 (examples where the combination theorem does not apply). Examples
where one cannot apply Theorem 8.6 or Corollary 8.24 are likely to yield examples
of groups that are not hierarchically hyperbolic groups, or even hierarchically
hyperbolic spaces.

(1) Let G be a finite graph of groups with Z2 vertex groups and Z edge groups,
i.e., a tubular group. Wise [2014] completely characterized the tubular groups
that act freely on CAT(0) cube complexes, and also characterized the (rare)
tubular groups that admit cocompact such actions; Woodhouse [2016] gave a
necessary and sufficient condition for the particular cube complex constructed
in [Wise 2014] to be finite-dimensional. These results suggest that there is
little hope of producing hierarchically hyperbolic structures for tubular groups
via cubulation, except in particularly simple cases.

This is because the obstruction to cocompact cubulation is very similar to the
obstruction to building a hierarchically hyperbolic structure using Theorem 8.6.
Indeed, if some vertex-group Gv

∼=Z2 has more than two independent incident
edge-groups, then, if G satisfied the hypotheses of Theorem 8.6, the hierar-
chically hyperbolic structure on Gv would include three pairwise-orthogonal
unbounded elements, contradicting partial realization. This shows that such a
tubular group does not admit a hierarchically hyperbolic structure by virtue of
the obvious splitting, and in fact shows that there is no hierarchically hyper-
bolic structure in which Gv and the incident edge-groups are hierarchically
quasiconvex.

(2) Let G = F oφ Z, where F is a finite-rank free group and φ : F → F is an
automorphism. When F is atoroidal, G is a hierarchically hyperbolic group
simply by virtue of being hyperbolic [Bestvina and Feighn 1992; Brinkmann
2000]. There is also a more refined hierarchically hyperbolic structure in this
case, in which all of the hyperbolic spaces involved are quasitrees. Indeed, by
combining results in [Hagen and Wise 2015] and [Agol 2013], one finds that
G acts freely, cocompactly, and hence virtually co-specially on a CAT(0) cube
complex, which therefore contains a G-invariant factor system in the sense
of [Behrstock et al. 2017b] and is hence a hierarchically hyperbolic group;
the construction in [Behrstock et al. 2017b] ensures that the hierarchically
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hyperbolic structure for such cube complexes always uses a collection of
hyperbolic spaces uniformly quasi-isometric to trees. However, the situation
is presumably quite different when G is not hyperbolic. In this case, it seems
that G is rarely hierarchically hyperbolic.

8C. Products. In this short section, we briefly describe a hierarchically hyperbolic
structure on products of hierarchically hyperbolic spaces.

Proposition 8.27 (product HHS). Let (X0,S0) and (X1,S1) be hierarchically
hyperbolic spaces. Then X = X0×X1 admits a hierarchically hyperbolic structure
(X ,S) such that for each of i ∈ {0, 1} the inclusion map Xi → X induces a
quasiconvex hieromorphism.

Proof. Let (Xi ,Si ) be hierarchically hyperbolic spaces for i ∈ {0, 1}. Let S
be a hierarchically hyperbolic structure consisting of the disjoint union of S0

and S1 (together with their intrinsic hyperbolic spaces, projections, and nesting,
orthogonality, and transversality relations), along with the following domains whose
associated hyperbolic spaces are points: S, into which everything will be nested;
Ui , for i ∈ {0, 1}, into which everything in Si is nested; for each U ∈Si a domain
VU , with |CVU | = 1, into which is nested everything in Si+1 and everything in
Si orthogonal to U . The elements VU are all transverse to U0 and U1. Given
U,U ′, the elements VU , VU ′ are transverse unless U vU ′, in which case VU v VU ′ .
Projections πU :X0×X1→U ∈S are defined in the obvious way when U 6∈S0∪S1;
otherwise, they are the compositions of the existing projections with projection to
the relevant factor. Projections of the form ρU

V are either defined already, uniquely
determined, or are chosen to coincide with the projection of some fixed basepoint
(when V ∈S0∪S1 and U is not). It is easy to check that this gives a hierarchically
hyperbolic structure on X1×X2.

The hieromorphisms (Xi ,Si )→ (X ,S) are inclusions on Xi and S; for each
U ∈ Si , the map Si 3 CU → CU ∈ S is the identity. It follows immediately
from the definitions that the diagrams from Definition 1.20 coarsely commute, so
that these maps are indeed hieromorphisms. Hierarchical quasiconvexity likewise
follows from the definition. �

Product HHS will be used in defining hierarchically hyperbolic structures on
graph manifolds in Section 10. The next result follows directly from the proof of
the previous proposition.

Corollary 8.28. Let G0 and G1 be hierarchically hyperbolic groups. Then G0×G1

is a hierarchically hyperbolic group.

9. Hyperbolicity relative to HHGs

Relatively hyperbolic groups possess natural hierarchically hyperbolic structures:
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Theorem 9.1 (hyperbolicity relative to HHGs). Let the group G be hyperbolic
relative to a finite collection P of peripheral subgroups. If each P ∈ P is a hierar-
chically hyperbolic space, then G is a hierarchically hyperbolic space. Further, if
each P ∈ P is a hierarchically hyperbolic group, then so is G.

Proof. We prove the statement about hierarchically hyperbolic groups; the statement
about spaces follows a fortiori.

For each P ∈ P , let (P,SP) be a hierarchically hyperbolic group structure. For
convenience, assume that the P ∈ P are pairwise nonconjugate (this will avoid
conflicting hierarchically hyperbolic structures). For each P and each left coset g P ,
let Sg P be a copy of SP (with associated hyperbolic spaces and projections), so
that there is a hieromorphism (P,SP)→ (g P,Sg P), equivariant with respect to
the conjugation isomorphism P→ Pg.

Let Ĝ be the usual hyperbolic space formed from G by coning off each left coset
of each P ∈ P . Let S = {Ĝ} ∪

⊔
g P∈GP Sg P . The nesting, orthogonality, and

transversality relations on each Sg P are as defined above; if U, V ∈Sg P ,Sg′P ′ and
g P 6= g′P ′, then declare U t V . Finally, for all U ∈S, let U v Ĝ. The hyperbolic
space CĜ is Ĝ, while the hyperbolic space CU associated to each U ∈Sg P was
defined above.

The projections are defined as follows: πĜ : G → Ĝ is the inclusion, which
is coarsely surjective and hence has quasiconvex image. For each U ∈ Sg P , let
gg P : G→ g P be the closest-point projection onto g P and let πU = πU ◦ gg P , to
extend the domain of πU from g P to G. Since each πU was coarsely Lipschitz on
U with quasiconvex image, and the closest-point projection is uniformly coarsely
Lipschitz, the projection πU is uniformly coarsely Lipschitz and has quasiconvex
image. For each U, V ∈Sg P , the coarse maps ρV

U and ρU
V were already defined. If

U ∈Sg P and V ∈Sg′P ′ , then ρU
V = πV (gg′P ′(g P)), which is a uniformly bounded

set (here we use relative hyperbolicity, not just the weak relative hyperbolicity that is
all we needed so far). Finally, for U 6= Ĝ, we define ρU

Ĝ
to be the cone-point over the

unique g P with U ∈Sg P , and ρĜ
U : Ĝ→ CU is defined as follows: for x ∈ G, let

ρĜ
U (x)= πU (x). If x ∈ Ĝ is a cone-point over g′P ′ 6= g P , let ρĜ

U (x)= ρ
Sg′P ′

U , where
Sg′P ′ ∈Sg′P ′ is v-maximal. The cone-point over g P may be sent anywhere in U .

By construction, to verify that (G,S) is a hierarchically hyperbolic group struc-
ture, it suffices to verify that it satisfies the remaining axioms for a hierarchically
hyperbolic space given in Definition 1.1, since the additional G-equivariance con-
ditions hold by construction. Specifically, it remains to verify consistency, bounded
geodesic image and large links, partial realization, and uniqueness.

Consistency. The nested consistency inequality holds automatically within each
Sg P , so it remains to verify it only for U ∈ Sg P versus Ĝ, but this follows
directly from the definition: if x ∈ G is far in Ĝ from the cone-point over g P , then
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ρĜ
U (x)= πU (x), by definition. To verify the transverse inequality, it suffices to

consider U ∈Sg P , V ∈Sg′P ′ with g P 6= g′P ′. Let x ∈G and let z=gg′P ′(x). Then,
if dU (x, z) is sufficiently large, then dg P(x, z) is correspondingly large, so that by
Lemma 1.15 of [Sisto 2013], gg′P ′(x) and gg′P ′(g P) coarsely coincide, as desired.

The last part of the consistency axiom, Definition 1.1.(4), holds as follows. If
U v V , then either U = V , and there is nothing to prove. Otherwise, if U v V
and either V Ĺ W or W t V , then either U, V ∈Sg P for some g, P , or U ∈Sg P

and V = Ĝ. The latter situation precludes the existence of W , so we must be in the
former situation. If W ∈Sg P , we are done since the axiom holds in Sg P . If W = Ĝ,
then U, V both project to the cone-point over g P , so ρU

W = ρ
V
W . In the remaining

case, W ∈Sg′P ′ for some g′P ′ 6= g P , in which case ρU
W , ρ

V
W both coincide with

πW (gg′P ′(g P)).

Bounded geodesic image. Bounded geodesic image holds within each Sg P by
construction, so it suffices to consider the case of U ∈Sg P nested into Ĝ. Let γ̂
be a geodesic in Ĝ avoiding g P and the cone on g P . Lemma 1.15 of [Sisto 2013]
ensures that any lift of γ̂ has uniformly bounded projection on g P , so ρĜ

U ◦ γ̂ is
uniformly bounded.

Large links. The large link axiom (Definition 1.1.(6)) can be seen to hold in
(G,S) by combining the large link axiom in each g P with malnormality of P and
Lemma 1.15 of [Sisto 2013].

Partial realization. This follows immediately from partial realization within each
Sg P and the fact that no new orthogonality was introduced in defining (G,S),
together with the definition of Ĝ and the definition of projection between elements
of Sg P and Sg′P ′ when g P 6= g′P ′. More precisely, if U ∈Sg P and p ∈ CU , then
by partial realization within g P , there exists x ∈ g P so that dU (x, p)≤ α for some
fixed constant α and dV (x, ρU

V )≤α for all V ∈Sg P with U v V or U t V . Observe
that dĜ(x, ρ

U
Ĝ
)= 1, since x ∈ g P and ρU

Ĝ
is the cone-point over g P . Finally, if

g′P ′ 6= g P and V ∈Sg′P ′ , then dV (x, ρU
V )=dV (πV (gg′P ′(x)), πV (gg′P ′(g P)))=0

since x ∈ g P .

Uniqueness. If x, y are uniformly close in Ĝ, then either they are uniformly close
in G, or they are uniformly close to a common cone-point, over some g P , whence
the claim follows from the uniqueness axiom in Sg P . �

Remark 9.2. Sisto [2013] established a characterization of relative hyperbolicity
in terms of projections and, further, proved that, like for mapping class groups,
there was a natural way to compute distances in relatively hyperbolic groups from
certain related spaces, namely: if (G,P) is relatively hyperbolic, then distances in
G are coarsely obtained by summing the corresponding distance in the coned-off
Cayley graph Ĝ together with the distances between projections in the various
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P ∈P and their cosets. We recover a new proof of Sisto’s formula as a consequence
of Theorem 9.1 and Theorem 4.5.

Theorem 9.1 will be used in our analysis of 3-manifold groups in Section 10.
However, there is a more general statement in the context of metrically relatively
hyperbolic spaces (e.g., what Drut,u and Sapir [2005] call asymptotically tree-graded,
or spaces that satisfy the equivalent condition on projections formulated in [Sisto
2012]). For instance, arguing exactly as in the proof of Theorem 9.1 shows that
if the space X is hyperbolic relative to a collection of uniformly hierarchically
hyperbolic spaces, then X admits a hierarchically hyperbolic structure (in which
each peripheral subspace embeds hieromorphically).

More generally, let the geodesic metric space X be hyperbolic relative to a
collection P of subspaces, and let X̂ be the hyperbolic space obtained from X by
coning off each P ∈ P . Then we can endow X with a hierarchical space structure
as follows:

• The index-set S consists of P together with an additional index S.

• For all P, Q ∈P , we have P t Q, while P Ĺ S for all P ∈P (the orthogonality
relation is empty and there is no other nesting).

• For each P ∈ P , we let CP = P .

• We declare CS = X̂ .

• The projection πS : X → X̂ is the inclusion.

• For each P ∈P , let πP :X→ P be the closest-point projection onto P (which
is surjective).

• For each P ∈ P , let ρP
S be the cone-point in X̂ associated to P .

• For each P ∈ P , let ρS
P : X̂ → P be defined by ρS

P(x) = πP(x) for x ∈ X ,
while ρS

P(x)= πP(Q) whenever x lies in the cone on Q ∈ P .

• For distinct P, Q ∈ P , let ρP
Q = πQ(P) (which is uniformly bounded since X

is hyperbolic relative to P).

The above definition yields:

Theorem 9.3. Let the geodesic metric space X be hyperbolic relative to the collec-
tion P of subspaces. Then, with S as above, we have that (X ,S) is a hierarchical
space, and is moreover relatively hierarchically hyperbolic.

Proof. By definition, for each U ∈S, we have that either U = S and CS = X̂ is
hyperbolic, or U is v-minimal. The rest of the conditions of Definition 1.1 are
verified as in the proof of Theorem 9.1. �
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10. Hierarchical hyperbolicity of 3-manifold groups

In this section we show that fundamental groups of most 3-manifolds admit hierar-
chical hyperbolic structures. More precisely, we prove:

Theorem 10.1 (which 3-manifolds are hierarchically hyperbolic). Let M be a
closed 3-manifold. Then π1(M) is a hierarchically hyperbolic space if and only
if M does not have a Sol or Nil component in its prime decomposition.

Proof. It is well known that for a closed irreducible 3-manifold N the Dehn
function of π1(N ) is linear if N is hyperbolic, cubic if N is Nil, exponential if
N is Sol, and quadratic in all other cases. Hence by Corollary 7.5, if π1(M) is a
hierarchically hyperbolic space, then M does not contain Nil or Sol manifolds in
its prime decomposition. It remains to prove the converse.

Since the fundamental group of any reducible 3-manifold is the free product of
irreducible ones, the reducible case immediately follows from the irreducible case
by Theorem 9.1.

When M is geometric and not Nil or Sol, then π1(M) is quasi-isometric to one
of the following:

• R3 is hierarchically hyperbolic by Proposition 8.27.

• H3, S3, S2
×R are (hierarchically) hyperbolic.

• H2
×R and P SL2(R): the first is hierarchically hyperbolic by Proposition 8.27,

whence the second is also since it is quasi-isometric to the first by [Rieffel
2001].

We may now assume M is not geometric. Our main step is to show that any
irreducible nongeometric graph manifold group is a hierarchically hyperbolic space.

Let M be an irreducible nongeometric graph manifold. By [Kapovich and Leeb
1998, Theorem 2.3], by replacing M by a manifold whose fundamental group is
quasi-isometric to that of M , we may assume that our manifold is a flip graph
manifold, i.e., each Seifert fibered space component is a trivial circle bundle over a
surface of genus at least 2 and each pair of adjacent Seifert fibered spaces are glued
by flipping the base and fiber directions.

Let X be the universal cover of M . The decomposition of M into geometric
components induces a decomposition of X into subspaces {Sv}, one for each vertex v
of the Bass–Serre tree T of M . Each such subspace Sv is bi-Lipschitz homeomorphic
to the product of a copy Rv of the real line with the universal cover 6v of a
hyperbolic surface with totally geodesic boundary, and there are maps φv : Sv→6v

and ψv : Sv→ Rv. Notice that 6v is hyperbolic, and in particular hierarchically
hyperbolic. However, for later purposes, we endow 6v with the hierarchically
hyperbolic structure originating from the fact that 6v is hyperbolic relative to its
boundary components, see Theorem 9.1.
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By Proposition 8.27 each Sv is a hierarchically hyperbolic space and thus we have
a tree of hierarchically hyperbolic spaces. Each edge space is a product ∂06v× Rv ,
where ∂06v is a particular boundary component of 6v determined by the adjacent
vertex. Further, since the graph manifold is flip, we also have that for any vertices
v,w of the tree, the edge-hieromorphism between Sv and Sw sends ∂06v to Rw and
Rv to ∂06w.

We now verify the hypotheses of Theorem 8.6. The first hypothesis is that there
exists k so that each edge-hieromorphism is k-hierarchically quasiconvex. This is
easily seen since the edge-hieromorphisms have the simple form described above.
The second hypothesis of Theorem 8.6, fullness of edge-hieromorphisms, also
follows immediately from the explicit description of the edges here and the simple
hierarchically hyperbolic structure of the edge spaces.

The third hypothesis of Theorem 8.6 requires that the tree has bounded supports.
We can assume that the product regions Sv are maximal in the sense that each
edge-hieromorphism sends the fiber direction Rv to ∂06w in each adjacent Sw. It
follows that the support of each ∼-class (in the language of Theorem 8.6) consists
of at most 2 vertices. The last hypothesis of Theorem 8.6 is about nonorthogonality
of maximal elements and again follows directly from the explicit hierarchically
hyperbolic structure. Moreover, the part of the hypothesis about edge-spaces
coinciding coarsely with standard product regions in vertex spaces follows from
the explicit hierarchically hyperbolic structure.

All the hypotheses of Theorem 8.6 are satisfied, so π1 M (with any word met-
ric) is a hierarchically hyperbolic space for all irreducible nongeometric graph
manifolds M .

The general case that the fundamental group of any nongeometric 3-manifold
is a hierarchically hyperbolic space now follows immediately by Theorem 9.1,
since any 3-manifold group is hyperbolic relative to its maximal graph manifold
subgroups. �

Remark 10.2 ((non)existence of HHG structures for 3–manifold groups). The proof
of Theorem 10.1 shows that for many 3-manifolds M , the group π1 M is not merely a
hierarchically hyperbolic space (when endowed with the word metric arising from a
finite generating set), but is actually a hierarchically hyperbolic group. Specifically,
if M is virtually compact special, then π1 M acts freely and cocompactly on a
CAT(0) cube complex X that is the universal cover of a compact special cube
complex. Hence X contains a π1 M-invariant factor system (see [Behrstock et al.
2017b, Section 8]) consisting of a π1 M-finite set of convex subcomplexes. This
yields a hierarchically hyperbolic structure (X ,S) where π1 M ≤ Aut(S) acts
cofinitely on S and geometrically on X , i.e., π1 M is a hierarchically hyperbolic
group.
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The situation is quite different when π1 M is not virtually compact special. Indeed,
when M is a nonpositively curved graph manifold, π1 M virtually acts freely, but
not necessarily cocompactly, on a CAT(0) cube complex X , and the quotient is
virtually special; this is a result of Liu [2013] which was also shown to hold in the
case where M has nonempty boundary by Przytycki and Wise [2014]. Moreover,
π1 M acts with finitely many orbits of hyperplanes. Hence the π1 M-invariant factor
system on X from [Behrstock et al. 2017b] yields a π1 M-equivariant HHS structure
(X ,S) with S π1 M-finite. However, this yields an HHG structure on π1 M only
if the action on X is cocompact. It was shown in [Hagen and Przytycki 2015]
that π1 M virtually acts freely and cocompactly on a CAT(0) cube complex, with
special quotient, only in the very particular situation where M is chargeless. This
essentially asks whether the construction of the hierarchically hyperbolic structure
on M̃ from the proof of Theorem 10.1 can be done π1 M-equivariantly. In general,
this is impossible: recall that we passed from M̃ to the universal cover of a flip
manifold using a (nonequivariant) quasi-isometry. Motivated by this observation
and the fact that the range of possible HHS structures on the universal cover of
a JSJ torus is very limited, we conjecture that π1 M is a hierarchically hyperbolic
group if and only if π1 M acts freely and cocompactly on a CAT(0) cube complex.

11. A new proof of the distance formula for mapping class groups

We now describe the hierarchically hyperbolic structure of mapping class groups.
In [Behrstock et al. 2017b] we gave a proof of this result using several of the main
results of [Behrstock 2006; 2012; Masur and Minsky 1999; 2000]. Here we give an
elementary proof which is independent of the Masur–Minsky “hierarchy machinery.”
One consequence of this is a new and concise proof of the celebrated Masur–
Minsky distance formula [2000, Theorem 6.12], which we obtain by combining
Theorems 4.5 and 11.1.

(1) Let S be a closed connected oriented surface of finite type and let M(S) be its
marking complex.

(2) Let S be the collection of isotopy classes of essential nonpants subsurfaces
of S, and for each U ∈S let CU be its curve complex. (We allow disconnected
subsurfaces; the curve graph of a disconnected surface is the join of the curve
graphs of its components.)

(3) The relation v is nesting, ⊥ is disjointness and t is overlapping.

(4) For each U ∈S, let πU :M(S)→ CU be the (usual) subsurface projection.
For U, V ∈S satisfying either U v V or U t V , denote ρU

V = πV (∂U ) ∈ CV ,
while for V v U let ρU

V : CU → 2CV be the subsurface projection. When U
is a component of the disconnected subsurface V , let ρU

V be the curve graph
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of U , which is a subgraph of CV of bounded diameter. In general, if U Ĺ V ,
then ρU

V is the union of the subsets ρUi
V where Ui varies over the components

of U .

Theorem 11.1. Let S be closed connected oriented surface of finite type. Then,
(M(S),S) is a hierarchically hyperbolic space, for S as above. In particular the
mapping class group MCG(S) is a hierarchically hyperbolic group.

Proof. Hyperbolicity of curve graphs is the main result of [Masur and Minsky
1999]; more recent proofs of this were found in [Aougab 2013; Bowditch 2014b;
Clay et al. 2014; Hensel et al. 2015; Przytycki and Sisto 2017], some of which are
elementary.

Axioms (1), (2), (3) and (5) are clear (an elementary exposition of the Lips-
chitz condition for subsurface projections is provided in [Masur and Minsky 2000,
Lemma 2.5], and the projections have quasiconvex image because they are coarsely
surjective). Both parts of axiom (4) can be found in [Behrstock 2006]. The nesting
part is elementary, and a short elementary proof in the overlapping case was obtained
by Leininger and can be found in [Mangahas 2010].

Axiom (7) was proven in [Masur and Minsky 2000], and an elementary proof
is available in [Webb 2015]. In fact, in the aforementioned papers it is proven
that there exists a constant C so that for any subsurface W , markings x, y and
geodesic from πW (x) to πW (y), the following holds. If V vW and V 6=W satisfies
dV (x, y) ≥ C then some curve along the given geodesic does not intersect ∂V .
This implies axiom (6), since we can take the Ti to be the complements of curves
appearing along the aforementioned geodesic.

Axiom (8) follows easily from the following statement, which clearly holds: For
any given collection of disjoint subsurfaces and curves on the given subsurfaces,
there exists a marking on S that contains the given curves as base curves (or, up
to bounded error, transversals in the case that the corresponding subsurface is an
annulus).

Axiom (9) is hence the only delicate one. We are finished modulo this last
axiom which we verify below in Proposition 11.2 (see also [Bestvina et al. 2015,
Proposition 5.11]). �

Proposition 11.2. (M(S),S) satisfies the uniqueness axiom, i.e., for each κ ≥ 0,
there exists θu = θu(κ) such that if x, y ∈M(S) satisfy dU (x, y)≤ κ for each U ∈S
then dM(S)(x, y)≤ θu .

Proof. Note that when the complexity (as measured by the quantity 3g + p− 3
where g is the genus and p the number of punctures) is less than 2 then M(S) is
hyperbolic and thus the axiom holds. We will proceed by inducting on complexity:
thus we will fix S to have complexity at least 2 and assume that all the axioms for
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a hierarchically hyperbolic space, including the uniqueness axiom, hold for each
proper subsurface of S.

Having fixed our surface S, the proof is by induction on dCS(base(x), base(y)).
If dCS(base(x), base(y)) = 0, then x and y share some nonempty multicurve

σ = c1 ∪ · · · ∪ ck . For x ′, y′ the restrictions of x, y to S − σ we have that, by
induction, dM(S−σ)(x ′, y′) is bounded in terms of κ . We then take the markings
in a geodesic in M(S− σ) from x ′ to y′ and extend these all in the same way to
obtain markings in M(S) which yield a path in M(S) from x to ŷ whose length is
bounded in terms of κ , where ŷ is the marking for which

• ŷ has the same base curves as y,

• the transversal for each ci is the same as the corresponding transversal for x ,
and

• the transversal for each curve in base(y)−{ci } is the same as the corresponding
transversal for y.

Finally, it is readily seen that dM(S)(ŷ, y) is bounded in terms of κ because the
transversals of each ci in the markings x and y are within distance κ of each other.
This completes the proof of the base case of the proposition.

Suppose now that the statement holds whenever dCS(base(x), base(y))≤ n, and
let us prove it in the case dCS(base(x), base(y)) = n + 1. Let cx ∈ base(x) and
cy ∈ base(y) satisfy dCS(cx , cy) = n + 1. Let cx = σ0, . . . , σn+1 = cy be a tight
geodesic (hence, each σi is a multicurve). Let σ be the union of σ0 and σ1. Using
the realization theorem in the subsurface S− σ we can find a marking x ′ in S− σ
whose projections onto each CU for U ⊆ S− σ coarsely coincide with πU (y). Let
x̂ be the marking for which

• base(x̂) is the union of base(x ′) and σ ,

• the transversal in x̂ of curves in base(x̂)∩base(x ′) are the same as those in x ′,

• the transversal of cx in x̂ is the same as the one in x ,

• the transversal in x̂ of a curve c in σ1 is πAc(y), where Ac is an annulus around c.

Note that dCS(base(x̂), base(y)) = n. Hence, the following claims conclude the
proof.

Claim 1. dM(S)(x, x̂) is bounded in terms of κ .

Proof. It suffices to bound dCU (x, x̂) in terms of κ for each U ⊆ S−cx . In fact, once
we do that, by induction on complexity we know that we can bound dM(S−cx )(z, ẑ),
where z, ẑ are the restrictions of x, x̂ to S−cx , whence the conclusion easily follows.

If U is contained in S−σ , then the required bound follows since πU (x̂) coarsely
coincides with πU (x ′) in this case.

If instead ∂U intersects σ1, then πU (x̂) coarsely coincides with πU (σ1).
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At this point, we only have to show that πU (σ1) coarsely coincides with πU (y),
and in order to do so we observe that we can apply the bounded geodesic image
theorem to the geodesic σ1, . . . , σn+1. In fact, σ1 intersects ∂U by hypothesis and
σi intersects ∂U for i ≥ 3 because of the following estimate that holds for any given
boundary component c of ∂U :

dC(S)(σi , c)≥ dC(S)(σi , σ0)− dC(S)(σ0, c)≥ i − 1> 1.

Lastly, σ2 intersects ∂U because of the definition of tightness: ∂U intersects σ1,
so it must intersect σ0 ∪ σ2, but, it does not intersect σ0, so it intersects σ2. �

Claim 2. There exists κ ′, depending on κ , so that for each subsurface U of S we
have dCU (x̂, y)≤ κ ′.

Proof. If σ0 intersects ∂U , then πU (x̂) coarsely coincides with πU (σ0). In turn,
πU (σ0) coarsely coincides with πU (x), which is κ-close to πU (y).

On the other hand, if U does not intersect σ , then we are done by the definition
of x ′.

Hence, we can assume that U is contained in S− σ0 and that σ1 intersects ∂U .
In particular, πU (x̂) coarsely coincides with πU (σ1). But we showed in the last
paragraph of the proof of Claim 1 that πU (σ1) coarsely coincides with πU (y), so
we are done. �

As explained above, the proofs of the above two claims complete the proof. �
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