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UNIQUENESS OF TANGENT CONES FOR BIHARMONIC MAPS
WITH ISOLATED SINGULARITIES

YOUMIN CHEN AND HAO YIN

We study the problem of uniqueness of a tangent cone for minimizing extrin-
sic biharmonic maps. Following the celebrated result of Simon, we prove
that if the target manifold is a compact analytic submanifold in R p and if
there is one tangent map whose singularity set consists of the origin only,
then this tangent map is unique.

1. Introduction

In this paper, we prove the biharmonic map version of the celebrated result of Simon
[1983]. Here we restrict ourselves to the case of extrinsic biharmonic maps. Let
B ⊂ Rm be the unit ball around the origin and N be a closed Riemannian manifold
isometrically embedded in Rp. A map u ∈W 2,2(B,Rp) into N is called a (extrinsic)
biharmonic map if and only if it is the critical point of the energy

(1) E(u)=
∫

B
|1u|2 dx .

It is called a minimizing (biharmonic) map if for any Br (x)⊂ B and W 2,2 maps v
with v ≡ u on B \ Br (x), we have

E(v)≥ E(u).

Since the pioneering work of Chang, Wang, and Yang [Chang et al. 1999], many
authors studied the regularity problem of biharmonic maps; see [Strzelecki 2003;
Wang 2004a; 2004b; 2004c; Hong and Wang 2005; Lamm and Rivière 2008].
Roughly speaking, stationary biharmonic maps are regular away from a singularity
set of codimension 4. For minimizing maps, one expects better regularity since
it was proved by Schoen and Uhlenbeck [1982] that minimizing harmonic maps
are regular away from a singularity of codimension 3. Moreover, Luckhaus [1988]
proved the compactness of minimizing harmonic maps using a lemma which was
later named after him. This compactness is crucial to the theory of singularity set
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of minimizing harmonic maps. We refer the readers to the book of Simon [1996]
for a nice presentation of this deep theory. The limit of a sequence of minimizing
biharmonic maps was studied by Scheven [2008]. Instead of proving the direct
analogue of Luckhaus lemma, the author studied the defect measure after Lin [1999].
In particular, it was shown that the limit is a stationary biharmonic map, which
implies that the singularity set of minimizing biharmonic maps is of codimension 5.
The interesting problem of whether this limit is minimizing remains open.

Thanks to the result of Scheven, we may study the tangent map at a singular
point of a minimizing biharmonic map. The problem of uniqueness of such tangent
maps is usually very difficult. Simon [1983] set up a general framework to attack
such problem under a set of assumptions. The argument has been adapted to
many different problems, for example, to minimal submanifolds [Simon 1983],
Yang–Mills fields [Yang 2003], and Einstein metrics [Colding and Minicozzi 2014;
Cheeger and Tian 1994]. To the best of our knowledge, all such generalizations are
about the isolated singularity of solutions to some second order partial differential
equation. It is the purpose of this paper to show that this argument also works in
the case of the fourth-order problem. More precisely, we prove

Theorem 1.1. Suppose N is an analytic submanifold of the Euclidean space Rp

and u : B→ N is a minimizing biharmonic map (with finite energy), where B ⊂
Rm(m ≥ 5) is the unit ball. If 0 is a singularity of u and one of the tangent maps
of u at 0 is of the form ϕ(x/|x |) for some smooth ϕ : Sm−1

→ N , then this tangent
map is the unique tangent map at 0.

Suppose that (r, θ) is the polar coordinates in B and that t =− log r . Then the
theorem claims that limt→∞ u(t) exists (and therefore is unique). As is well known,
this is related to an estimate on the speed of convergence of ∂t u to zero when
t →+∞. It is not hard to derive from the monotonicity formula (see [Scheven
2008, (2.4)] and (38)) that

(2)
∫
+∞

1
‖∂t u‖2L2(Sm−1)

<+∞.

Here Sm−1 is the unit sphere in Rm. If we can show

(3)
∫
+∞

1
‖∂t u‖L2(Sm−1) <+∞,

then we know at least u(t) converges to a unique limit in the sense of L2 norm.
However, in general, (3) does not follow from (2).

Simon [1983] observed that an infinite-dimensional version of the Lojasiewicz
inequality is helpful here. In the case of a harmonic map, u(t) is regarded as a
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family of maps from Sm−1 into N evolving by some second-order (abstract) ODE:

(4) u′′− (m− 2)u′ =∇ESm−1(v)+ R,

where u′ = ∂t u, ESm−1 is the harmonic map energy on Sm−1 and R is some small
perturbation term. A stationary point of this ODE (i.e., a solution independent
of t) is the smooth map ϕ in the assumptions of the theorem (in the harmonic map
case). With the help of the Lojasiewicz inequality, he studied the dynamics of this
second-order ODE in a small neighborhood of ϕ. More precisely, he proved [Simon
1996, Chapter 3]

(5)
(∫

+∞

t+1
‖∂t u‖2L2(Sm−1)

)2−α

≤ C
∫ t+1

t−1
‖∂t u‖2L2(Sm−1)

for any t and some α ∈ (0, 1). This amounts to (up to technical issue) an ordinary
differential inequality of h(t)=

∫
+∞

t ‖∂t u‖2L2(Sm−1)
,

h(t)2−α ≤ C(−h′(t)).

From this inequality, it is easy to derive some decay estimate that implies (3).
To generalize this argument to the biharmonic map case, we found that the

Lojasiewicz inequality is not a problem because it is a general property of analytic
functions, and the Lyapunov–Schmidt reduction works as long as the gradient of
the functional is elliptic. The difficulty is to find the correct counterpart of (5). We
will eventually prove a discrete version of ordinary differential inequality with time
delay (see (44)). Fortunately, we can still derive the decay estimate we need from it.

The paper is organized as follows. We recall some basic properties of biharmonic
maps in Section 2. In particular, we prove an improved ε-regularity lemma of
Schoen and Uhlenbeck type (see [Schoen and Uhlenbeck 1982, Proposition 4.5]). In
Section 3, we prove the Lojasiewicz inequality (following [Simon 1996]). Section 4
is the most important part of this paper, which contains the derivation of our
analogue of (5). Finally, we give the proof of Theorem 1.1 in Section 5 following
the framework of Simon [1996].

2. Preliminaries on biharmonic maps

In this section, we collect a few results, mainly PDE estimates, that are needed for
the proof of our main theorem.

We start by introducing the Euler–Lagrange equation for extrinsic biharmonic
energy E(u) (see [Wang 2004a, Proposition 2.2]),

(6) 12u =1(A(u)(∇u,∇u))+ 2∇ · 〈1u,∇(P(u))〉− 〈1(P(u)),1u〉.
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Here A is the second fundamental form of N in Rp and P(u) is the projection from
Rp to Tu N . When u is a smooth (extrinsic) biharmonic map, this is equivalent
to the statement that 12u is perpendicular to Tu N in Rp. Often in the following
discussion, this simpler form is good enough.

An improved ε-regularity. The famous ε-regularity theorem for stationary har-
monic maps requires that the (rescaled) energy is small on a ball. It has a biharmonic
map analogue as follows:

Lemma 2.1 [Wang 2004a; Struwe 2008; Scheven 2008]. There exist ε1 > 0 and
constants C(k) only depending on N such that if u is a stationary (extrinsic)
biharmonic map on Br (x)⊂ Rm(m ≥ 5) satisfying

(7) r4−m
∫

Br (x)
(|∇2u|2+ r−2

|∇u|2) dx ≤ ε1,

then
sup

Br/2(x)
r k
|∇

ku| ≤ C(k) ∀ k ∈ N.

Remark 2.2. Here and throughout the paper, Br (x) means the ball of radius r
centered at x , which is usually omitted if x = 0. Also the subscript r is omitted if
r = 1.

For minimizing harmonic maps, this result can be improved in the sense that a
smallness condition on

>
Br (x)
|u− u∗|2 dx replaces (7), where u∗ is the average of u

on Br (x) (see [Schoen and Uhlenbeck 1982, Proposition 4.5]). The improved
version plays an important role in the analysis of minimal tangent maps and
the uniqueness of tangent cones of harmonic maps. Therefore, we also need
a biharmonic map version of it.

Since the extension lemmas in [Schoen and Uhlenbeck 1982; Luckhaus 1988]
are not available for biharmonic maps, the original proof in [Schoen and Uhlenbeck
1982] does not work here. Fortunately, Scheven [2008, Theorem 1.5] proved that if
ui is a sequence of minimizing biharmonic maps with bounded total energy, then
there is a subsequence converging strongly to a stationary biharmonic map. More
precisely, we have

Lemma 2.3 [Scheven 2008, Proposition 1.5]. Suppose that ui : B2 → N is a
sequence of minimizing biharmonic maps with bounded energy. Then there is a
subsequence ui j that converges strongly to a stationary biharmonic map on B1.

Proof. Since we have assumed that N is compact, then ui are uniformly bounded
on B2. The energy bound then implies that ‖ui‖W 2,2(B3/2) is bounded, so that we can
use [Scheven 2008, Proposition 1.5] to get a subsequence converging to u strongly
in W 2,2; u is stationary because the minimizers are stationary and the property of
being stationary is preserved in strong limit. �
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We then combine Lemma 2.3 and Lemma 2.1 to get the biharmonic version of
[Schoen and Uhlenbeck 1982, Proposition 4.5].

Lemma 2.4 (biharmonic map version of [Schoen and Uhlenbeck 1982, Proposition
4.5]). For 3 > 0 fixed, there is ε2 = ε2(N ,3) > 0 such that the following holds:
Suppose that u : B2 → N is a minimizing biharmonic map with E(u) < 3 and
Br (x)⊂ B1. If

r−m
∫

Br (x)
|u− q|2 dx ≤ ε2

for some q ∈ N , then

sup
Br/4(x)

r k
|∇

ku| ≤ C(k) ∀ k ∈ N

for some C(k) > 0.

Proof. By Lemma 2.1, it suffices to show( 1
2r
)4−m

∫
Br/2(x)

|∇
2u|2+

(1
2r
)−2
|∇u|2 dx ≤ ε1.

If otherwise, we have a sequence of minimizing biharmonic maps ui : B2→ N
with E(ui ) < 3 such that for some Bri (xi )⊂ B1, we have

(8) r−m
i

∫
Bri (xi )

|ui − qi |
2 dx→ 0

and

(9)
( 1

2r2
)4−m

∫
Bri /2(x)

|∇
2ui |

2
+
( 1

2r2
)−2
|∇ui |

2 dx ≥ ε1.

Note that ri may converge to zero. Let vi (x) = ui (ri x + xi ). The monotonicity
formula (see [Wang 2004a, Lemma 5.3]) tells us that∫

B2(0)
|∇

2vi |
2
+ |∇vi |

2 dx ≤ C(3).

By Lemma 2.3, taking subsequence if necessary, vi converges to some stationary
biharmonic map v strongly in W 2,2(B1), which must be the trivial map due to (8).
Since the convergence is strong in W 2,2, we know that∫

B1(0)
|∇

2vi |
2
+ |∇vi |

2 dx→ 0,

for i sufficiently large. This is a contradiction with (9) and therefore the lemma is
proved. �
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Section of a tangent cone. Let u be the minimizing biharmonic map in Theorem 1.1.
By the assumptions of the theorem, there is some sequence ri → 0 such that u(ri x)
converges to a homogenous tangent map (which is biharmonic)

(10) ϕ̃ := ϕ
( x
|x |

)
and ϕ is a smooth map from Sm−1 to N . It follows from Lemma 2.3 and Lemma 2.1
that this convergence is in fact smooth convergence away from the origin.

Recall that in the harmonic map case, ϕ̃ is a harmonic map if and only if so
is ϕ. Here for the biharmonic maps, the situation is somewhat different and it
is the purpose of this subsection to characterize ϕ that appears as the section of
homogeneous biharmonic maps.

Let (r, θ) be the polar coordinates of Rm . A direct computation shows

12ϕ̃ =

(
∂2

∂r2 +
m−1

r
∂

∂r
+

1
r21Sm−1

)2

ϕ̃ = r−4(12
Sm−1ϕ− (2m− 8)1Sm−1ϕ).

If ϕ̃ is a biharmonic map, then 12ϕ̃ ⊥ Tϕ̃N , which is equivalent to

(11) 12
Sm−1ϕ− (2m− 8)1Sm−1ϕ ⊥ TϕN .

Instead of working out the explicit formula of (11), it suffices for our purpose to
note that it is the Euler–Lagrange equation of the energy functional

(12) F(ϕ) :=
∫

Sm−1
|1Sm−1ϕ|2+ (2m− 8)|∇Sm−1ϕ|2 dθ.

Here we write dθ for the volume element on Sm−1 and ϕ is a map from Sm−1 to N .

L2 closeness implies C5 closeness. Let ϕ be the smooth section in Theorem 1.1,
which is a smooth critical map of F . We define

OL2(σ )= {ψ : Sm−1
→ N | ‖ψ −ϕ‖L2(Sm−1) < σ }

and
OC5(σ )= {ψ : Sm−1

→ N | ‖ψ −ϕ‖C5(Sm−1) < σ }.

Let u be a smooth biharmonic map defined on B \ {0} and (t, θ) be the cylinder
coordinates. In this paper, we often regard u(t) as a family of maps from Sm−1

to N. In the proof of our main theorem, these u(t) are often close to ϕ in various
sense. The next theorem roughly says that L2-closeness (of u(t)) to ϕ on some
t-interval implies C5-closeness in a smaller t-interval.

Lemma 2.5. For any σ1 > 0, there is σ2 > 0 (depending on σ1, ϕ, and N ) such that
the following is true. Let u(t, θ) be as above. If

u(s) ∈OL2(σ2) ∀ s ∈ (t0− 2, t0+ 2),
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then

(13) u(s) ∈OC5(σ1) ∀ s ∈ (t0− 1, t0+ 1).

Moreover, for some C > 0 (depending on σ1, ϕ, and N ),

(14)
∑

k=1,2,3,4

4−k∑
j=0

|∂k
t ∇

j
Sm−1u|(s, θ)≤ C ∀ s ∈ (t0− 1, t0+ 1).

Remark 2.6. It is clear from the proof below that the lemma is still true for any
Ck neighborhood of ϕ instead of C5.

Proof. Although the lemma is stated in terms of (t, θ) coordinates, the proof is
more clearly presented in the (r, θ) coordinates. By the scaling invariance of (6),
we may assume that t0 = 2 and study (6) on B1 \ Be−4 . By abuse of notation, we
also write ϕ for the function

ϕ(r, θ)= ϕ(θ).

The assumption that u(s)∈OL2(σ2) implies that there is a constant C(σ2) (satisfying
limσ2→0 C(σ2)= 0) such that

(15)
∫

B1\Be−4

|u−ϕ|2 dx ≤ C(σ2).

Since ϕ is smooth, there is some constant Cϕ depending only on ϕ such that

(16) |ϕ(x)−ϕ(y)| ≤ Cϕ|x − y|

for any x, y∈ B1\Be−4 . For some y∈ Be−1\Be−3 , consider the ball Bσ (y)⊂ B1\Be−4

for some σ > 0 to be determined later. By (15) and (16), we have

σ−m
∫

Bσ (y)
|u(x)−ϕ(y)|2 dx

≤ 2σ−m
∫

Bσ (y)
|u(x)−ϕ(x)|2 dx + 2σ−m

∫
Bσ (y)
|ϕ(x)−ϕ(y)|2 dx

≤ 2σ−mC(σ2)+ 2|B|C2
ϕσ

2.

Here, |B| is the volume of the unit ball in Rm.
Let ε2 be the constant in Lemma 2.4. We first take σ small with 2|B|C2

ϕσ
2< 1

2ε2

and then choose σ2 sufficiently small so that 2σ−mC(σ2) <
1
2ε2. Hence, Lemma 2.4

gives

(17) ‖u‖C6(Be−1\Be−3 ) ≤ C,

from which (14) follows. Equation (13) can be proved by interpolation between the
C6 bound (17) and the L2 bound (15), if we choose σ2 smaller. �
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Estimates of ∂t u. Since being biharmonic is invariant under scaling and the group
of scaling is generated by the vector field r∂r = ∂t , if u is a biharmonic map, then
∂t u satisfies the linearization equation of (6), which is a homogeneous linear elliptic
system whose coefficients depend on u. Using this equation, we can prove

Lemma 2.7. If u satisfies (13) and (14) for s ∈ (t0− 1, t0+ 1), then we have

(18)
∑

k=1,2,3,4

4−k∑
j=0

|∂k
t ∇

j
Sm−1u|2(t0, θ)≤ C̃

∫ t0+1

t0−1

∫
Sm−1
|∂t u|2 dθ dt,

for some constant C̃ depending only on σ1 (in (13)), C (in (14)), and the target
manifold N.

Proof. The proof is an interior estimate of an elliptic system. By scaling invariance
of (6), we may assume that t0 = 2. Hence to show (18), it suffices to prove

‖∂r u‖C3(Be−3/2\Be−5/2 ) ≤ C̃‖∂r u‖L2(Be−1\Be−3 ).

The observation is that if we compute the homogeneous elliptic system of r∂r u men-
tioned above, the Hölder norm of all coefficients are bounded due to (13) and (14). �

3. The Lojasiewicz–Simon inequality

The main purpose of this section is to prove the Lojasiewicz–Simon inequality for
F defined by (12):

F(ψ)=
∫

Sm−1
|1Sm−1ψ |2+ (2m− 8)|∇Sm−1ψ |2 dθ.

Lemma 3.1. Let ϕ be a smooth critical point of F(ψ). Then there are ε > 0,
α ∈ (0, 1] and C > 0 depending on ϕ such that for all ψ : Sm−1

→ N with

‖ψ −ϕ‖C5(Sm−1) ≤ ε,

we have

(19) |F(ψ)− F(ϕ)|1−α/2 ≤ C‖MF (ψ)‖L2(Sm−1),

where MF (ψ) is the Euler–Lagrange operator of F.

An equivalent form. Since ϕ is smooth, there is a natural correspondence between
the maps that are close to ϕ (in C5 topology) and the small (in C5 norm) sections
of the pull-back bundle V := ϕ∗T N . More precisely, we embed N isometrically as
a submanifold in Rp and identify a section u of ϕ∗T N with a map

u : Sm−1
→ Rp satisfiying u(ω) ∈ Tϕ(ω)N ⊂ Rp.
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Via the nearest point projection 5 defined in a tubular neighborhood of N, for any
ψ close to ϕ, we define u by

(20) ψ(ω)=5(ϕ(ω)+ u(ω)).

This is well defined because for each ω, 5 is a diffeomorphism between a neigh-
borhood of ϕ(ω) in N and a neighborhood of 0 in Tϕ(ω)N ⊂ Rp.

Since ϕ is a fixed smooth map, the Ck,β norm of u as a section of V defined
by the induced pull-back connection is equivalent to the Ck,β norm of u as a map
from Sm−1 to Rp (with restrictions to the image). The same applies to the Sobolev
norms as well. While the intrinsic role of u as a section is enough for the argument
(the Lyapunov–Schmidt reduction), the extrinsic role of u as a map is important in
using the analyticity assumption. (See Appendix A.)

With the above identification in mind, define

F̃(u)= F(ψ)− F(ϕ).

Then F̃(0)= 0 and u= 0 is a critical point of F̃ . Let MF̃ (u) be the Euler–Lagrange
operator of F̃ at u. Since the L2 inner product of V that we use to compute MF̃ is
not identical to the L2 inner product used for the computation of MF , MF (ψ) is
not trivially the same as MF̃ (u) with u and ψ related by (20). However, we have

Lemma 3.2. Let F̃ be defined as above. If ψ is a map from Sm−1 to N with
‖ψ −ϕ‖C4,β < δ for sufficiently small δ > 0 and u is defined by (20), then

(21) (1−Cδ)|MF (ψ)| ≤ |MF̃ (u)| ≤ |MF (ψ)|.

The proof follows trivially from the equation (whose derivation is given in
Appendix A; see (47))

MF̃ (u)= PϕMF (ψ)

and the fact that the tangent space TψN is close to TϕN since ϕ is close to ψ .
Given Lemma 3.2, Lemma 3.1 is reduced to

Lemma 3.3. There are ε > 0, α ∈ (0, 1], and C > 0 depending on ϕ such that for
all u ∈ C5(V ) with

‖u‖C5(V ) ≤ ε,

we have

(22) |F̃(u)|1−α/2 ≤ C‖MF̃ (u)‖L2(V ).

The Lyapunov–Schmidt reduction. The proof of Lemma 3.3 is an application of
the Lyapunov–Schmidt reduction argument. The local behavior of F̃ near u = 0 is
related to an analytic function defined on the finite dimensional kernel of an elliptic
operator. More precisely, let LF̃ be the linearization of MF̃ at u = 0, which is an



410 YOUMIN CHEN AND HAO YIN

elliptic operator from C4,β(V ) to C0,β(V ). By the theory of elliptic operators, the
kernel of LF̃ is a finite dimensional space, denoted by K. Let PK be the orthogonal
projection of L2(V ) onto K.

Setting
N (u)= PK u+MF̃ (u),

we find that N (0)= 0 and the linearization of N at u = 0 is given by

PK +LF̃ ,

which is an isomorphism between C4,β(V ) onto C0,β(V ) because it is self-adjoint
with trivial kernel. The inverse function theorem then gives an inverse 9 =N−1

from a neighborhood of 0 ∈ C0,β(V ) to C4,β(V ).

Remark 3.4. (1) For the ellipticity and self-adjointness of LF̃ , see Section A.

(2) The inverse function here actually appears as the real part of a complexified
inverse function, which we need to justify the analyticity of f in (23) below.

Moreover, we have the following estimate for 9:

Lemma 3.5 (L2 estimate). There is a neighborhood W of 0 in C0,β(V ) and a
constant C , depending only on F̃ , such that

‖9( f1)−9( f2)‖W 4,2(V ) ≤ C‖ f1− f2‖L2(V ) for any f1, f2 ∈W.

We refer to Appendix B for the proof.
With the help of 9, we define

(23) f (ξ)= F̃
(
9

( l∑
j=1

ξ jϕ j

))
for |ξ | small, where l = dim K and {ϕ j } is a basis of K with respect to the L2 inner
product.

The key to the proof of Lemma 3.3 and hence Lemma 3.1 is the fact that f is real
analytic in a neighborhood of 0. The proof relies on an analytic version of inverse
function theorem for maps between complex Banach spaces and finally depends on
the assumption about the analyticity of N in Theorem 1.1. It takes some effort to
be precise in tracing the use of this assumption and the details of this argument are
given in Appendix A.

For now, we take the analyticity of f near 0 for granted. Therefore, it follows
from the classical Lojasiewicz inequality that there are constants α ∈ (0, 1], C , and
σ > 0 such that

(24) | f (ξ)|(1−α/2) ≤ C |∇ f (ξ)| for ξ ∈ Bσ (0).

For the proof of Lemma 3.3, we need the following:



UNIQUENESS OF TANGENT CONES FOR BIHARMONIC MAPS WITH SINGULARITIES 411

Lemma 3.6. When ‖u‖C4,β (V ) is sufficiently small and hence ξ j
= (u, ϕ j )L2 is

small, we have

(25) |F̃(u)− f (ξ)| ≤ C‖MF̃ (u)‖
2
L2

and

(26) 1
2 |∇ f |(ξ)≤

∥∥∥∥MF̃

(
9

( l∑
j=1

ξ jϕ j

))∥∥∥∥
L2
≤ 2|∇ f |(ξ).

Before the proof of Lemma 3.6, we show how Lemma 3.3 follows from it and
(24).

In fact, by plugging (25) and (26) directly into (24), we get

(27)
|F̃(u)|1−α/2 ≤ C

(∥∥∥∥MF̃

(
9

(∑
ξ jϕ j

))∥∥∥∥
L2
+‖MF̃ (u)‖

2−α
L2

)
≤ C

(∥∥∥∥MF̃

(
9

(∑
ξ jϕ j

))∥∥∥∥
L2
+‖MF̃ (u)‖L2

)
.

Here in the last line above, we use the facts that 2− α ≥ 1 and that ‖MF̃ (u)‖
is bounded for u in the lemma. The first term in the right-hand side of (27) is
dominated by the second, because

(28)

∥∥∥∥MF̃

(
9

(∑
ξ jϕ j

))
−MF̃ (u)

∥∥∥∥
L2
≤ C

∥∥∥∥9(∑ ξ jϕ j

)
− u

∥∥∥∥
W 4,2

≤ C
∥∥∥∥∑ ξ jϕ j −9

−1u
∥∥∥∥

L2

≤ C ‖MF̃ (u)‖L2 .

Here for the first line above, we noticed that MF̃ is a (nonlinear) fourth-order
differential operator (see (47)) and both the C4,β norms of 9(

∑
ξ jϕ j ) and u are

bounded; for the third line above, we used Lemma 3.5; for the last line, we used
the definition of N =9−1 and PK u =

∑
ξ jϕ j . Now, Lemma 3.3 is a consequence

of (27) and (28).
The rest of this section is devoted to the proof of Lemma 3.6.

The proof of Lemma 3.6. By the definition of f (see (23)) and ξ (in the assumption
of Lemma 3.6), f (ξ)= F̃(9(PK u)). Hence, to prove (25), we compute

|F̃(u)− F̃(9(PK u))| =
∣∣∣∣∫ 1

0

d
ds

F̃
(
u+ s(9(PK u)− u)

)
ds
∣∣∣∣

=

∣∣∣∣∫ 1

0

(
MF̃ (u+ s(9(PK u)− u)),9(PK u)− u

)
L2 ds

∣∣∣∣.
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Again, by the facts that MF̃ is a fourth-order operator and that C4,β norms of u
and u+ s(9(PK u)− u) are bounded for any s ∈ [0, 1], we have

‖MF̃ (u+ s(9(PK u)− u))−MF̃ (u)‖L2 ≤ C‖9(PK u)− u‖W 4,2,

which implies that

|F̃(u)− F̃(9(PK u))| ≤ C‖9(PK u)− u‖L2(‖MF̃ (u)‖L2 +‖9(PK u)− u‖W 4,2)

≤ C‖MF̃ (u)‖
2
L2 .

Here in the last line above, we used

‖9(PK u)− u‖W 4,2 ≤ C‖MF̃ (u)‖L2,

which appeared as a part of (28) and was proved there. This concludes the proof of
(25).

For the proof of (26), we compute using (23) and the chain rule to get

(29) (η,∇ f (ξ))Rl =

(
MF̃

(
9

(∑
ξ jϕ j

))
, d9|∑ ξ jϕ j

(∑
η jϕ j

))
L2

for some η ∈ Rl with |η| = 1.
Notice that d9|∑ ξ jϕ j depends smoothly on ξ in a compact neighborhood of

ξ = 0, hence there is C > 0 such that

(30) ‖d9|∑ ξ jϕ j − d9|0‖ ≤ C |ξ | for small |ξ |.

Remark 3.7. (1) For the smooth dependence in ξ , we shall prove in Appendix A
that 9 has a complexification that is analytic (hence smooth by Theorem A.2).

(2) The norm in (30) should be the norm of bounded linear operator from Cβ(V )
to C4,β(V ), according to our discussion in the appendix. What we need here
is the inequality∥∥∥∥(d9|∑ ξ jϕ j − d9|0)

(∑
η jϕ j

)∥∥∥∥
L2
≤ C |ξ |

∥∥∥∥∑ η jϕ j

∥∥∥∥
L2
.

This is true because
∑
η jϕ j lies in K and when restricted to the finite dimen-

sional space K, L2 norm is equivalent to Cβ norm.

On the other hand,

(31) d9|0

(∑
η jϕ j

)
=

∑
η jϕ j for any η ∈ Rl,

because d9|0 = (dN |0)−1
= (PK +LF̃ )

−1, and
∑
η jϕ j is in K, the kernel of LF̃ .
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By (30) and (31), (29) implies that

(32)
∣∣∣∣(η,∇ f (ξ))Rl −

(
MF̃

(
9

(∑
ξ jϕ j

))
,
∑

η jϕ j

)
L2

∣∣∣∣
≤ C |ξ |‖MF̃

(
9

(∑
ξ jϕ j

))
‖L2 .

Now, in (32), if we choose η parallel to ∇ f (ξ) in Rl , we obtain

|∇ f | ≤ (1+C |ξ |)
∥∥∥∥MF̃

(
9

(∑
ξ jϕ j

))∥∥∥∥
L2
;

if we choose η so that
∑
η jϕ j is parallel to MF̃ (9(

∑
ξ jϕ j )) (which is in K ),

then we get

(1−C |ξ |)‖MF̃

(
9

(∑
ξ jϕ j

))
‖L2 ≤ |∇ f |.

This finishes the proof of (26) and hence Lemma 3.6 if ξ is small.

4. Dynamics near a critical point of F

Let u be the minimizing biharmonic map given in Theorem 1.1. Recall that (r, θ)
are the polar coordinates and that t =− log r . By the assumptions of the theorem,
there exists ti →∞ such that u(ti , θ) as maps on Sm−1 converge smoothly to a
critical point ϕ of F . (See the discussion in Section 2.)

Therefore, for i sufficiently large, u(ti , θ) is very close in C5 topology to the
critical point ϕ of F . Since u is a biharmonic map, the biharmonic map equation
determines how u(t) should change as a map on Sm−1. In this section, we study
these dynamics of u(t) in a very small neighborhood of ϕ. More precisely, we are
interested in the speed of decay of∫

∞

t

∫
Sm−1
|∂t u|2 dθ dt

as explained in the introduction. In fact, we shall control the decay of a larger
quantity, namely,

(33) G(t)=
∫
∞

t

∫
Sm−1

(2m− 8)|∂2
t u|2+ (2m− 8)|∂t∇Sm−1u|2

+ (2m− 8)(m− 2)|∂t u|2 dθ dt.

Lemma 4.1. Suppose ϕ is a smooth critical point of F. There is some constant
σ > 0 (depending on ϕ) such that if u(t, θ) (cylinder coordinates) is a smooth
biharmonic map satisfying

‖u(s)−ϕ‖C5(Sm−1) ≤ σ for s ∈ [t − 3, t + 3],
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then there exist C ′ > 0 and θ ∈ (0, 1) such that

(34) G(s− 1)θ −G(s+ 1)θ ≥ C ′(G(s− 1)−G(s+ 1))1/2.

Before we start the proof, we rewrite 12u in (t, θ) coordinates and split it into
two parts. Since

1u = e2t(∂2
t − (m− 2)∂t +1Sm−1)u,

we have

12u = e4t(∂2
t +1Sm−1 − (m− 6)∂t + (8− 2m))(∂2

t − (m− 2)∂t +1Sm−1)u

:= e4t(Ia + Ib),

where

Ia = ∂
4
t u+ 2∂2

t 1Sm−1u− (2m− 8)∂3
t u− (2m− 8)∂t1Sm−1u

+ (m2
− 10m+ 20)∂2

t u+ (2m− 8)(m− 2)∂t u

and

Ib =1
2
Sm−1u+ (8− 2m)1Sm−1u.

The idea behind this splitting is that we put everything involving ∂t in Ia and the
rest in Ib. An easy observation is that Ib is almost (up to a projection) the gradient
of F discussed in Section 2, namely,

(35) ∂t F(u(t))= 2
∫

Sm−1
1Sm−1u1Sm−1∂t u+ (2m− 8)∇Sm−1u · ∇Sm−1∂t u dθ

= 2
∫

Sm−1
Ib · ∂t u dθ.

The way we use the biharmonic map equation has nothing to do with the right-
hand side of (6). We multiply the equation by ∂t u and integrate over Sm−1 to
obtain

(36) 0=
∫

Sm−1
12u · ∂t u dθ =

∫
Sm−1

(Ia + Ib) · ∂t u dθ.

While
∫

Sm−1 Ib · ∂t u dθ is known in (35), the structure of
∫

Sm−1 Ia · ∂t u dθ is
still complicated. There is some positivity hidden in it. To reveal it, we use the
elementary equalities

∂4
t u · ∂t u = ∂t

(
∂3

t u∂t u− 1
2 |∂

2
t u|2

)
and

∂3
t u · ∂t u = ∂t(∂

2
t u · ∂t u)− |∂2

t u|2
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to get∫
Sm−1

Ia ·∂t u dθ

= ∂t

(∫
Sm−1

∂3
t u∂t u− 1

2 |∂
2
t u|2

−|∂t∇Sm−1u|2−(2m−8)∂2
t u∂t u+ 1

2(m
2
−10m+20)|∂t u|2 dθ

)
+

(∫
Sm−1

(2m−8)|∂2
t u|2+(2m−8)|∂t∇Sm−1u|2

+(2m−8)(m−2)|∂t u|2 dθ
)

:= ∂t

(∫
Sm−1

IIa dθ
)
+

∫
Sm−1

IIb dθ.

Notice that IIb is nonnegative and this is how we obtain the definition of G(t) in
(33), i.e.,

G(t)=
∫
∞

t

∫
Sm−1

IIb dθ dt.

By (36) and (35), we have

(37) 1
2∂t F(u(t))=−

∫
Sm−1

Ia · ∂t u dθ.

Let ti be the sequence mentioned in the beginning of this section such that u(ti )
converges smoothly to the smooth section map ϕ. Moreover, u(t + ti ) regarded
as a map defined on [−1, 1] × Sm−1 converges smoothly to ϕ̃(t, θ) = ϕ(θ). This
implies that

lim
i→∞

∫
Sm−1

IIa(ti ) dθ = 0,

so that if we integrate (37) from s to ti and take the limit i→∞, we obtain

(38) 1
2(F(ϕ)− F(u(s)))=

∫
Sm−1

IIa(s) dθ −
∫
+∞

s

∫
Sm−1

IIb dθ.

As a by-product of the above computation, G(t) is a finite number, which is the
biharmonic counterpart of (2).

We may choose σ small so that for u in the lemma and s ∈ [t − 3, t + 3],
‖u(s)−ϕ‖C5(Sm−1) is small and hence u(s) satisfies the assumption of Lemma 3.1.
The Lojasiewicz–Simon inequality (in Lemma 3.1) and (38) imply that

(39) −

∫
Sm−1

IIa(s) dθ +
∫
+∞

s

∫
Sm−1

IIb dθ dt ≤ C‖MF (u(s))‖
2/(2−α)
L2(Sm−1)

for some α ∈ (0, 1].
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Next, we show that the right-hand side and the first term in the left-hand side
of (39) are controlled by

∫ s+1
s−1 |IIb|

2 dθ . To see this, recall that by (35), MF (u(s))
is the projection of Ib(s) onto the tangent bundle of TN at u(s). If we denote this
projection from Rp onto Tu N by 5,

(40) MF (u(s))= 25(Ib(s)).

On the other hand, since u is an extrinsic biharmonic map, the Euler–Lagrange
equation reads

(41) 5(12u)=5(Ia + Ib)= 0.

Combining (40) and (41), we get

(42) ‖MF (u(s))‖L2(Sm−1) ≤ 2‖Ia(s)‖L2(Sm−1).

Notice that the integrands of both Ia(s) and IIa(s) involve ∂t u and its derivatives,
which are estimated in Section 2. More precisely, by taking σ small, we may apply
Lemma 2.5 first to get (14) and then Lemma 2.7 to see

(43) ‖Ia(s)‖2L2(Sm−1)
+

∫
Sm−1
|IIa|(s) dθ ≤ C

∫ s+1

s−1

∫
Sm−1
|IIb|

2 dθ dt.

By the definition of G(t) in (33), equations (39), (42), and (43) imply

−C(G(s− 1)−G(s+ 1))+G(s)≤ C(G(s− 1)−G(s+ 1))1/(2−α).

Since G(s − 1) − G(s + 1) is bounded and 1/(2 − α) ≤ 1, the first term can
be absorbed into the left-hand side. In fact, in the proof that follows, we shall
require G(s) to be very small (see the definition of η in the next section). By the
monotonicity of G, the above inequality is further simplified to

(44) G(s+ 1)≤ C(G(s− 1)−G(s+ 1))1/(2−α).

Here is a lemma similar to [Simon 1996, (9), §3.15].

Lemma 4.2. Suppose that θ ∈
(
0, 1

2

]
. If for some positive C and any a, b ∈ (0, 1)

satisfying b < a,

(45) b ≤ C(a− b)1/(2−2θ),

then there is another C ′ depending only on C and θ such that

aθ − bθ ≥ C ′(a− b)1/2.

Proof. The proof is an elementary discussion.
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Case 1: b < 1
2a. Noticing that θ ≤ 1

2 and a < 1, we have

aθ − bθ ≥
(

1− 1
2θ
)

aθ ≥
(

1− 1
2θ
)

a1/2
≥

(
1− 1

2θ
)
(a− b)1/2.

Case 2: b ≥ 1
2a. Equation (45) gives

a
2C
≤ (a− b)1/(2(1−θ)),

which is

(46) a1−θ
≤ (2C)1−θ (a− b)1/2.

Therefore,

aθ − bθ ≥ θaθ−1(a− b)≥
θ

(2C)1−θ
(a− b)1/2.

Here in the above line we have used the mean value theorem for the first inequality
and (46) for the second.

In either case, the lemma is proved by taking C ′ to be min{1−1/2θ , θ/(2C)1−θ }.
�

5. A stability argument and the proof of Theorem 1.1

In this section, we prove Theorem 1.1 by using a routine stability argument. We
shall define two neighborhoods of ϕ: a larger one (see OC5(σ1) below) in which the
results in Section 3 and Section 4 hold and a smaller one (see OL2(η) below) such
that if u(ti ) lies in the smaller neighborhood for sufficiently large i , then u(t) will
stay in the larger neighborhood forever and converge to the unique limit claimed in
Theorem 1.1.

We choose σ1 so that it is smaller than both the ε in Lemma 3.1 and the σ in
Lemma 4.1. For some η > 0 small (to be determined later), by the definition of ϕ
as the section of a tangent map, we can choose (and fix) ti large such that

(1) for all t ∈ (ti − 3, ti + 3), u(t) ∈OC5(σ1);

(2) u(ti ) ∈OL2(η);

(3) G(ti )≤ η2, because G(t) is finite and decreases down to zero.

Set

T = sup
t
{t | for any s ∈ [ti , t), u(s) ∈OC5(σ1)}.

By (1) above, we know T ≥ ti+3. Now we claim that T is infinity. If otherwise, we
want to find a contradiction by showing u(T ) ∈OC5

( 1
2σ1

)
. Thanks to Lemma 2.5,
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there is σ2 > 0 depending on 1
2σ1 such that it suffices to show for any s ∈ (ti , T +2),

we have u(s) ∈OL2(σ2). Let k be the largest integer with ti + 2k ≤ s. Hence,∫ s

ti
‖∂t u‖L2(Sm−1)

≤

k∑
j=1

∫ ti+2 j

ti+2( j−1)
‖∂t u‖L2(Sm−1)+

∫ s

ti+2k
‖∂t u‖L2(Sm−1)

≤ C
k∑

j=1

(∫ ti+2 j

ti+2( j−1)
‖∂t u‖2L2(Sm−1)

)1/2

+C
(∫ s

ti+2k
‖∂t u‖2L2(Sm−1)

)1/2

≤ C
k∑

j=1

(∫ ti+2 j

ti+2( j−1)
‖∂t u‖2L2(Sm−1)

)1/2

+Cη.

Here in the third line above, we used Hölder inequality and in the last line, we used
(3).

By the definition of G, we have∫ ti+2 j

ti+2( j−1)
‖∂t u‖2L2(Sm−1)

≤ G(ti + 2( j − 1))−G(ti + 2 j).

We can apply Lemma 4.2 with a = G(ti + 2 j) and b = G(ti + 2( j − 1)) to get∫ s

ti
‖∂t u‖L2(Sm−1) ≤ C

k∑
j=1

(G(ti + 2( j − 1))θ −G(ti + 2 j)θ )+Cη

≤ C ·G(ti )θ +Cη ≤ Cη2θ
+Cη.

If we choose η small, we can have for any s ∈ (ti , T + 2),

‖u(s)−ϕ‖L2(Sm−1) ≤ ‖u(ti )−ϕ‖L2(Sm−1)+

∫ s

ti
‖∂t u‖L2(Sm−1) ≤

1
2σ2.

Lemma 2.5 gives the contradiction and proves that T =∞.
We can repeat the above computation with k =∞ to get∫

+∞

ti
‖∂t u‖L2(Sm−1) ≤ Cη2θ

+Cη <∞,

which shows that
lim

t→∞
‖u(t)−ϕ‖L2(Sm−1) = 0.

As in Remark 2.6, we have u bounded in any Ck+1(Sm−1) norm. By interpolation,
we know

lim
t→∞
‖u(t)−ϕ‖Ck(Sm−1) = 0.
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Appendix A: The assumption of analyticity

The purpose of this section is to justify (see Lemma A.7) the use of the classical Lo-
jasiewicz inequality to the function f (see (23)) that arises in the Lyapunov–Schmidt
reduction in Section 3. Indeed, we shall show how the analyticity assumption of N
in Theorem 1.1 carries on step by step to that of f. These arguments, independent
from the rest of the proof, are technical and hence presented in the appendix.

Analytic function between Banach spaces. For completeness, we collect a few
basic definitions and properties of analytic functions between abstract (complex)
Banach spaces. We refer to [Taylor 1937] for proofs and more detailed discussions.

Let E, E ′ and E ′′ be complex Banach spaces.

Definition A.1. (1) Let f (x) be a function on E to E ′, defined in the neighborhood
of x0 ∈ E . If for each y ∈ E , the limit

lim
τ→0

f (x0+ τ y)− f (x0)

τ

exists (for τ ∈ C), then it is called the Gateaux differential, denoted by
δ f (x0; y).

(2) A function f (x) on a domain D of E to E ′ is said to be analytic in D if it is
continuous and has a Gateaux differential at each point of D. A function is
said to be analytic at a point x0, if it is analytic in some neighborhood of x0.

Recall that the Fréchet differential is defined to be the bounded linear map
D f (x0) from E to E ′ such that

f (x0+ h)= f (x0)+ D f (x0)h+ o(‖h‖E).

While the existence of the Fréchet differential is obviously stronger than the Gateaux
differential, Taylor proved the following:

Theorem A.2 [Taylor 1937, Theorem 3, Theorem 12]. If f is analytic at x0, then
it admits Fréchet differentials of all orders in the neighborhood of that point. More-
over, the Fréchet differential and the Gateaux differential are equal.

With the equivalence in mind, we recall a version of the inverse function theorem,
which follows from [Dieudonné 1960, (10.2.5)] (see also [Nirenberg 1974, §2.7]).

Theorem A.3. Let E and E ′ be two complex Banach spaces, f an analytic function
from a neighborhood V of x0 ∈ E to E ′. If D f (x0) is a linear homeomorphism of
E onto E ′, there exists an open neighborhood U ⊂ V of x0 such that the restriction
of f to U is a homeomorphism of U onto an open neighborhood of y0 = f (x0).
Moreover, the inverse is analytic.
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Complexification and analyticity. In Section 3, we have defined the functional
F̃ : C4,β(V ) → R where V is the pullback bundle ϕ∗T N and a map N from
C4,β(V ) to C0,β(V ). Instead of claiming the analyticity of F̃ and N directly, we
consider its complexification.

C4,β(V )⊗C is understood to be the set of u+ iv, where u, v ∈ C4,β(V ), with
a naturally defined norm. The same applies to C0,β(V )⊗C. Obviously, they are
complex Banach spaces.

A complexification of a map f from a Banach space E1 to another Banach space
E2 is some map f̃ from E1⊗C to E2⊗C such that f is the real part of f̃ when
restricted to (some open set of) E1. Such complexifications are usually not unique.
We are interested in analytic ones, that we define below (making using of special
properties of f ).

The complexification of F̃ and N relies on some particular form of the maps
themselves. More precisely, we need the definition of F̃(u) and N (u) to be given by
a converging series. For this purpose, we start with an extrinsic point of view of V.

Since N is embedded in Rp, we regard Ty N as a subspace (not the affine space
passing y) of Rp. Hence, the pullback bundle V is the disjoint union of Vω :=Tϕ(ω)N
and a section u of V is a map from Sm−1 to Rp satisfying

u(ω) ∈ Tϕ(ω)N ⊂ Rp.

For a fixed smooth ϕ, the Ck,β norm of u as a map into Rp agrees with the Ck,β

norm defined intrinsically using the pullback connection of ϕ∗T N . The same holds
for various Sobolev norms.

For the complexification of F̃, we regard it as the composition of

C2,β(V )
F
−→ Cβ(Sm−1,R)

I
−→ R,

where
F(u)= |1Sm−15(ϕ+ u)|2+ (2m− 8)|∇Sm−15(ϕ+ u)|2

and

I(h)=
∫

Sm−1
h dθ.

Recall that 5 is the nearest-point-projection of N and the discussion works only
for u with small C0 norm.

We claim that there exists an analytic map F̃C from C2,β(V )⊗C to C with F̃ as
its real part.

The proof of the claim is the combination of the following facts:

(F1) The 1Sm−1 from C2,β(V ) to C0,β(V ), ∇Sm−1 from C2,β(V ) to C1,β(V ), and
I are bounded linear maps. Their complexifications, obtained by linear
extension, are naturally bounded linear maps and hence analytic.
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(F2) Let F1 be the map from C0,β(Sm−1,Rp) to C0,β(Sm−1,R) given by u 7→ |u|2.
Its complexification FC,1 is given by

FC,1(u+ iv)= (u+ iv) · (u+ iv).

It is analytic.

(F3) If (as assumed in Theorem 1.1)5(ϕ+· ) is an analytic map from Br (0)⊂Rp

to Rp, then the map
u 7→5(ϕ+ u)

has an analytic extension from C2,β(Sm−1,Cp) to itself. To see this, one first
expands 5(ϕ+ u) into converging power series of u and then replace u by
u+ iv. It is then an exercise to check that the map thus obtained are analytic
in the sense of Definition A.1.

For the complexification of N , it suffices to consider MF̃ (u). For u and v in
C4(V ), setting ψ =5(ϕ+ u), we compute

d
dt

∣∣∣
t=0

F̃(u+ tv)

=
d
dt

∣∣∣
t=0

∫
Sm−1
|1Sm−15(ϕ+ u+ tv)|2

+ (2m− 8)|∇Sm−15(ϕ+ u+ tv)|2 dθ

= 2
∫

Sm−1
1Sm−1ψ1Sm−1 D5ϕ+uv+ (2m− 8)∇Sm−1ψ∇Sm−1 D5ϕ+uv dθ

= 2
∫

Sm−1
(12

Sm−1ψ − (2m− 8)1Sm−1ψ)D5ϕ+uv dθ

= 2
∫

Sm−1
Pψ(12

Sm−1ψ − (2m− 8)1Sm−1ψ)v dθ.

Here in the last line above, we used the fact that D5ϕ+uv is nothing but the
orthogonal projection from Rp onto TψN , which we denote by Pψ .

Similar to the (bi)harmonic map case, Pψ(12
Sm−1ψ − (2m − 8)1Sm−1ψ) is the

Euler–Lagrange operator of F(ψ), denoted by MF (ψ). For each ω ∈ Sm−1,
MF (ψ)(ω) lies in TψN ⊂ Rp, while v(ω) is in TϕN . Therefore,

(47) MF̃ (u)= PϕMF (ψ),

where ψ =5(ϕ+ u).
Since the projection Pϕ is a linear map that does not depend on u, the complexi-

fication of MF̃ (u) is reduced to that of MF (5(ϕ+ u)), which we regard as the
composition of the following:

(M1) the map5(ϕ+·) from C4,β(V ) to C4,β(Sm−1,Rp), which has been discussed
in (F3) above;
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(M2) the map12
Sm−1ψ−(2m−8)1Sm−1ψ from C4,β(Sm−1,Rp) to C0,β(Sm−1,Rp),

which has been discussed in (F1) above;

(M3) the projection Pψ is a p by p matrix that depends analytically on ψ , since
N is an analytic submanifold. Keeping in mind that ψ =5(ϕ+u) is known
(see (M1) above) to be analytic map in u, the complexification of Pψ is
given by expanding the analytic (matrix-valued) map Pψ = P5(ϕ+u) as a
converging power series of u and then replacing u by u+ iv as in (F3).

Properties of the complexification. Let’s denote the complexification of MF̃ by
MF̃,C . In this section, we study the ellipticity of MF̃,C and the self-adjointness
of its linearization at 0. Please notice that although the ellipticity of MF̃ is quite
natural, the ellipticity of MF̃,C as an operator between the complexified Banach
spaces is not true in general. Fortunately, we have the following:

Lemma A.4. The linearizations of both MF̃ and MF̃,C at u = 0 are elliptic.

Remark A.5. In fact, as the following proof shows, MF̃ is elliptic for small u such
that it is defined and MF̃,C is elliptic at u+ iv ∈ C4,β(V )⊗C if v = 0.

Proof. Neglecting the lower order part, it suffices to compute the linearization of

PϕPψ12
Sm−15(ϕ+ u),

where ψ =5(ϕ+ u). If we do the computation at u ∈ C4,β(V ) with infinitesimal
increment h and neglect all lower order terms, we get

(48) PϕPψ12
Sm−1h,

whose symbol is for any ξ ∈ T ∗ω Sm−1,

(49) ξ 7→ PϕPψ |ξ |4h.

If ξ is not zero, then this is clearly a linear isomorphism from the sections of V
onto itself, because ψ is close to ϕ.

Now, for MF̃,C , we denote the complexification of Pψ (5(ϕ + u)) by Pψ,C
(5C(ϕ+u) respectively). Although we do not know any exact formula for them, it
suffices for us to note that when computing (48),

(1) the contribution of 5C goes to the lower order terms and does not matter;

(2) since we have assumed that u ∈C4,β(V ), by the definition of complexification,
Pψ,C = Pψ . Therefore, we get the same symbol as in (49), which is now an
isomorphism from the sections of complexified-V onto itself. �

If we denote the linearizations of MF̃ and MF̃,C at u = 0 by LF̃ and LF̃,C , then
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Lemma A.6. For any u, v ∈ C4,β(V ),

(50) LF̃,C(u+ iv)= LF̃ (u)+ iLF̃ (v).

In particular, LF̃,C is an elliptic and self-adjoint operator from C4,β(V )⊗C to
C0,β(V )⊗C.

Proof. By definition, LF̃,C(u)= d/dt |t=0MF̃,C(tu)= d/dt |t=0MF̃ (tu)= LF̃ (u).
Hence, it suffices to show

L̃F̃,C(iv)= iLF̃ (v).

Since MF̃ is a composition of Pϕ , Pψ , 1Sm−1 , ∇Sm−1 , and 5(ϕ+ ·), it suffices to
show that (50) holds for (the linearization of) each one of them. This is trivial for
Pϕ , 1Sm−1 , and ∇Sm−1 , because they are linear operators and (50) is exactly how
their complexification is defined.

For 5(ϕ+ ·), we recall that

5C(ϕ+ (u+ iv))=
∑

k

ak(u+ iv)k

and the series converges for small u and v. Equation (50) then follows from direct
computation. The same argument works for Pψ .

The self-adjointness of LF̃ follows from expanding the following identity:

d
ds

∣∣∣
s=0

d
dt

∣∣∣
t=0

F̃(tu+ sv)= d
dt

∣∣∣
t=0

d
ds

∣∣∣
s=0

F̃(tu+ sv).

The self-adjointness of LF̃,C is then a consequence of (50). �

Now, we state the result that motivates the discussion in this section.

Lemma A.7. For f defined (23), it is an analytic function of ξ in a neighborhood
of 0 ∈ Rl .

Proof. Let NC be the complexification of N defined in Section A. Its linearization
at u = 0 is given by

PK + L̃.

By the results above, this L̃ is elliptic and self-adjoint with trivial kernel. Hence,
the inverse function theorem (Theorem A.3) gives an inverse map 9C , which is
analytic, from a neighborhood of 0 in C0,β(V )⊗ C to a neighborhood of 0 in
C4,β(V )⊗C. If F̃C is the complexification of F̃ given in Section A, then f in (23)
is the restriction (to the real part of (z1, . . . , zl)) of

fC(z1, . . . , zl) := F̃C

(
9C

( l∑
i=1

ziϕi

))
,

which is analytic in (a neighborhood of 0 in) Cl . �
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Appendix B: Proof of Lemma 3.5

For some δ > 0 to be determined, we will take W = { f | ‖ f ‖Cβ (V ) < δ}. For any
f1, f2 in W , we have

9( f1)−9( f2)=

∫ 1

0

d
dt
9(t f1+ (1− t) f2) dt =

∫ 1

0
D9|t f1+(1−t) f2( f1− f2) dt.

Hence, it suffices to show that for any f ∈W , the linearization of 9 at f , D9| f is
a uniformly bounded linear operator from L2(V ) to W 4,2(V ). More precisely, we
need to find δ > 0 and C > 0 such that

sup
f ∈W
‖D9| f ‖L(L2(V ),W 4,2(V )) ≤ C.

Here ‖·‖L(L2(V ),W 4,2(V )) is the norm of linear operators.
Since 9 is the inverse of N , it suffices to show that there exist δ′ > 0 and C > 0

such that if W ′ = {u ∈ C4,β(V ) | ‖u‖C4,β (V ) < δ
′
},

(51) inf
u∈W ′
‖DN |u‖L(W 4,2,L2) ≥ C > 0.

The proof of (51) consists of two steps. First, we show that

(52) ‖DN |0‖L(W 4,2,L2) ≥ C > 0.

Recall that N = PK +MF̃ , where K is the kernel of DMF̃ |0 = LF̃ . For any
h ∈ W 4,2(V ), we denote h − PK h by h⊥. Since LF̃ is an elliptic operator with
trivial kernel in the compliment space of K , there is a constant depending only on
ϕ such that

(53) ‖h⊥‖W 4,2 ≤ C0‖LF̃ h⊥‖L2 .

Since K is a finite-dimensional space, there is C1 > 0 such that

(54) ‖PK h‖W 4,2 ≤ C1‖PK h‖L2 .

Combining (53) and (54) and noticing that the image of LF̃ is normal to K in L2,
we get C2 > 0 such that

(55) ‖h‖W 4,2 ≤ C2‖DN |0h‖L2,

which implies (52).
The second step is to show that for u ∈W ′,

(56) ‖(DN |u − DN |0)h‖L2 ≤ C(δ′)‖h‖W 4,2
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for some C(δ′) satisfying limδ′→0 C(δ′)= 0. Before the proof of (56), we notice
that if δ′ is small, (56) and (55) imply that

‖h‖W 4,2 ≤ C‖DN |uh‖L2,

which finishes the proof of (51) and hence the proof of Lemma 3.5.
For (56), we notice that the contribution of PK h cancels out and it suffices to

bound

(57) ‖(DMF̃ |u − DMF̃ |0)h‖L2 .

Recalling that MF̃ (u)= PϕPψ(12
Sm−1ψ − (2m− 8)1Sm−1ψ) with ψ =5(ϕ+ u),

we get

(58) DMF̃ |uh = Pϕ(D P)ψ(12
Sm−1ψ − (2m− 8)1Sm−1ψ)h

+ PϕPψ(12
Sm−1h− (2m− 8)1Sm−1h)

and

(59) DMF̃ |0h = Pϕ(D P)ϕ(12
Sm−1ϕ− (2m− 8)1Sm−1ϕ)h

+ Pϕ(12
Sm−1h− (2m− 8)1Sm−1h).

Notice that (58) and (59) are fourth-order linear operators of h and if we subtract
them, the difference of the corresponding coefficients are bounded by using

‖ψ −ϕ‖C4,β ≤ C‖u‖C4,β (V ).
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