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A THEOREM OF

LUSTERNIK AND SCHNIRELMANN

MARTIN MAN-CHUN LI

We introduce a new geometric flow, called the chord shortening flow, which
is the negative gradient flow for the length functional on the space of chords
with end points lying on a fixed submanifold in Euclidean space. As an
application, we give a simplified proof of a classical theorem of Lusternik
and Schnirelmann (and a generalization by Riede and Hayashi) on the exis-
tence of multiple orthogonal geodesic chords. For a compact convex planar
domain, we show that any convex chord not orthogonal to the boundary
would shrink to a point in finite time under the flow.

1. Introduction

The existence of closed geodesics in a Riemannian manifold is one of the most
fundamental questions in geometry that has been studied extensively since the time
of Poincaré [1905]. The critical point theories developed by Morse and Lusternik–
Schnirelmann have played an essential role in this problem in the early 20th century
(see [Klingenberg 1978] for a detailed exposition). Although there do not exist
closed geodesics in Rn , it is natural to look for geodesics contained in a bounded
domain �⊂ Rn which meets ∂� orthogonally at its end points. These are called
orthogonal geodesic chords (see Definition 5.1 for a precise definition). Lusternik
and Schnirelmann [1934] proved the following celebrated result:

Theorem 1.1 (Lusternik–Schnirelmann). Any bounded domain in Rn with smooth
convex boundary contains at least n distinct orthogonal geodesic chords.

Kuiper [1964] showed that the same conclusion holds if the boundary is only
C1,1. For our convenience, we will assume that all the submanifolds and maps are
C∞. Recall that the boundary of a domain �⊂ Rn is said to be (locally) convex if
the second fundamental form A of ∂� with respect to the unit normal ν (pointing
into �) is positive semidefinite, i.e., for all p ∈ ∂�, u ∈ Tp∂�, we have

(1-1) A(u, u) := 〈Duu, ν〉 ≥ 0,
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Figure 1. Bos’s example of a nonconvex domain � in R2 which
does not have any orthogonal geodesic chord contained in �.

where D is the standard flat connection in Rn . Notice that Theorem 1.1 gives an
optimal lower bound as seen in the example of the convex region bounded by the
ellipsoid given by

� :=

{
(x1, . . . , xn) ∈ Rn

:

n∑
i=1

x2
i

a2
i
≤ 1

}
,

where a1, . . . , an are distinct positive real numbers.
Bos [1963] generalized Lusternik–Schnirelmann’s result to the setting of Rie-

mannian (or even Finsler) manifolds.

Theorem 1.2 (Bos). A compact Riemannian manifold (Mn, g) which is homeomor-
phic to the closed unit ball in Rn with locally convex boundary contains at least n
orthogonal geodesic chords.

Moreover, he showed that the convexity assumption cannot be dropped even in
R2 (see Figure 1).

Nonetheless, one can still ask for the existence of orthogonal geodesic chords
by allowing them to go outside the domain. This problem was first introduced by
Riede [1968], where he studied the variational calculus of the space 0 consisting
of piecewise smooth curves in a complete Riemannian manifold (Mn, g) with
end points lying on a compact submanifold 6k

⊂ M . In particular, he estimated
the minimum number of critical points, which are orthogonal geodesic chords, in
terms of certain topological invariant called the “cup-length” of the equivariant
cohomology of 0 with respect to the Z2-action reversing the orientation of a curve.
Hayashi [1982] computed the cup-length when 6 is a compact submanifold in Rn

and hence proved the following result.

Theorem 1.3 (Riede–Hayashi). Any k-dimensional compact submanifold 6 in Rn

admits at least k+ 1 orthogonal geodesic chords.

Note that Theorem 1.3 generalizes Theorem 1.1 by taking 6 to be the boundary
of a bounded convex domain. However, we emphasize that if 6 = ∂� is the
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boundary of a nonconvex domain � ⊂ Rn , then the orthogonal geodesic chords
obtained in Theorem 1.3 are not necessarily contained in � (recall Figure 1).

The original proofs of Theorem 1.1, 1.2, and 1.3 all used a discrete curve
shortening process similar to the one introduced by Birkhoff [1917] in the study
of existence of closed geodesics in Riemannian manifolds. A description of the
process can be found in [Gluck and Ziller 1983] (see also a modified version in
[Zhou 2016]). The curve shortening process, denoted by 9, takes a piecewise
smooth curve c : [0, 1] → M with end points lying on 6 to a piecewise geodesic
curve 9(c) : [0, 1] → M which meets 6 orthogonally at its end points. The most
important properties of 9 are summarized below:

(1) Length(9(c))≤ Length(c) and equality holds if and only if c is an orthogonal
geodesic chord, in which case 9(c)= c.

(2) 9(c) depends continuously on c, with respect to the C0 topology.

(3) c and 9(c) are homotopic in M relative to 6, i.e., there exists a continuous
family ct : [0, 1] → M , t ∈ [0, 1], with end points on 6 such that c0 = c and
c1 =9(c). Moreover, the family ct depends continuously on c.

The curve shortening process 9 involves subdividing the curves and connecting
points on the curve by minimizing geodesic segments (additional care has to be
taken at the end points). The construction depends on some fixed parameter (which
depends on the geometry of M , 6, and Length(c)). However, it can be shown that
for curves with uniformly bounded length, the parameters can be chosen uniformly
to make (1)–(3) above hold. In fact (1) and (3) follow easily from the constructions,
but (2) requires some convexity estimates (see [Zhou 2016, Lemma 3.2]). Using
(1)–(3), it is not difficult to see that the sequence {9 i (c)}∞i=1 either converges to
a point on 6 or has a subsequence converging to an orthogonal geodesic chord.
Theorem 1.1, 1.2, and 1.3 then follow from the abstract Lusternik–Schnirelmann
theory applied to families of curves with end points on6 which represent a nontrivial
homology class relative to point curves on 6. Interested readers can refer to [Gluck
and Ziller 1983; Giannoni and Majer 1997] for more details (for Theorem 1.1 there
is a more elementary proof — see [Kuiper 1964] for example).

In this paper, we introduce a new curve shortening process called the chord
shortening flow (see Definition 2.3), which evolves a geodesic chord according
to the “contact angle” that the chord makes with 6 at its end points. It is the
negative gradient flow for the length functional on the space of chords. We study
the fundamental properties including the short-time existence and uniqueness and
long-time convergence of the flow when the ambient space is Rn . Note that the flow
still makes sense in certain Riemannian manifolds but for simplicity we postpone
the details to another forthcoming paper. The chord shortening flow, as a negative
gradient flow, clearly satisfies all the properties (1)–(3) above; hence provide the
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most natural curve shortening process required in the proof of Theorem 1.1 and 1.3
(but not Theorem 1.2 in its full generality).

Remark 1.4. We would like to mention that Lusternik and Schnirelmann used
the same ideas to prove the theorem of three geodesics which asserts that any
Riemannian sphere (S2, g) contains at least three geometrically distinct closed em-
bedded geodesics. Unfortunately, the original proof by Lusternik and Schnirelmann
[1934] contains a serious gap and various attempts have been made to fix it (see
[Taı̆manov 1992]). The fundamental issue there is multiplicity: that one of the
geodesics obtained may just be a multiple cover of another geodesic. It is extremely
technical (and many false proofs were given) to rule out this situation by modifying
the method of Lusternik–Schnirelmann. Grayson [1989] gave a rigorous proof
of the theorem of three geodesics by a careful analysis of the curve shortening
flow on Riemannian surfaces. He proved that under the curve shortening flow,
any embedded curve remains embedded and would either converge to a point in
finite time or an embedded closed geodesic as time goes to infinity. As a curve
which is initially embedded stays embedded throughout the flow, this prevents the
multiplicity problem encountered by Lusternik–Schnirelmann’s approach using
a discrete curve shortening process of Birkhoff [1917]. On the other hand, the
situations in Theorem 1.1 and Theorem 1.3 are simpler as multiplicity cannot occur
(see [Giannoni and Majer 1997, Remark 3.2]).

We show that the convergence behavior for the chord shortening flow is similar to
that for the curve shortening flow on a closed Riemannian surface [Grayson 1989].
In particular, we prove that under the chord shortening flow, any chord would either
converge to a point in finite time or to an orthogonal geodesic chord as time goes
to infinity. Unlike [Grayson 1989], this dichotomy holds in any dimension and
codimension, in contrast with the curve shortening flow where an embedded curve
may develop self-intersections or singularities after some time when codimension is
greater than one [Altschuler 1991]. In the special case that 6 = ∂�, where �⊂R2

is a compact convex planar domain, we give a sufficient condition for an initial
chord to converge to a point in finite time. In fact, any “convex” chord in � which
is not an orthogonal geodesic chord would converge to a point on ∂� in finite time.
This can be compared to the famous result of Huisken [1984] which asserts that
any compact embedded convex hypersurface in Rn converges to a point in finite
time under the mean curvature flow.

The chord shortening flow is also of independent interest from the analytic point
of view. Since any chord in Rn is determined uniquely by its end points, we can
regard the chord shortening flow as an evolution equation for the two end points
lying on 6. As a result, the flow is a nonlocal evolution of a pair of points on 6
as it depends on the chord joining them. In fact, the chord shortening flow can be
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regarded as the heat equation for the half-Laplacian (or the Dirichlet-to-Neumann
map).

The organization of this paper is as follows. In Section 2, we introduce the
chord shortening flow, give a few examples, and prove the short time existence and
uniqueness of the flow. In Section 3, we derive the evolution equations for some
geometric quantities under the chord shortening flow. In Section 4, we prove the
long-time existence to the flow provided that it does not shrink the chord to a point
in finite time. In Section 5, we prove that an initial convex chord inside a compact
convex domain in R2 would shrink to a point in finite time under the flow, provided
that the initial chord is not an orthogonal geodesic chord.

Notation. Throughout this paper, we will denote I := [0, 1] with ∂ I = {0, 1}. The
Euclidean space Rn is always equipped with the standard inner product 〈 · , · 〉 and
norm | · |. For any subset S ⊂ Rn , we use d( · , S) to denote the distance function
from S.

2. Chord shortening flow

In this section, we introduce a new geometric flow called the chord shortening flow.
This flow has some similarities with the classical curve shortening flow. The main
result in this section is the short-time existence and uniqueness theorem for the
chord shortening flow (Proposition 2.7). We also study some basic examples of
such a flow.

Let 6 be a k-dimensional smooth submanifold1 in Rn . Note that 6 can be
disconnected in general. For any two points p, q ∈6, we can consider the extrinsic
chord distance between them in Rn .

Definition 2.1. The chord distance function d :6×6→ R≥0 is defined to be

d(p, q) := distRn (p, q)= |p− q|.

Since any two distinct points in Rn are connected by a unique line segment
realizing their distance, the chord distance function d is smooth away from the
diagonal {(p, p) ∈6×6 : p ∈6}.

Definition 2.2. For any two distinct points p, q on6, we will use C p,q to denote the
unique oriented chord from p to q . The outward unit conormal, denoted by η, is the
unit vector at ∂C p,q tangent to C p,q pointing out of C p,q . Note that η(p)=−η(q).
(see Figure 2)

1In fact all the following discussions make sense for immersed submanifolds. However, for
simplicity, we will assume that all submanifolds are embedded.
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6 = ∂�

�

η(q)q

−ηT (q)

−ηT (p)
p

η(p)

C p,q

Figure 2. A chord C p,q joining p and q, the outward unit conor-
mals η and their (negative) tangential components along 6 = ∂�.

Let C(t)=C pt ,qt be a smooth family of chords with distinct end points pt , qt ∈6.
If `(t)= d(pt , qt) is the length of the chord C(t), the first variation formula for arc
length (see for example [Cheeger and Ebin 1975, (1.5)]) implies that

(2-1) d`
dt
=

〈
dpt

dt
, η(pt)

〉
+

〈
dqt

dt
, η(qt)

〉
.

Note that the interior integral term vanishes as C(t) is a geodesic for every t . Since
pt and qt lie on 6 for all t , both dpt/dt and dqt/dt are tangential to 6. Therefore,
we can express (2-1) as

(2-2) d`
dt
=

〈
dpt

dt
, ηT (pt)

〉
+

〈
dqt

dt
, ηT (qt)

〉
,

where ( · )T denotes the tangential component of a vector relative to 6. More
precisely, if πx : R

n
→ Tx6 is the orthogonal projection onto the tangent space

Tx6 ⊂ Rn , then vT
= πx(v) for any vector v ∈ Tx Rn ∼= Rn .

It is natural to consider the (negative) gradient flow to the chord length functional,
which leads to the following definition.

Definition 2.3 (chord shortening flow). A smooth family of curves

C(u, t) : I ×[0, T )→ Rn

is a solution to the chord shortening flow (relative to 6) if for all t ∈ [0, T ),

(a) pt := C(0, t) and qt := C(1, t) lie on 6,

(b) C(t) := C( · , t) : I → Rn is a constant speed parametrization of C pt ,qt , and

(c) ∂C/∂t(0, t)=−ηT (C(0, t)) and ∂C/∂t(1, t)=−ηT (C(1, t)).

Let us begin with some basic examples of the chord shortening flow as defined
in Definition 2.3.
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6 = ∂�

�

C∞

Figure 3. A limit chord C∞ which meets ∂� orthogonally but not
lying inside �.

Example 2.4. Let 6 be an affine k-dimensional subspace in Rn . The chord short-
ening flow with respect to 6 will contract any initial chord C(0)= C p,q to a point
in finite time. The end points would move towards each other with unit speed
along the chord C(0) until they meet at the midpoint of C(0) at the “blow-up” time
T = 1

2 d(p, q).

Example 2.5. Let 6 be a union of two disjoint circles in R2 (see Figure 3). We will
see (from Theorem 4.1) that any chord joining two distinct connected components of
6 would evolve under the chord shortening flow to a limit chord C∞ orthogonal to
6 as t→∞. The same phenomenon holds for any 6 ⊂ Rn which is disconnected.

Example 2.6. Let6 be the ellipse {(x, y)∈R2
: x2
+4y2

= 1} in R2. By symmetry
it is not difficult to see that for any initial chord passing through the origin (with
the exception of the major axis), it would evolve under the chord shortening flow
to the minor axis of the ellipse, which is a chord orthogonal to 6 and contained
inside the region enclosed by the ellipse. See Figure 4. This example shows that the
number of distinct orthogonal chords guaranteed by the Lusternik–Schnirelmann
theorem is optimal. If we start with an initial chord that lies completely on one side
of the major or minor axis, then the chord will shrink to a point in finite time (by
Theorem 6.5).

We end this section with a fundamental result on the short-time existence and
uniqueness for the chord shortening flow.

Proposition 2.7 (short-time existence and uniqueness). For any initial chord C0 :

I → Rn with C0(∂ I ) ⊂ 6, there exists an ε > 0 and a smooth solution C(u, t) :
I ×[0, ε)→ Rn to the chord shortening flow relative to 6 as in Definition 2.3 with
initial condition C( · , 0)= C0. Moreover, the solution is unique.
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6 = ∂�
�

C0

0 major axis

minor axis

Figure 4. Any initial chord C0 through the origin (other than the
major axis) would converge under the chord shortening flow to the
minor axis.

Proof. Note that for any given p 6= q ∈6, the outward unit conormal η at the end
points p, q of the chord C p,q is given by

η(p)= p−q
|p−q|

= −η(q).

Therefore, Definition 2.3(c) is equivalent to the following system of nonlinear
first-order ODEs:

(2-3) dp
dt
=−

πp(p− q)
|p− q|

,
dq
dt
=−

πq(q − p)
|q − p|

,

where πx :R
n
→Rn is the orthogonal projection onto Tx6 (which depends smoothly

on x). Note that the right-hand side of (2-3) is a Lipschitz function in p and q as long
as |p− q| is bounded away from 0. Therefore, the existence and uniqueness of the
initial value problem follows from the fundamental local existence and uniqueness
theorem for first-order ODE systems (see, for example, [Taylor 1996, Theorem
2.1]). Hence, (2-3) is uniquely solvable on some interval t ∈ [0, ε) for any initial
data p(0) = p0 and q(0) = q0 such that p0 6= q0 ∈ 6. Finally we get a solution
C(u, t) : I ×[0, ε)→Rn to the chord shortening flow by defining C( · , t) : I→Rn

to be the constant speed parametrization of the chord C pt ,qt . �

3. Evolution equations

In this section, we derive the evolution of some geometric quantities under the
chord shortening flow relative to any k-dimensional submanifold 6 in Rn .

Definition 3.1. Let C : I = [0, 1]→ Rn be a chord joining p to q . For any (vector-
valued) function f : ∂ I = {0, 1}→ Rm , we define the L2-norm ‖ f ‖L2 and the sum
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f̄ of f to be

(3-1) ‖ f ‖L2 := (| f (0)|2+ | f (1)|2)1/2 and f̄ := f (0)+ f (1).

Also, we define the 1
2 -Laplacian of f relative to the chord C to be the vector-valued

function 11/2 f : ∂ I = {0, 1} → Rm defined by

(3-2) (11/2 f )(0)= f (0)− f (1)
`

=−(11/2 f )(1),

where `= |p− q| is the length of the chord C .

Lemma 3.2. Given any f : ∂ I → Rm , we have 11/2 f = 0 and 〈 f,11/2 f 〉 =
`
2‖1

1/2 f ‖2L2 ≤
2
`
‖ f ‖2L2 .

Proof. It follows directly from (3-1) and (3-2). �

Definition 3.3. Let C = C p,q : I → Rn be a chord joining two distinct points p, q
on 6. We define the tangential outward conormal ηT

: ∂ I = {0, 1} → Rn to be the
tangential component (relative to 6) of the outward unit conormal of C , i.e., (recall
(2-2) and Definition 2.2)

(3-3) ηT (u)= πC(u)η for u = 0, 1.

Lemma 3.4 (evolution of chord length). Suppose C(u, t) : I × [0, T )→ Rn is a
solution to the chord shortening flow relative to 6 as in Definition 2.3. If we denote
the length of the chord C(t) at time t by

`(t) := d(C(0, t),C(1, t)),

then ` is a nonincreasing function of t and (recall (3-1) and (3-3))

(3-4) d`
dt
=−‖ηT

‖
2
L2 ≤ 0.

Proof. It follows directly from the first variation formula (2-2). �

Theorem 3.5. Suppose C(u, t) : I ×[0, T )→ Rn is a solution to the chord short-
ening flow relative to 6 as in Definition 2.3. Then the tangential outward conormal
ηT of the chord C(t) satisfies the following evolution equation:

(3-5) ∂

∂t
ηT
=−11/2ηT

+
1
`
‖ηT
‖

2
L2η

T

−

k∑
i=1

〈A(ηT , ei ), η
N
〉ei −

1
`
(ηT − ηT )N

− A(ηT , ηT ),

where {ei }
k
i=1 is an orthonormal basis of T6 at the end points of C(t). Here, ( · )N

denotes the normal component of a vector relative to 6 and A : T6× T6→ N6
is the second fundamental form of 6 defined by A(u, v) := (Duv)

N .
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Proof. Let C(u, t) : I × [0, T )→ Rn be a solution to the chord shortening flow
relative to 6. Since C(t) = C( · , t) : I → Rn is a family of chords which are
parametrized proportional to arc length, ∂/∂t is a Jacobi field (not necessarily
normal) along each chord which can be explicitly expressed as

∂

∂t
=−(1− u) ηT (0)− u ηT (1),

where η is the outward unit conormal for C(t). Since [∂/∂u, ∂/∂t] = 0, we have

(3-6) D∂/∂t
∂

∂u
= D∂/∂u

∂

∂t
= ηT (0)− ηT (1).

Moreover, as C(t) is parametrized with constant speed, we have ‖∂/∂u‖ = `, thus

−η(0)= 1
`

∂

∂u

∣∣∣
u=0

and η(1)= 1
`

∂

∂u

∣∣∣
u=1
.

Fix u = 0. Let p = C(0, t) ∈6 and {e1, . . . , ek} be an orthonormal basis of Tp6

such that (Dei e j (p))T = 0 for i, j = 1, . . . , k. Therefore, we have

(3-7) D∂/∂t ei =−A(ηT , ei ).

Using Lemma 3.4, (3-6), and (3-7), we have

∂ηT

∂t
=
∂

∂t
(
−

1
`

) k∑
i=1

〈
∂

∂u
, ei

〉
ei −

1
`

k∑
i=1

∂

∂t

(〈
∂

∂u
, ei

〉
ei

)
=

1
`
‖ηT
‖

2
L2η

T

−
1
`

k∑
i=1

(〈
D∂/∂u

∂

∂t
, ei

〉
ei +

〈
∂

∂u
, D∂/∂t ei

〉
ei +

〈
∂

∂u
, ei

〉
D∂/∂t ei

)
=

1
`
‖ηT
‖

2
L2η

T
−
ηT

`
− A(ηT , ηT )

−
1
`

k∑
i=1

(〈−ηT (1), ei 〉ei + `〈η
N, A(ηT, ei )〉ei )

=−11/2ηT
+

1
`
‖ηT
‖

2
L2η

T

−

k∑
i=1

〈A(ηT , ei ), η
N
〉ei −

1
`
(ηT − ηT )N

− A(ηT , ηT ).

A similar calculation yields (3-5) at u = 1. This proves the proposition. �

Remark 3.6. When 6 is an embedded planar curve (i.e., k = 1= n− 1), one can
give a simpler formula of (3-5) since (after introducing an orientation of the curve
6) ηT is completely described by the “boundary angle” 2 between η and 0 (see
Definition 6.2). As a result, (3-5) reduces to the evolution of 2, which is a scalar
quantity instead of a vector quantity ηT as in (3-5) (see Proposition 6.6).



CHORD SHORTENING FLOW 479

Corollary 3.7. Under the same assumptions as in Theorem 3.5, we have

(3-8) 1
2

d
dt
‖ηT
‖

2
L2 =−

`
2‖1

1/2ηT
‖

2
L2 +

1
`
‖ηT
‖

4
L2 −〈A(ηT , ηT ), η〉.

Proof. Using (3-5) and Lemma 3.2, noting that the last two terms of (3-5) are
normal to 6, we have

1
2

d
dt
‖ηT
‖

2
L2 =

〈
ηT ,

∂ηT

∂t

〉
=−

`
2‖1

1/2ηT
‖

2
L2 +

1
`
‖ηT
‖

4
L2 −〈A(ηT , ηT ), ηN 〉. �

Example 3.8. In the case of Example 2.4, we have ηT (0) = −ηT (1) equals a
constant unit vector independent of t and hence both sides are identically zero in
(3-5) and (3-8).

Example 3.9. Consider the vertical strip � := {(x, y) ∈ R2
: 0 ≤ x ≤ 1} with

boundary 6 = ∂� consisting of two parallel vertical lines. Let p0 =
(
0,−1

2 h
)

and q0 =
(
1, 1

2 h
)

for some h > 0. It is easy to check that the solution to the
chord shortening flow with initial chord C p0,q0 is given by pt =

(
0,− 1

2 h(t)
)
, qt =(

1, 1
2 h(t)

)
, where h(t) is the unique solution to the ODE

h′(t)=−
2h(t)√

1+ h2(t)

with initial condition h(0)= h. From this we can see that the solution h(t) exists
for all t ≥ 0. Moreover, −h′(t) ≤ 2h(t) implies h(t) ≤ he−2t and thus h(t)→ 0
exponentially as t→+∞. Therefore, the chord converges to a chord meeting ∂�
orthogonally. In this case, we have

−ηT (0)=
1√

1+ h2(t)
(0, h(t))= ηT (1),

which satisfies the evolution equation (3-5) and ηT
→ 0 as t→+∞. See Figure 5.

4. Long-time existence

In this section, we prove our main convergence result which says that the only
two possible convergence scenarios are given in Example 3.8 and 3.9. One should
compare this convergence result with a similar result of Grayson [1989, Theorem
0.1] for curve shortening flow on surfaces. For simplicity, we assume that 6 is
compact. However, the same result holds for noncompact 6 which satisfies some
convexity condition at infinity as in [Grayson 1989].

Theorem 4.1 (long-time convergence). Let 6 ⊂ Rn be a compact k-dimensional
smooth submanifold without boundary. Suppose C(0) : I → Rn is a chord with
distinct end points on 6. Then there exists a maximally defined smooth family of
chords C(t) : I→Rn for t ∈[0, T ) with distinct end points on6, and C(t)=C( · , t)
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y

�

6 = ∂�

(
0,− 1

2 h(t)
)(

0,− 1
2 h
)

(
1, 1

2 h
)(

1, 1
2 h(t)

)
x

Figure 5. A chord converging to a limit chord orthogonal to ∂�.

where C(u, t) : I ×[0, T )→ Rn is the unique solution to the chord shortening flow
(relative to 6) as in Definition 2.3.

Moreover, if T < +∞, then C(t) converges to a point on 6 as t → T . If T is
infinite, then C(t) converges to an orthogonal geodesic chord with end points on 6
as t→∞.

By the short time existence and uniqueness theorem (Proposition 2.7), the chord
shortening flow continues to exist and is unique as long as ` > 0. Therefore, C(t)
is uniquely defined for t ∈ [0, T ) where either T <+∞ or T =+∞.

Lemma 4.2. Let C(t), t ∈ [0, T ), be a maximally defined chord shortening flow.
Then one of the following holds:

(a) T <+∞ and C(t) shrinks to a point on 6 as t→ T .

(b) T =+∞ and `(t)→ `∞ > 0 as t→+∞.

Proof. As `(t) is a nonincreasing function of t by Lemma 3.4, it either converges
to 0 or to some positive number `∞ > 0 as t → T . By short-time existence
(Proposition 2.7), it cannot converge to `∞ > 0 in finite time. So when T <+∞,
C(t) must converge to a point on 6 by compactness of 6. It remains to show
that `(t) cannot converge to 0 if T =+∞. We will prove this by a contradiction
argument. Suppose, on the contrary, that T =+∞ and `(t)→ 0 as t→+∞. Since
6 is compact, there exists some constant ε0>0 such that for any two points p, q ∈6
with d(p, q) < ε0, the chord C p,q joining them has ‖ηT

‖
2
L2 be bounded from below

by a universal positive constant (see, for example, [Colding and Minicozzi 2011,
Lemma 5.2]). By Lemma 3.4, `(t) must decrease to zero in finite time, which is a
contradiction. �
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Next, we claim that if the flow exists for all time (i.e., T =+∞), then it must
converge to an orthogonal geodesic chord to 6 as t→∞. Since |ηT

| ≤ ‖ηT
‖L2 , it

suffices to prove the following lemma. Theorem 4.1 clearly follows from Lemma 4.2
and 4.3.

Lemma 4.3. Under the same assumption as Lemma 4.2 and suppose T = +∞,
then ‖ηT

‖L2 → 0 as t→+∞.

Proof. Write `t = `(t) for t ∈ [0,+∞]. By Lemma 3.4 and 4.2, we have

(4-1) `0 ≥ `t ≥ `∞ > 0 for all t .

Moreover, integrating the inequality in Lemma 3.4 we obtain

`t − `∞ =

∫
∞

t
‖ηT
‖

2
L2 dτ ≥ 0.

As a result, ∫
∞

t
‖ηT
‖

2
L2 dτ → 0 as t→∞.

In other words, ‖ηT
‖

2
L2 is L2-integrable on t ∈ [0,+∞). If we can control the time

derivative of ‖ηT
‖

2
L2 , then we can conclude that ‖ηT

‖L2→ 0 as t→∞. Using (3-8),
(4-1), Lemma 3.2, and ‖ηT

‖
2
L2 ≤ 2, we have the following differential inequality

(4-2) 1
2

d
dt
‖ηT
‖

2
L2 ≤

(
C + 4

`∞

)
‖ηT
‖

2
L2,

where C= sup6 |A|>0 is a constant depending only on the compact submanifold6.
We now combine (4-2) with the fact that

∫
∞

t ‖η
T
‖

2
L2 dτ→ 0 as t→∞ to conclude

that ‖ηT
‖

2
L2 → 0 as t→∞.

To simplify notation, let f (t) := ‖ηT
‖

2
L2 and c := C + 4/`∞. Then

∫
∞

t f → 0
as t →∞ and f ′ ≤ c f . We argue that f (t)→ 0 as t →∞. Suppose not, then
there exists an increasing sequence tn→+∞ such that

(4-3) f (tn) >
1
n

and
∫
∞

tn/2
f ≤

1
n3 .

We claim that there exists t∗n ∈ (tn − 1/n, tn + 1/n) such that f (t∗n )≤ 1/n2. If not,
then by (4-3),

2
n3 ≤

∫ tn+1/n

tn−1/n
f ≤

∫
∞

tn/2
f ≤

1
n3 ,

which is a contradiction. Using that f ′ ≤ c f , we see that by (4-3),

1
n
< f (tn)≤ f (t∗n )e

c/n
≤

1
n2 ec/n.

As a result, there is a contradiction when n is sufficiently large. We have thus
proved that f (t)→ 0 as t→∞, as claimed. �
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5. Existence of orthogonal geodesic chords

In this section, we give several geometric applications of the chord shortening flow
concerning the existence of multiple orthogonal geodesic chords. We first give the
precise definition.

Definition 5.1. Let6⊂Rn be a smooth k-dimensional submanifold without bound-
ary. An orthogonal geodesic chord for6 is a geodesic c : [0, 1]→Rn with endpoint
c(0) and c(1) lying on 6 such that c′(0) and c′(1) are normal to 6 at c(0) and c(1)
respectively.

An orthogonal geodesic chord is also called a free boundary geodesic [Zhou
2016] or a double normal [Kuiper 1964] in the literature. Note that in the case
where 6 ⊂ Rn is an embedded hypersurface which bounds a domain � in Rn , our
definition of orthogonal geodesic chords does not require the chord be contained
inside � as in [Giambò et al. 2014]. The problem of the existence of multiple
orthogonal geodesic chords for submanifolds in Rn was first treated by Riede [1968]
as follows. Let C6 be the space of all piecewise smooth curves c : [0, 1] → Rn

with end points on 6, endowed with the compact open topology. There exists a
Z2-action on C6 by c(t) 7→ c(1− t) whose fixed point set is denoted by 1′. Denote
by H Z2

∗ (C6,1′) and H∗Z2
(C6) the Z2-equivariant homology groups (relative to 1′)

and cohomology groups respectively. All the (co)homology groups in this paper are
considered with a Z2 coefficient. The following result is taken from [Riede 1968,
Satz (5.5)].

Lemma 5.2. If there exists β ∈ H Z2
∗ (C6,1′) and α1, . . . , αs ∈ H∗Z2

(C6) (not nec-
essarily distinct) with deg αi > 0 for all i such that (α1 ∪ · · · ∪ αs)∩ β 6= 0, then
there exists at least s+ 1 orthogonal geodesic chords for 6.

The largest possible integer s such that the hypothesis holds in Lemma 5.2 is
often called the cup length of C6 . The proof of Lemma 5.2 in [Riede 1968] involves
a discrete curve shortening process 9 on C6 which satisfies properties (1)–(3) as
described in the introduction. As we have pointed out, it is no easy task to verify
the continuity of 9 with respect to the initial curve. For our problem at hand, one
can in fact reduce it to a much simpler situation as follows. Since any curve c ∈ C6
can be continuously deformed into the unique chord joining the same end points,
we can restrict C6 to the subset C0

6 consisting of all the chords with end points on 6.
The chord shortening flow is then a curve shortening process on C0

6 which satisfies
all the required properties. Moreover, the space of chords C0

6 can also be described
as the orbit space of 6 ×6 under the Z2-action (p, q) 7→ (q, p). As before, if
we let 1 ⊂ 6 ×6 be the fixed point set of the Z2-action, and H Z2

∗ (6 ×6,1),
H∗Z2

(6 ×6) be the Z2-equivariant homology and cohomology respectively, we
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have by naturality

(5-1) H Z2
∗
(6×6,1)∼= H Z2

∗
(C6,1′) and H∗Z2

(6×6)∼= H∗Z2
(C6).

Hayashi [1982] studied the equivariant (co)homology of 6×6 and obtained the
following result.

Lemma 5.3 [Hayashi 1982, Theorem 2]. There exists β ∈ H Z2
2k (6 ×6,1) and

α ∈ H 1
Z2
(6×6) such that αk

∩β 6= 0 in H Z2
k (6×6,1), where αk

= α ∪ · · · ∪α

is the k-th power of cup products of α and k = dim6.

We then obtained Theorem 1.3, which clearly implies Lusternik–Schnirelmann’s
theorem (Theorem 1.1) as a special case since the orthogonal geodesic chords must
be contained inside the convex domain by convexity of the domain � ⊂ Rn , by
combining Lemma 5.3, 5.2, and (5-1). For the sake of completeness, we provide
below some details of the min-max arguments.

Denote by 3 = C0
6 the space of chords with end points on 6 and for each

` ∈ [0,+∞),
3` := {c ∈3 : Length(c)≤ `}.

Let α and β be given as in Lemma 5.3 and under the identification (5-1) one defines
the homology classes h j ∈ H j (3,3

0) where

h j := α
k− j
∩β for j = 0, . . . , k.

For each of the homology class h j (which is nonzero by Lemma 5.3) above, one
can define κ j to be the infimum over all cycles representing h j of the length of
the longest chord in the cycle. Since the h j are pairwise subordinate (see, e.g.,
[Klingenberg 1978] for a precise definition) to each other, we have the inequalities

κ0 ≤ κ1 ≤ κ2 ≤ · · · ≤ κk .

By similar arguments in the proof of Lemma 4.2, there exists ε0 > 0 such that 30

is a deformation retract of 3ε0 . Since h1 6= 0, we must have κ0 ≥ ε0 > 0.
Next, we claim that each κ j arises as the length of some orthogonal geodesic

chord. Let 9t :3→3, t ∈ [0,+∞), be the chord shortening flow and for each `,
define the critical set

K` := {c ∈3 : c is an orthogonal geodesic chord of length `}.

Our main theorem (Theorem 4.1) implies the following “deformation lemma”:
Let U ⊂3 be any open neighborhood of K`; there exists some small ε > 0 such
that for any c ∈ 3`+ε , one can find a neighborhood Uc of c and tc ≥ 0 such that
9t(Uc)⊂U ∪3`−ε for each t ≥ tc. Standard arguments as in [Klingenberg 1978]
then imply that K` j is not empty, hence proving our claim.
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Finally, it remains to show that if κ j−1= κ j = κ for some j = 1, . . . , k, then there
exist infinitely many distinct orthogonal geodesic chords with length κ . We argue
by contradiction. Suppose there are only finitely many orthogonal geodesic chords
with length κ , i.e., Kκ = {c1, . . . , cm}. Choosing pairwise disjoint contractible
neighborhoods U1, . . . ,Um in3\30 for c1, . . . , cm respectively, we have H 1(U1∪

· · · ∪Um) = 0. Fix ε > 0 for the neighborhood W of Kκ as in the deformation
lemma above. There exists a cycle representing h j such that all the chords in the
cycle have length at most κ+ε. By the deformation lemma, we can apply the chord
shortening flow to every chord in the cycle for some fixed positive time so that
every chord lies in W ∪3κ−ε . This gives a contradiction as in [Klingenberg 1978,
Theorem 2.1.10] and thus our proof is completed.

6. Shrinking convex chord to a point

In this section, we study the evolution of chords inside a convex connected planar
domain in R2. In particular, we prove that if an initial chord is convex, then it will
shrink to a point in finite time under the chord shortening flow. In order to make
precise the concept of convexity, we need to be consistent with the orientation of a
curve in R2. For this reason, we restrict our attention to plane curves which bounds
a domain in R2.

Definition 6.1 (boundary orientation). For any smooth domain �⊂ R2, we always
orient the boundary ∂� as the boundary of � with the standard orientation inherited
from R2. The orientation determines uniquely a global unit tangent vector field,
called the orientation field, ξ : ∂� → T (∂�) such that ν := Jξ is the inward
pointing normal of ∂� relative to �. Here, J : R2

→ R2 is the counterclockwise
rotation by 1

2π .

Using Definition 6.1, we can define the boundary angle 2 which measures the
contact angle between a chord C and the boundary ∂�.

Definition 6.2 (boundary angle). For any (oriented) chord C p,q joining p to q with
p 6= q ∈ ∂�, we define the boundary angle 2 : {p, q} → R by

2(p) := 〈η(p), ξ(p)〉 and 2(q) := −〈η(q), ξ(q)〉,

where ξ is the orientation field on ∂� as in Definition 6.1.

Definition 6.3. An oriented chord C p,q is convex if 2≥ 0 at both end points.

Remark 6.4. If we change the orientation of the chord from C p,q to Cq,p, the
boundary angle 2 changes sign. Since the orientation field ξ is always tangent to
∂�, we have 2(p) = 2(q) = 0 if and only if C p,q meets ∂� orthogonally at its
end points p and q .
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If we define the “unit normal” N of ∂C p,q = {p, q} inside ∂� by setting

N (p)=−ξ(p) and N (q)= ξ(q),

then a solution to the chord shortening flow (2-3) can be consider as a smooth
1-parameter family of point pairs on ∂� given by γ : {0, 1} × [0, T )→ ∂� such
that

(6-1) ∂γ

dt
(u, t)=2(γ (u, t))N (γ (u, t)),

where 2 is the boundary angle for the oriented chord from γ (0, t) to γ (1, t). Since
the value of2 at u= 0 depends also on the other end point γ (1, t), this is a nonlocal
function. Therefore, the chord shortening flow can be thought of as a nonlocal
curve shortening flow driven by the boundary angle 2.

We are now ready to state the main theorem of this section. The readers can
compare Theorem 6.5 with the famous result of Huisken [1984] which says that
any compact embedded convex hypersurface in Rn would contract to a point in
finite time under the mean curvature flow.

Theorem 6.5. Let � ⊂ R2 be a compact connected domain with smooth convex
boundary. Any convex chord which is not an orthogonal geodesic chord would
converge to a point in finite time under the chord shortening flow.

To prove Theorem 6.5 we need to establish a few propositions, which are of
geometric interest. We first state the evolution of the boundary angle 2 under the
chord shortening flow. Note that we always have |2| ≤ 1 by definition.

Proposition 6.6 (evolution of boundary angle). Suppose C(u, t) : I ×[0, T )→ R2

is a solution to the chord shortening flow as in Definition 2.3. Then, the boundary
angle 2(u, t) : {0, 1} × [0, T )→ R satisfies the following equation (recall (3-1)
and (3-2)):

(6-2) ∂

∂t
2=−11/22+ 1

`
(‖2‖2L2+`k〈−η, ν〉)2+ 1

`
(1+〈ξ(p), ξ(q)〉)(2−2),

where k := 〈∇ξξ, ν〉 is the curvature of ∂� with respect to ν (recall Definition 6.1),
`= `(t) is the length of the chord C( · , t) : I → R2 with outward unit conormal η.

Proof. It follows directly from Theorem 3.5 and Definition 6.2 �

Using (6-2), we immediately have the following evolution equations.

Corollary 6.7. Under the same hypothesis as Proposition 6.6, we have

d
dt
2= 1

`

(
‖2‖2L2 − 1−〈ξ(p), ξ(q)〉

)
2+ k〈−η, ν〉2,(6-3)

1
2

d
dt
‖2‖2L2 =

`
2〈ξ(p), ξ(q)〉‖1

1/22‖2L2 + k〈−η, ν〉22(6-4)

+
1
`

(
‖2‖2L2 − 1−〈ξ(p), ξ(q)〉

)
‖2‖2L2 .
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Proof. Both equation follows from (6-2) and Lemma 3.2. �

Our first lemma is that convexity is preserved under the chord shortening flow.
From now on, we will use C(t) to denote the unique solution to the chord shortening
flow with initial chord C(0) defined on the maximal time interval t ∈ [0, T ) (where
T could be infinite).

Lemma 6.8. Let C(0) be a convex chord inside a compact domain � ⊂ R2 with
convex boundary ∂�. Then, C(t) remains convex for all t ∈ [0, T ).

Proof. Let 2min and 2max be the minimum and maximum of 2, both of which are
Lipschitz functions of t . By (6-2), we have the following equality:

(6-5) d
dt
2min =

1
`

(
(‖2‖2L2 − 1)2min+ `k〈−η, ν〉2min−〈ξ(p), ξ(q)〉2max

)
.

As ∂� is convex, we have k ≥ 0 and 〈−η, ν〉 ≥ 0. Moreover, if the chord is convex,
then 2min ≥ 0. Therefore, (6-5) implies the following differential inequality:

(6-6) d
dt
2min ≥

1
`

(
(‖2‖2L2 − 1)2min−〈ξ(p), ξ(q)〉2max

)
.

By elementary geometry (see Figure 6), we can express the term involving the
orientation field as

(6-7) 〈ξ(p), ξ(q)〉 =2p2q −
√
(1−22

p)(1−2
2
q).

Combining (6-6) with (3-4), noting that ‖ηT
‖

2
L2 = ‖2‖

2
L2 , and using (6-7),

d
dt

(
2min

`

)
≥

1
`2

(
(2‖2‖2L2 − 1)2min−〈ξ(p), ξ(q)〉2max

)
=

1
`2

(
223

min− (1−2
2
max)2min+

√
(1−22

min)(1−2
2
max)2max

)
≥

1
`2

(
223

min+ (1−2
2
max)(2max−2min)

)
≥ 0.

Therefore, if 2min ≥ 0 at t = 0, then 2min/` is a nondecreasing function of t , hence
is nonnegative for all t ∈ [0, T ). This proves that C(t) remains convex for all
t ∈ [0, T ). �

We are now ready to prove the main result of this section.

Proof of Theorem 6.5. By Theorem 4.1, it suffices to show that the chord shortening
flow C(t) exists only on a maximal time interval t ∈ [0, T ) with T < +∞. First
of all, 2≥ 0 for all t ∈ [0, T ) by Lemma 6.8. Using (6-3) and (3-4), noticing that
2‖2‖2L2 ≥2

2, a similar argument as in the proof of Lemma 6.8 gives

d
dt

(
2

`

)
≥

1
`2 (2

2
− 1−〈ξ, ξ〉)2≥

1
`2 (2

2
min+2min2max)2≥ 0.
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ξ(p)
�

p
η(p)

6 = ∂�
ξ(q)

−η(q)q
θq

θp→

Figure 6. The convex region cut out by a convex chord in �. Note
that 〈ξ(p), ξ(q)〉 = cos(θp + θq).

Therefore, 2/` is a nondecreasing function of t . Since 2/` > 0 at t = 0, it
remains bounded away from zero for all t ∈ [0, T ). Therefore, if T = +∞, by
Theorem 4.1 we must have that C(t) converges to an orthogonal geodesic chord
and thus 2/`→ 0, which is a contradiction. �
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