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BRAID GROUP REPRESENTATIONS FROM
BRAIDING GAPPED BOUNDARIES OF

DIJKGRAAF–WITTEN THEORIES

NICOLÁS ESCOBAR-VELÁSQUEZ, CÉSAR GALINDO AND ZHENGHAN WANG

We study representations of the braid groups from braiding gapped bound-
aries of Dijkgraaf–Witten theories and their twisted generalizations, which
are (twisted) quantum doubled topological orders in two spatial dimensions.
We show that the braid representations associated to Lagrangian algebras
are all monomial with respect to some specific bases. We give explicit formu-
las for the monomial matrices and the ground state degeneracy of the Kitaev
models that are Hamiltonian realizations of Dijkgraaf–Witten theories. Our
results imply that braiding gapped boundaries alone cannot provide univer-
sal gate sets for topological quantum computing with gapped boundaries.

1. Introduction

Interesting new directions in topological quantum computing include its extension
from anyons to gapped boundaries and symmetry defects, with the hope that
anyonic systems with nonuniversal computational power can be enhanced to achieve
universality. Enrichment of topological physics in two spatial dimensions by gapped
boundaries has been investigated intensively, but their computing power has not
been analyzed in detail yet. One interesting case is gapped boundaries of Dijkgraaf–
Witten theories both for their experimental relevance and as theoretical exemplars
(see [Cong et al. 2016; 2017a; 2017b]).

In this paper, we study representations of the braid groups from braiding gapped
boundaries of Dijkgraaf–Witten theories and their twisted generalizations, which are
(twisted) quantum doubled topological orders in two spatial dimensions. We show
that the resulting braid (pure braid) representations are all monomial with respect to
some specific bases, and their entries are roots of unity; hence all such representation
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Facultad de Ciencias de la Universidad de los Andes, and Wang by NSF grant DMS-1411212.
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images of the braid groups are finite groups. The finiteness of the image of the
braid representation from braiding gapped boundaries of twisted Dijkgraaf–Witten
theories follows directly from [Etingof et al. 2008], since they are braid representa-
tions obtained from group-theoretical braided fusion categories. Besides, we give
explicit formulas for the monomial matrices and the ground state degeneracy of the
Kitaev models that are Hamiltonian realizations of Dijkgraaf–Witten theories. The
universal gate sets from [Cong et al. 2017c] include a nontopological measurement
primitive. Our results imply that braiding gapped boundaries alone cannot provide
universal gate sets for topological quantum computing with gapped boundaries.

For a topological order of the form C = Z(S), were S is some unitary fusion
category, gapped boundaries are modeled by Lagrangian algebras (see [Cong et al.
2016]). For these models the ground manifolds have the form

HomC(1, A1⊗ · · ·⊗ An),

where the Ai ’s are the Lagrangian algebras modeling the gapped boundaries; see
[Cong et al. 2016, Section 3] for details. Recall that a Lagrangian algebra in any
modular (tensor) category is a commutative étale algebra whose quantum dimension
is maximal. A group theoretical modular category (GTMC) admitting a Lagrangian
algebra is a category of the form C = Z(VecωG) for some finite group G and some
ω ∈ Z3(G,C×), where Z denotes the Drinfeld center and VecωG is the category of
finite-dimensional G-graded vector spaces with associativity constraint twisted by
ω ∈ H 3(G,C×); see [Davydov et al. 2013; Davydov and Simmons 2017].

Kitaev [2003] proposed Hamiltonian realizations of Dijkgraaf–Witten theories,
whose topological orders are GTMCs. Moreover, extensions of these Hamiltonian
realizations to surfaces with boundaries can be constructed from Lagrangian algebras
[Bravyi and Kitaev 1998; Bombin and Martin-Delgado 2008; Beigi et al. 2011;
Kitaev and Kong 2012].

Lagrangian algebras in GTMCs are in one-to-one correspondence with indecom-
posable module categories of VecωG [Davydov et al. 2013], which are in bijection
with pairs (H, γ ), where H is a subgroup of G and γ ∈ C2(H,C×) such that
δ(γ ) = ω|H×3 , all up to conjugation [Natale 2017]. A more direct description of
the relationship between Lagrangian algebras and pairs (H, γ ) can be found in
[Davydov 2010].

Recently, a quantum computing scheme to use gapped boundaries to achieve
universality has been proposed [Cong et al. 2016; 2017a; 2017b; 2017c]. Braiding
gapped boundaries can be either added to braiding anyons as in Kitaev’s original
proposal or as new computing primitives supplemented with other topological
operations. Gapped boundaries lead to additional degeneracy of the topologically
protected subspace, which potentially allows the implementation of more powerful
gates. More precisely, the new gates come from representation matrices of the
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braid groups, Bn , on objects of the GTMCs that are tensor products of Lagrangian
algebras. However, a characterization of the computational power of these new
braid representations, mathematically a study of the representation images, was left
as an important open problem [Cong et al. 2016; 2017c].

The goal of this paper is to provide such a characterization. We find a canon-
ical monomial structure for Lagrangian algebras in Z(VecωG), which allows us
to compute things more easily. This paper is organized as follows. Section 2
develops the theory of monomial representations. Specifically, it shows how to
calculate invariants for a representation of G using the monomial structure. In
Section 3 we recall the notion of a monomial twisted Yetter–Drinfeld module.
We use the theory developed in Section 2 to give an explicit description and a
basis for HomZ(VecωG)(C, V⊗n) if V is a monomial object. Next, we describe the
representation of Bn with respect to this basis. Theorem 3.3 states the representation
is monomial and Theorem 3.4 gives an explicit formula for the nonzero entries.
In Section 4 we prove that every Lagrangian algebra in Z(VecωG) has a canonical
monomial structure. Then the results of Section 3 are applied to Lagrangian algebras
in Z(VecωG). We finish the section developing some examples and applications.

2. Monomial representations

In this section, we recall some basic definitions and results on monomial represen-
tations of groups.

Definition 2.1. A monomial space is a triple V = (V, X, (Vx)x∈X ), where

(i) V is a finite-dimensional complex vector space,

(ii) X is a finite set,

(iii) (Vx)x∈X is a family of one-dimensional subspaces of V, indexed by X, such
that V =

⊕
x∈X Vx .

Let G be a group. By a monomial representation of G on V we mean a group
homomorphism

0 : G→ GL(V )

such that for every g ∈ G, 0(g) permutes the Vx ’s; hence, 0 induces an action by
permutation of G on X. We will denote 0(g)(v) by g F v.

If V is a representation of G, we denote by V G the subspace of G-invariant
vectors, i.e.,

V G
= {v ∈ V : g F v = v, for all g ∈ G}.

For each x ∈ X, we denote by StaG(x) the stabilizer of x and by OG(x) the
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G-orbit of x . For G finite, and a representation V define

AvG : V → V, v 7→
1
|G|

∑
g∈G

g F v.

It is easy to see that AvG is a G-linear projection onto V G. We define

AvG(VO) := AvG(Vx), x ∈O(x),

since for any x ′ ∈OG(x), AvG(Vx)= AvG(Vx ′).
We say that an element x ∈ X is regular under the monomial action of G if 0(g)

is the identity map on Vx , for all g ∈ StaG(x).
Let us write X/G for the set of orbits of the action of G on X , and X̃ for the

regular ones.

Proposition 2.2 [Karpilovsky 1985, Lemma 9.1]. Let V = (V, X, (Vx)x∈X ) be a
monomial representation of G.

(a) x ∈ X is a regular element if and only if AvG(Vx) 6= 0.

(b) If x ∈ X is a regular element under the monomial action of G, then so are all
elements in the G-orbit of x.

(c) The triple
V G
= (V G, X̃ , (AvG(VO))O∈X̃ )

is a monomial space.

(d) The dimension of V G is equal to the number of regular G-orbits under the
monomial action of G on X.

Let V = (V, X, (Vx)x∈X ) and V ′ = (V ′, Y, (V ′y)y∈Y ) be monomial spaces. A
linear isomorphism T : V → V ′ is called an isomorphism of monomial spaces if
T (Vx)= V ′y for any x ∈ X.

Proposition 2.3. Let V = (V, X, (Vx)x∈X ) and V ′= (V ′, Y, (V ′y)y∈Y ) be monomial
representations of a finite group G. If T : V → V ′ is a G-linear isomorphism of
monomial spaces, then T |V G : V G

→ V ′G is an isomorphism of monomial spaces.

Proof. Clearly, T |V G : V G
→ V ′G is a linear isomorphism. Let x ∈ X be a regular

element. Since T is an isomorphism of monomial spaces, there is some y ∈ Y such
that T (Vx)= V ′y . In that case,

AvG(V ′y)= AvG(T (Vx))= T (AvG(Vx)).

This implies y is regular, because AvG(Vx) 6= {0} and T is an isomorphism. It also
gives T |V G (AvG(VO(x)))= AvG(V ′O(y)), which means T |V G is an isomorphism of
monomial spaces. �
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3. Monomial representation of the braid group

In this section we recall the notion of monomial twisted Yetter–Drinfeld module
introduced in [Galindo and Rowell 2014, Definition 4.12] and prove that the rep-
resentation of the braid groups Bn over HomZ(VecωG)(C, V⊗n) is monomial if V is
monomial.

3A. Dijkgraaf–Witten theories. Let G be a discrete group. A (normalized) 3-
cocycle ω ∈ Z3(G,C×) is a map ω : G×G×G→ C× such that

ω(ab, c, d)ω(a, b, cd)= ω(a, b, c)ω(a, bc, d)ω(b, c, d), ω(a, 1, b)= 1,

for all a, b, c, d ∈ G.
Let us recall the description of the modular category Z(VecωG), the Drinfeld center

of the category VecωG sometimes called the category of twisted Yetter–Drinfeld
modules. The category Z(VecωG) is braided equivalent to the representations of the
twisted Drinfeld double defined by Dijkgraaf, Pasquier and Roche [Dijkgraaf et al.
1991, Section 3.2].

Given ω ∈ Z3(G;C×), we define

ω(g, g′; h) :=
ω(gg′h, g, g′)ω(g, g′, h)

ω(g,g′h, g′)
, ω(g; f, h) :=

ω(g f , g, h)
ω(g, f, h)ω(g f , gh, g)

,

for f, g, g′, h ∈ G.
The objects of Z(VecωG) are G-graded vector spaces V =

⊕
g∈G Vg with a linear

map F : CωG⊗ V → V such that 1 F v = v for all v ∈ V, and

(gh) F v = ω(g, h; k)(g F (h F v)), g, h, k ∈ G, v ∈ Vk,

satisfying the compatibility condition

g F Vh ⊆ Vghg−1, g, h ∈ G.

Morphisms in Z(VecωG) are G-linear G-homogeneous maps. The tensor product of
V =⊕g∈G V and W =⊕g∈Gw is V ⊗W as vector space, with

(V ⊗W )g =
⊕
h∈G

Vh ⊗Wh−1g,

and for all v ∈ Vg, w ∈Wl ,

h F (v⊗w)= ω(h; g, l)(h F v)⊗ (h Fw).

For V,W, Z ∈ Z(VecωG), the associativity constraint is defined by

aV,W,Z : (V ⊗W )⊗ Z→ V ⊗ (W ⊗ Z),

(vg ⊗wh)⊗ zk 7→ ω(g, h, k)−1vg ⊗ (wh ⊗ zk)
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for all g, h, k ∈ G, vg ∈ Vx , wh ∈ Wh , zk ∈ Zk . The category is tensor braided,
with braiding cV,W : V⊗W→W ⊗V, V,W ∈Z(VecωG),

cV,W (v⊗w)= (g Fw)⊗ v, g ∈ G, v ∈ Vg, w ∈W.

3B. Braid group representation of twisted Yetter–Drinfeld modules. Since the
braided category Z(VecωG) is not strict, we must be careful about the way we
associate terms when we consider tensor products with more than two objects. For
a list of objects A1, A2, . . . , An ∈ Z(VecωG), we define

A1⊗ · · ·⊗ An := (· · · (A1⊗ A2)⊗ · · ·⊗ An−1)⊗ An,

and an isomorphism by

(1) σ ′i =(a
−1
A1⊗···⊗Ai−1,Ai+1,Ai

⊗idAi+2⊗···⊗An )◦(idA1⊗···Ai−1 ⊗cAi ,Ai+1⊗idAi+2⊗···⊗An )

◦(aA1⊗···⊗Ai−1,Ai ,Ai+1 ⊗ idAi+2⊗···⊗An ),

where aV,W,Z denotes the associativity constraint.
If A = A1 = · · · = An , there exists a unique group homomorphism

ρn : Bn→ AutZ(VecωG)(A
⊗n)

sending the generator σi ∈ Bn to σ ′i .
In general, the pure braid group Pn acts on A1⊗· · ·⊗ An , in the sense that there

exists a group homomorphism ρn : Pn→ AutZ(VecωG)(A1⊗ · · ·⊗ An).

3C. Crossed G-sets. Let G be a group. We will recall the definition of (left)
crossed G-set introduced in [Freyd and Yetter 1989]. A crossed G-set is a left
G-set X and a grading function | − | : X→ G such that

|gx | = g|x |g−1,

for all x ∈ X, g ∈G. If X and Y are crossed G-sets, a G-equivariant map f : X→ Y
is a morphism of crossed G-sets if | f (x)| = |x | for all x ∈ X.

If X and Y are crossed G-sets, the cartesian product X × Y is a crossed G-set
with the diagonal action and grading map |(x, y)| = |x | |y|.

The category of crossed G-sets is a braided category with braiding

cX,Y : X × Y → Y × X,

(x, y) 7→ (|x | F y, x).

Thus, given a crossed G-set X the braid group Bn acts on Xn, in the following way:

σ ′i := idX i−1 × cX,X × idXn−(i−1) .

3D. Monomial objects of Z(VecωG). Let G be a finite group and ω ∈ Z3(G,C×)

be a 3-cocycle.
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Definition 3.1 [Galindo and Rowell 2014]. A monomial Yetter–Drinfeld module
is a monomial space V = (V, X, (Vx)x∈X ) such that V ∈ Z(VecωG), the twisted
G-action F permutes the Vx ’s, and each Vx is G-homogeneous.

Remark 3.2. (a) If V = (V, X, (Vx)x∈X ) is a monomial Yetter–Drinfeld module,
the set X is a crossed G-set with the induced G-action and the grading map.

(b) If V = (V, X, (Vx)x∈X ) is a monomial Yetter–Drinfeld module, the action
of G on (Ve, Xe, (Vx)x∈Xe) is monomial, where Xe := {x ∈ X : |x | = e} and
Ve =⊕x∈Xe Vx .

Theorem 3.3. Let G be a finite group, ω ∈ Z3(G,C×). If V = (V, X, (Vx)x∈X ) is
a monomial Yetter–Drinfeld module in Z(VecωG), then

(a) the action of Bn on HomZ(VecωG)(C, V⊗n) is monomial,

(b) the dimension of HomZ(VecωG)(C, V⊗n) is equal to the number of regular G-
orbits under the monomial action of G on

(Xn)e := {(x1, . . . , xn) : |x1| · · · |xn| = e}.

Proof. The action of G on (V⊗n
e , (Xn)e, (Vx)x∈Xe) is monomial. Hence, by

Proposition 2.2, the triple

V G
e :=

(
(V⊗n

e )G, (̃Xn)e, (AvG((V⊗n
e )O))O∈(̃Xn)e

)
is a monomial space. Since HomZ(VecωG)(C, V⊗n) = (V⊗n)Ge , and each of the
automorphisms σ ′ are morphisms in Z(VecωG),

σ ′|V⊗n
e
: (V⊗n

e , (Xn)e, (Vx)x∈Xe)→ (V⊗n
e , (Xn)e, (Vx)x∈Xe)

is a G-linear isomorphism of monomial spaces. It follows from Proposition 2.3 that
σ ′|(V⊗n)Ge

is an isomorphism of monomial spaces. Thus, the linear representation

ρn : Bn→ GL((V⊗n
e )G),

σ 7→ σ ′

is a monomial representation of Bn . The second part follows immediately from
Proposition 2.2. �

3E. Monomial matrices of the braid representation. In this subsection we obtain
concrete formulas for the monomial braid representations associated to a monomial
Yetter–Drinfeld module.

Let G be a finite group, ω∈ Z3(G,C×), and V = (V, X, (Vx)x∈X ) be a monomial
Yetter–Drinfeld module. If we fix nonzero vectors S := {vx ∈ Vx : x ∈ X}, the
twisted G-action defines a map

λX : G× X→ C×,
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by g F vx = λX (g; x)vgx , where g ∈ G, x ∈ X.
For the monomial Yetter–Drinfeld module V⊗n

= (V⊗n, Xn, (Vx)x∈Xn ) and the
basis S⊗n

:= {vx1 ⊗ · · ·⊗ vxn : vxi ∈ S, 1≤ i ≤ n}, the action is determined by the
map λXn : G× Xn

→ C×,

(2) λXn (g; x1, . . . , xn) :=

n∏
i=1

λX (g; xi )ω(g; |x1| |x2| · · · |xn−1|, |xn|)
−1

×ω(g; |x1| · · · |xn−2|, |xn−1|)
−1
· · ·ω(g; |x1|, |x2|)

−1,

that is,

gB (vx1 ⊗ · · ·⊗ vxn )= λXn (g; x1, . . . , xn)(vgx1 ⊗ · · ·⊗ vgxn ),

for all g ∈ G, x1, x2, . . . , xn ∈ X. Hence an element (x1, . . . , xn) ∈ (Xn)e is regular
if and only if

(3) λXn (g; x1, . . . , xn)= 1, for all g ∈
n⋂

i=1

Sta(xi ).

Let R⊂ Xn
e be a set of representatives of the regular orbits of X×n

e . Let Sreg =

{vx1⊗· · ·⊗vxn : (x1, . . . , xn) ∈R}. By Proposition 2.2, the set {AvG(v) : v ∈ Sreg}

is a basis of (V⊗n)Ge .
To express the action of the generator σi ∈ Bn in terms of {AvG(v) : v ∈ Sreg}, for

each x = (x1, . . . , xn) ∈R choose gx ∈ G such that gx F σ
′

i (x)= y, where y ∈R
and σ ′i (x) = (x1, . . . , xi−1, |xi |xi+1, xi , xi+2, . . . , xn). Hence there is βi,x ∈ C×

such that gx F σ
′

i (vx1 ⊗ · · · vxn )= βi,xvy1 ⊗ · · ·⊗ vyn .
Since the action of the generator σi ∈ Bn is given by

(4) σ ′i (vx1 ⊗ · · ·⊗ vxn )= ω(|x1| · · · |xi−1|, |xi | |xi+1| |xi |
−1, |xi |)

× λX (|xi |; xi+1)ω(|x1| · · · |xi−1|, |xi |, |xi+1|)
−1

× vx1 ⊗ · · ·⊗ vxi−1 ⊗ v|xi |xi+1 ⊗ vxi ⊗ · · ·⊗ vxn ,

we have

(5) βi,x = ω(|x1| · · · |xi−1|, |xi | |xi+1| |xi |
−1, |xi |)

× λX (|xi |; xi+1)ω(|x1| · · · |xi−1|, |xi |, |xi+1|)
−1λXn (gx; σ

′

i (x)).

Theorem 3.4. Let G be a finite group, ω ∈ Z3(G,C×) and V = (V, X, (Vx)x∈X )

be a monomial Yetter–Drinfeld module. Let Y be the set of all regular elements in
Xn

e and let R⊂ Y be a set of representatives of the G-orbits of Y.

(a) The projection π : Y → R is map of Bn-sets. The image of x ∈ R by the
generator σi ∈ Bn will be denoted by σi F x.
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(b) Let Sreg = {vx1 ⊗ · · · ⊗ vxn : (x1, . . . , xn) ∈ R}. The action of the generator
σi ∈ Bn in the basis {AvG(vx) : x ∈R} is given by

σi (AvG(vx))= βi,x AvG(vσiFx),

where βi,x was defined in (5).

Proof. The first part is a consequence of Theorem 3.3.
For the second part, recall that the number βi,x and the element gx ∈ G are such

that
gx F σ(vx)= βi,xvσiFx .

Hence,
σi (AvG(vx))= AvG(σi (vx))

= gx FAvG(σi (vx))= AvG(gx F σi (vx))

= AvG(βi,xvσiFx)= βi,x AvG(vσiFx). �

Example 3.5. Let G be a finite group and X be a left crossed G-set. Then the
linearization VX := ⊕x∈X Cx is an (untwisted) Yetter–Drinfeld module in Z(VecG).
Clearly λX ≡ 1, thus every element in (Xn)e is regular. Hence the canonical
projection

(Xn)e→ (Xn)e//G,

is an epimorphism of Bn-sets. In other words, the linear representation of Bn

on HomZ(VecG)(C, V⊗n
X ) is the linearization of the permutation action of Bn on

(Xn)e//G.

4. Braid groups representations associated to Lagrangian algebras

In this section, we prove that every Lagrangian algebra in Z(VecωG) has a canonical
monomial structure. Then the results of Section 3 can be applied to Lagrangian
algebras in Z(VecωG).

4A. Lagrangian algebras. Following Corollary 3.17 of [Davydov and Simmons
2017], we will describe the Lagrangian algebra on Z(G, ω) associated to a pair
(H, γ ), where H ⊆ G is a subgroup and γ : H × H → C× is a map such that

γ (ab, c)γ (a, b)
γ (a, bc)γ (b, c)

= ω(a, b, c), a, b, c ∈ H.

Let Cγ [H ] = ⊕h∈H Ceh be the group algebra of H with the multiplication

eh1eh2 = γ (h1, h2)eh1h2, h1, h2 ∈ H.

The vector space Cγ [H ] =⊕h∈H Ceh , is a commutative algebra in Z(VecωH ), where
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the H -action is given by

h1 F eh2 = ε(h1, h2)eh1h2h−1
1
, ε(h1, h2) :=

γ (h1, h2)

γ (h1h2, h1)
, h1, h2 ∈ H,

and grading |eh| = h for all h ∈ H.
Let Map(G,Cγ [H ]) be the vector space of all set-theoretic maps from G to

Cγ [H ]. With the grading given by

|a| = f ⇔ |a(x)| = x−1 f x for all x ∈ G,

and twisted G-action

(g F a)(x) := ω(x−1, g−1
; |a|)−1a(g−1

F x), g, x ∈ G,

Map(G,Cγ [H ]) is a twisted Yetter–Drinfeld module.
The Lagrangian algebra L(H, γ ) is the Yetter–Drinfeld submodule

L(H, γ ) := {a ∈Maps(G,Cγ [H ]) | a(xh)= ω(h−1, x−1
; |a|)h−1

F a(x)};

see [Davydov and Simmons 2017] for more details.

4B. Monomial structure of the Lagrangian algebras L(H, γ ). In this section
we will prove that every Lagrangian algebra of the form L(H, γ ) has a canonical
monomial structure.

Let G be a group and H ⊂ G be a subgroup. We can regard G × H as a left
H -set with actions given by h F (g, h′)= (gh−1, hh′h−1). Then we can consider
the set of H -orbits that we will denote by G×H H. The set G×H H is equipped
with a left G-action given by left multiplication on the first component.

Definition 4.1. Let L(H, γ ) be a Lagrangian. For each g ∈ G and f ∈ H , define
χg, f ∈ L(H, γ ) by

(6) χg, f (x)=
{

0, x /∈ gH,
ω(h−1, g−1

;
g f )ε(h−1, f )eh f h−1, x = gh, where h ∈ H.

Remark 4.2. The function χg,h can be characterized as the unique map in L(H, γ )
with support gH and such that χg,h(g)= eh .

Lemma 4.3. Let L(H, γ ) be a Lagrangian algebra in Z(G, ω). Then

χgh, f = ω(h, (gh)−1
;

gh f )ε(h, f )χg,h f , g ∈ G, f, h ∈ H.(7)

l Fχg, f = ω((lg)−1, l−1
;

g f )χlg, f , g, l ∈ G, h ∈ H.(8)

Proof. Since the supports of χgh, f and χg,h f are gH, and

χgh, f (g)= χgh, f (ghh−1)= ω(h, (gh)−1
;

gh f )ε(h, f )χg,h f (g),

we obtain (7).
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By the definition of the action of G we have

l Fχg, f (lg)= ω((lg)−1, l−1
;

g f )χg, f (g)= ω((lg)−1, l−1
;

g f )e f .

Since l Bχg, f and χgl, f are supported in gl H, we get (8). �

It follows from Lemma 4.3 that Cχgh,h f =Cχg, f . Then for any (g, h)∈G×H H
the space Cχg, f is well defined.

Theorem 4.4. Let L(H, γ ) be a Lagrangian algebra in Z(G, ω). Then L(H, γ )
with the decomposition

L(H, γ )=
⊕

(g,h)∈G×H H

Cχg,h

is a monomial twisted Yetter–Drinfeld module.

Proof. First we will check that in fact the sum
∑

(g,h)∈G×H H Cχg,h , is direct. Since
supp(χg, f )= gH, we have that χg, f and χg′, f are linearly independent if gH 6= g′H.
Hence it is suffices to check linear independence of the collections {χg, f } f ∈H , with
g fixed. But if f 6= f ′, |χr, f | 6= |χr, f ′ |. It follows that the sum

∑
(g,h)∈G×H H Cχg,h

is direct.
In order to see that L(H, γ ) =

∑
(g,h)∈G×H H Cχg,h , fix R ⊂ G, a set of repre-

sentatives of the left coset of H in G. Let a ∈ L(H, γ ). For each r ∈R, suppose

(9) a(r)=
∑
f ∈H

λr, f e f .

Then we have

(10) a =
∑

r∈R, f ∈H

λr, f χr, f ∈
∑

(g,h)∈G×H H

Cχg,h .

By (8) and the fact that |χg, f | = g f g−1, we obtain that L(H, γ ) is a monomial
twisted Yetter–Drinfeld module. �

Corollary 4.5. Let G be a finite group, ω∈ Z3(G,C×). If L(H, γ ) is a Lagrangian
algebra in Z(VecωG), then

(a) the action of Bn on HomZ(VecωG)(C, L(H, γ )⊗n) is monomial,

(b) the dimension of HomZ(VecωG)(C, L(H, γ )⊗n) is equal to the number of regular
G-orbits under the monomial action of G on

(G×H H)×n)e := {((g1, h1), . . . , (gn, hn)) : g1h1g−1
1 g2h2g−1

2 · · · gnhng−1
n = e}.

Proof. This follows from Theorem 4.4 and Theorem 3.3. �
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We will fix a set of representatives of the left cosets of G in H, R⊂ G. Thus
every element g ∈ G has a unique factorization g = rh, h ∈ H , r ∈R. We assume
e ∈ R. The uniqueness of the factorization G = RH implies that there are well
defined maps

F : G×R→R, κ : G×R→ H,

determined by the condition

gr = (g F r)κ(g, h), g ∈ G, r ∈R.

As a crossed G-set we can identify G×H H with R× H with action

g F (r, h) := (g F r,κ(g,r)h), r ∈R, h ∈ H, g ∈ G,

and grading map

| − | :R× H → G (r, h) 7→ rhr−1.

It follows from Theorem 4.4 that BR :={χr,h| r ∈R, h∈H} is a basis for L(H, γ ).
In order to apply the results of Section 3E, we only need to compute the map

λR×H : G× (R× H)→ C×, such that

g Fχr,h = λR×H (g; r, h)χgFr,κ(g,r)h, g ∈ G, r ∈R, h ∈ H.

Using Lemma 4.3 we obtain

(11) λR×H (g; r, h)= ω((gr)−1, g−1
;

rh)ω(κ(g, r), (gr)−1
;

grh)ε(κ(g, r), h),

for all g ∈ G, r ∈R, h ∈ H.
By (3), we have that an element t = ((r1, h1), . . . , (rn, hn))∈ (R×H)ne is regular

if and only if

(12) λ(R×H)n (g; (r1, h1), . . . , (rn, hn))= 1, for all g ∈
n⋂

i=1

r−1
i CH (hi )ri ,

where λ(R×H)n was defined in (2) as a function of λR×H and ω.

4C. Applications and examples. In this last section we present some applications
of the results of the previous section.

4C1. Central subgroups.

Proposition 4.6. Let G be a finite group and L(H, γ ) a Lagrangian algebra in
Z(VecG), where H ⊂ G is a central subgroup. Then

dim(HomZ(VecG)(C, L(H, γ )⊗n))= |G|n−1.

Moreover, the representation of Bn is actually a representation of Sn .
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Proof. Since H is a central subgroup, g F (r, h)= (g F r, h) and

|χr1,h1 ⊗ · · ·⊗χrk ,hk | = h1 · · · hk,

for any r1, . . . , rk ∈ R, h1, . . . , hn ∈ H. Hence,

|(R× H)ne | = |(R
n/G)||H n−1

| = [G : H ]n|H |n−1
= |G|n−1.

To determine the number of orbits, notice that ε : H × H → C× is a bicharacter
such that ε(h1, h2)ε(h2, h1)= 1. Then, by (12), an element

((r1, h1), . . . , (rn, hn)) ∈ (R× H)ne

is regular if and only if
n∏

i=1

ε(h, hi )= 1, for all h ∈ H.

But
∏n

i=1 ε(h, hi )= ε(h, h1 · · · hn)= ε(h′, e)= 1. Hence every element is regular.
By Corollary 4.5 the dimension of HomZ(VecG)(C, L(H, γ )⊗n) is |G|n−1.

Finally, using (4), we see that

σ ′i ◦ σ
′

i (χr1,h1 ⊗ · · ·⊗χrn,hn )= ε(hi , hi+1)ε(hi+1, hi )(χr1,h1 ⊗ · · ·⊗χrn,hn )

= χr1,h1 ⊗ · · ·⊗χrn,hn .

Hence representation of Bn factors as a representation of Sn . �

4C2. Lagrangian algebra of the form L(H, 1). The Lagrangian algebras L(H, 1)
as an object in Z(VecG) are completely determined by the crossed G-set G×H H,
and the monomial representation Hom(C, L(H, 1)⊗n) is a permutation representa-
tion; see Example 3.5. Let us see some extreme cases:

Case H ={e}. In this case the crossed G-set is G with the regular action and grading
map the constant map e. It is clear that the braiding cG,G is just the flip map

(g1, g2) 7→ (g2, g1),

hence, really the symmetric group Sn acts on Gn.
The set of G-orbits is in bijection with Gn−1,

O(Gn)→ Gn−1,

OG(g1, g2, . . . , gn) 7→ (e, g−1
1 g2, . . . , g−1

1 gn).

Using the previous map the action of §n is given by

σ1(g1, . . . , gn−1)= (g−1
1 , g−1

1 g2, . . . , g−1
1 gn−1)
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and

σi (g1, . . . , gi , gi+1, . . . , gn−1)= (g1, . . . , gi+1, gi , . . . , gn−1), 1< i < n.

It is clear that permutation action of Sn on Gn−1 is faithful; thus the image is
isomorphic to Sn .

Case H = G. In this case the crossed G-set is G with the action by conjugation
and grading map the identity map. Hence, the braiding is given by

cG,G : (x, y) 7→ (y, y−1xy).

Note cG,G is symmetric if and only if G is abelian.
If G is abelian, Gn

e = {(g1, . . . , gn−1, (g1, . . . , gn−1)
−1)} is the set of orbits and,

as in the previous example, the group Sn acts faithfully.

4C3. Dihedral group. Every time we take H to be a normal subgroup of G, the
following proposition provides a way to simplify the situation.

Proposition 4.7. Let G be a finite group, H E G, and R a collection of representa-
tives for G/H. Define Bγ [H ] ∈ Z(VecG) as

B(H, γ ) := span{br,h| r ∈R, h ∈ H},

with grading |br,h| = h and the G-action

(13) g F br,h = ε(κ(g, r) r−1
h)bgFr,gh .

Then, the mapping

B(H, γ )→ L(H, γ ), br,h 7→ χ
r,r
−1

h

is an isomorphism in Z(VecG).

Proof. We need to show the map preserves the grading and the G-representation.
We have

|χ
r,r
−1

h
| =

r
(r
−1

h)= h = |br,h|.

Now, since
g ·χ

r,r
−1

h
= ε(κ(g, r), r−1

h)χ
gFr,

κ(g,r)
(r
−1

h)
,

and
κ(g,r)

(r
−1

h)=
(gFr)−1

ghg−1,

we have that
g F br,h = ε(κ(g, r), r−1

h)a
gFr,(gFr)

−1
(gh)
.

Hence, by (13) the map is equivariant. �
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Proposition 4.7 works particularly well when γ = 1, since (13) is just

g F br,h = bgFr,gh .

Thus, the action of G is “decoupled”. We use this idea in the following example.
Let G = D2k be the dihedral groups of order 2k and H = 〈r〉. We take R =
{e, s} = {si

}i∈Z/2Z. Then

|bsi1 ,r j1 ⊗ · · ·⊗ bsin ,r jn | = r
∑n

m=1 jm ,

and
dim(B(H, γ )⊗n

e )= 2n
× kn−1.

Since
(sir j )(sk)= si+kr (−1)k j,

we have
(sir j ) F sk

= si+k and κ(sir j , sk)= r (−1)k j .

Hence, the action, on the set label is

sir j (sk, r l)= (si+k, r l).

It follows that the number of orbits in (R× H)ne is

2n−1
× kn−1

= |G|n−1.

Since γ = 1 all orbits are regular and so dim(HomZ(VecG)(C, L(H, 1)⊗n))=|G|n−1.
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SPACELIKE HYPERSURFACES WITH
CONSTANT CONFORMAL SECTIONAL CURVATURE IN Rn+1

1

XIU JI, TONGZHU LI AND HUAFEI SUN

Let f :Mn→Rn+1
1 be an n-dimensional umbilic-free spacelike hypersurface

in the (n+1)-dimensional Lorentzian space Rn+1
1 . One can define the confor-

mal metric g on f which is invariant under the conformal transformation
group of Rn+1

1 . We classify the n-dimensional spacelike hypersurfaces with
constant sectional curvature with respect to the conformal metric g when
n≥ 3. Such spacelike hypersurfaces are obtained by the standard construc-
tion of cylinders, cones or hypersurfaces of revolution over certain spirals
in the 2-dimensional Lorentzian space forms S2

1(1), R2
1, R2

1+, respectively.

1. Introduction

Recently the Möbius geometry of submanifolds in Riemannian space forms has
been studied extensively and many special hypersurfaces were classified under the
Möbius transformation group (see [Guo et al. 2012; Hu and Li 2003; Li et al. 2013;
Li and Wang 2003]). As its parallel generalization, the conformal geometry of
submanifolds in Lorentzian space forms is another important branch of submanifold
theory; however there are fewer results (see [Li and Nie 2013; 2018; Nie 2015]).
In this paper, we investigate the spacelike hypersurfaces with constant conformal
sectional curvature. Since the conformal geometry of spacelike hypersurfaces
in Lorentzian space forms Mn+1

1 (c) is uniform by the conformal map (2-4) (see
Section 2), we only consider the hypersurfaces in Rn+1

1 .
Let f : Mn

→ Rn+1
1 be an n-dimensional umbilic-free spacelike hypersurface in

the (n+1)-dimensional Lorentzian space Rn+1
1 . Given the first fundamental form

I = d f · d f as well as a local orthonormal basis {ei } and the dual basis {θi }, we
denote II =

∑
i j hi jθi ⊗ θ j the second fundamental form and H = 1

n

∑
i hi i the

mean curvature. The conformal metric of f ,

(1-1) g = ρ2d f · d f = n
n−1

(‖ II ‖2− nH 2)I,

is a Riemannian metric which is invariant under the conformal transformations

MSC2010: 53A30, 53B25.
Keywords: conformal metric, conformal sectional curvature, conformal second fundamental form,

curvature-spiral.
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of Rn+1
1 . Together with another quadratic form (called the conformal second

fundamental form) they form a complete system of invariants for the spacelike
hypersurface (n ≥ 3) in conformal geometry of the Lorentzian space Rn+1

1 (see
Section 2). In this framework, a notable class of spacelike hypersurfaces are those
with constant conformal sectional curvature (i.e., constant sectional curvature with
respect to the conformal metric g). Here we classify them up to a conformal
transformation of the Lorentzian space Rn+1

1 , and our main result is stated below.

Theorem 1.1. Let f :Mn
→Rn+1

1 , n≥3, be an umbilic-free spacelike hypersurface
with constant conformal sectional curvature δ. Then locally f is conformally
equivalent to one of the following hypersurfaces:

(i) A cylinder over a curvature-spiral in a Lorentzian 2-plane R2
1 (where δ ≤ 0).

(ii) A cone over a curvature-spiral in a de Sitter 2-sphere S2
1 ⊂ R3

1 (where δ < 0).

(iii) A rotational hypersurface over a curvature-spiral in a Lorentzian hyperbolic
2-plane R2

1+ ⊂ R2
1 (the constant curvature δ could be positive, negative or

zero).

(iv) A cone over the hyperbolic torus Hq(−
√

a2− 1) × Sp(a), a > 1, (where
δ = 0).

The curvature-spiral γ (s) ∈ N 2
1 (ε) in a 2-dimensional Lorentzian space form

N 2
1 (ε)(= S2

1(1), R2
1, R2

1+ for Gauss curvature ε = 1, 0,−1, respectively) is a
spacelike curve which is determined by the intrinsic equation

(1-2)
[

d
ds

1
κ

]2

+ ε

[
1
κ

]2

=−δ,

where s is the arc-length parameter, and κ denotes the geodesic curvature of the
spacelike curve γ , and δ is a real constant. Note that (1-2) is equivalent to the
harmonic oscillator equation (1/κ)′′+ ε/κ = 0 for the function κ(s). It is easy to
see that for fixed ε and δ the solution curve is unique (because N 2

1 (ε) is two-point
homogeneous, since any two solutions with arbitrary initial values are congruent to
each other).

The Lorentzian hyperbolic 2-plane R2
1+ ⊂ R2

1 is defined by

R2
1+ = {(x, y) ∈ R2

| y > 0},

endowed with the Lorentzian metric ds2
=

1
y2 (−dx2

+ dy2). The Gauss curvature
of R2

1+ is ε = −1 with respect to the Lorentzian metric ds2. Let H2
1(−1) be a

2-dimensional anti-de Sitter sphere; there exists a standard isometric embedding

(1-3) φ : R2
1+→ H2

1(−1), φ(x, y)=
(

y2
− x2
+ 1

2y
,

x
y
,

y2
− x2
− 1

2y

)
.
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The rest of this paper is organized as follows. In Section 2, we study the confor-
mal geometry of spacelike hypersurfaces in Lorentzian space forms Mn+1

1 (c). In
Section 3, we construct some examples of the spacelike hypersurfaces with constant
conformal sectional curvature. In Section 4, we give the proof of Theorem 1.1.

2. Conformal geometry of spacelike hypersurfaces

In this section, following Wang [1998], we define some conformal invariants on a
spacelike hypersurface and give a congruent theorem of the spacelike hypersurfaces
under the conformal group of Lorentzian space forms Mn+1

1 (c).
Let Rn+2

s be the real vector space Rn+2 with the Lorentzian product 〈 , 〉s given by

〈X, Y 〉s =−
s∑

i=1

xi yi +

n+2∑
j=s+1

x j y j .

For any a > 0, the standard sphere Sn+1(a), the hyperbolic space Hn+1(−a), the
de Sitter space Sn+1

1 (a) and the anti-de Sitter space Hn+1
1 (−a) are defined by

Sn+1(a)= {x ∈ Rn+2
| x · x = a2

},

Hn+1(−a)= {x ∈ Rn+2
1 | 〈x, x〉1 =−a2

},

Sn+1
1 (a)= {x ∈ Rn+2

1 | 〈x, x〉1 = a2
},

Hn+1
1 (−a)= {x ∈ Rn+2

2 | 〈x, x〉2 =−a2
}.

Let Mn+1
1 (c) be a Lorentzian space form. When c=0, Mn+1

1 (c)=Rn+1
1 ; when c=1,

Mn+1
1 (c)= Sn+1

1 (1); when c =−1, Mn+1
1 (c)= Hn+1

1 (−1).
Denoting by Cn+2 the cone in Rn+3

2 and by Qn+1
1 the conformal compactification

space in RPn+3,

Cn+2
= {X ∈Rn+3

2 | 〈X, X〉2= 0, X 6= 0}, Qn+1
1 = {[X ] ∈RPn+2

| 〈X, X〉2= 0}.

Let O(n+ 3, 2) be the Lorentzian group of Rn+3
2 keeping the Lorentzian product

〈X, Y 〉2 invariant. Then O(n+ 3, 2) is a transformation group on Qn+1
1 defined by

T ([X ])= [XT ], X ∈ Cn+2, T ∈ O(n+ 3, 2).

Topologically, Qn+1
1 is identified with the compact space Sn

× S1/S0, which is
endowed by a standard Lorentzian metric

h = gSn ⊕ (−gS1),

where gSk denotes the standard metric of the k-dimensional sphere Sk. Therefore,
Qn+1

1 has conformal metric [h] = {eτh}, τ ∈ C∞(Qn+1
1 ), and [O(n+ 3, 2)] is the

conformal transformation group of Qn+1
1 (see [Cahen and Kerbrat 1983; O’Neill

1983]).
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Setting P = {[X ] ∈ Qn+1
1 | x1 = xn+3}, P− = {[X ] ∈ Qn+1

1 | xn+3 = 0}, and
P+ = {[X ] ∈Qn+1

1 | x1 = 0}, we can define the following conformal diffeomor-
phisms

(2-4)

σ0 : R
n+1
1 →Qn+1

1 \P, u 7→
[(

1+〈u, u〉1
2

, u,
〈u, u〉1− 1

2

)]
,

σ1 : S
n+1
1 (1)→Qn+1

1 \P+, u 7→ [(1, u)],

σ−1 : H
n+1
1 (−1)→Qn+1

1 \P−, u 7→ [(u, 1)].

We may regard Qn+1
1 as the common compactification of Rn+1

1 , Sn+1
1 (1), Hn+1

1 (−1).
Let f : Mn

→ Mn+1
1 (c) be a spacelike hypersurface. Using σc, we obtain the

hypersurface σc ◦ f : Mn
→Qn+1

1 in Qn+1
1 . From [Cahen and Kerbrat 1983], we

have the following theorem:

Theorem 2.1. Two hypersurfaces f, f̄ :Mn
→Mn+1

1 (c) are conformally equivalent
if and only if there exists T ∈O(n+3, 2) such that σc ◦ f = T (σc ◦ f̄ ) : Mn

→Qn+1
1 .

Since f : Mn
→ Mn+1

1 (c) is a spacelike hypersurface, (σc ◦ f )∗(T Mn) is a
positive definite subbundle of T Qn+1

1 . For any local lift Z of the standard projec-
tion π : Cn+2

→Qn+1
1 , we get a local lift y = Z ◦ σc ◦ f :U → Cn+1 of σc ◦ f :

M → Qn+1
1 in an open subset U of Mn. Thus 〈dy, dy〉2 = ρ2

〈d f, d f 〉s is a local
metric, where ρ ∈ C∞(U ). We denote by 1 and κ the Laplacian operator and
the normalized scalar curvature with respect to the local positive definite metric
〈dy, dy〉2, respectively. Much as in the proof of Theorem 1.2 in [Wang 1998], we
can get the following theorem:

Theorem 2.2. Let f : Mn
→ Mn+1

1 (c) be a spacelike hypersurface, then the 2-
form g =−(〈1y,1y〉2− n2κ)〈dy, dy〉2 is a globally defined conformal invariant.
Moreover, g is positive definite at any nonumbilical point of Mn.

We call g the conformal metric of the spacelike hypersurface f , and there exists
a unique lift

Y : Mn
→ Cn+2

such that g = 〈dY, dY 〉2. We call Y the conformal position vector of the spacelike
hypersurface f . Theorem 2.2 implies the following:

Theorem 2.3. Two spacelike hypersurfaces f, f̄ : Mn
→ Mn+1

1 (c) are conformally
equivalent if and only if there exists T ∈ O(n+ 3, 2) such that Y = Y T, where Y
and Y are the conformal position vectors of f and f̄ , respectively.

Let {E1, . . . , En} be a local orthonormal basis of Mn with respect to g with dual
basis {ω1, . . . , ωn}. Denote Yi = Ei (Y ) and define

N =−
1
n
1Y −

1
2n2 〈1Y,1Y 〉2Y,
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where 1 is the Laplace operator of g, then we have

〈N , Y 〉2 = 1, 〈N , N 〉2 = 0, 〈N , Yk〉2 = 0, 〈Yi , Y j 〉2 = δi j , 1≤ i, j, k ≤ n.

We may decompose Rn+3
2 such that

Rn+3
2 = span{Y, N }⊕ span{Y1, . . . , Yn}⊕V,

where V⊥ span{Y, N , Y1, . . . , Yn}. We call V the conformal normal bundle of f ,
which is a linear bundle. Let ξ be a local section of V and 〈ξ, ξ〉2 = −1, then
{Y, N , Y1, . . . , Yn, ξ} forms a moving frame in Rn+3

2 along Mn. We write the
structure equations as follows:

(2-5)

dY =
∑

i

ωi Yi , dN =
∑

i j

Ai jω j Yi +
∑

i

Ciωiξ,

dYi =−
∑

j

Ai jω j Y −ωi N +
∑

j

ωi j Y j +
∑

j

Bi jω jξ,

dξ =
∑

i

Ciωi Y +
∑

i j

Bi jω j Yi ,

where ωi j (=−ω j i ) are the connection 1-forms on Mn with respect to {ω1, . . . , ωn}.
It is clear that A =

∑
i j Ai jω j ⊗ ωi , B =

∑
i j Bi jω j ⊗ ωi , C =

∑
i Ciωi are

globally defined conformal invariants. We call A, B and C the Blaschke tensor,
the conformal second fundamental form, and the conformal 1-form, respectively.
The covariant derivatives of these tensors are defined by∑

j

Ci, jω j = dCi +
∑

k

Ckωk j ,∑
k

Ai j,kωk = d Ai j +
∑

k

Aikωk j +
∑

k

Ak jωki ,∑
k

Bi j,kωk = d Bi j +
∑

k

Bikωk j +
∑

k

Bk jωki .

By exterior differentiation of the structure equations (2-5), we can get the integrable
conditions of the structure equations

Ai j = A j i , Bi j = B j i ,(2-6)

Ai j,k − Aik, j = Bi j Ck − BikC j ,(2-7)

Bi j,k − Bik, j = δi j Ck − δikC j ,(2-8)

Ci, j −C j,i =
∑

k

(Bik Ak j − B jk Aki ),(2-9)

Ri jkl = Bil B jk − Bik B jl + Aikδ jl + A jlδik − Ailδ jk − A jkδil .(2-10)
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Furthermore, we have

(2-11)

tr(A)=
1

2n
(n2κ − 1), Ri j = tr(A)δi j + (n− 2)Ai j +

∑
k

Bik Bk j ,

(1− n)Ci =
∑

j

Bi j, j ,
∑

i j

B2
i j =

n− 1
n

,
∑

i

Bi i = 0,

where κ is the normalized scalar curvature of g. From (2-11), we see that when n≥3,
all coefficients in the structure equations are determined by the conformal metric g
and the conformal second fundamental form B, thus we get the congruent theorem:

Theorem 2.4. Two spacelike hypersurfaces f, f̄ : Mn
→ Mn+1

1 (c), n ≥ 3, are
conformally equivalent if and only if there exists a diffeomorphism ϕ : Mn

→ Mn

which preserves the conformal metric g and the conformal second fundamental
form B.

The second covariant derivative of the conformal second fundamental form Bi j

is defined by

(2-12)
∑

m

Bi j,kmωm = d Bi j,k +
∑

m

Bmj,kωmi +
∑

m

Bim,kωmj +
∑

m

Bi j,mωmk .

Thus we have the following Ricci identities

(2-13) Bi j,kl − Bi j,lk =
∑

m

Bmj Rmikl +
∑

m

Bim Rmjkl .

Next we give the relations between the conformal invariants and the isometric
invariants of a spacelike hypersurface in Rn+1

1 .
Assume that f : Mn

→ Rn+1
1 is an umbilic-free spacelike hypersurface. Let

{e1, . . . , en} be an orthonormal local basis with respect to the induced metric
I = 〈d f, d f 〉1 with dual basis {θ1, . . . , θn}. Let en+1 be a normal vector field of f ,
〈en+1, en+1〉1 =−1. Let II =

∑
i j hi jθi ⊗ θ j denote the second fundamental form,

H = 1
n

∑
i hi i the mean curvature. Denote by 1M the Laplacian operator and κM

the normalized scalar curvature for I. By the structure equation of f : Mn
→ Rn+1

1
we get

(2-14) 1M f = nHen+1.

There is a local lift of f

y : Mn
→ Cn+2, y =

(
〈 f, f 〉1+ 1

2
, f,
〈 f, f 〉1− 1

2

)
.

It follows from (2-14) that 〈1y,1y〉2 − n2κM =
n

n−1(−| II |
2
+ n|H |2) = −e2τ.

Therefore the conformal metric g, the conformal position vector of f , and ξ are
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expressed as

(2-15)
g =

n
n− 1

(| II |2− n|H |2)〈d f, d f 〉1 = e2τ I, Y = eτ y,

ξ =−H y+ (〈 f, en+1〉1, en+1, 〈 f, en+1〉1).

By a direct calculation we get the following expression of the conformal invariants

(2-16)

Ai j = e−2τ [τiτ j − hi j H − τi, j +
1
2(−|∇τ |

2
+ |H |2)δi j

]
,

Bi j = e−τ (hi j − Hδi j ), Ci = e−2τ
(

Hτi − Hi −
∑

j

hi jτ j

)
,

where τi = ei (τ ) and |∇τ |2 =
∑

i τ
2
i , and τi, j is the Hessian of τ for I and

Hi = ei (H).

3. Typical examples

In this section, we construct some spacelike hypersurfaces with constant conformal
sectional curvature. Such spacelike hypersurfaces are obtained by the standard
construction of cylinders, cones or hypersurfaces of revolution over curvature-
spirals in N 2

1 (ε). A key observation is that the conformal metric of those spacelike
hypersurfaces constructed over these curvature-spirals are of the form

g = κ(s)2(ds2
+ I n−1
−ε ),

where I n−1
−ε is the metric of the (n−1)-dimensional Riemannian space form of

constant curvature −ε. For such metric forms we have the following result:

Lemma 3.1. The metric g = κ(s)2(ds2
+ I n−1
−ε ) given above has constant curva-

ture δ if and only if the function κ(s) satisfies (1-2).

This lemma is easy to prove using exterior differential forms and we omit the
proof. Next we give the explicit construction of the spacelike hypersurfaces.

Example 3.2. The cylinder in Rn+1
1 over a curve γ (s)⊂ R2

1 is defined by

f : R×Rn−1
→ Rn+1

1 , f (s, y)= (γ (s), y),

where y ∈ Rn−1.

The first and the second fundamental form of the cylinder f are given by

I = ds2
+ I

R
n−1 , II = κds2,

where κ(s) is the geodesic curvature of γ (s)⊂ R2
1, and I

R
n−1 denotes the standard

metric of the (n−1)-dimensional Euclidean space R
n−1

. Thus the principal curvatures
of the cylinder are (κ, 0, . . . , 0), and the mean curvature H = κ

n . From (2-15), we
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see that the conformal metric of the cylinder f is g = κ2(s)(ds2
+ IRn−1). By

Lemma 3.1 we have the following result:

Proposition 3.3. The cylinder in Rn+1
1 over γ (s) ⊂ R2

1 as in Example 3.2 is of
constant conformal sectional curvature if and only if γ (s) is a curvature-spiral
in R2

1.

Example 3.4. The cone in Rn+1
1 over a curve γ (s)⊂ S2

1(1)⊂ R3
1 is defined by

f : R×R+×Rn−2
→ Rn+1

1 , f (s, t, y)= (tγ (s), y),

where y ∈ Rn−2 and R+ = {t | t > 0}.

The first and the second fundamental form of the cone f are given by

I = t2ds2
+ IRn−1, II = tκds2,

where κ(s) is the geodesic curvature of γ (s)⊂S2
1(1). Thus the principal curvatures

of the cone are ( κt , 0, . . . , 0), and the mean curvature H = κ
nt . From (2-15), we

know that the conformal position vector of the cone f is

Y = κ
(

t2
+ |y|2+ 1

2t
, γ (s),

y
t
,

t2
+ |y|2− 1

2t

)
.

Note that

(3-17) i(t, y)=
(

t2
+|y|2+1

2t
,

y
t
,

t2
+|y|2−1

2t

)
:R+×Rn−2

=Hn−1
→Hn−1

⊂Rn
1

is nothing but the identity map of Hn−1, since R+×Rn−2
=Hn−1 is the upper half-

space endowed with the standard hyperbolic metric. From (2-15), the conformal
metric of the cone f is g= κ2

t2 (t2ds2
+ IRn−1)=κ2(ds2

+ IHn−1), where I
H

n−1 denotes
the standard hyperbolic metric of Hn−1. By Lemma 3.1 we have the following
result:

Proposition 3.5. The cone in Rn+1
1 over γ (s)⊂ S2

1(1)⊂ R3
1 as in Example 3.4 is

of constant conformal sectional curvature if and only if γ (s) is a curvature-spiral
in S2

1.

Example 3.6. Let R2
1+ = {(x, y) | y > 0} be the Lorentzian hyperbolic 2-plane.

The rotational hypersurface in Rn+1
1 over a curve γ (s)⊂ R2

1+ is defined by

f : R×Sn−1
→ Rn+1

1 , f (s, θ)= (x(s), y(s)θ),

where θ ∈ Sn−1 is the standard round sphere, and γ (s)= (x(s), y(s))⊂ R2
1+.

Denote the covariant differentiation of the metric ds2 by D in R2
1+. For γ (s)=

(x(s), y(s))⊂ R2
1+, let ẋ denote the derivative ∂x

∂s and so on. Choose the unit tangent
vector α = 1

y (ẋ, ẏ) and the unit normal vector β = 1
y (ẏ, ẋ). The geodesic curvature
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is computed via κ(s)= 〈Dαα, β〉 =
ẋ ÿ−ẏ ẍ

y2 +
ẋ
y . The rotational hypersurface f has

the unit normal vector η = 1
y (ẏ, ẋθ). The first and the second fundamental form of

the rotational hypersurface f are given by

I = d f · d f = y2(ds2
+ I

S
n−1 ), II =−d f · dη = (yκ − ẋ)ds2

− ẋ I
S

n−1 .

Thus the principal curvatures of the rotational hypersurface f are yκ−ẋ
y2 , −ẋ

y2 , . . . ,
−ẋ
y2 .

From (2-15), we know that the conformal metric of the rotational hypersurface f is
g = κ2(x)(ds2

+ ISn−1). By Lemma 3.1 we have the following result:

Proposition 3.7. The rotational hypersurface in Rn+1
1 over γ (s) ⊂ R2

1+ as in
Example 3.6 is of constant conformal sectional curvature if and only if γ (s) is
a curvature-spiral in R2

1+.

Example 3.8. Let p, q be any two given natural numbers with p + q < n and
let a be a real number a > 1. We define the cone over the hyperbolic torus
Hq(−

√
a2− 1)×Sp(a)⊂ S

p+q+1
1 (1), as follows:

f :Hq(−
√

a2−1)×Sp(a)×R+×Rn−p−q−1
→Rn+1

1 , f (u′,u′′, t,u′′′)=(tu′, tu′′,u′′′),

where u′ ∈ Hq(−
√

a2− 1), u′′ ∈ Sp(a), u′′′ ∈ Rn−p−q−1.

Let b =
√

a2− 1. One of the normal vectors of f can be taken as en+1 =(a
b u′, b

a u′′, 0
)
. The first and second fundamental form of f are given by

I = t2(〈du′, du′〉1+ du′′ · du′′)+ dt · dt + du′′′ · du′′′,

II =−〈dx, den+1〉1 =−t
(

a
b
〈du′, du′〉1+

b
a

du′′ · du′′
)
.

Thus the mean curvature of f satisfies

H =
−pb2

− qa2

nabt
,

and

e2τ
=

n
n− 1

[∑
i j

h2
i j − nH 2

]
=

p(n− p)b4
− 2pqa2b2

+ q(n− q)a4

(n− 1)a2b2t2 :=
α2

t2 .

Let idk denote the k-dimensional identical mapping. From (2-16), we have

B = b1 idq ⊕b2 idp⊕b3 idn−q−p, A = a1 idq ⊕a2 idp⊕a3 idn−q−p,

where

b1 =
pb2
− (n− q)a2

nabα
, b2 =

qa2
− (n− p)b2

nabα
, b3 =

pb2
+ qa2

nabα
,
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and

a1 =
(pb2
+ qa2)2− (pb2

+ qa2)2na2
+ n2a2b2

2n2a2b2α2 ,

a2 =
(pb2
+ qa2)2− (pb2

+ qa2)2nb2
+ n2a2b2

2n2a2b2α2 ,

a3 =
(pb2
+ qa2)2− n2a2b2

2n2a2b2α2 .

Using these equations and (2-10), it is easy to prove the following result:

Proposition 3.9. Let f : Mn
→ Rn+1

1 be a cone over a hyperbolic torus

Hq(−
√

a2− 1)×Sp(a).

If f has constant conformal sectional curvature δ, then δ = 0, p= q = 1 and n = 3.

A spacelike hypersurface is called a conformal isoparametric spacelike hypersur-
face if the conformal 1-form vanishes and the eigenvalues of the conformal second
fundamental form are constant. In [Li and Nie 2018] and [Nie and Wu 2008], the
authors characterized the cone over the hyperbolic torus as follows:

Theorem 3.10 [Li and Nie 2018]. Let f : Mn
→ Mn+1

1 (c) be a conformal isopara-
metric spacelike hypersurface with r distinct principal curvatures. If r ≥ 3, then
r = 3, and locally f is conformally equivalent to the cone over the hyperbolic torus
Hq(−

√
a2− 1)×Sp(a).

4. The proof of Theorem 1.1

The hypothesis of constant conformal sectional curvature implies that the spacelike
hypersurface is conformally flat. A classical result says that a spacelike hypersurface
f : Mn

→ Mn+1
1 (c)(n ≥ 4) is conformally flat if and only if there exists a principle

curvature which has multiplicity at least n− 1 everywhere. Since our classification
theorem is local, we consider the following two cases:

(1) The spacelike hypersurface has only two distinct principal curvatures.

(2) The 3-dimensional spacelike hypersurface has three distinct principal curva-
tures.

First, we consider case (1). Let f : Mn
→ Rn+1

1 , n ≥ 3, be a spacelike hypersur-
face with two distinct principal curvatures; one of which is simple, while the other
has multiplicity n− 1.

Lemma 4.1. Let f : Mn
→ Rn+1

1 , n ≥ 3, be a spacelike hypersurface with two dis-
tinct principal curvatures. If the conformal sectional curvature has constant δ, then
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we can choose an orthonormal basis {E1, . . . , En} with respect to the conformal
metric g such that

(4-18)
(Bi j )= diag

(
n− 1

n
,
−1
n
, . . . ,

−1
n

)
; C2 = . . .= Cn = 0;

ω1α =−C1ωα; δ = C1,1− (C1)
2
; Cα,α =−(C1)

2, α ≥ 2.

Proof. We take a local orthonormal basis {E1, . . . , En}, with respect to g, under
which,

(Bi j )= diag(b1, b2, . . . , b2︸ ︷︷ ︸
n−1

).

From the fourth equation in (2-11), we assume b1 =
n−1

n and b2 =−
1
n . Since the

spacelike hypersurface has constant conformal curvature δ, by (2-11), we have

(Ai j )= diag
(
δ

2
−

2n− 1
2n2 ,

δ

2
+

1
2n2 , . . . ,

δ

2
+

1
2n2

)
.

In this section, we make use of the following convention on the range of indices

1≤ i, j, k ≤ n, 2≤ α, β, γ ≤ n.

From d Bi j +
∑

k Bk jωki +
∑

k Bikωk j =
∑

k Bi j,kωk and (2-8), we can get

(4-19)
B1α,α =−C1, ω1α =−C1ωα, Cα = 0, 2≤ α ≤ n,

(Bi j,k = 0 otherwise).

Using dCi +
∑

k Ckωki =
∑

k Ci,kωk and (4-19), we get

(4-20) Cα,α =−(C1)
2
; Cα,k = 0, α 6= k.

From (4-19), we see that

dω1α =−dC1 ∧ωα −C2
1ω1 ∧ωα −C1

∑
γ

ωγ ∧ωγα ,

and
dω1α −

∑
j

ω1 j ∧ω jα =−
1
2

∑
kl

R1αklωk ∧ωl .

Thus we have

(4-21) R1α1α = C1,1− (C1)
2, R1αβα −C1,β = 0. �

From Lemma 4.1, we know that the distributions

D1 = span{E1}, D2 = span{E2, E3, . . . , En}

are integrable. Any integral submanifold of distribution D1 is a curve γ , and any
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integral submanifold of distribution D2 is an (n−1)-dimensional submanifold L .
Thus locally, we have

Mn
= γ × L .

Under the orthonormal basis {E1, . . . , En} as in Lemma 4.1, {Y,N ,Y1, . . . ,Yn,ξ}

forms a moving frame in Rn+3
2 along Mn. We define

F =−
1
n

Y − ξ, X1 =−C1Y − Y1, P =−a2Y + N +C1 X1−
1
n

F.

Therefore we have

(4-22)
〈F, F〉 = −1, 〈X1, X1〉 = 1, 〈P, P〉 = −C1,1,

〈F, P〉 = 0, 〈F, X1〉 = 0, 〈X1, P〉 = 0.

From Lemma 4.1 and the structure equation of f we can derive

(4-23)

E1(F)= X1, Eα(F)= 0,

E1(X1)= P + F, Eα(X1)= 0,

E1(P)= C1 P +C1,1 X1, Eα(P)= 0.

Thus the subspace V1 = span{F, X1, P} is fixed along Mn. From δ = C1,1− (C1)
2,

we get

(4-24) E1(C1,1)= 2C1C1,1, Eα(C1,1)= 0.

We define T =−a2Y − N +C1Y1−
1
n ξ , then we have

T⊥V1, 〈T, T 〉 = C1,1, 〈T, Yα〉 = 0, 2≤ α ≤ n.

From (4-24), Lemma 4.1, and the structure equation of f we can derive

(4-25)

Eα(T )=−C1,1Yα, E1(T )= C1T, Eβ(Yα)=
∑
γ

ωαγ (Eβ)Yγ ,

Eα(Yα)=
∑
β

ωαβ(Eα)Yβ + T, E1(Yα)=
∑
β

ωαβ(E1)Yβ, α 6= β.

Thus the subspace V2 = span{T, Y2, Y3, . . . , Yn} is fixed along Mn, and V1⊥V2.
Using theory of linear first-order differential equations for C1,1, (4-24) means

that C1,1 ≡ 0 or C1,1 6= 0 on an open subset U ⊂ Mn. Thus we need to consider the
following three subcases: (1) C1,1 ≡ 0 on Mn; (2) C1,1 < 0 on Mn; (3) C1,1 > 0
on Mn. We will treat them case by case.

Proposition 4.2. Under the assumptions in Lemma 4.1, if C1,1 ≡ 0 on Mn, then f
is conformally equivalent to a cylinder over a curvature-spiral in R2

1.
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Proof. Since C1,1≡0, we have 〈P, P〉=0. From (4-23), we know that P determines
a fixed direction. Hence up to a conformal transformation we can write the fixed
direction P ∈ Rn+3

2 and constant subspace V1 ⊂ Rn+3
2 as follows:

P = (1, 0, . . . , 0, 1),

V1= span{F, X1, P}= span{(0, 1, 0, . . . , 0), (0, 0, 1, 0, . . . , 0), (1, 0, . . . , 0, 1)}.

From (4-22), we have

(4-26) 〈F, P〉=〈F, (1,0,0, . . . ,0,1)〉=0, 〈X1, P〉=〈X1, (1,0,0, . . . ,0,1)〉=0.

Let {κ1, κ2, . . . , κ2} be the principal curvatures of the spacelike hypersurface f , then
eτ = |κ1− κ2|. We choose an orthonormal basis {e1, . . . , en} of T Mn with respect
to the first fundamental form I = d f · d f such that (hi j ) = diag{κ1, κ2, . . . , κ2};
then {Ei = e−τ ei , 1≤ i ≤ n} is an orthonormal basis as in Lemma 4.1. From (2-15)
and (4-26), we can deduce

(4-27) κ2 = 0, E1(τ )=−C1.

On the other hand, we have 〈Yα, P〉 = 0 which implies that

(4-28) Eα(τ )= 0.

Let {ω̃1, . . . , ω̃n} be the dual basis of {e1, . . . , en}, and {ω̃i j } be the corresponding
connection forms. Since ωi = eτ ω̃i , 1≤ i ≤ n, its connections have the relations

ωi j = ω̃i j + ei (τ )ω̃ j − e j (τ )ω̃i .

Equations (4-27) and (4-28) imply that ω̃1α = 0. Thus the spacelike hypersur-
face f is conformally equivalent to the hypersurface given by Example 3.2. By
Proposition 3.3, we finish the proof of Proposition 4.2. �

Proposition 4.3. Under the assumptions in Lemma 4.1, if C1,1 < 0 on Mn, then f
is conformally equivalent to a cone over a curvature-spiral in S2

1.

Proof. Since C1,1 < 0, by (4-22), the vector field P is a spacelike vector field
in Rn+3

2 . Thus up to a conformal transformation we can write

V1= span{F, X1, P}= span{(0,1,0, . . . ,0), (0,0,1,0, . . . ,0), (0,0,0,1, . . . ,0)}.

Let f have principal curvatures {κ1, κ2, . . . , κ2}. Since e = (1, 0, . . . , 0, 1)⊥V, we
have 〈F, e〉 = 〈X1, e〉 = 0 which implies κ2 = 0, E1(τ ) = −C1. By (2-15), we
obtain e2τ

= κ2
1 . Setting

P =
P√
−C1,1

, θ =
T√
−C1,1

,
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then 〈P, P〉 = 1 and 〈θ, θ〉 = −1. From (4-23), we know

P : γ → S2
1 ⊂ R3

1 = V1

is a curve, and (4-25) gives that

θ : L→ Hn−1
⊂ Rn

1

is a standard embedding and the sectional curvature of θ(L) is −1. Since dim L =
dim Hn−1

= n−1, we know that θ : L→Hn−1 is a standard isometric isomorphism.
By (3-17), we have the standard isometric isomorphism

θ : L→ Hn−1
= R+×Rn−2.

Since P + T =−C1,1Y,

Y =
1√
−C1,1

(P, θ) : Mn
= γ × L→ S2

1×Hn−1
= S2

1×R+×Rn−2
⊂ Rn+3

1 .

Therefore

g = 〈dY, dY 〉 = −
1

C1,1
(ds2
+ IHn−1).

Thus the spacelike hypersurface f is conformally equivalent to the hypersurface
given by Example 3.4. By Proposition 3.5, we finish the proof of Proposition 4.3. �

Proposition 4.4. Under the assumptions in Lemma 4.1, if C1,1 > 0 on Mn, then
f is conformally equivalent to a rotational hypersurface over a curvature-spiral
in R2

1+.

Proof. Since C1,1 > 0, we have 〈P, P〉< 0. Thus up to a conformal transformation
we can write

V1 = span{F, X1, P} = span{(1, 0, . . . , 0), (0, . . . , 0, 1), (0, 1, 0, . . . , 0)}.

Thus e = (1, 0, . . . , 0, 1) ∈ V1, and 〈Yα, e〉 = 0, 2 ≤ α ≤ n, which imply that
Eα(τ )= 0, 2≤ α ≤ n. Setting

P =
P√
C1,1

, θ =
T√
C1,1

,

then 〈P, P〉 = −1 and 〈θ, θ〉 = 1. From (4-23), we know

P : γ → H2
1 ⊂ R3

2 = V1

is a curve. From (4-25), we see that

θ : L→ Sn−1
⊂ Rn

is a standard embedding and the sectional curvature of θ(L) is 1. Since dim L=n−1,
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θ : L→ Sn−1 is a standard isometric isomorphism. Since P + T =−C1,1Y,

Y =
−1√
C1,1

(P, θ) : γ × L→ H2
1×Sn−1.

Denote P = (u1, u2, u3) ∈ H2
1, then

Y =
u3− u1√

C1,1

(
u1

u1− u3
,

u2

u1− u3
,

u3

u1− u3
,

θ

u1− u3

)
.

Thus the hypersurface f : R × Sn−1
→ Rn+1

1 is given by f =
( u2

u1−u3
, θ

u1−u3

)
.

Note that

ϕ(u1, u2, u3)=

(
u2

u1− u3
,

1
u1− u3

)
is the inverse mapping of the local isometric correspondence φ : R2

1+ → H2
1

(see (1-3)). Thus the spacelike hypersurface f is conformally equivalent to the
hypersurface given by Example 3.6. By Proposition 3.7, we finish the proof of
Proposition 4.4. �

Next we consider case (2). Let f : M3
→ R4

1 be a spacelike hypersurface with
three distinct principal curvatures.

Proposition 4.5. Let f : M3
→ R4

1 be a spacelike hypersurface with three distinct
principal curvatures. If the conformal sectional curvature has constant δ, then
δ = 0 and f is conformally equivalent to the spacelike hypersurface defined by
Example 3.8.

To prove Proposition 4.5, we need the following two lemmas.

Lemma 4.6. Under the same assumptions as in Proposition 4.5, there exist a local
orthonormal basis {E1, E2, E3}, consisting of eigenvectors of B such that

(4-29)

B11,2 =
b3− b1

b1− b2
C2, B11,3 =

b2− b1

b1− b3
C3, B22,1 =

b3− b2

b2− b1
C1,

B22,3 =
b1− b2

b2− b3
C3, B33,1 =

b2− b3

b3− b1
C1, B33,2 =

b1− b3

b3− b2
C2.

Proof. Since f is of constant conformal curvature, from (2-11), we have

(4-30) Ri j = 2δδi j =
∑

k

Bik Bk j + (tr A)δi j + Ai j .

Thus we can take a local orthonormal basis {E1, E2, E3} such that

(4-31) (Bi j )= diag(b1, b2, b3), (Ai j )= diag(a1, a2, a3).
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Using (4-30) and (4-31), we have

(4-32) Bi j,k(bi + b j )+ Ai jk = 0, 1≤ i, j, k ≤ 3.

Using (2-7) and (2-8) and (4-32), we can obtain (4-29) and

(4-33) Bi j,k = Ai j,k = 0, i 6= j, i 6= k, k 6= j.

Thus we complete the proof. �

If the conformal 1-form C is equal to 0, by Lemma 4.6, we know that the
eigenvalues of the conformal second fundamental form are constant. Thus the
spacelike hypersurface is a conformal isoparametric spacelike hypersurface. By
Proposition 3.9 and Theorem 3.10, we can prove Proposition 4.5. Next we need to
prove C = 0.

Lemma 4.7. Under the same assumptions as in Proposition 4.5, the conformal
1-form C is equal to 0.

Proof. Let {ω1, ω2, ω3} be the dual of the local orthonormal basis {E1, E2, E3} in
Lemma 4.6, and {ωi j } the connection forms. Using covariant derivatives of Bi j ,

(4-34) ωi j =
Bi j,i

bi − b j
ωi +

Bi j, j

bi − b j
ω j , i 6= j, 1≤ i, j ≤ 3.

Using (2-8), we have Bi j, j = B j j,i −Ci , i 6= j . Using (2-12), (4-33) and (4-29),
we can obtain

(4-35)

B12,31 = (B11,3− B22,3)
B12,1

b1− b2
+ (B12,1− B32,3)

B13,1

b1− b3
,

B12,13 =
3(b2 B11,3− b1 B223)

(b1− b2)2
C2

+

(
C2,3−

B32,3

b3− b2
C3

)
3b1

b2− b1
+

B32,3 B13,1

b3− b2
.

From (2-10) and the Ricci identity (2-13), we have Ci, j −C j,i = (bi − b j )Ai j = 0,
and B12,31 = B12,13. Using (4-35), we can derive

b1C2,3 =
b1b2+ 2b2

3

(b2− b3)(b3− b1)
C3C2 =−C3C2,

where we use b1+ b2+ b3 = 0 and b2
1 + b2

2 + b2
3 =

2
3 . Similarly b2C1,3 =−C3C1

and b3C1,2 =−C2C1. Thus

(4-36) bkCi, j =−Ci C j , i 6= j, i 6= k, k 6= j.
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Using the covariant derivative of Ci and taking the derivative for (4-36) along Ek ,
we obtain

(4-37) Bkk,kCi, j + bk

[
Ci, jk −Ck, j

Bki,k

bk − bi
−Ci,k

Bk j,k

bk − b j

]
=−Ci

[
C j,k −Ck

B jk,k

bk − b j

]
−C j

[
Ci,k −Ck

Bik,k

bk − bi

]
.

If b1b2b3=0, we can assume that b1=0. From (2-11), we know that b2 =−b3 =
1
√

3
.

Using (4-29) we have C = 0.
We assume b1b2b3 6= 0. From (4-29), (4-36), (4-37) and Bkk,k =−B j j,k − Bi i,k ,

we conclude that

(4-38) bkCi, jk =−
4
3

Ci C j Ck

bi b j bk
=−

4
3

C1C2C3

b1b2b3
.

Since Ci, jk = C j,ik = Ck,i j and bi 6= b j , i 6= j , from (4-38) we get

C1,23 = 0, C1C2C3 = 0.

We can assume that C1 = 0, and (4-34) can be written as

(4-39) ω12 =
B12,1

b1− b2
ω1, ω13 =

B13,1

b1− b3
ω1, ω23 =

B23,2

b2− b3
ω2+

B23,3

b2− b3
ω3.

Using the covariant derivative of Ci and

dωi j −
∑

k

ωik ∧ωk j =−
1
2

∑
kl

Ri jklωk ∧ωl,

we can derive

(4-40)

3C2
3 [b

3
2− b3

3− 6b1b2
2+ 6b2

1b2]

(b1− b3)2(b3− b2)
+

27b2
1b3C2

2

(b1− b2)2(b3− b2)

= 3b1C3,3+ (b1− b3)
2δ,

3C2
2 [b

3
3− b3

2− 6b1b2
3+ 6b2

1b3]

(b1− b2)2(b2− b3)
+

27b2
1b2C2

3

(b1− b3)2(b2− b3)

= 3b1C2,2+ (b1− b2)
2δ,

3C2
3 [b

3
1− b3

3+ 3b3
2+ 15b1b2

2]

(b3− b2)2(b3− b1)
+

3C2
2 [b

3
1− b3

2+ 3b3
3+ 15b1b2

3]

(b3− b2)2(b2− b1)

= 3b3C2,2+3b2C3,3+(b3−b2)
2δ,

where we use Bi j, j = B j j,i −Ci , tr(B)= 0 and |B|2 = 2
3 . We can eliminate C2,2
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and C3,3 in (4-40) and derive

(4-41)
3[2b4

1+ 2b4
2+ 2b4

3− 9b2
1b2

2− 6b3
1b2− 12b1b3

2]

(b1− b3)3
C2

3

+
3[2b4

1+ 2b4
2+ 2b4

3− 9b2
1b2

3− 6b3
1b3− 12b1b3

3]

(b1− b2)3
C2

2

=−b1(b2− b3)
2δ.

On the other hand, using the covariant derivative of Ci and C1 = 0, we have

(4-42)

C1,1 =
3b1C2

2

(b2− b1)2
+

3b1C2
3

(b3− b1)2
,

C2,1 = C1,2 = 0, C3,1 = C1,3 = 0,

C2,2 = E2(C2)+
3b2C2

3

(b3− b2)2
,

C2,3 = E3(C2)−
3b3C2C3

(b3− b2)2
,

C3,2 = E2(C3)−
3b2C2C3

(b3− b2)2
,

C3,3 = E3(C3)+
3b3C2

2

(b3− b2)2
.

Using the second covariant derivative of the conformal 1-form C defined by∑
m

Ci, jmωm = dCi, j +
∑

m

Cm, jωmi +
∑

m

Ci,mωmj ,

and combining (4-29) and (4-42), we can deduce

C3,23 = E3(E2(C3))− 3
[

b1− b2

(b2− b3)3
−

6b2b1(b1− b2)

(b3− b2)4(b1− b3)

]
C2

3C2

+3(C2,2−C3,3)
b3C2

(b3− b2)2

−
3b2

(b3− b2)2

[
C3C2,3+C2C3,3+

3b3

(b3− b2)2
(C2

3C2−C3
2)

]
,

C3,32 = E2(E3(C3))+ 3
[

b1− b3

(b3− b2)3
−

6b3b1(b1− b3)

(b3− b2)4(b1− b2)

]
C3

2

+
6b3

(b3− b2)2
C2C2,2−

18b3b2

(b3− b2)4
C2

3C2.
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Using the Ricci identity C3,23−C3,32 =
∑

l Cl Rl323 = δC2, we obtain

(4-43)
δ

3
C2 =

3b1b3b2+ b2b2
1+ 5b3b2

1− 8b1b2
3− 2b3b2

2− b1b2
2+ 2b2b2

3

(b3− b2)4(b1− b2)
C3

2

+
3b1b3b2+ b3b2

1+ 5b2b2
1− 8b1b2

2− 2b2b2
3− b1b2

3+ 2b3b2
2

(b3− b2)4(b1− b3)
C2C2

3

−
b3

(b3− b2)2
C2C2,2−

b2

(b3− b2)2
C2C3,3+

2b2

b1(b3− b2)2
C2C2

3 ,

where we use the equation

E3(E2(C3))− E2(E3(C3))

= [E3, E2](C3)

= (ω23(E3)E3−ω32(E2)E2)(C3)

=
3b3

(b3− b2)2
C2C3,3−

9b2
3

(b3− b2)4
C3

2 −
3b2

(b3− b2)2
C3C3,2−

9b2
2

(b3− b2)4
C2

3C2.

From the third equation in (4-40) and (4-43), noting that b1b2b3 6= 0, we can deduce

(4-44)
2b2

b1(b3− b2)2
C2C2

3 = 0.

We can assume that C2 = 0. Next we prove that C3 = 0. In fact, if C3 6= 0,
from (4-39), we have

ω12 = 0, ω13 =
B13,1

b1− b3
ω1, ω23 =

B23,2

b2− b3
ω2.

Using

dω12−
∑

k

ω1k ∧ωk2 =−
1
2

∑
kl

R12klωk ∧ωl,

we can derive

(4-45) δ = R1212 =
−9b1b2C2

3

(b1− b3)2(b2− b3)2
.

Since C2 = 0, (4-41) becomes

(4-46)
3[2b4

1+ 2b4
2+ 2b4

3− 9b2
1b2

2− 6b3
1b2− 12b1b3

2]

(b3− b1)2(b3− b2)2
C2

3 =−b1(b1− b3)δ.

Combining (4-45) and (4-46), we have

(4-47) [2b4
1+ 2b4

2+ 2b4
3+ 12b1b2(b1b3− b2

2)]C
2
3 = 0.
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Using b1+ b2+ b3 = 0 and b2
1+ b2

2+ b2
3 =

2
3 , we see that

b4
1+ b4

2+ b4
3 =

2
9 and b1b3− b2

2 =−
1
3 .

Thus (4-47) is written as ( 4
9 − 4b1b2

)
C2

3 = 0.

Since C3 6= 0, 4
9−4b1b2= 0 which implies that b1, b2, b3 are constant. Thus (4-29)

means that C = 0, which is a contradiction. Thus C3= 0 and C = 0. This completes
the proof. �

Combining Propositions 4.2, 4.3, 4.4 and 4.5, we finish the proof of Theorem 1.1.
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CANONICAL FIBRATIONS OF
CONTACT METRIC (κ, µ)-SPACES

EUGENIA LOIUDICE AND ANTONIO LOTTA

We present a classification of the complete, simply connected, contact met-
ric (κ, µ)-spaces as homogeneous contact metric manifolds, by studying the
base space of their canonical fibration. According to the value of the Boeckx
invariant, it turns out that the base is a complexification or a paracomplex-
ification of a sphere or of a hyperbolic space. In particular, we obtain a
new homogeneous representation of the contact metric (κ, µ)-spaces with
Boeckx invariant less than −1.

1. Introduction 39
2. Preliminaries 41
3. A characterization of contact metric (κ, µ)-spaces 46
4. The base space of the canonical fibration 50
5. Homogeneous model spaces of contact metric (κ, µ)-spaces 57
References 62

1. Introduction

The study of the curvature tensor of associated metrics to a contact form is a central
theme in contact metric geometry. Actually some important classes of contact metric
manifolds can be defined using it. We recall for example that Sasakian manifolds,
the odd-dimensional analogues of Kähler manifolds, can be characterized by

R(X, Y )ξ = η(Y )X − η(X)Y,

where X, Y are any vector fields and ξ denotes the characteristic vector field of the
contact metric manifold. A meaningful generalization of this curvature condition is

R(X, Y )ξ = κ(η(Y )X − η(X)Y )+µ(η(Y )h X − η(X)hY ),

where κ, µ are real numbers and 2h is the Lie derivative of the structure tensor ϕ
in the direction of the characteristic vector field ξ .
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The contact metric manifolds with this property were introduced by Blair, Koufo-
giorgos and Papantoniou [1995], and are called contact metric (κ, µ)-spaces in the
literature. These spaces have many interesting geometric properties; first of all,
they are stable under D-homothetic deformations and moreover in the non-Sasakian
case, i.e., when κ 6= 1, the curvature tensor of the associated metric is completely
determined. Looking at contact metric manifolds as strongly pseudoconvex (almost)
CR manifolds, it was shown in [Dileo and Lotta 2009] that the (κ, µ) condition is
equivalent to the local CR-symmetry with respect to the Webster metric, according
to the general notion in [Kaup and Zaitsev 2000]. In this context, another charac-
terization was given by Boeckx and Cho [2008] in terms of the parallelism of the
Tanaka–Webster curvature.

Boeckx gave a crucial contribution to the problem of classifying these manifolds;
after showing that every non-Sasakian contact (κ, µ)-space is locally homogeneous
and strongly locally ϕ-symmetric [Boeckx 1999], he defined a scalar invariant IM

which completely determines a contact (κ, µ)-space M locally up to equivalence
and up to D-homothetic deformations of its contact metric structure [Boeckx 2000].

A standard example is the tangent sphere bundle T1 M of a Riemannian manifold
M with constant sectional curvature c 6= 1. Being a hypersurface of T M , which
is equipped with a natural almost-Kähler structure (J,G), where G is the Sasaki
metric, T1 M inherits a standard contact metric structure (for more details, see
for instance [Blair 2010]). In particular, the Webster metric g of T1 M is a scalar
multiple of G. The corresponding Boeckx invariant is given by

IT1 M =
1+c
|1−c|

.

Hence, as c varies in Rr {1}, IT1 M assumes all real values strictly greater than −1.
The case I 6−1 seems to lead to models of different nature. Namely, Boeckx

found examples of contact metric (κ, µ)-spaces, for every value of the invariant
I 6−1, namely a two parameter family of (abstractly constructed) Lie groups with
a left-invariant contact metric structure. However, he gave no geometric description
of these examples; in particular, to our knowledge, nothing can be found in the
literature regarding the topological structure of these manifolds.

One of the first aims of this paper is to fill this gap, showing that simply connected,
complete contact metric (κ, µ)-spaces of dimension 2n + 1 (where n > 1) with
I <−1 are exhausted by a one parameter family of invariant contact metric structures
on the homogeneous space

SO(n, 2)/SO(n).

Actually, we provide a unified treatment of all the models with IM 6= ±1. Our
classification is accomplished intrinsically, by studying the canonical fibration of
non-Sasakian contact metric (κ, µ)-spaces with Boeckx invariant IM 6= ±1 and
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Boeckx invariant model space base space

IM > 1 SO(n+ 2)/SO(n) SO(n+ 2)/(SO(n)×SO(2))
−1< IM < 1 SO(n+ 1, 1)/SO(n) SO(n+ 1, 1)/(SO(n)×SO(1, 1))

IM <−1 SO(n, 2)/SO(n) SO(n, 2)/(SO(n)×SO(2))

Table 1. Simply connected complete contact metric (κ, µ)-spaces
with IM 6= ±1.

endowing the base spaces of a canonical connection. Here we refer to the fibration
M → M/ξ over the leaf space of the foliation determined by the Reeb vector
field; as such, it depends only on the contact form of M . First, in Theorem 7,
non-Sasakian contact metric (κ, µ)-spaces with Boeckx invariant not equal to ±1
are characterized by admitting a transitive Lie group of automorphisms whose Lie
algebra g has a (canonical) symmetric decomposition. This decomposition yields
a reductive decomposition for the base space B of the canonical fibration and the
associated canonical connection makes B an affine symmetric space (Corollary 8).

Next we show that B admits a uniquely determined standard invariant complex or
paracomplex structure, by which it is a complexification or a paracomplexification
of the sphere Sn or of the hyperbolic space Hn , according to the value of the Boeckx
invariant of the (κ, µ)-space. After identifying the possible base spaces B, in the
final section we construct explicitly our models as homogeneous contact metric
manifolds fiberings onto them. In conclusion, we obtain the classification list in
Table 1. This table also provides a new geometric interpretation of the Boeckx
invariant.

2. Preliminaries

Let M be an odd-dimensional smooth manifold. An almost contact structure on
M is a triple consisting of a (1, 1) tensor field ϕ, a vector field ξ , and a 1-form η

satisfying

ϕ2
=− id+η⊗ ξ, η(ξ)= 1.

An almost contact manifold always admits a compatible metric, namely a Riemann-
ian metric g such that

g(ϕX, ϕY )= g(X, Y )− η(X)η(Y ),

for all vector fields X , Y on M . If such a metric g satisfies also

dη(X, Y )= g(X, ϕY ),
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then (ϕ, ξ, η, g) is called a contact metric structure on M . In this case η is a contact
form; we shall denote by D the corresponding contact distribution D = ker(η) and
by D the module of smooth sections of D.

A contact metric manifold M is said to be a K -contact manifold if its character-
istic vector field ξ is Killing. This condition is equivalent to the vanishing of the
(1, 1) tensor field

h := 1
2Lξϕ,

where Lξ is Lie differentiation in the direction of ξ .
If the curvature tensor R of a contact metric manifold M satisfies the condition

R(X, Y )ξ = η(Y )X − η(X)Y,

for all vector fields X , Y on M , then M is a Sasakian manifold. In this case ξ is a
Killing vector field and hence M is a K -contact manifold.

A contact metric (κ, µ)-space is a contact metric manifold (M, ϕ, ξ, η, g) such
that

R(X, Y )ξ = κ(η(Y )X − η(X)Y )+µ(η(Y )h X − η(X)hY ),

where X, Y ∈ X(M) are arbitrary vector fields and κ , µ are real numbers. The
(κ, µ) condition is invariant under Da-homothetic deformations. We recall that a
Da-homothetic deformation of a contact metric manifold (M, ϕ, ξ, η, g) is given
by the following changing of the structural tensors of M :

(1) η̄ := aη, ξ̄ := 1
a ξ, ḡ = ag+ a(a− 1)η⊗ η,

where a is a positive constant.
By direct computations one can check that a Da-homothetic deformation trans-

forms a contact metric (κ, µ) space into a contact metric (κ̄, µ̄) space where

κ̄ =
κ + a2

− 1
a2 , µ̄=

µ+ 2a− 2
a

.

In particular, a Da-homothetic deformation of a contact metric manifold (M, ϕ, ξ,
η, g) satisfying R(X, Y )ξ = 0 yields

R(X, Y )ξ =
a2
− 1

a2 (η̄(Y )X − η̄(X)Y )+
2a− 2

a
(η̄(Y )h̄ X − η̄(X)h̄Y ).

Blair, Koufogiorgos, and Papantoniou [1995] proved the following result.

Theorem 1. Let (M, ϕ, ξ, η, g) be a contact metric (κ, µ) manifold. Then κ 6 1.
Moreover, if κ = 1 then h = 0 and (M, ϕ, ξ, η, g) is Sasakian. If κ < 1, the contact
metric structure is not Sasakian and M admits three mutually orthogonal integrable
distributions D(0), D(λ), and D(−λ) corresponding to the eigenspaces of h, where
λ=
√

1− κ .
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The explicit expression of the Riemannian curvature tensor of a non-Sasakian
contact metric (κ, µ)-manifold is known (see [Boeckx 1999, Theorem 5]).

Theorem 2. Let M be a contact metric (κ, µ)-space. If κ 6= 1, then

g(R(X, Y )Z ,W )=
(
1− 1

2µ
)
(g(Y, Z)g(X,W )− g(X, Z)g(Y,W ))

+ g(Y, Z)g(h X,W )− g(X, Z)g(hY,W )

− g(Y,W )g(h X, Z)+ g(X,W )g(hY, Z)

+
1−µ/2

1−κ
(g(hY, Z)g(h X,W )− g(h X, Z)g(hY,W ))

−
1
2µ(g(ϕY, Z)g(ϕX,W )− g(ϕX, Z)g(ϕY,W ))

+
κ−µ/2

1−κ
(g(ϕhY, Z)g(ϕh X,W )− g(ϕhY,W )g(ϕh X, Z))

+µg(ϕX, Y )g(ϕZ ,W )

+ η(X)η(W )
((
κ − 1+ 1

2µ
)
g(Y, Z)+ (µ− 1)g(hY, Z)

)
− η(X)η(Z)

((
κ − 1+ 1

2µ
)
g(Y,W )+ (µ− 1)g(hY,W )

)
+ η(Y )η(Z)

((
κ − 1+ 1

2µ
)
g(X,W )+ (µ− 1)g(h X,W )

)
− η(Y )η(W )

((
κ − 1+ 1

2µ
)
g(X, Z)+ (µ− 1)g(h X, Z)

)
.

The class of non-Sasakian contact metric (κ, µ)-spaces coincides with the class
of contact metric manifolds with nonvanishing η-parallel tensor h, according to
[Blair, Koufogiorgos, and Papantoniou 1995, Lemma 3.8] and the following result
of Boeckx and Cho [2005]:

Theorem 3. Let (M, ϕ, ξ, η, g) be a contact metric manifold which is not K -
contact. If g((∇X h)Y, Z)= 0 for all vector fields X , Y , Z orthogonal to ξ , then M
is a contact metric (κ, µ)-space.

Finally, we recall also the following characterization in the context of CR geom-
etry (we refer to [Blair 2010, §6.4; Dragomir and Tomassini 2006] for a general
reference on this topic):

Theorem 4 [Dileo and Lotta 2009, Theorem 3.2]. Let (M, H M, J, η) be a pseudo-
Hermitian manifold. Assume that the Webster metric gη is not Sasakian. The
following conditions are equivalent:

(1) The Webster metric gη is locally CR-symmetric.

(2) The underlying contact metric structure satisfies the (κ, µ) condition.

Non-Sasakian contact metric (κ, µ)-spaces have been completely classified by
Boeckx [2000]. In this case κ < 1 and the real number

IM :=
1−µ/2
√

1− κ
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is an invariant of the (κ, µ)-structure, which we call Boeckx invariant. Indeed we
have:

Theorem 5 [Boeckx 2000]. Let (Mi , ϕi , ξi , ηi , gi ), i = 1, 2, be two non-Sasakian
(κi , µi )-spaces of the same dimension. Then IM1 = IM2 if and only if , up to a D-
homothetic transformation, the two spaces are locally isometric as contact metric
spaces. In particular, if both spaces are simply connected and complete, they are
globally isometric up to a D-homothetic deformation.

Next we recall the notions of straight and twisted complexifications of a Lie
triple system (LTS). For more details we refer the reader to [Bertram 2000; 2001].
Given a Lie triple system (m, [ , , ]) we shall write as usual

R(X, Y )Z := −[X, Y, Z ].

We shall also write (m, R) instead of (m, [ , , ]). An invariant complex structure
on m is a complex structure J :m→m such that for every X, Y, Z ∈m,

[X, Y, J Z ] = J [X, Y, Z ].

An invariant paracomplex structure I on m is a paracomplex structure on m (i.e.,
an endomorphism of m such that I 2

= idm and the ±1 eigenspaces of I have the
same dimension) satisfying

[X, Y, I Z ] = I [X, Y, Z ]

for every X, Y, Z ∈m.
For every LTS m endowed with an invariant (para-)complex structure, the corre-

sponding simply connected symmetric space G/H is canonically endowed with
a G-invariant almost (para-)complex structure and vice versa (see [Bertram 2000,
Proposition III.1.4]).

An invariant (para-)complex structure J on a Lie triple system (m, [ , , ]) is
called straight if

[J X, Y, Z ] = [X, JY, Z ]

or twisted if
[J X, Y, Z ] = −[X, JY, Z ].

Accordingly, a straight or respectively twisted (para-)complex symmetric space is
an affine symmetric space M =G/H endowed with an invariant almost (para-)com-
plex structure J such that

R(J X, Y )Z = R(X,J Y )Z

or respectively
R(J X, Y )Z =−R(X,J Y )Z ,
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where R is the curvature of M .
A (para-)complexification of an LTS m is an LTS (q, [ , , ]) together with an

invariant (para-)complex structure J and an automorphism τ such that τ J+ Jτ = 0,
τ 2
= idq, and the LTS qτ given by the space of τ -fixed points of q is isomorphic

to m. The (para-)complexification (q, [ , , ], J, τ ) of m is called straight or twisted
respectively if J is a straight or twisted.

We recall that every LTS (m, R) has a unique straight complexification given by
the C-trilinear extension RC :mC×mC×mC→mC of R [Bertram 2001, Proposi-
tion 2.1.4]. The existence of a twisted complexification or paracomplexification
of m is instead related to the existence of a particular (1, 3)-tensor, the Jordan
extension of R.

Let M=G/H be a symmetric space endowed with an invariant almost (para-)com-
plex structure J . The structure tensor of J is the (1, 3)-tensor

T (X, Y )Z =− 1
2(R(X, Y )Z −J R(X,J −1Y )Z).

This tensor satisfies the following two properties:

(JT1) T (X, Y )Z = T (Z , Y )X,

(JT2) T (U, V )T (X, Y, Z)
= T (T (U, V )X, Y, Z)− T (X, T (U, V )Y, Z)+ T (X, Y, T (U, V )Z).

Now, a Jordan triple system is a pair (V, T ), where V is a vector space and
T : V ×V ×V → V is a trilinear map satisfying (JT1), (JT2), called a Jordan triple
product on V .

Observe that if T is a JT product on V , then

[x, y, z] := T (x, y)z− T (y, x)z

is a LT product on V .
Let T be a JT product on an LTS (m, R). We set

RT (x, y) := −T (x, y)+ T (y, x).

T is said to be a Jordan extension of R if R = RT .

Theorem 6 [Bertram 2000, Theorem III.4.4]. Let (m, R) be an LTS. The following
objects are in one-to-one correspondence:

(1) twisted complexifications of R,

(2) twisted paracomplexifications of R,

(3) Jordan extensions of R.

In the next section we shall be concerned with the following basic examples,
studying their interplay with the classification of contact metric (κ, µ)-manifolds.
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Consider the Lie triple systems (Rn, R) and (Rn,−R), associated respectively to
the sphere Sn and the hyperbolic space Hn , where R is

R(x, y)z := 2(〈y, z〉x −〈x, z〉y).

On (Rn, R) one can consider the following JT product:

T (x, y)z = 〈x, z〉y−〈x, y〉z−〈y, z〉x .

Then, according to Bertram [2000, Proposition IV.1.5], the corresponding twisted
complexification and paracomplexification of Sn are the symmetric spaces

SO(n+ 2)/(SO(n)×SO(2))
and

SO(n+ 1, 1)/(SO(n)×SO(1, 1)).

In the case of Hn , one can consider −T ; the corresponding twisted complexifica-
tion is (see [Bertram 2000, p. 91])

SO(n, 2)/(SO(n)×SO(2)).

3. A characterization of contact metric (κ, µ)-spaces

Let (M, ϕ, ξ, η, g) be a connected homogeneous contact metric manifold. Consider
a Lie group G acting transitively on M as a group of automorphisms of the contact
metric structure, and denote by H the isotropy subgroup of G at xo ∈ M . The
natural map j :G/H→M given by j (aH)= axo is a diffeomorphism. Thus G/H
is a homogeneous Riemannian space and in particular it is a reductive homogeneous
space (see, e.g., [Tricerri and Vanhecke 1983]). Fix a reductive decomposition of
the Lie algebra g of G:

(2) g= h⊕m,

where h= Lie(H). The identity component Go of G acts again transitively on M ,
and the isotropy subgroup of Go at xo is H ∩Go. Let

π : Go
→ Go/H ∩Go

' M

be the natural fibration of Go onto the homogeneous space Go/H ∩ Go. Since
Lie(H)=Lie(H ∩Go), (2) is also a reductive decomposition for Go/H ∩Go. Then
m decomposes into the direct sum of two H ∩Go-invariant subspaces:

m= RJ ⊕ b,

where J is the vector of m corresponding to ξo and b corresponds to the determina-
tion of the contact distribution D = ker(η) at o := π(e)∼= xo, where e is the neutral
element of G.
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Now, homogeneity ensures that the contact form η is regular (see [Boothby and
Wang 1958, § II]); hence we have a canonical fibration of M , given by (see also
[Musso 1991, p. 225])

Go/H ∩Go
→ Go/So(H ∩Go),

where So is the identity component of the closed Lie subgroup

S := {h ∈ Go
| Ad(h)∗η̃ = η̃}

of Go. Here η̃ denotes the one form on Go pull back of η via π . We have that
H ∩Go

⊂ S [Boothby and Wang 1958, Lemma II.4].
Moreover, the Lie algebra h̄ of H := So(H ∩Go) is given by

h̄= h⊕RJ,

and we have the following decomposition of g:

(3) g= h̄⊕ b.

Our first aim is to characterize the non-Sasakian contact metric (κ, µ)-spaces as
homogeneous contact metric manifolds for which decomposition (3) is symmetric,
i.e.,

[h̄, h̄] ⊂ h̄, [h̄, b] ⊂ b, [b, b] ⊂ h̄.

Using this, in Corollary 8, we shall be able to endow B of Go-invariant affine
connections making it an affine symmetric space.

Theorem 7. Let (M, ϕ, ξ, η, g) be a simply connected, complete, contact metric
manifold. Assume M is not K -contact. Then the following conditions are equivalent:

(a) M is a contact metric (κ, µ)-space.

(b) M admits a transitive, effective Lie group of automorphisms G whose Lie
algebra g is a symmetric Lie algebra with symmetric decomposition (3).

Proof. (a)⇒ (b): According to [Boeckx 1999], (M, ϕ, ξ, η, g) is a homogeneous
contact metric manifold. Let G=Aut(M) be the Lie group of all the automorphisms
of the contact metric structure of M , and H be the isotropy subgroup of G at xo ∈M .

We fix a reductive decomposition of g:

(4) g= h⊕m,

where g and h are respectively the Lie algebras of G and H . Keeping the notation
above we consider also the decompositions

g= h⊕RJ ⊕ b= h̄⊕ b.
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By Theorem 4, for every x ∈ M there exists a local CR-symmetry at x . Since M
is simply connected and complete, the local CR-symmetries are actually globally
defined. Let σ be the CR-symmetry at o = eH . We recall that σ is an isometric
CR diffeomorphism of M , whose differential at o is −Id on Do. In particular, it is
an automorphism of the contact metric structure and an affine automorphism of the
canonical G-invariant affine connection ∇̃ associated to (4). Hence, denoting by T̃
the torsion of ∇̃, we have that, for every X, Y, Z ∈ b⊂m:

go(T̃ (X, Y ), Z)= go(σ?T̃ (X, Y ), σ?Z)= go(T̃ (σ?X, σ?Y ), σ?Z)

=−go(T̃ (X, Y ), Z),

which yields that [X, Y ]m =−T̃o(X, Y ) ∈ RJ , and hence [b, b] ⊂ h̄.
The curvature tensor R̃ of ∇̃ and the Reeb vector field ξ are also preserved by σ .

Hence for every X, Y, Z ∈ b:

go(R̃(J, X)Y, Z)= go(σ? R̃(J, X)Y, σ?Z)= go(R̃(σ? J, σ?X)σ?Y, σ?Z)

=−go(R̃(J, X)Y, Z),

moreover, since ∇̃D ⊂ D we have that R̃(J, X)Y ∈ Do; thus

[[J, X ]h, Y ] = 0

for every X, Y ∈ b. Since G is effective on M , the adjoint representation ad : h→
End(m) is injective; therefore, using also [h, J ] = 0, we conclude that [J, X ]h = 0.

Finally we prove that [J, X ] ∈ b; indeed we have

go(T̃ (J, X), J )= go(σ?T̃ (J, X), σ? J )= go(T̃ (σ? J, σ?X), σ? J )

=−go(T̃ (J, X), J ).

This completes the proof of (b).

(b) ⇒ (a): Let g = h⊕m be a reductive decomposition for the homogeneous
contact metric space M = G/H , where H is the isotropy subgroup of G at a point
xo ∈ M .

Let ∇ and ∇̃ respectively the Levi-Civita connection of g and the canonical
affine connection on M associated to the fixed reductive decomposition. If we set
A =∇ −∇̃, then

(∇X h)Y = (∇̃X h)Y + A(X, hY )− h A(X, Y ).

Now, since the tensor h = 1
2Lξϕ is invariant under automorphisms of the contact

metric structure, it is parallel with respect to the canonical connection ∇̃ [Kobayashi
and Nomizu 1969, p. 193] and hence

(5) (∇X h)Y = A(X, hY )− h A(X, Y ).
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Since ∇̃ is a metric connection, for X, Y, Z ∈ X(M) we have that

(6) g(A(X, Y ), Z)+ g(Y, A(X, Z))= 0.

Then for every X, Y, Z ∈ X(M),

(7) 2g(A(X, Y ), Z)=−g(T̃ (X, Y ), Z)+ g(T̃ (Y, Z), X)− g(T̃ (Z , X), Y ).

Now observe that for every X, Y ∈ b,

T̃o(X, Y )=−[X, Y ]m,
and

[X, Y ] ∈ h⊕RJ,

since g= h̄⊕ b a symmetric decomposition by assumption. Thus T̃o(X, Y ) ∈ RJ .
Hence for every X, Y, Z ∈ D,

g(T̃ (X, Y ), Z)= 0,
and then, by (7),

g(A(X, Y ), Z)= 0.

Thus, using (5), we obtain that

g((∇X h)Y, Z)= 0

for every X, Y, Z ∈D. This implies that M is a contact metric (κ, µ)-space according
to Theorem 3. �

Corollary 8. Let M=G/H be a simply connected, complete, non-Sasakian contact
metric (κ, µ)-manifold. Then the base space B = Go/H of the canonical fibration
of M is an affine symmetric space.

Proof. It suffices to prove that B = Go/H is a homogeneous reductive space
with respect to decomposition (3); indeed, the associated canonical Go-invariant
connection makes B a locally symmetric affine manifold. Observe that B is simply
connected since the fibers of the canonical fibration are connected (see [Boothby
and Wang 1958, Theorem II.4]). Since the canonical invariant connection is always
complete (see [Kobayashi and Nomizu 1969, Chapter X, Corollary 2.5]), B is
actually a symmetric space.

To prove our claim, we recall that H ∩Go
⊂ S; thus So

⊂ So(H ∩Go)⊂ S and
Lie(So)= h̄. Since [h̄, b] ⊂ b and So is connected, it follows that Ad(So)b⊂ b and
hence, since also Ad(H∩Go)(b)⊂b, we conclude that Ad(H)b⊂b, as claimed. �

We remark that the affine symmetric structure on B thus obtained a priori depends
on the initial choice of a reductive decomposition (2) of g. In the next section, we
shall see that actually different choices lead to the same affine symmetric space, up
to isomorphism (see Corollary 10).
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4. The base space of the canonical fibration

The aim of this section is to give a complete classification of the symmetric base
spaces B of the canonical fibrations of simply connected, complete, non-Sasakian
contact metric (κ, µ)-manifolds with Boeckx invariant IM 6= ±1. We obtain that B
is a twisted complexification or paracomplexification of the sphere Sn , or of the
hyperbolic space Hn according to this table:

Boeckx invariant base space type

IM > 1 SO(n+2)/(SO(n)×SO(2)) complexification of Sn

−1< IM < 1 SO(n+1, 1)/(SO(n)×SO(1, 1)) paracomplexification of Sn

IM <−1 SO(n, 2)/(SO(n)×SO(2)) complexification of Hn

Keeping the notations above, we identify the tangent space of B at the base
point with the linear subspace b ∼= Do. Moreover we denote by b+ and b− the
subspaces of b corresponding respectively to the eigenspaces Do(λ) and Do(−λ)

of ho : b→ b.
We start by computing the curvature of B.

Proposition 9. Let (M, ϕ, ξ, η, g) be a simply connected, complete, non-Sasakian
contact metric (κ, µ)-manifold and B the base space of the canonical fibration
of M. If ∇ is the canonical affine connection on B associated to any reductive
decomposition of type (3), then the curvature tensor R of ∇ at the base point o ∈ B
is given by

(8) Ro(X, Y )Z =
((

1− 1
2µ
)
g(Y, Z)+ g(hY, Z)

)
X

−
((

1− 1
2µ
)
g(X, Z)+ g(h X, Z)

)
Y

+

(1−µ/2
1−κ

g(hY, Z)+ g(Y, Z)
)

h X

−

(1−µ/2
1−κ

g(h X, Z)+ g(X, Z)
)

hY

+
((

1− 1
2µ
)
g(ϕY, Z)+ g(ϕhY, Z)

)
ϕX

−
((

1− 1
2µ
)
g(ϕX, Z)+ g(ϕh X, Z)

)
ϕY

+

(1−µ/2
1−κ

g(ϕhY, Z)+ g(ϕY, Z)
)
ϕh X

−

(1−µ/2
1−κ

g(ϕh X, Z)+ g(ϕX, Z)
)
ϕhY

+ (µ− 2)g(ϕX, Y )ϕZ − 2g(ϕX, Y )ϕh Z .

Proof. For every X, Y, Z ∈ b we have

Ro(X, Y )Z =−[[X, Y ]J + [X, Y ]h, Z ]
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(see [Kobayashi and Nomizu 1969, Chapter X]), and hence

(9) Ro(X, Y )Z = R̃(X, Y )Z − [[X, Y ]J , Z ],

where [X, Y ]J and [X, Y ]h are the components of [X, Y ] ∈ g= h⊕RJ ⊕b respec-
tively in RJ and h; R̃ is the curvature tensor of the canonical connection of the
homogeneous reductive space M with reductive decomposition g= h⊕m.

Let ∇ be the Levi-Civita connection of g and R the curvature tensor of ∇. If we
set A := ∇̃ −∇, then a standard computation yields:

R̃(X, Y )Z = R(X, Y )Z − A(X, A(Y, Z))+ A(Y, A(X, Z))

+ A(T̃ (X, Y ), Z)+ (∇̃X A)(Y, Z)− (∇̃Y A)(X, Z),

for every X, Y, Z ∈ X(M). Moreover, since A is a G-invariant tensor, we have that
A is parallel with respect to the canonical connection ∇̃ and hence

R̃(X, Y )Z = R(X, Y )Z − A(X, A(Y, Z))+ A(Y, A(X, Z))+ A(T̃ (X, Y ), Z),

and (9) becomes

Ro(X, Y )Z = R(X, Y )Z − A(X, A(Y, Z))+ A(Y, A(X, Z))

+ A(T̃ (X, Y ), Z)− [[X, Y ]J , Z ].

We already observed in the proof of Theorem 7 that for every X, Y, Z ∈ D,

g(A(X, Y ), Z)= 0, g(T̃ (X, Y ), Z)= 0;

hence

A(X, Y )= g(A(X, Y ), ξ)ξ,(10)

T̃ (X, Y )= g(T̃ (X, Y ), ξ)ξ =−g([X, Y ], ξ)ξ = 2g(X, ϕY )ξ.(11)

In (11) we are using the parallelism of the distributions D(±λ) with respect to ∇̃,
which is a consequence of the fact that ∇̃h = 0.

Moreover, we have

(12) A(X, ξ)= ∇̃Xξ −∇Xξ = ϕX +ϕh X.

Then, using (10), (11), (12), specializing at the point o we obtain

(13) Ro(X, Y )Z = R(X, Y )Z−g(A(Y, Z), J )A(X, J )+g(A(X, Z), J )A(Y, J )

+2g(X, ϕY )A(J, Z)+[T̃ (X, Y ), Z ]

= R(X, Y )Z−g(A(Y, Z), J )(ϕX+ϕh X)

+g(A(X, Z), J )(ϕY+ϕhY )+2g(X, ϕY )A(J, Z)

+2g(X, ϕY )[J, Z ],
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where X, Y, Z ∈ b. The (1, 1)-tensor A(X, · ) is a skew symmetric tensor, since
∇̃g = 0. In particular,

g(A(X, Y ), ξ)=−g(Y, A(X, ξ)),

so that, by (12)

g(A(X, Y ), ξ)=−g(Y, ϕX +ϕh X).

Thus, (13) becomes

Ro(X, Y )Z = R(X, Y )Z + g(Z , ϕY +ϕhY )(ϕX +ϕh X)

− g(ϕX +ϕh X, Z)(ϕY +ϕhY )+ 2g(X, ϕY )A(J, Z)

+ 2g(X, ϕY )[J, Z ].

Now, using Theorem 7,

T̃o(J, Z)=−[J, Z ]m =−[J, Z ];

on the other hand,

T̃ (ξ,W )= ∇̃ξW −∇̃W ξ − [ξ,W ] = ∇ξW + A(ξ,W )− [ξ,W ]

= −ϕW −ϕhW + A(ξ,W ),

for every W vector field on M . Thus,

Ro(X, Y )Z = R(X, Y )Z + g(Z , ϕY +ϕhY )(ϕX +ϕh X)

− g(ϕX +ϕh X, Z)(ϕY +ϕhY )+ 2g(X, ϕY )A(J, Z)

− 2g(X, ϕY )(−ϕZ −ϕh Z + A(J, Z))

= R(X, Y )Z + g(Z , ϕY +ϕhY )(ϕX +ϕh X)

− g(ϕX +ϕh X, Z)(ϕY +ϕhY )+ 2g(X, ϕY )(ϕZ +ϕh Z).

Finally, taking into account the explicit expression of the curvature tensor R of M
(see Theorem 2), we obtain (8). �

Corollary 10. The affine base spaces (B,∇) of a simply connected, complete,
non-Sasakian, contact metric (κ, µ)-manifold are all mutually equivalent affine
symmetric spaces.

For a non-Sasakian contact metric (κ, µ)-space the restriction of the (1, 1) tensor
ϕ to the horizontal distribution does not induce a complex structure on the base
space, as occurs in the homogeneous Sasakian case, because h 6= 0. However,
we shall see in the following that B admits a standard complex or paracomplex
structure, according to the following definition and Theorem 13.
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Definition 11. Let (M, ϕ, ξ, η, g) be a contact metric (κ, µ)-manifold and (B,∇)
the base space of the canonical fibration of M .

A Go-invariant almost complex structure J on B will be called standard complex
structure provided its determination at the base point o is of the form

(14) Jo =

{
aϕ on b+,
1
aϕ on b−,

where a is a positive constant.
A standard paracomplex structure on B is a Go-invariant almost paracomplex

structure on B whose determination at the base point o is of the form

(15) Io =

{
aϕ on b+,

−
1
aϕ on b−,

where a is a positive constant.

Remark 12. A (para-)complex structure J on the vector space b defined as in (14)
or (15) does not induce in general a Go-invariant almost complex or paracomplex
structure on B.

Theorem 13. Let (M, ϕ, ξ, η, g) be a simply connected, complete, contact metric
(κ, µ)-manifold and let (B,∇) be the symmetric base space of the canonical fibra-
tion of M. Then:

(1) |IM |> 1 if and only if B admits a standard complex structure.

(2) |IM |< 1 if and only if B admits a standard paracomplex structure.

Moreover, in each case such a standard complex or paracomplex structure is
uniquely determined; precisely, it corresponds to the following value of the constant
a in (14), (15):

a =

√
IM + 1
IM − 1

when |IM |> 1, and

a =

√
−

IM + 1
IM − 1

when |IM |< 1.

Proof. Let (b, [ , , ]) be the Lie triple system associated to the symmetric space
(B,∇). The Lie triple product [ , , ] is given by the curvature R of ∇ at the base
point o:

[X, Y, Z ] = −Ro(X, Y )Z .
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Let J : b→ b be a complex structure on b of the form

(16) J =

{
aϕ on b+,
1
aϕ on b−,

where a is a real parameter, a > 0.
For every X+, Y+, Z+ ∈ b+ and X−, Y−, Z− ∈ b−, using (8) and (16), by a direct

computation, one can check that

R(X+, Y+)J Z+ = J R(X+, Y+)Z+, R(X+, Y+)J Z− = J R(X+, Y+)Z−,

R(X−, Y−)J Z+ = J R(X−, Y−)Z+, R(X−, Y−)J Z− = J R(X−, Y−)Z−,

R(X+, Y−)J Z− = 1
a (2λ−µ+ 2)g(ϕX+, Y−)Z−,

J R(X+, Y−)Z− =−a(µ− 2+ 2λ)g(ϕX+, Y−)Z−.

Hence, the condition

R(X+, Y−)J Z− = J R(X+, Y−)Z−

is satisfied for every X+ ∈ b+, Y−, Z− ∈ b− if and only if there exists a > 0 such
that 2λ−µ+ 2=−a2(µ− 2+ 2λ).

If µ − 2 + 2λ = 0 then also 2λ − µ + 2 = 0. It follows that κ = 1, but by
assumption M is non-Sasakian, then it must be µ− 2+ 2λ 6= 0 and

−
2λ−µ+2
2λ+µ−2

> 0.

This condition is equivalent to requiring that |IM |> 1.
Finally,

R(X+, Y−)J Z+ =−a(2λ+µ− 2)g(ϕX+, Y−)Z+,

J R(X+, Y−)Z+ = 1
a (2λ−µ+ 2)g(ϕX+, Y−)Z+.

Thus,

R(X+, Y−)J Z+ = J R(X+, Y−)Z+

for every X+, Z+∈b+, Y−∈b− if and only if there exist a>0 such that 2λ−µ+2=
−a2(2λ+µ− 2).

We conclude that the complex structure J is invariant if and only if |IM | > 1.
Moreover, in this case

a =
√

2−µ+2λ
2−µ−2λ

.
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With analogous considerations, we obtain that the paracomplex structure defined
on b by

(17) I =

{
aϕ on b+,

−
1
aϕ on b−,

where a > 0, is an invariant paracomplex structure if and only if −1< IM < 1. In
this case,

a =
√
−

2−µ+2λ
2−µ−2λ

. �

Remark 14. Cappelletti-Montano, Carriazo, and Martín-Molina [2013] showed that
every non-Sasakian contact metric (κ, µ)-manifold (M, ϕ, ξ, η, g) with |IM |> 1
admits a Sasakian structure (ϕ̃, ξ, η, g̃) obtained by deforming the (1, 1)-tensor ϕ
and the Riemannian metric g as

ϕ̃ = ε
1

(1− κ)
√
(2−µ)2− 4(1− κ)

Lξh ◦ h, g̃ =−dη( · , ϕ̃ · )+ η⊗ η,

where

ε =

{
1 if IM > 1,
−1 if IM <−1.

Moreover, for every point of M there exists a local CR-symmetry [Dileo and
Lotta 2009, Theorem 3.2]. Observe that the CR-symmetries preserve the tensor
field h, and hence they preserve also ϕ̃ and g̃. Thus, (M, ϕ̃, ξ, η, g̃) is a Sasakian
ϕ-symmetric space [Dileo and Lotta 2009, Proposition 3.3] and fibers over a Kähler
manifold (B, J̄ , ḡ) that is a Hermitian symmetric space [Takahashi 1977]. One can
check that J̄ coincides with the standard complex structure J on B in our sense.

Proposition 15. The standard (para-)complex structure on the base space (B,∇)
of a simply connected, complete, non-Sasakian, contact metric (κ, µ)-manifold M
with |IM |> 1 (|IM |< 1) is actually a twisted (para-)complex Go-invariant structure.

Proof. This can be easily verified directly using (8). �

Theorem 16. Let M2n+1 be a simply connected, complete, non-Sasakian, contact
metric (κ, µ)-manifold. Then:

(a) IM > 1 if and only if its twisted complex symmetric base space (B,∇,J ) is
the complexification SO(n+ 2)/(SO(n)×SO(2)) of Sn .

(b) −1 < IM < 1 if and only if its twisted paracomplex symmetric base space
(B,∇, I) is the paracomplexification SO(n+ 1, 1)/(SO(n)×SO(1, 1)) of Sn .

(c) IM <−1 if and only if its twisted complex symmetric base space (B,∇,J ) is
the complexification SO(n, 2)/(SO(n)×SO(2)) of Hn .
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Proof. Consider the Lie triple system (b, [ , , ]) associated to the canonical symmet-
ric base space (B,∇). The Lie triple commutator [ , , ] : b×b×b→ b is given by

[X, Y, Z ] = −Ro(X, Y )Z ,

where R is the curvature of ∇. By direct computation, using Proposition 9 we see
that the linear mapping

τ : X ∈ b 7→ 1
λ

h X ∈ b

is an involutive automorphism of the LTS (b, [ , , ]). Thus the space bτ of the
τ -fixed elements of b, together with the induced Lie triple bracket, is a Lie triple
system. Actually, since

bτ = b+,

and because the restriction R+ of R to b+ is given by

R+(X+, Y+)Z+ = (2−µ+ 2λ)(g(Y+, Z+)X+− g(X+, Z+)Y+),

we have that the LTS (b+, R+) is isomorphic to the LTS belonging to the sphere
Sn or the hyperbolic space Hn , according to the circumstance that the Boeckx
invariant IM is greater than −1 or less than −1 respectively; indeed we have
2−µ+ 2λ= 2λ(IM + 1).

Suppose |IM |> 1. Let J be the twisted complex structure on b corresponding to
the standard complex structure J of B. Observe that Jτ+τ J =0, since ϕh+hϕ=0.
Then (b, [ , , ], J, τ ) is a twisted complexification of (b+, R+).

We recall that, by definition, the structure tensor T of J at the base point o is

To(X, Y )Z =− 1
2(Ro(X, Y )Z + J Ro(X, JY )Z),

and that its restriction T+ to b+ yields the Jordan extension (b+, T+) of the LTS
(b+, R+), uniquely associated to its twisted complexification (b, [ , , ], J, τ ) (see
Theorem 6).

Computing T+ we obtain

T+(X+, Y+)Z+ =− 1
2

(
R(X+, Y+)Z++J R(X+, JY+)Z+

)
=

1
2(µ−2−2λ)

(
g(Y+, Z+)X+−g(X+, Z+)Y++g(X+, Y+)Z+

)
.

Hence, taking into account the complexification diagrams of the sphere and of the
hyperbolic space [Bertram 2000, Chapter IV], we obtain assertions (a) and (c).

Now suppose |IM |< 1 and denote by I the twisted paracomplex structure on b

corresponding to the standard paracomplex structure I of B at the base point. We
have that I τ + τ I = 0, since ϕh+ hϕ = 0, and hence (b, [ , , ], I, τ ) is a twisted
paracomplexification of (bτ , R+). The structure tensor of I at the base point o is

To(X, Y )Z =− 1
2(Ro(X, Y )Z − I Ro(X, I Y )Z).



CANONICAL FIBRATIONS OF CONTACT METRIC (κ, µ)-SPACES 57

Then the Jordan extension of R+ uniquely associated to the twisted paracomplexifi-
cation (b, [ , , ], I, τ ) of the LTS (b+,−R+) is

T (X+, Y+)Z+ =− 1
2

(
R(X+, Y+)Z+−I R(X+, I Y+)Z+

)
=−

1
2(2−µ+2λ)

(
g(Y+, Z+)X+−g(X+, Z+)Y++g(X+, Y+)Z+

)
.

Then, comparing again with the complexification diagram of the sphere we obtain
assertion (b). �

5. Homogeneous model spaces of contact metric (κ, µ)-spaces

In this section we complete our classification, showing that one can actually construct
a contact metric (κ, µ)-space with prescribed Boeckx invariant starting from each
of the symmetric spaces in the table on page 50. More precisely, we prove

Theorem 17. The simply connected, complete, contact metric (κ, µ)-spaces of
dimension 2n + 1 (where n > 1) with Boeckx invariant different from ±1 can be
classified as follows:

(a) The homogeneous space SO(n, 2)/SO(n) carries a one-parameter family of
invariant contact metric (κ, µ)-structures whose Boeckx invariant assumes all
the values in ]−∞,−1[.

(b) The homogeneous space SO(n+ 2)/SO(n) carries a one-parameter family of
invariant contact metric (κ, µ)-structures whose Boeckx invariant assumes all
the values in ]1,+∞[.

(c) The homogeneous space SO(n+ 1, 1)/SO(n) carries a one-parameter family
of invariant contact metric (κ, µ)-structures whose Boeckx invariant assumes
all the values in ]−1, 1[.

Proof. Starting from a fixed Hermitian or para-Hermitian symmetric structure on
each of the symmetric spaces,

B1 = SO(n+ 2)/(SO(n)×SO(2)),

B2 = SO(n, 2)/(SO(n)×SO(2)),

B3 = SO(n+ 1, 1)/(SO(n)×SO(1, 1)),

we shall construct explicitly a one-parameter family of invariant contact metric
(κ, µ)-structures on the homogeneous spaces

M1 = SO(n+ 2)/SO(n),

M2 = SO(n, 2)/SO(n),

M3 = SO(n+ 1, 1)/SO(n),

with IM1 > 1, IM2 <−1, and −1< IM3 < 1.
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We first consider the symmetric Lie algebras g1 := so(n+ 2) and g2 := so(n, 2)
with symmetric decompositions

gi = hi ⊕ bi ,

where

h1 = h2 :=


 0 −λ

0
λ 0

0 0 a

 : λ ∈ R, a ∈ so(n)

= so(2)⊕ so(n),

b1 :=


 0

−vT

−wT

v w 0

 : v,w ∈ Rn

' To B1,

b2 :=


 0

vT

wT

v w 0

 : v,w ∈ Rn

' To B2.

The Ad(SO(2)×SO(n))-invariant almost complex structure Ji : bi→ bi defined by

Ji (v w)= (−1)i (w − v),

and the Ad(SO(2)×SO(n))-invariant metric Gi on bi

Gi ((v w), (u z))= 〈v, u〉+ 〈w, z〉,

determine an invariant Hermitian symmetric structure (Ji , ḡi ) on Bi ; here 〈 〉 denotes
the standard inner product on Rn and (v w) denotes the matrix 0 0 −wT

0 0 −vT

v w 0


in the case i = 1, and the matrix 0 0 wT

0 0 vT

v w 0


in the case i = 2. Observe that the decomposition of gi ,

gi = so(n)⊕mi ,(18)

mi := Rξ ⊕ bi , ξ :=

 0 −1
01 0

0 0 0

 ,
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is a reductive decomposition for Mi . Indeed, for every

a =

 1 0
00 1

0 0 a

 ∈ SO(n), X = sξ + (v w) ∈mi ,

we have that Ad(a)X = sξ + (av aw). In particular, we have Ad(a)ξ = ξ for every
a ∈ SO(n).

We have a natural decomposition of bi ,

bi = pi ⊕ qi ,

where
pi := {(v 0) | v ∈ Rn

}, qi := {(0w) | w ∈ Rn
}.

By using this decomposition, we define on mi a (1, 1) tensor ϕi , an inner product
gi , and a 1-form ηi as follows:

(19) ϕi (Z) :=


α J Z if Z ∈ pi ,

1
α

J Z if Z ∈ qi ,

0 if Z ∈ Rξ,

gi (X, Y ) := st + 1
2

(
α〈v, u〉+ 1

α
〈w, z〉

)
, ηi (X) := s,

where α > 0, and X = sξ + (v w), Y = tξ + (u z) are arbitrary elements of mi .
These tensors are Ad(SO(n))-invariant. Indeed for every a ∈ SO(n),

Ad(a)ϕi X = Ad(a)
(
(−1)i

(
α(0 − v)+ 1

α
(w 0)

))
= (−1)i

(
α(0 − av)+ 1

α
(aw 0)

)
= ϕi Ad(a)X,

gi (Ad(a)X,Ad(a)Y )= g(sξ + (av aw), tξ + (au az))

= st + 1
2

(
α〈av, au〉+ 1

α
〈aw, az〉

)
= st + 1

2

(
α〈v, u〉+ 1

α
〈w, z〉

)
= g(X, Y ).

Finally, since Ad(a)ξ = ξ , we also have that Ad(a)∗ηi = ηi . Observe that the
invariance of ηi implies that, for every X ∈ gi and Y ∈ X(Mi ),

0= (LX∗ηi )Y = X∗(ηi Y )− ηi ([X∗, Y ]),

where X∗ is the fundamental vector field determined by X . Thus, for every X, Y ∈mi

2dηi (X∗, Y ∗)= X∗(ηi Y ∗)− Y ∗(ηi X∗)− ηi ([X∗, Y ∗])

=−ηi ([Y ∗, X∗])=−ηi ([X, Y ]∗).
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Evaluating this formula at the base point o ∈ Mi yields

(20) 2(dηi )o(X, Y )=−ηi ([X, Y ]mi ).

By direct computations, using (19), (20), we obtain that

(dηi )o(X, Y )= gi (X, ϕi Y ), X, Y ∈mi .

This proves that the invariant tensors (ϕi , ξ, ηi , gi ) make up a contact metric struc-
ture on Mi . Moreover it is a K -contact structure if and only if α = 1. Indeed, since
ξ and ϕi are invariant tensors on Mi , they are parallel with respect to the canonical
connection ∇̃ associated to the decomposition (18), hence,

(Lξϕi )Y = [ξ, ϕi Y ] −ϕi [ξ, Y ]

= ∇̃ξϕi Y − T̃ (ξ, ϕi Y )−ϕi (∇̃ξY − T̃ (ξ, Y ))

=−T̃ (ξ, ϕi Y )+ϕi T̃ (ξ, Y ),

then

2(hi )o(v w)= (Lξϕi )o(v w)

= [ξ, ϕi (v w)] −ϕi [ξ, (v w)]

= (−1)i
[
ξ,
( 1
α
w −αv

)]
−ϕi (−w v)

= (−1)i
(
αv 1

α
w
)
− (−1)i

( 1
α
v αw

)
= (−1)i

(
α2
−1
α

v −
α2
−1
α

w
)
.

Applying Theorem 7, we see that (ϕi , ξ, ηi , gi ) is a contact metric (κ, µ)-structure
on Mi for every α > 0, α 6= 1; moreover, by construction, Ji is a standard complex
structure on the base space Bi of the canonical fibration of Mi , in the sense of
Definition 11. In particular if 0<α<1 then, by the uniqueness result in Theorem 13,
we must have √

IM1 + 1
IM1 − 1

=
1
α
,

√
IM2 + 1
IM2 − 1

= α,

or equivalently

IM1 =
1+α2

1−α2 , IM2 =−
1+α2

1−α2 .

Thus, as α varies in ]0, 1[, IM1 assumes all the values in ]1,+∞[ and IM2 assumes
all the values in ] −∞,−1[.
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Now we consider the Lie algebra g := so(n+1, 1) with symmetric decomposition
g= h̄⊕ b, where

h̄ :=


 0 λ

0
λ 0

0 0 a

 : λ ∈ R, a ∈ so(n)

= so(1, 1)⊕ so(n),

b :=


 0

vT

−wT

v w 0

 : v,w ∈ Rn

' To B3.

Let (I, ḡ) be the para-Hermitian structure on B3 determined by the Ad(SO(1, 1)×
SO(n))-invariant structure (I,G) on b:

I (v w) := −(w v), G((v w), (u z)) := 〈v, u〉− 〈w, z〉,

where (v w) denotes the matrix 0
vT

−wT

v w 0

 ∈ b.
The homogeneous space SO(n + 1, 1)/SO(n) is reductive with respect to the
decomposition

so(n+ 1, 1)= so(n)⊕m,

where
m := so(1, 1)⊕ b= Rξ ⊕ b,

ξ :=

 0 1
01 0

0 0 0

 ;
indeed

Ad(a)(sξ + (v w))= sξ + (av aw),

for every a ∈ SO(n), X = sξ + (v w) ∈m.
Now we consider the natural decomposition of b:

b= p⊕ q,

where
p := {(v 0) | v ∈ Rn

} ⊂ b,

q := {(0w) | w ∈ Rn
} ⊂ b.
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Using this decomposition, we define on m the following Ad(SO(n))-invariant
tensors:

(21)
ϕ(Z) :=


−α I Z if Z ∈ p,

1
α

I Z if Z ∈ q,

0 if Z ∈ Rξ,

g(X, Y ) := st + 1
2

(
α〈v, u〉+ 1

α
〈w, z〉

)
, η(X) := s,

where α > 0 and X = sξ+ (v w), Y = tξ+ (u z) are any matrices in m. One checks
by the same method used above that (ϕ, ξ, η, g) is a contact metric (κ, µ)-structure.
Moreover

2ho(v w)=
(
−
α2
+1
α

v
α2
+1
α

w
)
.

Then applying again Theorem 13 we get

IM3 =
α2
− 1

α2+ 1

and hence, as α varies in R∗
+

, IM3 assumes all the values in ] − 1, 1[. �

Remark 18. Of course, in the case I > 1 we recover, up to isomorphism, the
unit tangent sphere bundle T1 M of a Riemannian manifold (M, g) with constant
sectional curvature c > 0, c 6= 1.

In the case I <−1, we obtain a new homogeneous representation of the contact
metric (κ, µ)-manifolds M with IM <−1, different from the Lie group representa-
tion furnished by Boeckx. Actually these models can be geometrically interpreted
also as tangent hyperquadric bundle over Lorentzian space forms, as shown in
[Loiudice and Lotta 2018].

Remark 19. The homogeneous model spaces of contact metric (κ, µ)-manifolds
here obtained also appear in the classification list of the simply connected sub-
Riemannian symmetric spaces carried out by Bieliavsky, Falbel, and Gorodski
[1999]. However, in their paper the contact metric structures are not considered.
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THE SL1(D)-DISTINCTION PROBLEM

HENGFEI LU

We use the local theta correspondences between the quaternionic Hermit-
ian groups and the quaternionic skew-Hermitian groups to understand the
distinction problem for the symmetric pair SL2(E)/SL1(D), where E is a
quadratic field extension of a nonarchimedean local field F and D is a 4-
dimensional division quaternion algebra over F.

1. Introduction

Distinction problems are very popular in representation theory. Let F be a finite
field extension of Qp. Let G be a reductive group defined over F. Let H be a
closed subgroup of G. Given a smooth representation π of G(F) and a character
χH of H(F), if dim HomH(F)(π, χH ) is nonzero, then π is called (H(F), χH )-
distinguished. Furthermore, if χH is a trivial character, then π is called H(F)-
distinguished. There is a rich literature, such as [Adler and Prasad 2006; Flicker and
Hakim 1994; Anandavardhanan and Prasad 2006; Prasad 2015; Anandavardhanan
and Prasad 2013], trying to classify all H(F)-distinguished representations of G(F).
In this paper, we will focus on the case where G = RE/F SL2, H = SL1(D) and χH

is trivial, where E/F is a quadratic field extension, D is the unique 4-dimensional
quaternion division algebra defined over F and RE/F denotes the Weil restriction
of scalars.

Let E be a quadratic field extension of a nonarchimedean local field F of
characteristic 0. Let WE (resp. WF ) be the Weil group of E (resp. F) and W DE

(resp. W DF ) be the Weil–Deligne group of E (resp. F). Let G be a quasi-split re-
ductive group defined over F with Langlands dual group Ĝ. Let π be an irreducible
smooth representation of G(E) with enhanced Langlands parameter (φπ , λ), where

φπ :W DE −→ Ĝ(C)o WE

is the Langlands parameter and λ is a character of the component group π0(CĜ(φπ )),
where CĜ(φπ ) is the centralizer of φπ in Ĝ. Dipendra Prasad [2015] formulated
a conjectural identity for the multiplicity dim HomGα(F)(π, χG), in terms of the
Langlands parameter φ̃ of Gop satisfying φ̃|W DE = φπ , where Gop is a quasi-split
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Keywords: theta lift, distinction problem, division quaternion algebra.
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group defined in [Prasad 2015, §9], Gα is a pure inner form of G satisfying Gα(E)=
G(E) and χG is a quadratic character of G(F) defined in [Prasad 2015, §10].

It is natural to ask what happens if Gα is an inner form of G satisfying Gα(E)=
G(E). There is a well-known result of Prasad [1992] and Jeffrey Hakim [1991]
about D×-distinguished representation π of GL2(E).

Theorem 1.1 [Prasad 1992, Theorem C]. Let π be a square-integrable repre-
sentation of GL2(E); then π is D×-distinguished if and only if π is GL2(F)-
distinguished.

Remark 1.2. Raphael Beuzart-Plessis [2018] generalizes this result to any inner
form G ′ of a quasi-split reductive group G for the stable square-integrable represen-
tations. More precisely, let E be a quadratic field extension of a nonarchimedean
local field F. Let χG,E (resp.χG ′,E ) be a quadratic character of G(F) (resp. G ′(F)).
Suppose that the stable square-integrable representations π of G(E) and π ′ of
G ′(E) are matching, then there exists an identity

dim HomG(F)(π, χG,E)= dim HomG ′(F)(π
′, χG ′,E).

Let us fix an element ε ∈ F×\NE/F E×. Let SL1(D) be the inner form of SL2(F),
which is a non-quasi-split F-group. There exists an embedding

(1-1) SL1(D)=
{

g =
(

x̄ ε ȳ
y x

)
| det(g)= 1, x, y ∈ E

}
⊂ SL2(E),

where x̄=a−b
√
$ if x=a+b

√
$ with a, b∈ F and E= F[

√
$ ], $ ∈ F×\F×2.

Let VD be an n-dimensional Hermitian right D-vector space with Hermitian
form hD; then

Aut(VD, hD)= {g ∈ GLn(D) | hD(gv1, gv2)= hD(v1, v2) for all v1, v2 ∈ VD},

where n = dimD VD. Assume that R = M2(E) ∼= D⊗F E is the split quaternion
algebra over E . Due to the Morita equivalence, a right Hermitian (resp. left skew-
Hermitian) free R-module (VR, h R) corresponds to a symplectic (resp. orthogonal)
E-vector space (WE , hE) satisfying

dimE WE = 2 dimR VR, Aut(VR, h R)= Aut(WE , hE),

see [Scharlau 1985, §10.3]. Let VR = VD ⊗D R be the natural Hermitian free
R-module, then Aut(VR, h R)∼= Sp2n(E) and there exists a canonical embedding

Aut(VD, hD) ↪→ Aut(VR, h R)= Sp2n(E).

Letting n = 1, we obtain a group embedding

(1-2) SL1(D)= Aut(VD, hD) ↪→ Aut(VR, h R)= SL2(E)
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which is compatible with the embedding (1-1). We will focus on the embedding
(1-2) when we use the local theta correspondence over the quaternionic unitary
groups to deal with the distinction problem

HomSL1(D)(τ,C).

Theorem 1.3. Suppose that τ is an irreducible SL1(D)-distinguished representa-
tion of SL2(E).

(i) If τ is a square-integrable representation, then

dim HomSL1(D)(τ,C)=

{
2 if |5φτ | = 2,
1 otherwise.

Here |5φτ | denotes the size of the L-packet 5φτ .

(ii) If τ = I (χ |−|zE) is a principal series representation, dim HomSL1(D)(τ,C)= 2.

(iii) If τ ⊂ I (ωK/E), then dim HomSL1(D)(τ,C)= 1.

Instead of considering each individual dimension, we consider the sum

S(τ )=
∑
π∈5φτ

dim HomSL1(D)(π,C),

where 5φτ is the L-packet of representations of SL2(E) containing an SL1(D)-
distinguished representation τ .

Theorem 1.4. Assume that τ is an SL1(D)-distinguished representation of SL2(E)
with an L-parameter φτ .

(i) Suppose that τ is a square-integrable representation.

(a) If |5φτ | = 1, i.e., the size of the L-packet 5φτ is 1, then S(τ )= 1.
(b) If |5φτ | = 2, then only one of them is SL1(D)-distinguished, the other is

not SL1(D)-distinguished and S(τ )= 2.
(c) If |5φτ | = 4 and p 6= 2, then two members inside the L-packet 5φτ are

SL1(D)-distinguished with the same multiplicity and S(τ )= 2.
(d) If |5φτ | = 4 and p = 2, then S(τ )= 2 or S(τ )= 4.

(ii) If τ is an irreducible principal series representation, then S(τ )= 2.

(iii) If τ is not discrete but tempered and |5φτ | = 2, then S(τ )= 2.

Remark 1.5. The main contribution in Theorem 1.4 is that not only is the sum
S(τ ) known, but also the partition of S(τ ) in one L-packet 5φτ is given. However,
there is no way in terms of the Whittaker datum to specify which member is
SL1(D)-distinguished inside 5φτ when S(τ ) is nonzero.
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We will use the local theta correspondence for the quaternionic groups to prove
Theorem 1.3. The basic ideas come from [Lu 2016; 2018]. With the help of
the explicit theta correspondences between small groups, we can use the see-saw
identities to transfer the distinction problems for SL1(D) to another side, which
is related to the branching problems for the 1-dimensional quaternionic skew-
Hermitian groups (which are nonsplit tori) over a quadratic field extension E/F ,
and so it becomes easier, see Section 3 for more details.

Remark 1.6. Anandavardhanan and Prasad [2013] discuss the global period prob-
lems for SL1(D) over a quadratic number field extension E/F. More precisely,
[Anandavardhanan and Prasad 2013, Proposition 9.3] implies that there exists an
automorphic representation π of SL1(D)(AE) which is locally distinguished by
SL1(D)(AF), but not globally distinguished in terms of having nonzero period
integral on this subgroup.

Now we briefly describe the contents and the organization of this paper. In
Section 2, we set up the notation about the local theta lifts. In Section 2B, we give
a careful description for the see-saw identities involving the quaternionic Hermitian
groups. In Section 3, the proof of Theorem 1.3 is given and the proof of Theorem 1.4
follows as a result. The identity (3-5) in Lemma 3.3 from the see-saw diagram
is the key of the proof, which transfers the SL1(D)- distinction problems to the
branching problems for the 1-dimensional torus. Finally, we give two tables for the
multiplicities in one L-packet 5φτ when τ is SL1(D)-distinguished.

2. The local theta correspondences

In this section, we will briefly recall some results about the local theta correspon-
dence, following [Mœglin et al. 1987].

Let F be a local field of characteristic zero. Consider the dual pair O(m)×Sp(2n).
For simplicity, we may assume that m is even. Fix a nontrivial additive character ψ
of F. Let ωψ be the Weil representation for O(m)×Sp(2n). If π is an irreducible
representation of O(m) (resp. Sp(2n)), the maximal π -isotypic quotient of ωψ has
the form

π �2ψ(π)

for some smooth representation 2ψ(π) of Sp(2n) (resp. O(m)). We call 2ψ(π) the
big theta lift of π . It is known that2ψ(π) is of finite length and hence is admissible.
Let θψ(π) be the maximal semisimple quotient of 2ψ(π), which is called the small
theta lift of π . It was conjectured by Roger Howe that

• θψ(π) is irreducible whenever 2ψ(π) is nonzero;

• the map π 7→ θψ(π) is injective on its domain.



THE SL1(D)-DISTINCTION PROBLEM 69

This has been proved by Waldspurger [1990] when the residual characteristic p of
F is not 2. Gan and Takeda [2016a; 2016b] have proved it completely.

Theorem 2.1. The Howe duality conjecture (stated on the previous page) holds.

Gan and Sun [2017] proved the Howe duality conjecture for the quaternionic
unitary groups. More precisely, let D be the unique 4-dimensional quaternion
division algebra over F with involution ∗. Let VD be an n-dimensional Hermitian
right D-vector space with quaternionic Hermitian group U (VD) and Hermitian
form (−,−)VD . Let WD be an m-dimensional skew-Hermitian left D-vector space
with quaternionic Hermitian group U (WD) and skew-Hermitian form (−,−)WD .
The tensor product space VD ⊗WD admits a symplectic form defined by

〈v⊗w, v′⊗w′〉

=
1
2

(
(v, v′)VD (w,w

′)∗WD
+ (w,w′)WD (v, v

′)∗VD

)
, v, v′∈ VD, w,w

′
∈WD.

There is an embedding of F-groups

U (VD)×U (WD)−→ Sp(VD ⊗WD)= Sp4mn(F).

We may define the Weil representation ωψ on U (VD)×U (WD) similarly. Given
an irreducible representation π of U (VD) (resp. U (WD)), the maximal π-isotypic
quotient of ωψ has the form π �2ψ(π) for some smooth representation 2ψ(π)
of U (WD) (resp. U (VD)), where 2ψ(π) is called the big theta lift and it has an
irreducible quotient θψ(π). The map π 7→ θψ(π) is injective on its domain.

2A. First occurrence indices for pairs of orthogonal Witt towers. Let Wn be the
2n-dimensional symplectic vector space with associated symplectic group Sp(Wn)

and consider the two towers of orthogonal groups attached to the quadratic spaces
with nontrivial discriminant. More precisely, let VE (resp. εVE ) be the 2-dimensional
quadratic space with discriminant E and Hasse invariant +1 (resp. −1), H be the
2-dimensional hyperbolic quadratic space over F,

V+r = VE ⊕Hr−1 (resp. V−r = εVE ⊕Hr−1),

and denote the orthogonal groups by O(V+r ) (resp. O(V−r )). For an irreducible
representation π of Sp(Wn), we may consider the theta lifts θ+r (π) and θ−r (π)
to O(V+r ) and O(V−r ) respectively, with respect to a fixed nontrivial additive
character ψ . Set {

r+(π)= inf{2r : θ+r (π) 6= 0},
r−(π)= inf{2r : θ−r (π) 6= 0}.

Then Kudla and Rallis [2005], B. Sun and C. Zhu [2015] showed the following
theorem.
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Theorem 2.2 (conservation relation). For any irreducible representation π of
Sp(Wn), we have

r+(π)+ r−(π)= 4n+ 4= 4+ 2 dim Wn.

There is an analogous problem where we fix an irreducible representation of
O(V+r ) or O(V−r ) and consider its theta lifts θn(π) to the tower of symplectic groups
Sp(Wn). Then with n(π) defined in the analogous fashion, thanks to [Sun and Zhu
2015, Theorem 1.10], we have

n(π)+ n(π ⊗ det)= dim V±r .

2B. See-saw identities. Let VD be a Hermitian right D-vector space; then VD⊗D R
forms a right Hermitian vector space over R = M2(E) which corresponds to a
symplectic E-vector space WE by the Morita equivalence. Let VE be an orthogonal
E-vector space corresponding to a skew-Hermitian left free R-module (WR, h R).
Let WD = ResR/DWR be the same space WR but now thought of as a D-vector
space with skew-Hermitian form (−,−)WD given by

(w1, w2)WD = trR/D(h R(w1, w2))/2 for w1, w2 ∈WR.

Then we have the following isomorphism of symplectic spaces:

WD ⊗D VD ∼= ResE/F (VE ⊗E WE)=W

There is a pair
(O(VE),Sp(WE)) and (U (WD),U (VD))

of dual reductive pairs in the symplectic group Sp(W):

Sp(WE) U (WD)

U (VD) O(VE)

A pair (G, H) and (G ′, H ′) of dual reductive pairs in a symplectic group is called a
see-saw pair if H ⊂ G ′ and H ′ ⊂ G. Following [Kudla 1994], let us fix the natural
splittings

i1 : O(VE)×Sp(WE)−→Mp(W) and i2 :U (WD)×U (VD)−→Mp(W).

Lemma 2.3 (see-saw identity). For some see-saw pair of dual reductive pairs
(Sp(WE),O(VE)) and (U (WD),U (VD)), let π and π ′ be irreducible representa-
tions of O(VE) and U (VD) respectively. If the splittings i1 and i2 satisfy

(2-1) i1|O(VE )×U (VD) = i2|O(VE )×U (VD),
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then we have the isomorphism

HomO(VE )(2ψ(π
′), π)∼= HomU (VD)(2ψ(π), π

′).

This follows from [Gurevich and Szpruch 2015, Theorem 8.2]. However, (2-1)
may not hold, see [Lu 2016, Lemma 4.3.7]. For our purpose, suppose dimD VD = 1
and dimE VE = 2; then U (VD) ∼= SL1(D). Let Õ(VE) denote the preimage of
O(VE) in Mp(W). Let π̃ be a genuine representation of Õ(VE) associated to π ,
that is,

π̃(h, ε)= ε ·π(h) for (h, ε) ∈ Õ(VE).

Observe that i1(h) = (h, 1) ∈ Õ(VE) and i2(h) = (h, det(h)) ∈ Õ(VE) for h ∈
O(VE). This means that (i−1

1 i2)|O(VE ) corresponds to the quadratic character
det(O(VE)). Hence

Homi1(O(VE ))(ωψ , π̃)
∼= Homi2(O(VE ))(ωψ , π̃ ⊗ det).

This will be useful in the proof of Theorem 1.3, see Lemma 3.3.

2C. Vector spaces. Let K/E be a quadratic field extension. Consider K as a
2-dimensional quadratic space VE over E with the norm map NK/E . Given a
2-dimensional quadratic E-vector space VE with a nontrivial discriminant e ∈
E× \ E×2, associated with a skew-Hermitian left free R-module (WR, h R) by the
Morita equivalence, we may construct a skew-Hermitian form hD = trR/D ◦ h R/2
on WD = ResR/DWR . Then WD becomes a 2-dimensional skew-Hermitian left
D-vector space with discriminant NE/F (e) ∈ F×/F×2. If NE/F (e) = 1, then the
skew-Hermitian quaternionic group U (WD) is denoted by U1,1(D). If NE/F (e) is
nontrivial, then the discriminant d of WD corresponds to a quadratic field extension
L = F(

√
d). Moreover, there is a 4-dimensional quaternion division algebra over

L such that
U (WD)= GL1(DL)

\/F×

where GL1(DL)
\
= {x ∈ D×L : NDL/L(x) ∈ F×}, see [Prasad and Takloo-Bighash

2011, §9].

2D. Degenerate principal series representations. Assume that U (WD)=U1,1(D).
There is a natural group embedding O(VE) ↪→U1,1(D). Let P be a Siegel parabolic
subgroup of U1,1(D). Assume that

I(s)= { f :U1,1(D)→ C | f (pg)= |δP(p)|s+1/2 f (g), p ∈ P, g ∈U1,1(D)}

is the degenerate principal series of U1,1(D), where δP is the modular character.
Let us consider the double coset decomposition P\U1,1(D)/O(VE).

• If K is a field, then there is only one orbit in P\U1,1(D)/O(VE).

• If K =E⊕E , then there is one open and one closed orbit in P\U1,1(D)/O(VE).
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Assume that there is a stratification for U1,1(D), i.e., P\U1,1(D)/O(VE)=
⊔r

i=0 X i

such that
⊔k

i=0 X i is open for each k lying in {0, 1, 2, . . . , r}. Then there is an
O(VE)-equivariant filtration {Ii }i=0,1,2,...,r of I(s)|O(VE ) such that

0= I−1 ⊂ I0 ⊂ I1 ⊂ · · · ⊂ Ir = I(s)|O(VE )

and the smooth functions in the quotient Ii/Ii−1 are supported on a single orbit X i

in P\U1,1(D)/O(VE).

Definition 2.4. Given an irreducible representation π of O(VE), if

HomO(VE )(Ii+1/Ii , π) 6= 0

implies that Ii+1/Ii is supported on the open orbits in P\U1,1(D)/O(VE), then we
say that the representation π does not occur on the boundary of I(s).

It is well known that only the open orbits can support supercuspidal representa-
tions.

3. Proof of Theorem 1.3

Before we prove Theorem 1.3, let us recall some facts. Let VD denote the rank 1
Hermitian space over D with quaternionic Hermitian group U (VD)= SL1(D).

Lemma 3.1. If the discriminant d of WD = VE ⊗E D is nontrivial in F×/F×2,
let L = F

(√
d
)
, then the theta lift of the trivial representation from SL1(D) to

U (WD)= GL1(DL)
\/F× is a character, i.e.,

2ψ(1)= 1�ωL/F ,

where DL is a quaternion division algebra over L and GL1(DL)
\
= {g ∈ D×L |

NDL/L(g) ∈ F×}.

Proof. Following [Gan and Tantono 2014, Proposition 5.1], let L/F be a quadratic
extension of number fields and D (resp. DL) be a quaternion F-algebra (resp. L-
algebra) with involution ∗ such that for some place v0 of F, we have

(L/F)v0 = L/F and Dv0 = D (resp. (DL)v0 = DL).

Let V denote the rank 1 Hermitian space over D with hermitian form

〈x, y〉 = x · y∗

and let W denote the nonsplit rank 2 skew-Hermitian space over D of discriminant L,
such that

Vv0 = VD and Wv0 =WD.



THE SL1(D)-DISTINCTION PROBLEM 73

Then we have a dual pair U (V)×U (W) over F and we may consider the global
theta lift from

U (V)= SL1(D)

to
U (W)◦ = GL1(DL)

\/F×,

where GL1(DL)
\
= {g ∈ D×L : NDL/L(g) ∈ F×} and U (W)◦ is the connected com-

ponent of U (W) containing the identity. The global theta lift to U (W)◦ of trivial
representation of SL1(D) is nonzero since we are in the stable range. Moreover, at
the places where D is unramified, [Lu 2018, Lemma 3.1] implies that the local theta
lift of the trivial representation is a character of U (Wv). By the strong multiplicity
one theorem for GL1(DL), we conclude that

2(1)= 1�ωL/F.

By the local-global compatibility of theta correspondence, we have θψ(1)=1�ωL/F .
Because U (WD) is a compact group, the Howe duality theorem implies that

2ψ(1)= θψ(1)= 1�ωL/F . �

Now we start to prove Theorem 1.3.

Proof of Theorem 1.3. We separate the proof into four cases as follows:

• τ is a supercuspidal representation; see (A).

• τ is an irreducible principal series representation; see (B).

• τ is a Steinberg representation StE ; see (C).

• τ is a constituent of a reducible principle series I (χ) with χ2
= 1; see (D).

(A) If τ is supercuspidal, then there exists a character µ : K×→C× such that φτ =
ωK/E⊕ IndWE

WK
(µs/µ), where WK is the Weil group of K, which is a quadratic field

extension over E with associated quadratic character ωK/E . In fact, if τ = θψ(6),
where 6 is a representation of O(VE) and VE is a 2-dimensional E-vector space
of discriminant K, then the Langlands parameter φ of 6 is given by

φ(g)=



(
χK (g)

χ−1
K (g)

)
if g ∈WK ,(

0 1
1 0

)
if g = s,

where s ∈ WE \ WK and the character χK : WK → C× is the pull back of a
nontrivial character µ1 of K 1 under the map K× → K 1 via k 7→ ksk−1, i.e.,
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χK (k)= µ1(ksk−1), see [Kudla 1996, §6.4]. Furthermore, there is an isomorphism
between two Langlands parameters of O(2),

φ⊗ωK/E ∼= IndWE
WK
(µs/µ).

In other words, we have χK = µ
s/µ and µ1 = µ|K 1 is the restricted character.

Moreover, if µ2
1 6= 1, then τ = θψ(IndO(VE )

SO(VE )
(µ1)). If µ2

1 = 1, then there are two
extensions of µ1 from SO(VE) to O(VE), denoted by µ±1 . The theta lift of µ+1
(resp. µ−1 ) from O(VE) to SL2(E) is a tempered representation τ+ (resp. τ−). For
convenience, if µ2

1 6= 1, we use µ+ = µ− to denote IndO(VE )
SO(VE )

µ1 as well. Assume
that 2ψ(µ+1 ) is a supercuspidal representation of SL2(E).

If the discriminant disc(ResR/DWR) ∈ F×/(F×)2 is nontrivial, by the see-saw
diagram

τ+⊕ τ− SL2(E) U (WD) 2ψ(1)

1 SL1(D) SO(VE) µ1

where τ− = 0 if µ2
1 6= 1, we have an isomorphism

HomSL1(D)(τ
+
⊕ τ−,C)∼= HomSO(VE )(1, µ1)

which is nonzero if and only if µ1 = 1. However, HomK 1(1, µ1) = 0, therefore
HomSL1(D)(τ

±,C)= 0.
If the discriminant of WD = ResR/DWR is 1 ∈ F×/(F×)2, we denote by I(s)

the degenerate principal series of U1,1(D). Further, we assume that F×/(F×)2 ⊃
{1, u,$, u$ } and E = F[

√
$ ] with associated Galois group Gal(E/F) = 〈σ 〉,

where K = E
[√

u
]
. Then (3-5) (which will be proved later) implies

(3-1) HomSL1(D)(τ
+,C)= HomO(VE )

(
I
( 1

2

)
, µ−1

)
∼= HomU (W ′)((µ

−

1 )
−1,C),

where K is a quadratic unramified extension over E , W ′ is a one-dimensional
skew-Hermitian left D-vector space with discriminant u. Here we use the fact that
there is only one orbit for the double coset P\U1,1(D)/O(VE), whose stabilizer is
isomorphic to U (W ′). In this case, (3-1) can be rewritten as the identity

(3-2) dim HomSL1(D)(τ
+,C)= dim HomU (W ′)(µ

−

1 ,C),

which is nonzero if and only if

(3-3) µ
(
x − y

√
u
)
= µ

(
x + y

√
u
)

for x, y ∈ F. Similarly, if µ2
1 = 1, we have

dim HomSL1(D)(τ
−,C)= dim HomU (W ′)(µ

+

1 ,C).
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Remark 3.2. If the Hasse-invariant of VE is −1 and the discriminant of VE is K,
then

dim HomSL1(D)(τ
+,C) 6= 0

if and only if

(3-4) µ(x − y
√

u$ )= µ(x + y
√

u$ )

for x, y ∈ F. If both (3-3) and (3-4) hold, then µs/µ = χF ◦ NK/F with χ2
F = 1.

Moreover, if p is odd, then µs/µ is trivial. Because µs
6= µ, (3-3) and (3-4) can

not hold at the same time unless p = 2.

Lemma 3.3. Let VE be a 2-dimensional quadratic E-vector space associated with
a skew-Hermitian free R-module WR by the Morita equivalence. Assume that
WD = ResR/DWR is a 2-dimensional skew-Hermitian left D-vector space with
trivial discriminant and π is an irreducible representation of O(VE), then

(3-5) dim HomSL1(D)(2ψ(π ⊗ det),C)= dim HomO(VE )(I(1/2), π),

where I(s) is the degenerate principal series of U (WD), and the big theta lift
2ψ(π ⊗ det) is under the splitting i1 : SL2(E)×O(VE)→Mp8(F).

Proof. Let us fix the splitting i2 : SL1(D)×U (WD)→ Mp(W); then [Yamana
2011, Theorem 1.3] implies that 2ψ(1)= I(1/2) is an irreducible representation
of U (WD). The splitting from SL2(E) to Mp8(F) is unique, so i1i−1

2 is a quadratic
character on SL1(D)×O(VE) and trivial on SL1(D). Thus,

(3-6) dim HomSL1(D)(2ψ(π ⊗ det),C)

= dim Homi1(SL1(D)×O(VE ))(ωψ , C̃⊗ ˜(π ⊗ det))

= dim Homi2(SL1(D)×O(VE ))(ωψ , C̃⊗ π̃)

= dim HomO(VE )(2ψ(1), π)
= dim HomO(VE )(I(1/2), π),

where π̃(h, ε)= ε ·π(h) for (h, ε) ∈ Õ(W ). �

Now we continue with the proof of Theorem 1.3, recalling that

dim HomSL1(D)(τ
+,C)= dim HomU (W ′)(µ

−

1 ,C)

is nonzero if and only if µ(x− y
√

u )=µ(x+ y
√

u ) for x, y ∈ F, where disc(W ′)
is u ∈ F×/F×2.

Suppose that p 6= 2 and µ2
1 = 1. If µ(x − u

√
u ) = µ(x + y

√
u ), then τ+ is

SL1(D)-distinguished. Moreover,

dim HomSL1(D)(τ
+,C)= 1= dim HomSL1(D)(τ

−,C).
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In the L-packet containing an SL1(D)-distinguished representation τ , half mem-
bers in 5φτ are SL1(D)-distinguished and∑

τ ′∈5φτ

dim HomSL1(D)(τ
′,C)= 2.

If p 6= 2 and µ2
1 6= 1, then dimHomSL1(D)(τ,C) = dimHomO(VE )(I(1/2),µ

+

1 ),
which is equal to the sum

dim HomU (W ′)(µ1,C)+ dim HomU (W ′)(µ
−1
1 ,C)

=

{
2 if µ|E ′ = χF ◦ NE ′/F , E ′ 6= E,
0 otherwise.

If p = 2, there are two more cases.

(i) Suppose that there are two distinct quadratic fields E ′ and E ′′ over F such that
µ|E ′ = χ

′

F ◦ NE ′/F and µ|E ′′ = χ ′′F ◦ NE ′′/F . Furthermore, χ ′F/χ
′′

F is a quadratic
character of F× that is not trivial restricted on the Weil group WK of K, i.e., χ ′F/χ

′′

F
is different from three quadratic characters ωE/F , ωE ′/F and ωE ′′/F ,

µ(t)= µs(t) · (χ ′F/χ
′′

F )|WK (t), t ∈WK

which may happen only when p = 2. We obtain dim HomSL1(D)(τ
+,C)= 1 by the

identity (3-2).
Suppose that τ is SL1(D)-distinguished, then the set {dim HomSL1(D)(τ

′,C) :

τ ′ ∈5φτ+
} is {1, 1, 1, 1} and∑

τ ′∈5φτ

dim HomSL1(D)(τ
′,C)= 4.

Remark 3.4. For the SL2(F)-distinction problem, the set of the multiplicities in
the L-packet 5φτ is {4, 0, 0, 0}, see [Anandavardhanan and Prasad 2003; Lu 2018].

(ii) A supercuspidal representation π of GL2(E), which is not dihedral with respect
to any quadratic extension K over E , is irreducible when restricted to SL2(E).
Suppose that τ = π |SL2(E) is irreducible. If we consider a 2-dimensional skew-
Hermitian left D-vector space X with trivial discriminant, then U (X)=U1,1(D)
can be naturally embedded into the special orthogonal group SO(2, 2)(E). Let
π �π be the irreducible representation of the similitude special orthogonal group

GSO(2, 2)(E)=
GL2(E)×GL2(E)
{(t, t−1) : t ∈ E×}

.

Observe that

(π �π)|SO(2,2)(E) =2(π)|SO(2,2)(E) =2(π |SL2(E))=2(τ)
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is irreducible since τ is supercuspidal. Suppose that Y is a 2-dimensional Her-
mitian right D-vector space. Let I(s) be the degenerate principal series of U (Y ).
Considering the see-saw diagram

I(1/2) U (Y ) SO(2, 2)(E) (π �π)

π |SL2(E) SL2(E) U1,1(D) C

due to the structure of I(1/2) in [Yamana 2011, Theorem 1.4], we can get an
equality

dim HomSL2(E)(I(1/2), π)= dim HomU1,1(D)((π �π)|SO(2,2)(E),C).

The supercuspidal representation π |SL2(E) does not occur on the boundary of I(1/2),
thus

dim HomSL2(E)(I(1/2), π)= dim HomSL1(D)(π
∨,C).

Hence

(3-7) dim HomSL1(D)(π
∨,C)= dim HomU1,1(D)((π �π)|SO(2,2)(E),C)

= dim HomGU1,1(D)(π �π,C)+ dim HomGU1,1(D)(π �π,ωE/F )

= dim HomGL2(F)(π,C) dim HomD×(π,C)

+ dim HomGL2(F)(π, ωE/F ) dim HomD×(π, ωE/F ),

where

GU1,1(D)∼=
GL2(F)× D×

{(t, t−1) : t ∈ F×}
.

Therefore, if π is not dihedral with respect to any quadratic field extension K over
E and so τ = π |SL2(E) is irreducible, then the following are equivalent:

• The Langlands parameter φπ is conjugate-self-dual in the sense of [Gan et al.
2012, §3].

• dim HomSL1(D)(τ,C)= 1.

Remark 3.5. This method can be used to deal with the case when τ is the Steinberg
representation StE of SL2(E), which implies dim HomSL1(D)(StE ,C)= 1 directly.

Remark 3.6. When we consider the distinction problem for the symmetric pair
SL2(E)/SL2(F) in [Lu 2018], instead of U1,1(D), we use SO3,1(F)=GL2(E)\/F×,
where

GL2(E)\ = {g ∈ GL2(E) | det(g) ∈ F×} ∼= GSpin3,1(F).
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We use the big theta lift of the trivial representation from SO3,1(F) to Sp4(F) to
deduce the multiplicity dim HomSL2(F)(π,C). The see-saw identity implies

(3-8) dim HomSL2(E)(I (1/2, ωE/F ), π)= dim HomO3,1(F)((π �π)+,C),

where P = M N is the Siegel parabolic subgroup of Sp4(F) and M ∼= GL2(F).

I (1/2, ωE/F )=
{

f : Sp4(F)−→ C | f (mng)= |det(m)|s+3/2ωE/F (det m) f (g)
for mn ∈ P, g ∈ Sp4(F)

}
since the big theta lift of the trivial representation equals I (1/2, ωE/F ), see [Gan and
Ichino 2014, Proposition 7.2]. Due to the fact that the supercuspidal representation
π does not occur on the boundary, (3-8) implies that

dim HomSL2(F)(π
∨,C)= dim HomSL2(E)(I (1/2, ωE/F ), π)(3-9)

= dim HomO3,1((π �π)+,C)

= dim HomGL2(F)(π
σ , π∨).

(B) Let χ be a unitary character of E×. Since there is only one orbit for D×-
action on the projective variety P(E)\GL2(E)∼= B(E)\SL2(E), where P(E) is the
Borel subgroup of GL2(E), its stabilizer is isomorphic to E× and B(E)\SL2(E)∼=
E×\D×. There are two orbits for SL1(D)-action on B(E)\SL2(E). If τ = I (z, χ)=
IndSL2(E)

B(E) χ |−|
z
E (normalized induction) is an irreducible principal series, due to the

double coset decomposition

SL2(E)= B(E)SL1(D)t B(E)ηSL1(D),

where η =
( z1

z2

z̄2
z̄1/ε

)
, d = z1 + z2 j, z1, z2 ∈ E and ND/F (d) = ε ∈ F× \ NE/F E×,

there is an exact sequence

(3-10) 0→ HomE1(χ,C)→ HomSL1(D)(τ,C)→ HomE1(χ,C)→ 0,

where E1
= ker NE/F . Then dim HomSL1(D)(τ,C)= 2 if and only if χ =χF ◦NE/F .

(C) If τ = StE is a Steinberg representation of SL2(E), then the exact sequence
(3-10) implies that

dim HomSL1(D)(I (|−|E),C)= 2,

so that dim HomSL1(D)(StE ,C)= 2− 1= 1.

(D) Assume that τ is tempered. If τ ⊂ I (ωK/E) is an irreducible constituent of a
reducible principal series, set χ = ωK/E , χ

+(ω)= 1, ω =
(

1
1); then from [Kudla

1996, page 86], we can see that

I (ωK/E)= θψ(χ
+)⊕ θψ(χ

−), where χ− = χ+⊗ det
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and τ+= θψ(χ+)=2ψ(χ+), τ−= θψ(χ−), where θψ(χ±) is the theta lift of χ±

from O1,1(E) to SL2(E). By (3-5) and the see-saw diagram

τ+ SL2(E) U1,1(D) I(1/2)

C SL1(D) O1,1(E) χ+⊗ det

where I(s) is the principal series of U1,1(D), we have an identity

dim HomSL1(D)(τ
+,C)= dim HomO1,1(E)

(
I
( 1

2

)
, χ+⊗ det

)
,

which is equal to

dim HomE1(χ,C)=

{
1 if χ = χF ◦ NE/F ,

0 otherwise.

Similarly, we can prove dim HomSL1(D)(τ
+,C)= dim HomSL1(D)(τ

−,C).
This finishes the proof of Theorem 1.3. �

Corollary 3.7. Let τ be an SL1(D)-distinguished ψ-generic representation of
SL2(E). If the representation τ ′ lies in the L-packet 5φτ and is ψa-generic for
some a ∈ E1, then

dim HomSL1(D)(τ
′,C)= dim HomSL1(D)(τ,C).

Proof. Let U2 be the non-quasi-split unitary group contained in GL2(E). Thanks to
the isomorphism

SU2 ∼= SL1(D),

if τ ′ is ψa-generic for a ∈ E1, then τ ′ = τ a where

τ a(g)= τ
((

ā
1

)
g
(

a
1

))
and so

dim HomSL1(D)(τ
′,C)= dim HomSL1(D)(τ

a,C)= dim HomSL1(D)(τ,C).

Thus the multiplicity dim HomSL1(D)(τ,C) is stable under the inner-conjugation
action of U2. �

Remark 3.8. In [Anandavardhanan and Prasad 2003, Lemma 3.2], there is an
analogous result

dim HomSL2(F)(τ
x ,C)= dim HomSL2(F)(τ,C) for x ∈ F×,

which implies that dim HomSL2(F)(τ,C) is stable under the inner-conjugation action
of GL2(F).
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In fact, Theorem 1.4 follows from the above arguments as well.
The tables below show the multiplicities for the L-packet 5φτ containing an

SL1(D)-distinguished or SL2(F)-distinguished representation τ of SL2(E).

SL1(D)- SL2(F)- the character µ of K×,K = E
[√

u
]

distinguished distinguished

|5φτ | = 1 {1} {1} N.A.

|5φτ | = 2 {2,0} {2,0} µ
(
x−y
√

u
)
=µ

(
x+y
√

u
)
,µ2

1 6= 1

|5φτ | = 4
{1,0,1,0} {1,1,0,0} µs

=−µ and µ2
1= 1

{1,1,1,1} {4,0,0,0} µχ ′F/χ
′′

F =µ
s
6=±µ and µ2

1= 1

Multiplicities for the L-packet 5φτ assuming τ is square-integrable.
The case shown on the last row of the first table occurs only when p= 2

and τ is a supercuspidal representation of SL2(E).

SL1(D)- SL2(F)- the character χE of E×distinguished distinguished

|5φτ | = 1
{2} {2} χE = 1
{2} {2} χE =χF◦NE/F and χ2

E 6= 1
{0} {1} χE |F× = 1 and χ2

E 6= 1

|5φτ | = 2
{1,1} {1,1} ωK/E =χF◦NE/F with χ2

F =ωE/F

{1,1} {3,0} ωK/E =χF◦NE/F with χ2
F = 1

Multiplicities for the L-packet5φτ assuming τ is not square-integrable.

Remark 3.9. If τ = I (χE) is an irreducible principle representation of SL2(E),
where χE is a unitary character of E× with χ2

E 6= 1 and χE |F× = 1, then I (χE)

is not SL1(D)-distinguished but SL2(F)-distinguished. It corresponds to the case
where the representation

π = π(χ, χχE)

of GL2(E) with χ |F× = 1, is not GL1(D)-distinguished but GL2(F)-distinguished.

Remark 3.10. Assume that τ ⊂ I (ωK/E), where K is a quadratic field extension
over E associated with a quadratic character ωK/E by the local class field theory.
If ωK/E |F× = 1, then ωσK/E = ωK/E , and so ωK/E must factor through the norm
map NE/F . The third case of D from [Lu 2018, Page 490] does not exist, i.e., the
set {1, 0} does not appear in the above tables when τ is SL2(F)-distinguished.
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For a Schrödinger operator defined by a fractal measure with a continuous
potential and a coupling parameter, we obtain an analog of a semiclassical
asymptotic formula for the number of bound states as the parameter tends
to infinity. We also study Bohr’s formula for fractal Schrödinger operators
on blowups of self-similar sets. For a locally bounded potential that tends to
infinity, we derive an analog of Bohr’s formula under various assumptions.
We demonstrate how this result can be applied to self-similar measures with
overlaps, including the infinite Bernoulli convolution associated with the
golden ratio, a family of convolutions of Cantor-type measures, and a family
of measures that are essentially of finite type.
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the number of negative eigenvalues of the Schrödinger operator −1+ V, where V
is a potential. In the early 1970s, Birman and Borzov [1972], Martin [1972], and
Tamura [1974] proved various forms of the semiclassical asymptotic formula

(1-1) N−(βV )∼
ωn

(4π)n/2
βn/2

∫
D−n (V )

(−V (x))n/2 dx as β→∞,

where V is a continuous and compactly supported potential, β is called a coupling
parameter, D−n (V ) := {x ∈ Rn

: V (x) ≤ 0}, ωn is the volume of the unit ball in
Rn and, throughout this paper, f ∼ g means limx→∞ f (x)/g(x) = 1. The main
ingredients are the Dirichlet–Neumann bracketing technique [Reed and Simon 1978;
Kigami and Lapidus 1993; Hambly and Nyberg 2003] and the Weyl law [Weyl 1912],
which are basic and useful techniques for deriving various asymptotic formulas of
Laplace and Schrödinger operators. When computing spectral asymptotics, it is
often necessary to decompose a domain into a finite union of subdomains. Using
the idea of Dirichlet–Neumann bracketing, one can bound the Laplacian on the
domain by those obtained by imposing Dirichlet or Neumann boundary conditions
on the common boundary of the subdomains (see, e.g., [Reed and Simon 1978,
Section XIII.15]). We use this technique in the proof of Theorem 1.2.

For fractal sets, Strichartz [2009] studied the counting function for the negative
eigenvalues of the Schrödinger operator −1+V on the product of two copies of an
infinite blowup of the Sierpiński gasket, where 1 is the Laplacian on the product
and V is a Coulomb potential. He showed that the number of eigenvalues that are
less than −ε is of the order ε−δ as ε→ 0+, where δ= (ln(25/9) ln 9)/(ln(9/5) ln 5).
A main goal of this paper is to obtain a crude analog of (1-1) for Schrödinger
operators −1µ+βV defined on domains by a measure µ (see Theorem 1.2).

Let A be a self-adjoint operator in a Hilbert space H that is semibounded below.
If A has compact resolvent, then the number of negative eigenvalues, counting
multiplicity, is finite; moreover, each eigenspace is finite-dimensional. We define
the eigenvalue counting function as

(1-2) N (λ, A) := #{n : λn(A)≤ λ},

where λn(A) is the n-th eigenvalue of A counted according to their multiplicities,
and #F denotes the cardinality of a finite set F. Furthermore, we define the lower
and upper spectral dimensions of A, respectively, as

ds(A) := lim
λ→∞

2 ln N (λ, A)
ln λ

and d̄s(A) := lim
λ→∞

2 ln N (λ, A)
ln λ

.

If ds(A) = d̄s(A), the common value, denoted by ds(A), is called the spectral
dimension of A; it measures the asymptotic growth rate of the eigenvalue counting
function.
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Let E ⊆ Rn. We denote by E , ∂E , |E |, E◦, and Ln(E) the closure, boundary,
diameter, interior, and n-dimensional Lebesgue measure of E , respectively. For a
real-valued function f on E , we define f+ :=max{ f, 0} and f− :=−min{ f, 0}, and
let f |F denote the restriction of the function f to F ⊆ E . For a positive measure ν
on E , we denote by ν|F the restriction of ν to F ⊆ E , and let ‖u‖p,ν := ‖u‖L p(E,ν)

denote the norm in L p(E, ν), where 1≤ p ≤∞.
The classical one-dimensional Bohr’s formula states that, under suitable condi-

tions,

N (λ,−1+ V )∼
1
π

∫
∞

0
(λ− V (x))1/2+ dx as λ→∞,

where 1 is the Laplacian in L2([0,∞), dx), and V (x)→∞ as x→∞ (see [Holt
and Molchanov 2005]). In the classical setting, various forms of Bohr’s formula
have been obtained and studied extensively (see, e.g., [Reed and Simon 1978]).
In the fractal setting, Bohr’s formula has been obtained by Chen et al. [2015]
for some unbounded potentials V on several types of unbounded fractal spaces
K∞ supporting a measure µ∞ and having a well-defined Laplacian 1µ∞ . K∞ is
obtained by blowing up some fractal K. In [Chen et al. 2015], sufficient conditions
for the following Bohr’s formula to hold are obtained:

N (λ,−1µ∞ + V )∼ g(V, λ) as λ→∞,

where

(1-3) g(V, λ) :=
∫

K∞
((λ− V (x))+)ds/2G

( 1
2 ln((λ− V (x))+)

)
dµ∞(x),

ds = ds(−1µ∞), and G( · ) is a periodic function. Moreover, these conditions are
verified for fractafolds and fractal fields based on nested fractals. A key condition
in [Chen et al. 2015] is

(1-4) N (λ,−1b
µ∞|K

)= λds/2
(
G
( 1

2 ln λ
)
+ Rb(λ)

)
as λ→∞,

where b ∈ {D, N }, Rb(λ) is a remainder term of order o(1), and −1D
µ∞|K

and
−1N

µ∞|K
are Dirichlet and Neumann Laplacians in L2(K , µ∞|K ), respectively.

Unfortunately, fractals with overlaps usually do not, or are not known to, satisfy
this condition. Thus it is another main goal of this paper to derive an analog of
Bohr’s formula for such fractals by modifying (1-4).

In the rest of this section, we let X ⊆Rn be a compact subset with nonempty inte-
rior and µ be a positive finite Borel measure on X with µ(X◦)> 0 and supp(µ)⊆ X.
It is known that µ defines a Dirichlet Laplace operator 1D

µ (or denoted simply
by 1µ) provided the following Poincaré inequality for a measure (MPI ) holds:
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There exists a constant C > 0 such that

(1-5)
∫

X◦
|u|2 dµ≤ C

∫
X◦
|∇u|2 dx for all u ∈ C∞c (X

◦);

see, e.g., [Mazya 1985; Naimark and Solomyak 1995; Hu et al. 2006]. By assuming
some regularity conditions of the boundary of X, one can define a Neumann
Laplacian as in [Hu et al. 2006]. We say that f ∈ C∞(X) if f ∈ C∞(X◦) and
all of whose partial derivatives can be extended continuously to X. Assume X◦

has the extension property. The following analog of MPI, which we call Poincaré
inequality* for measures (MPI*) is crucial: There exists a constant C > 0 such that

(1-6)
∫

X◦
|u|2 dµ≤ C

(∫
X◦
|∇u|2 dx +

∫
X◦
|u|2 dx

)
for all u ∈ C∞(X).

We remark that MPI* is stronger than MPI. We need one additional inequality,
namely, Poincaré inequality (PI ), i.e., there exists some constant C > 0 such that

(1-7)
∫

X◦
|u− u∗|2 dx ≤ C

∫
X◦
|∇u|2 dx for all u ∈ H 1(X◦),

where u∗ := (1/Ln(X◦)) ·
∫

X◦ u dx (see, e.g., [Lieb and Loss 2001, Theorem 8.11]).
If MPI* and PI hold, then using the same procedure for constructing 1D

µ (see [Hu
et al. 2006]), one can obtain a Neumann Laplace operator1N

µ defined by µ. For con-
venience, we summarize the definitions of1D

µ and1N
µ in Section 2B and Section 2C,

respectively. Also, in the rest of this section, we assume that µ satisfies MPI.
The first part of this paper studies Schrödinger operators−1µ+βV in L2(X, µ)

with a continuous potential V and a coupling parameter β, focusing on self-similar
measures. Throughout this paper, we let D−(V ) := {x ∈ X : V (x)≤ 0} and N−µ (V )
be the number of negative eigenvalues of −1µ + V, where V is a real-valued
continuous function V on X.

Before stating the main results, we introduce some definitions that will be used.
We call a µ-measurable closed subset B of X a cell (in X) if µ(B◦) > 0. Clearly,
X itself is a cell.

Definition 1.1. We say that a cell B in X satisfies condition (N) if

(1) B◦ has the extension property and satisfies PI;

(2) µ|B satisfies MPI*;

(3) −1N
µ|B

has compact resolvent.

Conditions (1) and (2) ensure that −1N
µ|B

is well defined, and condition (3)
implies that N (λ,−1N

µ|B
) is well defined for λ > 0. We call a finite family P of

interior disjoint cells a µ-partition of X if µ(X)=
∑

B∈P µ(B). Let ν be a positive
finite Borel measure on X. Roughly speaking, a sequence of µ-partitions (Pk)k≥1
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is said to be refining with respect to ν if each member of Pk+1 is a subset of some
member of Pk , and max{ν(B) : B ∈ Pk} → 0 as k→∞.

Theorem 1.2. Let X ⊆ Rn be a compact subset with nonempty interior and µ be
a positive finite Borel measure on Rn with supp(µ)⊆ X and µ(X◦) > 0. Assume
that µ satisfies MPI and V is a real-valued continuous function on X. Let ν be a
positive Borel measure on X.

(a) If there exist positive constants C and α, and a refining µ-partition (Pk)k≥1 of
X with respect to ν such that for all B ∈

⋃
∞

k=1 Pk ,

(1-8) N (λ,−1D
µ|B
)≥ λα/2(Cν(B)+ o(1)) as λ→∞,

then

(1-9) N−µ (βV )≥ βα/2
(

C
∫

D−(V )
(−V )α/2 dν+ o(1)

)
as β→∞.

(b) If there exist positive constants C and α, and a refining µ-partition (Pk)k≥1 of
X with respect to ν such that each B ∈

⋃
∞

k=1 Pk satisfies condition (N), and

(1-10) N (λ,−1N
µ|B
)≤ λα/2(Cν(B)+ o(1)) as λ→∞,

then the reverse inequality in (1-9) holds.

We remark that (1-8) and (1-10) are more general than the Weyl law. In the
proof of Theorem 1.2, we use a similar method as in [Reed and Simon 1978,
Theorem XIII.79] with (1-8) and (1-10) replacing the Weyl law. We illustrate
Theorem 1.2 by a family of self-similar measures that are said to be essentially of
finite type (EFT ) (see Section 3).

An iterated function system (IFS) {Si }
m
i=1 on Rn is said to satisfy the open

set condition (OSC ) if there exists a nonempty bounded open set U ⊂ Rn such
that

⋃m
i=1 Si (U ) ⊆ U and Si (U ) ∩ S j (U ) = ∅ if i 6= j. An IFS that does not

satisfy OSC is said to have overlaps; in this case, we also say that an associated
self-similar measure has overlaps. The second part of this paper studies Bohr’s
formula for the Schrödinger operator on blowups of compact subsets with locally
bounded nonnegative piecewise continuous potentials that tend to infinity, focusing
on fractals defined by IFS with overlaps. We first state some Weyl asymptotic
properties for 1µ, which will be used in Section 4.

Definition 1.3. Let X ⊆ Rn be a compact subset with nonempty interior and µ be
a positive finite Borel measure on X with µ(X◦) > 0 and supp(µ)⊆ X. Assume
that µ satisfies MPI. Let 1µ be the associated Dirichlet Laplacian (see definition in
Section 2B), and assume that the spectral dimension ds of −1µ exists. Define the
following two Weyl asymptotic properties.
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(W1) There exist positive constants C1,C2 such that

C1λ
ds/2 ≤ N (λ,−1µ)≤ C2λ

ds/2 for all sufficiently large λ.

(W2) There exists a finite collection of closed subsets {Y j } j∈J of X with µ(Y ◦j )> 0
satisfying the following conditions:

(1) There exist positive constants C0 and (ξ j,k) j∈J , k = 1, 2, such that for
all λ > 0,

(1-11)
∑
j∈J

N (ξ j,1λ,−1µ|Y j
)−C0 ≤ N (λ,−1µ)≤

∑
j∈J

N (ξ j,2λ,−1µ|Y j
)+C0.

(2) For each j ∈ J, there exists a periodic or constant function G j :R→R+

such that 0< inf G j ≤ sup G j <∞, and

(1-12) N (λ,−1µ|Y j
)= λds/2(G j (ln λ)+ R j (λ)) as λ→∞,

where R j (λ) is a remainder term of order o(1).

We remark that (W2) is stronger than (W1). Condition (2) of (W2) means that
−1µ|Y j

satisfies (1-4) for all j ∈ J. Consequently, (W2) is more general than (1-4),
which corresponds to (W2) with J = {1}, Y1 = X, and G1( · ) being a periodic
function. Weyl asymptotic properties of fractal Laplacians have been studied in
[Kigami and Lapidus 1993; Hambly and Nyberg 2003; Ngai 2011; Ngai et al. 2018;
Naimark and Solomyak 1995]. If no confusion is possible, we also call ds(−1µ)

the spectral dimension of µ.
We extend X to an unbounded space X∞ as follows. Let X∞ :=

⋃
i∈I X i , where

(C1) I is a countably infinite index set containing 0;

(C2) for each i ∈ I there corresponds a similitude τi : X → X i of the form
τi (x) = x + bi , with bi ∈ Rn such that τ0 is the identity map on Rn and
τi (X)= X i ;

(C3) for any distinct i, j ∈ I, X i ∩ X j = ∂X i ∩ ∂X j .

Since each τi is an isometry, |X i | = |X | for all i ∈ I. Condition (C3) implies
that the interiors of any two distinct X i are disjoint. For each i ∈ I, µi := µ ◦ τ

−1
i

defines a positive finite Borel measure on X i . Intuitively, µi and µ have the same
measure structure. Also, µ0 = µ. In a natural way, we can define a glued measure
µ∞ on X∞ by

(1-13) µ∞(E) :=
∑
i∈I

µi (E ∩ X i ) for all Borel subsets E ⊆ X∞.

Throughout this paper, we assume that µ∞(X i ∩ X j )= 0 for any distinct i, j ∈ I.
For a real-valued function f on X∞ and λ > 0, we define the distribution function
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of f with respect to µ∞ as:

(1-14) F(λ, f ) := µ∞
(
{x ∈ X∞ : f (x)≤ λ}

)
.

Assume (W2) holds. For any j ∈ J, define

(1-15) X∞, j :=
⋃
i∈I

τi (Y j ) and µ∞, j := µ∞|X∞, j .

In order to state the precise results, we introduce the following associated Bohr’s
asymptotic function: for any j ∈ J, λ > 0, and f ∈ L1

loc(X∞, j , µ∞, j ), define

(1-16) g j (λ, f ) :=
1

µ(Y j )

∫
X∞, j

((λ− f (x))+)ds/2G j (ln((λ− f (x))+)) dµ∞, j (x),

where G j ( · ) is given in (W2). We remark that g j ( · , · ) is an analog of the g( · , · )
in (1-3), which appears in [Chen et al. 2015], but is slightly different because
it is assumed in [Chen et al. 2015] that µ(K ) = 1. Let V be a locally bounded
nonnegative piecewise continuous function on X∞ such that V (x)→∞ as |x |→∞.
Also, let V∧ (resp. V∨) be the piecewise constant function which takes the value
supx∈X i

V (x) (resp. infx∈X i V (x)) on X i . Theorem 1.4 gives the eigenvalue asymp-
totics of N (λ,−1µ∞ + V ), where −1µ∞ :=

⊕
i∈I (−1µi ).

Theorem 1.4. Use the notation above. Let V be a locally bounded nonnegative
piecewise continuous function on X∞ such that V (x)→∞ as |x | →∞. Assume
MPI and (W2) hold. Let F( · , · ) and g j ( · , · ) be defined as in (1-14) and (1-16) for
j ∈ J, respectively. Assume that

(1-17) F(λ, V∨)/F(λ, V∧)= 1+ o(1) as λ→∞,

and that there exists some C > 0 such that F(2λ, V∨) ≤ C F(λ, V∧) for all suffi-
ciently large λ > 0. Then as λ→∞,

(1+o(1))
∑
j∈J

g j (ξ j,1λ, ξ j,1V )≤N (λ,−1µ∞+V )≤(1+o(1))
∑
j∈J

g j (ξ j,2λ, ξ j,2V ),

where (ξ j,k) j∈J , k = 1, 2, are the constants in (1-11).

We remark that Theorem 1.4 cannot be deduced from [Chen et al. 2015, The-
orem 2.11], since (W2) is more general than (1-4), which is a key assumption in
[Chen et al. 2015, Theorem 2.11]. Theorem 1.4 allows us to obtain eigenvalue
asymptotics of Schrödinger operators in the absence of condition (1-4), as illustrated
in the examples of IFSs with overlaps in Section 5. It also enables us to draw
conclusions on N (λ,−1µ∞ + V ) even though we only have information about the
Weyl asymptotics of the Laplacian on proper subsets of X.

In Section 5, we apply Theorem 1.4 to three classes of self-similar measures.
The infinite Bernoulli convolution associated with the golden ratio and a class of
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convolutions of Cantor-type measures have been studied very extensively (see [Lau
and Ngai 1998; 2000; Lau and Wang 2005; Feng and Olivier 2003; Ngai 2011;
Gu et al. 2016]). They define Laplacians that exhibit many behaviors analogous
to Laplacians on post-critically finite fractals, such as sub-Gaussian heat kernel
estimates [Gu et al. 2016] and infinite wave propagation speed [Ngai et al. 2019].
The third class is used in [Ngai et al. 2018] to illustrate self-similar measures
satisfying EFT. We show that all these three classes of measures satisfy (W2).
However, it is not clear whether they satisfy (1-4).

The rest of this paper is organized as follows. Section 2 summarizes some of
the definitions and results that will be needed throughout the paper. In Section 3,
we prove Theorem 1.2, and apply it to a class of self-similar measures satisfying
EFT. In Section 4, we study Bohr’s formula for Schrödinger operators defined
by measures and nonnegative locally bounded potentials, and prove Theorem 1.4.
Finally, in Section 5, we illustrate Theorem 1.4 by the three classes of self-similar
measures with overlaps mentioned above.

2. Preliminaries

Let (H1, ‖ · ‖1) and (H2, ‖ · ‖2) be Hilbert spaces. Let A1, A2 be linear operators
in H1 and H2, respectively. A1 and A2 are said to be unitarily equivalent, denoted
A1 ≈ A2, if there exists a unitary operator ϕ :H1→H2 such that

ϕ(dom A1)= dom A2 and ϕ(A1(u))= A2(ϕ(u)) for all u ∈ dom A1.

Note that u is a λ-eigenvector of A1 if and only if ϕ(u) is a λ-eigenvector of A2. In
particular, unitarily equivalent operators have the same set of eigenvalues.

Let (Hi )i∈I be a finite or countably infinite family of Hilbert spaces. Define a
Hilbert space

H=
⊕
i∈I

Hi :=

{
u = (ui )i∈I : ui ∈Hi for all i ∈ I and ‖u‖2H :=

∑
i∈I

‖ui‖
2
Hi
<∞

}
.

Assume that each Ai is a self-adjoint operator in Hi . We write A :=
⊕

i∈I Ai if
Au := (Ai ui )i∈I with domain dom A := {u= (ui )i∈I ∈H : ui ∈ dom Ai for all i ∈ I
and Au ∈ H} (see [Reed and Simon 1972]). We remark that (A, dom A) is a
self-adjoint operator in H.

2A. Quadratic forms. Let H be a (real or complex) Hilbert space with inner prod-
uct ( · , · ) and norm ‖ · ‖. We call a symmetric densely defined bilinear form E in H
a quadratic form in H. A quadratic form (E, dom E) is said to be (a) semibounded
below if there exists some constant M ≥ 0 such that

(2-1) E(u, u)≥−M‖u‖2 for all u ∈ dom E;
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(b) nonnegative if we may take M = 0 in (2-1) (see [Reed and Simon 1972]); and
(c) closed if it is semibounded below and (EM+1, dom E) is a Hilbert space, where
EM+1(u, v) := E(u, v)+ (M + 1)(u, v) for all u, v ∈ dom E .

A self-adjoint operator (A, dom A) in H is said to be semibounded below if there
exists some constant C ≥ 0 such that (Au, u) ≥ −C‖u‖2 for all u ∈ dom A. It
is well known that a closed quadratic form (E, dom E) corresponds to a unique
self-adjoint operator A, that is semibounded below, such that dom A⊆ dom E , and

E(u, v)= (Au, v) for all u ∈ dom A and v ∈ dom E;

see, e.g., [Fukushima et al. 2010, Section 1.3]. In this case, A is called the generator
of (E, dom E). On the other hand, any self-adjoint operator (A, dom A) in H
determines a quadratic form (E, dom A) by E(u, v) := (Au, v) for all u, v ∈ dom A.
Moreover, if A is semibounded below, then (E, dom A) is closable, and its clo-
sure (E, dom E) is called the closed quadratic form associated with A. We let
domF (A) := dom E and call it the form domain of A. Furthermore, if A is nonneg-
ative, then A1/2 is well defined, and

E(u, v)= (A1/2u, A1/2v) and dom E = dom(A1/2);

see, e.g., [Fukushima et al. 2010, Theorem 1.3.1]. Moreover, for u ∈ dom E , we
have u ∈ dom A if and only if there exists a unique f ∈H such that E(u, v)= ( f, v)
for all v ∈ dom E . In this case, Au = f .

For i = 1, 2, let (Ei , dom Ei ) be a closed quadratic form in a Hilbert space H
with generator Ai . If dom E1 ∩ dom E2 is dense in H, then we denote the generator
of the closure of (E1+ E2, dom E1 ∩ dom E2) by A1+ A2, and say that A1+ A2 is
an operator defined as a sum of quadratic forms.

Let E be a subset of Rn and ν be a positive σ -finite Borel measure on E . For
any V ∈ L1

loc(E, ν), the quadratic form EV given by

EV (u, v)=
∫

E
uvV dν for all u, v ∈ C∞c (E),

is closable on L2(E, ν). In this case, we denote the closure of (EV ,C∞c (E)) by
(EV , dom EV ) and regard V as the generator (see [Davies 1989; Reed and Simon
1972]).

Definition 2.1. For i = 1, 2, let Ai be a self-adjoint operator in a Hilbert space Hi

that is semibounded below, and (Ei , dom Ei ) be the associated closed quadratic form.
We say A1 4 A2 (in the sense of quadratic forms) if H2 ⊆H1, dom E2 ⊆ dom E1,
and E1(u, u)≤ E2(u, u) for all u ∈ dom E2.

We state a simple proposition. A proof can be found in [Reed and Simon 1978,
Section XIII].
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Proposition 2.2. For i = 1, 2, let Ai be a self-adjoint operator in a Hilbert space
Hi that is semibounded below. Assume A1 4 A2. If A1 has compact resolvent, then
so does A2; moreover, N (λ, A1)≥ N (λ, A2) for all λ ∈ R.

2B. Dirichlet Laplacian defined by a measure. For convenience, we summarize
the definition of the Dirichlet Laplacian on a bounded domain defined by a measure;
details can be found in [Hu et al. 2006]. Let U ⊆ Rn be a bounded open subset
and µ be a positive finite Borel measure with supp(µ) ⊆ U and µ(U ) > 0. We
assume that µ satisfies MPI (see (1-5)). MPI implies that each equivalence class
u ∈ H 1

0 (U ) contains a unique (in the L2(U, µ) sense) member ū that belongs to
L2(U, µ) and satisfies both conditions below:

(1) There exists a sequence {un} in C∞c (U ) such that un → ū in H 1
0 (U ) and

un→ ū in L2(U, µ).

(2) ū satisfies inequality (1-5).

We call ū the L2(U, µ)-representative of u. Define a mapping ι :H 1
0 (U )→ L2(U, µ)

by ι(u)= ū. ι is a bounded linear operator, but not necessarily injective. Consider the
subspace N of H 1

0 (U ) defined as N := {u ∈ H 1
0 (U ) : ‖ι(u)‖2,µ= 0}. Now let N⊥ be

the orthogonal complement of N in H 1
0 (U ). Then ι :N⊥→ L2(U, µ) is injective.

Unless explicitly stated otherwise, we will denote the L2(U, µ)-representative ū
simply by u.

Consider the nonnegative bilinear form ED( · , · ) in L2(U, µ) given by

(2-2) ED(u, v) :=
∫

U
∇u · ∇v dx

with domain dom ED =N⊥, or more precisely, ι(N⊥). MPI implies (ED, dom ED)

is a nonnegative closed quadratic form in L2(U, µ). We use −1D
µ (or simply −1µ)

to denote the generator of (ED, dom ED), and call it the (Dirichlet) Laplacian with
respect to µ.

Some sufficient conditions for MPI and the existence of an orthonormal basis
{ϕn}

∞

n=1 of L2(U, µ) consisting of the eigenfunctions of −1µ can be found in [Hu
et al. 2006; Davies 1995; Mazya 1985]. We remark that if n= 1, then MPI holds for
any such µ, and thus 1µ is well defined; moreover, −1µ has compact resolvent.

2C. Neumann Laplacian defined by a measure. We state a result below that is
sufficient for the purpose of this paper. Let U be a bounded open subset of Rn.
Suppose U is a bounded open subset in Rn that has the extension property. Then
C∞(U ) is dense in H 1(U ). All bounded regions in Rn with piecewise smooth or
Lipschitz boundaries have the extension property. Let µ be a finite positive Borel
measure on U with supp(µ)⊆U and µ(U ) > 0. Assume that µ satisfies MPI* (see
(1-6)). As in the construction of the Dirichlet Laplacian, MPI* implies that each
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equivalence class u ∈ H 1(U ) contains a unique (in the L2(U, µ) sense) member û
that belongs to L2(U, µ) and satisfies both conditions below:

(1) There exists a sequence {un} in C∞(U ) such that un → û in H 1(U ) and
un→ û in L2(U, µ).

(2) û satisfies inequality (1-6).

Define a quadratic form EN ( · , · ) in L2(U, µ) by

EN (u, v) :=
∫

U
∇u · ∇v dx,

with domain dom EN := ι(N⊥), where ι : H 1(U )→ L2(U, µ) and N are analogs of
those in Section 2B. Assume, in addition, U satisfies PI (see (1-7)). Then MPI* and
PI imply that (EN , dom EN ) is a nonnegative closed quadratic form in L2(U, µ) (see
[Hu et al. 2006; Lau and Ngai ≥ 2019]). We denote the generator of (EN , dom EN )

by −1N
µ, and call it the Neumann Laplacian with respect to µ. We remark that

−1N
µ 4−1

D
µ .

We remark that if n = 1 and U = (a, b), then MPI* holds for any such µ and PI
holds, and thus 1N

µ is well defined. Moreover, 1N
µ has compact resolvent.

3. Fractal analog of a semiclassical asymptotic formula
for the number of bound states

In this section, we prove Theorem 1.2 and illustrate it by a class of self-similar
measures with overlaps.

Let X ⊆ Rn be a compact subset with nonempty interior and µ be a positive
finite Borel measure on Rn with supp(µ) ⊆ X and µ(X◦) > 0. We say that two
cells B and B ′ are µ-equivalent, denoted by B 'µ,τ,w B ′ (or simply B 'µ B ′), if
there exist some similitude τ : B→ B ′ of the form τ(x)= r x + b, r > 0, b ∈ Rn,
and some constant w > 0 such that τ(B)= B ′ and

(3-1) µ|B ′ = w ·µ|B ◦ τ
−1.

It is easy to check that 'µ is an equivalence relation.
Let (Pk)k≥1 be a sequence of µ-partitions of X, and let ν be a positive finite

Borel measure on X. For each k ≥ 1, let mk =mk(Pk) :=max{ν(B) : B ∈ Pk}. We
say that (Pk)k≥1 is refining with respect to ν if it satisfies the following conditions:

(1) {mk} is nonincreasing and limk→∞mk = 0.

(2) For any B ∈ Pk and any B ′ ∈ Pk+1, either B ′ ⊆ B or (B ′)◦ ∩ B◦ =∅.

Condition (2) means that each member of Pk+1 is a subset of some member
of Pk .



94 SZE-MAN NGAI AND WEI TANG

3A. Proof of Theorem 1.2. We now prove Theorem 1.2 by modifying a method
in [Reed and Simon 1978, Theorem XIII 79].

Proof of Theorem 1.2. Since X is compact and V is continuous, −1µ+ βV has
discrete spectrum on the negative real line for any β > 0, i.e., N−µ (βV ) is finite
for any β > 0. In fact, N−µ (βV ) ≤ N−µ (βVmin)= N (−βVmin,−1µ) <∞, where
Vmin := min{V (x) : x ∈ X}. For each k ≥ 1, let Pk := {Bk,`}`∈5k and define
V∨k (resp. V∧k ) to be the piecewise constant function over each Bk,` with the value
V∨k,` :=min{V (x) : x ∈ Bk,`} (resp. V∧k,` :=max{V (x) : x ∈ Bk,`}).

(a) For k≥1, let−1k,D
µ be the Dirichlet Laplacian on the union of the interiors of the

cells in Pk . Since C∞c
(⋃

B∈Pk
B◦
)
⊆ C∞c (X

◦), we have −1µ 4−1k,D
µ for k ≥ 1.

Combining this inequality with V ≤ V∧k , we have −1µ+βV 4−1k,D
µ +βV∧k for

k ≥ 1 and β > 0. It follows from Proposition 2.2 that for all k ≥ 1 and β > 0,

(3-2) N−µ (βV )≥ N (0,−1k,D
µ +βV∧k )=

∑
`∈5k

N (0,−1D
µ|Bk,`
+βV∧k,`)

=

∑
`∈5k

N (−βV∧k,`,−1
D
µ|Bk,`

)=
∑

{`∈5k :V∧k,`≤0}

N (−βV∧k,`,−1
D
µ|Bk,`

).

Combining (1-8) and (3-2) yields, for each k ≥ 1,

(3-3) N−µ (βV )≥ βα/2
(

C
∑

{`∈5k :V∧k,`≤0}

(−V∧k,`)
α/2ν(Bk,`)+ o(1)

)
as β→∞.

The definition of refining implies that limk→∞max{ν(Bk,`) : `∈5k}= 0. Moreover,
it follows from the continuity of V that

(3-4) lim
k→∞

∑
{`∈5k :V b

k,`≤0}

(−V b
k,`)

α/2ν(Bk,`)=

∫
D−(V )

(−V )α/2 dν for b ∈ {∨,∧},

which, together with (3-3), yields the desired inequality.

(b) The proof is similar to that of part (a). Condition (N) implies that −1N
µ|B

is
well defined for all B ∈

⋃
k≥1 Pk . Thus the Neumann Laplacian −1k,N

µ on the
union of the interiors of the cells in Pk is well defined for all k ≥ 1. We note that
−1k,N

µ 4 −1µ for k ≥ 1. Hence −1k,N
µ + βV∨k 4 −1µ+ βV for all k ≥ 1 and

β > 0, which, together with Proposition 2.2, yields

N−µ (βV )≤ N (0,−1k,N
µ +βV∨k )=

∑
`∈5k

N (0,−1N
µ|Bk,`
+βV∨k,`)

=

∑
`∈5k

N (−βV∨k,`,−1
N
µ|Bk,`

)=
∑

{`∈5k :V∨k,`≤0}

N (−βV∨k,`,−1
N
µ|Bk,`

).
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Thus (1-10) implies the following analog of (3-3), which holds for all k ≥ 1,

(3-5) N−µ (βV )≤ βα/2
(

C
∑

{`∈5k :V∨k,`≤0}

(−V∨k,`)
α/2ν(Bk,`)+ o(1)

)
as β→∞.

Hence, the assertion follows from (3-4) and (3-5). �

Let X ⊆ Rn be a compact subset with nonempty interior and µ be a positive
finite Borel measure on Rn with supp(µ) ⊆ X and µ(X◦) > 0. It is well known
that if n = 1 and a cell B is a closed interval, then B satisfies condition (N), and
N (λ,−1D

µ|B
)≤ N (λ,−1N

µ|B
)≤ N (λ,−1D

µ|B
)+ 2 for all λ≥ 0 (see, for example,

[Ngai 2011]). Thus N (λ,−1D
µ|B
) and N (λ,−1N

µ|B
) have the same asymptotic

behavior as λ→∞. Consequently, the following remark holds.

Remark 3.1. Let X = [a, b]. If there exist positive constants C and α, and a
refining µ-partition (Pk)k≥1 of X such that each B ∈

⋃
∞

k=1 Pk is a closed interval,
and satisfies the reverse inequality in (1-8), then the conclusion of Theorem 1.2(b)
holds.

A sufficient condition for condition (N) can be found in [Lau and Ngai ≥ 2019]
for n ≥ 2.

Let (E, ν) be a measure space with ν being a σ -finite Borel measure, and let
(E, dom E) be a nonnegative closed quadratic form in L2(E, ν)with generator A. By
assuming that Sobolev’s inequality holds for some q > 2, namely, there exists some
constant C > 0 such that ‖u‖2q,ν ≤CE(u, u) for all u ∈ dom E , Levin and Solomyak
[1997, Theorem 1.2] proved the following general Cwikel–Lieb–Rosenbljum (CLR)
inequality:

(3-6) N (0, A−βV )≤ epC pβ p
∫

E
V p dν for all β > 0,

where 0≤ V ∈ L p(E, ν) and p := q/(q− 2) > 1. In the case E = Rn, n ≥ 3, µ is
Lebesgue measure on Rn, and the generator A is the Dirichlet Laplacian −1 on Rn,
then (3-6) holds with p = n/2 and C−1

= (n(n− 2)/4)n/2ωn−1, where ωn−1 is the
volume of the unit (n−1)-sphere in Rn. In this case, (3-6) is called the classical CLR
inequality (see [Rozenbljum 1972; Cwikel 1977; Lieb 1976; Reed and Simon 1978;
Li and Yau 1983]). We give a simple corollary of the general CLR inequality (3-6).

Corollary 3.2. Suppose µ is a continuous Borel probability measure on R with
supp(µ) ⊆ [a, b], and that (ED, dom ED) is defined as in (2-2). Assume 0 ≤ V ∈
L p((a, b), µ) for some p > 1. Then,

N (0,−1µ−βV )≤ ep(b− a)pβ p
∫ b

a
V p dµ for all β > 0.
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Proof. For all u ∈ H 1
0 (a, b) and x ∈ [a, b],

|u(x)| = |u(x)− u(a)| =
∣∣∣∣∫ x

a
u′(t) dt

∣∣∣∣≤ (b− a)1/2ED(u, u)1/2.

It follows that for all q > 0,(∫ b

a
|u(x)|q dµ

)2/q

≤ (b− a)ED(u, u),

and thus Sobolev’s inequality holds with C := b− a. Setting q := 2p/(p − 1),
and using the discussion above or [Levin and Solomyak 1997, Theorem 1.2], the
desired inequality holds. �

We remark that Theorem 1.2(b) does not follow from [Levin and Solomyak 1997,
Theorem 1.2], which requires Sobolev’s inequality. For n= 1, Corollary 3.2 implies
that the general CLR inequality (3-6) holds for all p> 1. However, Theorem 1.2(b)
does not follow from [Levin and Solomyak 1997, Theorem 1.2] in this case either,
since the constant α in Theorem 1.2(b), which corresponds to the constant p in the
general CLR inequality (3-6), could be less than or equal to 1. Precisely, we would
like to have α = ds(−1µ) ≤ 1 if ds(−1µ) exists and n = 1, as in our examples
below.

For the convenience of the reader, we state a slightly modified version of [Ngai
2011, Proposition 2.2(b)] below, which will be used later in this paper.

Proposition 3.3 [Ngai 2011, Proposition 2.2]. Let S : R→ R be a similitude, with
Lipschitz constant r , such that S[a, b] = [c, d], S(a)= c, and S(b)= d. Let ν be a
continuous positive finite Borel measure on [a, b] with supp(ν) ⊆ [a, b]. Assume
that [a, b] 'ν,w,S [c, d]. Then −1ν|[c,d] ≈ (rw)

−1
·
(
−1ν|[a,b]

)
.

We now apply Theorem 1.2 to self-similar measures on R. Let {Si }
m
i=1, m≥ 2, be

an IFS on R, and let µ be a self-similar measure defined by {Si }
m
i=1 and a probability

vector (pi )
m
i=1. For k ≥ 0 and

i = (i1, . . . , ik)∈ {1, . . . ,m}k :=
{
(i1, . . . , ik) : i j ∈ {1, . . . ,m} for j = 1, . . . , k

}
,

we use the standard notation

Si := Si1 ◦ · · · ◦ Sik , ri := ri1 · · · rik , pi := pi1 · · · pik

with S∅ := id, r∅ = p∅ := 1, where id is the identity map on R. Assume that
{Si }

m
i=1 satisfies OSC with respect to an open set (a, b). Let X = [a, b], and ds be

the unique solution of
m∑

i=1

(piri )
ds/2 = 1,
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where ri is the contraction ratio of Si . Solomyak and Verbitsky [1995] studied the
asymptotic behavior of the eigenvalue counting function N (λ,−1µ) as λ→∞.
They proved that there exist positive constants C1,C2 such that

(3-7) C1λ
ds/2 ≤ N (λ,−1µ)≤ C2λ

ds/2 for all sufficiently large λ.

In particular, if at least one of the ratios ln(rk pk)/ ln(r` p`) is irrational for k, ` ∈
{1, . . . ,m}, then there exists some constant C > 0 such that N (λ,−1µ)∼ Cλds/2.
The same holds for the Neumann Laplacian with the same constant C . We note
that ds = ds(−1µ).

Proposition 3.4. Use the notation above and let {Si }
m
i=1 be an IFS on R satisfy-

ing OSC. Let ν be the self-similar measure defined by {Si }
m
i=1 together with the

probability vector ((piri )
ds/2)mi=1. Then for any continuous function V on X,

(a) there exist positive constants C1,C2 such that for all sufficiently large β,

(3-8) C1

∫
D−(V )

(−V )ds/2 dν ≤
N−µ (βV )

βds/2
≤ C2

∫
D−(V )

(−V )ds/2 dν;

(b) if at least one of the ratios ln(rk pk)/ ln(r` p`) is irrational for k, `∈ {1, . . . ,m},
then one may take C1 = C2 in (3-8).

Proof. Using the discussion above, we see that (b) follows from (a). Thus, we only
prove (a). For k ≥ 1, let Pk := {Si ([a, b]) : i ∈ {1, . . . ,m}k}. It is easy to see that
(Pk)k≥1 is a refining µ-partition of [a, b] with respect to ν, and all cells in

⋃
k≥1 Pk

are closed intervals. Fix any k ≥ 1 and any i ∈ {1, . . . ,m}k. OSC implies that
µ|Si ([a,b]) = piµ|[a,b] ◦ S−1

i on Si ([a, b]). It follows that [a, b] 'µ,pi ,Si Si ([a, b])
and µ(Si ([a, b])) = pi . In view of Proposition 3.3, we get N (λ,−1µ|Si ([a,b])

) =

N (ri piλ,−1µ). Combining this with (3-7), we see that there exist positive con-
stants C1,C2 such that, for all sufficiently large λ,

C1(ri pi )
ds/2λds/2 ≤ N (λ,−1µ|Si ([a,b])

)≤ C2(ri pi )
ds/2λds/2.

Since (ri pi )
ds/2 = ν(Si ([a, b])), for all sufficiently large λ,

C1ν(Si ([a, b]))λds/2 ≤ N
(
λ,−1µ|Si ([a,b])

)
≤ C2ν(Si ([a, b]))λds/2,

which, together with Theorem 1.2 and Remark 3.1, implies the desired result. �

3B. A class of self-similar measures satisfying EFT. In this subsection, we con-
sider the following family of IFSs:

(3-9) S1(x)= r1x, S2(x)= r2x + r1(1− r2), S3(x)= r2x + 1− r2,

where the contraction ratios r1, r2 ∈ (0, 1) satisfy r1 + 2r2 − r1r2 ≤ 1; that is,
S2(1) ≤ S3(0). The Hausdorff dimension of the self-similar sets is computed in
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[Lau and Wang 2004]. The multifractal properties and spectral dimension of the
corresponding self-similar measures were recently studied in [Deng and Ngai 2017;
Ngai et al. 2018].

Let µ be a self-similar measure defined by an IFS in (3-9) and a probability
vector (pi )

3
i=1, and −1µ be the associated Dirichlet Laplacian with respect to µ.

We note that X := supp(µ)⊆ [0, 1]. Let ds be the unique solution of

(3-10) (1−(p2r2)
ds/2)(1−(p3r2)

ds/2)

∞∑
k=0

(
w1(k)r1r k

2
)ds/2
+
(

pds/2
2 +pds/2

3

)
rds/2

2 =1,

where w1(k) := p1
∑k

i=0 pk−i
2 pi

3. [Ngai et al. 2018, Theorem 1.2] implies that there
exist some positive constants C1,C2 such that, for k = 0, 1,

(3-11) C1λ
ds/2 ≤ N (λ,−1µ|B1,k

)≤ C2λ
ds/2 for all sufficiently large λ,

where B1,1 := S1(X)∪ S2(X) and B1,0 := S3(X). In particular, ds = ds(−1µ).
In order to define a sequence of refining µ-partitions of [0, 1] with respect to µ,

we adopt the definition of an island from [Ngai et al. 2018]. Let Mk := {1, 2, 3}k

for k ≥ 1 and M0 :=∅. A closed subset B ⊆ [0, 1] is called a level-k island with
respect to {Mk} if the following conditions hold:

(a) There exists a finite sequence of indexes i0, i1, . . . , in in Mk such that
Sik (0, 1)∩ Sik+1(0, 1) 6=∅ for all k = 0, . . . , n− 1, and B =

⋃n
k=0 Sik ([0, 1]).

(b) S j (0, 1)∩ Sik (0, 1)=∅ for any j ∈Mk \ {i0, . . . , in} and any k ∈ {0, . . . , n}.

Intuitively, for each level-k island B, B◦ is a connected component of SMk (0, 1) :=⋃
i∈Mk

Si (0, 1) (see Figure 1). For k ≥ 1, define

(3-12) Pk := {B : B is a level-k island with respect to {Mk}}.

We note that P1 = {B1,1, B1,0} (see Figure 1). It is easy to see that (Pk)k≥1 is a
sequence of µ-partitions of [0, 1]. By the proof of [Ngai et al. 2018, Example 3.3],
(Pk)k≥1 is refining with respect to µ; moreover, for any k ≥ 1 and any B ∈ Pk , if B
is not µ-equivalent to B1,i , i = 0, 1, then for any `≥ 1, there exists some subset

(3-13) B` :=
(⋃̀

i=1

{
B∗i,0, B∗i,1

})
∪
{

B∗`
}
,

of
⋃

k≥1 Pk satisfying the following conditions:

(i) B∗` ∈ Pk+` is not µ-equivalent to B1, j , j = 0, 1, and µ(B∗` )→ 0 as `→∞.

(ii) For 1 ≤ i ≤ `, {B∗i,0, B∗i,1} ⊆ Pk+i , and for m ∈ {0, 1}, there exists some
j ∈ {0, 1} such that B∗i,m 'µ B1, j .



FRACTAL SCHRÖDINGER OPERATORS 99

r0 1
X

k = 1
B1,1 B1,0r r r

r r rr r r r r rk = 2
B

r r rr r r r r rr r rr r r r r r r r rr r r r r rB∗1

k = 3

Figure 1. µ-partitions Pk for k = 1, 2, 3, B := S2(B1,1), and
B∗` := S2`+1(B1,1), where Pk is defined as in (3-12). Cells that are
labeled consist of line segments enclosed by a box. The figure is
drawn with r1 = 1/3 and r2 = 2/7.

For example, if B := S2(B1,1), then B is notµ-equivalent to B1,i , i=0, 1. Moreover,
for any `≥ 1,

B` :=
(⋃̀

i=1

{
S2i 1(B1,1), S2i+1(B1,0)

})
∪ {S2`+1(B1,1)}

satisfies conditions (i) and (ii) (see Figure 1).

Proposition 3.5. Use the notation above. Let ν be a positive finite Borel measure
on R and assume that max{ν(B) : B ∈ Pk} → 0 as k→∞. Let ds be defined as in
(3-10) and let P∗ := {B ∈ Pk : k ≥ 1 and B 'µ B1,i for some i ∈ {0, 1}}.

(a) If there exists some constant c > 0 such that

(3-14) (|B|µ(B))ds/2 ≥ cν(B) for all B ∈ P∗,

then there exists some constant C > 0 such that

(3-15) N−µ (βV )≥ Cβds/2
(∫

D−(V )
(−V )ds/2 dν+ o(1)

)
as β→∞.

(b) The reverse inequality in (3-15) holds if (3-14) holds with the inequality being
reversed.

Proof. (a) Since (Pk)k≥1 is refining with respect to µ and max{ν(B) : B ∈Pk}→ 0
as k →∞, (Pk)k≥1 is refining with respect to ν. In view of Theorem 1.2(a), it
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suffices to show that for all B ∈
⋃

k≥1 Pk ,

(3-16) N (λ,−1µ|B )≥ λ
ds/2(Cν(B)+ o(1)) as λ→∞.

Assume that B ∈ P∗. Then there exists a unique number w > 0, a unique κ ∈ {0, 1},
and a unique similitude τ with contraction ratio rτ such that B1,κ 'µ,w,τ B. Thus
µ(B)=wµ(B1,κ), |B|= rτ |B1,κ |, and Proposition 3.3 implies that N (λ,−1µ|B )=
N (wrτλ,−1µ|B1,κ

). Combining these equalities with (3-11) and (3-14), we obtain
positive constants C1,C2 such that

(3-17) N (λ,−1µ|B )≥ C1(wrτ )ds/2λds/2 = C1

(
µ(B)
µ(B1,κ)

·
|B|
|B1,κ |

)ds/2

· λds/2

≥ C2λ
ds/2ν(B) for sufficiently large λ,

proving (3-16) for B ∈ P∗.
On the other hand, assume B ∈

⋃
k≥1 Pk but B /∈ P∗. Let B` be defined as in

(3-13) satisfying conditions (i) and (ii) in the paragraph preceding this proposition
for `≥ 1. By assumption, we have ν(B∗` )→ 0 as `→∞, and thus

(3-18) ν(B)=
∞∑

i=1

1∑
j=0

ν(B∗i, j ).

Using calculations from [Ngai et al. 2018, Sections 4 and 5], we get, as λ→∞,

(3-19) N (λ,−1µ|B )=
∞∑

i=1

1∑
j=0

N (λ,−1µ|B∗i, j
)+ λds/2o(1).

Combining (3-19) with (3-17) and (3-18), we obtain, as λ→∞,

N (λ,−1µ|B )≥ C2λ
ds/2

( ∞∑
i=1

1∑
j=0

ν(B∗i, j )+ o(1)
)
= C2λ

ds/2(ν(B)+ o(1)).

Finally, (3-16) holds for all B ∈
⋃

k≥1 Pk , which completes the proof.

(b) The proof is similar to that of part (a). If (3-14) holds with the inequality being
reversed, then the same is true for (3-17). Consequently, the desired inequality
holds. �

We now give a sufficient condition for the reverse inequality in (3-14) to hold.

Remark 3.6. Use the notation in Proposition 3.5. If (r1 p1)
ds/2 ≤ p1, p2 = p3 and

(r2 p2)
ds/2 ≤ p2, then there exists some constant c > 0 such that

(|B|µ(B))ds/2 ≤ cµ(B) for all B ∈ P∗.
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Proof. Let c be a positive constant such that

(3-20) (|B|µ(B))ds/2 ≤ cµ(B) for B ∈ {B1,0, B1,1}.

By assumption, w1( j) = p1
∑ j

i=0 p j−i
2 pi

3 = p1( j + 1)p j
2 for j ≥ 0. Using the

assumptions (r1 p1)
ds/2 ≤ p1 and (r2 p2)

ds/2 ≤ p2, we have

(3-21) (r1r j
2w1( j))ds/2 = (r1 p1)

ds/2 · (( j + 1)(p2r2)
j )ds/2 ≤ p1( j + 1)ds/2 p j

2

≤ p1( j + 1)p j
2 = w1( j),

where the last inequality uses the fact ds/2 < 1. Fix any B ∈ P∗. By the def-
inition of P∗, there exist a unique k0 ∈ {0, 1}, w > 0, and i ∈

⋃
k≥0{1, 2, 3}k

such that B1,k0 'µ,w,Si B. Let ri be the contraction ratio of Si . By the defini-
tion of 'µ, |B| = ri |B1,k0 | and µ(B) = wµ(B1,k0). From the proofs of [Ngai
et al. 2018, Lemma 3.5 and Example 3.3], we see that w can be expressed as
w = w1(i)p

j
1 p`2 pk−1−i− j−`

3 = w1(i)p
j
1 pk−1−i− j

2 for some i, j, `∈{0, 1, . . . , k}. In
this particular case, ri = r j+1

1 r k− j−1
2 . Hence,

(|B|µ(B))ds/2 = (ri |B1,k0 | ·wµ(B1,k0))
ds/2

=
(
|B1,k0 |µ(B1,k0) · r1r i

2w1(i) · (p1r1)
j
· ((p2r2)

k−1−i− j )
)ds/2

≤ cµ(B1,k0)w1(i)p
j
1 pk−1−i− j

2 = cwµ(B1,k0)= cµ(B),

where we have used (3-20), (3-21), and the assumptions to get the inequality. This
completes the proof. �

4. Bohr’s formula for Schrödinger operators with locally bounded potentials

Let X ⊆Rn (n≥ 1) be a compact subset with nonempty interior, and µ be a positive
finite Borel measure on X such that µ(X◦) > 0 and supp(µ)⊆ X. We extend X to
X∞ :=

⋃
i∈I X i as described in Section 1 so that conditions (C1)–(C3) are satisfied.

For each i ∈ I, let τi (x)= x + bi , bi ∈ Rn, be the similitude in condition (C2), and
µi := µ ◦ τ

−1
i . Also, let µ∞ be a positive measure on X∞ defined as in (1-13).

Assume that µ∞(X i ∩ X j )= 0 for any distinct i, j ∈ I.
We first give a simple proposition.

Proposition 4.1. Let (µi )i∈I , (X i )i∈I , X∞, and µ∞ be defined as above. Assume
that µ satisfies MPI, and let −1µ be the Dirichlet Laplacian with respect to µ.
Then

(a) for any i ∈ I, the Dirichlet Laplacian −1µi with respect to µi is well defined
and −1µi ≈−1µ;

(b) −1µ∞ :=
⊕

i∈I (−1µi ) is a nonnegative self-adjoint operator in L2(X∞, µ∞).
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Proof. Part (a) can be proved by verifying MPI and using a similar argument as that
in [Ngai 2011, Lemma 2.1]. Part (b) follows from the facts that L2(X∞, µ∞) =⊕

i∈I L2(X i , µi ) and that−1µi is a nonnegative self-adjoint operator in L2(X i , µi )

for all i ∈ I. We omit the details. �

In the rest of this section, we assume that µ satisfies MPI, and let −1µ∞ be as
in Proposition 4.1(b).

Theorem 4.2. Use the notation in Proposition 4.1 and assume that V is a locally
bounded nonnegative piecewise continuous function on X∞ so that V (x)→∞ as
|x |→∞. Then the Schrödinger operator−1µ∞+V, defined as a sum of quadratic
forms, is a nonnegative self-adjoint operator in L2(X∞, µ∞) and has compact
resolvent.

Proof. Let D := {(ui )i∈I ∈ L2(X∞, µ∞) : ui ∈ C∞c (X
◦

i ) for all i ∈ I }. It follows
from the fact

D ⊆ domF (−1µ∞)∩ domF (V )

is dense in L2(X∞, µ∞) that −1µ∞ + V, defined as a sum of quadratic forms, is a
nonnegative self-adjoint operator in L2(X∞, µ∞). The remaining assertion holds
by using the proof of [Reed and Simon 1978, Theorem XIII.16] and [Reed and
Simon 1978, Theorem XIII.64]. �

Let V be a locally bounded nonnegative piecewise continuous function on
X∞ such that V (x) → ∞ as |x | → ∞. Then −1µi + V |X i is a nonnegative
self-adjoint operator in L2(X i , µi ) for all i ∈ I. Proposition 4.1(b) implies that
−1µ∞ + V =

⊕
i∈I (−1µi + V |X i ). It follows that

(4-1) N (λ,−1µ∞ + V )=
∑
i∈I

N (λ,−1µi + V |X i ) for all λ > 0.

Let V∧ (resp. V∨) be the piecewise constant function which takes the value
supx∈X i

V (x) (resp. infx∈X i V (x)) on X i . By applying Theorem 4.2 to V b for
b ∈ {∨,∧}, we see that −1µ∞ + V b is a nonnegative self-adjoint operator in
L2(X∞, µ∞). Note that σ is an eigenvalue of −1µi + V b

|X i with eigenfunction
ϕ if and only if σ − V b

|X i is an eigenvalue of −1µi with the same eigenfunction.
Hence,

(4-2) N (λ,−1µi + V b
|X i )= N (λ− V b

|X i ,−1µi ).

This allows us to relate the eigenvalue counting function of the Schrödinger operator
to that of the Laplacian. Since 0 ≤ V∨ ≤ V ≤ V∧, we have −1µ∞ + V∨ 4
−1µ∞ + V 4−1µ∞ + V∧, and thus, for all λ > 0,

(4-3) N (λ,−1µ∞ + V∧)≤ N (λ,−1µ∞ + V )≤ N (λ,−1µ∞ + V∨).
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As in (4-1), for b ∈ {∨,∧},

(4-4) N (λ,−1µ∞+V b)=
∑
i∈I

N (λ,−1µi+V b
|X i )=

∑
i∈I

N (λ−V b
|X i ,−1µi )

=

∑
i∈I

N (λ−V b
|X i ,−1µ)

=

∑
{i∈I :V b|Xi≤λ}

N (λ−V b
|X i ,−1µ),

where (4-2) and Proposition 4.1(a) are used in the second and third equality, respec-
tively.

Define B(x, r) := {y ∈ X∞ : |x − y| < r}. The following theorem gives the
existence of spectral dimension of −1µ∞ + V. A similar result was obtained by
Chen et al. [2015]. We replace their assumption on the Ahlfors-regularity of µ∞
by a more general condition.

Theorem 4.3. Use the notation in Theorem 4.2. Let B(x, r) and V b, b ∈ {∨,∧},
be defined as above. Assume that (W1) holds, and that there exist positive constants
c1, c2, c3, θ such that

(4-5) c1|x |θ ≤ V (x)≤ c2|x |θ for all x ∈ X∞ with sufficiently large |x |,

and that µ∞(B(0, 2r))≤ c3µ∞(B(0, r)) for all sufficiently large r . Then there exist
positive constants C,C1,C2 such that for all sufficiently large λ,

F(2λ, V∨)≤ C F(λ, V∧)

and
C1λ

ds/2 F(λ, V )≤ N (λ,−1µ∞ + V )≤ C2λ
ds/2 F(λ, V ),

where F( · , · ) is defined as in (1-14) and ds comes from (W1).

Proof. Fix any b ∈ {∨,∧}. Since V b
|X i is a constant for any i ∈ I, we see that

(4-6) F(λ, V b)=
∑

{i∈I :V b|Xi≤λ}

µ∞(X i )= µ(X) · #{i ∈ I : V b
|X i ≤ λ} for λ > 0.

By (W1), there exist positive constants c4, c5,M0 such that c4λ
ds/2≤ N (λ,−1µ)≤

c5λ
ds/2 for all λ > M0. Thus,

N (λ− V b
|X i ,−1µ)≤ N (λ,−1µ)≤ c5λ

ds/2 for all λ > M0 and any i ∈ I,

while for all λ > 2M0 and i ∈ I such that V b
|X i ≤ λ/2,

N (λ− V b
|X i ,−1µ)≥ N (λ/2,−1µ)≥ (c42−ds/2) · λds/2.
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Combining these estimates with (4-4) and (4-6), we get

N (λ,−1µ∞ + V b)≤ c5λ
ds/2#{i ∈ I : V b

|X i ≤ λ}

= (c5/µ(X)) · λds/2 F(λ, V b) for all λ > M0, and,

N (λ,−1µ∞ + V b)≥
∑

{i∈I :V b|Xi≤λ/2}

N (λ− V b
|X i ,−1µ)

≥ (c42−ds/2) · λds/2#{i ∈ I : V b
|X i ≤ λ/2}

= (c42−ds/2/µ(X)) · λds/2 F(λ/2, V b) for all λ > 2M0.

It follows that there exist constants c6, c7 > 0 such that for all λ > 2M0,

(4-7) c6λ
ds/2 F(λ/2, V b)≤ N (λ,−1µ∞ + V b)≤ c7λ

ds/2 F(λ, V b).

By the definition of F( · , · ), F(λ/2, V∧) ≤ F(λ, V ) ≤ F(λ, V∨) for all λ > 0.
Using (4-3), we have

N (λ,−1µ∞ + V∧)
λds/2 F(λ, V∨)

≤
N (λ,−1µ∞ + V )
λds/2 F(λ, V )

≤
N (λ,−1µ∞ + V∨)
λds/2 F(λ/2, V∧)

for all λ > 0,

which, together with (4-7), gives

(4-8) c6
F(λ/2, V∧)
F(λ, V∨)

≤
N (λ,−1µ∞ + V )
λds/2 F(λ, V )

≤ c7
F(λ, V∨)

F(λ/2, V∧)
for all λ > 2M0.

Using (4-5), we obtain positive constants r0, c8, c9 such that

c8|x |θ ≤ V∨(x)≤ V∧(x)≤ c9|x |θ for all x ∈ X∞ with |x |> r0.

Define D0 := sup{V∧(x) : x ∈ X∞ such that |x | ≤ r0}. Then for all λ > 2D0,

F(λ/2, V∧)≥ µ∞
(
{x ∈ X∞ : c9|x |θ ≤ λ/2}

)
= µ∞(B(0, c10λ

1/θ )), and

F(λ, V∨)≤ µ∞
(
{x ∈ X∞ : c8|x |θ ≤ λ}

)
= µ∞(B(0, c11λ

1/θ )),

where c10 := (2c9)
−1/θ and c11 := c−1/θ

8 . Moreover, in view of the assumption that
µ∞(B(0, 2r))≤ c3µ∞(B(0, r)) for all sufficiently large r , we have

µ∞(B(0, c11λ
1/θ ))≤ cm0

3 µ∞(B(0, 2−m0c11λ
1/θ ))≤ cm0

3 µ∞(B(0, c10λ
1/θ ))

for all sufficiently large λ, where m0 := min{i ∈ Z : i ≥ ln(c11/c10)/ ln 2}. Thus
F(λ, V∨)≤ cm0

3 F(λ/2, V∧) for all sufficiently large λ. Combining this inequality
with (4-8), we get, for all sufficiently large λ,

c−m0
3 c6λ

ds/2 F(λ, V )≤ N (λ,−1µ∞ + V )≤ cm0
3 c7λ

ds/2 F(λ, V ),

which completes the proof. �
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Assume (W2) holds with a finite collection of closed subsets {Y j } j∈J and spectral
dimension ds . Hence, we can obtain the following analogs of Proposition 4.1 and
Theorem 4.2.

Remark 4.4. Use the notation in Proposition 4.1. Assume that µ satisfies MPI and
(W2). Let X∞, j and µ∞, j be defined as in (1-15) for j ∈ J. Then for all j ∈ J,

(a) −1µi |τi (Y j )
≈−1µ|Y j

for any i ∈ I ;

(b) the operator −1µ∞, j :=
⊕

i∈I (−1µi |τi (Y j )
) is nonnegative and self-adjoint in

L2(X∞, j , µ∞, j );

(c) −1µ∞, j+V |X∞, j is a nonnegative self-adjoint operator in L2(X∞, j , µ∞, j ) with
compact resolvent, where V is given as in Theorem 4.2.

Replacing Proposition 4.1(b) and Theorem 4.2 by Remark 4.4 (b) and (c), re-
spectively, we can also obtain analogs of (4-1) and (4-4) as follows. For all j ∈ J
and b ∈ {∨,∧},

N (λ,−1µ∞, j + V |X∞, j )=
∑
i∈I

N (λ,−1µi |τi (Y j )
+ V |τi (Y j )),(4-9)

N (λ,−1µ∞, j + V b
|X∞, j )=

∑
{i∈I :V b|Xi≤λ}

N (λ− V b
|X i ,−1µ|Y j

).(4-10)

Fix j ∈ J and b ∈ {∨,∧}. Define

(4-11) R j (λ, V b) :=
∑

{i∈I :V b|Xi≤λ}

(λ− V b
|X i )

ds/2 R j (λ− V b
|X i ),

where R j ( · ) is the remainder term in (1-12). Let g j ( · , · ) be defined as in (1-16)
for j ∈ J. We first observe that

(4-12) g j (λ, V b)=
∑

{i∈I :V b|Xi≤λ}

(λ− V b
|X i )

ds/2G j (ln(λ− V b
|X i )).

Thus limλ→∞ R j (λ, V b)/g j (λ, V b) = 0, and using (4-10) and (1-12), we have
N (λ,−1µ∞, j + V b

|X∞, j )= g j (λ, V b)+ R j (λ, V b) as λ→∞. It follows that

(4-13) lim
λ→∞

N (λ,−1µ∞, j + V b
|X∞, j )

g j (λ, V b)
= lim
λ→∞

g j (λ, V b)+ R j (λ, V b)

g j (λ, V b)
= 1.

The following theorem is slightly modified from a similar one in [Chen et al.
2015], in order to suit our purpose. We include a proof for completeness.

Theorem 4.5 [Chen et al. 2015, Theorem 2.11]. Use the notation in Remark 4.4.
Let V be a locally bounded nonnegative piecewise continuous function on X∞ such
that V (x)→∞ as |x | → ∞. Assume that (W2) and (1-17) hold. Let F( · , · )
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and g j ( · , · ), j ∈ J, be defined as in (1-14) and (1-16), respectively. Then for each
j ∈ J,

(4-14) N (λ,−1µ∞, j + V |X∞, j )∼ g j (λ, V ) as λ→∞.

Proof. Fix any j ∈ J. We claim that

(4-15) g j (λ, V∨)/g j (λ, V∧)= 1+ o(1) as λ→∞.

Define F j (λ, V b) := µ∞({x ∈ X∞, j : V b(x) ≤ λ}) for b ∈ {∨,∧}. Similar to
(4-6), we get F j (λ, V b) = µ(Y j ) · #{i ∈ I : V b

|X i ≤ λ} for b ∈ {∨,∧} and λ > 0.
This, together with (4-6), yields F j (λ, V∨)/F j (λ, V∧)= F(λ, V∨)/F(λ, V∧). By
[Chen et al. 2015, Proposition 4.2], if F j (λ, V∨) ∼ F j (λ, V∧) as λ→∞, then
(4-15) holds. The claim follows by combining these observations with (1-17).
Combining (4-15) and (4-13), we get

(4-16) lim
λ→∞

N (λ,−1µ∞, j + V∨|X∞, j )

g j (λ, V∧)
= lim
λ→∞

N (λ,−1µ∞, j + V∧|X∞, j )

g j (λ, V∨)
= 1.

We note that h j (λ) := λ
ds/2G j (ln λ) is nondecreasing on (M,∞) for some constant

M > 0. Hence, by the definition of g j ( · , · ) in (1-16),

(4-17) g j (λ, V∧)≤ g j (λ, V )≤ g j (λ, V∨) for all sufficiently large λ.

As in (4-3), for all λ > 0,

N (λ,−1µ∞, j +V∧|X∞, j )≤ N (λ,−1µ∞, j +V |X∞, j )≤ N (λ,−1µ∞, j +V∨|X∞, j ).

It follows that, for all sufficiently large λ,

N (λ,−1µ∞, j + V∧|X∞, j )

g j (λ,V∨)
≤

N (λ,−1µ∞, j + V |X∞, j )

g j (λ,V )
≤

N (λ,−1µ∞, j + V∨|X∞, j )

g j (λ,V∧)
,

which, together with (4-16), yields (4-14). �

We now prove Theorem 1.4.

Proof of Theorem 1.4. Proposition 4.1(a) and Remark 4.4(a) imply N (λ,−1µi )=

N (λ,−1µ) and N (λ,−1µi |τi (Y j )
)= N (λ,−1µ|Y j

) for all i ∈ I, all j ∈ J, and λ> 0.
Also, (1-11) holds by (W2). Thus, for all i ∈ I and all λ > 0,

(4-18)
∑
j∈J

N (ξ j,1λ,−1µi |τi (Y j )
)−C0

≤ N (λ,−1µi )≤
∑
j∈J

N (ξ j,2λ,−1µi |τi (Y j )
)+C0.
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For all i ∈ I, since−1µi+V∨|X i 4−1µi+V |X i 4−1µi+V∧|X i , Proposition 2.2
and (4-2) give

N (λ− V∧|X i ,−1µi )= N (λ,−1µi + V∧|X i )≤ N (λ,−1µi + V |X i )

≤ N (λ,−1µi + V∨|X i )= N (λ− V∨|X i ,−1µi ),

which, together with (4-18), yields∑
j∈J

N
(
ξ j,1(λ− V∧|X i ),−1µi |τi (Y j )

)
−C0

≤ N (λ,−1µi + V |X i )≤
∑
j∈J

N
(
ξ j,2(λ− V∨|X i ),−1µi |τi (Y j )

)
+C0.

It follows that, for all λ > 0,∑
i∈I

∑
j∈J

N (ξ j,1(λ− V∧|X i ),−1µi |τi (Y j )
)−C0 · #{i ∈ I : V∧|X i ≤ λ}

≤ N (λ,−1µ∞ + V )=
∑
i∈I

N (λ,−1µi + V |X i )

≤

∑
i∈I

∑
j∈J

N (ξ j,2(λ− V∨|X i ),−1µi |τi (Y j )
)+C0 · #{i ∈ I : V∨|X i ≤ λ}.

Combining this equality with (4-6) and (4-10), we get, for all λ > 0,

(4-19)
∑
j∈J

N (ξ j,1λ,−1µ∞, j + ξ j,1V∧|X∞, j )−C1 F(λ, V∧)

≤ N (λ,−1µ∞ + V )

≤

∑
j∈J

N (ξ j,2λ,−1µ∞, j + ξ j,2V∨|X∞, j )+C2 F(λ, V∨),

where Ci , i = 1, 2 are positive constants. We observe that (4-12) and (4-6) imply
that for b ∈ {∨,∧}, all c > 0, and all λ > 0,

(4-20) g j (cλ, cV b)≥ (cds/2 inf G j ) ·
∑

{i∈I :V b|Xi≤λ}

(λ− V b
|X i )

ds/2

≥ (cds/2 inf G j )(λ/2)ds/2 · #{i ∈ I : V b
|X i ≤ λ/2}

≥ C3λ
ds/2 F(λ/2, V b), (by (4-6)),

where C3 > 0 is a constant. In view of (4-20) and the assumption F(2λ, V∨) ≤
C F(λ, V∧) for all sufficiently large λ, there exists a constant C4 > 0 such that

(4-21) g j (cλ, cV b)≥ C4λ
ds/2 F(λ, V b) > 0 for all sufficiently large λ.
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Consequently, combining the above estimates, we have

lim
λ→∞

N (λ,−1µ∞ + V )∑
j∈J g j (ξ j,1λ, ξ j,1V )

≥ lim
λ→∞

∑
j∈J N (ξ j,1λ,−1µ∞, j + ξ j,1V∧|X∞, j )∑

j∈J g j (ξ j,1λ, ξ j,1V∨)

− lim
λ→∞

C1 F(λ, V∧)∑
j∈J g j (ξ j,1λ, ξ j,1V∨)

(by (4-17) and (4-19))

≥ 1− lim
λ→∞

C1 F(λ, V∧)
g j0(ξ j0,1λ, ξ j0,1V∨)

(by (4-16))

= 1− lim
λ→∞

C1 F(λ, V∧)
g j0(ξ j0,1λ, ξ j0,1V∧)

(by (4-15))

≥ 1− lim
λ→∞

C1

C4
λ−ds/2 (by (4-21))

= 1− 0= 1,

where j0 is any index in J. Similarly, we have

lim
λ→∞

N (λ,−1µ∞ + V )∑
j∈J g j (ξ j,2λ, ξ j,2V )

≤ 1,

which completes the proof. �

A sufficient condition for (1-17) is given in [Chen et al. 2015, Remark 2.9]. We
now give a simple sufficient condition for (1-17), which is needed in Section 5.

Proposition 4.6. Use the notation in Proposition 4.1, and let X := [0, a]. Assume
that V is a locally bounded nonnegative piecewise continuous function on X∞ and
assume that there exist positive constants β and c such that V (x) = c|x |β for all
x ∈ X∞ with |x | sufficiently large. Let F( · , · ) be defined as in (1-14). Then (1-17)
holds.

Proof. By the assumptions on V, there exists some r0 > a such that for all x ∈ X∞
with |x |> r0, we have

(4-22) V (x)= c|x |β and c(|x | − a)β ≤ V∨(x)≤ V∧(x)≤ c(|x | + a)β .

Let M := max{V∧(x) : x ∈ X∞ with |x | ≤ r0}. For λ > 0, let Wλ := {x ∈ X∞ :
V∨(x)≤ λ< V∧(x)}. We claim that for all λ> M, µ∞(Wλ)≤ 4µ(X). To see this,
we first notice that for all λ > M,

{x ∈ X∞ : |x | ≤ r0} ⊆ {x ∈ X∞ : V∧(x)≤ λ} ⊆ R \Wλ.
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Next, it follows from (4-22) that for x ∈Wλ,

V∨(x + 2sgn(x)a)≥ c(|x + 2sgn(x)a| − a)β = c(|x | + a)β ≥ V∧(x) > λ,

and hence x + 2sgn(x)a /∈ Wλ. Finally, we observe that V b(x), b ∈ {∨,∧}, is
nondecreasing (resp. nonincreasing) on (r0,+∞) (resp. (−∞,−r0)). We conclude
that Wλ intersects with at most four translates of X in X∞. This proves the claim.
Using the claim and the definition of F( · , · ), we obtain

1≤ lim
λ→∞

F(λ, V∨)
F(λ, V∧)

= lim
λ→∞

µ∞({x ∈ X∞ : V∨(x)≤ λ})
µ∞({x ∈ X∞ : V∧(x)≤ λ})

= lim
λ→∞

µ∞({x ∈ X∞ : V∧(x)≤ λ})+µ∞(Wλ)

µ∞({x ∈ X∞ : V∧(x)≤ λ})

≤ lim
λ→∞

µ∞({x ∈ X∞ : V∧(x)≤ λ})+ 4µ(X)
µ∞({x ∈ X∞ : V∧(x)≤ λ})

= 1.

This completes the proof. �

5. Examples: self-similar measures on R with overlaps

In this section, we apply Theorem 1.4 to self-similar measures on R with over-
laps. We first prove a simple proposition, which leads to a sufficient condition for
Theorem 4.3.

Proposition 5.1. Let X := [0, a] and µ be a positive finite Borel measure with
supp(µ) ⊆ [0, a] and µ(0, a) > 0. Let X∞ :=

⋃
i∈I X i and µ∞ be defined as in

Section 1 with I = Z, τi (x) = x + bi , and bi = a + bi−1. Then X∞ = R, and
there exist positive constants C1,C2 such that C1r ≤ µ∞(B(x, r)) ≤ C2r for all
x ∈ R and r ≥ 2a, where B(x, r) := {x ∈ R : |x | < r}. Consequently, under the
assumptions of (W1) and (4-5), the conclusions of Theorem 4.3 hold.

Proof. By assumption, τi (0)= τi−1(a) and |X i | = |τi (X)| = a for all i ∈ Z. Thus
X∞ =R. Fix any x ∈R and r > 2a. Then there exist positive integers m0,m1 such
that m1−m0 ≥ 2 and

⋃m1
i=m0

X i ⊆ B(x, r)⊆
⋃m1+1

i=m0−1 X i . Thus

a(m1−m0)=

m1∑
i=m0

|X i | ≤ 2r ≤
m1+1∑

i=m0−1

|X i | = a(m1−m0+ 2)≤ 2a(m1−m0).

It follows that

µ(X)
a

r ≤ (m1−m0)µ(X)≤ µ∞(B(x, r))≤ 2(m1−m0)µ(X)≤
4µ(X)

a
r,

where the fact µ∞(X i )= µ(X) for all i ∈ I is used. Hence the assertion holds. �
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The spectral dimension of the examples in Sections 5A and 5B are computed in
[Ngai 2011]. We will compute the spectral dimension of the example in Section 5C
by using a similar method. The technique is to apply a vector-valued renewal
theorem [Lau et al. 1995, Theorem 4.2] by deriving a system of renewal equations
for the eigenvalue counting functions, and express them in vector form as

(5-1) f = f ∗Mα + z,

where α ≥ 0, and

(5-2)

f = f α(t) :=
[

f (α)1 (t), . . . , f (α)n (t)
]
, t ∈ R;

Mα :=
[
µ
(α)
`m

]
is an n× n matrix of Radon measures on R;

z := z(α)(t)=
[
z(α)1 (t), . . . , z(α)n (t)

]
is some error function.

Let

(5-3) Mα(∞) :=
[
µ
(α)
`m (R)

]n
`,m=1.

If the error functions decay exponentially to 0 as t→∞, then ds(−1µ) is given
by the unique α such that the spectral radius of Mα(∞) is equal to 1.

For the examples in this section, the functions G j in condition (W2) tend to either
a constant or a (nonconstant) periodic function as λ→∞. This dichotomy is deter-
mined by whether a set RM in [Lau et al. 1995] is arithmetic or nonarithmetic, where
M := Mα =

[
µ
(α)
`m

]n
`,m=1 is given as in (5-2). Precisely, RM is the closed subgroup

of (R,+) generated by G :=
⋃
{supp(µγ ) : γ is a simple cycle on {1, . . . , n}} (see

[Lau et al. 1995, Lemma 2.3]), where µγ = µ
(α)
i1i2
∗µ

(α)
i2i3
∗ · · · ∗µ

(α)
ik−1ik

for any path
γ = (i1, i2, . . . , ik).

5A. Infinite Bernoulli convolution associated with the golden ratio. In this sub-
section, we consider the infinite Bernoulli convolution associated with the golden
ratio:

(5-4) µ= 1
2µ ◦ S−1

1 +
1
2µ ◦ S−1

2 ,

where S1(x) = ρx , S2(x) = ρx + (1− ρ), and ρ = (
√

5− 1)/2. We note that
supp(µ)= [0, 1] =: X. Strichartz et al. [1995] showed that µ satisfies a family of
second-order identities with respect to the following auxiliary IFS:

(5-5) T0(x) := ρ2x, T1(x) := ρ3x + ρ2, T2(x) := ρ2x + ρ.

For any integer k ≥ 0 and any index j = ( j1, . . . , jk) ∈ {0, 2}k, define

c j :=
1

2 · 4k+1

[
1 1

]
P j

[
1
1

]
, P j :=Pj1 · · · Pjk , P0=

[
1 1
0 1

]
, and P2=

[
1 0
1 1

]
.
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The vector-valued renewal equation (5-1) reduces to the following scalar-valued
equation:

f (t)=
∞∑

k=0

∑
j∈{0,2}k

(ρ2k+3c j )
α f (t + ln(ρ2k+3c j ))+ zα(t),

where f (t)= e−αt N (et ,−1µ|T1(X)
) and zα(t)= o(e−σ t) as t→∞ for some σ > 0

(see [Ngai 2011, Section 5]). Moreover, M = [µ(α)] is a 1 × 1 matrix-valued
Radon measure, where µ(α) is a discrete measure with suppG := {− ln(ρ2k+3c j ) :

k ≥ 0, j ∈ {0, 2}k}. Thus RM is the closed subgroup of (R,+) generated by G.
[Ngai 2011, Theorem 1.2] shows that ds(−1µ)= ds , and (W1) holds, where ds

is the unique positive solution of

(5-6)
∞∑

k=0

∑
j∈{0,2}k

(ρ2k+3c j )
ds/2 = 1.

Proposition 5.2. Let µ be the self-similar measure defined as in (5-4), and −1µ
be the associated Dirichlet Laplacian with respect to µ. Then (1-11) holds with
J = {1} and Y1 := T1(X), where T1 is defined as in (5-5). Moreover, (W2) holds; in
particular, the nonarithmetic case holds: there exists a constant G1 > 0 such that

N
(
λ,−1µ|T1(X)

)
= λds/2(G1+ o(1)) as λ→∞,

where ds is defined as in (5-6).

Proof. From the paragraph following Proposition 3.2 in [Ngai 2011], we see that
there exists a constant ξ > 0 such that

(5-7) N
(
λ,−1µ|T1(X)

)
≤N (λ,−1µ|X )≤N

(
ξλ,−1µ|T1(X)

)
+1 for all λ>0,

and hence (1-11) holds with J = {1} and Y1 := T1(X). Condition (2) of (W2) holds
by using [Ngai 2011, Theorems 1.2 and 4.1]. We now use [Ngai 2011, Theorem 4.1]
again to show that the nonarithmetic case holds by verifying that RM =R. Suppose,
on the contrary, that RM 6= R. Letting k = 0 and 1, we obtain the elements
a := − ln(ρ3/4) and b := − ln(3ρ5/32) in G. Hence b/a = 1− ln(3ρ2/8)/a ∈Q

and thus there exist m, n ∈ Z such that − ln(3ρ2/8)/a = n/m. Consequently,
3m
= 23m−2nβ2m−3n, where β = 2/(

√
5− 1) = 1/ρ. Without loss of generality,

we assume that 2m− 3n > 0. Define h(x) := 23m−2nx2m−3n
− 3m. Then h(β)= 0.

Since β is an algebraic integer with x2
−x−1 being its minimal polynomial, x2

−x−1
divides h(x), a contradiction. Hence, RM = R, which implies the desired result. �

Define X∞ :=
⋃

i∈Z τi (X), where τi (x) = x + i for i ∈ Z. Thus X∞ = R, and
conditions (C1)–(C3) in Section 1 hold. For each i ∈ Z, let µi := µ ◦ τ

−1
i be

the induced positive finite Borel measure on X i := τi (X). Then we can define
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a glued measure µ∞ on X∞ as in (1-13). Define X∞,1 :=
⋃

i∈Z τi (T1(X)) and
µ∞,1 := µ∞|X∞,1 .

Corollary 5.3. Let X∞, µ∞, X∞,1 and µ∞,1 be defined as above. Assume the
same hypotheses on V as in Proposition 4.6. Let ds be defined as in (5-6). Then

(a) there exist positive constants C1,C2 such that, for all sufficiently large λ,

C1λ
ds/2 F(λ, V )≤ N (λ,−1µ∞ + V )≤ C2λ

ds/2 F(λ, V ),

where F( · , · ) is defined as in (1-14);

(b) as λ→∞,

(1+ o(1))g1(λ, V )≤ N (λ,−1µ∞ + V )≤ (1+ o(1))g1(ξλ, ξV ),

where ξ comes from (5-7), and g1( · , · ) is defined as in (1-16) with G1( · )

being a constant function in Proposition 5.2.

Proof. Part (a) follows from Proposition 5.1, the fact that (W1) holds, and the
assumptions on V. Part (b) follows by combining Theorems 1.4 and 4.3 with
Propositions 4.6, 5.1 and 5.2. �

5B. A class of convolutions of Cantor-type measures. The m-fold convolution
µm of the standard Cantor measure is the self-similar measure defined by the
following IFS with overlaps (see [Lau and Ngai 2000; Ngai 2011]):

Si (x)=
1
m

x +
m− 1

m
i, i = 0, 1, . . . ,m,

together with probability weights wi :=
(m

i

)
/2m, i = 0, 1, . . . ,m; that is,

(5-8) µm =

m∑
i=0

wi ·µm ◦ S−1
i .

We will assume that m is an odd integer and m≥3. Note that supp(µm)=[0,m]=: X.
It is shown in [Lau and Ngai 2000] that µm satisfies a family of second-order
identities with respect to the IFS

(5-9) T j (x)=
1
m

x + j, j = 0, 1, . . . ,m− 1.

The vector-valued renewal equation (5-1) is given in [Ngai 2011, Section 6]. In
particular, M := Mα =

[
µ
(α)
k`

]m−2
k,`=1 is an (m−2)×(m−2)matrix of Radon measures.

By the proof of [Ngai 2011, Proposition 6.2], we have

supp(µ(α)11 )=

{
ln(2m),− ln

(
m− 1
2m+1

)}
∪

{
− ln

(
c j

mk+2

)
: k ≥ 0, j ∈ {0,m− 1}k

}
,
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where for any integer k ≥ 0 and any index j = ( j1, . . . , jk) ∈ {0,m− 1}k,

(5-10)
P j := Pj1 · · · Pjk , c j :=

1
22m+mk

[(m
2

) (m
1

)]
P j

[
1
1

]
,

P0 :=

[
1 0
1 m

]
, Pm−1 :=

[
m 1
0 1

]
.

By the definition of G and [Lau et al. 1995, Lemma 2.3], we get G∗ := supp(µ(α)11 )⊆G.
In particular, the equation holds if m = 3.

If no confusion is possible, we denote µm simply by µ. An explicit formula for
the spectral dimension of −1µ is given in [Ngai 2011, Theorem 1.3], which also
shows that (W1) holds.

Proposition 5.4. Let µ := µm be defined as in (5-8), and −1µ be the associated
Dirichlet Laplacian. Then (1-11) holds with J = { j} and Y j := T j (X) for any
j = 1, . . . ,m − 2, where T j is defined as in (5-9). Moreover, (W2) holds. In
particular, the nonarithmetic case holds: for any j = 1, . . . ,m− 2, there exists a
constant G j > 0 such that

N (λ,−1µ|T j (X)
)= λds/2(G j + o(1)) as λ→∞,

where ds is the spectral dimension of −1µ.

Proof. As in the proof of Proposition 5.2, using the discussion in the paragraph
following Proposition 3.2 in [Ngai 2011], we see that there exist positive constants
(ξ j )

m−2
j=1 such that for each j = 1, . . . ,m− 2,

(5-11) N (λ,−1µ|T j (X)
)≤ N (λ,−1µ|X )≤ N (ξ jλ,−1µ|T j (X)

)+ 1.

Hence, (1-11) holds. Condition (2) of (W2) follows from [Ngai 2011, Section 6 and
Theorem 4.1]. As in Proposition 5.2, we show that RM = R. Letting k = 0, we get

a := − ln((m+ 1)/(2m))+ 2 ln(2m) ∈ G∗ ⊆ RM .

Suppose RM 6= R. Since ln(2m) ∈ G∗, we have −a/ ln(2m) + 2 = ln((m +
1)/(2m))/ ln(2m)= t/s for some s, t ∈Z. Thus (m+1)s/ms

=2mt+s, a contradiction,
and the assertion follows. �

Let Y j := T j (X) for j = 1, . . . ,m − 2. Let I := Z and define τi (x) = x +mi
for all i ∈ I. Define X∞ :=

⋃
i∈I τi (X) and let µ∞ be defined as in (1-13). Then

X∞ = R. Define X∞, j :=
⋃

i∈I τi (Y j ) and µ∞, j := µ∞|X∞, j for j = 1, . . . ,m−2.

Corollary 5.5. Let X∞, µ∞, (X∞, j )
m−1
j=1 and (µ∞, j )

m−1
j=1 be defined as above.

Assume the same hypotheses on V as in Proposition 4.6. Let ds be the spectral
dimension of −1µ. Then the following hold:
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(a) There exist positive constants C1,C2 such that, for all sufficiently large λ,

C1λ
ds/2 F(λ, V )≤ N (λ,−1µ∞ + V )≤ C2λ

ds/2 F(λ, V )

where F( · , · ) is defined as in (1-14).

(b) As λ→∞,

(1+ o(1))
m−2∑
j=1

g j (λ, V )≤ N (λ,−1µ∞ + V )≤ (1+ o(1))
m−2∑
j=1

g j (ξ jλ, ξ j V ),

where ξ j comes from (5-11), and g j ( · , · ) is defined as in (1-16) with G j ( · )

being the constant function in Proposition 5.4.

Proof. The proof is similar to that of Corollary 5.3 with Proposition 5.4 replacing
Proposition 5.2. �

5C. A class of graph-directed self-similar measures satisfying EFT. The pur-
pose of this subsection is to illustrate the arithmetic case by constructing a special
graph-directed self-similar measure.

A graph-directed iterated function system (GIFS) of contractive similitudes is an
ordered pair G = (V, E) described as follows (see [Mauldin and Williams 1988]).
V := {1, . . . , q} is the set of vertices and E is the set of directed edges with each
edge beginning and ending at a vertex. It is possible for an edge to begin and end
at the same vertex and we allow more than one edge between two vertices. Let
Ei j denote the set of all edges that begin at vertex i and end at vertex j. We call
e= e1 . . . ek a path with length k if the terminal vertex of each edge ei (1≤ i ≤ k−1)
equals the initial vertex of the edge ei+1.

Consider the GIFS G = (V, E) with V = {1, 2} and E = {ei : 1≤ i ≤ 5}, where
e1, e2 ∈ E11, e3 ∈ E12, e4 ∈ E21, e5 ∈ E22. The five similitudes associated with E
are defined by

Se1(x)=
1
4 x, Se2(x)=

1
4 x+ 3

4 , Se3(x)=
1
4 x− 5

16 , Se4(x)=
1
4 x+2, Se5(x)=

1
4 x+ 9

4 .

The GIFS G = (V, E) is used in [Das and Ngai 2004] as a basic example for the
graph finite type condition. It is known (see [Falconer 1997; Mauldin and Williams
1988]) that if for each edge e ∈ E there corresponds a transition probability pe,
then for each i ∈ V there exists a unique Borel probability measure µi such that

µi =

2∑
j=1

∑
e∈Ei j

pe ·µ j ◦ S−1
e .

We note that supp(µ1)= [0, 1] and supp(µ2)= [2, 3].
Define µ(E) := µ1(E ∩ [0, 1]) + µ2(E ∩ [2, 3]) for all measurable subsets

E ⊆ R. We call µ the graph-directed self-similar measure defined by G = (V, E)



FRACTAL SCHRÖDINGER OPERATORS 115

and probability matrix (pe)e∈E . Since µ satisfies EFT (see [Ngai et al. 2018,
Example 3.6]), we can derive a vector-valued renewal equation by the method in
[Ngai et al. 2018, Section 4] as follows. Let Y1 := Se1([0, 1])∪Se3([2, 3]) and Y2 :=

Se2([0, 1]). For α ≥ 0 and j = 1, 2, define f j (t)= f (α)j (t) := e−αt N (et ,−1µ|Y j
).

Thus, combining the proof of [Ngai et al. 2018, Example 3.6] and the process of
deriving the vector-valued renewal equation in [Ngai et al. 2018, Section 4], we see
that (5-1) can be written as

(5-12)

f1(t)=
(

pe1

4

)α
f1

(
t + ln

(
pe1

4

))

+

(
pe1

4
+

pe3 pe4

4pe2

)α
f2

(
t + ln

(
pe1

4
+

pe3 pe4

4pe2

))

+

∞∑
k=1

(
pe3 pe4 pk

e5

4k+1 pe2

)α
f2

(
t + ln

(
pe3 pe4 pk

e5

4k+1 pe2

))
+ z(α)1 (t),

f2(t)=
(

pe2

4

)α
f1

(
t + ln

(
pe2

4

))
+

(
pe2

4

)α
f2

(
t + ln

(
pe2

4

))
+ z(α)2 (t),

where z(α)1 (t) := e−αt(N (et ,−1µ|Bnt
)+ ε(nt , 1)), Bnt := Se3ent−1

5
(Se5[2, 3]), and

z(α)2 (t) := e−αtε(2, 2).
For j, k ∈ {1, 2}, let µ(α)`m be the discrete measure such that

(5-13)

µ
(α)
11

(
− ln

(
pe1

4

))
:=

(
pe1

4

)α
,

µ
(α)
21

(
− ln

(
pe2

4

))
:=

(
pe2

4

)α
,

µ
(α)
12

(
− ln

(
pe1

4
+

pe3 pe4

4pe2

))
:=

(
pe1

4
+

pe3 pe4

4pe2

)α
,

µ
(α)
12

(
− ln

(
pe3 pe4 pk

e5

4k+1 pe2

))
:=

(
pe3 pe4 pk

e5

4k+1 pe2

)α
for k ≥ 1,

µ
(α)
22

(
− ln

(
pe2

4

))
:=

(
pe2

4

)α
.

Let Mα(∞) be defined as in (5-3). Since µ(α)`m (R) > 0 for all `,m ∈ {1, 2},
Mα(∞) is irreducible. The remaining conditions of [Ngai et al. 2018, Theo-
rem 1.1(b)] can be easily checked by using the same method as in [Ngai et al. 2018,
Propositions 5.2 and 5.4]. Finally, It follows from [Ngai et al. 2018, Theorem 1.1(b)]
that the spectral dimension of −1µ exists, and (W1) holds.
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Proposition 5.6. Let µ be the graph-directed self-similar measure defined by the
above GIFS with probability vector (pe)e∈E , and −1µ be the associated Dirichlet
Laplacian. Also, let Y1 and Y2 be defined as above. Then (1-11) holds with
J = { j} and Y j := T j (X) for any j = 1, 2. Moreover, (W2) holds. In particular, if
pe2 = pe3 = 1/4 and pe1 = pe4 = pe5 = 1/2, then the arithmetic case holds: there
exist nonconstant period functions G1( · ) and G2( · ) such that for j = 1, 2,

(5-14) N (λ,−1µ|Y j
)= λds/2(G j (ln λ)+ o(1)) as λ→∞,

where ds is the spectral dimension of −1µ.

Proof. Combining [Ngai et al. 2018, Example 3.6] and [Ngai et al. 2018, Proposi-
tion 4.5], we see that for each j = 1, 2, there exists some constant ξ j > 0 such that

(5-15) N (λ,−1µ|Y j
)≤ N (λ,−1µ)≤ N

(
ξ jλ,−1µ|Y j

)
.

Hence, (1-11) holds with J = { j} and Y j := T j (X) for any j = 1, 2. Since all
conditions of [Ngai et al. 2018, Theorem 1.1(b)] hold, condition (2) of (W2) follows
from [Ngai 2011, Theorem 4.1]. Hence, (W2) holds. Assume that pe2 = pe3 = 1/4
and pe1 = pe4 = pe5 = 1/2. Using [Ngai 2011, Theorem 4.1] again, we show
that the arithmetic case holds by verifying that RM can be generated by a real
number a ∈ R. By (5-12), M := Mα =

[
µ
(α)
i j

]
is a 2 × 2 matrix-valued Radon

measure, where µ(α)i j is defined as in (5-13). It follows from [Lau et al. 1995,
Lemma 2.3] that RM is the closed subgroup generated by supp(µ(α)11 ), supp(µ(α)22 ),
and the closure of supp(µ(α)12 )+ supp(µ(α)21 ). Combining (5-13) and the assumptions
on (pe)e∈E shows that supp(µ(α)11 )= {ln(8)}, supp(µ(α)21 )= supp(µ(α)22 )= {ln(16)},
and supp(µ(α)12 )= {ln(4)}∪{ln(2

3k+3) : k ≥ 1}. Consequently, RM can be generated
by ln(2), which completes the proof. �

Let X = [0, 3] and I := Z. Define τi (x) = x + 3i for all i ∈ I. Define X∞ :=⋃
i∈I τi (X) and let µ∞ be defined as in (1-13). Then X∞ = R. Define

X∞, j :=
⋃
i∈I

τi (Y j ) and µ∞, j := µ∞|X∞, j

for j = 1, 2.

Corollary 5.7. Let X∞, µ∞, (X∞, j )
2
j=1 and (µ∞, j )

2
j=1 be defined as above. As-

sume the same hypotheses on V as in Proposition 4.6. Let ds be the spectral
dimension of −1µ. Then the following hold.

(a) There exist positive constants C1,C2 such that, for all sufficiently large λ,

C1λ
ds/2 F(λ, V )≤ N (λ,−1µ∞ + V )

≤ C2λ
ds/2 F(λ, V ),

where F( · , · ) is defined as in (1-14).
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(b) As λ→∞,

(1+ o(1))
2∑

j=1

g j (λ, V )≤ N (λ,−1µ∞ + V )≤ (1+ o(1))
2∑

j=1

g j (ξ jλ, ξ j V ),

where ξ j comes from (5-15), and g j ( · , · ) is defined as in (1-16) with the
nonconstant period function G j ( · ) in (5-14).

Proof. The proof is similar to that of Corollary 5.3 with Proposition 5.6 replacing
Proposition 5.2. �
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ADIABATIC LIMIT AND
THE FRÖLICHER SPECTRAL SEQUENCE

DAN POPOVICI

Motivated by our conjecture of an earlier work predicting the degeneration
at the second page of the Frölicher spectral sequence of any compact com-
plex manifold supporting an SKT metric ω (i.e., such that ∂∂̄ω = 0), we
prove degeneration at E2 whenever the manifold admits a Hermitian met-
ric whose torsion operator τ and its adjoint vanish on 1′′-harmonic forms
of positive degrees up to dimC X . Besides the pseudodifferential Laplacian
inducing a Hodge theory for E2 that we constructed in earlier work and
Demailly’s Bochner–Kodaira–Nakano formula for Hermitian metrics, a key
ingredient is a general formula for the dimensions of the vector spaces fea-
turing in the Frölicher spectral sequence in terms of the asymptotics, as a
positive constant h decreases to zero, of the small eigenvalues of a rescaled
Laplacian 1h, introduced here in the present form, that we adapt to the
context of a complex structure from the well-known construction of the
adiabatic limit and from the analogous result for Riemannian foliations of
Álvarez López and Kordyukov.

1. Introduction

Let X be a compact complex manifold of dimension n. It is well known that
the existence of a Kähler metric ω on X implies the degeneration at E1 of the
Frölicher spectral sequence that relates the complex structure of X (encapsulated in
the Dolbeault, i.e., the ∂̄-, cohomology H p,q(X,C), the start page of this spectral
sequence) to the differential structure of X (encapsulated in the de Rham, i.e., the
d-, cohomology H k(X,C), the limiting page of this spectral sequence). However,
since Kähler metrics exist only rarely when n ≥ 3, it is natural to search for weaker
metric conditions on X that ensure a (possibly weaker) degeneration property of
the algebrogeometric object that is the Frölicher spectral sequence of X . The best
we can hope for in the non-Kähler context is the degeneration at the second page.
To this end, we proposed the following conjecture in [Popovici 2016]:
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Conjecture 1.1. If a compact complex manifold X admits an SKT metric ω (i.e.,
a Hermitian metric ω such that ∂∂̄ω = 0), the Frölicher spectral sequence of X
degenerates at E2.

There is evidence that this ought to be true. The statement holds true on all
the examples of compact complex manifolds that we are aware of, namely all the
3-dimensional nilmanifolds, the 3-dimensional solvmanifolds that are currently
classified, the Calabi–Eckmann manifold S3

× S3, etc. We proved this statement
under the extra assumption that the SKT metric ω which is supposed to exist has a
small torsion in the sense that the upper bound of its torsion operator of type (0, 0)
(defined in a precise way) does not exceed a third of the spectral gap of the elliptic,
self-adjoint and nonnegative, differential operator 1′+1′′ in every bidegree (p, q)
[Popovici 2016]. As usual, 1′ =1′ω = ∂∂

?
ω+ ∂

?
ω∂ and 1′′ =1′′ω = ∂̄ ∂̄

?
ω+ ∂̄

?
ω∂̄ are

the ∂-, resp. ∂̄-Laplacians on smooth differential forms on X .
While Conjecture 1.1 remains elusive at the moment, we give in this paper a

different sufficient metric condition for degeneration at E2 that does not assume
the fixed Hermitian metric ω to be SKT. As usual (see, e.g., [Demailly 1986;
Demailly 2012, VII, §.1]), we consider the torsion operator τ = τω := [3ω, ∂ω∧· ]
of type (1, 0) defined on smooth differential forms on X , where 3ω is the adjoint
of the multiplication by ω w.r.t. the inner product defined by ω, while [A, B] =
AB − (−1)ab B A is the graded commutator of any two endomorphisms A, B of
respective degrees a, b of the bigraded algebra C∞

•,• of smooth differential forms on
X . Specifically, we prove:

Theorem 1.2. Let (X, ω) be a compact Hermitian manifold with dimC X = n such
that the inclusion of kernels

(1) ker1′′ ⊂ ker[τ, τ ?]

holds for the operators 1′′, [τ, τ ?] : C∞k (X,C) → C∞k (X,C) in every degree
k ∈ {1, . . . , n}.

Then, the Frölicher spectral sequence of X degenerates at the second page E2.

Hypothesis (1) is of a qualitative nature and it is comparatively easy to check on
concrete examples of compact Hermitian manifolds (X, ω) whether it holds or not.
For example, S3

× S3 equipped with the Calabi–Eckmann complex structure and
the Iwasawa manifold do not satisfy it when they are given the natural non-Kähler
metrics (easy verifications that are left to the reader). Intuitively, (1) requires the
torsion of ω to be “small” since, for nonnegative operators, the smaller one has a
larger kernel. (We will use throughout the paper the usual order relation for linear
operators A, B: A ≥ B will mean that 〈〈Au, u〉〉 ≥ 〈〈Bu, u〉〉 for all forms u, where
〈〈, 〉〉 stands for the L2 inner product induced by the fixed Hermitian metric ω on X .)
Hypothesis (1) is obviously satisfied if ω is Kähler since τ = 0 in that case. We do
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not know whether there exist compact complex non-Kähler manifolds that satisfy
hypothesis (1).

Inspired by the extensive literature on the adiabatic limit associated with a
Riemannian foliation (see, e.g., [Witten 1985; Mazzeo and Melrose 1990; Forman
1995; Álvarez López and Kordyukov 2000]), we adapt that construction to the case
of the splitting d = ∂ + ∂̄ defining the complex structure of X . Thus, for every
constant h > 0 that is eventually let to converge to 0, we define in Section 2 two
rescalings of the usual d-Laplacian1= dd?+d?d acting on the smooth differential
forms on an arbitrary compact Hermitian manifold (X, ω):

1h := dhd?h + d?h dh,

where dh := h∂ + ∂̄ modifies d by rescaling ∂ while keeping ∂̄ fixed, but its formal
adjoint d?h is computed w.r.t. the given Hermitian metric ω, and

1ωh := dd?ωh
+ d?ωh

d,

where d = ∂ + ∂̄ is kept unchanged, but its formal adjoint d?ωh
is computed w.r.t. a

rescaled metric ωh that modifies the original ω by multiplying the pointwise inner
product of (p, q)-forms by h2p. So, the antiholomorphic degree q of (p, q)-forms
does not contribute to the definition of ωh . Although strongly inspired by the
adiabatic limit construction in the presence of a Riemannian foliation, this partial
rescaling of a Hermitian metric seems to be new and to hold further promise for
the future.

In Section 2, we study these two rescaled Laplacians and the relationships
between them. As in the foliated case of [Álvarez López and Kordyukov 2000],
1h and 1ωh are seen to have the same spectrum and to have eigenspaces that are
obtained from each other via a rescaling isometry.

A key ingredient in the proof of Theorem 1.2 is the following formula for the
dimensions of the vector spaces featuring on each page of the Frölicher spectral
sequence of X in terms of the number of small eigenvalues of the rescaled Laplacian
1h (or, equivalently, 1ωh ). “Small” refers to the eigenvalues’ decay rate to zero
as h ↓ 0. This result and its proof are strongly inspired by the analogous result
for foliations proved by Álvarez López and Kordyukov [2000]. However, to our
knowledge, this particular form of the result in the context of the Frölicher spectral
sequence seems new and is of independent interest.

Theorem 1.3. Let (X, ω) be a compact Hermitian manifold with dimC X = n. For
every r ∈ N? and every k = 0, . . . , 2n, the following identity holds:

(2) dimC Ek
r = ]{i | λ

k
i (h) ∈ O(h2r ) as h ↓ 0},
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where Ek
r :=

⊕
p+q=k E p,q

r is the direct sum of the spaces of total degree k on
the r-th page of the Frölicher spectral sequence of X , while 0≤ λk

1(h)≤ λ
k
2(h)≤

· · · ≤ λk
i (h)≤ · · · are the eigenvalues, counted with multiplicities, of the rescaled

Laplacian 1h : C∞k (X,C)→ C∞k (X,C) (equal to those of 1ωh : C
∞

k (X,C)→

C∞k (X,C)) acting on k-forms. As usual, ] stands for the cardinal of a set.

The proof of this statement proceeds along the lines of the one given in [Ál-
varez López and Kordyukov 2000] for the analogous statement in the foliated case
with some simplifications, adjustments and inevitable differences in detail. We spell
it out in Section 4. In the proof of Theorem 1.3, we also use our pseudodifferential
Laplacian 1̃= ∂p′′∂?+ ∂? p′′∂ +1′′ : C∞p,q(X,C)→ C∞p,q(X,C) (where p′′ is the
orthogonal projection onto ker1′′) constructed in every bidegree (p, q) in [Popovici
2016] and shown there to induce a Hodge isomorphism between its kernel and the
space E p,q

2 of bidegree (p, q) featuring on the second page of the Frölicher spectral
sequence.

Along with Theorem 1.3 and the pseudodifferential Laplacian 1̃, the third main
ingredient in the proof of Theorem 1.2 is the following formula of the Bochner–
Kodaira–Nakano type for Hermitian (not necessarily Kähler) metrics ω established
by Demailly [1986] (see also [Demailly 2012, VII, §1]), originating in [Griffiths
1969] and also much related to [Ohsawa 1982, Chapter 1, §1]:

(3) 1′′ =1′τ +
[
3,
[
3, 1

2 i∂∂̄ω
]]
− [∂ω∧ · , (∂ω∧ · )?],

where [ ·, · ] is the usual graded commutator (see, e.g., Notation 1.4 below),3=3ω
is the adjoint of the multiplication operator ω ∧ · , τ = τω := [3, ∂ω ∧ · ] is the
torsion operator of ω and 1′τ := [∂ + τ, (∂ + τ)

?
]. This formula enables us to

compare various Laplacians and finish the proof of Theorem 1.2 in Section 6.
This paper owes much to the ideas and techniques in our main source of in-

spiration [Álvarez López and Kordyukov 2000] and to the treatment given to the
Leray spectral sequence in [Mazzeo and Melrose 1990; Forman 1995], although
the setting and the objectives are different.

In the Appendix, we give an estimate of the discrepancy between the Laplacians
1′ and 1′′ under the SKT assumption on the metric ω (see Lemma A.1). This is of
independent interest and leads to the lower bound −Ch2 for the operator 1h−h21

for all 0< h< 1 when ω is SKT, where C ≥ 0 is a constant independent of h that can
be chosen to be any upper bound of the nonnegative bounded torsion operator [τ̄ , τ̄ ?]
(see Lemma 6.2). In view of Theorem 1.3 and some minor extra arguments, if the
lower bound −Ch2 could be improved to 0, Conjecture 1.1 would be solved, but at
the moment we are unfortunately short of arguments to perform this improvement.

Notation 1.4. For a given Hermitian metric ω on a given compact complex mani-
fold X , 〈〈 , 〉〉=〈〈 , 〉〉ω will stand for the L2 inner product defined by ω on the spaces
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C∞p,q(X,C) (resp. C∞k (X,C)) of smooth differential (p, q)-forms (resp. k-forms)
on X , while ‖ ‖ = ‖ ‖ω will denote the corresponding L2-norm. For self-adjoint
linear operators A, B on the bigraded algebra

⊕
p,q C∞p,q(X,C), by A≥ B we shall

mean (as is the standard convention) that 〈〈Au, u〉〉 ≥ 〈〈Bu, u〉〉 for every form u
lying in the space on which A and B are defined. We shall also use the usual bracket
[A, B] := AB− (−1)ab B A for graded linear operators A, B of respective degrees
a, b on the algebra

⊕
k 3

k T ?X of differential forms on X .

2. Rescaled Laplacians

Let X be a compact complex manifold with dimC X = n. We fix a Hermitian
metric ω on X .

2.1. Rescaling the metric. The first operation we will consider is a partial rescal-
ing of ω in a way that depends solely on the holomorphic degree of forms.

Definition 2.1. For all p, q ∈ {0, . . . , n}, all (p, q)-forms u, v and every constant
h > 0, we define the pointwise inner product

〈u, v〉ωh := h2p
〈u, v〉ω

where 〈 , 〉ω stands for the pointwise inner product defined by the original Hermitian
metric ω.

Note that, for every h > 0, we obtain in this way a Hermitian metric ωh on every
vector bundle 3p,q T ?X of (p, q)-forms on X . The maps

θh :3
p,q T ?X→3p,q T ?X, u 7→ θhu := h pu,

induce an isometry of Hermitian vector bundles θh : (3T ?X, ωh)→ (3T ?X, ω)
since

〈u, v〉ωh = 〈h
pu, h pv〉ω = 〈θhu, θhv〉ω for all u, v ∈3p,q T ?X.

In particular, we have defined a Hermitian metric

ωh =
1
h2ω, h > 0,

on the holomorphic tangent bundle T 1,0 X of vector fields of type (1, 0), or equiva-
lently, a rescaled C∞ positive-definite (1, 1)-form ωh = h−2ω on X . This induces
a C∞ positive volume form

dVωh :=
ωn

h

n!
=

1
h2n

ωn

n!
=

1
h2n dVω
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on X , which in turn gives rise, in conjunction with the above pointwise inner product
〈 , 〉ωh , to the following L2 inner product:

〈〈u, v〉〉ωh :=

∫
X
〈u, v〉ωh dVωh =

1
h2n

∫
X
〈θhu, θhv〉ωdVω =

1
h2n 〈〈θhu, θhv〉〉ω

for all forms u, v ∈ C∞p,q(X,C) and all bidegrees (p, q).

Formula 2.2. For all (p, q)-forms u, v, we have

〈〈u, v〉〉ωh =
1

h2(n−p) 〈〈u, v〉〉ω, hence ‖u‖ωh = h−(n−p)
‖u‖ω.

Proof. The formula follows at once from the last identity and from the fact that
θhu = h pu for all (p, q)-forms u. �

Definition 2.3. Let (X, ω) be a compact Hermitian manifold with dimC X = n. For
every k = 0, . . . , 2n and every constant h > 0, we consider the d-Laplacian w.r.t.
the rescaled metric ωh acting on C∞ k-forms on X :

1ωh : C
∞

k (X,C)→ C∞k (X,C), 1ωh := dd?ωh
+ d?ωh

d,

where d?ωh
is the formal adjoint of d w.r.t. 〈〈 , 〉〉ωh and 〈〈 , 〉〉ωh has been extended

from the spaces C∞p,q(X,C) to C∞k (X,C)=
⊕

p+q=k C∞p,q(X,C) by sesquilinearity
and by imposing that 〈〈u, v〉〉ωh = 0 whenever u ∈ C∞p,q(X,C) and v ∈ C∞r,s(X,C)

with (p, q) 6= (r, s).

2.2. Rescaling the differential. The second operation we will consider is a partial
rescaling of d = ∂ + ∂̄ that applies solely to its component of type (1, 0).

Definition 2.4. Let X be a compact complex manifold, dimC X = n. For every
constant h > 0, let

dh := h∂ + ∂̄ : C∞k (X,C)→ C∞k+1(X,C), k ∈ {0, . . . , 2n}.

Some basic properties of the rescaled differential dh are summed up in the
following:

Lemma 2.5. (i) The operators d and dh are related by the identity

dh = θhdθ−1
h .

(ii) d2
h = 0 and the d- and dh-cohomologies are related by the isomorphism

H k
d (X,C)

'
→ H k

dh
(X,C), {u}d 7→ {θhu}dh ;

here H k
d (X,C)=H k

DR(X,C) stands for the usual de Rham cohomology groups,
and H k

dh
(X,C) for the dh-cohomology groups

ker(dh : C∞k (X,C)→ C∞k+1(X,C))/ Im(dh : C∞k−1(X,C)→ C∞k (X,C)).
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Proof. (i) If u is a (p, q)-form, we have

(θhdθ−1
h )(u)= θhd(h−pu)

= h−pθh(∂u)+ h−pθh(∂̄u)

= h−ph p+1∂u+ h−ph p∂̄u

= h∂u+ ∂̄u = dhu.

Thus, dh = θhdθ−1
h on pure-type forms, so this identity extends to arbitrary forms

by linearity.

(ii) On the one hand, d2
h = θhd2θ−1

h = 0; on the other hand, dh(θhu) = θhdu, so
we have the equivalence: θhu ∈ ker(dh)⇐⇒ u ∈ ker d; θhu = dhv if and only if
u = d(θ−1

h v), so we have the equivalence: θhu ∈ Im(dh)⇐⇒ u ∈ Im d. These
equivalences show that the linear map H k

d (X,C) 3 {u}d 7→ {θhu}dh ∈ H k
dh
(X,C) is

well defined and bijective. �

In particular, the spectral sequences induced by the pairs of differentials (∂, ∂̄)
and (h∂, ∂̄) are isomorphic, so degenerate at the same page. The first of them is
the Frölicher spectral sequence of X .

Definition 2.6. Let (X, ω) be a compact Hermitian manifold with dimC X = n. For
every constant h>0 and every degree k ∈{0, . . . , 2n}, we consider the dh-Laplacian
w.r.t. the given metric ω acting on C∞ k-forms on X :

1h : C∞k (X,C)→ C∞k (X,C), 1h := dhd?h + d?h dh,

where d?h is the formal adjoint of dh w.r.t. the L2 inner product induced by ω.

2.3. Comparison of the two rescaled Laplacians. We now bring together the
above two operations by comparing the corresponding Laplace-type operators.
Note that 1ωh was defined by the rescaled differential dh and the original metric ω,
while 1h was induced by the rescaled metric ωh and the original differential d .

Lemma 2.7. (i) If θ?h and d?h stand for the formal adjoints of θh , resp. dh , w.r.t. the
pointwise, resp. L2, inner product induced by ω, we have

θ?h = θh and d?h = θ
−1
h d?θh .

(ii) The adjoints ∂?ωh
, ∂̄?ωh

of ∂ , ∂̄ w.r.t. to the metric ωh , as well as the adjoints
∂?ω = ∂

? and ∂̄?ω = ∂̄
? of ∂ , ∂̄ w.r.t. to the metric ω, are related by the formulae

∂?ωh
= h2∂? and ∂̄?ωh

= ∂̄?.
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Consequently, we get

1ωh = h21′+1′′+ [∂, ∂̄?] + h2
[∂̄, ∂?]

= h21′+1′′− [∂, τ̄ ?] − h2
[τ̄ , ∂?] = h21′+1′′− [τ, ∂̄?] − h2

[∂̄, τ ?],

and

1h = h21′+1′′+ h[∂, ∂̄?] + h[∂̄, ∂?]

= h21′+1′′− h[∂, τ̄ ?] − h[τ̄ , ∂?] = h21′+1′′− h[τ, ∂̄?] − h[∂̄, τ ?],

where the adjoints ∂?, ∂̄?, τ ?, τ̄ ? and the Laplacians 1′,1′′ are computed w.r.t. the
metric ω, while

τ = τω := [3ω, ∂ω∧ · ] : C∞p,q(X,C)→ C∞p+1,q(X,C)

is the torsion operator (of type (1, 0) and order zero, acting on smooth forms of
any bidegree (p, q), where 3ω is the adjoint of the multiplication operator ω∧ · )
associated with the metric ω as defined in [Demailly 1986] (see also [Demailly
2012, VII, §1]).

In particular, the second-order Laplacians 1ωh and 1h are elliptic since the
second-order Laplacians1′ and1′′ are and the deviation terms−[∂, τ̄ ?]−h2

[τ̄ , ∂?]

and −h[∂, τ̄ ?] − h[τ̄ , ∂?] are only of order 1.
Note that 〈〈[∂, ∂̄?]u, u〉〉 = 〈〈[∂̄, ∂?]u, u〉〉 = 0 whenever the form u is of pure type

and whatever metric is used to define 〈〈 , 〉〉 (because pure-type forms of different
bidegrees are orthogonal w.r.t. any metric), so

(4) 〈〈1ωh u, u〉〉 = 〈〈1hu, u〉〉 = h2
〈〈1′u, u〉〉+ 〈〈1′′u, u〉〉

for every pure-type form u.
(This fails, in general, if u is not of pure type, unless the metric ω is Kähler.)

(iii) The rescaled Laplacians 1ωh and 1h are related by the formula

(5) 1h = θh1ωhθ
−1
h .

Proof. (i) For any k-forms u =
∑

p+q=k u p,q and v =
∑

p+q=k v
p,q , we have

〈θhu, v〉ω =
∑

p+q=k

〈h pu p,q , v p,q
〉ω =

∑
p+q=k

〈u p,q , h pv p,q
〉ω = 〈u, θhv〉ω,

so θ?h = θh . The second identity in (i) follows by taking conjugates in dh = θhdθ−1
h .
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(ii) For any forms α ∈ C∞p−1,q(X,C) and β ∈ C∞p,q(X,C), we have

〈〈α, ∂?ωβ〉〉ω = 〈〈∂α, β〉〉ω =

∫
X
〈∂α, β〉ω dVω

=

∫
X

1
h2p 〈∂α, β〉ωh h2n dVωh = h2(n−p)

〈〈∂α, β〉〉ωh

= h2(n−p)
〈〈α, ∂?ωh

β〉〉ωh = h2(n−p)
∫

X
h2(p−1)

〈α, ∂?ωh
β〉ω

1
h2n dVω

=
1
h2 〈〈α, ∂

?
ωh
β〉〉ω.

We get ∂?ω = h−2∂?ωh
, which is the first identity under (ii).

The identity ∂̄?ωh
= ∂̄?ω is proved in the same way by using the fact that ∂̄ acts

only on the antiholomorphic degree of forms which is unaffected by the change of
metric from ω to ωh .

Using these formulae, we get

1ωh = [∂ + ∂̄, ∂
?
ωh
+ ∂̄?ωh

] = [∂, h2∂?] + [∂̄, ∂̄?] + [∂, ∂̄?] + [∂̄, h2∂?]

= h21′+1′′+ [∂, ∂̄?] + h2
[∂̄, ∂?]

and

1h = [h∂ + ∂̄, h∂?+ ∂̄?] = h2
[∂, ∂?] + [∂̄, ∂̄?] + h[∂, ∂̄?] + h[∂̄, ∂?]

= h21′+1′′+ h[∂, ∂̄?] + h[∂̄, ∂?].

On the other hand, we know from [Demailly 1986] (or [Demailly 2012, VII, §1])
that

[∂, ∂̄?] = −[∂, τ̄ ?] = −[τ, ∂̄?]

and, by conjugation, we get

[∂̄, ∂?] = −[∂̄, τ ?] = −[τ̄ , ∂?].

So, the terms measuring the deviations of 1ωh and 1h from h21′+1′′ are of order
1 and we get the alternative formulae for 1ωh and 1h spelt out in the statement.

(iii) For any smooth (p, q)-form α, we have

(θh1ωhθ
−1
h )α =

1
h p θh1ωhα =

1
h p θh(h21′α)+

1
h p θh(1

′′α)

+
1

h p θh([∂, ∂̄
?
]α)+

1
h p θh(h2

[∂̄, ∂?]α)

=
h2h p

h p 1′α+
h p

h p1
′′α+

h p+1

h p [∂, ∂̄
?
]α+

h2h p−1

h p [∂̄, ∂?]α
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= h21′α+1′′α+ h[∂, ∂̄?]α+ h[∂̄, ∂?]α =1hα.

Thus, θh1ωhθ
−1
h = 1h on pure-type forms and this identity extends to arbitrary

forms by linearity. �

Corollary 2.8. Let (X, ω) be a compact Hermitian manifold with dimC X = n. For
every constant h > 0 and every degree k ∈ {0, . . . , 2n}, the spectra of the rescaled
Laplacians 1h,1ωh : C

∞

k (X,C)→ C∞k (X,C) coincide, i.e.,

(6) Spec(1h)= Spec(1ωh ),

and their respective eigenspaces are obtained from each other via the rescaling
isometry θh :

(7) θh(E1ωh
(λ))= E1h (λ) for every λ ∈ Spec(1h)= Spec(1ωh ),

where E1ωh
(λ), resp. E1h (λ), stands for the eigenspace corresponding to the

eigenvalue λ of the operator 1ωh , resp. 1h .
Thus, 1h and 1ωh have the same eigenvalues with the same multiplicities.

Proof. Let λ∈ Spec(1ωh ) and let α ∈ E1ωh
(λ)⊂C∞k (X,C). So 1ωhα= λα, hence

1h(θhα)= (θh1ωhθ
−1
h )(θhα)= θh(λα)= λ(θhα).

Thus, λ ∈ Spec(1h) and θhα ∈ E1h (λ). These implications also hold in reverse
order, so we get the equivalences

λ ∈ Spec(1h)⇐⇒ λ ∈ Spec(1ωh ) and α ∈ E1ωh
(λ)⇐⇒ θhα ∈ E1h (λ).

These equivalences amount to (6) and (7). �

Another consequence of the above discussion is a Hodge theory for the dh-
cohomology and the resulting equidimensionality of the kernels of 1 and 1h in
every degree.

Corollary 2.9. Let (X, ω) be a compact Hermitian manifold with dimC X = n.
For every constant h > 0 and every degree k ∈ {0, . . . , 2n}, the operator dh :

C∞k (X,C)→ C∞k (X,C) induces the following L2
ω-orthogonal direct-sum decom-

position:
C∞k (X,C)=Hk

1h
(X,C)⊕ Im dh ⊕ Im d?h,

where Hk
1h
(X,C) is the kernel of 1h : C∞k (X,C) → C∞k (X,C) and ker dh =

Hk
1h
(X,C) ⊕ Im dh . The vector space Hk

1h
(X,C) is finite-dimensional, while

Im dh and Im d?h are closed subspaces of C∞k (X,C).
This, in turn, induces the Hodge isomorphism

Hk
1h
(X,C)' H k

dh
(X,C), α 7→ {α}dh .
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Since H k
d (X,C) and H k

dh
(X,C) are isomorphic (via θh , see Lemma 2.5) and

Hk
1(X,C)' H k

d (X,C) (by standard Hodge theory), we infer that Hk
1(X,C) and

Hk
1h
(X,C) are isomorphic (although the isomorphism need not be defined by θh).

In particular,

dimHk
1h
(X,C)= dimHk

1(X,C) for all h > 0.

Proof. Since X is compact and 1h is elliptic and self-adjoint, a standard conse-
quence of Gårding’s inequality (see, e.g., [Demailly 2012, VI]) yields the two-space
orthogonal decomposition C∞k (X,C)=Hk

1h
(X,C)⊕ Im1h , while this, together

with the integrability property d2
h = 0, further induces the orthogonal splitting

Im1h = Im dh ⊕ Im d?h . The same consequence of Gårding’s inequality ensures
that ker1h is finite-dimensional and that the images in C∞k (X,C) of dh and d?h are
closed. �

3. The differentials in the Frölicher spectral sequence

We begin by recalling the well-known construction of the Frölicher spectral sequence
in order to fix the notation and to point out the key features for us.

Let X be a compact complex manifold with dimC X = n. Recall that the zeroth
page E0 of the Frölicher spectral sequence of X consists of the spaces E p,q

0 :=

C∞p,q(X,C) of smooth pure-type forms on X and of the type-(0, 1) differentials
d0 := ∂̄ forming the Dolbeault complex

· · ·
d0
−→ E p,q−1

0
d0
−→ E p,q

0
d0
−→ E p,q+1

0
d0
−→ · · ·

Thus, in every bidegree (p, q), the inclusions Im d p,q−1
0 ⊂ ker d p,q

0 ⊂ E p,q
0 induce

(infinitely many, noncanonical) isomorphisms

(8) C∞p,q(X,C)' Im d p,q−1
0 ⊕ E p,q

1 ⊕ (E
p,q
0 / ker d p,q

0 ),

where d0 = d p,q
0 : E p,q

0 → E p,q+1
0 is the differential d0 acting in bidegree (p, q)

and the E p,q
1 := ker d p,q

0 / Im d p,q−1
0 = H p,q

∂̄
(X,C) are the Dolbeault cohomology

groups of X .
The first page E1 of the Frölicher spectral sequence consists of the spaces E p,q

1
(i.e., the cohomology of the zeroth page) and of the type-(1, 0) differentials d1:

· · ·
d1
−→ E p−1,q

1
d1
−→ E p,q

1
d1
−→ E p+1,q

1
d1
−→ · · ·

induced in cohomology by ∂ (i.e., d1([α]∂̄) :=[∂α]∂̄ ). Thus, in every bidegree (p, q),
the inclusions Im d p−1,q

1 ⊂ ker d p,q
1 ⊂ E p,q

1 induce (infinitely many, noncanonical)
isomorphisms

(9) E p,q
1 ' Im d p−1,q

1 ⊕ E p,q
2 ⊕ (E

p,q
1 / ker d p,q

1 ),
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where d p,q
1 is d1 acting in bidegree (p, q), while the spaces

E p,q
2 := ker d p,q

1 / Im d p−1,q
1

form the cohomology of the page E1.
The remaining pages are constructed inductively: the differentials dr = d p,q

r :

E p,q
r → E p+r,q−r+1

r are of type (r,−r + 1) for every r , while the spaces E p,q
r :=

ker d p,q
r−1/ Im d p−r+1,q+r−2

r−1 on the r-th page are defined as the cohomology of the
previous page Er−1. On every page Er and in every bidegree (p, q), the inclusions
Im d p−r,q+r−1

r ⊂ ker d p,q
r ⊂ E p,q

r induce (infinitely many, noncanonical) isomor-
phisms

(10) E p,q
r ' Im d p−r,q+r−1

r ⊕ E p,q
r+1⊕ (E

p,q
r / ker d p,q

r ),

where E p,q
r+1 := ker d p,q

r / Im d p−r,q+r−1
r .

It is worth stressing that (8), (9) and (10) only assert that the vector spaces on
either side of ' are isomorphic, but no choice of preferred isomorphism is possible
at this stage.

A classical result of Frölicher [1955] asserts that this spectral sequence converges
to the de Rham cohomology of X and degenerates after finitely many steps. This
means that there are (noncanonical) isomorphisms

(11) H k
DR(X,C)'

⊕
p+q=k

E p,q
∞
, k = 0, . . . , 2n,

where E p,q
∞ = · · · = E p,q

N+2 = E p,q
N+1 = E p,q

N for all p, q and where N ≥ 1 is the
positive integer such that the spectral sequence degenerates at EN .

3.1. Identification of the dr with restrictions of d. Summing up (8), (9), (10) over
r = 0, . . . , N − 1, we get (infinitely many, noncanonical) isomorphisms

C∞p,q(X,C)'

N−1⊕
r=0

Im d p−r,q+r−1
r ⊕ E p,q

∞
⊕

N−1⊕
r=0

(E p,q
r / ker d p,q

r )

for every bidegree (p, q). Note that the isomorphisms (8), (9), (10) identify the
spaces Im d p−r,q+r−1

r , E p,q
r (including for r =∞) and E p,q

r / ker d p,q
r with certain

subspaces of C∞p,q(X,C). However, these subspaces have not been specified yet
since multiple choices (and no canonical choice) are possible for the isomorphisms
(8), (9), (10). These choices can only be made unique once a Hermitian metric has
been fixed on X . (See Section 3.2.)
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Now, since C∞k (X,C)=
⊕

p+q=k C∞p,q(X,C) for all k = 0, . . . , 2n, we get

C∞k (X,C)'
⊕

0≤r≤N−1
p+q=k

Im d p−r,q+r−1
r ⊕

⊕
p+q=k

E p,q
∞
⊕

⊕
0≤r≤N−1

p+q=k

(E p,q
r / ker d p,q

r )yd

C∞k+1(X,C)'
⊕

0≤r≤N−1
p+q=k

Im d p,q
r ⊕

⊕
p′+q ′=k+1

E p′,q ′
∞

⊕

⊕
0≤r≤N−1

p+q=k

(E p+r,q−r+1
r / ker d p+r,q−r+1

r ).

Thus, under these isomorphisms, the operator d = d(k) : C∞k (X,C)→ C∞k+1(X,C)

identifies as

(12) d(k) '
⊕

0≤r≤N−1
p+q=k

d p,q
r ,

where the isomorphism d p,q
r : E p,q

r / ker d p,q
r → Im d p,q

r is the restriction of dr =

d p,q
r : E p,q

r → E p+r,q−r+1
r to the third piece on the right-hand side of (10). The

fact that dr is of type (r,−r + 1) will play a key role in the sequel.
On the other hand, summing up the splittings of C∞p,q(X,C) over p ≥ s for any

given s, we get

Ak
s :=

⊕
p≥s

p+q=k

C∞p,q(X,C)

'

⊕
p≥s

p+q=k

[ N−1⊕
r=0

Im d p−r,q+r−1
r ⊕ E p,q

∞
⊕

N−1⊕
r=0

(E p,q
r / ker d p,q

r )

]
.

Lemma 3.1. (i) For every r and every k, let Ek
r :=

⊕
p+q=k E p,q

r . Then

(13) dim Ek
r =

∑
p+q=k

dim E p,q
r = bk +mk−1

r +mk
r , 0≤ r ≤ N , 0≤ k ≤ 2n,

where we set mk
r :=

∑
l≥r
∑

p+q=k dim(E p,q
l / ker d p,q

l ).

(ii) For every r and every k, let

L p,q
r :=

⊕
l≥r

(E p,q
l / ker d p,q

l ) and Lk
r :=

⊕
p+q=k

L p,q
r .

Then, dim Lk
r = mk

r (obvious) and, under the identifications defined by the
isomorphisms (8), (9), (10), the following inclusions hold:

(14) d(L p,q
r )⊂Ap+q+1

p+r , 0≤ r ≤ N , 0≤ p, q ≤ n,
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where d(L p,q
r ) :=

⊕
l≥r d p,q

l (E p,q
l / ker d p,q

l ) in keeping with identification
(12).

Proof. (i) For every fixed r , summing up the splittings (10) with l in place of r
over l ≥ r and then summing up over p+ q = k for every fixed k, we get

Ek
r '

⊕
p+q=k

E p,q
∞
⊕

⊕
l≥r

⊕
p+q=k

Im d p−l,q+l−1
l ⊕

⊕
l≥r

⊕
p+q=k

(E p,q
l / ker d p,q

l ).

Since Im d p−l,q+l−1
l ' E p−l,q+l−1

l / ker d p−l,q+l−1
l for all p, q , l, if we set p′ := p−l

and q ′ :=q+l−1, we have p′+q ′=k−1 when p+q=k and the above isomorphism
translates to

Ek
r '

⊕
p+q=k

E p,q
∞
⊕

⊕
l≥r

⊕
p′+q ′=k−1

(E p′,q ′
l / ker d p′,q ′

l )⊕
⊕
l≥r

⊕
p+q=k

(E p,q
l / ker d p,q

l )

for every k. Now, dim
⊕

p+q=k E p,q
∞ = bk (the k-th Betti number of X ) thanks to

(11), so taking dimensions in the above isomorphism, we get (13).

(ii) Since d p,q
l : E p,q

l / ker d p,q
l → Im d p,q

l is an isomorphism of type (l,−l + 1)
for all l, p, q , we get for all l ≥ r ,

d(L p,q
r )=

⊕
l≥r

d p,q
l (E p,q

l / ker d p,q
l )

and
d p,q

l (E p,q
l / ker d p,q

l )⊂ E p+l,q−l+1
l ⊂ C∞p+l,q−l+1 ⊂Ap+q+1

p+r

under the identification of each space E p+l,q−l+1
l with a subspace of C∞p+l,q−l+1

defined by the isomorphisms (8), (9), (10). This proves (14). �

3.2. Explicit description of the above identifications. We take this opportunity to
point out an explicit description of the differentials dr in cohomology and of their
unique realisations induced by a given Hermitian metric on X .

Lemma 3.2. Let X be a compact complex manifold with dimC X = n.

(i) For every r and every bidegree (p, q), the vector space of type (p, q) featuring
on the r-th page of the Frölicher spectral sequence of X can be explicitly
described as the following set of multicohomology classes (i.e., each of these is
the dr−1-class of a dr−2-class . . . of a d1-class of a ∂̄-class):

(15) E p,q
r =

{
[. . . [[α]∂̄ ]d1 . . . ]dr−1 | α ∈ C∞p,q(X,C)

such that α satisfies condition (Pr )
}
,

where condition (Pr ) on α requires the existence of forms ul ∈ C∞p+l,q−l(X,C)

for l ∈ {1, . . . , r − 1} such that

(16) ∂̄α = 0, ∂α = ∂̄u1, ∂u1 = ∂̄u2, . . . , ∂ur−2 = ∂̄ur−1.
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(ii) For every r and every bidegree (p, q), the differential dr = d p,q
r : E p,q

r →

E p+r,q−r+1
r featuring on the r-th page of the Frölicher spectral sequence of X

is explicitly described as

(17) dr ([. . . [[α]∂̄ ]d1 . . . ]dr−1)= [. . . [[∂ur−1]∂̄ ]d1 . . . ]dr−1,

for every [. . . [[α]∂̄ ]d1 . . . ]dr−1 ∈ E p,q
r . Moreover, this description of dr is

independent of the choice of forms ul ∈ C∞p+l,q−l(X,C) in (16) (which are
unique only modulo ker ∂̄).

Proof. These facts are well-known (see [Cordero et al. 1997]). We will only
explain the well-definedness of Formula (17) for dr . Let (u1, . . . , ur−1) and (u1+

ζ1, . . . , ur−1+ ζr−1) be two sets of forms satisfying (16), i.e., ∂̄α = 0, ∂α = ∂̄u1 =

∂̄(u1+ ζ1) and

∂u1 = ∂̄u2,

∂(u1+ ζ1)= ∂̄(u2+ ζ2), . . . , ∂ur−2 = ∂̄ur−1,

∂(ur−2+ ζr−2)= ∂̄(ur−1+ ζr−1).

These identities imply the identities

∂̄ζ1 = 0, ∂ζ1 = ∂̄ζ2, . . . , ∂ζr−2 = ∂̄ζr−1,

which, in turn, imply that ζ1 satisfies condition (Pr−1) (hence defines a multicoho-
mology class lying in E p+1,q−1

r−1 ) and that

dr−1([. . . [[ζ1]∂̄ ]d1 . . . ]dr−2)= [. . . [[∂ζr−1]∂̄ ]d1 . . . ]dr−2 ∈ Im dr−1.

Consequently,
[[. . . [[∂ζr−1]∂̄ ]d1 . . . ]dr−2]dr−1 = 0,

so
[. . . [[∂(ur−1+ ζr−1)]∂̄ ]d1 . . . ]dr−1 = [. . . [[∂ur−1]∂̄ ]d1 . . . ]dr−1 .

Thus, the result we get by (17) for dr ([. . . [[α]∂̄ ]d1 . . . ]dr−1) is the same whether we
work with the choices (u1, . . . , ur−1) or (u1+ ζ1, . . . , ur−1+ ζr−1). �

Thus, dα = ∂α induces the multicohomology class dr ([. . . [[α]∂̄ ]d1 . . . ]dr−1).
This helps to explain that, intuitively, d acts as dr on representatives of Er -classes
(see (12)).

Now, recall that infinitely many choices are possible for the isomorphisms (8), (9)
and (10). However, any fixed Hermitian metric ω on X selects a unique realisation of
each of these isomorphisms and, implicitly, identifies each space E p,q

r with a precise
subspace Hp,q

r (depending on ω) of C∞p,q(X,C) via an isomorphism E p,q
r 'Hp,q

r

depending on ω. These harmonic subspaces Hp,q
r ⊂ C∞p,q(X,C) are constructed by

induction on r ≥ 1 as follows:
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Definition 3.3. Let Hp,q
1 ⊂ C∞p,q(X,C) be the orthogonal complement for the L2

ω-
norm of Im d p,q−1

0 in ker d p,q
0 . Due to (8), Hp,q

1 is isomorphic to E p,q
1 . In every

bidegree (p, q), the linear map d p,q
1 : E

p,q
1 → E p+1,q

1 induces a linear map (denoted
by the same symbol) d p,q

1 :Hp,q
1 →Hp+1,q

1 via the isomorphisms Hp,q
1 ' E p,q

1 and
Hp+1,q

1 ' E p+1,q
1 . Let Hp,q

2 ⊂Hp,q
1 ⊂ C∞p,q(X,C) be the orthogonal complement

for the L2
ω-norm of Im d p−1,q

1 in ker d p,q
1 (viewed as subspaces of Hp,q

1 ). Due to (9),
Hp,q

2 is isomorphic to E p,q
2 . Continuing inductively, when the linear maps d p,q

r :

E p,q
r → E p+r,q−r+1

r have induced counterparts (denoted by the same symbol) d p,q
r :

Hp,q
r →Hp+r,q−r+1

r between the already constructed subspaces Hp,q
r ⊂C∞p,q(X,C)

and Hp+r,q−r+1
r ⊂ C∞p+r,q−r+1(X,C), we let Hp,q

r+1 ⊂ Hp,q
r ⊂ C∞p,q(X,C) be the

orthogonal complement for the L2
ω-norm of Im d p−r,q+r−1

r in ker d p,q
r (viewed as

subspaces of Hp,q
r ). Due to (10), Hp,q

r+1 is isomorphic to E p,q
r+1.

Note that we have

(18) Hp,q
1 = ker(1′′ : C∞p,q(X,C)→ C∞p,q(X,C))

= {u ∈ C∞p,q(X,C) | ∂̄u = 0 and ∂̄?u = 0},

Hp,q
2 = ker(1̃ : C∞p,q(X,C)→ C∞p,q(X,C))

= {u ∈ C∞p,q(X,C) | ∂̄u = 0, ∂̄?u = 0, p′′(∂u)= 0 and p′′∂?u = 0},

where 1̃= ∂p′′∂?+ ∂? p′′∂ +1′′ is the pseudodifferential Laplacian constructed in
[Popovici 2016].

Also note that standard Hodge theory (for the elliptic differential operator
1′′) is used to ensure that Im d p,q−1

0 is closed in C∞p,q(X,C) and that Hp,q
1 is

finite-dimensional. However, all the other images Im d p−r,q+r−1
r are automatically

closed since they are (necessarily finite-dimensional) vector subspaces of a finite-
dimensional vector space. It is also possible to construct pseudodifferential operators
1̃(r) : C∞p,q(X,C)→ C∞p,q(X,C) whose kernels are isomorphic to the spaces Hp,q

r

(see forthcoming joint work of the author with L. Ugarte, where the Hodge theory
found in [Popovici 2016] for the second page of the Frölicher spectral sequence is
extended to all the pages), making these spaces into harmonic spaces for these pseu-
dodifferential Laplacians, but the mere spaces Hp,q

r suffice for our purposes here.
When the vector space C∞p,q(X,C) is endowed with the L2-norm induced by ω,

every subspace Hp,q
r inherits the restricted norm. On the other hand, every space

E p,q
r has a quotient norm induced by the L2

ω-norm. The isomorphisms E p,q
r 'Hp,q

r

constructed above are isometries when E p,q
r and Hp,q

r are endowed with the quotient,
resp. L2 norms.

Conclusion 3.4. Let X be a compact complex manifold and let ω be any Hermitian
metric on X . Let · · · ⊂Hp,q

r+1 ⊂Hp,q
r ⊂ · · · ⊂Hp,q

1 ⊂ C∞p,q(X,C) be the subspaces
of Definition 3.3 induced by ω.
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For every r and every bidegree (p, q), each class [. . . [[α]∂̄ ]d1 . . . ]dr−1 ∈ E p,q
r

contains a unique representative α ∈Hp,q
r (necessarily satisfying condition (Pr )).

For l ∈ {1, . . . , r−1}, let ul ∈C∞p+l,q−l(X,C) be the unique solutions with minimal
L2
ω-norms of the equations

∂̄α = 0, ∂α = ∂̄u1, ∂u1 = ∂̄u2, . . . , ∂ur−2 = ∂̄ur−1

constructed inductively from one another. The well-known Neumann formula yields

u1 =1
′′−1∂̄?(∂α) and ul =1

′′−1∂̄?(∂ul−1) for l ∈ {2, . . . , r − 1}.

In particular, the maps α 7→ u1 and ul−1 7→ ul are linear.
For all r, p, q , we define the linear operator

Tr = T p,q
r :Hp,q

r → C∞p+r,q−r+1(X,C), α 7→ Tr (α) := ∂ur−1.

Since Hp,q
r is finite-dimensional, Tr is bounded, so there exists a constant C p,q

r > 0
such that

‖Tr (α)‖ = ‖∂ur−1‖ ≤ C p,q
r ‖α‖ for all α ∈Hp,q

r .

It is easy to see that Tr (α) need not belong to Hp+r,q−r+1
r when α ∈Hp,q

r . If we
let P p,q

r : C∞p,q(X,C)→Hp,q
r be the Lω-orthogonal projection onto Hp,q

r , we get

‖(P p,q
r ◦ Tr )(α)‖ = ‖P p,q

r (∂ur−1)‖ ≤ ‖∂ur−1‖ ≤ C p,q
r ‖α‖ for all α ∈Hp,q

r .

4. Use of the rescaled Laplacians in the study of
the Frölicher spectral sequence

In this section, we prove Theorem 1.3.
As in [Efremov and Shubin 1989; Gromov and Shubin 1991; Álvarez López and

Kordyukov 2000], we consider the spectrum distribution function associated with
any of the rescaled Laplacians 1h , 1ωh in our context. Its definition and its study
are made far simpler in this setting than in those references by the manifold X
being compact and by the Laplacians 1′, 1′′ being elliptic.

Notation 4.1. Let (X, ω) be a compact Hermitian manifold with dimC X = n. For
every k ∈ {0, . . . , n} and every constant λ≥ 0, let N k

h (λ) stand for the number of
eigenvalues (counted with multiplicities) of 1h that are ≤ λ.

Replacing 1h with 1ωh does not change the spectrum distribution function
N k

h : [0,+∞)→ N since 1h and 1ωh have the same eigenvalues with the same
multiplicities (see Corollary 2.8). Theorem 1.3 can be reworded to ensure the
existence of a constant C > 0 independent of h such that, for all r and k, we have

(19) dim Ek
r = N k

h (Ch2r ) when 0< h� 1.
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4.1. The Efremov–Shubin variational principle. The main technical ingredient
we will need is the following variant of the variational principle proved in a more
general context in [Efremov and Shubin 1989] and used extensively thereafter
(e.g., [Gromov and Shubin 1991; Álvarez López and Kordyukov 2000]) in settings
different from ours. We adapt to our situation the result of Efremov and Shubin.

Proposition 4.2 [Efremov and Shubin 1989]. Let (X, ω) be a compact Hermitian
manifold with dimC X = n. For every k = 0, . . . , 2n and every λ≥ 0, the following
identity holds:

(20) N k
h (λ)= Fk−1

h (λ)+ bk + Fk
h (λ),

where bk is the k-th Betti number of X and the function Fk
h : [0,+∞)→ N is

defined by

(21) Fk
h (λ)= sup

L
dim L ,

where L ranges over the closed vector subspaces of the quotient space

C∞k (X,C)/ ker d

on which the operator

d : C∞k (X,C)/ ker d→ C∞k+1(X,C)

induced by d : C∞k (X,C)→ C∞k+1(X,C) satisfies the following L2
ωh

-norm estimate:

(22) ‖dζ‖ωh ≤
√
λ‖ζ‖ωh for every ζ ∈ L .

(The understanding is that ‖dζ‖ωh stands for the usual L2-norm induced by the
metric ωh , while ‖ζ‖ωh stands for the quotient norm induced on C∞k (X,C)/ ker d
by the L2

ωh
-norm.)

We will present a detailed proof of this statement along the lines of [Efremov and
Shubin 1989] with a few minor simplifications afforded by our special setting where
the manifold X is compact and the operator 1h is elliptic. While a more general
version for unbounded operators on L2 spaces was needed in [Álvarez López and
Kordyukov 2000], we stress that, in this context, we can confine ourselves to the
case of operators on spaces of C∞ differential forms.

The main step is the following statement (a version of the classical min-max
principle) that was proved in a more general setting in [Efremov and Shubin 1989].

Proposition 4.3. Let (X, ω) be a compact Hermitian manifold with dimC X = n.
For an arbitrary k ∈ {0, . . . , 2n}, let P : C∞k (X,C)→ C∞k (X,C) be an elliptic,
self-adjoint and nonnegative differential operator of order ≥ 1.
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Then, for every λ ≥ 0, the spectrum distribution function Nk of P (i.e., Nk(λ)

is defined to be the number of eigenvalues of P , counted with multiplicities, that are
less than or equal to λ) is given by the following identities (in which the suprema
are actually maxima):

(23) Nk(λ)= sup
L∈L(k)λ

dim L = sup
E∈P(k)

λ

Tr E,

where L(k)λ stands for the set of closed vector subspaces L ⊂ C∞k (X,C) such that

〈〈Pu, u〉〉 ≤ λ‖u‖2 for all u ∈ L ,

while P (k)
λ stands for the set of all bounded linear operators E : C∞k (X,C)→

C∞k (X,C) satisfying the conditions:

(i) E2
= E = E? (i.e., E is an orthogonal projection w.r.t. the L2

ω inner product);

(ii) 〈〈Pu, u〉〉 ≤ λ‖u‖2 for all u ∈ Im E. (In other words, E is the orthogonal
projection onto one of the subspaces L ∈L(k)λ , so L = Im E for some L ∈L(k)λ .)

Proof. The second identity in (23) follows at once from the fact that the dimension
of any closed subspace L ⊂C∞k (X,C) equals the trace of the orthogonal projection
onto L . So, we only have to prove the first identity in (23).

Since X is compact and P is elliptic, self-adjoint and nonnegative, the spectrum of
P is discrete and consists of nonnegative eigenvalues, while there exists a countable
orthonormal (w.r.t. the L2

ω inner product) basis of C∞k (X,C) (and of the Hilbert
space L2

k(X,C) of L2 k-forms) consisting of eigenvectors of P . For every µ≥ 0,
let EP(µ)⊂ C∞k (X,C) be the eigenspace of P corresponding to the eigenvalue µ
(with the understanding that EP(µ) = {0} if µ is not an actual eigenvalue). The
spaces EP(µ) are finite-dimensional and consist of C∞ forms since P is assumed
to be elliptic (hence also hypoelliptic) and X is compact.

For every λ ≥ 0, let Lλ :=
⊕

0≤µ≤λ EP(µ) ⊂ C∞k (X,C). Thus, Lλ is finite-
dimensional and dim Lλ = Nk(λ), while 〈〈Pu, u〉〉 ≤ λ‖u‖2 for all u ∈ Lλ. Hence
Lλ ∈ L(k)λ , so Nk(λ)≤ supL∈L(k)λ

dim L .

To prove the reverse inequality, let λ≥ 0 and let L ∈ L(k)λ . The existence of an
orthonormal basis of eigenvectors implies the orthogonal direct-sum decomposition

C∞k (X,C)=
⊕

0≤µ≤λ

EP(µ)⊕
⊕
µ>λ

EP(µ).

In particular,
⊕

µ>λ EP(µ)= ker Eλ, where Eλ is the orthogonal projection onto⊕
0≤µ≤λ EP(µ).
Now, 〈〈Pu, u〉〉> λ‖u‖2 for all u ∈

⊕
µ>λ EP(µ) \ {0}, while 〈〈Pu, u〉〉 ≤ λ‖u‖2

for all u ∈ L . So, L ∩ ker Eλ = L ∩
⊕

µ>λ EP(µ) = {0}. This implies that the
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restriction
Eλ|L : L→ Im Eλ =

⊕
0≤µ≤λ

EP(µ)

is injective. In particular, dim L ≤ dim
⊕

0≤µ≤λ EP(µ)= Nk(λ). Since L has been
chosen arbitrarily in L(k)λ , we conclude that supL∈L(k)λ

dim L ≤ Nk(λ) and we are
done. �

The second step towards proving Proposition 4.2 is the standard 3-space de-
composition used in Hodge theory. For every k = 0, . . . , 2n, the operator 1ωh :

C∞k (X,C)→C∞k (X,C) is elliptic and since the manifold X is compact and d2
= 0,

we have the L2
ωh

-orthogonal decomposition

(24) C∞k (X,C)=Hk
1ωh
(X,C)⊕ Ek(X,C)⊕ E?k (X,C),

where ker d = Hk
1ωh
(X,C) ⊕ Ek(X,C) and Hk

1ωh
(X,C) is the kernel of 1ωh :

C∞k (X,C) → C∞k (X,C), Ek(X,C) := Im(d : C∞k−1(X,C) → C∞k (X,C)) and
E?k (X,C) := Im(d?ωh

: C∞k+1(X,C)→ C∞k (X,C)).
Moreover, each of the three subspaces into which C∞k (X,C) splits in (24) is

1ωh -invariant, i.e.,

1ωh (Hk
1ωh
(X,C))⊂Hk

1ωh
(X,C), 1ωh (Ek(X,C))⊂ Ek(X,C),

1ωh (E
?
k (X,C))⊂ E?k (X,C),

because 1ωh commutes with d and with d?ωh
. The invariance implies that an L2

ωh
-

orthonormal basis {ek
i (h)}i∈N? of C∞k (X,C) consisting of eigenvectors for 1ωh

(whose existence follows from the standard elliptic theory) can be chosen such that
each ek

i (h) belongs to one and only one of the subspaces Hk
1ωh
(X,C), Ek(X,C)

and E?k (X,C). Let 0≤ λk
1(h)≤ · · · ≤ λ

k
i (h)≤ · · · be the corresponding eigenvalues,

counted with multiplicities, of the rescaled Laplacian 1h :C∞k (X,C)→C∞k (X,C)

(equal to those of 1ωh : C
∞

k (X,C)→ C∞k (X,C)). Thus, 1ωh ek
i (h)= λ

k
i (h)e

k
i (h)

for all i .
Consequently, we can define functions Fk

h : [0,+∞)→N and Gk
h : [0,+∞)→N

by
Fk

h (λ) := ]{i | e
k
i (h) ∈ E?k (X,C) and λk

i (h)≤ λ}
and

Gk
h(λ) := ]{i | e

k
i (h) ∈ Ek(X,C) and λk

i (h)≤ λ}.

These definitions of Fk
h and Gk

h(λ) are independent of the choice of orthonormal
basis {ek

i (h)}i∈N? of C∞k (X,C) satisfying the above properties.

Lemma 4.4. The functions Fk
h and Gk

h are the spectrum distribution functions of the
restrictions 1ωh |E?k (X,C) : E?k (X,C)→ E?k (X,C), resp. 1ωh |Ek(X,C) : Ek(X,C)→

Ek(X,C).
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In other words, they are described as follows:

(25) Fk
h (λ)= sup

L∈L
′′(k)
λ

dim L , Gk
h(λ)= sup

L∈L
′(k)
λ

dim L ,

where L
′′(k)
λ stands for the set of closed vector subspaces L ⊂ E?k (X,C) such that

(26) ‖du‖2ωh
≤ λ‖u‖2ωh

for all u ∈ L ,

and L
′(k)
λ stands for the set of closed vector subspaces L ⊂ Ek(X,C) such that

(27) ‖d?ωh
u‖2ωh
≤ λ‖u‖2ωh

for all u ∈ L .

Proof. This is an immediate application of the variational principle of Proposition 4.3
to the restrictions 1ωh |E?k (X,C) : E

?
k (X,C))→ E?k (X,C) and

1ωh |Ek(X,C) : Ek(X,C))→ Ek(X,C).

Estimates (26) and (27) are consequences of the identity 〈〈1ωh u, u〉〉ωh = ‖du‖2ωh
+

‖d?ωh
u‖2ωh

and of the fact that d?ωh
u = 0 whenever u ∈ E?k (X,C) (since Im d?ωh

⊂

ker d?ωh
) and that du = 0 whenever u ∈ Ek(X,C) (since Im d ⊂ ker d). �

The last ingredient we need is the following very simple observation.

Lemma 4.5. For every λ≥ 0 and every k ∈ {−1, 0, . . . , 2n}, we have

Fk
h (λ)= Gk+1

h (λ)

with the understanding that

F−1
h (λ)= G2n+1

h (λ)= 0.

Proof. We know from the orthogonal decompositions (24) that the restriction of d
to E?k (X,C) is injective, so

d|E?k (X,C) : E
?
k (X,C)→ Ek+1(X,C)

is an isomorphism. Moreover, d1ωh =1ωh d, so whenever 1ωh ui = λ
k
i (h)ui , we

get 1ωh (dui ) = λ
k
i (h)(dui ). Combined with the above isomorphism, with the

invariance of E?k (X,C) under 1ωh and with the definitions of Fh
k (λ) and Gh

k+1(λ),
this implies the contention. �

Proof of Proposition 4.2. Putting together (24), the definitions of Fk
h (λ) and Gk

h(λ)

and the fact that the Hodge isomorphism Hk
1ωh
' H k

DR(X,C) (which follows at
once from (24)) implies bk = dimHk

1ωh
, we get

N k
h (λ)= bk +Gk

h(λ)+ Fk
h (λ)

for all k and all λ≥ 0. Using Lemma 4.5, this is equivalent to (20).
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On the other hand, the descriptions (25) and (26) of Fk
h (λ) coincide with the

descriptions (21) and (22) thanks to the isomorphism E?k (X,C)'C∞k (X,C)/ ker d ,
which is another consequence of the decompositions (24). �

4.2. Metric independence of asymptotics. Although the following statement has
no impact on either the statement of Theorem 1.3 or its proof, we pause briefly to
show, exactly as in the foliated case of [Álvarez López and Kordyukov 2000], that
the asymptotics of the eigenvalues λk

i (h) and of the spectrum distribution function
N k

h as h ↓ 0 depend only on the complex structure of X . The proof is an easy
application of the variational principle of Proposition 4.2.

Proposition 4.6. The asymptotics of the λk
i (h) and of N k

h as h ↓ 0 are independent
of the choice of Hermitian metric ω.

Proof. We adapt to our setting the proof of the corresponding result in [Ál-
varez López and Kordyukov 2000]. Let ω and ω′ be two Hermitian metrics
on X . They induce, respectively, rescaled metrics (ωh)h>0 and (ω′h)h>0. Let
N
′k
h (λ)= F

′k−1
h (λ)+ bk + F

′k
h (λ) be the spectrum distribution function associated

with the rescaled Laplacian 1ω′h : C
∞

k (X,C)→ C∞k (X,C), written as in (20).
Since X is compact, there exists a constant C > 0 such that the respective

L2-norms satisfy the following inequalities in every bidegree (p, q):

1
C
‖ ‖ω ≤ ‖ ‖ω′ ≤ C‖ ‖ω,

hence
1
C
‖ ‖ωh ≤ ‖ ‖ω′h

≤ C‖ ‖ωh on L2
p,q(X,C) for every h > 0.

The constant C is independent of h > 0 thanks to Formula 2.2.
Hence, for every ζ ∈ C∞k (X,C)/ ker d such that ‖dζ‖ωh ≤

√
λ‖ζ‖ωh , we get

‖dζ‖ω′h ≤
√

C4λ‖ζ‖ω′h . Thanks to Proposition 4.2, this implies

Fk
h (λ)≤ F

′k
h (C

4λ), λ≥ 0, h > 0.

By symmetry, we also get F
′k
h (λ)≤ Fk

h (C
4λ), so putting the last two inequalities

together, we get

F
′k
h (C

−4λ)≤ Fk
h (λ)≤ F

′k
h (C

4λ), λ≥ 0, h > 0. �

4.3. Proof of the inequality “≤” in Theorem 1.3. We are now in a position to
prove the following:

Theorem 4.7. Let (X, ω) be a compact Hermitian manifold with dimC X = n. For
every r and every k = 0, . . . , 2n, the following inequality holds:

(28) dim Ek
r ≤ ]{i | λ

k
i (h) ∈ O(h2r ) as h ↓ 0}.
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Proof. We have to prove the existence of a uniform constant C > 0 such that
dim Ek

r ≤ N k
h (Ch2r ) for all r, k and all 0< h� 1. Recall the following facts:

(i) dim Ek
r = bk +mk−1

r +mk
r , where mk

r := dim Lk
r and

Lk
r :=

⊕
p+q=k

L p,q
r =

⊕
p+q=k

⊕
l≥r

(E p,q
l / ker d p,q

l )

(proved in (13) of Lemma 3.1).

(ii) N k
h (λ)= bk + Fk−1

h (λ)+ Fk
h (λ) for all λ≥ 0 (see (20) of Proposition 4.2).

Thus, it suffices to prove that

(29) mk
r ≤ Fk

h (Ch2r ) for all 0< h� 1,

for a uniform constant C > 0 and for all r and k.
Now, thanks to the definition (21) of Fk

h , to prove (29) it suffices to prove that
Lk

r is one of the subspaces of C∞k (X,C)/ ker d contributing to the definition of
Fk

h (Ch2r ) for some uniform constant C > 0. In other words, it suffices to prove
that there exists C > 0 such that

(30) ‖dζ‖ωh ≤
√

Chr
‖ζ‖ωh for all ζ ∈ Lk

r and all 0< h� 1.

Meanwhile, every ζ ∈ Lk
r =

⊕
p+q=k L p,q

r splits uniquely as ζ =
∑

p+q=k ζ
p,q

with ζ p,q
∈ L p,q

r for all p, q . Thus, it suffices to prove that, for a uniform constant
C > 0, we have

(31) ‖dζ p,q
‖ωh ≤

√
Chr
‖ζ p,q

‖ωh for all p, q, all ζ p,q
∈ L p,q

r and all 0< h� 1.

This holds mainly because dr is of type (r,−r +1), so dr increases the holomor-
phic degree by r and thus the norm | |ωh brings out an extra factor hr . Specifically,
for every ζ p,q

∈ L p,q
r , (14) of Lemma 3.1 yields dζ p,q

∈ d(L p,q
r ) ⊂ Ap+q−1

p+r .
Therefore, the holomorphic degree of dζ p,q is ≥ p+r , so from Formula 2.2 we get

‖dζ p,q
‖ωh ≤

h p+r

hn ‖dζ
p,q
‖ω for all p, q, all ζ p,q

∈ L p,q
r and all 0< h < 1.

Now, L p,q
r is a finite-dimensional vector subspace of C∞k (X,C)/ ker d , so there

exists a constant Cr > 0 (depending on r, p, q, but independent of h) such that
‖dζ p,q

‖ω ≤ Cr‖ζ
p,q
‖ω for all ζ p,q

∈ L p,q
r . Meanwhile, Formula 2.2 tells us again

that ‖ζ p,q
‖ω = (hn/h p)‖ζ p,q

‖ωh , so putting the last three relations together, we get

‖dζ p,q
‖ωh ≤ Cr hr

‖ζ p,q
‖ωh for all p, q, all ζ p,q

∈ L p,q
r and all 0< h < 1.

This proves (31) after setting C :=max 0≤r≤N
0≤p,q≤n

C2
r > 0. �
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Note that Lk
r is a vector space of classes of cohomology classes, rather than

of differential forms, so what is meant by Lk
r in the above proof is its image in

C∞k (X,C)/ ker d under the isometries explained in Section 3.2. We can use these
isometries, the identification of d acting on Hp,q

r with dr and Conclusion 3.4 in the
following way to make the above proof even more explicit. If we choose ζ p,q to
be the ωh-harmonic representative of its class (also denoted by ζ p,q) and to play
the role of α of Conclusion 3.4, we can rewrite the above inequalities in a more
detailed form as follows:

‖dζ p,q
‖ωh = ‖(P(∂ur−1)‖ωh ≤

h p+r

hn ‖(P ◦ T )(ζ p,q)‖ω

≤
h p+r

hn Cr‖ζ
p,q
‖ω = Cr hr

‖α‖ωh ,

where P and T are the linear maps P p,q
r and T p,q

r (with indices removed) of
Conclusion 3.4 that was used above, while ‖ ‖ωh stands for the L2

ωh
-norm when

applied to a form and for the induced quotient norm when applied to a class.

4.4. Preliminaries to the proof of the inequality “≥” in Theorem 1.3. We will
need a few simple observations.

Lemma 4.8. Let (X, ω) be a compact Hermitian manifold with dimC X = n. For
every bidegree (p, q) and every (p, q)-form u on X , the following identities hold:

(32) 〈〈1hu, u〉〉ω = h2(n−p)
〈〈1ωh u, u〉〉ωh = h2(n−p)(‖du‖2ωh

+‖d?ωh
u‖2ωh

).

Proof. The latter identity is obvious, so we will only prove the former one. Since u
is of pure type, (4) yields the first identity below, while the second identity follows
from Formula 2.2:

〈〈1hu, u〉〉ω = h2
〈〈1′u, u〉〉ω+〈〈1′′u, u〉〉ω

= h2h2(n−p)
〈〈1′u, u〉〉ωh + h2(n−p)

〈〈1′′u, u〉〉ωh

= h2(n−p)
〈〈1ωh u, u〉〉ωh .

The last identity follows again from (4). �

Lemma 4.9. Let u ∈ C∞p,q(X,C) be an arbitrary form. Considering the splitting

d = d(k) =
⊕

0≤r≤N−1
p+q=k

d p,q
r : C∞k (X,C)→ C∞k+1(X,C)

of the operator d (see (12)) and the splitting

u =
N−1∑
r=0

ur + ker d, implying du =
N−1∑
r=0

dr ur ,
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with ur ∈ E p,q
r / ker d p,q

r (see Section 3 and recall that dr : E p,q
r / ker d p,q

r →

Im d p,q
r ⊂ C∞p+r,q−r+1(X,C) is an isomorphism), the following identity holds:

(33) h2(n−p)
‖du‖2ωh

=

N−1∑
r=0

h2r
‖dr ur‖

2
ω for all h > 0.

Proof. Since dr is of type (r,−r+1), dr ur is of type (p+r, q−r+1), so the dr ur

are mutually orthogonal (w.r.t. any metric) when r varies. We get

‖du‖2ωh
=

N−1∑
r=0

‖dr ur‖
2
ωh
=

N−1∑
r=0

h2(p+r)

h2n ‖dr ur‖
2
ω,

where for the last identity we used Formula 2.2. �

Lemma 4.10. For every r and every bidegree (p, q), the formal adjoints of dr w.r.t.
the metrics ωh and ω compare as follows:

(34) (dr )
?
ωh
= h2r (dr )

?
ω.

Thus, for every form u ∈ C∞p,q(X,C), the following counterpart of Lemma 4.9 for
the adjoints holds. Considering the splitting

(d(k))?ωh
=

⊕
0≤r≤N−1

p+q=k

(d p,q
r )?ωh

: C∞k+1(X,C)→ C∞k (X,C)

of the operator d? and the splitting

u =
N−1∑
r=0

vr + ker d?ωh
, implying d?ωh

u =
N−1∑
r=0

(dr )
?
ωh
vr ,

with vr ∈ Im d p−r,q+r−1
r (see Section 3.1), the following identity holds:

(35) h2(n−p)
‖d?ωh

u‖2ωh
=

N−1∑
r=0

h2r
‖(dr )

?
ωvr‖

2
ω for all h > 0.

Proof. For every (p, q)-form v and every (p− r, q + r − 1)-form u, we have

h2(p−r)

h2n 〈〈(dr )
?
ωh
v, u〉〉ω = 〈〈(dr )

?
ωh
v, u〉〉ωh

= 〈〈v, dr u〉〉ωh =
h2p

h2n 〈〈v, dr u〉〉ω =
h2p

h2n 〈〈(dr )
?
ωv, u〉〉ω.

This proves (34). Using the mutual orthogonality of the (dr )
?
ωh
vr (due to bidegree
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reasons) and Formula 2.2, we get

‖d?ωh
u‖2ωh
=

N−1∑
r=0

‖(dr )
?
ωh
vr‖

2
ωh
=

N−1∑
r=0

h2(p−r)

h2n ‖(dr )
?
ωh
vr‖

2
ω

=

N−1∑
r=0

h2(p−r)

h2n h4r
‖(dr )

?
ωvr‖

2
ω.

This proves (35). �

Putting together (32), (33) and (35), we get:

Corollary 4.11. Let (X, ω) be a compact Hermitian manifold with dimC X = n.
For every bidegree (p, q) and every (p, q)-form u on X , the following identity
holds:

〈〈1hu, u〉〉ω =
N−1∑
r ′=0

h2r ′
‖dr ′ur ′‖

2
ω+

N−1∑
r ′=0

h2r ′
‖(dr ′)

?
ωvr ′‖

2
ω,

where u splits uniquely (see Section 3.1) as

u =
N−1∑
r ′=0

ur ′ + ker d =
N−1∑
r ′=0

vr ′ + ker d? =
N−1∑
r ′=0

ur ′ +

N−1∑
r ′=0

vr ′ +w

with ur ′ ∈ E p,q
r ′ / ker d p,q

r ′ , vr ′ ∈ Im d p−r ′,q+r ′−1
r ′ and w ∈ E p,q

∞ .

4.5. Proof of the inequality “≥” in Theorem 1.3. Following again the analogy
with the foliated case of [Álvarez López and Kordyukov 2000], we will actually
prove a stronger statement from which the following result will follow as a corollary.

Theorem 4.12. Let (X, ω) be a compact Hermitian manifold with dimC X = n. For
every r and every k = 0, . . . , 2n, the following inequality holds:

(36) dim Ek
r ≥ ]{i | λ

k
i (h) ∈ O(h2r ) as h ↓ 0}.

The first main ingredient we will use is the pseudodifferential Laplacian

1̃= ∂p′′∂?+ ∂? p′′∂ +1′′ : C∞p,q(X,C)→ C∞p,q(X,C)

defined in arbitrary bidegree (p, q) and introduced in [Popovici 2016], where
p′′ :C∞p,q(X,C)→ ker1′′ is the orthogonal projection (w.r.t. the L2

ω-norm) onto the
1′′-harmonic subspace of C∞p,q(X,C). The pseudodifferential Laplacian 1̃ gives a
Hodge theory for the second page of the Frölicher spectral sequence in the sense
that there is a Hodge isomorphism

(37) E p,q
2

'
−→Hp,q

1̃
(X,C)

:= ker(1̃ : C∞p,q(X,C)→ C∞p,q(X,C)) for all p, q = 0, . . . , n.
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Note that (p′′)2= p′′= (p′′)?, so ∂p′′∂?= (p′′∂?)?(p′′∂?) and ∂? p′′∂= (p′′∂)?(p′′∂).
Thus, 1̃ is a sum of nonnegative operators, so its kernel is the intersection of the
respective kernels. Since ker(A?A)= ker A for any operator A, we get

ker 1̃= ker(p′′∂)∩ ker(p′′∂?)∩ ker ∂̄ ∩ ker ∂̄?.

The second main ingredient we will use is the following lower estimate of the
rescaled Laplacian1h . It is the analogue in our context of a result in [Álvarez López
and Kordyukov 2000].

Lemma 4.13. Let (X, ω) be a compact Hermitian manifold with dimC X =n. There
exists a constant C > 0 such that the following inequality of linear operators (see
Notation 1.4) holds on differential forms of any degree k = 0, . . . , 2n:

1h ≥
3
41
′′
+ h21′−Ch2 for all h > 0,

where 1′′ = ∂̄ ∂̄?+ ∂̄?∂̄ and 1′ = ∂∂?+ ∂?∂ are the usual ∂̄- and ∂-Laplacians.

The coefficients 3
4 and 1 are not optimal, but they suffice for our purposes and

the proof provided below shows that they can be made optimal if this is desired.

Proof of Lemma 4.13. We know from (i) of Lemma 2.7 that

(38) 1h =1
′′
+ h21′− h([τ, ∂̄?] + [τ ?, ∂̄]),

where τ = τω := [3, ∂ω ∧ · ] is the zeroth order torsion operator of type (1, 0)
associated with ω.

For any form u, the first-order terms on the right-hand side of (38) are easily
estimated using the Cauchy–Schwarz inequality as follows:

h|〈〈[τ, ∂̄?]u+ [τ ?, ∂̄]u, u〉〉|

= h|〈〈∂̄?u, τ ?u〉〉+ 〈〈τu, ∂̄u〉〉+ 〈〈∂̄u, τu〉〉+ 〈〈τ ?u, ∂̄?u〉〉|

≤ 2h‖τu‖‖∂̄u‖+ 2h‖τ ?u‖‖∂̄?u‖

≤
1
4(‖∂̄u‖2+‖∂̄?u‖2)+ 4h2(‖τu‖2+‖τ ?u‖2)

≤
1
4〈〈1

′′u, u〉〉+Ch2
‖u‖2,

where the constant C > 0 exists because the linear operators τ and τ ? are of order
zero, hence bounded. In particular, we get the operator inequality

−h([τ, ∂̄?] + [τ ?, ∂̄])≥−
1
4
1′′−Ch2,

which, alongside (38), proves the contention. �

We are now ready to state and prove a general result that will imply Theorem 4.12.
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Theorem 4.14. Let (X, ω) be a compact Hermitian manifold with dimC X = n.
Let k ∈ {0, . . . , 2n} and r ≥ 1 be fixed integers. Suppose there exist a sequence
(hi )i∈N of constants hi > 0 such that hi ↓ 0 and a sequence (ui )i∈N of k-forms
ui ∈ C∞k (X,C) such that ‖ui‖ω = 1 for every i and

(39) 〈〈1hi ui , ui 〉〉ω ∈ o(h2(r−1)
i ) as i→+∞.

Then, there exists a subsequence (uil )l∈N of (ui )i∈N such that (uil )l∈N converges
in the L2

ω-topology to some k-form u ∈ Hk
r :=

⊕
p+q=k H

p,q
r ' Ek

r , where the
Hp,q

r ⊂ C∞p,q(X,C) are the “harmonic” vector subspaces of Definition 3.3 induced
by the metric ω.

Proof. Case r = 1. In this case, hypothesis (39) means that 〈〈1hi ui , ui 〉〉ω→ 0 as
i→+∞. Then also 〈〈1hi ui , ui 〉〉ω+Ch2

i → 0 as i→+∞. Since, by Lemma 4.13,
we have

〈〈1hi ui , ui 〉〉ω+Ch2
i ≥

3
4〈〈1

′′ui , ui 〉〉ω+ h2
i 〈〈1

′ui , ui 〉〉ω ≥ 0 for all i ∈ N,

we get

(40)
(i) 〈〈1′′ui , ui 〉〉ω→ 0 as i→+∞,

(ii) h2
i 〈〈1

′ui , ui 〉〉ω→ 0 as i→+∞.

Meanwhile, the ∂̄-Laplacian 1′′ is elliptic and the manifold X is compact, so the
Gårding inequality yields constants δ1, δ2 > 0 such that the first inequality below
holds:

δ2‖ui‖W 1 ≤ 〈〈1′′ui , ui 〉〉ω+ δ1‖ui‖ω ≤ C1 for all i ∈ N,

where ‖ ‖W 1 stands for the Sobolev norm W 1 induced by the metric ω. The second
inequality above holds for some constant C1 > 0 since the quantity 〈〈1′′ui , ui 〉〉ω

converges to zero (see (40)), hence is bounded, and ‖ui‖ω = 1 by the hypothesis of
Theorem 4.14.

Consequently, the sequence (ui )i∈N is bounded in the Sobolev space W 1 (a
Hilbert space), so by the Banach–Alaoglu theorem there exists a subsequence
(uil )l∈N that converges in the weak topology of W 1 to some k-form u ∈ W 1. In
particular, the following convergences hold in the weak topology of distributions:

∂̄uil → ∂̄u and ∂̄?uil → ∂̄?u as l→+∞.

On the other hand, ‖∂̄ui‖
2
+‖∂̄?ui‖

2
= 〈〈1′′ui , ui 〉〉ω→ 0 as i→+∞, so ∂̄ui→ 0

and ∂̄?ui → 0 in the L2-topology as i → +∞. Comparing this with the above
convergences in the weak topology of distributions, we get

∂̄u = 0 and ∂̄?u = 0,

which, by (18), is equivalent to u ∈ ker(1′′ : C∞k (X,C)→ C∞k (X,C))=Hk
1 ' Ek

1 .
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Note that by the Rellich lemma (asserting the compactness of the inclusion
W 1 ↪→ L2), the convergence of (uil )l∈N to u in the weak topology of W 1 implies
that (uil )l∈N also converges in the L2-topology to u. Moreover, the ellipticity of
1′′ and the relation u ∈ ker1′′ imply that u is C∞.

Case r = 2. In this case, hypothesis (39) means that 〈〈1hi ui , ui 〉〉ω ∈ o(h2
i ) as

i→+∞. Since 〈〈1hi ui , ui 〉〉ω=‖dhi ui‖
2
+‖d?hi

ui‖
2
=‖hi∂ui+∂̄ui‖

2
+‖hi∂

?ui+

∂̄?ui‖
2, this implies that

(41) ∂ui+
1
hi
∂̄ui→0 and ∂?ui+

1
hi
∂̄?ui→0 in the L2-topology as i→+∞.

Since the orthogonal projection p′′ onto ker1′′ is continuous w.r.t. the L2-topology
and since p′′∂̄ = 0 and p′′∂̄? = 0 (because Im ∂̄ ⊥ ker1′′ and Im ∂̄? ⊥ ker1′′), an
application of p′′ to (41) yields

(42) p′′∂ui → 0 and p′′∂?ui → 0 in the L2-topology as i→+∞.

On the other hand, we know from the discussion of the case r = 1 (whose
weaker assumption is still valid in the case r = 2) that there exists a subsequence
(uil )l∈N that converges in the weak topology of W 1 to some k-form u ∈W 1. Thus,
∂uil → ∂u ∈ L2 in the weak topology of L2 as l→+∞. This means that

〈〈∂uil , v〉〉ω→ 〈〈∂u, v〉〉ω for all v ∈ L2,

hence
〈〈∂uil , p′′v〉〉ω→ 〈〈∂u, p′′v〉〉ω for all v ∈ L2,

as l→+∞. (The second convergence follows from the first since ‖p′′v‖ ≤ ‖v‖
for all v ∈ L2, so p′′(L2)⊂ L2.) Now, p′′ is self-adjoint, so the last convergence
translates to

〈〈p′′∂uil , v〉〉ω→ 〈〈p
′′∂u, v〉〉ω as l→+∞ for all v ∈ L2.

This means that p′′∂uil converges to p′′∂u in the weak topology of L2 as l→+∞.
However, we know from (42) that p′′∂uil converges to 0 in the L2-topology. Hence
p′′∂u = 0. The same argument run with ∂? in place of ∂ yields that p′′∂?u = 0. On
the other hand, we know from the discussion of the case r=1 that u∈ker ∂̄∩ker ∂̄?=
ker1′′, so we get

u ∈ ker(p′′∂)∩ ker(p′′∂?)∩ ker ∂̄ ∩ ker ∂̄? =Hk
2 ' Ek

2

after recalling the description (18) of the spaces Hp,q
2 and that Hk

2 =
⊕

p+q=k H
p,q
2 .

Case r ≥ 3. Using the information from the first two cases and from subsection
Section 4.4, this last case can easily be dealt with as follows.
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For each of the k-forms ui given by the hypotheses of Theorem 4.14, we consider
the splitting

ui =

N−1∑
r ′=0

u(i)r ′ +

N−1∑
r ′=0

v
(i)
r ′ +wi ,

with u(i)r ′ ∈ E p,q
r ′ / ker d p,q

r ′ , v(i)r ′ ∈ Im d p−r ′,q+r ′−1
r ′ and wi ∈ E p,q

∞ , and the correspond-
ing splitting

〈〈1hi ui , ui 〉〉ω =

N−1∑
r ′=0

h2r ′
i ‖dr ′u

(i)
r ′ ‖

2
ω+

N−1∑
r ′=0

h2r ′
i ‖(dr ′)

?
ωv

(i)
r ′ ‖

2
ω

obtained in Corollary 4.11.
On the other hand, (39) ensures that 〈〈1hi ui , ui 〉〉ω ∈ o(h2(r−1)

i ) as i → +∞.
Together with the above identity, this implies the following convergences in the
L2
ω-norm as i→+∞:

dr ′u
(i)
r ′ → 0 and (dr ′)

?
ωv

(i)
r ′ → 0 for every r ′ ∈ {0, . . . , r − 1}.

We even get

1

hr−r ′−1
i

dr ′u
(i)
r ′ → 0 and

1

hr−r ′−1
i

(dr ′)
?
ωv

(i)
r ′ → 0 for every r ′ ∈ {0, . . . , r − 1}.

Defining in an ad hoc way a “formal” Laplacian by 1formal
r ′ := dr ′(dr ′)

?
ω+ (dr ′)

?
ωdr ′ ,

we get that the limit u of a subsequence of (ui )i∈N lies in

ker
(
1formal

r−1 :
⊕

p+q=k

E p,q
r−1→

⊕
p+q=k

E p,q
r−1

)
'Hk

r ' Ek
r

and we are done. �

Proof of Theorem 4.12. It is an immediate consequence of Theorem 4.14. Indeed, fix
any r ∈N? and k ∈ {0, . . . , 2n} and suppose that inequality (36) does not hold. Then,
the reverse strict inequality holds, so there exists a sequence (hi )i∈N of positive
constants such that hi ↓ 0 when i→+∞ and a sequence (ui )i∈N of eigenvectors
for the Laplacians 1hi acting on k-forms such that ‖ui‖ω = 1, ui ⊥ Hk

r for all i
and 〈〈1hi ui , ui 〉〉 ∈ o(h2(r−1)

i ) as i→+∞.
Thanks to Theorem 4.14, there exists a subsequence (uil )l∈N of (ui )i∈N such that

(uil )l∈N converges in the L2
ω-topology to some k-form u ∈Hk

r ' Ek
r . However, the

form u is orthogonal to Hk
r since ui ⊥Hk

r for all i and the orthogonality property
is preserved in the limit. Since ‖u‖ω = 1 (because ‖ui‖ω = 1 for all i), u 6= 0, so u
cannot be at once orthogonal to and a member of Hk

r . This is a contradiction. �
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5. Consequences of Theorem 1.3

The following consequences of Theorem 1.3 are of independent interest.

Proposition 5.1. Let X be a compact complex manifold with dimC X = n. For
every r ∈ N? and every k = 0, . . . , 2n, the following identity (a kind of numerical
Poincaré duality extended to all the pages of the spectral sequence) holds:

dimC Ek
r = dimC E2n−k

r ,

where, as usual, Ek
r =

∑
p+q=k E p,q

r is the direct sum of the spaces of total degree
k on the r-th page of the Frölicher spectral sequence of X.

This is an immediate consequence of Theorem 1.3 and of the following:

Proposition 5.2. Let (X, ω) be an n-dimensional compact complex Hermitian
manifold. Fix an arbitrary constant h > 0.

(i) If d?h , resp. ?, are the formal adjoint of dh , resp. the Hodge star operator
induced by ω, then

d?h =−?d̄h?.

(ii) If , for every h > 0, every k = 0, . . . , 2n and every λ ≥ 0, Ek
1h
(λ) stands for

the λ-eigenspace of 1h : C∞k (X,C)→ C∞k (X,C), the linear map

Ek
1h
(λ)→ E2n−k

1h
(λ), u 7→ ?ū,

is well defined and an isomorphism.

In particular, the operators 1h : C∞k (X,C)→ C∞k (X,C) and

1h : C∞2n−k(X,C)→ C∞2n−k(X,C)

have the same spectra and their corresponding eigenvalues have the same multiplic-
ities for all h > 0 and all k = 0, . . . , 2n.

Proof. (i) We have d?h = h∂?+ ∂̄? =−h?∂̄?−?∂?=−?(h∂̄+∂)?=−?d̄h? thanks
to the standard formulae ∂? =−?∂̄? and ∂̄? =−?∂?.

(ii) Using the formula under (i) and ??= (−1)k on k-forms, we get the following
equivalences:

u ∈ Ek
1h
(λ)⇐⇒−dh?d̄h?u− ?d̄h?dhu = λu

(a)
⇐⇒ (−?d̄h?)dh(?ū)− (−1)deg u??dh?d̄h??ū = λ(?ū)

⇐⇒ d?h dh(?ū)+ dhd?h(?ū)= λ(?ū)⇐⇒ ?ū ∈ E2n−k
1h

(λ),

where (a) was obtained by conjugating and then applying the isomorphism ?.
This shows the well-definedness of the linear map under consideration. Both the

conjugation and ? are isomorphisms, hence so is that linear map. �
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Proof of Proposition 5.1. By Theorem 1.3, dimC Ek
r , resp. dimC E2n−k

r , is the
number of eigenvalues λk

i (h) ∈ O(h2r ), resp. λ2n−k
i (h) ∈ O(h2r ), counted with

multiplicities, of 1h in degree k, resp. 2n− k. Since, by Proposition 5.2, λk
i (h)=

λ2n−k
i (h) for all i ∈ N? and all h > 0, the statement follows. �

The last consequence of Theorem 1.3 that we notice in this section is the following
degeneration criterion for the Frölicher spectral sequence.

Proposition 5.3. Let (X, ω) be an n-dimensional compact complex Hermitian
manifold. For every constant h > 0, let δ(k)h > 0 be the smallest positive eigenvalue
of 1h : C∞k (X,C)→ C∞k (X,C).

Then, for every r ∈N?, the Frölicher spectral sequence of X degenerates at Er if
and only if

lim
h→0

δ
(k)
h

h2r =+∞ for all k ∈ {1, . . . , n}.

Proof. The multiplicity of 0 as an eigenvalue of 1h : C∞k (X,C)→ C∞k (X,C) is
the k-th Betti number bk of X (see Corollary 2.9), so the degeneration at Er of the
Frölicher spectral sequence (known to be equivalent to the identities bk = dim Ek

r
for all k = 0, 1, . . . , 2n) amounts, thanks to Theorem 1.3, to δ(k)h converging to zero
(if it does converge to zero at all as h ↓ 0) strictly less fast than Ch2r for all k =
0, 1, . . . , 2n. On the other hand, the numerical duality statement of Proposition 5.1
reduces the verification of this property to the cases k = 1, . . . , n. �

6. Degeneration at E2 of the Frölicher spectral sequence

In this section, we prove Theorem 1.2.
We start off by noticing a lower estimate for 1h − h21 that holds for any

Hermitian metric.

Lemma 6.1. Let (X, ω) be a compact complex manifold. For every 0< h < 1, the
following inequality of operators holds on smooth differential forms of all degrees:

(43) 1h − h21≥ (1− h)h(1′′− h[τ, τ ?]).

Proof. We know from Lemma 2.7 that 1h = h21′+1′′− h[τ, ∂̄?] − h[∂̄, τ ?] for
any Hermitian metric ω, while 1= [∂ + ∂̄, ∂?+ ∂̄?] =1′+1′′− [τ, ∂̄?] − [∂̄, τ ?].
Thus, we get

(44) 1h − h21= (1− h2)1′′+ h(h− 1)([∂̄, τ ?] + [∂̄?, τ ])

= (1− h)((1+ h)1′′− h[∂̄, τ ?] − h[∂̄?, τ ]).



ADIABATIC LIMIT AND THE FRÖLICHER SPECTRAL SEQUENCE 153

We shall now estimate the signless terms on the right-hand side of (44). For any
form u, we have

〈〈[∂̄, τ ?]u,u〉〉+ 〈〈[∂̄?, τ ]u,u〉〉 = 〈〈τ ?u, ∂̄?u〉〉+ 〈〈∂̄u, τu〉〉+ 〈〈τu, ∂̄u〉〉+ 〈〈∂̄?u, τ ?u〉〉

= 2Re〈〈∂̄?u, τ ?u〉〉+ 2Re〈〈∂̄u, τu〉〉.

Thus, for any Hermitian metric ω, we have

h|〈〈([∂̄, τ ?] + [∂̄?, τ ])u, u〉〉| ≤ 2h|〈〈∂̄u, τu〉〉| + 2h|〈〈∂̄?u, τ ?u〉〉|

≤ (‖∂̄u‖2+‖∂̄?u‖2)+ h2(‖τu‖2+‖τ ?u‖2)

= 〈〈1′′u, u〉〉+ h2
〈〈[τ, τ ?]u, u〉〉.

Using this last estimate in (44), we get 1h−h21≥ (1−h)(h1′′−h2
[τ, τ ?]) in

the sense of operators. This is precisely (43).
Note that we can also write

|〈〈([∂̄, τ ?] + [∂̄?, τ ])u, u〉〉| ≤ 〈〈1′′u, u〉〉+ 〈〈[τ, τ ?]u, u〉〉

for every form u, which, alongside (44), yields 1h−h21≥ (1−h)(1′′−h[τ, τ ?]).
This is slightly better than (43) if the right-hand side is nonnegative, but worse
otherwise. �

We shall now give a sufficient condition for the right-hand side of (43) to be
nonnegative.

Lemma 6.2. Let (X, ω) be a compact Hermitian manifold with dimC X = n such
that the inclusion of kernels

ker1′′ ⊂ ker[τ, τ ?]

holds for the operators 1′′, [τ, τ ?] : C∞k (X,C) → C∞k (X,C) in a fixed degree
k ∈ {1, . . . , n}.

Then, there exists a constant h0(k) ∈ (0, 1] such that the following inequality of
operators holds in degree k:

1′′ ≥ h[τ, τ ?] for all 0< h < h0(k).

Proof. Let δ′′k > 0 be the smallest positive eigenvalue of the elliptic, self-adjoint and
nonnegative differential operator 1′′ : C∞k (X,C)→ C∞k (X,C).

On the other hand, the operator [τ, τ ?] : C∞k (X,C)→ C∞k (X,C) is of order
zero, hence bounded, so the constant Ck := sup‖u‖≤1〈〈[τ, τ

?
]u, u〉〉 is finite.

We put h0(k) :=min{δ′′k /Ck, 1} and will prove that 〈〈1′′u, u〉〉 ≥ h〈〈[τ, τ ?]u, u〉〉
for all u ∈ C∞k (X,C) and all h ∈ (0, h0(k)). Let us fix a form u ∈ C∞k (X,C).

Since 1′′ is elliptic and preserves bidegrees, the orthogonal splitting

C∞k (X,C)= ker1′′⊕ Im1′′
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holds and induces a unique splitting u= uh+uh⊥ with uh ∈ ker1′′ and uh⊥ ∈ Im1′′.
In particular, uh ∈ ker[τ, τ ?] thanks to our assumption.

We get

(45) 〈〈1′′u, u〉〉 = 〈〈1′′uh⊥, uh + uh⊥〉〉 = 〈〈1
′′uh⊥, uh⊥〉〉 ≥ δ

′′

k ‖uh⊥‖
2

since uh⊥ ⊥ ker1′′, so uh⊥ lies in the orthogonal direct sum of the eigenspaces
of 1′′ corresponding to positive eigenvalues (equal to eigenvalues greater than or
equal to δ′′k ).

On the other hand,

(46) 〈〈[τ, τ ?]u, u〉〉
(a)
= 〈〈[τ, τ ?]uh⊥, uh + uh⊥〉〉

(b)
= 〈〈uh⊥, [τ, τ

?
]uh〉〉+ 〈〈[τ, τ

?
]uh⊥, uh⊥〉〉

(c)
= 〈〈[τ, τ ?]uh⊥, uh⊥〉〉

(d)
≤ Ck‖uh⊥‖

2,

where for (a) we used the fact that uh ∈ker[τ, τ ?], for (b) we used the self-adjointness
of [τ, τ ?], (c) follows from uh ∈ ker[τ, τ ?], while (d) follows from the definition of
Ck .

Since h0(k)=min{δ′′k /Ck, 1}, inequalities (45) and (46) imply that

h〈〈[τ, τ ?]u, u〉〉 ≤ Ckh‖uh⊥‖
2
≤

Ckh
δ′′k
〈〈1′′u, u〉〉 ≤ 〈〈1′′u, u〉〉

for all h ∈ (0, h0(k)). �

Corollary 6.3. Let (X, ω) be a compact Hermitian manifold such that ker1′′ ⊂
ker[τ, τ ?] in a fixed degree k. Then, there exists a constant h0(k) ∈ (0, 1] such that
the following inequality of operators holds in degree k:

1h ≥ h21 for all 0< h < h0(k).

Proof. This is an immediate consequence of Lemmas 6.1 and 6.2. �

We can now prove the spectral sequence degeneration statement of this paper.

Proof of Theorem 1.2. Let us fix an arbitrary k ∈ {1, . . . , n}. Hypothesis (1) and
Corollary 6.3 imply that ker1h ⊂ ker1 for all 0< h < h0(k) since 〈〈1u, u〉〉 ≥ 0
for every u and u ∈ ker1 if and only if 〈〈1u, u〉〉 = 0. Meanwhile, we know from
Corollary 2.9 that ker1h and ker1 are finite-dimensional vector spaces of equal
dimensions, so for all 0< h < h0(k) we get

(47) ker1h = ker1.

For every h > 0, let δ(k)h > 0 be the smallest positive eigenvalue of the elliptic
operator 1h : C∞k (X,C)→ C∞k (X,C) and let uh ∈ C∞k (X,C) be a corresponding
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unitary eigenvector, i.e.,

‖uh‖ = 1 and 1huh = δ
(k)
h uh .

Now, uh is orthogonal to ker1h , hence, thanks to (47), uh is also orthogonal to
ker1 for every 0< h < h0(k). Consequently, 〈〈1uh, uh〉〉 ≥ δk‖uh‖

2
= δk , where

δk > 0 is the smallest positive eigenvalue of 1 : C∞k (X,C)→ C∞k (X,C).
Using this and Corollary 6.3, we get

δ
(k)
h = 〈〈1huh, uh〉〉 ≥ h2

〈〈1uh, uh〉〉 ≥ δkh2 for all 0< h < h0(k).

In particular, limh→0(δ
(k)
h /h4)=+∞.

As in the proof of Proposition 5.3, this and Theorem 1.3 imply that dim Ek
2 = bk

for the degree k ∈ {1, . . . , n} that was arbitrarily fixed in the beginning. By the
duality statement of Proposition 5.1, this also yields dim E2n−k

2 = bk = b2n−k . Since
this holds for all k ∈ {1, . . . , n}, the Frölicher spectral sequence of X degenerates
at E2. �

Appendix: Comparison of Laplacians when the metric is SKT

In this section, we come within an ε (equal to Ch2) of solving Conjecture 1.1 as
an application of Theorem 1.3 and of a comparison of the Laplacians 1′ and 1′′

defined by an arbitrary SKT metric ω supposed to exist on a given compact complex
manifold X . Recall that an SKT metric ω is a C∞ positive definite (1, 1)-form ω

such that ∂∂̄ω = 0 on X .

Lemma A.1. Let X be a compact complex manifold on which an SKT metric ω
exists.

(i) The usual ∂- and ∂̄-Laplacians 1′ = [∂, ∂?] and 1′′ = [∂̄, ∂̄?] induced by ω
satisfy the following inequalities on differential forms of all bidegrees:

(48) (1+ δ)1′′+
(

1+ 1
δ

)
[τ̄ , τ̄ ?] ≥1′ ≥

1
1+δ

1′′−
1
δ
[τ, τ ?] for all δ > 0,

where τ = τω := [3ω, ∂ω∧ · ] is the torsion operator of type (1, 0) and τ̄ ? is
the formal adjoint w.r.t. the L2

ω-inner product of its complex conjugate.

(ii) The following inequality also holds:

(49) 1′′ ≥ h1′+
(

h Xω−
h

1−h
[τ̄ , τ̄ ?]

)
for all 0< h < 1,

where Xω := [∂ω∧ · , (∂ω∧ · )?]. Implicitly, we have

(50) 1h − h1≥ h((1− h)Xω− [τ̄ , τ̄
?
]) for all 0< h < 1.
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Since Xω and [τ̄ , τ̄ ?] are zeroth order operators, they are bounded, so (50)
implies the existence of a constant C > 0 independent of h such that

(51) 1h − h1≥−Ch for all 0< h < 1.

Proof. (i) Demailly’s formula (see [Demailly 1986; 2012, VII, §.1]) of the Bochner–
Kodaira–Nakano type for arbitrary Hermitian metrics ω (originating in [Griffiths
1969] and also contributed to in [Ohsawa 1982]) reads

1′ =1′′τ̄ − Xω+
[
3ω,

[
3ω,

1
2 i∂∂̄ω

]]
,

where 1′′τ̄ := [∂̄+ τ̄ , (∂̄+ τ̄ )
?
] and Xω := [∂̄ω∧ · , (∂̄ω∧ · )

?
]. The last term on the

right-hand side above vanishes if ω is SKT, so we get

(52) 1′′+ ([∂̄, τ̄ ?] + [τ̄ , ∂̄?])+ [τ̄ , τ̄ ?] =1′+ Xω if ∂∂̄ω = 0.

Now, the signless terms can be easily estimated using the elementary inequality
2|ab| ≤ δa2

+(1/δ)b2 for arbitrary a, b ∈C and δ > 0. For every differential form u
of any degree, we get

(53) |〈〈[∂̄, τ̄ ?]u, u〉〉+〈〈[τ̄ , ∂̄?]u, u〉〉| = |2 Re〈〈∂̄u, τ̄u〉〉+2 Re〈〈∂̄?u, τ̄ ?u〉〉|

≤ 2|〈〈∂̄u, τ̄u〉〉|+2|〈〈∂̄?u, τ̄ ?u〉〉|

≤ δ‖∂̄u‖2+1
δ
‖τ̄u‖2+δ‖∂̄?u‖2+1

δ
‖τ̄ ?u‖2

= δ〈〈1′′u, u〉〉+1
δ
〈〈[τ̄ , τ̄ ?]u, u〉〉.

Together with (52), this implies that (1+ δ)1′′+ (1+ 1/δ)[τ̄ , τ̄ ?] ≥1′+ Xω if ω
is SKT. This is essentially an upper estimate for 1′ whose conjugate yields a lower
estimate for 1′ =1′′. Putting these upper and lower estimates together, we get

(54) (1+ δ)1′′+
(

1+ 1
δ

)
[τ̄ , τ̄ ?] − Xω ≥1

′
≥

1
1+δ

1′′+
1

1+δ
Xω−

1
δ
[τ, τ ?],

for all δ > 0. Since Xω and Xω are nonnegative operators, ignoring them weakens
these inequalities to (48).

(ii) After dividing by 1+ δ, the left-hand side inequality in (54) translates to

1′′ ≥
1

1+δ
1′+

1
1+δ

Xω−
1
δ
[τ̄ , τ̄ ?].

This is precisely (49) if we put h := 1/(1+ δ) ∈ (0, 1) since in this case δ =
(1− h)/h.

To get (50) from (49), it suffices to notice that1h−h1=h(h−1)1′+(1−h)1′′=
(1− h)(1′′− h1′). �

We now observe an analogue of inequality (50) for 1h − h21.
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Lemma 6.2. Let X be a compact complex manifold on which an SKT metric ω
exists. The following inequalities of operators hold:

(55) 1h − h21≥ h2((1− h)Xω− [τ̄ , τ̄
?
])≥−Ch2 for all 0< h < 1,

where Xω := [∂̄ω∧ · , (∂̄ω∧ · )
?
] and C ≥ 0 is a constant independent of h.

Proof. Since1h=h21′+1′′+h A and1=1′+1′′+A, where A :=[∂, ∂̄?]+[∂̄, ∂?],
we get

1h − h21= (1− h)((1+ h)1′′+ h A).

On the other hand, the signless operator A can be estimated in the same way as
a similar operator was estimated in the proof of Lemma A.1. We get 〈〈Au, u〉〉 =
2 Re〈〈∂u, ∂̄u〉〉+ 2 Re〈〈∂?u, ∂̄?u〉〉, hence

h|〈〈Au, u〉〉| ≤ h2
‖∂u‖2+‖∂̄u‖2+ h2

‖∂?u‖2+‖∂̄?u‖2 = h2
〈〈1′u, u〉〉+ 〈〈1′′u, u〉〉

for any form u. Consequently, (1+ h)1′′+ h A ≥ h1′′− h21′ as operators, so we
get

1h − h21≥ h(1− h)(1′′− h1′).

(Note that we can also write |〈〈Au, u〉〉| ≤ 〈〈1′u, u〉〉+ 〈〈1′′u, u〉〉 and we get 1h −

h21= (1− h)((1+ h)1′′+ h A)≥ (1− h)(1′′− h1′) for every form u.)
Meanwhile, from (49) we know that (1−h)(1′′−h1′)≥ h((1−h)Xω−[τ̄ , τ̄

?
])

for all 0< h < 1. Together with the last inequality, this proves the first inequality
in (55).

The second inequality in (55) follows at once from the first since Xω ≥ 0 and
the nonnegative operator [τ̄ , τ̄ ?] is of order zero, hence bounded, so we can choose
C := sup‖u‖=1〈〈[τ̄ , τ̄

?
]u, u〉〉<+∞.

(Using the alternative lower estimate1h−h21≥ (1−h)(1′′−h1′) noticed above,
the inequalities in (55) get replaced by1h−h21≥ h((1−h)Xω−[τ̄ , τ̄

?
])≥−Ch.)

�

If the lower bound −Ch2 in (55) could be improved to 0, then we would have
1h ≥ h21 for all 0< h� 1 (as in Corollary 6.3) and Conjecture 1.1 would follow
by the argument spelt out at the end of section Section 6.

Acknowledgments

The author wishes to thank L. Ugarte for useful discussions about the content of
this paper and for suggestions for Section 5. Thanks are also due to S. Rao and Q.
Zhao for stimulating discussions.



158 DAN POPOVICI

References

[Álvarez López and Kordyukov 2000] J. A. Álvarez López and Y. A. Kordyukov, “Adiabatic limits
and spectral sequences for Riemannian foliations”, Geom. Funct. Anal. 10:5 (2000), 977–1027. MR
Zbl

[Cordero et al. 1997] L. A. Cordero, M. Fernández, L. Ugarte, and A. Gray, “A general description of
the terms in the Frölicher spectral sequence”, Differential Geom. Appl. 7:1 (1997), 75–84. MR Zbl

[Demailly 1986] J.-P. Demailly, “Sur l’identité de Bochner–Kodaira–Nakano en géométrie hermi-
tienne”, pp. 88–97 in Séminaire d’analyse P. Lelong–P. Dolbeault–H. Skoda, années 1983/1984,
edited by P. Lelong et al., Lecture Notes in Math. 1198, Springer, 1986. MR Zbl

[Demailly 2012] J.-P. Demailly, “Complex analytic and differential geometry”, preprint, 2012, https://
tinyurl.com/complexjpd.

[Efremov and Shubin 1989] D. V. Efremov and M. A. Shubin, “Spectrum distribution function and
variational principle for automorphic operators on hyperbolic space”, exposé 8 in Séminaire sur les
Équations aux Dérivées Partielles, 1988–1989, École Polytech., Palaiseau, France, 1989. MR Zbl

[Forman 1995] R. Forman, “Spectral sequences and adiabatic limits”, Comm. Math. Phys. 168:1
(1995), 57–116. MR Zbl

[Frölicher 1955] A. Frölicher, “Relations between the cohomology groups of Dolbeault and topologi-
cal invariants”, Proc. Nat. Acad. Sci. U.S.A. 41 (1955), 641–644. MR Zbl

[Griffiths 1969] P. A. Griffiths, “Hermitian differential geometry, Chern classes, and positive vector
bundles”, pp. 185–251 in Global analysis, edited by D. C. Spencer and S. Iyanaga, Univ. Tokyo
Press, 1969. MR Zbl

[Gromov and Shubin 1991] M. Gromov and M. A. Shubin, “Von Neumann spectra near zero”, Geom.
Funct. Anal. 1:4 (1991), 375–404. MR Zbl

[Mazzeo and Melrose 1990] R. R. Mazzeo and R. B. Melrose, “The adiabatic limit, Hodge cohomol-
ogy and Leray’s spectral sequence for a fibration”, J. Differential Geom. 31:1 (1990), 185–213. MR
Zbl

[Ohsawa 1982] T. Ohsawa, “Isomorphism theorems for cohomology groups of weakly 1-complete
manifolds”, Publ. Res. Inst. Math. Sci. 18:1 (1982), 191–232. MR Zbl

[Popovici 2016] D. Popovici, “Degeneration at E2 of certain spectral sequences”, Internat. J. Math.
27:14 (2016), art. id. 1650111. MR Zbl

[Witten 1985] E. Witten, “Global gravitational anomalies”, Comm. Math. Phys. 100:2 (1985), 197–
229. MR Zbl

Received October 10, 2017. Revised July 15, 2018.

DAN POPOVICI

INSTITUT DE MATHÉMATIQUES DE TOULOUSE

UNIVERSITÉ PAUL SABATIER

TOULOUSE

FRANCE

popovici@math.univ-toulouse.fr

http://dx.doi.org/10.1007/PL00001653
http://dx.doi.org/10.1007/PL00001653
http://msp.org/idx/mr/1800061
http://msp.org/idx/zbl/0965.57024
http://dx.doi.org/10.1016/S0926-2245(96)00038-1
http://dx.doi.org/10.1016/S0926-2245(96)00038-1
http://msp.org/idx/mr/1441920
http://msp.org/idx/zbl/0880.53055
http://dx.doi.org/10.1007/BFb0077045
http://dx.doi.org/10.1007/BFb0077045
http://msp.org/idx/mr/874763
http://msp.org/idx/zbl/0594.32031
https://tinyurl.com/complexjpd
http://www.numdam.org/item?id=SEDP_1988-1989____A8_0
http://www.numdam.org/item?id=SEDP_1988-1989____A8_0
http://msp.org/idx/mr/1032284
http://msp.org/idx/zbl/0698.35168
http://dx.doi.org/10.1007/BF02099584
http://msp.org/idx/mr/1324391
http://msp.org/idx/zbl/0827.58001
http://dx.doi.org/10.1073/pnas.41.9.641
http://dx.doi.org/10.1073/pnas.41.9.641
http://msp.org/idx/mr/0073262
http://msp.org/idx/zbl/0065.16502
https://publications.ias.edu/node/185
https://publications.ias.edu/node/185
http://msp.org/idx/mr/0258070
http://msp.org/idx/zbl/0201.24001
http://dx.doi.org/10.1007/BF01895640
http://msp.org/idx/mr/1132295
http://msp.org/idx/zbl/0751.58039
http://dx.doi.org/10.4310/jdg/1214444094
http://dx.doi.org/10.4310/jdg/1214444094
http://msp.org/idx/mr/1030670
http://msp.org/idx/zbl/0702.58007
http://dx.doi.org/10.2977/prims/1195184021
http://dx.doi.org/10.2977/prims/1195184021
http://msp.org/idx/mr/660827
http://msp.org/idx/zbl/0526.32016
http://dx.doi.org/10.1142/S0129167X16501111
http://msp.org/idx/mr/3593673
http://msp.org/idx/zbl/1365.53067
http://dx.doi.org/10.1007/BF01212448
http://msp.org/idx/mr/804460
http://msp.org/idx/zbl/0581.58038
mailto:popovici@math.univ-toulouse.fr


PACIFIC JOURNAL OF MATHEMATICS
Vol. 300, No. 1, 2019

dx.doi.org/10.2140/pjm.2019.300.159

ON A COMPLEX HESSIAN FLOW

WEIMIN SHENG AND JIAXIANG WANG

We consider a gradient flow generated by a complex Hessian functional
which is defined on compact Kähler manifolds. By setting up the a priori
estimates of the admissible solutions, we prove the long-time existence of
the solution to the flow and its convergence. Thus we show the functional
admits a local minimal point in the space of admissible functions. As its
application, we show the solvability of a class of complex Hessian equations.

1. Introduction

Let (M, ω) be a compact Kähler manifold of dimension n ≥ 2. For convenience,
we write ω =

√
−1gi j̄ dzi

∧ dz̄ j in a local coordinate chart. Let u be a smooth
function on M. We denote ωu = ω +

√
−1∂∂̄u. Locally it can be written as

√
−1(gi j̄ +ui j̄ )dzi

∧dz̄ j. We formulate the complex Hessian equations as follows.
Let σk(λ1, . . . , λn) be the k-th elementary symmetric function, i.e.,

σk(λ1, . . . , λn)=
∑

1≤i1<···<ik≤n

λi1 · · · λik ,

where (λ1, . . . , λn) ∈ Rn, and 1≤ k ≤ n. Let λω{ai j̄ } denote the eigenvalues of the
Hermitian symmetric matrix {ai j̄ } with respect to the Kähler form ω. We define

σk(ai j̄ )= σk(λω{ai j̄ }).

By a simple calculation, it can be shown that

σk(ωu)=

(
n
k

)
ωk

u ∧ω
n−k

ωn .

When k = 1, it is a quasilinear operator; when k = n, the n-Hessian operator
corresponds to the complex Monge–Ampére operator, which plays a central role in
Kähler geometry. We require the function u to satisfy a natural admissible condition,

(1-1) u ∈ SHk(ω)= {u ∈ C2,α(M) | σ j (ω+
√
−1∂∂̄u) > 0, 1≤ j ≤ k}.

MSC2010: 35K55, 53C44, 53C55.
Keywords: fully nonlinear flow, complex Hessian equation.
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In this case, the operator log σk is concave. We consider the following parabolic
complex Hessian equation

(1-2)


∂u
∂t
= logσk(gi j̄+ui j̄ )−log f (x,u)= log

(
n
k

)
ωk

u∧ω
n−k

ωn −log f (x,u),

u|M×{0}= u0,

where f (x, z) ∈ C∞(M × R) is a given strictly positive function and [0, T ) is
the maximal time interval in which the solution exists. We are going to study its
existence and convergence of the solution to the flow (1-2). In order to obtain
the L∞-estimate of the solutions, we further require the function f to satisfy the
following conditions: ∂ f (x,z)

∂z > 0 for each x ∈M, and there exists a positive constant
z0 ∈ R such that f (x, z) >

(n
k

)
at each point when z > z0, and f (x, z) <

(n
k

)
when

z <−z0. This requirement is natural in real fully nonlinear type Yamabe problems;
see [Li and Sheng 2011], for example. When k = n and f (x, z) = f (x)ez, the
corresponding flow is the Kähler Ricci flow over manifolds with negative first Chern
class, which has been solved by H. D. Cao [1985]. Our research can be viewed as
a generalization of Cao’s work.

Lu [2013] discussed the complex Hessian equation

(1-3) σk(gi j̄ + ui j̄ )= f (x, u)=
(

n
k

)
(ω+
√
−1∂∂̄u)k ∧ωn−k

ωn ,

and proved the uniqueness and existence of the solution in a weak sense under some
integrability condition. In the case that f does not depend on u, the complex Hessian
equation has been studied extensively in recent years. Hou [2009] proved an a priori
C0 estimate and solved it on manifolds with nonnegative holomorphic bisectional
curvature. Hou et al. [2010] obtained the second-order estimate which depends
on the square of the gradient estimates. By a blow-up argument and a Liouville
type theorem, Dinew and Kolodziej [2017] further obtained the gradient estimate.
W. Sun [2017] obtained the L∞ estimate under the assumption of cone condition.
D. H. Phong et al. [2016] studied more general complex Hessian equations for
f depending not only on u but also on Du, and got the C2 estimates under the
assumption that the solutions are (k+1)-admissible. Recently Lu and Nguyen
[2015] studied the complex Hessian functional

Hk(u)=

(n
k

)
k+ 1

n∑
j=0

∫
M

u(ω+
√
−1∂∂̄u) j

∧ωn− j .

It can be easily shown that its gradient operator is(
n
k

)
(ω+
√
−1∂∂̄u)k ∧ωn−k

ωn .
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In this paper we consider the complex Hessian functional

(1-4) Jk(u)=
∫

M
F(x, u)ωn

−

(n
k

)
k+ 1

k∑
j=0

∫
M

u(ω+
√
−1∂∂̄u) j

∧ωn− j

where F(x, u(x)) =
∫ u(x)

t0
f (x, z)dz. By use of the observation that (1-2) is the

gradient flow of (1-4), we can prove the long-time existence of the solution to (1-2)
and its convergence in the space of admissible functions. As its application, we
show the regularity of the solution in [Lu 2013] under a slight restriction on f .

Recently, the complex Hessian equations (1-2) and (1-3) have attracted much
interest because of their relations with many geometric problems, including the
J -flow [Song and Weinkove 2008], quaternion geometry [Alesker and Verbitsky
2010] and Fu–Yau equations [Fu et al. 2012], etc. The real counterpart of the
Hessian equations have been studied intensively in the literature; see the survey
paper [Wang 2009].

Our main result in this paper can be stated as follows:

Theorem 1.1. Let (M, ω) be a closed Kähler manifold of dimension n ≥ 2. Assume
that f (x, z) satisfies the particular monotonicity conditions,

(1-5)

0< f ∈ C∞(M ×R),
∂ f (x, z)
∂z

> 0, and

there exists z0 such that


f (x, z) >

(n
k

)
if z > z0,

and f (x, z) <
(n

k

)
if z <−z0,

then (1-2) admits a unique solution u(x, t) defined on M×[0, T ] for any T > 0, and

(1-6) ‖u‖C2,α(M×[0,T ]) ≤ C,

where C depends only on ‖ f ‖C2,α(M×[−‖u‖C0 ,‖u‖C0 ]), ‖u0‖C2,α and the metric ω
on M. Further, u(x, t) converges to the solution of (1-3) uniformly when t→∞.

In Section 2 we calculate the first and second variations of the Hessian functional
(1-4), and show the parabolic equation (1-2) is a decreasing gradient flow, which
would converge to the critical point if it is convergent and achieves a local minima
under the monotonicity conditions (1-5) of f (x, z). We also give a proof of the
short-time existence of the parabolic equation, which follows from the standard
parabolic methods.

In Section 3, we obtain:

Theorem 1.2. Let (M, ω) be a closed Kähler manifold of dimension n ≥ 2. As-
sume that f (x, z) satisfies (1-5). Let u be an admissible solution to (1-2). Then
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|u(x, t)| ≤ z0 + 1 on M × [0, T ] for any T > 0. Furthermore,
∣∣ ∂
∂t u(x, t)

∣∣ ≤
e−H1t

‖ut(x, 0)‖C0(M), where the constant H1 = infM×[−L ,L] hz(x, z) depends only
on z0 and f (x, z), and h(x, z)= log f (x, z).

We note that the estimate on ut implies the convergence of the flow in the space of
the admissible functions. We also remark here that if we drop out the monotonicity
condition (1-5) on f , it would be much more complicated to obtain the lower bound
of ut , whereas the uniform upper bound exists by a direct calculation.

Next we denote ‖u(x, t)‖C0(M×[0,T ]) := L . In Section 5 we show:

Theorem 1.3. Let (M, ω) be a closed Kähler manifold of dimension n ≥ 2. Assume
that f (x, z) satisfies 0< f (x, z) ∈ C∞(M×R). Let u be an admissible solution to
(1-2). Then

sup
M×{t}

|∂∂̄u| ≤ C( sup
M×[0,T )

|Du|2+ 1),

where the positive constant C depends only on L , ‖ log f (x, z)‖C2(M×[−L ,L]) and
sup |ut |, and is independent of t .

Our argument comes from [Chou and Wang 2001] (see [Sheng et al. 2004] and
[Hou et al. 2010] also).

By use of a standard blow-up argument, we reduce the gradient estimate of u,
i.e., an estimate on supM×[0,T ] ‖Du‖ independent of T, to a Liouville type theorem
which has been set up in [Dinew and Kołodziej 2017].

Theorem 1.4. Let (M, ω) be a closed Kähler manifold of dimension n ≥ 2. Assume
that f (x, z) satisfies 0< f (x, z) ∈ C∞(M×R). Let u be an admissible solution to
(1-2). Then supM×{t} ‖Du‖2 ≤ K, where K is a constant which depends only on L ,
‖ log f (x, z)‖C2(M×{t}), and supM×{t} |ut |, and is independent of t .

In the final section, we describe how to get the higher-order estimates, which
follows from the classic Evans–Krylov type local estimate. We state our result as
follows:

Let x ∈ M, t ∈ [0, T ], T > 0, and R ∈ R, R > 0. Denote

Q(x, t, R) : = {(y,s)∈M×[0,T ] | dist(y, x)≤ R,s ∈ (t−R, t)},

C̃2,α(M×(a,b)) : = {u(x, t)∈C2,α(M) if fix t;u(x, t)∈C1, 1
2α(a′,b′) if fix x},

sup
M×[0,T ]

|∂∂̄u| : = S.

Theorem 1.5. Let

F(u)−
∂u
∂t
= h(x, u)

be a fully nonlinear parabolic equation on a closed Kähler manifold M of dimension
n ≥ 2, where F(A) is monotone and concave on admissible space. Then at each
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(x, t) ∈ M ×[0, T ], there exists R0, such that

‖u(x, t)‖C̃2,α(Q(x,t,R0))
≤ C(‖u‖C̃2(Q(x,t,R0))

).

2. Discussion on the functional

Throughout the paper, we denote A = {ai j̄ } an Hermitian (1,1)-tensor, λω(A) its
eigenvalues with respect to the metric ω, and F(A) := σk(λω(ai j̄ )). We also write

F i j̄
: =

∂F
∂ai j̄

, F i j̄,pq̄
:=

∂2 F
∂ai j̄∂apq̄

.

By a standard calculation (see [Wang 2009]) we can see when gi j̄ = δi j and ai j̄ is
diagonal,

(2-1) F i j̄
= σk−1;iδi j ,

and

(2-2) F i j̄,pq̄
=


F i ī,p p̄

=
σk−2;i,p
σk
−

σk−1;iσk−1;p

(σk)2
i = j, p = q, i 6= p,

F i j̄, j ī
=−

σk−2;i, j
σk

i = p, j = q, i 6= j,

0 otherwise,

where σk;i := σk(λ1, . . . , λi−1, λi+1, . . . , λn).
We consider the following functional which was studied by Lu and Nguyen [2015]:

(2-3) Jk(u)=
∫

M
F(x, u)ωn

−

(n
k

)
k+ 1

k∑
j=0

∫
M

u(ω+
√
−1∂∂̄u) j

∧ωn− j .

Its Euler–Lagrange equation is

(2-4) σk(gi j̄ + ui j̄ )= f (x, u)=
(

n
k

)
(ω+
√
−1∂∂̄u)k ∧ωn−k

ωn ,

where

F(x, u(x))=
∫ u(x)

0
f (x, z)dz.

Note that F(x, z) > 0 when z > 0, and F ≤ 0 otherwise.
For convenience, we list calculations on the first and second variations as follows.

δ J (u)φ =
∫

M
f (x, u)φωn

−

(n
k

)
k+ 1

k∑
j=0

∫
M
φ(ωu)

j
∧ωn− j

−

(n
k

)
k+ 1

k∑
j=0

∫
M

j u(
√
−1∂∂̄φ)∧ (ωu)

j−1
∧ωn− j ,
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with the third term

−

(n
k

)
k+1

k∑
j=1

∫
M

j u(
√
−1∂∂̄φ)∧(ωu)

j−1
∧ωn− j

=−

(n
k

)
k+1

k∑
j=1

∫
M

j φ(
√
−1∂∂̄u)∧(ωu)

j−1
∧ωn− j

=−

(n
k

)
k+1

k∑
j=1

∫
M

j φ(
√
−1∂∂̄u+ω−ω)∧(ωu)

j−1
∧ωn− j

=−

(n
k

)
k+1

k∑
j=1

∫
M

j φ(ωu)
j
∧ωn− j

+

(n
k

)
k+1

k−1∑
j=0

∫
M
( j+1)φ(ωu)

j
∧ωn− j

=

(n
k

)
k+1

∫
M
φωn
+

(n
k

)
k+1

k−1∑
j=1

∫
M
φ(ωu)

j
∧ωn− j

−
k
(n

k

)
k+1

∫
M
φ(ωu)

k
∧ωn−k .

Hence the original formula turns out to be

(2-5) δ J (u)φ =
∫

M
φ f (x, u)−

(
n
k

)∫
M
φ(ω+

√
−1∂∂̄u)k ∧ωn−k .

Now we calculate the second variations. It is easy to get

(2-6) δ2 Jk(u)φ2
=

∫
M

∂

∂z
f (x, u(x))φ2ωn

+
√
−1

∫
M
∂φ ∧ ∂̄φ ∧ (ω+

√
−1∂∂̄u)k−1

∧ωn−k .

Under the normal coordinates ω +
√
−1∂∂̄u =

√
−1

∑
i (1 + ui ī )dzi

∧ dz̄i, we
compute the second term
√
−1dφ∧∂̄ψ∧(ω+

√
−1∂∂̄u)k−1

∧ωn−k

= (n−k)!(k−1)!(
√
−1)nφziψz̄iσk−1;i (ω+

√
−1∂∂̄u)dz1

∧dz̄1
∧·· ·∧dz̄n.

Therefore, under the monotonicity condition (1-5) on f (x, z), the second variation
(2-6) is positive for nonzero C2 function φ, and the functional Jk would achieve a
local minimum at each critical point.

In the rest of this section, we show the solution to the flow (1-2) exists in a short-
time interval. Consider the following map F which is defined from C2,α(M×[0, T ))
to C0,α(M ×[0, T )):

F(w)= log σk(gi j̄ +wi j̄ )− log f (x, w)−wt .
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At first, for any initial function u0 ∈ SHk(ω), we extend u0 to a function 8 in
C2,α(M ×[0, T )) so that

∂ j

(∂t) j

∣∣∣
t=0

(F(8))= 0,

where j = 0, 1. We write 8(x, t)= u0(x)+ u1(x)t + 1
2 u2(x)t2, where

u1(x)= log σk(gi j̄ + (u0)i j̄ )− log f (x, u0),

u2(x)= F i j̄ (ω+ ddcu0)(u1)i j̄ −
fz

f
(x, u0)u1.

The linearization of the map F at 8 is

DF(8)w = F i j̄ (8)wi j̄ −
fz

f
(x,8)w−wt .

Thus, by the invertibility of the Fréchet derivative DF(8) and the implicit func-
tion theorem, we can choose t to be suitably small such that 8 ∈ SHk(ω, t) and
‖F(8)‖C0,α(M×[0,t)) are sufficiently small, therefore F(8 + w) = 0 is solvable.
Therefore we get:

Proposition 2.1. Let (M, ω) be a closed Kähler manifold of dimension n ≥ 2 and
u0 ∈ SHk(ω). Then the flow (1-2) has a unique solution on the interval [0, ε) for
some ε > 0.

3. Estimates on |u(x, z)|, |ut(x, z)| and convergence of the flow

Let xt be the maximal point of u at time t , and Mt the maximum. It is easy to see
that Mt varies continuously. At xt , by (1-2), we have

du
dt
= log σk − log f (xt ,Mt)≤ log

(
n
k

)
− log f (xt ,Mt).

Suppose Mt > z0+ 1, then on (t − ε, t + ε), by the monotonicity condition (1-5),
we have f (xt ,Mt) >

(n
k

)
, which implies

du
dt
≤ 0.

Similarly, let yt the minimal point of u at time t with its value mt . At yt , if mt <−z0,
then by (1-5)

du
dt
= log σk − log f (yt ,mt)≥ log

(
n
k

)
− log f (yt ,mt)≥ 0.

So |u(x, z)| ≤ z0+ 1.
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Next we estimate on |ut |. Differentiating (1-2) on both sides simultaneously at t ,
we obtain

ut t = F i j̄ ui j̄ t − hzut = F i j̄ uti j̄ − hzut ,

where we denote h(x, z)= log f (x, z). Since hz > 0, let H1= infM×[−L .L] hz(x, z)
be its positive lower bound. Let t ∈ (0, T ) be an arbitrary time. Suppose ut achieves
its maximum Mt at xt . Without loss of generality, we may suppose Mt > 0. Then
at xt ,

ut t = F i ī uti ī − hz(x, u)ut ≤−H1ut .

It follows that ut ≤ e−H1t
‖ut(x, 0)‖. Similarly, we can get ut ≥−e−H1t

‖ut(x, 0)‖.
Therefore we have ‖ut‖ ≤ e−H1t

‖ut(x, 0)‖. Moreover, by use of the second-order
derivative and gradient estimates in the next two sections, we can get the C2,α-
estimate of the solutions to (1-2) in the last section. Then there is a subsequence
ti →∞ such that u(x, ti ) ∈ C2(M)

⋂
SHk(M, ω) converges, which can be ob-

tained directly by the fact limt→∞ |ut(x, t)| = 0. So the limit of the solutions
limt→∞ u(x, t) is a critical point of Jk(u) which solves the corresponding elliptic
equation.

4. Second-order estimates

As we denoted above, h(x, z) := log f (x, z). Our arguments are a parabolic version
of those in [Hou et al. 2010], through a careful calculation so as to make sure the
second-order estimate is controlled by the square of the gradient estimate linearly.
We use the following conventions in this section:

K =max{sup |Du|2, 1},

L = sup |u|,

H = ‖h(x, z)‖C2(M×[−L ,L]),

U = sup |ut |.

Consider

(4-1) W (x, t, ξ)= (1+ ui j̄ξ
i ξ̄ j ) exp(φ(‖Du‖2)+ψ(u)),

where ξ is a unit tangent vector at the corresponding point. We define

φ(z)=−1
2

log
(

1− z
2K

)
,

and

ψ(z)=−A log
(

1+ z
2L

)
.
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Then we have

φ′(z)= 1
2

1
2K−z

,

φ′′(z)= 1
2

1
(2K−z)2

= 2(φ′(z))2,

ψ ′(z)=−A 1
2L+z

,

ψ ′′(z)= A 1
(2L+z)2

> 0,

and φ′(‖Du‖2) ∈
[ 1

4K ,
1

2K

]
, ψ ′(u) ∈

[
−

A
L ,−

1
3L A

]
. We choose A as

A = 6L sup ‖Rm‖−
L
2
+ 1.

For any T > 0, we choose the coordinates around the maximum point of W on
M × (0, T ] ×S2n−1 such that the matrix {gi j̄ + ui j̄ } is diagonal at the point, and
satisfies

λ1 ≥ λ2 ≥ · · · ≥ λn,

where

λi = 1+ ui ī .

After a straightforward calculation, we see

F i ī (x0, t0)=
σk−1;i

σk
,

F :=

n∑
i=1

F i ī
= (n− k+ 1)

σk−1

σk
,

F i īλi = k.

Since ξ = ∂
∂z1 , we may extend ξ to the chart by letting ξ = (g11̄)

−
1
2 ∂
∂z1 . Using these

coordinates, at (x0, t0), we have

G(x, t) := log W (x, t, ξ)= log
(

1+ u11̄
g11̄

)
+φ(|Du|2)+ψ(u),(4-2)

0≤ G t =
u11̄t

1+ u11̄
+φ′

∑
p

{u pt u p̄ + u pu p̄t }+ψ
′ut ,(4-3)

0= Gi =
u11̄i

1+ u11̄
+φ′{u pi u p̄ + ui u ī i }+ψ

′ui ,(4-4)
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and

(4-5) 0≥ F i ī Gi ī−G t = F i ī u11̄i ī

1+u11̄
−F i ī
‖

u11̄i

1+u11̄
‖

2

+φ′F i ī u pi u p̄ī+φ
′F i ī
‖ui ī‖

2
+φ′F i ī

{u pi ī u p̄+u pu p̄i ī }

+φ′′F i ī
‖u pi u p̄+ui u ī i‖

2
+ψ ′F i ī ui ī+ψ

′′F i ī
‖ui‖

2
−G t .

Taking the derivative of (1-2) on both sides in the ∂/∂z p direction, we have

(4-6) utp = u pt = F i ī ui ī p − hzu p − h p.

By commuting the covariant derivatives

F i ī ui ī p = F i ī u pi ī + F i ī Rī pi q̄uq ,

where we have used the curvature tensor R(∂/∂zi , ∂/∂ z̄ j )∂/∂zk
= R l

i j̄ k
∂/∂zl . We

obtain

F i ī u pi ī = u pt + hzu p − F i ī Rī pi q̄uq + h p.

Similarly

F i ī u p̄i ī = u p̄t + hzu p̄ + h p̄.

Hence we have

(4-7) φ′
∑

F i ī
{u pi ī u p̄ + u pu p̄i ī }−φ

′
∑
{u pt u p̄ + u pu p̄t }

= φ′
{
2hz|Du|2− F i ī Rī pi q̄uqu p̄ + h pu p̄ + h p̄u p

}
≥−

sup |Rm |

2
F−

3
2

H.

Taking the second derivative of (4-6) on both sides, we have

utkl̄ = ukl̄t = F i j̄ ui j̄ kl̄ + F i j̄,pq̄ui j̄ ku pq̄l̄ − hkl̄ − hkzu l̄ − hzukl̄ − hzl̄uk − hzzuku l̄ .

Since

(4-8) ui j̄ kl̄ = ukl̄i j̄ + u p j̄ R p
i kl̄
− u pl̄ R p

i k j̄
,

by choosing k = 1, l̄ = 1̄, and taking the value at the maximal point, we get

F i ī ui ī11̄ = F i ī u11̄i ī + F i ī Ri 1̄1ī (ui ī − u11̄).
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Hence we have

(4-9) F i ī u11̄i ī

1+ u11̄
−

u11̄t

1+ u11̄

= λ−1
1

{
−F i j̄,pq̄ui j̄1u pq̄ 1̄+ h11̄+ h1zu1̄+ hzu11̄+ hz1̄u1+ hzz|u1|

2

+ F i ī Ri 1̄1ī (u11̄− ui ī )
}

≥ λ−1
1

{
−F i j̄,pq̄ui j̄1u pq̄ 1̄− 2H − 2H

√
K − Hλ1− H K
− sup ‖Rm‖(λ1F− k)

}
.

We may suppose λ1 ≥ K, and K ≥ 1, otherwise we are done. Thus

−2H
√

K − H K
λ1

≥−3H.

Then (4-9) becomes

(4-10) F i ī u11̄i ī

1+ u11̄
−

u11̄t

1+ u11̄

≥−F i j̄,pq̄ui j̄1u pq̄ 1̄− sup ‖Rm‖F− 5H − k sup ‖Rm‖.

The third term of (4-3) satisfies

(4-11) −ψ ′ut ≥−
A
L

U.

The seventh term of (4-5) satisfies

(4-12) ψ ′F i ī ui ī = ψ
′F i īλi −ψ

′
∑

F i ī
≥−

A
L

k+
A

3L
F.

The forth term of (4-5) satisfies

(4-13) φ′F i ī
|ui ī |

2
= φ′F i ī (λi − 1)2

= φ′F i īλ2
i − 2φ′F i īλi +φ

′F≥
1

4K
F i īλ2

i +
1

4K
F−

k
K
.

Substituting (4-7)–(4-13) into (4-5), we obtain

(4-14) 0≥−F i j̄,pq̄ui j̄1u pq̄ 1̄− F i ī
∣∣∣∣ u11̄i

1+ u11̄

∣∣∣∣2+φ′′F i ī
∣∣∣∣u pi u p̄ + ui u ī i

∣∣∣∣2
+ψ ′′F i ī

|ui |
2
+

{
−2 sup |Rm | +

1
4K
+

A
3L

}
F

−

{
k sup |Rm | + 5H + A

L
U + A

L
k+ k

K

}
+

1
4K

F i īλ2
i .

Now we set

δ =
1

1+ 2A
=

1
6L sup ‖Rm‖+ 2

.
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We separate the rest of the calculations into two cases.

Case 1: λn ≤−δλ1. The first term of (4-14) is

(4-15) −F i j̄,pq̄ui j̄1u pq̄ 1̄ ≥ 0.

The second term is

(4-16) −F i ī
∣∣∣∣ u11̄i

1+ u11̄

∣∣∣∣=−F i ī
∣∣∣∣φ′(u pi u p̄ + ui u ī i )+ψ

′ui

∣∣∣∣2
≥−2(φ′)2 F i ī

|u pi u p̄ + ui u ī i |
2
− 2(ψ ′)2 F i ī

|ui |
2.

Since 2φ′ 2 = φ′′, the first term of (4-16) cancels out the third term of (4-14). The
second term of (4-16) can be estimated as

(4-17) −2(ψ ′)2 F i ī
|ui |

2
≥−2(ψ ′)2FK ≥−A2 8

9L2 FK .

Substituting (4-15)–(4-17) into (4-14), we obtain

(4-18) 0≥
{
−2 sup ‖Rm‖+ 1

4K
+

A
3L
− A2 8

9L2 K
}

F

−

{
k sup ‖Rm‖+ 5H + A

L
U + A

L
k+ k

K

}
+

1
4K

F i īλ2
i .

In the final term of (4-18), since λ2
n ≥ δ

2λ2
1, and

Fnn̄
≥ · · · ≥ F11̄

imply

Fnn̄
≥

F

n
,

we can estimate Fnn̄ as
1

4K
F i īλ2

i ≥
δ2

4K n
Fλ2

1.

Therefore, (4-18) becomes{
2 sup ‖Rm‖− 1

4K
−

A
3L
+ A2 8

9L2 K
}

F

+

{
k sup ‖Rm‖+ 5H + A

L
U + A

L
k+ k

K

}
≥

δ2

4K n
Fλ2

1.

The choice of A implies that the coefficient of F is negative. So we have

λ2
1 ≤ C(K 2

+ 1).
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Case 2: λn > −δλ1. The argument comes from [Chou and Wang 2001] in real
Hessian equations (see also [Hou et al. 2010] in complex Hessian equations) where
the authors proved the inequality F11̄

=
σk−1;1
σk
≥

k
n

1
λ1

. Thus, 1/F11̄
≤

n
k λ1. Let

I=
{

j
∣∣ F j j̄ (x0, t0)≥

1
δ

F11̄(x0, t0), i.e., σk−1; j ≥
1
δ
σk−1;1

}
.

It is easy to verify 1 /∈ I. Then we separate the second term of (4-14) into two parts;
one part is

(4-19) −
∑

Ic

F i ī
∣∣∣∣ u11̄i

1+u11̄

∣∣∣∣2=−∑
Ic

F i ī
|φ′{u pi u p̄+ui u ī i }+ψ

′ui |
2

≥−2(φ′)2
∑

Ic

F i ī
|u pi u p̄+ui u ī i |

2
−2(ψ ′)2

∑
Ic

F i ī
|ui |

2.

The final term in (4-19) can be estimated by

(4-20) −2(ψ ′)2
∑

Ic

F i ī
|ui |

2
≥−A2 2n

L2δ2 F11̄K .

We claim the other part of the second term of (4-14) satisfies

(4-21) −
∑

I

F i ī
∣∣∣∣ u11̄i

1+ u11̄

∣∣∣∣2− F i j̄,pq̄ ui j̄1u pq̄ 1̄

1+ u11̄

+φ′′
∑

I

F i ī
|u pi u p̄ + ui u ī i |

2
+

∑
ψ ′′F i ī

|ui |
2
≥ 0.

Then, by (4-19)–(4-21), (4-14) becomes

(4-22) 0≥
{
−2 sup ‖Rm‖+ 1

4K
+

A
3L

}
F

−

{
k sup ‖Rm‖+ 5H + A

L
U + A

L
k+ k

K

}
+

1
4K

F i īλ2
i − A2 2n

L2δ2 F11̄K .

Since A ≥ 6L sup ‖Rm‖− L
2K + 1, the coefficient of F is positive. We denote it

as C1, which depends only on L . We then have

(4-23) k sup ‖Rm‖+5H+
A
L

U+
A
L

k+
k
K
≥C1F+

1
4K

F11̄λ2
1−2n A2 1

L2δ2 F11̄K .

We may suppose

(4-24) F11̄λ2
1

1
8K
≥ 2n A2 1

L2δ2 F11̄K ,
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otherwise,

λ1 < 5n A
K
Lδ
,

and we are done. Now by (4-24), (4-23) becomes

k sup |Rm | + 5H +
A
L

U +
A
L

k+
k
K
≥ C1F+

1
8K

F11̄λ2
1.

By [Chou and Wang 2001], we have F11̄
= σk−1;1/σk ≥ (k/n)(1/λ1). Therefore

λ1 ≤ C(K + 1).

Now in order to finish the proof of Theorem 1.3, we need to prove the claim (4-21).
In fact it was proved in [Hou et al. 2010], so we omit it here.

5. A blow up argument

In order to obtain the C1-estimate, we employ a blow-up method analogous to that
in [Dinew and Kołodziej 2017] and reduce the problem to a Liouville type theorem
which was proved in [Dinew and Kołodziej 2017]. Thus we obtain a contradiction.

Suppose on a compact Kähler manifold (M, ω), there exists a positive function
f (x, z) ∈ C∞(M ×R) and u(x, t) on M × [0, T ], such that for each t , u(x, t) ∈
SHk(ω) and

(5-1) (ω+
√
−1∂∂̄u)k ∧ωn−k

= f (x, u)e
∂u
∂t ωn,

but there exists a sequence of t j ,

(5-2) sup
M
‖du(x, t j )‖ = ‖du(x j , t j )‖ = C j →+∞, as j→+∞,

where x j is the maximal point of ‖du(x, t j )‖ =: ‖du j (x)‖.
It follows from Theorem 1.3 that

sup ‖
√
−1∂∂̄u j‖ ≤ C(C2

j + 1)= O(C2
j ).

Without loss of generality, we suppose x j → x0, t j → t0 as j→+∞, and all x j

are contained in a geodesic ball Bε(x0), which is of radius ε and centered at x0,
where ε > 0 is a fixed constant. Choose coordinates (z1, . . . , zn), briefly denoted
by z, and centered at x0, and x j = (z1

j , . . . , zn
j ), briefly z j . By the definition of

Kähler metric, ω can be approximated by a standard Euclidean type metric β up to
order 2, i.e.,

ω = β + O(|z|2), |z| → 0.

Moreover by the ∂∂̄-lemma, the metric can be locally written as the potential of a
function v,

ω =
√
−1∂∂̄v(z1, . . . , zn).
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Now we consider the functions

û j (z)= u
(

z j +
z

C j
, t j

)
.

By the construction, we conclude that û j ∈ SHk(ω) on the ball

BεC j (0)= {z ∈ Cn, |z|< εC j },

and

dû j (z)=
1

C j
du(z, t j ),

√
−1∂∂̄ û j (z)=

1
C2

j
ddcu(z, t j ).

Hence we have

sup
M
‖dû j‖ = 1, sup

M
‖
√
−1∂∂̄ û j‖< C.

This yields that û j is contained in the Hölder space C1,γ with a uniform bound.
Along with a standard application of the Azela–Ascoli theorem, we may suppose û j

has a limit û on the complex Euclidean space Cn. However by (5-1),

(
√
−1∂∂̄(v+ u)(z))k ∧ (

√
−1∂∂̄v(z))n−k

= f (z, u(z, t j ))e
ut j (ddcv(z))n.

Hence û j satisfies

(5-3)
(

1
C2

j

√
−1∂∂̄v

(
z j+

z
C j

)
+
√
−1∂∂̄ û j (z)

)k

∧

(
1

C2
j

√
−1∂∂̄v

(
z j+

z
C j

))n−k

= O
(

1
C2n

j

)(
√
−1∂∂̄v

(
z j +

z
C j

))n

Since ω = β + O(|z|2) near the origin, we have for j sufficiently large,

(5-4)
(

1
C2

j
β +
√
−1∂∂̄ û j

)k

∧

(
1

C2
j
β

)n−k

= O
(

1
C2n

j

)
βn.

Taking the limits on both sides simultaneously,

(5-5) (
√
−1∂∂̄ û(z))k ∧βn−k

= 0,

where û is defined on Cn. When 1≤ m < k, similar arguments show that

(
√
−1∂∂̄ û)m ∧βn−m

≥ 0.

Then by the Liouville type theorem proved in [Dinew and Kołodziej 2017], û must
be a constant. Since ‖dû(x j , t j )‖ = 1, there is a sufficiently small neighborhood
of x0, ‖dû(x, t j )‖> 1− ε. Therefore ‖dû(x0)‖ ≥ 1− ε. This is a contradiction.
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6. An Evans–Krylov type estimate of parabolic version

We give an Evans–Krylov’s type local estimate (Theorem 1.5) in this section.
At any point (x, t), choose local coordinates on its neighborhood U × [0, T ).

First by differentiating the equation on both sides of (1-2) twice simultaneously, we
can obtain a uniform bound at each point in this neighborhood on

{
∂
∂t −4real

}
ukl̄

and
{
∂
∂t −4real

}
ut .

(6-1) F i ī ukl̄i ī − ukl̄t =−F i j̄,pq̄ui j̄ ku pq̄l̄ + hkl̄ + hkzu l̄ + hzukl̄ + hzl̄uk

+hzzuku l̄ + F i ī Ri k̄kī (ukk̄ − ui ī ),

where we have used the Ricci identities (4-8). Here we recall h(x, z)= log f (x, z).
Since

F i ī Ri k̄kī (ukk̄ − ui ī )= F i ī Ri k̄kī (λk − λi )≥−2S sup ‖Rm‖
∑

i

F i ī ,

we then choose
ψ̃(z)= 6L S sup ‖Rm‖ log

(
1+ z

2L

)
.

Note that

ψ̃ ′(z)=
6L S sup ‖Rm‖

2L + z
.

We have

F i ī (ukl̄(x, t)− ψ̃(u))i ī − (ukl̄(x, t)− ψ̃(u))t

= − F i j̄,pq̄ui j̄ ku pq̄l̄ + hkl̄ + hkzu l̄ + hzukl̄ + hzl̄uk + hzzuku l̄

+ F i ī Ri k̄kī (ukk̄ − ui ī )− F i ī ψ̃ ′ui ī − F i ī ψ̃ ′′|ui |
2
+ ψ̃ ′ut .

Since

F i ī Ri k̄kī (ukk̄ − ui ī )− F i ī ψ̃ ′ui ī

≥−2 sup ‖Rm‖S
∑

F i ī
− 6kL S sup ‖Rm‖+ 2S sup ‖Rm‖

∑
F i ī

≥−6kL S sup ‖Rm‖,

we have

(6-2) F i ī (ukl̄(x, t)− ψ̃(u))i ī − (ukl̄(x, t)− ψ̃(u))t ≥−C1.

By (1-2), we have

(6-3) F i ī uti ī − ut t = hz(x, u)≥−C1.

Furthermore, by a simple calculation, we can find 0 < λ ≤ 3, such that for any
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smooth function w,

(6-4)
3

4
4realw =34∂̄w ≥ F i īwi ī ≥ λ4∂̄w =

λ

4
4realw.

With the bounds we obtained before, there is a useful weak Harnack inequality
which we state as follows.

Lemma 6.1. (see [Lieberman 1996, Theorem 6.18]) If wt −34realw ≤ C1, then
there exist positive constants p, C , k such that(

1
|Q(x, t, R)|

∫
Q(x,t,R)

( sup
Q(x,t,2R)

w−w)p
) 1

p

≤ C
(

sup
Q(x,t,2R)

w− sup
Q(x,t,R)

w+ k R
)
,

Since ψ̃(u) has bounds depending only on sup |Rm | and sup |ddcu|, and ‖u‖C0

and {ukl̄} are Hermitian matrices, we can apply these to ukk̄ , ut to obtain the
inequalities(

1
|Q(x, t, R)|

∫
Q(x,t,R)

( sup
Q(x,t,2R)

ukk̄−ukk̄)
p
) 1

p

≤C
(

sup
Q(x,t,2R)

ukk̄− sup
Q(x,t,R)

ukk̄+k R
)
,

(
1

|Q(x, t, R)|

∫
Q(x,t,R)

( sup
Q(x,t,2R)

ut−ut)
p
) 1

p

≤C
(

sup
Q(x,t,2R)

ut− sup
Q(x,t,R)

ut+k R
)
,

where C does not depend on ukl̄ or ut .
By concavity, for any two points (x, t), (y, s),

−C2 ≤ h(x, u(x, t))+ ut(x, t)− h(y, u(y, s))− ut(y, s)

= F(x, u(x, t))− F(y, u(y, s))

≤ F i j̄ (x, t)(ui j̄ (x, t)− ui j̄ (y, s))≤3
n∑

i=1

(ui ī (x, t)− ui ī (y, s)).

Hence n∑
k=1

(ukk̄(y, s)− ukk̄(x, t))≤ C23,

where 3 represents the maximal eigenvalue of F i j̄.
Next we choose (y1, s1) in Q(x, t, 2R), and (y2, s2) in Q(x, t, R),

ui ī (y2, s2)− ui ī (y1, s1)≤ C23+
∑
k 6=i

(ukk̄(y1, s1)− ukk̄(y2, s2)).

Take the supremum on (y1, s1) on both sides simultaneously:

0≤ui ī (y2, s2)− inf
Q(x,t,2R)

ui ī (y1, s1)≤C23+
∑
k 6=i

( sup
Q(x,t,2R)

ukk̄(y1, s1)−ukk̄(y2, s2)).

Let ω(R) :=
∑

k

{
supQ(x,t,R) ukk̄ − infQ(x,t,R) ukk̄

}
. We have
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sup
Q(2R)

ukk̄− inf
Q(2R)

ukk̄

=

{
1

|Q(R)|

∫
Q(R)
| sup

Q(2R)
ukk̄− inf

Q(2R)
ukk̄ |

p
}1

p

≤

{
1

|Q(R)|

∫
Q(R)
|ukk̄− inf

Q(2R)
ukk̄ |

p
}1

p

+

{
1

|Q(R)|

∫
Q(R)
| sup

Q(2R)
ukk̄−ukk̄ |

p
}1

p

≤C23+
∑
i 6=k

{
1

|Q(R)|

∫
Q(R)
| sup

Q(2R)
ui ī−ui ī |

p
}1

p

+

{
1

|Q(R)|

∫
Q(R)
| sup

Q(2R)
ukk̄−ukk̄ |

p
}1

p

≤C23+C{ω(2R)−ω(R)+k R},

where the last step is established by Lemma 6.1 and the fact that∑
i

(
sup
Q2R

ui ī − sup
Q R

ui ī
)
≤ ω(2R)−ω(R).

We finally get ω(R)≤
(
1− 1

C

)
ω(2R)+ k

C +
C23

C . Thus it follows from [Gilbarg
and Trudinger 1977, Lemma 8.23] that there are positive constants α, R0 such that

‖ukk̄‖C0,α(Q(x,t,R0)) ≤ sup
R≤R0

ω(R)
Rα
≤ C(α, R0, sup

Q(x,t,R0)

|ukk̄ |).

Therefore for each point (p, t), there exists a neighborhood U of p and a uniform
constant C which is independent of the choice of points such that for k = 1, . . . , n,

‖ukk̄‖C2,α(U×[0,T ]) ≤ C,

and thus we obtain the Hölder estimate for {ukl̄}(p, t) if we choose the normal coor-
dinates at that point. Consequently, around each point (x, t), there is a neighborhood
on which the required estimate holds.
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FULLY NONLINEAR PARABOLIC DEAD CORE PROBLEMS

JOÃO VÍTOR DA SILVA AND PABLO OCHOA

We establish geometric regularity estimates for diffusive models driven by
fully nonlinear second-order parabolic operators with measurable coeffi-
cients under a strong absorption condition as follows:

F (x, t, Du, D2u)− ∂t u = λ0(x, t)uµχ{u>0} in �T :=�× (0, T ),

where � ⊂ Rn is a bounded and smooth domain, 0 ≤ µ < 1 and λ0 is
bounded away from zero and infinity. Such models arise in applied sciences
and become mathematically interesting because they permit the formation
of dead-core zones, i.e., regions where nonnegative solutions vanish iden-
tically. Our main result gives sharp and improved C2/(1−µ) parabolic reg-
ularity estimates along the free boundary ∂{u > 0}. In addition, we derive
weak geometric and measure-theoretic properties of solutions and their free
boundaries as: nondegeneracy, porosity, uniform positive density and finite
speed of propagation. As an application, we prove a Liouville type result for
entire solutions and we carry out a blow-up analysis. Finally, we prove the
finiteness of parabolic (n+1)-Hausdorff measure of the free boundary for a
particular class of operators.

1. Introduction

Throughout this article, we are interested in sharp and improved geometric regularity
estimates for diffusive models with strong absorption as follows:

(DCP) F (x, t, Du, D2u)−∂t u=λ0(x, t).uµχ{u>0}(x, t) in �T :=�×(0, T ),

with continuous and nonnegative boundary data, where �⊂ Rn is a bounded and
smooth domain, 0≤µ<1 is the order of reaction, λ0 is bounded away from zero and
infinity and it is known as the Thiele modulus. Moreover, F :�T×Rn

×Sym(n)→R

is a fully nonlinear, second-order uniformly elliptic operator with Lipschitz character:
there exist constants 3≥ λ > 0 (ellipticity parameters) and κ ≥ 0 such that

(1-1) λ‖Y‖− κ|ς | ≤F (x, t, ξ, X)−F (x, t, ξ + ς, X + Y )≤3‖Y‖+ κ|ς |

MSC2010: 35B65, 35K55.
Keywords: dead-core problems, fully nonlinear parabolic equations, sharp and improved regularity

estimates, parabolic Hausdorff measure estimates.
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for every X, Y ∈ Sym(n) with Y ≥ 0, (x, t, ξ, ς) ∈ �T × Rn
× Rn. It is worth

mentioning that F is assumed to have bounded measurable coefficients. For this
reason, bounded viscosity solutions to (DCP) have, as the best a priori estimates, a
universal Hölder modulus of continuity according to celebrated Krylov–Safonov
parabolic estimates; see [Krylov and Safonov 1980] for more details.

Another fundamental aspect of such models is that if f (u)= λ0uµχ{u>0} is not
Lipschitz, then the maximum principle is not applicable. Consequently, nonnegative
solutions may create plateau regions, which are known in the literature as dead-
cores and represent regions where no reaction takes place in the diffusion process
from (DCP). Solutions of this class are currently called dead-core solutions and
appear in a number of physical-mathematical models; see, for example, [Antontsev
et al. 2002; Bandle and Stakgold 1984; Choe and Weiss 2003; da Silva et al. 2018;
Guo and Souplet 2005].

The main first result of our manuscript concerns sharp and improved regularity
of dead-core solutions along their free boundaries. We refer the reader to Section 2
for the employed notation.

Theorem 1.1 (improved regularity at free boundary points). Let u be a nonnegative
and bounded viscosity solution to (DCP), so that ∂t u ≥−c0(x, t)uµχ{u>0} (in the
viscosity sense)1 for c0 a nonnegative bounded function and Kb�T a compact set.
Then there exists a universal constant2 C> 0 such that for all (x0, t0)∈ ∂{u> 0}∩K,

u(x, t)≤ C · ‖u‖L∞(�T )distp((x, t), (x0, t0))
2

1−µ ,

for all (x, t) sufficiently close to (x0, t0).

We shall also provide how dead-core solutions leave their free boundaries.

Theorem 1.2 (nondegeneracy). There exists a constant C∗0=C
∗

0(n,λ,3,κ,m,µ)>0
such that any viscosity subsolution to (DCP) satisfies

(1-2) sup
C−r (x0,t0)

u(x, t)≥ C∗0 · r
2

1−µ ,

for any (x0, t0) ∈ {u > 0} ∩�T and Cr (x0, t0)⊂�× (0,∞).

Finally, our last main result concerns the parabolic Hausdorff measure of the
free boundary.

1Notice that such an assumption is weaker than those imposed in [Choe and Weiss 2003; Shahgho-
lian 2003; 2008]. It means that solutions can decrease in time direction, but with an appropriate lower
bound control.

2Throughout this manuscript universal constants are those which depend only on dimension and
structural parameters of the problem, namely λ,3 (ellipticity constants of the operator), m, M (bound
of λ0), κ (bounds for the gradient variable of F), dist(K, ∂p�T ) and µ.
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Theorem 1.3 (Hausdorff measure estimates). Let u be a viscosity solution to (DCP)
with F a concave operator. There exists a universal constant C> 0 such that for
all (x0, t0) ∈ ∂{u > 0} ∩C1/2,

H n+1
par (∂{u > 0} ∩Cρ(x0, t0))≤ Cρn+1,

for all ρ � 1, where H n+1
par is the (n+1)-dimensional Hausdorff measure with

respect to the parabolic metric.

1A. Motivations, state of the art and overview. Throughout the last four decades
parabolic PDEs with strong absorption conditions have received much attention
due to their connections with the modeling of several phenomena in pure and
applied sciences (see [Antontsev et al. 2002; Bandle and Stakgold 1984; Díaz
2001; Stakgold 1986]). An illustrative example coming from isothermal, catalytic
reaction-diffusion processes is

1u− ∂t u = uµχ{u>0} in �T ,

u(x, t)= g(x, t) on ∂�× (0, T ),

u(x, 0)= u0(x) in �,

where the boundary data satisfy

0< u0 ∈ C0(�), g(x, t)= k> 0 and u(x, 0)= k for all x ∈ ∂�.

In this context, u represents the concentration of a (gas-liquid) reactant over a
diffusing material evolving in time. Hence, the development of dead-core regions
occurs precisely when the reactant becomes inactive. Notice that the boundary
condition means that the reactant is injected with a fixed isothermal flux on the
boundary. From a chemical engineering point of view, to understand the dead-core
phenomenon is crucial, since the catalytic material is wasted precisely along the
dead-core zone.

Other insights for our study come from the theory of nonlinear geometric free
boundary problems (see [Apushkinskaya et al. 2002; Caffarelli et al. 2004; Shahgho-
lian 2003; Teixeira 2016] for some enlightening examples). In this direction, we
cite the class of “pseudo” free boundary problems

(FBP)


max{P[u] − ∂t u,−u} = 0 in �T ,

u(x, t)= g(x, t) on ∂�× (0, T ),

u(x, 0)= u0(x) on �,

where P[u] := F (x, t, Du, D2u)− λ0(x, t)uµχ{u>0}(x, t) for µ, g, u0 and F as
before. As a particular application of (FBP) to financial markets, we may consider
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the operator

P[V ] = 1
2(σ1S1, σ2S2)

T

 ∂2V
∂(S1)2

∂2V
∂S1∂S2

∂2V
∂S2∂S1

∂2V
∂(S2)2

 · (σ1S1, σ2S2)

+

2∑
i=1

(r0− σi )Si
∂V

∂Si
− r0V

1−µ
+ ,

where r0 > 0 is the interest rate, σi is the volatility of the price of the corresponding
asset, V is the American option and (S1,S2) is the price vector of underlying assets.
Such nonlinear obstacle problems can be interpreted as the extended model (with
zero constraint) in pricing of American options in financial mathematics, which
precisely deals with the case µ= 0 (an obstacle type problem). The interested reader
may see the references [Blanchet et al. 2005; 2006; Petrosyan and Shahgholian
2007; Shahgholian 2008] for a more complete treatment.

Despite the fact that a number of qualitative and quantitative features for linear
models in divergence form like

(1-3) 1u− ∂t u = λ0uµχ{u>0}(x, t) in �T

have been extensively studied by many authors by using variational approaches
in the last four decades (see [Choe and Weiss 2003] for a seminal treatment, see
also [Antontsev et al. 2002] and [Díaz 2001] for classical references on this theme),
many pivotal issues have not been established for a general model (DCP), until now,
due to the rigidity of the structure of such operators. For this reason, the treatment
of such free boundary problems in nondivergence form requires the development
of new approaches and modern techniques.

We are particularly interested in the smoothness and weak geometric properties
around free boundary points of viscosity solutions of models like (DCP). Such
issues were our impetus for researching parabolic dead-core problems via a modern,
nonvariational and systematic approach based on geometric regularity theory (com-
pare with [Choe and Weiss 2003] for a dead core problem ruled by a heat operator
and [da Silva et al. 2018] for its extension to degenerate evolution operators).

Beyond the several applications, the topics treated in this article help to understand
general issues in free boundary problems. This fact is illustrated by Theorem 1.1,
which shows that the dead-core’s analysis brings to light an impressive feature: better
regularity estimates (at free boundary points) than those currently available. In effect,
in our approach we impose just bounded measurable coefficients for F . Notwith-
standing, the modulus of continuity improves upon the expected Hölder regularity
coming from the classical Krylov–Safonov regularity estimate (see [Crandall et al.
2000, Section 5; Krylov and Safonov 1980; Wang 1992a, Section 4.4]). Furthermore,
even for constant coefficient problems, F (Du, D2u)− ∂t u = f (x, t, u) ∈ L∞, our
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result is surprising, because in this setting, the C1+α,(1+α)/2-estimate is the available
regularity; see [Wang 1992b, Section 1.2] and [da Silva and Teixeira 2017, Sections 4
and 6]. Finally, we must compare our estimates with ones coming from Schauder
type estimates (see [Tian and Wang 2013] and [Wang 1992b, Section 1.1]). For
simplicity, let us suppose that F (D2u) = 1u and λ0 > 0 is constant. Notice
that λ0uµ ∈ Cµ,µ/2(C1). Therefore, the classical Schauder theory implies that
u ∈ C2+µ,(2+µ)/2

loc (C1). On the other hand, the estimates from Theorem 1.1 tell us
that u has ω(s)= s2/(1−µ) as modulus of continuity at points on the free boundary.
Finally, the main point is that

2
1−µ

> 2+µ

for any µ ∈ (0, 1). In other words, we obtain an improved decay estimate (at free
boundary points for a right-hand side which is not not necessarily Hölder) when
compared with classical Schauder estimates. Taking into account the previous state-
ments, our results are new even for linear parabolic problems with nondivergence
structure and bounded and merely measurable coefficients.

The insight for the proof of Theorem 1.1 is inspired by techniques from regularity
theory of fully nonlinear equations and free boundary problems (see, e.g., [da Silva
et al. 2017; da Silva and Teixeira 2017; Shahgholian 2003; 2008; Teixeira 2016]).
It consists of a finer geometric decay throughout an iterative process, which is
based on the sharp scaling of the equation and maximum principle tools for a
limiting caloric profile via a contradiction reasoning. It is worth mentioning that a
difficulty in our studies is the absence of a strong maximum principle for F -caloric
functions, i.e., F (D2h)− ∂th= 0 (a viscosity solution to homogeneous problem
with constant coefficients). For this very reason, the assumption of control in time
variable will play an essential role in our analysis in order to overcome such an
obstacle, since in such a limit configuration solutions will become nondecreasing
in time direction. This will enable us to apply a strong maximum principle for fully
nonlinear equations; see [Da Lio 2004].

Finally, it is worth highlighting that our article extends, as well as generalizes
to some extent, the previous seminal results (sharp regularity and weak geometric
properties) from [Choe and Weiss 2003] and [Teixeira 2016] by using different ap-
proaches and techniques adapted to the general framework of the fully nonlinear par-
abolic operators (compare also with [Caffarelli et al. 2004] and [Shahgholian 2008]).

The paper is organized as follows: The reader will find the main definitions and
assumptions in Section 2. Afterwards, we will present the proofs of the improved
regularity and nondegeneracy Theorems 1.1 and 1.2 in Section 3. In Section 4 we
put forward a number of consequences of these results. Section 5 treats global
analysis results of Liouville and blow-up type. Finally, the Hausdorff estimates in
Theorem 1.3 and related results will be delivered in Section 6.
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2. Preliminaries and main assumptions

Let us start with some standard parabolic notation. By� we shall denote a bounded,
open and smooth set in Rn. For x0 ∈ Rn and r > 0, we denote by Br (x0) the
Euclidean open ball with center x0 and radius r . Also, for a point (x0, t0) ∈�×R

and r > 0, we consider three kinds of parabolic cylinders:

Cr (x0, t0) := Br (x0)× (t0− r2, t0+ r2) (whole cylinder)

C+r (x0, t0) := Br (x0)×[t0, t0+ r2) (the upper semi-cylinder)

C−r (x0, t0) := Br (x0)× (t0− r2, t0] (the lower semicylinder).

Moreover, we will omit the center of the cylinder as (x0, t0)= (0, 0).
For a parabolic cylinder C =�×I , where I is a closed interval with endpoints

a< b, we define the parabolic boundary by: ∂pC := (�×{a})∪ (∂�×I ).
Given (x, t), (y, s) ∈ �×R the parabolic distance (or metric) between (x, t)

and (y, s) is given by

distp((x, t), (y, s)) :=
√
|x − y|2+ |t − s|.

For r > 0 and O ⊂ Rn+1, we let Nr (O) := {(x, t) ∈ Rn+1
: distp((x, t),O) > r}

for the parabolic tubular neighborhood of radius r of O.
By Sym(n) we mean the set of symmetric real matrices of size n× n. If M is a

given matrix, we shall use ‖M‖ to denote any matrix norm.
Throughout this manuscript F : C1×Rn

×Sym(n)→ R is a second-order fully
nonlinear operator satisfying the structural condition

(SC) P−λ,3(M − P)− κ|−→p − −→q | ≤F (x, t, −→p ,M)−F (x, t, −→q , P)

≤P+λ,3(M − P)+ κ|−→p − −→q |,

for any M, P ∈ Sym(n) and −→p , −→q ∈ Rn, where P±λ/n,3 denote the Pucci’s extremal
operators

P+λ,3(M) := λ ·
∑
ei<0

ei +3 ·
∑
ei>0

ei and P−λ,3(M) := λ ·
∑
ei>0

ei +3 ·
∑
ei<0

ei

and {ei : 1≤ i ≤ n} are the eigenvalues of M.
For a fixed (x0, t0) ∈ C1, we will measure the oscillation of the coefficients of F

around (x0, t0) by the quantity

(2-1) 2F (x0, t0, x, t) := sup
M∈Sym(n)\{0}

|F (x, t, 0,M)−F (x0, t0, 0,M)|
‖M‖

.

For notation purposes, we shall often write 2F (0, 0, x, t)=2F (x, t). Hence, the
coefficients of the operator are merely measurable.
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In the following definition, we provide the class of solutions that we consider in
this work.

Definition 2.1 (viscosity solutions). We say that a function u ∈C0(C1) is a viscosity
subsolution (resp. supersolution) to

(2-2) F (x, t, Du(x, t), D2u(x, t))− ∂t u− f (x, t, u)= 0 in C1

if for all ϕ ∈ C2,1(C1) whenever u− ϕ has a local minimum (resp. maximum) at
(x0, t0) ∈ C1 then

F (x, t, Dϕ(x, t), D2ϕ(x, t))− ∂tϕ− f (x, t, ϕ)≥ 0 (resp. ≤ 0).

Finally we say that u is a viscosity solution to (2-2) if it is both a viscosity subsolution
and a supersolution.

We recall the existence of a universal constant p0, satisfying n+2
2 ≤ p0 < n+ 1,

for which Harnack inequality (resp. Hölder regularity) holds for viscosity solutions
with RHS in L p, provided p > p0; see for instance [Crandall et al. 2000, Section 5].
The following compactness result then becomes available:

Proposition 2.2 (compactness of solutions). Let u be a viscosity solution to

(2-3) ∂t u−F (x, t, Du, D2u)= f(x, t, u) in Cr ,

under the assumption f ∈ L p with p > p0. Then u is locally of class C0,β for some
0< β < 1 and

‖u‖Cβ (Cr ) ≤ C(n, λ,3, κ)r−β(‖u‖L∞(Cr )+ r2− n+2
p ‖ f ‖L p(Cr )).

Another piece of information we need in our approach concerns the stability of
the notion of viscosity solutions, i.e., the limit of a sequence of viscosity solutions
turns out to be a viscosity solution of the limiting equation. More precisely, we refer
to the following lemma, whose proof and general form can be found in [Crandall
et al. 2000, Theorem 6.1].

Lemma 2.3 (continuity with respect to the equation). Let F j ,F be normalized
(λ,3, κ)-operators, p > p0, with f, f j ∈ L p(C1)∩C0(C1) and let u j be viscosity
solutions to

∂t u j −F j (x, t, Du j , D2u j )= f j (x, t) in C1

for all j ∈ N. Assume that u j → u locally uniformly as j→∞. Moreover, for all
Cr (x0, t0)⊂ C1 and all ϕ ∈ C2,1(Cr (x0, t0)) (test function), assume that

g j (x, t) :=F j (x, t, Dϕ(x, t), D2ϕ(x, t))− f j (x, t)

and
g(x, t) :=F (x, t, Dϕ(x, t), D2ϕ(x, t))− f (x, t)
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satisfy

(2-4) ‖g− g j‖L p(Cr (x0,t0))→ 0 as j→∞.

Then, u is a viscosity solution to

∂t u−F (x, t, Du, D2u)= f (x, t) in Cr (x0, t0).

Proposition 2.4 (gradient estimates [Crandall et al. 2000, Remark 7.7; Wang 1992b,
Section 4.2). Let u be a viscosity solution to (2-3) with F a normalized (λ,3, κ)-
operator and f ∈ L p(C1). If

lim
r→0+

sup
(y,s)∈C 1

2

(
−

∫
Cr (y,s)

2
p
F (y, s, x, t)

) 1
p

= 0,

then u ∈C1+α,(1+α)/2(C1/2) for some universal 0<α< 1. Furthermore, there exists
a universal constant C= C(n, λ,3, κ) > 0 such that

‖Du‖L∞(C1/2)
≤ C(n, λ,3, κ)(‖u‖L∞(C1)+‖ f ‖L∞(C1)).

The next result can be proved in a similar way to one in [Crandall et al. 1992,
Theorem 8.3].

Theorem 2.5 (comparison principle). Let u1 and u2 be continuous functions in C1

so that

(2-5) F (x, t, Du1, D2u1)− ∂t u1− λ0(x, t)(u1)
µ
+

≤ 0≤F (x, t, Du2, D2u2)− ∂t u2− λ0(x, t)(u2)
µ
+ in C1

in the viscosity sense. If u1 ≥ u2 on ∂pC1, then u1 ≥ u2 in C1.

In the next theorem, we shall state the existence of solutions to the problem

(2-6)


F (x, t, Du, D2u)− ∂t u = λ0(x, t)uµχ{u>0}(x, t) in C1,

u(x, t)= g(x, t) on∂B1× (−1, 1),

u(x, 0)= u0(x) inB1×{−1},

for continuous functions g and u0 satisfying the compatibility condition g(x, 0)=
u0(x) for x ∈ ∂B1. The existence is achieved by the celebrated Perron’s method
combined with the previous comparison principle, Theorem 2.5.

Theorem 2.6 (existence of dead core solutions). Suppose that assumption (SC)
holds for F , and that λ0 is continuous. If there exist a viscosity subsolution u] to
(2-6) and a viscosity supersolution u] to (2-6) such that

u] = u] on ∂pC1,

then there exists a viscosity solution u to problem (2-6). Furthermore, such a u is
nonnegative provided the data are nonnegative.
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3. Improved regularity estimates and nondegeneracy of solutions

In this section we will prove our main results, Theorem 1.1 and 1.2. We start
by deriving the improved regularity estimate in a normalized class of viscosity
solutions defined in the unit cylinder, and then we extend the results to general
dead-core viscosity solutions.

Definition 3.1. For any fully nonlinear operator F fulfilling (SC) we say that
u ∈ J(F , λ0, µ)(C1) if:

• F (x, t, Du, D2u)−∂t u=λ0(x, t)uµχ{u>0}(x, t) in C1 (in the viscosity sense)
with ‖λ0uµ‖L∞(C1)� 1.

• 0≤ u ≤ 1, 0<m≤ λ0 ≤M in C1.

• ∂t u ≥−c0(x, t)uµχ{u>0}(x, t) in C1 (in the viscosity sense) for a nonnegative
and bounded function c0.

• u(0, 0)= 0.

Hereafter, we shall adopt the notation S(r,x0,t0)[u] := supC−r (x0,t0) u(x, t).
In the next, we shall define for u ∈ J(F , λ0, µ)(C1) the set

V[u] :=
{

j ∈ N∪ {0};S 1
2 j
[u] ≤ 2

2
1−µ max

{
1,

1
C∗0

}
·S 1

2 j+1
[u]
}
,

where C∗0 > 0 is the nondegeneracy constant from Theorem 1.2. Notice that V[u] is
not empty. Indeed, j = 0 ∈ V[u] since, in view of Theorem 1.2,

S 1
2
[u] ≥ C∗0

( 1
2

) 2
1−µ ≥ C∗0

( 1
2

) 2
1−µS1[u],

which implies that

S1[u] ≤ 2
2

1−µ max
{

1,
1
C∗0

}
S 1

2
[u].

We now present a key lemma for proving Theorem 1.1, which provides the sharp
growth rate for functions on J(F , λ0, µ)(C1).

Lemma 3.2. There exists a positive constant C0 = C0(n, λ,3,µ,M) such that

(3-1) S 1
2 j+1
[u] ≤ C0 ·

(
1
2 j

) 2
1−µ

for all u ∈ J(F , λ0, µ)(C1) and j ∈ V[u].

Proof. The proof will hold by reductio ad absurdum argument. Let us suppose
that the thesis of the lemma fails to hold. Then, for each k ∈ N we might find
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uk ∈ J(F , λ0, µ)(C1) and jk ∈ V[uk] such that

(3-2) S 1
2 jk+1
[uk]> k

(
1

2 jk

) 2
1−µ

.

Now, we define the auxiliary function:

vk(x, t) :=
uk

(
1

2 jk
x, 1

22 jk
t
)

S 1
2 jk+1
[uk]

in C1.

Thus, vk fulfills

• 0≤vk(x, t)≤
S

1/2 jk [uk ]

S
1/2 jk+1 [uk ]

≤A :=22/(1−µ) max{1, 1/C∗0} in C−1 and vk(0, 0)=0.

• S 1
2
[vk] ≥ 1.

• ∂tvk ≥−c0

(
1

2 jk
x, 1

22 jk
t
)

2−2 jk

S
1−µ

1/2 jk+1 [uk ]
v
µ
k (x, t) in C−1 .

• Fk(x, t, Dvk, D2vk)−∂tvk =
1

22· jk
1

S
1−µ

1/2 jk+1 [uk ]
λ0

(
1

2 jk
x, 1

22· jk
t
)
(vk)

µ
+(x, t) in C1

in the viscosity sense, where

Fk(x, t,
−→p ,M)
:=

1
22 jk S

1/2 jk+1 [uk ]
F
(

1
2 jk

x, 1
22· jk

t, 2 jk S1/2 jk+1[uk]·
−→p , 22 jk S1/2 jk+1[uk]·M

)
.

Notice that the operator Fk fulfills (SC). Moreover,∥∥∥ 1
22· jk

1
S

1−µ

1/2 jk+1 [uk ]
λ0

(
1

2 jk
x, 1

22· jk
t
)
(vk)

µ
+(x, t)

∥∥∥
L∞(C1)

≤Aµ·M·
( 1

k

)1−µ
→0 as k→∞.

The previous sentences together with standard compactness arguments for fully
nonlinear parabolic equations (see Proposition 2.2) imply that, up to a subsequence,
vk→ v locally uniformly in C−4/5 and Fk→F0. Furthermore, by stability results
(see Lemma 2.3) we have

• F0(D2v)− ∂tv = 0 in C−4/5.

• 0≤ v ≤ A and ∂v
∂t ≥ 0 in C−4/5.

• v(0, t)= 0 for all t ∈
(
−
( 4

5

)2
, 0
]
.

• S1/2[v] ≥ 1.

Therefore, according to the strong minimum principle (see [Da Lio 2004]) v ≡ 0,
which contradicts the previous sentence. �

In the next result, we state a version of Theorem 1.1 for the class J(F , λ0, µ)(C1).
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Theorem 3.3. There exists a positive constant C= C(n, λ,3,µ,M) such that for
all u ∈ J(F , λ0, µ)(C1)

u(x, t)≤ C · d(x, t)
2

1−µ for all (x, t) ∈ C 1
2
,

where

d(x, t) :=
{

sup{r ≥ 0;Cr (x, t)⊂ {u > 0}} for (x, t) ∈ {u > 0},
0 otherwise.

Proof. The proof will be by induction. First of all, we claim that

(3-3) S 1
2 j
[u] ≤ C0 ·

(
1

2 j−1

) 2
1−µ

for all j ∈ N,

where C0 is the constant coming from Lemma 3.2. Note that if C0 ≥ 1, which we
can suppose without loss of generality, then (3-3) holds for j = 0. Suppose now
that (3-3) holds for some j ∈ N. We will verify the ( j+1)-th step of induction. In
fact, if j ∈V[u], the result holds directly by Lemma 3.2. On the other hand, if (3-3)
fails, by using the induction hypothesis we obtain

S 1
2 j+1
[u] ≤

(
1
2

) 2
1−µ

·S 1
2 j
[u] ≤ C0 ·

(
1
2

) 2
1−µ
(

1
2 j−1

) 2
1−µ

= C1 ·

(
1
2 j

) 2
1−µ

Therefore, (3-3) holds for all j ∈ N.
In order to finish the proof for a continuous parameter, for r ∈ (0, 1) let j ∈N

be the greatest integer such that 1/2 j+1
≤ r < 1/2 j . Then,

Sr [u] ≤S 1
2 j
[u] ≤ C0 ·

(
1

2 j−1

) 2
1−µ

≤ C(n, λ,3,µ,M) · r
2

1−µ .

Finally, in order to obtain an estimate for u over the whole cylinder we will use
a suitable barrier function from above. Let us define

c :=

(
m(1−µ)2

2[23µ+ κ(1−µ)]

) 1
1−µ

and ζ(x, t) := c · (|x |2+ 2n3 · t)1/1−µ. Then, we have

F (x, t, Dζ, D2ζ )−
∂ζ

∂t
− λ0(x, t)ζµ+

≤ 0≤F (x, t, Du, D2u)−
∂u
∂t
− λ0(x, t)uµ+ in C+1 .

Moreover, we have that ζ ≥ u on ∂pC+1 , where we have used Sr [u] ≤ c · r2/(1−µ)

for the estimate on {t = 0}. Consequently, the comparison principle for viscosity
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solutions in Theorem 2.5 implies that ζ ≥ u in C+1 . Therefore,

sup
Cr

u(x, t)≤ C(n, λ,3,µ, κ,m) · r
2

1−µ . �

Remark 3.4. Following the same arguments as in the proof of Theorem 1.1, it
is possible to obtain similar regularity estimates for a family of problems with
a general (not µ-homogeneous) nonnegative and nonlinear absorption term f :

C1×[0, ‖u‖∞] → R+, i.e.,

F (x, t, Du, D2u)− ∂t u = f(x, t, u) in �T ,

provided f(x, t, r)≤ C∗rµ, for all 0< r � 1 and for some constant C∗ > 0. Some
interesting examples include

f(u)=


λ0(x, t)(eus

+ − 1) for s ≥ µ > 0,
λ0(x, t) ln(us

+
+ 1) for s ≥ µ > 0,

λ0(x, t)uµ+ ln(us
+ 1) for s > 0,

λ0(x, t)uµ+/(1+ us)m for s > 0 and 0< m ≤ µ.

We have decided to treat the case f(x, t, u)= λ0(x, t)uµ+(x, t) in order to intro-
duce the main novelties in our approach.

Remark 3.5. Notice that Lemma 3.2 ensures that there exists a universal constant
0< τ0� 1 (small enough) such that if u ∈ J(F , λ0, µ)(C1) with

‖F (x, t, Du, D2u)− ∂t u‖L∞(C1) ≤ τ0,

then

S 1
2 j+1
[u] ≤ C0 ·

(
1
2 j

) 2
1−µ

.

We now are ready to prove the main result of the article.

Proof of Theorem 1.1. In order to prove Theorem 1.1, we have to reduce the
hypothesis presented on it to the framework of Theorem 3.3. We assume without
loss of generality that K=C1⊂�T . For (x, t)∈ {u > 0}∩K let d(x, t) the distance
comes from Theorem 3.3. For (x0, t0) ∈ ∂{u > 0} ∩K let us define

v(x, t) :=
u(x0+R0x, t0+R2

0t)
κ0

in C1

for constants κ0,R> 0 to be determined universally a posteriori.
From the equation satisfied by u, we easily verify that, in the viscosity sense, v

fulfills

(3-4) G (x, t, Dv, D2v)− ∂tv = λ̂0(x, t) · vµ+(x, t),
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for

G (x, t, −→p ,X ) :=
R2

0

κ0
F

(
x0+R0x, t0+R2

0,
κ0

R0

−→p ,
κ0

R2
0
X

)
and

λ̂0(x, t) :=
R2

0

κ
1−µ
0

λ0(x0+R0x, t0+R2
0t).

Observe that G satisfies assumption (SC) from Section 2 with the same ellipticity
constants λ and3, Lipschitz constant κ , and a modulus of continuity ω̂(s)=ω(Rs).

Now, let τ0 > 0 be the greatest universal constant, from Remark 3.5 such that
Lemma 3.2 holds provided ‖G (x, t, Dv, D2u)− ∂tv‖L∞(C1) ≤ τ0. By choosing

κ0 := ‖u‖L∞(�T ) and 0<R<min
{

1,
dist(K, ∂p�T )

2
,

√
τ0κ

1−µ
0

M

}
,

v fits into the framework of Theorem 3.3. Hence, there exists a constant C =
C(n, λ,3,M) so that

v(x, t)≤ C · d(x, t)
2

1−µ ,

where

d(x, t) :=

{
sup{r ≥ 0;Cr (x, t)⊂ {v > 0}} for (x, t) ∈ {v > 0},

0 otherwise.

By scaling back, we obtain the conclusion of Theorem 1.1. �

This final part is devoted to proving Theorem 1.2 which tells us how dead-core
solutions detach their free boundaries. As a byproduct, we shall also give important
consequences of such a nondegeneracy property, including uniform Lebesgue
density of positive sets {u > 0}, porosity of t-level sets of the free boundary and
finite speed propagation of {u > 0}; see Section 4 for more details.

Proof of Theorem 1.2. Firstly, notice that by continuity of viscosity solutions, it
is sufficient to show that (1-2) holds for (x0, t0) ∈ {u > 0}. To this end, fix such a
point and take r > 0 so that Cr (x0, t0)⊂�× (0,∞). Now, define the comparison
function

9(x, t) := c1[|x − x0|
2
+ c2(t0− t)]

1
1−µ , (x, t) ∈ C−r (x0, t0),

where c1, c2 are positive constants satisfying c2 <
m(1−µ)

2 cµ−1
1 and

c1 :=

{
m(1−µ)2

4[2µ3+ (n3+ κ)(1−µ)]

} 1
1−µ

,
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where 0<m≤ λ0. Hence, it follows that

F (x, t, D9, D29)− ∂tψ − λ0(x, t)ψµ ≤ 0 in C−r (x0, t0).

Now, if 9 ≥ u on whole ∂pC−r (x0, t0), then the comparison principle Theorem 2.5
would imply that u ≤9 in C−r (x0, t0). However, this is a contradiction with the fact
that 9(x0, t0)= 0< u(x0, t0). Therefore, there exists a point (x ′, t ′)∈ ∂pC−r (x0, t0)
such that u(x ′, t ′) ≥ 9(x ′, t ′). Since 9(x ′, t ′) = cr2/(1−µ) for c independently of
(x ′, t ′), we have completed the proof of the theorem. �

4. Applications

Using Theorem 1.1 we are able to prove a similar growth rate for the gradient of dead-
core solutions provided that the coefficients of F are VMO (see Proposition 2.4).

Corollary 4.1 (growth estimates for gradient). Suppose that the assumptions of
Proposition 2.4 are in force. Then a positive constant C1=C1(n, λ,3,µ,M) exists
such that for all u ∈ J(F , λ0, µ)(C1):

‖Du(x, t)‖ ≤ C1 · d(x, t)
1+µ
1−µ for all C 1

2
.

Proof. As before, it is enough to prove the estimate

(4-1) S 1
2 j+1
[‖Du‖] ≤max

{
C2 ·

(
1
2 j

) 1+µ
1−µ

,

(
1
2

) 1+µ
1−µ

S 1
2 j
[‖Du‖]

}
,

for all j ∈ N and a constant C2 = C2(n, λ,3,µ,M).
Let us suppose that (4-1) does not hold. Then, there exists u j ∈ J(F , λ0, µ)(C1)

such that

(4-2) S 1
2 j+1
[‖Du j‖] ≥max

{
j
(

1
2 j

) 1+µ
1−µ

,

(
1
2

) 1+µ
1−µ

S 1
2 j
[‖Du j‖]

}
.

Next, we define the auxiliary normalized and scaled function

v j (x, t) :=
2 j u j

(
1
2 j x, 1

22 j t
)

S 1
2 j+1
[‖Du j‖]

.

Notice that using (3-1) and (4-2) we obtain

0≤ v j (x)≤
2 jC(2− j )

2
1−µ

S 1
2 j+1
[‖Du j‖]

≤
C0

j1−µ for (x, t) ∈ C1.
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Furthermore:

• F j (x, t, Dv j , D2v j )−∂tv j = λ̂0(x, t)(v j )
µ
+(x, t) in C1 in the viscosity sense,

where

F j (x, t, −→p ,M)

:=
1

2 jS 1
2 j+1
[‖Du j‖]

F

(
1
2 j x,

1
22 j t,S 1

2 j+1
[‖Du j‖] ·

−→p , 2 jS 1
2 j+1
[‖Du j‖] ·M

)
and

λ̂0(x, t) :=
1

2 j (1+µ)

1

S
1−µ

1
2 j+1
[‖Du j‖]

λ0

(
1
2 j x,

1
22 j t

)
.

• S 1
2
[‖Dv j‖] ≥ 1.

Consequently,

‖λ̂0 · (v j )
µ
+‖L∞(C1) ≤M ·Cµ ·

1
j
.

Finally, by using the a priori gradient estimate from Proposition 2.4 we obtain

1≤S 1
2
[‖Dv j‖] ≤ C(n, λ,3)[‖v j‖L∞(C1)+‖λ̂0(v j )

µ
+‖L∞(C1)]

≤ C∗ ·
1
j
→ 0 as j→∞,

which is a contradiction. Therefore the proof is ended. �

An interesting piece of information coming from our technique is that by using
again the previous iterative geometric argument and supposing better assumptions
on F (to be clarified soon) we will be able to access an improved growth rate for
the higher derivatives of u (namely, the temporal derivative and the Hessian of u,
respectively) according to Schauder type estimates.

Corollary 4.2 (growth estimates for higher derivatives). Assume that (DCP) has
locally C2,1 a priori estimates, i.e., there exists a universal constant C] > 0 such
that

‖D2u‖L∞(Cr ), |∂t u|L∞(Cr ) ≤ C] for all r � 1.

Then, there exists a positive constant C2 = C1(n, λ,3,µ,M) such that for all
u ∈ J(F , λ0, µ)(C1),

‖D2u(x, t)‖≤C2·d(x, t)
2µ

1−µ (resp. |∂t u(x, t)|≤C2·d(x, t)
µ

1−µ ) for all (x, t)∈C 1
2
,

Remark 4.3. An interesting class of operators for which we can apply Corollary 4.2
is the class of convex (or concave) operators (recall that such a family of opera-
tors enjoy local C2+α,(2+α)/2 a priori estimates; see [Krylov 1983; Wang 1992b,
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Section 4.3]), because under such assumptions on F it is possible to develop a
Schauder type estimate provided the source term enjoys a universal modulus of
continuity, suitably integrable at origin (see [Tian and Wang 2013] and [Wang
1992b, Section 1.1] for more details and compare with [da Silva and Teixeira 2017,
Section 6] and [da Silva and dos Prazeres 2019, Section 6] for results when such
an assumption fails). Finally, in [da Silva and dos Prazeres 2019], Schauder type
estimates were proved for flat C0-viscosity solutions, i.e., solutions with very small
oscillation, provided F is in C1,τ (Sym(n)) and has Dini continuous coefficients.
Therefore, such a family of solutions and operators is an interesting class where
Corollary 4.2 holds true.

Remark 4.4 (dead core solutions vs. flat solutions). In view of previous results, we
must highlight the relationship between regularity coming from dead-core solutions
and that coming from the classical Schauder theory. To this end, let us suppose
that u is a flat C0-viscosity solution to

(4-3) F (x, t, D2u)− ∂t u = λ0(x, t)uµ+(x, t) in C1,

where 0<µ<1, λ0 ∈C0,µ(C1) and F is subject to the assumptions in, for example,
[da Silva and dos Prazeres 2019]; see Remark 4.3. Under such assumptions, the
Schauder type estimates from [da Silva and dos Prazeres 2019] ensure that solutions
to (4-3) are C2+µ,(2+µ/2)

loc (C1) (particularly at free boundary points). On the other
hand, our main theorem, Theorem 1.1, claims that u is Cς+α,(ς+α)/2 at free boundary
points, where

ς :=

⌊
2

1−µ

⌋
and α :=

2
1−µ

−

⌊
2

1−µ

⌋
.

Nevertheless, notice that for any 0< µ< 1 we have

ς +α =
2

1−µ
> 2+µ,

which means that dead-core solutions are more regular, along free boundary points,
than the best regularity result coming from classical regularity theory in [da Silva
and dos Prazeres 2019].

Remark 4.5 (regularity in some problems from geometry). Over the last decades
the study of geometric flows has proved to be extremely effective in solving some
of the most important problems in topology, differential geometry and geometric
analysis. Geometric considerations lead to equations of the form

(4-4) F (x, t, Du, D2u)− ∂t u

= f

(
x, t, u,

∫
B1

G (Du, D2u) dx
)
χ{u>0} in M ⊂ Rn+1,
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where F is a convex (concave) operator and G ∈C∞(Rn
×Sym(n),Rm) is a vector

field (see [Tian and Wang 2013] for more detail on these topics). Such equations
appear in many applications of parabolic PDEs in curvature and gradient flows.
For this reason, our work has also been motivated by the study of such equations
coming from differential geometry and geometric analysis in order to establish high
order estimates to solutions along their free boundaries.

Next, we will comment on interior regularity results for general nonlinear curva-
ture and gradient flows (4-4) (at free boundary points); they provide an interesting
application in the geometric setting for our main theorem. We consider M to be
a closed manifold without boundary under a volume constraint assumption; thus
interior regularity is sufficient. For (4-4), one can to obtain C2,1 estimates for
solutions via maximum principle

‖u‖C2,1(Cr ) ≤ C for all r � 1.

Furthermore, such an estimate implies that (4-4) is uniformly elliptic; thus the
structural condition is satisfied. Notice that such an estimate also implies that
the RHS is C2 in x and bounded and measurable in t . Hence, we fall into the
assumptions of Remark 3.4. As a result, Theorem 1.1 can be applied for viscosity
solutions to equations of form (4-4).

Finally, this result can be further applied to equations of the form

F (Dh, D2h)− ∂th− h
µ
+|A|

2
= 0,

where h is the inwards mean curvature vector of the surface at position x and time t
and |A| represents the norm of the second fundamental form. This equation is the
extended version for models describing the mean curvature hypersurface in the
Euclidean space Rn+1; see [Sheng and Wang 2010].

Next, we will establish a finer control for dead-core solutions close to free
boundary points. In brief, any viscosity solution to (DCP) will be “trapped” between
the graph of two suitable multiples of distp( · , ∂{u > 0})2/(1−µ).

Corollary 4.6. Let u be a nonnegative, bounded viscosity solution to (DCP) and
�′ b �T . Given (x0, t0) ∈ {u > 0} ∩�′, there exists a universal constant C] > 0
such that

C]distp((x0, t0), ∂{u > 0})
2

1−µ ≤ u(x0, t0)≤ C]distp((x0, t0), ∂{u > 0})
2

1−µ .

Proof. The upper estimate is an immediate consequence of Theorem 1.1. Next,
let us suppose that such a C] > 0 does not exist. Then there exists a sequence
Pk := (xk, tk) ∈ {u > 0} ∩�′ with

dk := distp(Pk, ∂{u > 0} ∩�′)→ 0 as k→∞ and u(Pk)≤ k−1d
2

1−µ
k .
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Now, let us define the auxiliary function vk : C1→ R by

vk(y, s) :=
u(Pk + (dk y, d2

k s))

d
2

1−µ
k

.

It is easy to verify that:

(1) Fk(x, t, Dvk, D2vk)− ∂tvk = λ̂k(x, t) · (vk)
µ
+ in C1/2 in the viscosity sense

where

Fk(y, s, −→p ,X ) := d
−

2µ
1−µ

k F
(

Pk + (dk y, d2
k s), d

1+µ
1−µ

k
−→p , d

2µ
1−µ

k X
)

and
λ̂k(y, s) := λ0(Pk + (dk y, d2

k s)).

(2) u(Pk + (dk y, d2
k s))≤ supC+dk

(P̂k)
u(y, s)≤ Cd2/(1−µ)

k according to Theorem 1.1,
where P̂k is such that dk = distp(Pk, P̂k). Hence, vk is nonnegative and uni-
formly bounded.

(3) vk(y, s) ≤ C · dαk +
1
k for all (y, s) ∈ C−1/2 due to local Hölder regularity of

solutions; see [Crandall et al. 2000, Section 5; Krylov and Safonov 1980;
Wang 1992a, Section 4.4].

From the nondegeneracy property, Theorem 1.2, and the last sentence we obtain

(4-5) 0<C0 ·

(
1
2

) 2
1−µ

≤ sup
∂pC−1

2

vk(y, s)≤ sup
C−1

2

vk(y, s)≤Cdαk +
1
k
→0 as k→∞.

Such a contradiction finishes the proof. �

As an another application, we establish an average control for the µ-power of
dead-core solutions. Such an estimate will be useful in order to prove Hausdorff
measure estimates.

Corollary 4.7. Let u be a nonnegative, bounded viscosity solution to (DCP) and
�′b�T . For all (x0, t0)∈ ∂{u > 0}∩�′, there exist universal constants C]> 0 and

0< r0�min
{

1,
distp(�

′, ∂p�T )

2

}
such that

−

∫
C−r (x0,t0)

uµ(x, t)≥ C]r
2µ

1−µ ,

for any r ≤ r0.
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Proof. Once more, we will proceed via a contradiction argument. If such a C∗ > 0
does not exist, then there would exist a sequence Pk := (xk, tk) ∈ ∂{u > 0} ∩�′

such that for any sequence rk→ 0+ as k→ ∞ we would have

−

∫
C−rk (Pk)

uµ(x, t) < k−1r
2µ

1−µ
k .

Now, define the function vk : C
−

1 → R by

vk(y, s) :=
u(Pk + (rk y, r2

k s))

r
2

1−µ
k

.

It is easy to verify

Gk(x, t, Dvk, D2vk)− ∂tvk = λk(x, t) · (vk)
µ
+ in C−1

in the viscosity sense, where

Gk(y, s, −→p ,X ) := r
−

2µ
1−µ

k F (Pk + (rk y, r2
k s), r

1+µ
1−µ

k
−→p , r

2µ
1−µ

k X )

and
λk(y, s) := λ0(Pk + (rk y, r2

k s)).

On the one hand, using the contradiction assumption,

(4-6) −

∫
C−1

2
(0,0)

v
µ
k (y, s)= 2n+2

−

∫
C−rk (Pk)

uµ(x, t)

r
2µ

1−µ
k

<
2n+2

k
→ 0 as k→∞.

On the other hand, using Corollary 4.6 we obtain

−

∫
C−1

2
(0,0)

v
µ
k (y, s)= −

∫
C−1

2
(0,0)

uµ(Pk + (rk y, r2
k s))

r
2µ

1−µ
k

≥ C
µ
] −

∫
C−1

2
(0,0)

(
distp(Pk + (rk y, r2

k s), ∂{u > 0})
rk

) 2µ
1−µ

.

Now, let us denote dk(y, s) := distp(Pk + (rk y, r2
k s), ∂{u > 0} ∩�′). Under such a

notation we define

Dk := {(y, s) ∈ C−1
2
(0, 0) | dk(y, s) < akrk},

where

ak :=

(
1
k

) 1−µ
2µ

|C−1
2
(0, 0)|

1−µ
2µ (C

−µ
] )

1−µ
2µ (2α(n+2))

1−µ
2µ
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with α > 0 chosen such that

2α(n+2)

10
|C−1

2
(0, 0)|> 2n+2.

Notice that for k� 1 large enough, Dk ∩C−rk
(Pk)∩ {u > 0} 6=∅. Moreover, since

ak → 0 as k→∞, we have, for k � 1 large enough, that |Dc
k | ≥

1
10 |C

−

1/2(0, 0)|.
Therefore, we can estimate for k� 1

−

∫
C−1

2
(0,0)

v
µ
k (y, s)≥

C
µ
]

|C−1
2
(0, 0)|

∫
Dc

k

(
dk(y, s)

rk

) 2µ
1−µ

≥
2α(N+2)

k
|Dc

k | ≥
2α(n+2)

10k
|C−1

2
(0, 0)|>

2n+2

k
,

which contradicts (4-6). This finishes the proof of the corollary. �

The nondegeneracy property and the growth rate for viscosity solutions to (DCP)
will lead us to establish some measure-theoretic properties of the free boundary.
We start by showing a property of positive density.

Corollary 4.8 (positive Lebesgue density of {u > 0}). Let u be as in Theorem 1.1.
Then, there exists a positive constant ζ = ζ(n, λ,3,M, ‖u‖L∞(C1)) such that for
all (x0, t0) ∈ {u > 0} and 0< r < 1 such that Cr (x0, t0)⊂ C1/2, the inclusion

Cζr (x ′, t ′)⊂ Cr (x0, t0)∩ {u > 0},

holds for some (x ′, t ′) ∈ C−r (x0, t0).

Proof. Let (x0, t0) ∈ {u > 0} ∩C1/2. For r small enough, we have by Theorem 1.2
that there exists (x ′, t ′) ∈ C−r/2(x0, t0) such that

(4-7) u(x ′, t ′)≥ c ·

(
r
2

) 2
1−µ

.

Suppose that for all 0< d< 1 small, there exists a point (x, t) ∈ ∂{u > 0} ∩C1/2

satisfying

(4-8) (x ′, t ′) ∈ Cd(x, t)⊂ Cr (x0, t0).

Now, according to (4-7), (4-8) and Theorem 1.1, it follows

c ·

(
r
2

) 2
1−µ

≤ u(x ′, t ′)≤ sup
Cd(x,t)

u ≤ C, d
2

1−µ .

This clearly does not hold for d < 4 · r
2 , where 4 :=

(
c
C

)(1−µ)/2
< 1. Hence

C4/4 r (x ′, t ′)⊂ Cr (x0, t0)∩ {u > 0}. This ends the proof of the theorem. �
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Remark 4.9. Notice that Corollary 4.8 ensures that the free boundary cannot have
Lebesgue points. Consequently, for any compact set K⊂ C1, we have

L n+1(∂{u > 0} ∩K)= 0.

Next, we shall prove, as an easy consequence of the above result, that the free
boundary is a porous set. We recall the definition of this notion.

Definition 4.10 (porous set). A set E ∈ Rn is said to be porous with porosity
constant 0< ζ ≤ 1 if there exists R> 0 such that for each x0 ∈ E and 0< r<R

there is a point x ′ so that Brζ (x ′)⊂ Br(x0) \ E .

Observe that a porous set has Hausdorff dimension at most n − c0ζ
n, where

c0 = c0(n) > 0.

Corollary 4.11 (porosity for t-level of free boundary). Let u be a viscosity solution
to (DCP). For every compact set K ⊂ C1,

H n−δ(∂{u > 0} ∩K ∩ {t = t0}) <∞

for a constant 0< δ = δ(n, λ,3,µ,M, ‖u‖L∞(C1), dist(K , ∂C1))≤ 1.

Proof. The proof is standard (see, for instance, [Choe and Weiss 2003]). However,
we quote full details for completeness. Without loss of generality we can suppose
that K = C1/2. Let (z, t0) ∈ ∂{u > 0} ∩C1/2; then for 0< r � 1, according to the
nondegeneracy property, there exists x ′ ∈ ∂Br (z) such that

u(x ′, t0)≥ C∗0 · r
2

1−µ .

On the other hand, from Theorem 3.3,

u(x ′, t0)≤ C · d(x ′, t0)
2

1−µ .

Consequently,

c · r
2

1−µ ≤ u(x ′, t0)≤ C · d(x ′, t0)
2

1−µ .

Next, by selecting δ =
(
c
C

)(1−µ)/2, then d(x ′, t0)≥ δ · r . Therefore

Bδ·r (x ′)∩ Br (z)⊂ {u( · , t0) > 0}.

Now, choose y ∈ [z, x ′] such that |y− x ′| = δr
2 . Note that for any y0 ∈ B(δr)/2(y),

|y0− x ′| ≤ |y0− y| + |y− x ′| = δr.

Moreover, since |z− x ′| = |y− z| + |y− x ′|,

|y0− z| ≤ |y0− y| + (|z− x ′| − |y− x ′|)≤
δr
2
+

(
r −

δr
2

)
= r,
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so we conclude that B(δr)/2(y) ⊂ Bδr (x ′)∩ Br (z) ⊂ Br (z) \ (∂{u > 0} ∩ {t = t0}).
Therefore, ∂{u > 0} ∩ {t = t0} ∩C1/2 is porous with porosity constant δ2 . �

In contrast to one of the most known properties of heat equations, namely the
infinity speed of propagation, fully nonlinear parabolic dead core problems have
the property of finite speed propagation. Such a property supports the physical
soundness of the equation to diffusive models. Moreover, the occurrence of this
phenomenon is a consequence of loss of diffusivity of the equation at the level set
u = 0. The proof will be based on [Choe and Weiss 2003, Corollary 4.4].

Corollary 4.12 (finite speed propagation of {u > 0}). There exists a constant
c(n, λ,3,µ) ≥ 1 such that, for any solution to (DCP), with nonnegative and
bounded time derivative, and any C+r (x0, t0)⊂�× (0,∞), the implication

u( · , t0)= 0 in Br (x0)⇒ u( · , t0+ s2)= 0 in Bmax{0,r−cs}(x0)

holds.

Proof. Let us suppose that for 0< s1 <
r
c there exists a point x1 ∈ Br−cs1(x0) such

that u(x1, t0+ s2
1) > 0. The nondegeneracy property (Theorem 1.2) implies

u(x2, ς)≥ C∗0s
2

1−µ
1

for some (x2, ς) ∈ C−s1 (x1, t0+ s2
1). Moreover, since ∂u

∂t is nonnegative and bounded,
we deduce that there exist 0< τ(n, µ) < 1 and (x2, t0+ s2

2) satisfying

u(x2, t0+ s2
2) > 0, with 0≤ s2 ≤ (1− τ)s1 and |x2− x1| ≤ s1.

By iterating the previous reasoning we can obtain a point (xk, t0+ sθk ) such that

u(xk, t0+s2
k)>0, with 0≤ sk≤ (1−τ)k−1s1 and |xk−x1|≤

s1[1− (1− τ)k−1
]

τ
.

Finally, up to a subsequence, xk→ x∞ as k→∞; thus we obtain a point (x∞, t0)∈
{u > 0} fulfilling |x∞ − x1| < s1/τ . However, this contradicts our assumptions
provided c≥ 4

τ
. This contradiction proves the corollary. �

5. Global analysis results

5A. Blow-up analysis. Throughout this subsection we shall study the blow-up
analysis over free boundary points (interior touching points). Historically, such a
procedure provides a powerful device in order to study certain one-dimensional
profiles in several free boundary problems (see [Apushkinskaya et al. 2002] and
[Caffarelli et al. 2004] for some enlightenment). Thus, let u be a solution to (DCP),
p0 := (x0, t0) ∈ ∂{u > 0} ∩C1/2 and (pk = (xk, tk))k∈N ∈ ∂{u > 0} ∩C1/2 such that
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pk → p0. Now, consider, for each εk ↘ 0, the blow-up sequence uεk : C1/2→ R

given by
upk
εk
(x, t) :=

u(xk + εk x, tk + ε2
k t)

ε
2

1−µ
k

.

We must stress that this sequence is indeed an εk-zoom-in of u (on the free boundary
points) rescaled in a suitable way. The next result analyses the “limiting profile”
for any blow-up sequence.

Theorem 5.1 (blow-up limit). Let p0= (x0, t0)∈ ∂{u> 0} be a free boundary point,
(pk)k∈N ∈ ∂{u > 0} such that pk→ p0 and a blow-up sequence (upk

εk )k∈N. Then, up
to a subsequence

upk
εk
→ up0

0 uniformly in every compact K⊂ Rn
×R.

Furthermore, up
0 is a nonnegative viscosity solution to the following global parabolic

dead-core problem with constant coefficients:

(5-1) F (x0, t0, D2up0
0 (x, t))− ∂t u

p0
0 (x, t)= λ0(x0, t0) · (u

p0
0 )

µ
+(x, t) in Rn

×R.

Finally, (0, 0) ∈ ∂{up0
0 > 0}.

Proof. Note that upk
εk fulfills, in the viscosity sense,

Fεk (x, t, Dupk
εk
, D2upk

εk
)− ∂t upk

εk
= λ̂k(x, t) · (upk

εk
)
µ
+ in C 1

2εk

where

Fεk (x, t, −→p ,X ) := ε
−

2µ
1−µ

k F (xk + εk x, tk + ε2
k t, ε

1+µ
1−µ
k

−→p , ε
2µ

1−µ
k X )

and
λ̂k(x, t) := λ0(xk + εk x, tk + ε2

k t).

Observe that Fεk satisfies assumption (SC) from Section 2, with the same structural
parameters. As a consequence, from Theorem 1.1 we have

upk
εk
(x, t)≤ C(n, λ,3,M, µ) for all (x, t) ∈ C 1

2εk
.

Particularly, upk
εk is locally bounded in C1/(2εk). From universal Hölder regularity,

see for instance Proposition 2.2, up to a subsequence, upk
εk → up0

0 locally uniformly
to an entire function. Furthermore, ∂{up0

0 > 0} has zero (n+1)-Lebesgue measure
and by stability results (see Lemma 2.3) up0

0 fulfills

F (x0, t0, D2up0
0 (x, t))− ∂t u

p0
0 (x, t)= λ0(x0, t0) · (u

p0
0 )

µ
+(x, t) in Rn

×R.

Obviously, up0
0 is a global nonnegative solution. By nondegeneracy (Theorem 1.2)

sup
C−r (0,0)

up0
0 (x, t)= lim

k→∞
sup

C−r (0,0)
upk
εk
(x, t)≥ C∗0 · r

2
1−µ ,

which ensures that (0, 0) ∈ ∂{up0
0 > 0}. �
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From now on, for our purposes, up0
0 will always denote a limiting function, using

the previous reasoning. For this reason, we will label it as the blow-up solution
at (x0, t0).

The next result establishes a quantitative control profile at infinity for a class of
entire solutions to the dead-core problem, namely, blow-up solutions.

Theorem 5.2 (behavior of blow-up solutions). Let u0 be a blow-up solution at
(0, 0) ∈ ∂{u > 0}. Then, there exist universal constants c0,C0 > 0 such that

(5-2) c0 ≤ lim inf
distp((x,t),(0,0))→∞

u0(x, t)

distp((x, t), (0, 0))
2

1−µ

≤ lim sup
distp((x,t),(0,0))→∞

u0(x, t)

distp((x, t), (0, 0))
2

1−µ

≤ C0.

Proof. Such a lower and upper control at infinity are a consequence of Theorem 1.1
and Theorem 1.2, respectively. �

Remark 5.3. Note that (5-2) implies that blow-up solutions are nontrivial. More-
over, (5-2) says that blow-up solutions satisfy

c0 · r
2

1−µ ≤Sr [u0] ≤ C0 · r
2

1−µ ,

for values of r large enough.

Remark 5.4. In view of Theorem 5.2, the nontrivial space-independent blow-up
solution u = u(t) to

F (x0, t0, D2u)− ∂t u = λ0(x0, t0)u
µ
+(x, t) in Rn

×R

is given by u(t)= [−(1−µ)λ0(x0, t0)t]
1/(1−µ)
+ . On the other hand, when F (·)=

Tr(·), nontrivial time-independent blow-up solutions u = u(x) are of the form

u(x)= {Cn,µ · (xi )
2

1−µ
+ ,Cn,µ · (xi )

2
1−µ
− ,Cn,µ · (|x − x0| −R0)

2
1−µ
+ },

for any i = 1, . . . , n, where

Cn,µ :=

(
λ0(1−µ)2

2(1+µ)

1
1−µ
)
.

Notice that the first blow-up type solutions are half-space solutions and the last
one is a radial solution with dead core being precisely BR0(x0); see [da Silva et al.
2017, Section 6] for an analysis about radial solutions of fully nonlinear elliptic
dead core problems. Finally, another interesting example of blow-up solutions are
those with independent variables, i.e., u(x, t)= v(x)+w(t).
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5B. A Liouville-type theorem. In this section we are concerned with proving a
Liouville-type result for global dead-core solutions. In summary, we show that a
global viscosity solution must grow faster than (|x |+|t |1/2)2/(1−µ) as |x |+|t |1/2→∞,
unless it is identically zero. The proof will be based on [Teixeira 2016, Theorem 8].

Theorem 5.5. Let u be an entire viscosity solution to

F (x, t, D2u)− ∂t u(x, t)= λ0(x, t) · uµ+(x, t)

with u(0, 0)=0 . If u(x, t)=o(distp((x, t), (0, 0))
2

1−µ ) as distp((x, t), (0, 0))→∞,
then u ≡ 0.

Proof. For each positive number r � 1, let us define

ur (x, t) :=
u(r x, r2t)

r
2

1−µ

.

Thus, it is easy to check that

Fr (x, t, D2ur )− ∂t ur = λ0(r x, r2t)(ur )
µ
+ in C1

and ur (0, 0)= 0, where Fr (x, t,X ) := r−2µ/(1−µ)F (r x, r2t, r2µ/(1−µ)X ). More-
over, we note that ‖ur‖L∞(C1) = o (1). In fact, for each r ∈ N, let (xr , tr ) ∈ Rn

×R

be such that
ur (xr , tr )= sup

C1

ur (x, t).

We must consider two possibilities:

(1) If lim
r→∞

distp((r xr , r2tr ), (0, 0))=∞, we get

ur (xr , tr )= distp((r xr , r2tr ), (0, 0))−
2

1−µ u(r xr , r2tr )distp((r xr , r2tr ), (0, 0))
2

1−µ

≤ C(n, λ,3,µ) · o(1)→ 0 as r→∞.

(2) On the other hand, if lim
r→∞

distp((r xr , r2tr ), (0, 0)) <∞, the conclusion is
immediate, because u is a continuous function.

Therefore, applying Theorem 1.1 we have

(5-3) ur (x, t)≤ o (1) · distp((x, t), (0, 0))
2

1−µ in C 1
2
.

Now, if we assume that there exists (x̂, t̂)∈ (Rn
×R)\{(0, 0)} such that u(x̂, t̂) > 0,

we deduce from (5-3) that

(5-4) sup
C 1

2

ur (x, t)

distp((x, t), (0, 0))
2

1−µ

≤
u(x̂, t̂)

100 distp((x̂, t̂), (0, 0))
2

1−µ

,
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provided r � 1. We now estimate, for r �max{2|x̂ |,
√

2|t̂ |}:

u(x̂, t̂)

distp((x̂, t̂), (0,0))
2

1−µ

≤ sup
C r

2

u(x, t)

distp((x, t), (0,0))
2

1−µ

≤ sup
C 1

2

ur (x, t)

distp((x, t), (0,0))
2

1−µ

≤
u(x̂, t̂)

100distp((x̂, t̂), (0,0))
2

1−µ

,

which finally drives us to a contradiction, completing the proof of theorem. �

6. Hausdorff measure estimates

In this section, we will proceed to estimate the parabolic Hausdorff measure (i.e.,
the Hausdorff measure with respect to the parabolic distance) of the free boundary
set of dead-core solutions u. To this end, we need first some preliminary results,
which are based on the set of assumptions in Section 2 on the operator F , together
with the following additional hypothesis:

(C) ((M, b)-concavity) There exist a constant Ĉ > 0 and a bounded symmetric
positive definite Lipschitz matrix M : C1→ Sym(n), M= [mi j ], so that

F (x, t, −→p ,X )≤ Tr(M ·X )+ b|−→p |,

in the viscosity sense, where b ≥ 0 and 0 ≤ c(x, t) ≤ c∗0. We further assume
that there exists a constant β > 0 such that mi j ≥ β for all i, j (see [Ricarte
et al. 2017, Section 5] for a similar property).

(T) (lower bound for ∂t u) There is a constant c0 ≥ 0 such that ∂t u ≥−c0uµ+ in the
viscosity sense.

Before discussing the main result of this section, let us present some useful
notions and preliminary results.

Definition 6.1. Let A be a subset of a parabolic domain C . We say that A has the
(δ, ζ )-density property if there is δ ∈ (0, 1) so that there corresponds ζ > 0 with
the property

(6-1)
L n+1(Cδ(x, t)∩A )

L n+1(Cδ(x, t))
≥ ζ,

for all (x, t) ∈ ∂A ∩ C . If (6-1) holds for all δ in (0, 1), then we say that A has
uniform density in C along ∂A .

As a consequence of the above definition, we derive the following facts which
will be used in our proof of Hausdorff estimates for the free boundary.
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Proposition 6.2. Let A ⊂ C be open. Then:

• If A has the (δ, ζ )-density property, there is a constant M = M(n) such that

L n+1(Nδ(∂A )∩Cρ(x0, t0))≤
M(n)
ζ

L n+1(Nδ(∂A )∩Cρ(x0, t0)∩A )

for (x0, t0) ∈ ∂A ∩C and δ� ρ.

• If A has uniform density in C along ∂A , then L n+1(∂A ∩C )= 0.

Proof. We prove the first part. Let (x0, t0) ∈ ∂A ∩ C and δ < ρ. Consider
a covering of Nδ(∂A ) ∩ Cρ(x0, t0) by cylinders Cδ(x, t) centered at points on
∂A ∩Cρ(x0, t0). By [Lieberman 1996, Lemma 7.8], we may extract a countable and
disjoint subfamily of cylinders {Cδ(xi , ti )}i so that {C5δ(xi , ti )}i covers Nδ(∂A )∩

Cρ(x0, t0). Hence:

L n+1(Nδ(∂A )∩Cρ(x0, t0))≤
∑

L n+1(C5δ(xi , ti ))

≤
M(n)
ζ

L n+1(Cδ(xi , ti )∩A )

≤
M(n)
ζ

L n+1(Nδ(∂A )∩C2ρ(x0, t0)∩A ),

where we have used the (δ, ζ )-density property of A and the fact that Cδ(xi , ti )⊂
Nδ(∂A )∩C2ρ(x0, t0) �

We start with the series of preliminary results needed in the proof of Theorem 1.3.
The first lemma contains an L2 estimate on the gradient near free boundary points.

Lemma 6.3. There exists a constant C>0 such that for all (x0, t0)∈ ∂{u>0}∩C1/2

and ρ < 1
4 , the following holds:∫

Cρ(x0,t0)∩{0<u<ε
2

1−µ }

|∇u|2 ≤ Cερn+1.

Proof. Define

(6-2) 8(x, t) := u(x, t)χ
{0<u≤ε

2
1−µ }

(x, t)+ εχ
{u>ε

2
1−µ }

(x, t).

Integration by parts gives∫
Cρ(x0,t0)

8·mi j Di j u

=

∫ t0+ρ2

t0−ρ2

[
1
ρ

∫
∂Bρ(x0)

8·mi j ·D j u·(x i
−x i

0) dH n−1
−

∫
Bρ(x0)

Di (8·mi j )D j u dx
]

dt
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In view of the assumptions (C) and (T), nondegeneracy on average for dead core
solutions (Corollary 4.7), the growth rate on gradient, as well as that 2µ

1−µ ≤
1+µ
1−µ

for any 0< µ< 1, we conclude∫
Cρ(x0,t0)

Tr(MD2u)≥
∫

Cρ(x0,t0)

(m− c0)u
µ
+(x, t)− b|Du|

≥ ωnρ
n+2
[C∗(m− c0)ρ

2µ
1−µ − bC1ρ

1+µ
1−µ ]

≥ ωnρ
n+2ρ

2µ
1−µ [C∗(m− c0)− bC1] ≥ 0.

In particular, we derive ∫
Cρ(x0,t0)

8 ·mi j Di j u ≥ 0.

Hence∫
Cρ(x0,t0)∩{0<u<ε

2
1−µ }

mi j Di u·D j u≤
1
ρ

∫ t0+ρ2

t0−ρ2

∫
∂Bρ(x0)

8·mi j ·D j u·(x i
−x i

0) dH n−1

−

∫
Cρ(x0,t0)∩{0<u<ε

2
1−µ }

8Di mi j ·D j u.

Using regularity of Du and that 0<ρ� 1, we conclude the proof of the lemma. �

The above gradient estimate may be applied to get bounds on the Lebesgue
measure of the set {0< u < ε2/(1−µ)

} near the free boundary, in terms of the upper
bound ε. Precisely, we have the next lemma.

Lemma 6.4. There exists a constant C > 0 such that for any ε > 0 small enough,
any (x0, t0) ∈ ∂{u > 0} ∩C1/2 and any ρ small, the estimate

L n+1(Cρ(x0, t0)∩ {0< u < ε
2

1−µ })≤ Cρn+1ε,

holds.

Proof. From a Vitali covering theorem for parabolic cylinders, see [Lieberman 1996,
Lemma 7.8], consider {C j }, a finite covering by cylinders of ∂{u > 0} ∩Cρ(x0, t0),
with center at (x j , t j ) ∈ ∂{u > 0} and radius C∗ε, for a constant C∗ > 0 to be
determined a posteriori. Moreover, we require that⋃

j

C j ⊂N 1
4
(C 1

2
)∩Cρ(x0, t0)

Observe that, from the Heine–Borel lemma there exists a constant l > 0 (with
dimensional dependence) such that

(6-3)
∑

j

χC j (x, t)≤ l.
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We first prove the estimate

(6-4)
∫

{0<u<ε
2

1−µ }∩C j

|∇u|2 ≥ CL n+1(C j ),

for some C > 0 and C∗ to be chosen large enough. Indeed, in view of the nonde-
generacy property, there is (x1

j , t1
j ) ∈

1
4C j such that

u(x1
j , t1

j )= sup
1
4 C j

u ≥ C∗0 ·

(
1
4

C∗ε
) 2

1−µ

.

Next, choose C∗ > 0 large enough so that

K := sup
N 1

4

(
C 1

2

) |∇u| ≥
1

C∗
and C∗0 · (C

∗)
2

1−µ > 4
2

1−µ .

Next, we choose ε > 0 small enough so that if r1
j =

ε
K and r2

j =
ε
K , then

(6-5) 8≥
3ε
4

in C 1
j := Cr1

j
(x1

j , t1
j )

and

(6-6) 8<
2ε
3
< ε in C 2

j := Cr2
j
(x j , t j ),

where 8 is defined in (6-2). We claim that if m j := −
∫

C j
8, then |8−m j |> ςε for

some ς > 0 and for at least one of the cylinders C 1
j and C 2

j . In fact, if this is not
the case, then we can find sequences (xk, tk) ∈ C 1

j and (yk, sk) ∈ C 2
j such that

|8(xk, tk)−m j |

ε
<

1
k

and
|8(yk, sk)−m j |

ε
<

1
k
.

Letting k→∞, we obtain

|8(xk, tk)−8(yk, sk)|

ε
→ 0.

This contradicts (6-5) and (6-6). Thus, by Poincaré inequality, we have

ς2ε2
≤ −

∫
C j

|8−m j | ≤ (C∗ε)2 −
∫

C j

|∇8|2

and hence, for a universal constant C2 > 0, we conclude that∫
{0<u<ε}∩C j

|∇u|2 ≥ C2L
n+1(C j ).
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Moreover, by Corollary 4.6, if (y, s) ∈ {0< u < ε2/(1−µ)
} ∩Cρ(x0, t0), then

C∗0dist((y, s), ∂{u > 0})
2

1−µ ≤ u(y, s) < ε
2

1−µ .

Thus,

{0< u < ε
2

1−µ } ∩Cρ(x0, t0)⊂N( ε
C∗0

) 1−µ
2
(∂{u > 0} ∩C2ρ(x0, t0)).

Therefore, by enlarging C∗ and diminishing ε if necessary, we conclude that

{0< u < ε
2

1−µ } ∩Cρ(x0, t0)⊂
⋃

j

2C j ⊂ C4ρ .

Appealing to Lemma 6.3 and the estimate (6-4), we conclude

Cερn+1
≥

∫
{0<u<ε2/(1−µ)}∩C j

|∇u|2 ≥
1
l

∑
j

∫
2C j∩{0<u<ε2/(1−µ)}

|∇u|2

≥
C2

l

∑
j

L n+1(C j )

≥
C2

l
L n+1({0< u < ε

2
1−µ } ∩Cρ(x0, t0)). �

Theorem 6.5. There exists a constant C > 0 such that

L n+1(Nε({u > 0} ∩Cρ(x0, t0)))≤ Cερn+1,

for (x0, t0) ∈ ∂{u > 0} ∩C1/2.

Proof. First, observe that

(6-7) [Nδ(∂{u > 0})∩Cρ(x0, t0)∩ {u > 0}] ⊂ [{0< u < Cδ
2

1−µ } ∩Cρ(x0, t0)]

for C> 0 as in Theorem 1.1. Indeed, if (x, t) ∈Nδ(∂{u > 0})∩Cρ(x0, t0)∩{u > 0}
and (y, s) ∈ ∂{u > 0}, then

u(x, t)≤ C(|x − y| + |t − s|
1
2 )

2
1−µ ≤ Cδ

2
1−µ .

By the uniform positive Lebesgue density of the positive set of u (see Corollary 4.8),
we have that there exists a constant ζ so that

L n+1(Cδ(x0, t0))∩ {u > 0}
L n+1(Cδ(x0, t0))

≥ ζ.

Hence, the set {u > 0} has the (δ, ζ )-density property, and then by Proposition 6.2,
there is a constant M > 0

L n+1(Nδ(∂{u > 0})∩Cρ(x0, t0))

≤ C2L
n+1(Nδ(∂{u > 0})∩Cρ(x0, t0)∩ {u > 0})+Mδρn+1.
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Thus, by appealing to (6-7), we derive

L n+1(Nδ(∂{u>0})∩Cρ(x0, t0))≤C2L
n+1({0<u<Cδ

2
1−µ }∩Cρ(x0, t0))+Mδρn+1.

From Lemma 6.4, we get for δ small enough that

L n+1(Nδ(∂{u > 0} ∩Cρ(x0, t0)))≤ Cδρn+1,

for some universal C > 0. �

Remark 6.6. It will be useful to introduce the notion of parabolic Hausdorff
dimension for a set 60 ⊆ Rn+1.

Hpar(60) := inf
{

0≤ s <∞ : for all γ > 0 there exists {Cr j (x j , t j )} j≥1

such that 60 ⊆
⋃
j≥1

Cr j (x j , t j ) and
∑
j≥1

r s
j < γ

}
.

We will finish this section with the proof of the Hausdorff estimate for the free
boundary.

Proof of Theorem 1.3. Let 0< δ < ρ < 1
4 , and consider a covering C j by cylinders

of the set ∂{u > 0}∩Cρ(x0, t0) centered at points in ∂{u > 0}∩Cρ(x0, t0) and with
radius δ. Hence, ⋃

j

C j ⊂Nδ(∂{u > 0})∩Cρ+δ(x0, t0).

Thus, we derive

(6-8) H n+1
par,δ (∂{u > 0} ∩Cρ(x0, t0))≤ C

∑
j

δn+1
= C

∑
j

1
δ
L n+1(C j )

≤
C
δ

L n+1(Nδ(∂{u > 0})∩Cρ+δ(x0, t0))

≤ C(ρ+ δ)n+1,

where we have used Theorem 6.5 to obtain the last inequality. Hence, the conclusion
is reached by letting δ→ 0. �

Remark 6.7. We must highlight that the parabolic Hausdorff dimension and classi-
cal Hausdorff dimension have the relationship given by

2H (60)− n ≤Hpar(60)≤H (60)+ 1.

Therefore, H ((∂{u > 0} ∩K))≤ n+ 1
2 , for any Kb�T .

We end this section by providing a t-integral estimate on lower-dimensional
Hausdorff measure of the free boundary. This is a direct consequence of the previous
arguments.
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Lemma 6.8. Consider the set-valued mapping F(s) := ∂{u>0}∩{t= s}. Hence the
mapping s→H n−1(F(s)∩Cρ(x0, t0)), for (x0, t0) ∈ {u > 0}, is Borel measurable
in (t0− ρ2, t0+ ρ2) and the estimate

(6-9)
∫ t0+ρ2

t0−ρ2
H n−1(F (s)∩Cρ(x0, t0)) ds ≤ Ĉρn+1,

holds for a universal constant Ĉ depending only on dimension.

Proof. We first show that F is upper semicontinuous in (t0−ρ2, t0+ρ2). Indeed, if
U is an open set containing F(s0)∩K, K⊂ C1/2 compact, then F(s)∩K⊂ U for
all s sufficiently close to s0. In fact, if this is not the case, then we can build up a
sequence (yk, sk)∈F(sk)∩(K\U ) with sk→ s0. Passing to a subsequence, we have
(yk, sk)→ (y0, s0)∈ {u > 0}∩(K\U ). This contradicts that F(s0)⊂U . Therefore,
the mappings s→H n−1

δ (F(s)∩Cρ(x0, t0)) and s→H n−1(F(s)∩Cρ(x0, t0)) are
Borel measurable.

Consider now the covering by cylinders from Lemma 6.4. Hence by (6-8), we
obtain

C·(ρ+δ)n+1
≥

1
δ

∫
⋃

j C j (x j ,t j )

dL n+1

=
1
δ

∫ (δ+ρ)2

−(δ+ρ)2
L n

(⋃
j

C j (x j , t j )∩{t = s}
)

ds (by coarea formula)

≥
ωn

l

∫ (δ+ρ)2

−(δ+ρ)2
δn−1

∑
j

χ{C j (x j ,t j )∩{t=s}} ds (l as in (6-3))

≥
ωn

lωn−1

∫ (δ+ρ)2

−(δ+ρ)2
H n−1
δ (F(s)∩Cρ(x0, t0))ds.

By letting δ→ 0, we derive the estimate (6-9). �

Remark 6.9. We highlight that Lemma 6.8 implies particularly, from geomet-
ric measure theory results (see [Federer 1969, Theorems 4.5.6 and 4.5.11]), that
χ{u>0}( · , t) is a function of bounded variation for almost every t ∈ (0, T ). Moreover,
for any ϕ ∈ C0,1(� : Rn) it follows that∫
{u( · ,t)>0}

divϕdx =
∫

∂red{u( · ,t)>0}

ϕ ·
−→
ν dH n−1 for almost every t ∈ (0, T ),

where −→ν is the normal vector in the measure theoretic sense. Nevertheless, such
a previous sentence does not yield any additional information on the singular
set of free boundary, because neither the χ{u>0}( · , t) nor the reduced boundary
∂red{u( · , t) > 0} detect the singular set.
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HOMOTOPY DECOMPOSITIONS OF THE
CLASSIFYING SPACES OF POINTED GAUGE GROUPS

STEPHEN THERIAULT

Let G be a topological group and let G∗(P) be the pointed gauge group of a
principal G-bundle P → M. We prove that if G is homotopy commutative
then the homotopy type of the classifying space BG∗(P) can be completely
determined for certain M. This also works p-locally, and valid choices of
M include closed simply connected four-manifolds when localised at an odd
prime p. In this case, an application is to calculate part of the mod- p ho-
mology of the classifying space of the full gauge group.

1. Introduction

Let G be a topological group and let M be a pointed space. Let P → M be a
principal G-bundle over M . The gauge group G(P) is the group of G-equivariant
automorphisms of P that fix M . The pointed gauge group G∗(P) is the subgroup
of G(P) that fixes the fibre over the basepoint in M . Gauge groups are of wide
interest due to their prominent role in both mathematical physics, Donaldson theory,
and the study of semistable holomorphic vector bundles and their related moduli
spaces. Important problems are to calculate the mod-p homology and cohomology
of the classifying spaces BG(P) and BG∗(P) for a prime p when M is a closed
simply connected four-manifold, and to determine the integral homotopy types of
various spaces related to BG∗(P) when M is an orientable closed Riemann surface.

In this paper, assume that the topological groups have the homotopy type of
connected, finite type CW-complexes. We show that if G is homotopy commu-
tative then for certain spaces M there is a homotopy decomposition of BG∗(P)
as recognisable factors. This also works p-locally. Two applications are given.
The first is in the case when G is a simply connected, simple compact Lie group
and M is a closed simply connected four-manifold. For appropriate primes p, a
p-local homotopy decomposition of BG∗(P) holds and this is used to determine a
large split subalgebra of the mod-p cohomology of the full gauge group BG(P).

The author would like to thank the referee for making many valuable comments that helped improve
the clarity of the paper.
MSC2010: primary 55P15, 55R35; secondary 54C35, 81T13.
Keywords: gauge group, mapping space, homotopy type, homology.
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The second is in the case when G is the infinite unitary group and M is a closed
orientable Riemann surface. A homotopy decomposition of BG∗(P) is used to
determine the homotopy type of the space Hom(π1(6g),U ) of homomorphisms
from the fundamental group of the Riemann surface to the infinite unitary group.

The key result is a decomposition of certain pointed mapping spaces. Consider
adjunction spaces of the form

N =
( m∨

i=1

6Ai

)
∪a en,

where
∨m

i=16Ai is a CW-complex of dimension strictly less than n, a : Sn−1
→∨m

i=16Ai is the attaching map of the n-cell, and m ≥ 2. For 1 ≤ i ≤ m, let
ι j : 6A j →

∨m
i=16Ai be the inclusion of the j-th wedge summand. Let N be

the collection of all such adjunction spaces N with the additional property that the
attaching map a factors through a map a′ which is a wedge sum of some of the
Whitehead products 6A j ∧ Ak

[ι j ,ιk ]
−−−→

∨m
i=16Ai .

Observe that there is a cofibration
m∨

i=1

6Ai
b
−→ N q

−→ Sn,

where b is the inclusion and q collapses
∨m

i=16A to a point. Let G be a topological
group and let BG be its classifying space. Then the cofibration sequence induces a
fibration sequence

(1) Map∗(N , BG) b∗
−→Map∗

( m∨
i=1

6Ai , BG
)

a∗
−→Map∗(Sn−1, BG).

Theorem 1.1. Let N ∈N and let G be a topological group whose multiplication is
homotopy commutative. Then the map b∗ in (1) has a right inverse and there is a
homotopy equivalence

Map∗(N , BG)'Map∗
( m∨

i=1

6Ai , BG
)
×Map∗(Sn, BG).

A p-local version of Theorem 1.1 also holds if the multiplication on G is
only homotopy commutative at p. This is particularly relevant since James and
Thomas [1962a] showed that no simply connected, simple compact Lie group has
its standard multiplication being homotopy commutative, but McGibbon [1984]
showed that after localising at an odd prime there are cases when the multiplication
is homotopy commutative and he classified these. The classification is given in
Section 2.
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The connection with gauge groups comes from work of Gottlieb [1972] or Atiyah
and Bott [1983]. They showed that if M is a pointed space and P→ M is a prin-
cipal G-bundle then there is a homotopy equivalence BG∗(P)'Map∗P(M, BG),
where Map∗P(M, BG) is the component of Map∗(M, BG) that contains the map
inducing P . Consider two cases. First, let M be a closed simply connected four-
manifold and let G be a simply connected simple compact Lie group. By [Milnor
1958], M is homotopy equivalent to a CW-complex

(∨m
i=1 S2

)
∪a e4. Second,

let M be an orientable closed Riemann surface of genus g and let G = U (n).
Classically (see [Hatcher 2002] for instance), M is homotopy equivalent to a CW-
complex

(∨2g
i=1 S1

)
∪a e2. In either case, [M, BG] ∼= Z so there is a component

of Map∗(M, BG) for each integer k, and this integer determines a corresponding
equivalence class of principal G-bundles P → M . Write Pk for the equivalence
class corresponding to k and let G∗k (M)= G∗(Pk).

Let �3
0G be the component of �3G containing the basepoint. Write X(p) for a

space X localised at the prime p.

Corollary 1.2. Let M be a closed simply connected Spin four-manifold with m
two-cells, m ≥ 2, and let G be a simply connected simple compact Lie group whose
multiplication is homotopy commutative when localised at p. Then there is a p-local
homotopy equivalence

BG∗k (M)(p) '
( m∏

i=1

�G(p)

)
×�3

0G(p).

In the second case, stabilise by considering the infinite unitary group U . Since
U is an infinite loop space its loop multiplication is homotopy commutative. Write
6g for the surface of genus g, and let �0U be the component of �U containing
the basepoint.

Corollary 1.3. Let 6g be a closed orientable closed Riemann surface of genus
g ≥ 1. Then there is an integral homotopy equivalence

BG∗k (6g)'

( 2g∏
i=1

U
)
×�0U.

Corollaries 1.2 and 1.3 are the first systematic decompositions of the classifying
spaces of pointed gauge groups. In the context of Corollary 1.2, Masbaum [1991]
proved the G = SU (2) case earlier but by using different methods that depended
on the specific group. Also, while a great deal of work has been done recently to
identify the p-local homotopy types of gauge groups [Kishimoto and Kono 2010;
Kishimoto et al. 2013b; 2014; Theriault 2010] and study their properties [Kishimoto
et al. 2013a], nothing has been done for their classifying spaces.
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Applications of these decompositions to the mod-p homology of gauge groups
and the homotopy type of Hom(π1(6g),U ) will be discussed in the final section
of the paper.

2. Preliminary homotopy theory

In this section we discuss some notions from homotopy theory involving Whitehead
products and the homotopy commutativity of topological groups. As we are building
towards a strictly commutative diagram in (6) rather than a homotopy commutative
diagram, some extra care will be taken along the way.

Let G be a topological group and let

ev : 6�BG→ BG

be the evaluation map. Let iL : 6�BG→6�BG ∨6�BG and iR : 6�BG→
6�BG ∨6�BG be the inclusions of the left and right wedge summands respec-
tively and let

[iL , iR] : 6�BG ∧�BG→6�BG ∨6�BG

be the Whitehead product of iL and iR . By [Arkowitz 1962] there is a homotopy
equivalence

(6�BG ∨6�BG)∪[iL ,iR] C(6�BG ∧�BG)'6�BG×6�BG,

where C(6�BG ∧�BG) is the reduced cone on 6�BG ∧�BG. Let t be the
composite

t : 6�BG ∨6�BG ev∨ev
−−−→ BG ∨ BG ∇

−−−→ BG,

where ∇ is the folding map and let

[ev, ev] : 6�BG ∧�BG→ BG

be the Whitehead product of ev with itself. Note that [ev, ev] is homotopic to
∇ ◦ [iL , iR]. The following proposition connects the homotopy commutativity of G
to the existence of a certain extension.

Proposition 2.1. Let G be a topological group. Then the following are equivalent:

(a) G is homotopy commutative.

(b) The Whitehead product [ev, ev] is null homotopic.
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(c) There is a strictly commutative diagram

6�BG ∨6�BG t
//

��

BG

(6�BG ∨6�BG)∪[iL ,iR] C(6�BG ∧�BG)

e

33

for some map e.

Proof. The equivalence of parts (a) and (b) was proved by James and Thomas [1962b]
and the equivalence of parts (b) and (c) was proved by Arkowitz [1962]. �

Remark 2.2. It should be noted that the homotopy commutativity condition in
Proposition 2.1 is fairly restrictive. For example, there are no simply connected,
simple compact Lie groups which are homotopy commutative [James and Thomas
1962a]. However, obstructions to homotopy commutativity may vanish when
localised at a prime p (see [Hilton et al. 1975] for a good discussion of localisation).
McGibbon [1984] classified those simply connected, simple compact Lie groups G
which are homotopy commutative at p. To describe these, recall that G is rationally
homotopy equivalent to a product of spheres, G 'Q

∏l
i=1 S2ni−1. The type of G is

defined to be {n1, . . . , nl}. The loop multiplication on G is homotopy commutative
when localised at p in precisely the following cases:

(2) p > 2nl; G = Sp(2) and p = 3; G = G2 and p = 5.

On the other hand, Bott periodicity implies that the infinite matrix groups U , SU ,
SO , and Sp are all infinite loop spaces and so are integrally homotopy commutative.

Next, we generalise the (a) implies (c) part of Proposition 2.1. Let X1, . . . , Xm be
path-connected, pointed spaces and consider the wedge

∨m
i=16X i . For 1≤ j ≤ m,

let ι j : 6X j →
∨m

i=16X i be the inclusion of the j-th wedge summand. Let

f :
∨

1≤ j<k≤m

6X j ∧ Xk→

m∨
i=1

6X i

be the wedge sum of the Whitehead products [ι j , ιk]. Let

T (6X1, . . . , 6Xm)=

( m∨
i=1

6X i

)
∪ f C

( ∨
1≤ j<k≤m

6X j ∧ Xk

)
.

Observe that there is a homotopy equivalence

T (6X1, . . . , 6Xm)'
⋃

1≤ j<k≤m

6X j ×6Xk .
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To be clear, T (6X1, . . . , 6Xm) is a subspace of 6X1 × · · · ×6Xm , each term
6X j ×6Xk in the union is regarded as including into the ( j, k) coordinates of
6X1× · · ·×6Xm , and intersections are identified.

This construction is natural. Suppose that there are maps g : 6A→ Z , h : 6B→
Z , and t : Z → Z ′. Represent the homotopy class [g, h] as the adjoint of the
Samelson product 〈g′, h′〉, where g′ : A→�Z and h′ : B→�Z are the adjoints of
g and h respectively. The Samelson product is defined by the pointwise commutator
in�Z , which commutes with any loop map�Z �t

−→�Z ′. Thus we obtain t◦[g, h]=
[t ◦ g, t ◦ h] on the nose. Hence, given maps fi : 6X i → 6X ′i for 1 ≤ i ≤ m, we
obtain a strictly commutative diagram

(3)

∨m
i=16X i

∨m
i=1 fi

//

��

∨m
i=16X ′i

��

T (6X1, . . . , 6Xm)
T ( f1,..., fm)

// T (6X ′1, . . . , 6X ′m).

In our case, for 1≤ i ≤m, let X i =�BG. Write T (6�BG) for T (6�BG, . . . ,
6�BG). Let tm be the composite

tm :
m∨

i=1

6�BG
∨m

i=1 ev
−−−−→

m∨
i=1

BG ∇m
−−−→ BG,

where ∇m is the m-fold folding map. By Proposition 2.1, if G is homotopy com-
mutative then the restriction of tm to any pair 6�BG ∨6�BG extends to a map

(6�BG ∨6�BG)∪[iL ,iR] C(6�BG ∧�BG)→ BG.

Construct an extension for all pairs of wedge summands indexed by ( j, k) for
1≤ j < k ≤ m. Observe that the extensions are compatible because they intersect
only on the wedge summands. Thus they may be assembled to produce a map
T (6�BG)→ BG extending tm . This is recorded as follows.

Lemma 2.3. Let G be a topological group whose loop multiplication is homotopy
commutative. Then there is a strictly commutative diagram

∨m
i=16�BG

tm
//

��

BG

T (6�BG)

em

99

for some map em .
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We close this section with one more observation about T (6X1, . . . , 6Xm). Let
X E
−→�6X be the suspension map, defined by sending x ∈ X to the loop ωx on

6X , where ωx is characterised by ωx(t)= (t, x). The evaluation map 6�Y ev
−→Y

is defined by sending (s, ω) to ω(s). The definitions imply that the composite
6X 6E
−→6�6X ev

−→6X is the identity map on 6X . Now suppose that there is
a map f : 6X → Y . The naturality of the evaluation map implies that there is a
strictly commutative diagram

6�6X
6� f

//

ev
��

6�Y

ev
��

6X

6E
::

6X
f

// Y.

Thus, if f̄ = (6� f ) ◦6E , then we obtain a lift

(4)

6�Y

ev
��

6X
f
//

f̄
;;

Y.

Combining this with (3) we obtain the following:

Lemma 2.4. Suppose that for 1≤ i ≤m there are maps fi : 6X i → Y . Then there
is a strictly commutative diagram

∨m
i=16X i

∨m
i=1 f̄i

//

��

∨m
i=16�Y

��

T (6X1, . . . , 6Xm)
T ( f̄1,..., f̄m)

// T (6�Y, . . . , 6�Y ).

3. The class N

Recall from Section 1 that N is the class of adjunction spaces

N =
( m∨

i=1

6Ai

)
∪a en,

where
∨m

i=16Ai is a CW-complex of dimension strictly less than n, the attaching
map a factors through a map a′ which is a wedge sum of some of the Whitehead
products 6A j ∧ Ak

[ι j ,ιk ]
−−−→

∨m
i=16Ai , and m ≥ 2. The factorisation condition on

a can be restrictive. In the context of gauge groups, one typically wants to work
with an N that is homotopy equivalent to a manifold. Most manifolds do not satisfy
the attaching map condition. However, there are some very interesting families of
manifolds that do. For example,
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(a) if M is a simply connected Spin four-manifold with H 2(M;Z) of rank m ≥ 2,
then M is homotopy equivalent to a CW-complex

(∨m
i=1 S2

)
∪a e4

∈N ;

(b) if 6g is a closed orientable surface of genus g ≥ 1, then 6g is homotopy
equivalent to a CW-complex

(∨2g
i=1 S1

)
∪a e2

∈N ;

(c) if M is a simply connected Spin five-manifold then M is homotopy equivalent
to a CW-complex

(∨m
i=16Ai

)
∪a e5, where each 6Ai is either S2, S3, or a

mod-pr Moore space of dimension three, and if m ≥ 2 then this CW-complex
is in N .

The CW-structure for M in (a) is due to Milnor [1958]; the CW-structure for 6g

in (b) is commonly known, one reference is [Hatcher 2002]; the CW-structure
for M in (c) is given in [Stöcker 1982]. Other examples exist, such as certain
(n− 1)-connected 2n-dimensional manifolds [Wall 1962] and the connected sum
of products of two spheres.

The property that is needed for the spaces in N is the following. Recall that there
is a homotopy cofibration Sn−1 a

−→
∨m

i=16Ai
b
−→ N , where b is the inclusion.

Lemma 3.1. Let N ∈N . Then there is an extension∨m
i=16Ai

b
//

��

N

eN
ww

T (6A1, . . . , 6Am)

for some map eN .

Proof. Since N =
(∨m

i=16Ai
)
∪a en , to show that the extension eN exists it is

equivalent to show that the composite Sn−1 a
−→

∨m
i=16Ai → T (6A1, . . . , 6Am)

is null homotopic. By definition, T (6A1, . . . , 6Am) is the adjunction space formed
from coning off the sum of all the Whitehead products [ι j , ιk] for 1≤ j < k ≤m. In
particular, each composition 6A j∧ Ak

[ι j ,ιk ]
−−−→

∨m
i=16Ai→ T (6A1, . . . , 6Am) is

null homotopic. Thus, as a factors through a wedge sum of some of the Whitehead
products [ι j , ιk], the composite Sn−1 a

−→
∨m

i=16Ai → T (6A1, . . . , 6Am) is also
null homotopic. �

4. A decomposition of Map∗(N, BG)

Let N ∈N . In the sequence of maps

Sn−1 a
−→

m∨
i=1

6Ai
b
−→ N q

−→ Sn,

the maps a and b form a homotopy cofibre sequence, while b and q form a cofibre
sequence on the nose. If G is a topological group then there is an induced sequence
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(5) Map∗(Sn, BG) q∗
−→Map∗(N , BG)

b∗
−→Map∗

( m∨
i=1

6Ai , BG
)

a∗
−→Map∗(Sn−1, BG),

where the maps q∗ and b∗ form a fibre sequence on the nose while b∗ and a∗ form a
homotopy fibre sequence. We will show that if the multiplication on G is homotopy
commutative then the map b∗ has a right inverse.

Let f :
∨m

i=16Ai → BG be a pointed map. Universally, a map out of a wedge
is determined by its restrictions to the wedge summands, so f =

∨m
i=1 fi , where

fi : 6Ai → BG is the restriction of f to 6Ai . By (4), each fi lifts through
6�BG ev

−→ BG to a map f̄i = (6� fi ) ◦6E . So if N ∈N and the multiplication
on G is homotopy commutative, we may combine the diagrams in Lemmas 2.3,
2.4, and 3.1 to obtain a strictly commutative diagram

(6)

∨m
i=16Ai

∨m
i=1 f̄i

//

��

b

ww

∨m
i=16�BG

tm
//

��

BG

N
eN
// T (6A1, . . . , 6Am)

T ( f̄1,..., f̄m)
// T (6�BG).

em

99

By the definitions of tm and each f̄i , we have tm ◦
(∨m

i=1 f̄i
)
=
∨m

i=1 fi . So (6) lets
us define a map

θ : Map∗
( m∨

i=1

6Ai , BG
)
→Map∗(N , BG)

by θ( f ) = θ
(∨m

i=1 fi
)
= em ◦ T ( f̄1, . . . , f̄m) ◦ eN . We wish to show that θ is

continuous and that b∗ ◦ θ is the identity map.

Lemma 4.1. The map θ is continuous.

Proof. The map θ is defined as the composite of the continuous maps em and
eN and the continuous functor T ( f̄1, . . . , f̄m). Note that if Y is a locally compact
Hausdorff space then the composition Map∗(Y, Z)×Map∗(X, Y )→Map∗(X, Z) is
continuous with respect to the compact open topology. Therefore θ is continuous. �

Lemma 4.2. The composite of continuous maps

Map∗
( m∨

i=1

6Ai , BG
)

θ
−→Map∗(N , BG) b∗

−→Map∗
( m∨

i=1

6Ai , BG
)

is equal to the identity map.
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Proof. By definition, b∗ sends a map φ : N → BG to the composite

m∨
i=1

6Ai
b
−→ N φ

−→ BG.

Therefore, by the definition of θ , we have

b∗ ◦ θ( f )= b∗ ◦ θ
( m∨

i=1

fi

)
= b∗(em ◦ T ( f̄1, . . . , f̄m) ◦ eN )= em ◦ T ( f̄1, . . . , f̄m) ◦ eN ◦ b.

By (6) and the definition of tm , we have

em ◦ T ( f̄1, . . . , f̄m) ◦ eN ◦ b = tm ◦
( m∨

i=1

f̄i

)
=

m∨
i=1

fi = f.

Thus b∗ ◦ θ( f )= f . �

Proof of Theorem 1.1. In general, suppose that �B ∂
−→ F r

−→ E s
−→ B is a

homotopy fibration sequence and r has a right homotopy inverse t : E→ F . Then
s is null homotopic because

(i) r ◦ t ' 1E implies that s ' s ◦ r ◦ t , and

(ii) s ◦ r is null homotopic as it is the composition of two consecutive maps in a
homotopy fibration.

The null homotopy for s implies that F ' E ×�B. In our case, consider the
homotopy fibration sequence (5). By Lemma 4.2, the map b∗ has a right inverse.
Therefore there is a homotopy equivalence

Map∗(N , BG)'Map∗
( m∨

i=1

6Ai , BG
)
×Map∗(Sn, BG). �

To illustrate Theorem 1.1 we consider two cases of interest. Note that

Map∗(St , BG)'�t−1G.

Example 4.3. Let M be a simply connected Spin four-manifold with m two-cells,
where m≥2. As in Section 3, there is a homotopy equivalence M'

(∨m
i=1 S2

)
∪a e4.

Let G be a simply connected, simple compact Lie group listed in (2), whose
multiplication is homotopy commutative when localised at p. By [Hilton et al.
1975], p-localisation commutes with mapping spaces in the context of simply
connected (and more generally, nilpotent) spaces, so we have Map∗(M, BG)(p) '
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Map∗(M(p), BG(p)). Thus Theorem 1.1 implies that there is a homotopy equiva-
lence

Map∗(M, BG)(p) '
( m∏

i=1

�G(p)

)
×�3G(p).

Example 4.4. Let 6g be a close orientable surface of genus g ≥ 1. As in Section 3,
6g '

(∨2g
i=1 S1

)
∪a e2

∈ N . Let G = U , the infinite unitary group. Since U is
an infinite loop space it is homotopy commutative so by Theorem 1.1 there is a
homotopy equivalence

Map∗(6g, BU )'
( 2g∏

i=1

U
)
×�U.

We close this section by proving Corollaries 1.2 and 1.3.

Proof of Corollary 1.2. Recall from Section 1 that if G is a simply connected
simple compact Lie group, M is a simply connected four-manifold, and Pk→ M
is a principal G-bundle induced by the homotopy class in [M, BG] ∼= Z corre-
sponding to k, then there is a homotopy equivalence BG∗k (M)'Map∗k(M, BG).
By Example 4.3, there is a p-local homotopy equivalence Map∗k(M, BG)(p) '(∏m

i=1�G(p)
)
×�3

k G(p), where �3
k G is the connected component of �3G that

contains the map S3
→ G of degree k in the third homology group. Since

π0(�
3G) is a group, there is a homotopy equivalence �3

k G ' �3
0G. Therefore

BG∗k (M)(p) '
(∏m

i=1�G(p)
)
×�3

0G(p). �

Proof of Corollary 1.3. Again, recall from Section 1 that if G =U , 6g is a closed
orientable surface of genus g, and Pk → 6g is a principal G-bundle induced by
the homotopy class in [6g, BU ] ∼= Z corresponding to k, then there is a homotopy
equivalence BGk(6g) 'Map∗k(6g, BU ). By Example 4.4, there is a homotopy
equivalence Map∗k(6g, BU ) '

(∏2g
i=1 U

)
×�kU , where �kU is the connected

component of �U that contains the map S1
→U of degree k in the first homology

group. Since π0(�U ) is a group, there is a homotopy equivalence �kU ' �0U .
Therefore there is a homotopy equivalence BGk(6g)'

(∏2g
i=1 U

)
×�U . �

5. Applications

In this section we give two applications, one to the calculation of the mod-p
homology or cohomology of the classifying space of certain full gauge groups, and
the other to the homotopy type of a certain group of homomorphisms.

First, return to the case when G is a simply connected simple compact Lie group,
M is a simply connected four-manifold, and Pk → M is a principal G-bundle
induced by the homotopy class in [M, BG] ∼= Z corresponding to k. By [Atiyah
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and Bott 1983] there is a homotopy commutative diagram

(7)

BG∗k (M) //

ψ∗

��

BGk(M)

ψ

��

Map∗k(M, BG) // Mapk(M, BG),

where ψ∗ and ψ are homotopy equivalences. Observe also that there is a fibration

Map∗k(M, BG)→Mapk(M, BG) ev
−→ BG,

where ev evaluates a map at the basepoint of M . Stated in terms of gauge groups,
up to homotopy equivalences, there is a fibration

BG∗k (M)→ BGk(M)→ BG.

Take homology and cohomology with mod-p coefficients. Corollary 1.2 imme-
diately implies that if G is homotopy commutative when localised at p then there
is a coalgebra isomorphism

H∗(BG∗k (M))∼=
( m⊗

i=1

H∗(�G)
)
⊗ H∗(�2

0G)

and an algebra isomorphism

H∗(BG∗k (M))∼=
( m⊗

i=1

H∗(�G)
)
⊗ H∗(�2

0G).

We aim to prove the following:

Theorem 5.1. Let M be a closed simply connected Spin four-manifold and let G
be a simply connected simple compact Lie group whose multiplication is homotopy
commutative when localised at p. Then the composite of coalgebras

m⊗
i=1

H∗(�G)→ H∗(BG∗k (M))→ H∗(BGk(M))

has a left inverse, and the composite of algebras

H∗(BGk(M))→ H∗(BG∗k (M))→
m⊗

i=1

H∗(�G)

has a right inverse.

For example, let G = SU (2), in which case G is homeomorphic to S3 and
H∗(�S3) is well known. This case is of key interest in Donaldson theory and a
major open problem is calculating the mod-p homology of BGk(M). As SU (2) is
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homotopy commutative when localised at primes p ≥ 5, Theorem 5.1 applies for
any such prime, giving significant information about H∗(BGk(M)).

To prove Theorem 5.1, we begin by recalling some general facts about mapping
spaces. Let X1, . . . , Xm and Y be Hausdorff spaces, and let

∐m
i=1 X i be their

disjoint union. Then there is a homeomorphism

Map
( m∐

i=1

X i , Y
)
∼=

m∏
i=1

Map(X i , Y ).

Further, if each of X1, . . . , Xm and Y are pointed, then there is a homeomorphism

Map∗
( m∨

i=1

X i , Y
)
∼=

m∏
i=1

Map∗(X i , Y ).

These two decompositions are compatible in the following sense. There is a quotient
map

q :

m∐
i=1

X i →

m∨
i=1

X i

which identifies the basepoints in each space X i to a common point. So there is an
induced map

q∗ : Map
( m∨

i=1

X i , Y
)
→Map

( m∐
i=1

X i , Y
)
.

The two homeomorphisms above are compatible via a strictly commutative diagram

(8)

Map∗
(∨m

i=1 X i , Y
) incl

//

∼=

��

Map
(∨m

i=1 X i , Y
) q∗

// Map
(∐m

i=1 X i , Y
)

∼=

��∏m
i=1 Map∗(X i , Y )

∏m
i=1 incl

//
∏m

i=1 Map(X i , Y ).

Returning to the case of interest, as in Section 3, if M is any closed simply
connected Spin four-manifold then there is a space N =

(∨m
i=1 S2

)
∪a e4

∈N . The
inclusion

∨m
i=1 S2 b

−→ N induces a commutative diagram

(9)

Map∗(N , BG) //

b∗
��

Map(N , BG)

b∗
��

Map∗
(∨m

i=1 S2, BG
)

// Map
(∨m

i=1 S2, BG
)
.
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Localising at p, the fact that mapping spaces commute with localisation of nilpotent
spaces [Hilton et al. 1975] implies that there is a homotopy commutative diagram

(10)

Map∗(M, BG)(p) //

'

��

Map(M, BG)(p)

'

��

Map∗(N , BG)(p) // Map(N , BG)(p).

Juxtaposing the diagrams (7), (8), (9), and (10) we obtain a p-local homotopy
commutative diagram

BG∗k (M)(p) //

ψ∗

��

BGk(M)(p)

ψ

��

Map∗k(M, BG)(p) //

'

��

Mapk(M, BG)(p)

'

��

Map∗k(N , BG)(p) //

b∗

��

Mapk(N , BG)(p)

b∗

��

Map∗
(∨m

i=1 S2, BG
)
(p)

//

∼=

��

Map
(∨m

i=1 S2, BG
)
(p)

q∗

��

Map
(∐m

i=1 S2, BG
)
(p)

∼=

��∏m
i=1 Map∗(S2, BG)(p)

∏m
i=1 incl

//
∏m

i=1 Map(S2, BG)(p).

By Lemma 4.2, the map b∗ has a right inverse. Lifting this, up to homo-
topy, through the homotopy equivalences BG∗k (M)(p)

ψ∗
−→Map∗k(M, BG)(p)

'
−→

Map∗k(N , BG)(p), we obtain the following:

Lemma 5.2. Let M be a closed simply connected Spin four-manifold and let G be
a simply connected simple compact Lie group whose multiplication is homotopy
commutative when localised at a prime p. Then there is a homotopy commutative
diagram

Map∗k
(∨m

i=1 S2, BG
)
(p)

//

'

))

BG∗k (M)(p) //

��

BGk(M)(p)

��∏m
i=1 Map∗(S2, BG)(p)

∏m
i=1 incl

//
∏m

i=1 Map(S2, BG)(p).

Lemma 5.2 is used to extract information about H∗(BGk(M)) and H∗(BGk(M)).
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Proof of Theorem 5.1. Consider the map Map∗(S2, BG) incl
−→Map(S2, BG) whose

p-localisation appears in the bottom row of the diagram in Lemma 5.2. The
inclusion is the fibre of the evaluation map Map(S2, BG) ev

−→ BG, which sends
a map f : S2

→ BG to f (∗). Also, we have Map∗(S2, BG)=�G. So there is a
fibration

(11) �G→Map(S2, BG) ev
−→ BG.

By (2), the cases when the multiplication on G is homotopy commutative when
localised at p are known. In each such case, H∗(G) is an exterior algebra on odd
degree generators, so by [Borel 1953] H∗(BG) is a polynomial algebra on even
degree generators. Since cohomology is with mod-p coefficients, we can dualise
to see that H∗(BG) is also concentrated in even degrees. Further, by [Bott 1956],
the integral cohomology of �G is concentrated in even degrees, and therefore so is
the mod-p cohomology. Therefore the homology Serre spectral sequence for the
fibration (11) collapses at the E2-term and there are no extension issues. Hence

H∗(Map(S2, BG))∼= H∗(BG)⊗ H∗(�G).

Consequently, taking homology for the diagram in Lemma 5.2, we see that the
composite

m⊗
i=1

H∗(�G)→ H∗(BG∗k (M))→ H∗(BGk(M))

has a left inverse.
Similarly,

H∗(Map(S2, BG))∼= H∗(BG)⊗ H∗(�G)

and the composite

H∗(BGk(M))→ H∗(BG∗k (M))→
m⊗

i=1

H∗(�G)

has a right inverse. �

We now turn to the second application. Let K and L be topological groups,
and let Hom(K , L) be the set of homomorphisms from K to L , topologised as a
subspace of the mapping space Map(K , L). If BK , BL are the classifying spaces
of K and L respectively, there is a natural map

B : Hom(K , L)→Map∗(BK , BL).

This map has been a subject of intense study due to its connections with the
Sullivan conjecture in homotopy theory, to the moduli space of representations in
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algebraic geometry, and to the space of flat connections modulo gauge equivalence
in Yang–Mills theory. Consider the special case

Hom(π1(6g),U (n))→Map∗(Bπ1(6g), BU (n)).

Since the universal cover of 6g is contractible there is a homotopy equivalence
6g ' Bπ1(6g). So up to a homotopy equivalence we may regard the preceding
map as

Hom(π1(6g),U (n))→Map∗(6g, BU (n)).

Ramras [2011, Theorem 3.4] used gauge theoretic methods to show that this map
is an injection on π0 and an isomorphism on πm for m ≤ 2g(n−1)+1. Stabilising
to the infinite unitary group, we obtain a map

Hom(π1(6g),U )→Map∗(6g, BU ),

which is an injection on π0 and an isomorphism on πm for every m ≥ 1. Thus if
HomI (π1(6g),U )) is the component of Hom(π1(6g),U )) containing the identity
map, from Corollary 1.3 we obtain homotopy equivalences

HomI (π1(6g),U ))
'
−→Map∗0(6g, BU ) '−→

( 2g∏
i=1

U
)
×�0U,

which lets one easily identify πm(Hom(π1(6g),U )) for m ≥ 1.
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LOCAL SOBOLEV CONSTANT ESTIMATE FOR INTEGRAL
BAKRY–ÉMERY RICCI CURVATURE

LILI WANG AND GUOFANG WEI

We extend several geometrical results in Dai et al. (2018) for Riemann-
ian manifolds with integral curvature to complete smooth metric measure
spaces with integral Bakry–Émery Ricci curvature.

1. Introduction

Sobolev inequalities not only encode rich analytical and geometrical information
about manifold, but have wide applications in differential geometry. A useful
method to estimate the Sobolev constant is to estimate the isoperimetric constant
since they are equivalent [Cheeger 1970; Chavel 1993; Li 2012]. A key issue for
the isoperimetric constant study is the volume control, which is given by the Ricci
curvature lower bound. After Petersen and Wei [1997] generalized the classical
Laplacian and volume comparison to the integral Ricci curvature bound, many
results for the pointwise Ricci lower bound have been extended to the integral Ricci
curvature bound, see, e.g., [Petersen and Wei 2001; Aubry 2007; 2009; Dai et al.
2000; Tian and Zhang 2016; Dai et al. 2018; Zhang and Zhu 2017; 2018; Rose
2017; Rose and Stollmann 2017]. In particular, Dai, Wei and Zhang [Dai et al.
2018] obtained the local isoperimetric constant estimate for integral Ricci curvature.

An n-dimensional smooth metric measure space, denoted by M n
f
WD .M n;g;

e�f d vol/, is a complete n-dimensional Riemannian manifold .M n;g/ coupled
with a weighted volume e�f d vol for some f 2 C1.M /, where d vol is the usual
Riemannian volume element on M . For a smooth metric measure space M n

f
, a

natural generalization of the Ricci curvature is the Bakry–Émery Ricci curvature
[Bakry and Émery 1985] defined by

Ricf WD RicCHessf:

A great deal of effort has been devoted to the study of smooth metric measure
spaces with Bakry–Émery Ricci curvature bounded below, and some of the earlier
works are [Lott 2003; Wei and Wylie 2009; Cao and Zhou 2010; Munteanu and

MSC2010: 53C23, 53C20.
Keywords: integral Bakry–Émery Ricci curvature, isoperimetric constant estimate, Sobolev constant.
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Wang 2011]. However, limited work has been done for the integral Bakry–Émery
Ricci curvature.

Recently, Wu [2018] has extended the volume comparison in [Petersen and Wei
1997] to the integral Bakry–Émery Ricci curvature case. In this paper we extend the
local isoperimetric constant estimate in [Dai et al. 2018] to integral Bakry–Émery
Ricci curvature and give some applications.

To state the results, we fix some notations. Given x 2M n
f

, let �f .x/ be the
smallest eigenvalue of Ricf W TxM ! TxM , and

RicH
f� D ..n� 1/H � �f .x//C Dmaxf0; .n� 1/H � �f .x/g:

Denote Bx.R/ �M by the ball with radius R, centered at x. Various weighted
Lp norms of the function h on a smooth metric measure space M n

f
are

khkp;f;Bx.R/ D

�ˆ
Bx.R/

jhjpe�f d vol
�1

p

;

khkp;f;a.R/D sup
x2M n

f

� ˆ R

0

ˆ
Sn�1

jhjpe�atAf .t; �/ d� dt

� 1
p

:

Here d� is the volume element of the unit sphere Sn�1 and Af .t; �/ is the
volume element of weighted measure e�f d vol D Af .t; �/ d� ^ dt . Clearly,
kRicH

f�kp;f;Bx.R/ � 0 if and only if Ricf � .n � 1/H . For convenience, we
assume H D 0 and write Ric0

f� D Ricf� in the whole paper. Then Ric0
f� is the

negative part of �f , denoted by �f� . The following scale-invariant curvature
quantity will be useful:

N�.p; f; a;R/DR2 sup
x2M n

f

� 
Bx.R/

�
p

f�
e�atAf .t; �/ d� ^ dt

� 1
p

;

where

volf Bx.R/D

ˆ
Bx.R/

e�f d vol and
 

Bx.R/

D
1

volf Bx.R/

ˆ
Bx.R/

:

For a fixed point x 2M , let r.y/ WD d.y;x/ be a distance function from x to y.
In geodesic polar coordinates at x, let rr D @r . Our first result gives an estimation
of the local normalized Dirichlet isoperimetric constant under a lower bound of @rf .

Theorem 1.1. Let M n
f

be a complete smooth metric measure space. Assume that
@rf � �a along all minimal geodesic segments for some constant a � 0. For
p > 1

2
n, there exists "D ".n;p; a/ > 0 such that if N�.p; f; a; 1/ � ", then for any

x 2M n
f

, @Bx.R/¤¿, R� 1, we have the estimate

(1-1) ID�n;f Bx.R/� 10�2ne�2aR�1;
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where

ID�n;f Bx.R/D volf Bx.R/
� 1

n inf
�

�
volf @�

.volf �/
n�1

n

�
:

Here the infimum runs over all subdomains �� Bx.R/ with smooth boundary and
@�\ @Bx.R/D¿.

Remark 1.2. Clearly, the local normalized Dirichlet constant has explicit and
accurate dependency of the growth of f ; Theorem 1.1 will recover to [Dai et al. 2018,
Theorem 1.1] when f is a constant. The smallness of N�.p; f; a; 1/ is necessary; see
the counterexample in [Dai et al. 2018, §6] when f is constant and N�.p; f; a; 1/ is
bounded. Also the result is not true when p � 1

2
n; see details in [Aubry 2007].

It is well known that the classical Dirichlet isoperimetric and Sobolev constants
are equivalent; see, e.g., [Li 2012]. In Section 3, we introduce their weighted
versions for smooth metric measure spaces; see Definitions 3.1, 3.2. A similar proof
shows that they are also equivalent; see Theorem A.1. Hence we have:

Proposition 1.3. With the assumptions of Theorem 1.1, the Sobolev inequality

(1-2)
 

Bx.R/

jrhje�f d vol� 10�2ne�2aR�1

� 
Bx.R/

h
n

n�1 e�f d vol
�n�1

n

holds for all h 2 C1
0
.Bx.R//.

Recall that the f -Laplacian of M n
f

is

�f D��rf � r:

Given the normalized form of integral in Proposition 1.3, we denote the normalized
Lp norm for function h by

khk�p;f;Bx.R/
D khkp;f;Bx.R/.volf Bx.R//

� 1
p ;

and

khk�p;f;a.R/D sup
x2M n

f

� 
Bx.R/

he�atAf .t; �/ d� ^ dt

�1
p

with the same Af .t; �/ d� ^ dt as above. It is easy to observe that

(1-3) khk�p;f;Bx.R/
� e

aR
p khk�p;f;a.R/;

and the normalized L1 norm is independent of f satisfying khk�
1;f;Bx.R/

D

supBx.R/
h. By employing the above Sobolev inequality (1-2), we extend the

maximum principle in [Petersen and Wei 2001; Dai et al. 2018] to the integral
Bakry–Émery Ricci curvature situation.
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Theorem 1.4. Let M n
f

be a complete smooth metric measure space. Assume that
@rf � �a along all minimal geodesic segments for some constant a � 0. For
p > 1

2
n, there exists an " D ".n;p; a/ > 0 and C D C.n;p; a/ > 1 such that if

N�.p; f; a; 1/ � " and R � 1, then for any function u W �.� Bx.R// �M n
f
! R

with �f u� h, we have

sup
�

u� sup
@�

uCC �R2
� kh�k

�
p;f;�;

where h� denotes the negative part of the function h.

Also we have the gradient estimate.

Theorem 1.5. Let M n
f

be a complete smooth metric measure space. Assume that
@rf � �a along all minimal geodesics for some constant a� 0. For p > 1

2
n, there

exists an " D ".n;p; a/ > 0 and C.n;p; a/ > 1 such that if N�.p; f; a; 1/ � " and
R� 1 and u is a function on Bx.R/ satisfying

�f uD h;

then

supBx.
R
2
/ jruj2 � C.n;p; a/R�2Œ.khk�2p;f;Bx.R/

/2C .kuk�2;f;Bx.R/
/2�:

An outline of this paper is as follows. In Section 2, we review the Laplacian and
volume comparison for the integral Bakry–Émery Ricci curvature. In Section 3,
we define local Dirichlet isoperimetric and Sobloev constants, as well as their
normalized form in smooth metric measure spaces. Moreover, we estimate the
normalized isoperimetric constant for integral Bakry–Émery Ricci curvature; see
Theorem 1.1. In Section 4, as applications, we establish the maximum principle
(Theorem 1.4) and the gradient estimate (Theorem 1.5) in a complete smooth metric
measure space with integral Bakry–Émery Ricci curvature. In the Appendix, we
give the proof of equivalence between the two constants defined in Section 3.

2. Preliminaries

In this section, we review the Laplacian and volume comparison for smooth metric
measure spaces. Let M n

f
be a complete smooth metric measure space and r.y/D

d.y;x/ be a distance function from x 2M n
f

. Assume that f satisfies @rf � �a

along all minimal geodesic segments for some constant a � 0. By choosing
the Euclidean space with a weighted function as the model space, that is Rn

a D

.Rn;gRn ; e�hd vol/ with h.x/ D �ajxj for x 2 Rn, then the f -Laplacian error
term is

 .y/D
�
�f r �

n�1

r
� a

�
C
:

Wei and Wylie [2009] have proved that Ricf � 0 yields �f r �
n�1

r
C a; that is,
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kRicf�kp;f;a.r/� 0 implies that  � 0. In [Wu 2018], this has been extended to
integral Bakry–Émery Ricci curvature bound following the work of Petersen and
Wei [1997] for integral Ricci curvature.

Theorem 2.1 [Wu 2018, Theorem 1.1]. For any p > 1
2
n, we have

(2-1) k k2p;f;a.r/� C.n;p/ŒkRicf�kp;f;a.r/�
1
2 ;

with

C.n;p/D
�
.n�1/.2p�1/

2p�n

� 1
2
:

Moreover, letting Bx.r2/ and Bx.r1/ be geodesic balls centered at x with radius
r2 � r1 > 0, we have

(2-2)
�

volf Bx.r2/

V .n; a; r2/

� 1
2p

�

�
volf Bx.r1/

V .n; a; r1/

� 1
2p

�C.n;p; a; r2/.kRicf�kp;f;a.r2//
1
2 ;

where V .n; a; t/ denotes the volume of geodesic ball B0.t/ in the model space Rn
a.

Remark 2.2. In fact, the proof of [Wu 2018, Theorem 1.1] gives the following
normalized form of Laplacian comparison:

(2-3) k k�2p;f;a.r/� C.n;p/.kRicf�k
�
p;f;a.r//

1
2

D C.n;p/r�1.�.p; f; a; r//
1
2 :

Remark 2.3. Here we choose the power 2p rather than 2p � 1, so the explicit
expression of C.n;p; a; r2/ is similar to the one in [Petersen and Wei 1997, Lemma
2.1] rather than the one in [Wu 2018]. If we denote the volume of .n�1/-dimensional
unit ball in Rn and the weighted volume of geodesic sphere @B0.t/ by !n and
A.n; a; t/, respectively, then A.n; a; t/D !ntn�1eat and

C.n;p; a; r2/D C.n;p/

ˆ r2

0

tA.n; a; t/
�

1

V .n; a; t/

�1C 1
2p

dt

� C.n;p/

ˆ r2

0

tA.n; a; t/

�ˆ t

0

A.n; 0; s/ ds

��.1C 1
2p
/

dt

D C.n;p/ear2r
1� n

2p

2
:

Hence, (2-2) implies that
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(2-4)
�

volf Bx.r1/

volf Bx.r2/

� 1
2p

�

�
V .n; a; r1/

V .n; a; r2/

� 1
2p �

1�C.n;p/ear2r
1� n

2p

2

� .V .n; a; r2//
1

2p .kRicf �k
�
p;f;a.r2//

1
2

�
� e�

ar2
2p

�
r1

r2

� n
2p �

1�C.n;p/e.1C
1

2p
/ar2 N�

1
2 .p; f; a; r2/

�
;

where C.n;p/ is a constant depending on n and p. Hence, there exists a constant
"0 D "0.n;p; a; r0/ > 0 such that if N�.p; f; a; r0/� "0, then

(2-5)
volf Bx.r/

volf Bx.r0/
�

1
2
e�ar0

�
r

r0

�n
8r � r0:

For r0 � 1, from (2-4), it is easy to observe that there exists a "0 D "0.n;p; a/,
independent of r , such that (2-5) holds for N�.p; f; a; r0/� "0.

Remark 2.4. The scale invariant N�.p; f; a; r/ has curvature inequalities. For any
r1 � r2, and N�.p; f; a; r2/� "0, on one hand,

(2-6) N�.p; f; a; r1/

� r2
1

�
volf Bx.r2/

volf Bx.r1/
�

1

volf Bx.r2/

ˆ r2

0

ˆ
Sn�1

�
p

f�
e�atAf .t; �/ d� dt

� 1
p

� 2
1
p e

ar2
p

�
r1

r2

�2� n
p

N�.p; f; a; r2/:

Hence, N�.p; f; a; r1/� "0 holds for r1 � 2�1=.2p�n/e�ar2=.2p�n/r2. On the other
hand, if N�.p; f; a; r1/� "0, using the same method as in [Petersen and Wei 2001,
§2.3] and the volume doubling property (2-5), we have

(2-7) N�.p; f; a; r2/

D r2
2 sup

x2M n
f

�
1

volf Bx.r2/

ˆ r2

0

ˆ
Sn�1

�
p

f�
e�atAf .t; �/ d� dt

�1
p

�

�
r2

r1

�2

2
nC1

p e
ar1

p N�.p; f; a; r1/:

Hence, it is sufficient to work with the case where N�.p; f; a; 1/ is small and then
scale the metric to obtain the curvature condition of N�.p; f; a; r/.

3. Local Dirichlet isoperimetric constant estimate

In this section, we introduce the local isoperimetric and Sobolev constants in smooth
metric measure spaces motivated by the classical ones in [Cheeger 1970; Li 2012].
Furthermore, we estimate the normalized form of these constants.
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Definition 3.1. Let Bx.r/ be a geodesic ball with @Bx.r/ ¤ ¿ in a complete
smooth metric measure space M n

f
. For n� ˛ �1, the Dirichlet ˛-isoperimetric

constant of Bx.r/ is defined by

ID˛;f Bx.r/D inf
�

volf @�

.volf �/1�
1
˛

;

where � is an open submanifold of Bx.r/ with @�\ @Bx.r/D¿.

Clearly, IDn;f Bx.r/ is a scale invariant and ID1;f Bx.r/ is a weighted Cheeger
constant.

Definition 3.2. The Dirichlet ˛-Sobolev constant of Bx.r/�M n
f

is defined by

SD˛;f Bx.r/D inf
h

krhk1;f;Bx.r/

khk ˛
˛�1

;f;Bx.r/

;

where the infimum is taken over all h 2 C1
0
.Bx.r//.

For convenience, we normalize the two kinds of constants above thus:

(3-1)
ID�˛;f Bx.r/D ID˛;f Bx.r/.volf Bx.r//

� 1
˛ ;

SD�˛;f Bx.r/D SD˛;f Bx.r/.volf Bx.r//
� 1
˛ :

To estimate ID�
˛;f

Bx.R/, we need several lemmas. A suitable modification of
Gromov’s observation [Gromov 1979; Cheeger and Colding 1996] yields the first:

Lemma 3.3. Let M n
f

be a complete smooth metric measure space. Assume that
@rf ��a along all minimal geodesic segments for some constant a� 0. Let S be
any hypersurface dividing M n

f
into two parts M1, M2. For any subsets Wi �Mi ,

there exists x1 in one of Wi , say W1, and a subset W in another one, W2, such that
the unique minimal geodesic joint x1 and any x2 2W intersects S at q with

(3-2) d.x1; q/� d.x2; q/;

and

(3-3) volf W2 � 2 volf W:

Analogously to [Dai et al. 2018, Lemma 4.2], we have the following volume
estimate by using the Laplacian comparison method in smooth metric measure
spaces:

Lemma 3.4. Let M n
f

, S , W and x1 be as in Lemma 3.3. Then for any p > 1
2
n,

(3-4) volf W � 2n�1
�
eaDD volf S 0

C e.aC
a

2p
/DC.n;p/. N�.p; f; a;D//

1
2 volf Bx1

.D/
�
;
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where D D supx2W d.x1;x/ and S 0 is the set of intersection points with S of
geodesics 
xx1

for all x 2W .

Proof. Let ��Sx1
be the set of unit vectors v such that 
vD
x1x2

for some x22W .
Using the polar coordinate .�; t/ 2 Sx1

�RC and e�f d vol D Af .�; t/ d� ^ dt .
Recalling [Wu 2018, Theorem 3.1], we have

(3-5)
@

@t

Af
tn�1eat

D

�
�f t �

n�1

t
� a

� Af
tn�1eat

�  
Af

tn�1eat

with  D .�f t � .n� 1/=t � a/C. Integrating (3-5) from t to s gives

Af .s; �/�
�

s

t

�n�1
ea.s�t/

�
Af .t; �/C

ˆ s

t

 Af .l; �/ dl

�
� 2n�1e

as
2

�
Af .t; �/C

ˆ s

t

 Af .l; �/ dl

�
for any 1

2
s � t � s. For any � 2 � , let s1.�/ and s2.�/ be the minimum and

maximum radius, respectively, such that expx1
.si�/ 2 W , and s.�/ such that

expx1
.s.�/�/ 2 S . Then Lemma 3.3 implies that 2s.�/ � s2.�/ � s1.�/ � s.�/.

Thus,

(3-6) volf W �

ˆ
�

ˆ s2.�/

s1.�/

Af .s; �/ ds d�

� 2n�1eas.�/̂

�

ˆ s2.�/

s1.�/

�
Af .s.�/; �/C

ˆ s

s.�/

 Af .l; �/ dl

�
ds d�

� 2n�1eaDD

� ˆ
�

Af .s.�/; �/d�C
ˆ D

0

ˆ
�

 Af .s; �/ ds d�

�
:

On the other hand,

volf S 0 D

ˆ
�

Af .s.�/; �/
cos˛.�/

d� �

ˆ
�

Af .s.�/; �/ d�;

where ˛.�/ is the angle between S and the radical geodesic expx1
.s�/. Apply-

ing this result, the Hölder inequality, (1-3) and the Laplacian comparison (2-3)
successively in (3-6), we obtain

volf W � 2n�1eaDDŒvolf S 0Ck k1;f;Bx1
.D/�

� 2n�1eaDDŒvolf S 0Ck k�2p;f;Bx1
.D/ volf Bx1

.D/�

� 2n�1eaDDŒvolf S 0C e
aD
2p k k�2p;f;a.D/ volf Bx1

.D/�

� 2n�1eaDD
�
volf S 0C e

aD
2p C.n;p/D�1. N�.p; f; a;D//

1
2 volf Bx1

.D/
�
;

which completes the required estimate. �
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Lemma 3.4 enables us to obtain a local Cheeger’s constant estimate.

Lemma 3.5. Let M n
f

, S , W and x1 be the same as in Lemma 3.3. For p > 1
2
n,

there exists " D ".p; n; a/ such that if N�.p; f; a; 1/ � ", then for a geodesic ball
B D Bx.r/, r � 1

2
which is divided equally by S , we have

volf Bx.r/� 2nC3rea volf .S \Bx.2r//:

Proof. To begin, we choose Wi D Bx.2r/\Mi with Mi as in Lemma 3.3; then

volf .B \M1/D volf .B \M2/�minfvolf W1; volf W2g � 2 volf W;

and D � 2r and S 0 � S \Bx.2r/. Thus, by Lemma 3.4, we have

(3-7) volf Bx.r/� 4 volf W

� 2nC1
�
2re2ar volf .S \Bx.2r//

C e2r.aC a
2p
/C.n;p/. N�.p; f; a; 2r//

1
2 volf Bx.2r/

�
:

Next we aim at canceling the curvature inequality term. Since volume doubling
property (2-5) implies that

(3-8) volf Bx.2r/� 2
V .n; a; 2r/

V .n; a; r/
� volf Bx.r/� 2nC1ea volf Bx.r/

holds for N�.p; f; a; 2r/ � "0. From the curvature inequality (2-6) and r � 1
2

, the
curvature condition reduces to N�.p; f; a; 1/� 2�1=pe�a=p"0, and

(3-9) e2r.aC a
2p
/C.n;p/. N�.p; f; a; 2r//

1
2 �eaC a

2p C.n;p/.2
1
p e

a
p N�.p; f; a; 1//

1
2 :

Inserting (3-8) and (3-9) into (3-7) gives

(3-10) volf Bx.r/� 2nC2ear volf .S \Bx.2r//

C 22nC2C 1
2p e2aC a

p C.n;p/. N�.p; f; a; 1//
1
2 volf Bx.r/:

Here we used r � 1
2

. Hence, we get the required result by choosing

".n;p; a/Dminf2�
1
p e�

a
p "0; .2 � 2

2nC2C 1
2p e2aC a

p C.n;p//�2
g

and regrouping (3-10). �

Volume doubling property (2-5) indicates that the volume quotient of a concentric
geodesic ball is lower bound by a function of the quotient of corresponding radius.
The next theorem not only offers the other direction but also extends [Dai et al.
2018, Theorem 3.3] to the case of integral Bakry–Émery Ricci curvature. Actually,
by fixing the upper bound to 1

2
and the bigger radius to 1, we obtain the other radius.
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Theorem 3.6. Let M n
f

be a complete smooth metric measure space with @rf ��a

along all minimal geodesic segments for some constant a� 0. For p > 1
2
n, there

exists "D ".n;p; a/ > 0 and r0 D r0.n; a/ > 0 such that if N�.p; f; a; 1/� ", then

(3-11)
volf Bx.r0/

volf Bx.1/
�

1

2
8x 2M n

f :

Our proof follows the idea in [Dai et al. 2018, Theorem 3.3], but using the
approach directly runs into obstacles. The difficulties were conquered by repeating
the process of choosing the radius k � 1 times with k depending on a.

Proof. For any x 2M n
f

and i D 2; : : : ; k, let r1 D 1, choose points xi 2 Bx.ri�1/

with ri <
1
3
ri�1 and di D di.x;xi/D

1
2
.ri�1� ri/ >

1
3
ri�1, then

Bx.ri/�Bxi
.diCri/nBxi

.di�ri/�Bxi
.diCri/�Bx.ri�1/; i D 2; 3; : : : ; k:

Moreover,

volf Bx.ri/

volf Bx.ri�1/
�

volf.Bxi
.di C ri/ nBxi

.di � ri//

volf Bxi
.di C ri/

� 1�
volf Bxi

.di � ri/

volf Bxi
.di C ri/

:

By (2-4), we have

volf Bxi
.di � ri/

volf Bxi
.di C ri/

�

�
di � ri

di C ri

�n

e�a.diCri /Œ1�C.n;p/e.1C
1

2p
/a
N�

1
2 .p; f; a; di C ri/�

2p

�

�
di � ri

di C ri

�n

e�aŒ1�C.n;p/e.1C
1

2p
/a
� .2ea/

1
2p N�

1
2 .p; f; a; 1/�2p

D

�
di � ri

di C ri

�n

e�aŒ1�C.n;p/e.1C
1
p
/a2

1
2p N�

1
2 .p; f; a; 1/�2p:

Here we used the curvature inequality (2-6) and diCri � 1 in the second inequality.
Choose a q D q.n/ such that

1�q

1Cq
D
�

3
4

� 1
n ;

then for any ri �
1
3
qri�1, since di >

1
3
ri�1, we have�

di � ri

di C ri

�n

�
3
4
:

Choose "� "0 such that

(3-12) .1�C.n;p/e.1C
1
p
/a2

1
p N�

1
2 .p; f; a; 1//2p

�
2
3
:
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Then
volf Bxi

.di � ri/

volf Bxi
.di C ri/

�
3
4
� e�a

�
2
3
D

1
2
e�a;

and
volf Bx.ri/

volf Bx.ri�1/
� 1� 1

2
e�a:

Hence,
volf Bx.rk/

volf Bx.r1/
D

kY
iD2

volf Bx.ri/

volf Bx.ri�1/
D
�
1� 1

2
e�a

�k�1

with rk D
�

1
3
q
�k�1

r1. We choose the integer k D k.a/ such that�
1� 1

2
e�a

�k�1
�

1
2
<
�
1� 1

2
e�a

�k�2
:

Since r1 D 1, the proof is completed by choosing r0 D rk and " � "0 satisfying
(3-12). �

We now turn to prove the Theorem 1.1.

Proof of Theorem 1.1. Our first step is to show that the estimation (1-1) holds
for some radius r0 D r0.n;p; a/ if N�.p; f; a; 1/ � "1 for some small constant
"1 D "1.n;p; a/ > 0. By Theorem 3.6, we assume that "1 D "1.n;p; a/ is chosen
such that

volf By.2r0/

volf By

�
1

10

� � 1
2
8y 2M n

f

holds for some r0 D r0.n; a/. Given any y0 2M n
f

, let � be a smooth subdomain
of By0

.r0/. Assume that � is connected and its boundary S D @� divides M n
f

into � and �c . For any y 2�, let ry be the smallest radius such that

(3-13) volf .By.ry/\�/D volf .By.ry/\�
c/D 1

2
volf By.ry/:

From � � By.2r0/ and volf By.2r0/ �
1
2

volf By

�
1

10

�
, it follows that ry �

1
10

.
Since � has a covering

��[y2�By.2ry/;

thanks to the Vitali covering lemma (see [Lin and Yang 2002, §1.3]), there exists a
countable family of disjoint balls fByi

.2ri/g such that ��[iByi
.10ri/. On one

hand, choosing "1 such that N�.p; a; f; r/� "0 for all r � 1, and using the volume
doubling property (2-5) leads to

(3-14) volf ��
X

i

volf Byi
.10ri/� 2 � 10n

�

X
i

e10ri a volf Byi
.ri/

� 2 � 10n
� ea

X
i

volf Byi
.ri/:
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Choosing "1 as in Lemma 3.5 and using the disjoint of the balls fBxi
.2ri/g gives

(3-15) volf @��
X

i

volf .Byi
.2ri/\S/� 2�.nC3/e�a

X
i

.volf Byi
.ri//r

�1
i :

Combining (3-14) with (3-15) we obtain

(3-16)
volf @�

.volf �/
n�1

n

� 10�.n�1/2�.nC4� 1
n
/e�2aC a

n

P
i.volf Byi

.ri//r
�1
i�P

i.volf Byi
.ri//

�n�1
n

� 2�n�1
� 10�ne�2aC a

n

P
i.volf Byi

.ri//r
�1
iP

i.volf Byi
.ri//

n�1
n

� 2�1
� 10�2ne�2aC a

n inf
i

.volf Byi
.ri//r

�1
i

.volf Byi
.ri//

n�1
n

� 2�1
� 10�2ne�2aC a

n inf
i
Œr�1

i vol
1
n

f
Byi

.ri/�:

On the other hand, since d.yi ;y0/ � r0, then By0
.r0/ � Byi

.2r0/. Using the
volume doubling property (2-5) with ri �

1
10

and (3-13) yields

volf Byi
.ri/�

1
2
.10ri/

ne�
a

10 volf Byi

�
1

10

�
� .10ri/

ne�
a

10 volf By0
.r0/:

Inserting the above inequality into (3-16), we obtain

volf @�

.volf �/
n�1

n

� 5 � 10�2ne�2aC a
n
� a

10n vol
1
n

f
By0

.r0/� 10�2ne�2a vol
1
n

f
By0

.r0/:

Hence,

.volf By0
.r0//

� 1
n inf
�

�
volf @�

.volf �/
n�1

n

�
� 10�2ne�2a:

Our task now is to show (1-1) holds for any radius R�1 and for N�.p; f; a; 1/�"2

with "2 D "2.n;p; a/ > 0. Let r1 DR=r0 � 1=r0. After a scaling, its sufficient to
check that N�.p; f; a; r1/� "1. Choose "2 satisfying "2 � "0, and then (2-5) holds
for all R� 1. Now if r1 � 1, by (2-6),

N�.p; f; a; r1/� 2
1
p e

a
p N�.p; f; a; 1/� 2

1
p e

a
p "2:

If 1< r1 � 1=r0, then by (2-7) we have

N�.p; f; a; r1/� 2
nC1

p e
ar1

p N�.p; f; a; 1/� 2
nC1

p e
a

pr0 r�2
0 "2:

Using the two cases, let

"2 Dminf2�
1
p e�

a
p "1; 2

�
nC1

p e
� a

pr0 r2
0 "1; "0g:

The proof is completed by setting "D "2. �
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Theorem A.1 implies that the normalized constants in (3-1) are equivalent, that
is,

ID�n;f Bx.R/D SD�n;f Bx.R/:

Hence, Theorem 1.1 gives the following Sobolev inequality:

Corollary 3.7. If N�.p; f; a; 1/� " for the " in Theorem 1.1, then for any R� 1,

(3-17) krhk�1;f;Bx.R/
� 10�2ne�2aR�1

khk�n
n�1

;f;Bx.R/
8h 2 C10 .Bx.R//

and

(3-18) krhk�2;f;Bx.R/
�

n�2

2.n�1/
10�2ne�2aR�1

khk�2n
n�2

;f;Bx.R/

8h 2 C10 .Bx.R//:

Applying (3-17) to h
2.n�1/

n�2 , together with the Hölder inequality, we get (3-18).
The first eigenvalue of the f -Laplacian is defined by

�1.Bx.R//D inf
h2C1

0
.Bx.R//

´
Bx.R/

jrhj2 d volf´
Bx.R/

h2 d volf
:

As in Cheeger’s inequality [1970] we have:

Corollary 3.8. With the same assumption as in Theorem 1.1, for p > 1
2
n, there

exists " D ".n;p; a/ > 0 such that N�.p; f; a; 1/ � ", then for any R � 1, the first
eigenvalue of the Dirichlet f -Laplacian has lower bound

�1.Bx.R//� C.n;p; a/R�2; C.n;p; a/D
.n� 2/2

4.n� 1/2
10�4ne�4a:

Proof. Suppose �f hD��h for some � > 0, and normalize h such that
 

Bx.R/

h2e�f d volD 1

and hD 0 on @Bx.R/. Then using (3-18) we have

�D .krhk�2;f;Bx.R/
/2 �

�
n�2

2.n�1/
10�2ne�2aR�1

khk�2n
n�2

;f;Bx.R/

�2

�
.n� 2/2

4.n� 1/2
10�4ne�4aR�2.khk�2;f;Bx.R/

/2

D
.n� 2/2

4.n� 1/2
10�4ne�4aR�2: �
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4. Applications

In this section, we prove the maximum principle and the gradient estimate for
integral Bakry–Émery Ricci curvature with the help of the normalized local Dirichlet
Sobolev constant estimate.

Let Cs.�/ be the normalized local Sobolev constant of ��Bx.R/�M n
f

such
that

(4-1) khk�2n
n�2

;f;�
� Cs.�/krhk�2;f;� 8h 2 C10 .�/:

Obviously, Cs.�/ is the smallest constant such that (4-1) holds for all h 2 C1
0
.�/.

Since h 2 C1
0
.Bx.R//, then (3-18) gives

(4-2) Cs.�/� Cs.Bx.R//�
2.n�1/

n�2
102ne2aR:

Theorem 4.1. Let M n
f

be a smooth metric measure space and �� Bx.R/�M n
f

be a domain. For p > 1
2
n and any function u with uj@� D 0, we have

kuk�
1;f;� � C 2

s .Bx.R//C.n;p/k�f uk�p;f;Bx.R/
;

where C.n;p/ is a constant depending on n and p.

The proof of this result is quite similar to the one used in [Petersen and Wei
2001, Theorem 3.1] with s D 1

2
n due to the Sobolev inequality and the self-adjoint

of �f , and we omit it.

Corollary 4.2. With the same assumption as in Theorem 4.1, for p > 1
2
n and any

function u W��M n
f
! R with �f u� �h, where h is nonnegative on �, we have

sup
�

u� sup
@�

uCC.n;p/ �C 2
s .Bx.R// � khk

�
p;f;�:

Proof. Without loss of generality, we can assume that supx2@� u.x/D 0. Then we
have the Dirichlet problem

(4-3) �f v D�h in �; v D 0 on @�:

Hence u� v is f -subharmonic, and u� v � 0 on @�. By the maximum principle
we get u � v in �, that is sup� u � kvk1;f;�. Using Theorem 4.1 we complete
the proof. �

Combining Corollary 4.2 with (4-2) gives Theorem 1.4.
Following the idea in [Dai et al. 2018, Theorem 5.2], we use the standard and

powerful Nash–Moser iteration and establish the gradient estimate. We give the
details of the proof because there are still many differences compared to the previous
arguments.
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Theorem 4.3. Let M n
f

be a complete smooth metric measure space. Assume that
M n
f

satisfies @rf � �a along all minimal geodesic segments for some constant

a� 0. For p> 1
2
n, if u is a function on Bx.R/ with uD 0 on @Bx.R/ and satisfying

�f uD h;

then

sup
Bx.

R
2
/

jruj2 � C.n;p/R�2 volf Bx.R/

volf Bx

�
3
4
R
��.khk�2p;f;Bx.R/

/2C .kuk�2;f;Bx.R/
/2
�

�
�
R�2C 2

s .Bx.R//.1C aCR�2C 2
s .Bx.R//e

a
p N�.p; f; a;R//

C .R�2C 2
s .Bx.R//e

a
p N�.p; f; a;R//

2p
2p�n

�n
2 :

Proof. By scaling we assume R D 1. We omit the volume form e�f d vol for
convenience. From the Bochner formula, we have

(4-4) �f jruj2 D 2jHess uj2C 2hru;r�f uiC 2Ricf .ru;ru/

� 2hru;rhi � 2jRicf�jjruj2:

Let v D jruj2Ckhk�
p;f

and v D jruj2 if h is constant. For any � 2 C1
0
.Bx.1//,

l > 1, we have

ˆ
jr.�vl/j2 D�

ˆ
.�vl/Œvl�f �C 2hr�;rvl

iC ��f v
l �(4-5)

D

ˆ
v2l.���f �/� 2

ˆ
vl
hr�; �rvl

i

� l

ˆ
�2v2l�1�f v� l.l � 1/

ˆ
�2v2l�2

jrvj2

�

ˆ
v2l.���f �/C

l

l�1

ˆ
v2l
jr�j2C

l�1

l

ˆ
�2
jrvl
j
2

� l

ˆ
�2v2l�1.2hru;rhi � 2jRicf�jv/�

l�1

l

ˆ
�2
jrvl
j
2

D

ˆ
v2l.���f �/C

l

l�1

ˆ
v2l
jr�j2

� 2l

ˆ
�2v2l�1

hru;rhiC 2l

ˆ
�2v2l

jRicf�j:

Here we used Young’s inequality 2xy � "x2C
1
"

y2 with "D l
l�1

and (4-4) in the
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above inequality. Integrating by parts and using jruj � v1=2 gives

� 2l

ˆ
�2v2l�1

hru;rhi

D 2l

ˆ
�2v2l�1h2

C 4l

ˆ
�hv2l�1

hr�;rui

C 2l.2l � 1/

ˆ
�2hv2l�2

hru;rvi

� 2l

ˆ
�2v2l�1h2

C 2

ˆ
.2
p

l�vl� 1
2 h/.
p

lvl
jr�j/

C 2

ˆ
..4l � 2/�vl� 1

2 h/
�

1
2
�jrvl

j
�

D Œ6l C .4l � 2/2�

ˆ
�2v2l�1h2

C l

ˆ
v2l
jr�j2C 1

4

ˆ
jr.�vl/� vl

r�j2

� .16l2
� 10l C 4/

ˆ
�2v2l�1h2

C
�
l C 1

2

� ˆ
v2l
jr�j2C 1

2
jr.�vl/j2:

Here we used the L2-Hölder inequality and

�2
jrvl
j
2
D jr.�vl/� vl

r�j2 � 2jr.�vl/j2C 2v2l
jr�j2:

Inserting (4-6) into (4-5) and regrouping gives

(4-6)
ˆ
jr.�vl/j2 �

ˆ
v2l.�2��f �/C

�
2l

l�1
C 2l C 1

� ˆ
v2l
jr�j2

C 4.8l2
� 5l C 2/

ˆ
�2v2l�1h2

C 4l

ˆ
�2v2l

jRicf�j:

In order to control �f �, choose a cut-off function � 2 C1
0
.Bx.1// such that

0� � � 1. For 0< r < 1, �.t/� 1; for t 2 Œ0; r �, �.t/� 0; for t � 1, and �0 � 0.
Then define �.y/D �.r.y// and let r.y/D d.x;y/ be a distance function from x.
Thus jr�j D j�0j, and

(4-7) �f �D �
00
C�0�f r � �00C�0

�
 C

n�1

r
C a

�
� �j�00j � j�0j �

n�1

r
j�0j � aj�0j;

where  D .�f r � .n� 1/=r � a/C. Hence, for l � n=.n� 2/, (4-6) becomes
ˆ
jr.�vl/j2 � C.n/l2

ˆ �
.j�00jC j�0jr�1

C a/�v2l
Cj�0j �v2l

Cj�0j2v2l
C �2h2v2l�1

C �2v2l
jRicf�j

�
:
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Notice that this formula remains valid for l D 1. Indeed,

jr.�v
1
2 /j2 D

ˇ̌̌̌
v

1
2r�C �

jruj

v1=2
rjruj

ˇ̌̌̌2
� 2vjr�j2C 2�2

jHess uj2;

andˆ
�2
jHess uj2 D�

ˆ
riu.2�rjrirj uC �2

ri�f uC �2.Ricf /ijrj u/

�
1
2

ˆ
�2
jHess uj2C 3

ˆ
jr�j2vC 2

ˆ
�2h2

C

ˆ
�2
jRicf�jv:

Next we use Cs denote Cs.Bx.1// for simplicity. Letting ˇ D n=.n � 2/, and
applying the Sobolev inequality (4-1), then for l � n=.n� 2/ and l D 1,� 

Bx.1/

.�2v2l/ˇ
�1
ˇ

(4-8)

� C 2
s

 
Bx.1/

jr.�vl/j2

� C 2
s C.n/l2

 
Bx.1/

.j�00jCj�0jr�1
Ca/�v2l

CC 2
s C.n/l2

 
Bx.1/

.j�0j �v2l
Cj�0j2v2l

C�2h2v2l�1
C�2v2l

jRicf�j/:

The integration involving Bakry–Émery Ricci curvature can be estimated as follows: 
Bx.1/

�2v2l
jRicf�j

� kRicf�k
�
p;f;Bx.1/

�  
Bx.1/

.�2v2l/
p

p�1

�p�1
p

� e
a
p kRicf�k

�
p;a;f .1/

�  
Bx.1/

�2v2l

�p�1
p

q�  
Bx.1/

.�2v2l/ˇ
�p�1

p
.1�q/

� e
a
p N�.p; f; a; 1/

�
"

� 
Bx.1/

.�2v2l/ˇ
�1
ˇ

C "�
n

2p�n

�  
Bx.1/

�2v2l

��
;

where q D q.n;p/ D .2p � n/=.2.p � 1// > 0 is determined by qC .1� q/ˇ D

p=.p� 1/, and we also used the Young’s inequality

xy � "xb
C "�

b�

b yb�
8x;y � 0; b > 1;

1

b�
C

1

b
D 1;

where
b D

p

.1�q/.p�1/ˇ
; b� D

p

.p�1/q
:
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By choosing "D .4C 2
s C.n/l2e

a
p N�.p; f; a; 1//�1, we obtain

(4-9) C 2
s C.n/l2

 
Bx.1/

�2v2l
jRicf�j

�
1

4

�  
Bx.1/

.�2v2l/ˇ
�1
ˇ

CC.n;p/.C 2
s l2e

a
p N�.p; f; a; 1//

2p
2p�n

 
Bx.1/

�2v2l :

For the term
ffl

Bx.1/
�2h2v2l�1, since v � kh2k�

p;f;Bx.1/
, we have

 
Bx.1/

�2h2v2l�1
�

1

kh2k�
p;f;Bx.1/

 
Bx.1/

�2h2v2l
�

�  
Bx.1/

.�2h2v2l/
p

p�1

�p�1
p

:

Now the same argument as above with "D .4C 2
s C.n/l2/�1 gives

(4-10) C 2
s C.n/l2

 
Bx.1/

�2h2v2l�1

�
1

4

� 
Bx.1/

.�2v2l/ˇ
�1
ˇ

CC.n;p/.C 2
s l2/

2p
2p�n

 
Bx.1/

�2v2l :

For the term with  , applying the Hölder inequality, (1-3) and the Laplacian
comparison (2-3) gives

C 2
s C.n/l2

 
Bx.1/

j�0j �v2l

(4-11)

� C 2
s C.n/l2

k k�2p;f;Bx.1/
� k��0v2l

k
�

2p
2p�1

;f;Bx.1/

� C 2
s C.n/l2e

a
2p k k�2p;a;f .1/ � k��

0v2l
k
�

2p
2p�1

;f;Bx.1/

� C 2
s C.n/l2e

a
2p C.n;p/. N�.p; f; a; 1//

1
2 � k��0v2l

k
�

2p
2p�1

;f;Bx.1/
:

Note that for

˛ D
p.n�2/

n.2p�1/
D

1

ˇ

p

2p�1
< 1;
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we have

(4-12) k��0v2l
k
�

2p
2p�1

D

�  
Bx.1/

.�2v2l/˛ˇ.j�0j2v2l/
p

2p�1

� 2p�1
2p

�

��  
Bx.1/

.�2v2l/ˇ
�̨ � 

Bx.1/

.j�0j2v2l/
np

npC2p�n

�npC2p�n
n.2p�1/

� 2p�1
2p

�

��  
Bx.1/

.�2v2l/ˇ
�̨ � 

Bx.1/

j�0j2v2l

� p
2p�1

� 2p�1
2p

� "

�  
Bx.1/

.�2v2l/ˇ
�1
ˇ

C
1

4"

 
Bx.1/

j�0j2v2l ;

where we used the Hölder inequality; note that p> 1
2
n implies np=.npC2p�n/<1

in the second inequality. By setting

"D .4C 2
s C.n/l2e

a
2p C.n;p/. N�.p; f; a; 1//1=2/�1

and inserting (4-12) into (4-11) we obtain

(4-13) C 2
s C.n/l2

 
Bx.1/

 �j�0jv2l
�

1

4

�  
Bx.1/

.�2v2l/ˇ
� 1
ˇ

C .C 4
s C 2.n/l4e

a
p C 2.n;p/ N�.p; f; a; 1//

 
Bx.1/

j�0j2v2l :

Inserting (4-9), (4-10) and (4-13) into (4-8) gives� 
Bx.1/

.�2v2l/ˇ
�1
ˇ

(4-14)

� 4C 2
s C.n/l2

 
Bx.1/

�
j�00jC

j�0j

r
C a

�
�v2l

C 4C 2
s C.n/l2.1CC 2

s l2e
a
p C 2.n;p/ N�.p; f; a; 1//

 
Bx.1/

j�0j2v2l

CC.n;p/.C 2
s l2/

2p
2p�n Œ1C .e

a
p N�.p; f; a; 1//

2p
2p�n �

�  
Bx.1/

�2v2l

�
:

Define li D
1
2
ˇi , i � 0, and ri D

3
4
�
Pi

jD0 2�j�1. Choose the cut-off functions
�i D �i.r/ 2 C1

0
.Bx.ri// such that

�i � 1 on Bx.riC1/I j�
0
i j � 2iC1; j�00i j � 22iC2:
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Then (4-14) becomes

kvk�
ˇiC1;f;Bx.riC1/

� C.n;p/
˚
C 2

s .ˇ
4i/.1C aCC 2

s e
a
p N�.p; f; a; 1//

C .C 2
s ˇ

2i/
2p

2p�n Œ1C .e
a
p N�.p; f; a; 1//

2p
2p�n �

	
kvk�

ˇi ;f;Bx.ri /

� C.n;p/ˇsi
˚
C 2

s .1C aCC 2
s e

a
p N�.p; f; a; 1//

CC
4p

2p�n

s Œ1C .e
a
p N�.p; f; a; 1//

2p
2p�n �

	
kvk�

ˇi ;f;Bx.ri /
;

where sDmaxf4; 4p=.2p�n/g. Then substituting �i into the estimate and running
the iteration from i D 0 gives

(4-15) kvk�
1;Bx.

1
2
/
� C.n;p/A

n
2 kvk�

1;f;Bx.
3
4
/
;

where

AD C 2
s .1C aCC 2

s e
a
p N�.p; f; a; 1//CC

4p
2p�n

s Œ1C .e
a
p N�.p; f; a; 1//

2p
2p�n �:

Finally, we estimate the term kvk�
1;f;Bx.3=4/

. For � 2 C1
0
.Bx.1// with �� 1 in

Bx

�
3
4

�
and jr�j � 5, then

(4-16) kvk�
1;f;Bx.

3
4
/
�

volf Bx.1/

volf Bx

�
3
4

�kvk�1;f;Bx.1/

D
volf Bx.1/

volf Bx

�
3
4

�  
Bx.1/

�2.jruj2Ckhk�p;f;Bx.1/
/:

Using the integration by parts and Young’s inequality, we have
 

Bx.1/

�2
jruj2 D�2

 
Bx.1/

�hr�;ruiu�

 
Bx.1/

�2hu

�
1

2

 
Bx.1/

�2
jruj2C2

 
Bx.1/

jr�j2u2
C

1

2

 
Bx.1/

.�2h2
C�2u2/:

Regrouping the above inequality and inserting it into (4-16) gives

(4-17) kvk�
1;f;Bx.

3
4
/
D

volf Bx.1/

volf Bx

�
3
4

��4

 
Bx.1/

jr�j2u2
C

 
Bx.1/

�2u2

C

 
Bx.1/

�2h2
Ckh2

k
�
p;f;Bx.1/

�
�

volf Bx.1/

volf Bx

�
3
4

� Œ101.kuk�2;f;Bx.1/
/2C2.khk�2p;f;Bx.1/

/2�:
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Combining (4-15) with (4-17) yields

sup
Bx.

1
2
/

jruj2 � C.n;p/
volf Bx.1/

volf Bx

�
3
4

� Œ.khk�2p;f;Bx.1/
/2C .kuk�2;f;Bx.1/

/2�

�
˚
C 2

s .1C aCC 2
s e

a
p N�.p; f; a; 1//

CC
4p

2p�n

s Œ1C .e
a
p N�.p; f; a; 1//

2p
2p�n �

	n
2 :

Thus we get the desired result by scaling. �
Combining Theorem 4.3 and the local Sobolev constant estimate (4-2) with the

volume doubling property (3-18) gives Theorem 1.5.

Appendix: Equivalence of isoperimetric and
Sobolev constants for weighted measure

Here we show the equivalence between the local isoperimetric and Sobolev constants
defined in Section 3 by adapting the proof of [Li 2012, Theorem 9.5]. A special
case of Theorem A.1 can be found in [Cheng and Oden 1997, Proposition 1.1].

Theorem A.1. For all n� ˛ �1, we have

(A-1) ID˛;f Bx.R/D SD˛;f Bx.R/:

Proof. Let �f be an .n�1/-dimensional Hausdorff measure. We omit the weighted
measure e�f d vol for convenience. For � � Bx.R/ with �\ @Bx.R/D ¿, let
�" D fy 2� W d.y; @�/� "g. Construct a function by

h".y/D

8<:
0 Bx.R/ n�;

.1="/d.y; @Bx.R// � n�";

1; �":

Since the distance function d is Lipschitz, h" is Lipschitz with h"j@�D 0. Applying
the Sobolev inequality to h" gives

(A-2)
ˆ

Bx.R/

jrh"j � SD˛;f Bx.R/

� ˆ
Bx.R/

jh"j
˛
˛�1

�˛�1
˛

� SD˛;f Bx.R/.volf �"/
˛�1
˛ :

The coarea formula implies

(A-3) lim
"!0

ˆ
Bx.R/

jrh"je
�f d volD lim

"!0

1

"

ˆ "

0

�f .@�t / dt D �f .@�/:

Combining (A-2) with (A-3), together with Definition 3.1, we have

ID˛;f Bx.R/� SD˛;f Bx.R/:
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To see that ID˛;f Bx.R/� SD˛;f Bx.R/, it suffices to show that

(A-4)
ˆ

Bx.R/

jrhj � ID˛;f Bx.R/

� ˆ
Bx.R/

h
˛
˛�1

�˛�1
˛

holds for hj@Bx.R/ D 0. Without loss of generality, we may assume h � 0. Let
Bt WD fy 2 Bx.R/ j h.y/ > tg to be the sublevel set of h. By the coarea formula,

(A-5)
ˆ

Bx.R/

jrhj D

ˆ 1
0

�f .@Bt / dt � ID˛;f Bx.R/

ˆ 1
0

vol
˛�1
˛

f
Bt dt:

Let

F.s/D

� ˆ s

0

vol
˛�1
˛

f
Bt dt

� ˛
˛�1

�
˛

˛�1

ˆ s

0

t
1
˛�1 volf Bt dt:

Obviously, F.0/D 0 and

F 0.s/D
˛

˛�1

�ˆ s

0

vol
˛�1
˛

f
Bt dt

� 1
˛�1

vol
˛�1
˛

f
Bs �

˛

˛�1
s

1
˛�1 volf Bs:

Since Bs � Bt for t � s, then
´ s

0 vol
˛�1
˛

f
Btdt � s vol

˛�1
˛

f
Bs yields F 0.s/ � 0,

hence F.s/� 0. Applying this inequality to (A-5) yields

(A-6)
ˆ

Bx.R/

jrhj � ID˛;f Bx.R/

�
˛

˛�1

ˆ 1
0

t
1
˛�1 volf Bt dt

�˛�1
˛

:

Integrating by parts and using the coarea formula,

˛

˛�1

ˆ 1
0

t
1
˛�1 volf Bt dt D

ˆ 1
0

�
d.t

˛
˛�1 /

dt

ˆ 1
t

ˆ
@Bs

d�f .@Bs/

jrhj
ds

�
dt

D

ˆ 1
0

t
˛
˛�1

ˆ
@Bt

d�f .@Bt /

jrhj
dt D

ˆ
Bx.R/

h
˛
˛�1 :

Inserting the above equality into (A-6) gives (A-4). �
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