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We study representations of the braid groups from braiding gapped bound-
aries of Dijkgraaf–Witten theories and their twisted generalizations, which
are (twisted) quantum doubled topological orders in two spatial dimensions.
We show that the braid representations associated to Lagrangian algebras
are all monomial with respect to some specific bases. We give explicit formu-
las for the monomial matrices and the ground state degeneracy of the Kitaev
models that are Hamiltonian realizations of Dijkgraaf–Witten theories. Our
results imply that braiding gapped boundaries alone cannot provide univer-
sal gate sets for topological quantum computing with gapped boundaries.

1. Introduction

Interesting new directions in topological quantum computing include its extension
from anyons to gapped boundaries and symmetry defects, with the hope that
anyonic systems with nonuniversal computational power can be enhanced to achieve
universality. Enrichment of topological physics in two spatial dimensions by gapped
boundaries has been investigated intensively, but their computing power has not
been analyzed in detail yet. One interesting case is gapped boundaries of Dijkgraaf–
Witten theories both for their experimental relevance and as theoretical exemplars
(see [Cong et al. 2016; 2017a; 2017b]).

In this paper, we study representations of the braid groups from braiding gapped
boundaries of Dijkgraaf–Witten theories and their twisted generalizations, which are
(twisted) quantum doubled topological orders in two spatial dimensions. We show
that the resulting braid (pure braid) representations are all monomial with respect to
some specific bases, and their entries are roots of unity; hence all such representation
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images of the braid groups are finite groups. The finiteness of the image of the
braid representation from braiding gapped boundaries of twisted Dijkgraaf–Witten
theories follows directly from [Etingof et al. 2008], since they are braid representa-
tions obtained from group-theoretical braided fusion categories. Besides, we give
explicit formulas for the monomial matrices and the ground state degeneracy of the
Kitaev models that are Hamiltonian realizations of Dijkgraaf–Witten theories. The
universal gate sets from [Cong et al. 2017c] include a nontopological measurement
primitive. Our results imply that braiding gapped boundaries alone cannot provide
universal gate sets for topological quantum computing with gapped boundaries.

For a topological order of the form C = Z(S), were S is some unitary fusion
category, gapped boundaries are modeled by Lagrangian algebras (see [Cong et al.
2016]). For these models the ground manifolds have the form

HomC(1, A1⊗ · · ·⊗ An),

where the Ai ’s are the Lagrangian algebras modeling the gapped boundaries; see
[Cong et al. 2016, Section 3] for details. Recall that a Lagrangian algebra in any
modular (tensor) category is a commutative étale algebra whose quantum dimension
is maximal. A group theoretical modular category (GTMC) admitting a Lagrangian
algebra is a category of the form C = Z(VecωG) for some finite group G and some
ω ∈ Z3(G,C×), where Z denotes the Drinfeld center and VecωG is the category of
finite-dimensional G-graded vector spaces with associativity constraint twisted by
ω ∈ H 3(G,C×); see [Davydov et al. 2013; Davydov and Simmons 2017].

Kitaev [2003] proposed Hamiltonian realizations of Dijkgraaf–Witten theories,
whose topological orders are GTMCs. Moreover, extensions of these Hamiltonian
realizations to surfaces with boundaries can be constructed from Lagrangian algebras
[Bravyi and Kitaev 1998; Bombin and Martin-Delgado 2008; Beigi et al. 2011;
Kitaev and Kong 2012].

Lagrangian algebras in GTMCs are in one-to-one correspondence with indecom-
posable module categories of VecωG [Davydov et al. 2013], which are in bijection
with pairs (H, γ ), where H is a subgroup of G and γ ∈ C2(H,C×) such that
δ(γ ) = ω|H×3 , all up to conjugation [Natale 2017]. A more direct description of
the relationship between Lagrangian algebras and pairs (H, γ ) can be found in
[Davydov 2010].

Recently, a quantum computing scheme to use gapped boundaries to achieve
universality has been proposed [Cong et al. 2016; 2017a; 2017b; 2017c]. Braiding
gapped boundaries can be either added to braiding anyons as in Kitaev’s original
proposal or as new computing primitives supplemented with other topological
operations. Gapped boundaries lead to additional degeneracy of the topologically
protected subspace, which potentially allows the implementation of more powerful
gates. More precisely, the new gates come from representation matrices of the
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braid groups, Bn , on objects of the GTMCs that are tensor products of Lagrangian
algebras. However, a characterization of the computational power of these new
braid representations, mathematically a study of the representation images, was left
as an important open problem [Cong et al. 2016; 2017c].

The goal of this paper is to provide such a characterization. We find a canon-
ical monomial structure for Lagrangian algebras in Z(VecωG), which allows us
to compute things more easily. This paper is organized as follows. Section 2
develops the theory of monomial representations. Specifically, it shows how to
calculate invariants for a representation of G using the monomial structure. In
Section 3 we recall the notion of a monomial twisted Yetter–Drinfeld module.
We use the theory developed in Section 2 to give an explicit description and a
basis for HomZ(VecωG)(C, V⊗n) if V is a monomial object. Next, we describe the
representation of Bn with respect to this basis. Theorem 3.3 states the representation
is monomial and Theorem 3.4 gives an explicit formula for the nonzero entries.
In Section 4 we prove that every Lagrangian algebra in Z(VecωG) has a canonical
monomial structure. Then the results of Section 3 are applied to Lagrangian algebras
in Z(VecωG). We finish the section developing some examples and applications.

2. Monomial representations

In this section, we recall some basic definitions and results on monomial represen-
tations of groups.

Definition 2.1. A monomial space is a triple V = (V, X, (Vx)x∈X ), where

(i) V is a finite-dimensional complex vector space,

(ii) X is a finite set,

(iii) (Vx)x∈X is a family of one-dimensional subspaces of V, indexed by X, such
that V =

⊕
x∈X Vx .

Let G be a group. By a monomial representation of G on V we mean a group
homomorphism

0 : G→ GL(V )

such that for every g ∈ G, 0(g) permutes the Vx ’s; hence, 0 induces an action by
permutation of G on X. We will denote 0(g)(v) by g F v.

If V is a representation of G, we denote by V G the subspace of G-invariant
vectors, i.e.,

V G
= {v ∈ V : g F v = v, for all g ∈ G}.

For each x ∈ X, we denote by StaG(x) the stabilizer of x and by OG(x) the
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G-orbit of x . For G finite, and a representation V define

AvG : V → V, v 7→
1
|G|

∑
g∈G

g F v.

It is easy to see that AvG is a G-linear projection onto V G. We define

AvG(VO) := AvG(Vx), x ∈O(x),

since for any x ′ ∈OG(x), AvG(Vx)= AvG(Vx ′).
We say that an element x ∈ X is regular under the monomial action of G if 0(g)

is the identity map on Vx , for all g ∈ StaG(x).
Let us write X/G for the set of orbits of the action of G on X , and X̃ for the

regular ones.

Proposition 2.2 [Karpilovsky 1985, Lemma 9.1]. Let V = (V, X, (Vx)x∈X ) be a
monomial representation of G.

(a) x ∈ X is a regular element if and only if AvG(Vx) 6= 0.

(b) If x ∈ X is a regular element under the monomial action of G, then so are all
elements in the G-orbit of x.

(c) The triple
V G
= (V G, X̃ , (AvG(VO))O∈X̃ )

is a monomial space.

(d) The dimension of V G is equal to the number of regular G-orbits under the
monomial action of G on X.

Let V = (V, X, (Vx)x∈X ) and V ′ = (V ′, Y, (V ′y)y∈Y ) be monomial spaces. A
linear isomorphism T : V → V ′ is called an isomorphism of monomial spaces if
T (Vx)= V ′y for any x ∈ X.

Proposition 2.3. Let V = (V, X, (Vx)x∈X ) and V ′= (V ′, Y, (V ′y)y∈Y ) be monomial
representations of a finite group G. If T : V → V ′ is a G-linear isomorphism of
monomial spaces, then T |V G : V G

→ V ′G is an isomorphism of monomial spaces.

Proof. Clearly, T |V G : V G
→ V ′G is a linear isomorphism. Let x ∈ X be a regular

element. Since T is an isomorphism of monomial spaces, there is some y ∈ Y such
that T (Vx)= V ′y . In that case,

AvG(V ′y)= AvG(T (Vx))= T (AvG(Vx)).

This implies y is regular, because AvG(Vx) 6= {0} and T is an isomorphism. It also
gives T |V G (AvG(VO(x)))= AvG(V ′O(y)), which means T |V G is an isomorphism of
monomial spaces. �
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3. Monomial representation of the braid group

In this section we recall the notion of monomial twisted Yetter–Drinfeld module
introduced in [Galindo and Rowell 2014, Definition 4.12] and prove that the rep-
resentation of the braid groups Bn over HomZ(VecωG)(C, V⊗n) is monomial if V is
monomial.

3A. Dijkgraaf–Witten theories. Let G be a discrete group. A (normalized) 3-
cocycle ω ∈ Z3(G,C×) is a map ω : G×G×G→ C× such that

ω(ab, c, d)ω(a, b, cd)= ω(a, b, c)ω(a, bc, d)ω(b, c, d), ω(a, 1, b)= 1,

for all a, b, c, d ∈ G.
Let us recall the description of the modular category Z(VecωG), the Drinfeld center

of the category VecωG sometimes called the category of twisted Yetter–Drinfeld
modules. The category Z(VecωG) is braided equivalent to the representations of the
twisted Drinfeld double defined by Dijkgraaf, Pasquier and Roche [Dijkgraaf et al.
1991, Section 3.2].

Given ω ∈ Z3(G;C×), we define

ω(g, g′; h) :=
ω(gg′h, g, g′)ω(g, g′, h)

ω(g,g′h, g′)
, ω(g; f, h) :=

ω(g f , g, h)
ω(g, f, h)ω(g f , gh, g)

,

for f, g, g′, h ∈ G.
The objects of Z(VecωG) are G-graded vector spaces V =

⊕
g∈G Vg with a linear

map F : CωG⊗ V → V such that 1 F v = v for all v ∈ V, and

(gh) F v = ω(g, h; k)(g F (h F v)), g, h, k ∈ G, v ∈ Vk,

satisfying the compatibility condition

g F Vh ⊆ Vghg−1, g, h ∈ G.

Morphisms in Z(VecωG) are G-linear G-homogeneous maps. The tensor product of
V =⊕g∈G V and W =⊕g∈Gw is V ⊗W as vector space, with

(V ⊗W )g =
⊕
h∈G

Vh ⊗Wh−1g,

and for all v ∈ Vg, w ∈Wl ,

h F (v⊗w)= ω(h; g, l)(h F v)⊗ (h Fw).

For V,W, Z ∈ Z(VecωG), the associativity constraint is defined by

aV,W,Z : (V ⊗W )⊗ Z→ V ⊗ (W ⊗ Z),

(vg ⊗wh)⊗ zk 7→ ω(g, h, k)−1vg ⊗ (wh ⊗ zk)
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for all g, h, k ∈ G, vg ∈ Vx , wh ∈ Wh , zk ∈ Zk . The category is tensor braided,
with braiding cV,W : V⊗W→W ⊗V, V,W ∈Z(VecωG),

cV,W (v⊗w)= (g Fw)⊗ v, g ∈ G, v ∈ Vg, w ∈W.

3B. Braid group representation of twisted Yetter–Drinfeld modules. Since the
braided category Z(VecωG) is not strict, we must be careful about the way we
associate terms when we consider tensor products with more than two objects. For
a list of objects A1, A2, . . . , An ∈ Z(VecωG), we define

A1⊗ · · ·⊗ An := (· · · (A1⊗ A2)⊗ · · ·⊗ An−1)⊗ An,

and an isomorphism by

(1) σ ′i =(a
−1
A1⊗···⊗Ai−1,Ai+1,Ai

⊗idAi+2⊗···⊗An )◦(idA1⊗···Ai−1 ⊗cAi ,Ai+1⊗idAi+2⊗···⊗An )

◦(aA1⊗···⊗Ai−1,Ai ,Ai+1 ⊗ idAi+2⊗···⊗An ),

where aV,W,Z denotes the associativity constraint.
If A = A1 = · · · = An , there exists a unique group homomorphism

ρn : Bn→ AutZ(VecωG)(A
⊗n)

sending the generator σi ∈ Bn to σ ′i .
In general, the pure braid group Pn acts on A1⊗· · ·⊗ An , in the sense that there

exists a group homomorphism ρn : Pn→ AutZ(VecωG)(A1⊗ · · ·⊗ An).

3C. Crossed G-sets. Let G be a group. We will recall the definition of (left)
crossed G-set introduced in [Freyd and Yetter 1989]. A crossed G-set is a left
G-set X and a grading function | − | : X→ G such that

|gx | = g|x |g−1,

for all x ∈ X, g ∈G. If X and Y are crossed G-sets, a G-equivariant map f : X→ Y
is a morphism of crossed G-sets if | f (x)| = |x | for all x ∈ X.

If X and Y are crossed G-sets, the cartesian product X × Y is a crossed G-set
with the diagonal action and grading map |(x, y)| = |x | |y|.

The category of crossed G-sets is a braided category with braiding

cX,Y : X × Y → Y × X,

(x, y) 7→ (|x | F y, x).

Thus, given a crossed G-set X the braid group Bn acts on Xn, in the following way:

σ ′i := idX i−1 × cX,X × idXn−(i−1) .

3D. Monomial objects of Z(VecωG). Let G be a finite group and ω ∈ Z3(G,C×)

be a 3-cocycle.
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Definition 3.1 [Galindo and Rowell 2014]. A monomial Yetter–Drinfeld module
is a monomial space V = (V, X, (Vx)x∈X ) such that V ∈ Z(VecωG), the twisted
G-action F permutes the Vx ’s, and each Vx is G-homogeneous.

Remark 3.2. (a) If V = (V, X, (Vx)x∈X ) is a monomial Yetter–Drinfeld module,
the set X is a crossed G-set with the induced G-action and the grading map.

(b) If V = (V, X, (Vx)x∈X ) is a monomial Yetter–Drinfeld module, the action
of G on (Ve, Xe, (Vx)x∈Xe) is monomial, where Xe := {x ∈ X : |x | = e} and
Ve =⊕x∈Xe Vx .

Theorem 3.3. Let G be a finite group, ω ∈ Z3(G,C×). If V = (V, X, (Vx)x∈X ) is
a monomial Yetter–Drinfeld module in Z(VecωG), then

(a) the action of Bn on HomZ(VecωG)(C, V⊗n) is monomial,

(b) the dimension of HomZ(VecωG)(C, V⊗n) is equal to the number of regular G-
orbits under the monomial action of G on

(Xn)e := {(x1, . . . , xn) : |x1| · · · |xn| = e}.

Proof. The action of G on (V⊗n
e , (Xn)e, (Vx)x∈Xe) is monomial. Hence, by

Proposition 2.2, the triple

V G
e :=

(
(V⊗n

e )G, (̃Xn)e, (AvG((V⊗n
e )O))O∈(̃Xn)e

)
is a monomial space. Since HomZ(VecωG)(C, V⊗n) = (V⊗n)Ge , and each of the
automorphisms σ ′ are morphisms in Z(VecωG),

σ ′|V⊗n
e
: (V⊗n

e , (Xn)e, (Vx)x∈Xe)→ (V⊗n
e , (Xn)e, (Vx)x∈Xe)

is a G-linear isomorphism of monomial spaces. It follows from Proposition 2.3 that
σ ′|(V⊗n)Ge

is an isomorphism of monomial spaces. Thus, the linear representation

ρn : Bn→ GL((V⊗n
e )G),

σ 7→ σ ′

is a monomial representation of Bn . The second part follows immediately from
Proposition 2.2. �

3E. Monomial matrices of the braid representation. In this subsection we obtain
concrete formulas for the monomial braid representations associated to a monomial
Yetter–Drinfeld module.

Let G be a finite group, ω∈ Z3(G,C×), and V = (V, X, (Vx)x∈X ) be a monomial
Yetter–Drinfeld module. If we fix nonzero vectors S := {vx ∈ Vx : x ∈ X}, the
twisted G-action defines a map

λX : G× X→ C×,
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by g F vx = λX (g; x)vgx , where g ∈ G, x ∈ X.
For the monomial Yetter–Drinfeld module V⊗n

= (V⊗n, Xn, (Vx)x∈Xn ) and the
basis S⊗n

:= {vx1 ⊗ · · ·⊗ vxn : vxi ∈ S, 1≤ i ≤ n}, the action is determined by the
map λXn : G× Xn

→ C×,

(2) λXn (g; x1, . . . , xn) :=

n∏
i=1

λX (g; xi )ω(g; |x1| |x2| · · · |xn−1|, |xn|)
−1

×ω(g; |x1| · · · |xn−2|, |xn−1|)
−1
· · ·ω(g; |x1|, |x2|)

−1,

that is,

gB (vx1 ⊗ · · ·⊗ vxn )= λXn (g; x1, . . . , xn)(vgx1 ⊗ · · ·⊗ vgxn ),

for all g ∈ G, x1, x2, . . . , xn ∈ X. Hence an element (x1, . . . , xn) ∈ (Xn)e is regular
if and only if

(3) λXn (g; x1, . . . , xn)= 1, for all g ∈
n⋂

i=1

Sta(xi ).

Let R⊂ Xn
e be a set of representatives of the regular orbits of X×n

e . Let Sreg =

{vx1⊗· · ·⊗vxn : (x1, . . . , xn) ∈R}. By Proposition 2.2, the set {AvG(v) : v ∈ Sreg}

is a basis of (V⊗n)Ge .
To express the action of the generator σi ∈ Bn in terms of {AvG(v) : v ∈ Sreg}, for

each x = (x1, . . . , xn) ∈R choose gx ∈ G such that gx F σ
′

i (x)= y, where y ∈R
and σ ′i (x) = (x1, . . . , xi−1, |xi |xi+1, xi , xi+2, . . . , xn). Hence there is βi,x ∈ C×

such that gx F σ
′

i (vx1 ⊗ · · · vxn )= βi,xvy1 ⊗ · · ·⊗ vyn .
Since the action of the generator σi ∈ Bn is given by

(4) σ ′i (vx1 ⊗ · · ·⊗ vxn )= ω(|x1| · · · |xi−1|, |xi | |xi+1| |xi |
−1, |xi |)

× λX (|xi |; xi+1)ω(|x1| · · · |xi−1|, |xi |, |xi+1|)
−1

× vx1 ⊗ · · ·⊗ vxi−1 ⊗ v|xi |xi+1 ⊗ vxi ⊗ · · ·⊗ vxn ,

we have

(5) βi,x = ω(|x1| · · · |xi−1|, |xi | |xi+1| |xi |
−1, |xi |)

× λX (|xi |; xi+1)ω(|x1| · · · |xi−1|, |xi |, |xi+1|)
−1λXn (gx; σ

′

i (x)).

Theorem 3.4. Let G be a finite group, ω ∈ Z3(G,C×) and V = (V, X, (Vx)x∈X )

be a monomial Yetter–Drinfeld module. Let Y be the set of all regular elements in
Xn

e and let R⊂ Y be a set of representatives of the G-orbits of Y.

(a) The projection π : Y → R is map of Bn-sets. The image of x ∈ R by the
generator σi ∈ Bn will be denoted by σi F x.
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(b) Let Sreg = {vx1 ⊗ · · · ⊗ vxn : (x1, . . . , xn) ∈ R}. The action of the generator
σi ∈ Bn in the basis {AvG(vx) : x ∈R} is given by

σi (AvG(vx))= βi,x AvG(vσiFx),

where βi,x was defined in (5).

Proof. The first part is a consequence of Theorem 3.3.
For the second part, recall that the number βi,x and the element gx ∈ G are such

that
gx F σ(vx)= βi,xvσiFx .

Hence,
σi (AvG(vx))= AvG(σi (vx))

= gx FAvG(σi (vx))= AvG(gx F σi (vx))

= AvG(βi,xvσiFx)= βi,x AvG(vσiFx). �

Example 3.5. Let G be a finite group and X be a left crossed G-set. Then the
linearization VX := ⊕x∈X Cx is an (untwisted) Yetter–Drinfeld module in Z(VecG).
Clearly λX ≡ 1, thus every element in (Xn)e is regular. Hence the canonical
projection

(Xn)e→ (Xn)e//G,

is an epimorphism of Bn-sets. In other words, the linear representation of Bn

on HomZ(VecG)(C, V⊗n
X ) is the linearization of the permutation action of Bn on

(Xn)e//G.

4. Braid groups representations associated to Lagrangian algebras

In this section, we prove that every Lagrangian algebra in Z(VecωG) has a canonical
monomial structure. Then the results of Section 3 can be applied to Lagrangian
algebras in Z(VecωG).

4A. Lagrangian algebras. Following Corollary 3.17 of [Davydov and Simmons
2017], we will describe the Lagrangian algebra on Z(G, ω) associated to a pair
(H, γ ), where H ⊆ G is a subgroup and γ : H × H → C× is a map such that

γ (ab, c)γ (a, b)
γ (a, bc)γ (b, c)

= ω(a, b, c), a, b, c ∈ H.

Let Cγ [H ] = ⊕h∈H Ceh be the group algebra of H with the multiplication

eh1eh2 = γ (h1, h2)eh1h2, h1, h2 ∈ H.

The vector space Cγ [H ] =⊕h∈H Ceh , is a commutative algebra in Z(VecωH ), where
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the H -action is given by

h1 F eh2 = ε(h1, h2)eh1h2h−1
1
, ε(h1, h2) :=

γ (h1, h2)

γ (h1h2, h1)
, h1, h2 ∈ H,

and grading |eh| = h for all h ∈ H.
Let Map(G,Cγ [H ]) be the vector space of all set-theoretic maps from G to

Cγ [H ]. With the grading given by

|a| = f ⇔ |a(x)| = x−1 f x for all x ∈ G,

and twisted G-action

(g F a)(x) := ω(x−1, g−1
; |a|)−1a(g−1

F x), g, x ∈ G,

Map(G,Cγ [H ]) is a twisted Yetter–Drinfeld module.
The Lagrangian algebra L(H, γ ) is the Yetter–Drinfeld submodule

L(H, γ ) := {a ∈Maps(G,Cγ [H ]) | a(xh)= ω(h−1, x−1
; |a|)h−1

F a(x)};

see [Davydov and Simmons 2017] for more details.

4B. Monomial structure of the Lagrangian algebras L(H, γ ). In this section
we will prove that every Lagrangian algebra of the form L(H, γ ) has a canonical
monomial structure.

Let G be a group and H ⊂ G be a subgroup. We can regard G × H as a left
H -set with actions given by h F (g, h′)= (gh−1, hh′h−1). Then we can consider
the set of H -orbits that we will denote by G×H H. The set G×H H is equipped
with a left G-action given by left multiplication on the first component.

Definition 4.1. Let L(H, γ ) be a Lagrangian. For each g ∈ G and f ∈ H , define
χg, f ∈ L(H, γ ) by

(6) χg, f (x)=
{

0, x /∈ gH,
ω(h−1, g−1

;
g f )ε(h−1, f )eh f h−1, x = gh, where h ∈ H.

Remark 4.2. The function χg,h can be characterized as the unique map in L(H, γ )
with support gH and such that χg,h(g)= eh .

Lemma 4.3. Let L(H, γ ) be a Lagrangian algebra in Z(G, ω). Then

χgh, f = ω(h, (gh)−1
;

gh f )ε(h, f )χg,h f , g ∈ G, f, h ∈ H.(7)

l Fχg, f = ω((lg)−1, l−1
;

g f )χlg, f , g, l ∈ G, h ∈ H.(8)

Proof. Since the supports of χgh, f and χg,h f are gH, and

χgh, f (g)= χgh, f (ghh−1)= ω(h, (gh)−1
;

gh f )ε(h, f )χg,h f (g),

we obtain (7).
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By the definition of the action of G we have

l Fχg, f (lg)= ω((lg)−1, l−1
;

g f )χg, f (g)= ω((lg)−1, l−1
;

g f )e f .

Since l Bχg, f and χgl, f are supported in gl H, we get (8). �

It follows from Lemma 4.3 that Cχgh,h f =Cχg, f . Then for any (g, h)∈G×H H
the space Cχg, f is well defined.

Theorem 4.4. Let L(H, γ ) be a Lagrangian algebra in Z(G, ω). Then L(H, γ )
with the decomposition

L(H, γ )=
⊕

(g,h)∈G×H H

Cχg,h

is a monomial twisted Yetter–Drinfeld module.

Proof. First we will check that in fact the sum
∑

(g,h)∈G×H H Cχg,h , is direct. Since
supp(χg, f )= gH, we have that χg, f and χg′, f are linearly independent if gH 6= g′H.
Hence it is suffices to check linear independence of the collections {χg, f } f ∈H , with
g fixed. But if f 6= f ′, |χr, f | 6= |χr, f ′ |. It follows that the sum

∑
(g,h)∈G×H H Cχg,h

is direct.
In order to see that L(H, γ ) =

∑
(g,h)∈G×H H Cχg,h , fix R ⊂ G, a set of repre-

sentatives of the left coset of H in G. Let a ∈ L(H, γ ). For each r ∈R, suppose

(9) a(r)=
∑
f ∈H

λr, f e f .

Then we have

(10) a =
∑

r∈R, f ∈H

λr, f χr, f ∈
∑

(g,h)∈G×H H

Cχg,h .

By (8) and the fact that |χg, f | = g f g−1, we obtain that L(H, γ ) is a monomial
twisted Yetter–Drinfeld module. �

Corollary 4.5. Let G be a finite group, ω∈ Z3(G,C×). If L(H, γ ) is a Lagrangian
algebra in Z(VecωG), then

(a) the action of Bn on HomZ(VecωG)(C, L(H, γ )⊗n) is monomial,

(b) the dimension of HomZ(VecωG)(C, L(H, γ )⊗n) is equal to the number of regular
G-orbits under the monomial action of G on

(G×H H)×n)e := {((g1, h1), . . . , (gn, hn)) : g1h1g−1
1 g2h2g−1

2 · · · gnhng−1
n = e}.

Proof. This follows from Theorem 4.4 and Theorem 3.3. �
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We will fix a set of representatives of the left cosets of G in H, R⊂ G. Thus
every element g ∈ G has a unique factorization g = rh, h ∈ H , r ∈R. We assume
e ∈ R. The uniqueness of the factorization G = RH implies that there are well
defined maps

F : G×R→R, κ : G×R→ H,

determined by the condition

gr = (g F r)κ(g, h), g ∈ G, r ∈R.

As a crossed G-set we can identify G×H H with R× H with action

g F (r, h) := (g F r,κ(g,r)h), r ∈R, h ∈ H, g ∈ G,

and grading map

| − | :R× H → G (r, h) 7→ rhr−1.

It follows from Theorem 4.4 that BR :={χr,h| r ∈R, h∈H} is a basis for L(H, γ ).
In order to apply the results of Section 3E, we only need to compute the map

λR×H : G× (R× H)→ C×, such that

g Fχr,h = λR×H (g; r, h)χgFr,κ(g,r)h, g ∈ G, r ∈R, h ∈ H.

Using Lemma 4.3 we obtain

(11) λR×H (g; r, h)= ω((gr)−1, g−1
;

rh)ω(κ(g, r), (gr)−1
;

grh)ε(κ(g, r), h),

for all g ∈ G, r ∈R, h ∈ H.
By (3), we have that an element t = ((r1, h1), . . . , (rn, hn))∈ (R×H)ne is regular

if and only if

(12) λ(R×H)n (g; (r1, h1), . . . , (rn, hn))= 1, for all g ∈
n⋂

i=1

r−1
i CH (hi )ri ,

where λ(R×H)n was defined in (2) as a function of λR×H and ω.

4C. Applications and examples. In this last section we present some applications
of the results of the previous section.

4C1. Central subgroups.

Proposition 4.6. Let G be a finite group and L(H, γ ) a Lagrangian algebra in
Z(VecG), where H ⊂ G is a central subgroup. Then

dim(HomZ(VecG)(C, L(H, γ )⊗n))= |G|n−1.

Moreover, the representation of Bn is actually a representation of Sn .
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Proof. Since H is a central subgroup, g F (r, h)= (g F r, h) and

|χr1,h1 ⊗ · · ·⊗χrk ,hk | = h1 · · · hk,

for any r1, . . . , rk ∈ R, h1, . . . , hn ∈ H. Hence,

|(R× H)ne | = |(R
n/G)||H n−1

| = [G : H ]n|H |n−1
= |G|n−1.

To determine the number of orbits, notice that ε : H × H → C× is a bicharacter
such that ε(h1, h2)ε(h2, h1)= 1. Then, by (12), an element

((r1, h1), . . . , (rn, hn)) ∈ (R× H)ne

is regular if and only if
n∏

i=1

ε(h, hi )= 1, for all h ∈ H.

But
∏n

i=1 ε(h, hi )= ε(h, h1 · · · hn)= ε(h′, e)= 1. Hence every element is regular.
By Corollary 4.5 the dimension of HomZ(VecG)(C, L(H, γ )⊗n) is |G|n−1.

Finally, using (4), we see that

σ ′i ◦ σ
′

i (χr1,h1 ⊗ · · ·⊗χrn,hn )= ε(hi , hi+1)ε(hi+1, hi )(χr1,h1 ⊗ · · ·⊗χrn,hn )

= χr1,h1 ⊗ · · ·⊗χrn,hn .

Hence representation of Bn factors as a representation of Sn . �

4C2. Lagrangian algebra of the form L(H, 1). The Lagrangian algebras L(H, 1)
as an object in Z(VecG) are completely determined by the crossed G-set G×H H,
and the monomial representation Hom(C, L(H, 1)⊗n) is a permutation representa-
tion; see Example 3.5. Let us see some extreme cases:

Case H ={e}. In this case the crossed G-set is G with the regular action and grading
map the constant map e. It is clear that the braiding cG,G is just the flip map

(g1, g2) 7→ (g2, g1),

hence, really the symmetric group Sn acts on Gn.
The set of G-orbits is in bijection with Gn−1,

O(Gn)→ Gn−1,

OG(g1, g2, . . . , gn) 7→ (e, g−1
1 g2, . . . , g−1

1 gn).

Using the previous map the action of §n is given by

σ1(g1, . . . , gn−1)= (g−1
1 , g−1

1 g2, . . . , g−1
1 gn−1)
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and

σi (g1, . . . , gi , gi+1, . . . , gn−1)= (g1, . . . , gi+1, gi , . . . , gn−1), 1< i < n.

It is clear that permutation action of Sn on Gn−1 is faithful; thus the image is
isomorphic to Sn .

Case H = G. In this case the crossed G-set is G with the action by conjugation
and grading map the identity map. Hence, the braiding is given by

cG,G : (x, y) 7→ (y, y−1xy).

Note cG,G is symmetric if and only if G is abelian.
If G is abelian, Gn

e = {(g1, . . . , gn−1, (g1, . . . , gn−1)
−1)} is the set of orbits and,

as in the previous example, the group Sn acts faithfully.

4C3. Dihedral group. Every time we take H to be a normal subgroup of G, the
following proposition provides a way to simplify the situation.

Proposition 4.7. Let G be a finite group, H E G, and R a collection of representa-
tives for G/H. Define Bγ [H ] ∈ Z(VecG) as

B(H, γ ) := span{br,h| r ∈R, h ∈ H},

with grading |br,h| = h and the G-action

(13) g F br,h = ε(κ(g, r) r−1
h)bgFr,gh .

Then, the mapping

B(H, γ )→ L(H, γ ), br,h 7→ χ
r,r
−1

h

is an isomorphism in Z(VecG).

Proof. We need to show the map preserves the grading and the G-representation.
We have

|χ
r,r
−1

h
| =

r
(r
−1

h)= h = |br,h|.

Now, since
g ·χ

r,r
−1

h
= ε(κ(g, r), r−1

h)χ
gFr,

κ(g,r)
(r
−1

h)
,

and
κ(g,r)

(r
−1

h)=
(gFr)−1

ghg−1,

we have that
g F br,h = ε(κ(g, r), r−1

h)a
gFr,(gFr)

−1
(gh)
.

Hence, by (13) the map is equivariant. �
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Proposition 4.7 works particularly well when γ = 1, since (13) is just

g F br,h = bgFr,gh .

Thus, the action of G is “decoupled”. We use this idea in the following example.
Let G = D2k be the dihedral groups of order 2k and H = 〈r〉. We take R =
{e, s} = {si

}i∈Z/2Z. Then

|bsi1 ,r j1 ⊗ · · ·⊗ bsin ,r jn | = r
∑n

m=1 jm ,

and
dim(B(H, γ )⊗n

e )= 2n
× kn−1.

Since
(sir j )(sk)= si+kr (−1)k j,

we have
(sir j ) F sk

= si+k and κ(sir j , sk)= r (−1)k j .

Hence, the action, on the set label is

sir j (sk, r l)= (si+k, r l).

It follows that the number of orbits in (R× H)ne is

2n−1
× kn−1

= |G|n−1.

Since γ = 1 all orbits are regular and so dim(HomZ(VecG)(C, L(H, 1)⊗n))=|G|n−1.
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