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1

XIU JI, TONGZHU LI AND HUAFEI SUN

Let f :Mn→Rn+1
1 be an n-dimensional umbilic-free spacelike hypersurface

in the (n+1)-dimensional Lorentzian space Rn+1
1 . One can define the confor-

mal metric g on f which is invariant under the conformal transformation
group of Rn+1

1 . We classify the n-dimensional spacelike hypersurfaces with
constant sectional curvature with respect to the conformal metric g when
n≥ 3. Such spacelike hypersurfaces are obtained by the standard construc-
tion of cylinders, cones or hypersurfaces of revolution over certain spirals
in the 2-dimensional Lorentzian space forms S2

1(1), R2
1, R2

1+, respectively.

1. Introduction

Recently the Möbius geometry of submanifolds in Riemannian space forms has
been studied extensively and many special hypersurfaces were classified under the
Möbius transformation group (see [Guo et al. 2012; Hu and Li 2003; Li et al. 2013;
Li and Wang 2003]). As its parallel generalization, the conformal geometry of
submanifolds in Lorentzian space forms is another important branch of submanifold
theory; however there are fewer results (see [Li and Nie 2013; 2018; Nie 2015]).
In this paper, we investigate the spacelike hypersurfaces with constant conformal
sectional curvature. Since the conformal geometry of spacelike hypersurfaces
in Lorentzian space forms Mn+1

1 (c) is uniform by the conformal map (2-4) (see
Section 2), we only consider the hypersurfaces in Rn+1

1 .
Let f : Mn

→ Rn+1
1 be an n-dimensional umbilic-free spacelike hypersurface in

the (n+1)-dimensional Lorentzian space Rn+1
1 . Given the first fundamental form

I = d f · d f as well as a local orthonormal basis {ei } and the dual basis {θi }, we
denote II =

∑
i j hi jθi ⊗ θ j the second fundamental form and H = 1

n

∑
i hi i the

mean curvature. The conformal metric of f ,

(1-1) g = ρ2d f · d f = n
n−1

(‖ II ‖2− nH 2)I,

is a Riemannian metric which is invariant under the conformal transformations
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of Rn+1
1 . Together with another quadratic form (called the conformal second

fundamental form) they form a complete system of invariants for the spacelike
hypersurface (n ≥ 3) in conformal geometry of the Lorentzian space Rn+1

1 (see
Section 2). In this framework, a notable class of spacelike hypersurfaces are those
with constant conformal sectional curvature (i.e., constant sectional curvature with
respect to the conformal metric g). Here we classify them up to a conformal
transformation of the Lorentzian space Rn+1

1 , and our main result is stated below.

Theorem 1.1. Let f :Mn
→Rn+1

1 , n≥3, be an umbilic-free spacelike hypersurface
with constant conformal sectional curvature δ. Then locally f is conformally
equivalent to one of the following hypersurfaces:

(i) A cylinder over a curvature-spiral in a Lorentzian 2-plane R2
1 (where δ ≤ 0).

(ii) A cone over a curvature-spiral in a de Sitter 2-sphere S2
1 ⊂ R3

1 (where δ < 0).

(iii) A rotational hypersurface over a curvature-spiral in a Lorentzian hyperbolic
2-plane R2

1+ ⊂ R2
1 (the constant curvature δ could be positive, negative or

zero).

(iv) A cone over the hyperbolic torus Hq(−
√

a2− 1) × Sp(a), a > 1, (where
δ = 0).

The curvature-spiral γ (s) ∈ N 2
1 (ε) in a 2-dimensional Lorentzian space form

N 2
1 (ε)(= S2

1(1), R2
1, R2

1+ for Gauss curvature ε = 1, 0,−1, respectively) is a
spacelike curve which is determined by the intrinsic equation

(1-2)
[

d
ds

1
κ

]2

+ ε

[
1
κ

]2

=−δ,

where s is the arc-length parameter, and κ denotes the geodesic curvature of the
spacelike curve γ , and δ is a real constant. Note that (1-2) is equivalent to the
harmonic oscillator equation (1/κ)′′+ ε/κ = 0 for the function κ(s). It is easy to
see that for fixed ε and δ the solution curve is unique (because N 2

1 (ε) is two-point
homogeneous, since any two solutions with arbitrary initial values are congruent to
each other).

The Lorentzian hyperbolic 2-plane R2
1+ ⊂ R2

1 is defined by

R2
1+ = {(x, y) ∈ R2

| y > 0},

endowed with the Lorentzian metric ds2
=

1
y2 (−dx2

+ dy2). The Gauss curvature
of R2

1+ is ε = −1 with respect to the Lorentzian metric ds2. Let H2
1(−1) be a

2-dimensional anti-de Sitter sphere; there exists a standard isometric embedding

(1-3) φ : R2
1+→ H2

1(−1), φ(x, y)=
(

y2
− x2
+ 1

2y
,

x
y
,

y2
− x2
− 1

2y

)
.
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The rest of this paper is organized as follows. In Section 2, we study the confor-
mal geometry of spacelike hypersurfaces in Lorentzian space forms Mn+1

1 (c). In
Section 3, we construct some examples of the spacelike hypersurfaces with constant
conformal sectional curvature. In Section 4, we give the proof of Theorem 1.1.

2. Conformal geometry of spacelike hypersurfaces

In this section, following Wang [1998], we define some conformal invariants on a
spacelike hypersurface and give a congruent theorem of the spacelike hypersurfaces
under the conformal group of Lorentzian space forms Mn+1

1 (c).
Let Rn+2

s be the real vector space Rn+2 with the Lorentzian product 〈 , 〉s given by

〈X, Y 〉s =−
s∑

i=1

xi yi +

n+2∑
j=s+1

x j y j .

For any a > 0, the standard sphere Sn+1(a), the hyperbolic space Hn+1(−a), the
de Sitter space Sn+1

1 (a) and the anti-de Sitter space Hn+1
1 (−a) are defined by

Sn+1(a)= {x ∈ Rn+2
| x · x = a2

},

Hn+1(−a)= {x ∈ Rn+2
1 | 〈x, x〉1 =−a2

},

Sn+1
1 (a)= {x ∈ Rn+2

1 | 〈x, x〉1 = a2
},

Hn+1
1 (−a)= {x ∈ Rn+2

2 | 〈x, x〉2 =−a2
}.

Let Mn+1
1 (c) be a Lorentzian space form. When c=0, Mn+1

1 (c)=Rn+1
1 ; when c=1,

Mn+1
1 (c)= Sn+1

1 (1); when c =−1, Mn+1
1 (c)= Hn+1

1 (−1).
Denoting by Cn+2 the cone in Rn+3

2 and by Qn+1
1 the conformal compactification

space in RPn+3,

Cn+2
= {X ∈Rn+3

2 | 〈X, X〉2= 0, X 6= 0}, Qn+1
1 = {[X ] ∈RPn+2

| 〈X, X〉2= 0}.

Let O(n+ 3, 2) be the Lorentzian group of Rn+3
2 keeping the Lorentzian product

〈X, Y 〉2 invariant. Then O(n+ 3, 2) is a transformation group on Qn+1
1 defined by

T ([X ])= [XT ], X ∈ Cn+2, T ∈ O(n+ 3, 2).

Topologically, Qn+1
1 is identified with the compact space Sn

× S1/S0, which is
endowed by a standard Lorentzian metric

h = gSn ⊕ (−gS1),

where gSk denotes the standard metric of the k-dimensional sphere Sk. Therefore,
Qn+1

1 has conformal metric [h] = {eτh}, τ ∈ C∞(Qn+1
1 ), and [O(n+ 3, 2)] is the

conformal transformation group of Qn+1
1 (see [Cahen and Kerbrat 1983; O’Neill

1983]).
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Setting P = {[X ] ∈ Qn+1
1 | x1 = xn+3}, P− = {[X ] ∈ Qn+1

1 | xn+3 = 0}, and
P+ = {[X ] ∈Qn+1

1 | x1 = 0}, we can define the following conformal diffeomor-
phisms

(2-4)

σ0 : R
n+1
1 →Qn+1

1 \P, u 7→
[(

1+〈u, u〉1
2

, u,
〈u, u〉1− 1

2

)]
,

σ1 : S
n+1
1 (1)→Qn+1

1 \P+, u 7→ [(1, u)],

σ−1 : H
n+1
1 (−1)→Qn+1

1 \P−, u 7→ [(u, 1)].

We may regard Qn+1
1 as the common compactification of Rn+1

1 , Sn+1
1 (1), Hn+1

1 (−1).
Let f : Mn

→ Mn+1
1 (c) be a spacelike hypersurface. Using σc, we obtain the

hypersurface σc ◦ f : Mn
→Qn+1

1 in Qn+1
1 . From [Cahen and Kerbrat 1983], we

have the following theorem:

Theorem 2.1. Two hypersurfaces f, f̄ :Mn
→Mn+1

1 (c) are conformally equivalent
if and only if there exists T ∈O(n+3, 2) such that σc ◦ f = T (σc ◦ f̄ ) : Mn

→Qn+1
1 .

Since f : Mn
→ Mn+1

1 (c) is a spacelike hypersurface, (σc ◦ f )∗(T Mn) is a
positive definite subbundle of T Qn+1

1 . For any local lift Z of the standard projec-
tion π : Cn+2

→Qn+1
1 , we get a local lift y = Z ◦ σc ◦ f :U → Cn+1 of σc ◦ f :

M → Qn+1
1 in an open subset U of Mn. Thus 〈dy, dy〉2 = ρ2

〈d f, d f 〉s is a local
metric, where ρ ∈ C∞(U ). We denote by 1 and κ the Laplacian operator and
the normalized scalar curvature with respect to the local positive definite metric
〈dy, dy〉2, respectively. Much as in the proof of Theorem 1.2 in [Wang 1998], we
can get the following theorem:

Theorem 2.2. Let f : Mn
→ Mn+1

1 (c) be a spacelike hypersurface, then the 2-
form g =−(〈1y,1y〉2− n2κ)〈dy, dy〉2 is a globally defined conformal invariant.
Moreover, g is positive definite at any nonumbilical point of Mn.

We call g the conformal metric of the spacelike hypersurface f , and there exists
a unique lift

Y : Mn
→ Cn+2

such that g = 〈dY, dY 〉2. We call Y the conformal position vector of the spacelike
hypersurface f . Theorem 2.2 implies the following:

Theorem 2.3. Two spacelike hypersurfaces f, f̄ : Mn
→ Mn+1

1 (c) are conformally
equivalent if and only if there exists T ∈ O(n+ 3, 2) such that Y = Y T, where Y
and Y are the conformal position vectors of f and f̄ , respectively.

Let {E1, . . . , En} be a local orthonormal basis of Mn with respect to g with dual
basis {ω1, . . . , ωn}. Denote Yi = Ei (Y ) and define

N =−
1
n
1Y −

1
2n2 〈1Y,1Y 〉2Y,
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where 1 is the Laplace operator of g, then we have

〈N , Y 〉2 = 1, 〈N , N 〉2 = 0, 〈N , Yk〉2 = 0, 〈Yi , Y j 〉2 = δi j , 1≤ i, j, k ≤ n.

We may decompose Rn+3
2 such that

Rn+3
2 = span{Y, N }⊕ span{Y1, . . . , Yn}⊕V,

where V⊥ span{Y, N , Y1, . . . , Yn}. We call V the conformal normal bundle of f ,
which is a linear bundle. Let ξ be a local section of V and 〈ξ, ξ〉2 = −1, then
{Y, N , Y1, . . . , Yn, ξ} forms a moving frame in Rn+3

2 along Mn. We write the
structure equations as follows:

(2-5)

dY =
∑

i

ωi Yi , dN =
∑

i j

Ai jω j Yi +
∑

i

Ciωiξ,

dYi =−
∑

j

Ai jω j Y −ωi N +
∑

j

ωi j Y j +
∑

j

Bi jω jξ,

dξ =
∑

i

Ciωi Y +
∑

i j

Bi jω j Yi ,

where ωi j (=−ω j i ) are the connection 1-forms on Mn with respect to {ω1, . . . , ωn}.
It is clear that A =

∑
i j Ai jω j ⊗ ωi , B =

∑
i j Bi jω j ⊗ ωi , C =

∑
i Ciωi are

globally defined conformal invariants. We call A, B and C the Blaschke tensor,
the conformal second fundamental form, and the conformal 1-form, respectively.
The covariant derivatives of these tensors are defined by∑

j

Ci, jω j = dCi +
∑

k

Ckωk j ,∑
k

Ai j,kωk = d Ai j +
∑

k

Aikωk j +
∑

k

Ak jωki ,∑
k

Bi j,kωk = d Bi j +
∑

k

Bikωk j +
∑

k

Bk jωki .

By exterior differentiation of the structure equations (2-5), we can get the integrable
conditions of the structure equations

Ai j = A j i , Bi j = B j i ,(2-6)

Ai j,k − Aik, j = Bi j Ck − BikC j ,(2-7)

Bi j,k − Bik, j = δi j Ck − δikC j ,(2-8)

Ci, j −C j,i =
∑

k

(Bik Ak j − B jk Aki ),(2-9)

Ri jkl = Bil B jk − Bik B jl + Aikδ jl + A jlδik − Ailδ jk − A jkδil .(2-10)
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Furthermore, we have

(2-11)

tr(A)=
1

2n
(n2κ − 1), Ri j = tr(A)δi j + (n− 2)Ai j +

∑
k

Bik Bk j ,

(1− n)Ci =
∑

j

Bi j, j ,
∑

i j

B2
i j =

n− 1
n

,
∑

i

Bi i = 0,

where κ is the normalized scalar curvature of g. From (2-11), we see that when n≥3,
all coefficients in the structure equations are determined by the conformal metric g
and the conformal second fundamental form B, thus we get the congruent theorem:

Theorem 2.4. Two spacelike hypersurfaces f, f̄ : Mn
→ Mn+1

1 (c), n ≥ 3, are
conformally equivalent if and only if there exists a diffeomorphism ϕ : Mn

→ Mn

which preserves the conformal metric g and the conformal second fundamental
form B.

The second covariant derivative of the conformal second fundamental form Bi j

is defined by

(2-12)
∑

m

Bi j,kmωm = d Bi j,k +
∑

m

Bmj,kωmi +
∑

m

Bim,kωmj +
∑

m

Bi j,mωmk .

Thus we have the following Ricci identities

(2-13) Bi j,kl − Bi j,lk =
∑

m

Bmj Rmikl +
∑

m

Bim Rmjkl .

Next we give the relations between the conformal invariants and the isometric
invariants of a spacelike hypersurface in Rn+1

1 .
Assume that f : Mn

→ Rn+1
1 is an umbilic-free spacelike hypersurface. Let

{e1, . . . , en} be an orthonormal local basis with respect to the induced metric
I = 〈d f, d f 〉1 with dual basis {θ1, . . . , θn}. Let en+1 be a normal vector field of f ,
〈en+1, en+1〉1 =−1. Let II =

∑
i j hi jθi ⊗ θ j denote the second fundamental form,

H = 1
n

∑
i hi i the mean curvature. Denote by 1M the Laplacian operator and κM

the normalized scalar curvature for I. By the structure equation of f : Mn
→ Rn+1

1
we get

(2-14) 1M f = nHen+1.

There is a local lift of f

y : Mn
→ Cn+2, y =

(
〈 f, f 〉1+ 1

2
, f,
〈 f, f 〉1− 1

2

)
.

It follows from (2-14) that 〈1y,1y〉2 − n2κM =
n

n−1(−| II |
2
+ n|H |2) = −e2τ.

Therefore the conformal metric g, the conformal position vector of f , and ξ are
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expressed as

(2-15)
g =

n
n− 1

(| II |2− n|H |2)〈d f, d f 〉1 = e2τ I, Y = eτ y,

ξ =−H y+ (〈 f, en+1〉1, en+1, 〈 f, en+1〉1).

By a direct calculation we get the following expression of the conformal invariants

(2-16)

Ai j = e−2τ [τiτ j − hi j H − τi, j +
1
2(−|∇τ |

2
+ |H |2)δi j

]
,

Bi j = e−τ (hi j − Hδi j ), Ci = e−2τ
(

Hτi − Hi −
∑

j

hi jτ j

)
,

where τi = ei (τ ) and |∇τ |2 =
∑

i τ
2
i , and τi, j is the Hessian of τ for I and

Hi = ei (H).

3. Typical examples

In this section, we construct some spacelike hypersurfaces with constant conformal
sectional curvature. Such spacelike hypersurfaces are obtained by the standard
construction of cylinders, cones or hypersurfaces of revolution over curvature-
spirals in N 2

1 (ε). A key observation is that the conformal metric of those spacelike
hypersurfaces constructed over these curvature-spirals are of the form

g = κ(s)2(ds2
+ I n−1
−ε ),

where I n−1
−ε is the metric of the (n−1)-dimensional Riemannian space form of

constant curvature −ε. For such metric forms we have the following result:

Lemma 3.1. The metric g = κ(s)2(ds2
+ I n−1
−ε ) given above has constant curva-

ture δ if and only if the function κ(s) satisfies (1-2).

This lemma is easy to prove using exterior differential forms and we omit the
proof. Next we give the explicit construction of the spacelike hypersurfaces.

Example 3.2. The cylinder in Rn+1
1 over a curve γ (s)⊂ R2

1 is defined by

f : R×Rn−1
→ Rn+1

1 , f (s, y)= (γ (s), y),

where y ∈ Rn−1.

The first and the second fundamental form of the cylinder f are given by

I = ds2
+ I

R
n−1 , II = κds2,

where κ(s) is the geodesic curvature of γ (s)⊂ R2
1, and I

R
n−1 denotes the standard

metric of the (n−1)-dimensional Euclidean space R
n−1

. Thus the principal curvatures
of the cylinder are (κ, 0, . . . , 0), and the mean curvature H = κ

n . From (2-15), we
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see that the conformal metric of the cylinder f is g = κ2(s)(ds2
+ IRn−1). By

Lemma 3.1 we have the following result:

Proposition 3.3. The cylinder in Rn+1
1 over γ (s) ⊂ R2

1 as in Example 3.2 is of
constant conformal sectional curvature if and only if γ (s) is a curvature-spiral
in R2

1.

Example 3.4. The cone in Rn+1
1 over a curve γ (s)⊂ S2

1(1)⊂ R3
1 is defined by

f : R×R+×Rn−2
→ Rn+1

1 , f (s, t, y)= (tγ (s), y),

where y ∈ Rn−2 and R+ = {t | t > 0}.

The first and the second fundamental form of the cone f are given by

I = t2ds2
+ IRn−1, II = tκds2,

where κ(s) is the geodesic curvature of γ (s)⊂S2
1(1). Thus the principal curvatures

of the cone are ( κt , 0, . . . , 0), and the mean curvature H = κ
nt . From (2-15), we

know that the conformal position vector of the cone f is

Y = κ
(

t2
+ |y|2+ 1

2t
, γ (s),

y
t
,

t2
+ |y|2− 1

2t

)
.

Note that

(3-17) i(t, y)=
(

t2
+|y|2+1

2t
,

y
t
,

t2
+|y|2−1

2t

)
:R+×Rn−2

=Hn−1
→Hn−1

⊂Rn
1

is nothing but the identity map of Hn−1, since R+×Rn−2
=Hn−1 is the upper half-

space endowed with the standard hyperbolic metric. From (2-15), the conformal
metric of the cone f is g= κ2

t2 (t2ds2
+ IRn−1)=κ2(ds2

+ IHn−1), where I
H

n−1 denotes
the standard hyperbolic metric of Hn−1. By Lemma 3.1 we have the following
result:

Proposition 3.5. The cone in Rn+1
1 over γ (s)⊂ S2

1(1)⊂ R3
1 as in Example 3.4 is

of constant conformal sectional curvature if and only if γ (s) is a curvature-spiral
in S2

1.

Example 3.6. Let R2
1+ = {(x, y) | y > 0} be the Lorentzian hyperbolic 2-plane.

The rotational hypersurface in Rn+1
1 over a curve γ (s)⊂ R2

1+ is defined by

f : R×Sn−1
→ Rn+1

1 , f (s, θ)= (x(s), y(s)θ),

where θ ∈ Sn−1 is the standard round sphere, and γ (s)= (x(s), y(s))⊂ R2
1+.

Denote the covariant differentiation of the metric ds2 by D in R2
1+. For γ (s)=

(x(s), y(s))⊂ R2
1+, let ẋ denote the derivative ∂x

∂s and so on. Choose the unit tangent
vector α = 1

y (ẋ, ẏ) and the unit normal vector β = 1
y (ẏ, ẋ). The geodesic curvature
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is computed via κ(s)= 〈Dαα, β〉 =
ẋ ÿ−ẏ ẍ

y2 +
ẋ
y . The rotational hypersurface f has

the unit normal vector η = 1
y (ẏ, ẋθ). The first and the second fundamental form of

the rotational hypersurface f are given by

I = d f · d f = y2(ds2
+ I

S
n−1 ), II =−d f · dη = (yκ − ẋ)ds2

− ẋ I
S

n−1 .

Thus the principal curvatures of the rotational hypersurface f are yκ−ẋ
y2 , −ẋ

y2 , . . . ,
−ẋ
y2 .

From (2-15), we know that the conformal metric of the rotational hypersurface f is
g = κ2(x)(ds2

+ ISn−1). By Lemma 3.1 we have the following result:

Proposition 3.7. The rotational hypersurface in Rn+1
1 over γ (s) ⊂ R2

1+ as in
Example 3.6 is of constant conformal sectional curvature if and only if γ (s) is
a curvature-spiral in R2

1+.

Example 3.8. Let p, q be any two given natural numbers with p + q < n and
let a be a real number a > 1. We define the cone over the hyperbolic torus
Hq(−

√
a2− 1)×Sp(a)⊂ S

p+q+1
1 (1), as follows:

f :Hq(−
√

a2−1)×Sp(a)×R+×Rn−p−q−1
→Rn+1

1 , f (u′,u′′, t,u′′′)=(tu′, tu′′,u′′′),

where u′ ∈ Hq(−
√

a2− 1), u′′ ∈ Sp(a), u′′′ ∈ Rn−p−q−1.

Let b =
√

a2− 1. One of the normal vectors of f can be taken as en+1 =(a
b u′, b

a u′′, 0
)
. The first and second fundamental form of f are given by

I = t2(〈du′, du′〉1+ du′′ · du′′)+ dt · dt + du′′′ · du′′′,

II =−〈dx, den+1〉1 =−t
(

a
b
〈du′, du′〉1+

b
a

du′′ · du′′
)
.

Thus the mean curvature of f satisfies

H =
−pb2

− qa2

nabt
,

and

e2τ
=

n
n− 1

[∑
i j

h2
i j − nH 2

]
=

p(n− p)b4
− 2pqa2b2

+ q(n− q)a4

(n− 1)a2b2t2 :=
α2

t2 .

Let idk denote the k-dimensional identical mapping. From (2-16), we have

B = b1 idq ⊕b2 idp⊕b3 idn−q−p, A = a1 idq ⊕a2 idp⊕a3 idn−q−p,

where

b1 =
pb2
− (n− q)a2

nabα
, b2 =

qa2
− (n− p)b2

nabα
, b3 =

pb2
+ qa2

nabα
,
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and

a1 =
(pb2
+ qa2)2− (pb2

+ qa2)2na2
+ n2a2b2

2n2a2b2α2 ,

a2 =
(pb2
+ qa2)2− (pb2

+ qa2)2nb2
+ n2a2b2

2n2a2b2α2 ,

a3 =
(pb2
+ qa2)2− n2a2b2

2n2a2b2α2 .

Using these equations and (2-10), it is easy to prove the following result:

Proposition 3.9. Let f : Mn
→ Rn+1

1 be a cone over a hyperbolic torus

Hq(−
√

a2− 1)×Sp(a).

If f has constant conformal sectional curvature δ, then δ = 0, p= q = 1 and n = 3.

A spacelike hypersurface is called a conformal isoparametric spacelike hypersur-
face if the conformal 1-form vanishes and the eigenvalues of the conformal second
fundamental form are constant. In [Li and Nie 2018] and [Nie and Wu 2008], the
authors characterized the cone over the hyperbolic torus as follows:

Theorem 3.10 [Li and Nie 2018]. Let f : Mn
→ Mn+1

1 (c) be a conformal isopara-
metric spacelike hypersurface with r distinct principal curvatures. If r ≥ 3, then
r = 3, and locally f is conformally equivalent to the cone over the hyperbolic torus
Hq(−

√
a2− 1)×Sp(a).

4. The proof of Theorem 1.1

The hypothesis of constant conformal sectional curvature implies that the spacelike
hypersurface is conformally flat. A classical result says that a spacelike hypersurface
f : Mn

→ Mn+1
1 (c)(n ≥ 4) is conformally flat if and only if there exists a principle

curvature which has multiplicity at least n− 1 everywhere. Since our classification
theorem is local, we consider the following two cases:

(1) The spacelike hypersurface has only two distinct principal curvatures.

(2) The 3-dimensional spacelike hypersurface has three distinct principal curva-
tures.

First, we consider case (1). Let f : Mn
→ Rn+1

1 , n ≥ 3, be a spacelike hypersur-
face with two distinct principal curvatures; one of which is simple, while the other
has multiplicity n− 1.

Lemma 4.1. Let f : Mn
→ Rn+1

1 , n ≥ 3, be a spacelike hypersurface with two dis-
tinct principal curvatures. If the conformal sectional curvature has constant δ, then
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we can choose an orthonormal basis {E1, . . . , En} with respect to the conformal
metric g such that

(4-18)
(Bi j )= diag

(
n− 1

n
,
−1
n
, . . . ,

−1
n

)
; C2 = . . .= Cn = 0;

ω1α =−C1ωα; δ = C1,1− (C1)
2
; Cα,α =−(C1)

2, α ≥ 2.

Proof. We take a local orthonormal basis {E1, . . . , En}, with respect to g, under
which,

(Bi j )= diag(b1, b2, . . . , b2︸ ︷︷ ︸
n−1

).

From the fourth equation in (2-11), we assume b1 =
n−1

n and b2 =−
1
n . Since the

spacelike hypersurface has constant conformal curvature δ, by (2-11), we have

(Ai j )= diag
(
δ

2
−

2n− 1
2n2 ,

δ

2
+

1
2n2 , . . . ,

δ

2
+

1
2n2

)
.

In this section, we make use of the following convention on the range of indices

1≤ i, j, k ≤ n, 2≤ α, β, γ ≤ n.

From d Bi j +
∑

k Bk jωki +
∑

k Bikωk j =
∑

k Bi j,kωk and (2-8), we can get

(4-19)
B1α,α =−C1, ω1α =−C1ωα, Cα = 0, 2≤ α ≤ n,

(Bi j,k = 0 otherwise).

Using dCi +
∑

k Ckωki =
∑

k Ci,kωk and (4-19), we get

(4-20) Cα,α =−(C1)
2
; Cα,k = 0, α 6= k.

From (4-19), we see that

dω1α =−dC1 ∧ωα −C2
1ω1 ∧ωα −C1

∑
γ

ωγ ∧ωγα ,

and
dω1α −

∑
j

ω1 j ∧ω jα =−
1
2

∑
kl

R1αklωk ∧ωl .

Thus we have

(4-21) R1α1α = C1,1− (C1)
2, R1αβα −C1,β = 0. �

From Lemma 4.1, we know that the distributions

D1 = span{E1}, D2 = span{E2, E3, . . . , En}

are integrable. Any integral submanifold of distribution D1 is a curve γ , and any
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integral submanifold of distribution D2 is an (n−1)-dimensional submanifold L .
Thus locally, we have

Mn
= γ × L .

Under the orthonormal basis {E1, . . . , En} as in Lemma 4.1, {Y,N ,Y1, . . . ,Yn,ξ}

forms a moving frame in Rn+3
2 along Mn. We define

F =−
1
n

Y − ξ, X1 =−C1Y − Y1, P =−a2Y + N +C1 X1−
1
n

F.

Therefore we have

(4-22)
〈F, F〉 = −1, 〈X1, X1〉 = 1, 〈P, P〉 = −C1,1,

〈F, P〉 = 0, 〈F, X1〉 = 0, 〈X1, P〉 = 0.

From Lemma 4.1 and the structure equation of f we can derive

(4-23)

E1(F)= X1, Eα(F)= 0,

E1(X1)= P + F, Eα(X1)= 0,

E1(P)= C1 P +C1,1 X1, Eα(P)= 0.

Thus the subspace V1 = span{F, X1, P} is fixed along Mn. From δ = C1,1− (C1)
2,

we get

(4-24) E1(C1,1)= 2C1C1,1, Eα(C1,1)= 0.

We define T =−a2Y − N +C1Y1−
1
n ξ , then we have

T⊥V1, 〈T, T 〉 = C1,1, 〈T, Yα〉 = 0, 2≤ α ≤ n.

From (4-24), Lemma 4.1, and the structure equation of f we can derive

(4-25)

Eα(T )=−C1,1Yα, E1(T )= C1T, Eβ(Yα)=
∑
γ

ωαγ (Eβ)Yγ ,

Eα(Yα)=
∑
β

ωαβ(Eα)Yβ + T, E1(Yα)=
∑
β

ωαβ(E1)Yβ, α 6= β.

Thus the subspace V2 = span{T, Y2, Y3, . . . , Yn} is fixed along Mn, and V1⊥V2.
Using theory of linear first-order differential equations for C1,1, (4-24) means

that C1,1 ≡ 0 or C1,1 6= 0 on an open subset U ⊂ Mn. Thus we need to consider the
following three subcases: (1) C1,1 ≡ 0 on Mn; (2) C1,1 < 0 on Mn; (3) C1,1 > 0
on Mn. We will treat them case by case.

Proposition 4.2. Under the assumptions in Lemma 4.1, if C1,1 ≡ 0 on Mn, then f
is conformally equivalent to a cylinder over a curvature-spiral in R2

1.
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Proof. Since C1,1≡0, we have 〈P, P〉=0. From (4-23), we know that P determines
a fixed direction. Hence up to a conformal transformation we can write the fixed
direction P ∈ Rn+3

2 and constant subspace V1 ⊂ Rn+3
2 as follows:

P = (1, 0, . . . , 0, 1),

V1= span{F, X1, P}= span{(0, 1, 0, . . . , 0), (0, 0, 1, 0, . . . , 0), (1, 0, . . . , 0, 1)}.

From (4-22), we have

(4-26) 〈F, P〉=〈F, (1,0,0, . . . ,0,1)〉=0, 〈X1, P〉=〈X1, (1,0,0, . . . ,0,1)〉=0.

Let {κ1, κ2, . . . , κ2} be the principal curvatures of the spacelike hypersurface f , then
eτ = |κ1− κ2|. We choose an orthonormal basis {e1, . . . , en} of T Mn with respect
to the first fundamental form I = d f · d f such that (hi j ) = diag{κ1, κ2, . . . , κ2};
then {Ei = e−τ ei , 1≤ i ≤ n} is an orthonormal basis as in Lemma 4.1. From (2-15)
and (4-26), we can deduce

(4-27) κ2 = 0, E1(τ )=−C1.

On the other hand, we have 〈Yα, P〉 = 0 which implies that

(4-28) Eα(τ )= 0.

Let {ω̃1, . . . , ω̃n} be the dual basis of {e1, . . . , en}, and {ω̃i j } be the corresponding
connection forms. Since ωi = eτ ω̃i , 1≤ i ≤ n, its connections have the relations

ωi j = ω̃i j + ei (τ )ω̃ j − e j (τ )ω̃i .

Equations (4-27) and (4-28) imply that ω̃1α = 0. Thus the spacelike hypersur-
face f is conformally equivalent to the hypersurface given by Example 3.2. By
Proposition 3.3, we finish the proof of Proposition 4.2. �

Proposition 4.3. Under the assumptions in Lemma 4.1, if C1,1 < 0 on Mn, then f
is conformally equivalent to a cone over a curvature-spiral in S2

1.

Proof. Since C1,1 < 0, by (4-22), the vector field P is a spacelike vector field
in Rn+3

2 . Thus up to a conformal transformation we can write

V1= span{F, X1, P}= span{(0,1,0, . . . ,0), (0,0,1,0, . . . ,0), (0,0,0,1, . . . ,0)}.

Let f have principal curvatures {κ1, κ2, . . . , κ2}. Since e = (1, 0, . . . , 0, 1)⊥V, we
have 〈F, e〉 = 〈X1, e〉 = 0 which implies κ2 = 0, E1(τ ) = −C1. By (2-15), we
obtain e2τ

= κ2
1 . Setting

P =
P√
−C1,1

, θ =
T√
−C1,1

,
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then 〈P, P〉 = 1 and 〈θ, θ〉 = −1. From (4-23), we know

P : γ → S2
1 ⊂ R3

1 = V1

is a curve, and (4-25) gives that

θ : L→ Hn−1
⊂ Rn

1

is a standard embedding and the sectional curvature of θ(L) is −1. Since dim L =
dim Hn−1

= n−1, we know that θ : L→Hn−1 is a standard isometric isomorphism.
By (3-17), we have the standard isometric isomorphism

θ : L→ Hn−1
= R+×Rn−2.

Since P + T =−C1,1Y,

Y =
1√
−C1,1

(P, θ) : Mn
= γ × L→ S2

1×Hn−1
= S2

1×R+×Rn−2
⊂ Rn+3

1 .

Therefore

g = 〈dY, dY 〉 = −
1

C1,1
(ds2
+ IHn−1).

Thus the spacelike hypersurface f is conformally equivalent to the hypersurface
given by Example 3.4. By Proposition 3.5, we finish the proof of Proposition 4.3. �

Proposition 4.4. Under the assumptions in Lemma 4.1, if C1,1 > 0 on Mn, then
f is conformally equivalent to a rotational hypersurface over a curvature-spiral
in R2

1+.

Proof. Since C1,1 > 0, we have 〈P, P〉< 0. Thus up to a conformal transformation
we can write

V1 = span{F, X1, P} = span{(1, 0, . . . , 0), (0, . . . , 0, 1), (0, 1, 0, . . . , 0)}.

Thus e = (1, 0, . . . , 0, 1) ∈ V1, and 〈Yα, e〉 = 0, 2 ≤ α ≤ n, which imply that
Eα(τ )= 0, 2≤ α ≤ n. Setting

P =
P√
C1,1

, θ =
T√
C1,1

,

then 〈P, P〉 = −1 and 〈θ, θ〉 = 1. From (4-23), we know

P : γ → H2
1 ⊂ R3

2 = V1

is a curve. From (4-25), we see that

θ : L→ Sn−1
⊂ Rn

is a standard embedding and the sectional curvature of θ(L) is 1. Since dim L=n−1,
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θ : L→ Sn−1 is a standard isometric isomorphism. Since P + T =−C1,1Y,

Y =
−1√
C1,1

(P, θ) : γ × L→ H2
1×Sn−1.

Denote P = (u1, u2, u3) ∈ H2
1, then

Y =
u3− u1√

C1,1

(
u1

u1− u3
,

u2

u1− u3
,

u3

u1− u3
,

θ

u1− u3

)
.

Thus the hypersurface f : R × Sn−1
→ Rn+1

1 is given by f =
( u2

u1−u3
, θ

u1−u3

)
.

Note that

ϕ(u1, u2, u3)=

(
u2

u1− u3
,

1
u1− u3

)
is the inverse mapping of the local isometric correspondence φ : R2

1+ → H2
1

(see (1-3)). Thus the spacelike hypersurface f is conformally equivalent to the
hypersurface given by Example 3.6. By Proposition 3.7, we finish the proof of
Proposition 4.4. �

Next we consider case (2). Let f : M3
→ R4

1 be a spacelike hypersurface with
three distinct principal curvatures.

Proposition 4.5. Let f : M3
→ R4

1 be a spacelike hypersurface with three distinct
principal curvatures. If the conformal sectional curvature has constant δ, then
δ = 0 and f is conformally equivalent to the spacelike hypersurface defined by
Example 3.8.

To prove Proposition 4.5, we need the following two lemmas.

Lemma 4.6. Under the same assumptions as in Proposition 4.5, there exist a local
orthonormal basis {E1, E2, E3}, consisting of eigenvectors of B such that

(4-29)

B11,2 =
b3− b1

b1− b2
C2, B11,3 =

b2− b1

b1− b3
C3, B22,1 =

b3− b2

b2− b1
C1,

B22,3 =
b1− b2

b2− b3
C3, B33,1 =

b2− b3

b3− b1
C1, B33,2 =

b1− b3

b3− b2
C2.

Proof. Since f is of constant conformal curvature, from (2-11), we have

(4-30) Ri j = 2δδi j =
∑

k

Bik Bk j + (tr A)δi j + Ai j .

Thus we can take a local orthonormal basis {E1, E2, E3} such that

(4-31) (Bi j )= diag(b1, b2, b3), (Ai j )= diag(a1, a2, a3).
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Using (4-30) and (4-31), we have

(4-32) Bi j,k(bi + b j )+ Ai jk = 0, 1≤ i, j, k ≤ 3.

Using (2-7) and (2-8) and (4-32), we can obtain (4-29) and

(4-33) Bi j,k = Ai j,k = 0, i 6= j, i 6= k, k 6= j.

Thus we complete the proof. �

If the conformal 1-form C is equal to 0, by Lemma 4.6, we know that the
eigenvalues of the conformal second fundamental form are constant. Thus the
spacelike hypersurface is a conformal isoparametric spacelike hypersurface. By
Proposition 3.9 and Theorem 3.10, we can prove Proposition 4.5. Next we need to
prove C = 0.

Lemma 4.7. Under the same assumptions as in Proposition 4.5, the conformal
1-form C is equal to 0.

Proof. Let {ω1, ω2, ω3} be the dual of the local orthonormal basis {E1, E2, E3} in
Lemma 4.6, and {ωi j } the connection forms. Using covariant derivatives of Bi j ,

(4-34) ωi j =
Bi j,i

bi − b j
ωi +

Bi j, j

bi − b j
ω j , i 6= j, 1≤ i, j ≤ 3.

Using (2-8), we have Bi j, j = B j j,i −Ci , i 6= j . Using (2-12), (4-33) and (4-29),
we can obtain

(4-35)

B12,31 = (B11,3− B22,3)
B12,1

b1− b2
+ (B12,1− B32,3)

B13,1

b1− b3
,

B12,13 =
3(b2 B11,3− b1 B223)

(b1− b2)2
C2

+

(
C2,3−

B32,3

b3− b2
C3

)
3b1

b2− b1
+

B32,3 B13,1

b3− b2
.

From (2-10) and the Ricci identity (2-13), we have Ci, j −C j,i = (bi − b j )Ai j = 0,
and B12,31 = B12,13. Using (4-35), we can derive

b1C2,3 =
b1b2+ 2b2

3

(b2− b3)(b3− b1)
C3C2 =−C3C2,

where we use b1+ b2+ b3 = 0 and b2
1 + b2

2 + b2
3 =

2
3 . Similarly b2C1,3 =−C3C1

and b3C1,2 =−C2C1. Thus

(4-36) bkCi, j =−Ci C j , i 6= j, i 6= k, k 6= j.
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Using the covariant derivative of Ci and taking the derivative for (4-36) along Ek ,
we obtain

(4-37) Bkk,kCi, j + bk

[
Ci, jk −Ck, j

Bki,k

bk − bi
−Ci,k

Bk j,k

bk − b j

]
=−Ci

[
C j,k −Ck

B jk,k

bk − b j

]
−C j

[
Ci,k −Ck

Bik,k

bk − bi

]
.

If b1b2b3=0, we can assume that b1=0. From (2-11), we know that b2 =−b3 =
1
√

3
.

Using (4-29) we have C = 0.
We assume b1b2b3 6= 0. From (4-29), (4-36), (4-37) and Bkk,k =−B j j,k − Bi i,k ,

we conclude that

(4-38) bkCi, jk =−
4
3

Ci C j Ck

bi b j bk
=−

4
3

C1C2C3

b1b2b3
.

Since Ci, jk = C j,ik = Ck,i j and bi 6= b j , i 6= j , from (4-38) we get

C1,23 = 0, C1C2C3 = 0.

We can assume that C1 = 0, and (4-34) can be written as

(4-39) ω12 =
B12,1

b1− b2
ω1, ω13 =

B13,1

b1− b3
ω1, ω23 =

B23,2

b2− b3
ω2+

B23,3

b2− b3
ω3.

Using the covariant derivative of Ci and

dωi j −
∑

k

ωik ∧ωk j =−
1
2

∑
kl

Ri jklωk ∧ωl,

we can derive

(4-40)

3C2
3 [b

3
2− b3

3− 6b1b2
2+ 6b2

1b2]

(b1− b3)2(b3− b2)
+

27b2
1b3C2

2

(b1− b2)2(b3− b2)

= 3b1C3,3+ (b1− b3)
2δ,

3C2
2 [b

3
3− b3

2− 6b1b2
3+ 6b2

1b3]

(b1− b2)2(b2− b3)
+

27b2
1b2C2

3

(b1− b3)2(b2− b3)

= 3b1C2,2+ (b1− b2)
2δ,

3C2
3 [b

3
1− b3

3+ 3b3
2+ 15b1b2

2]

(b3− b2)2(b3− b1)
+

3C2
2 [b

3
1− b3

2+ 3b3
3+ 15b1b2

3]

(b3− b2)2(b2− b1)

= 3b3C2,2+3b2C3,3+(b3−b2)
2δ,

where we use Bi j, j = B j j,i −Ci , tr(B)= 0 and |B|2 = 2
3 . We can eliminate C2,2
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and C3,3 in (4-40) and derive

(4-41)
3[2b4

1+ 2b4
2+ 2b4

3− 9b2
1b2

2− 6b3
1b2− 12b1b3

2]

(b1− b3)3
C2

3

+
3[2b4

1+ 2b4
2+ 2b4

3− 9b2
1b2

3− 6b3
1b3− 12b1b3

3]

(b1− b2)3
C2

2

=−b1(b2− b3)
2δ.

On the other hand, using the covariant derivative of Ci and C1 = 0, we have

(4-42)

C1,1 =
3b1C2

2

(b2− b1)2
+

3b1C2
3

(b3− b1)2
,

C2,1 = C1,2 = 0, C3,1 = C1,3 = 0,

C2,2 = E2(C2)+
3b2C2

3

(b3− b2)2
,

C2,3 = E3(C2)−
3b3C2C3

(b3− b2)2
,

C3,2 = E2(C3)−
3b2C2C3

(b3− b2)2
,

C3,3 = E3(C3)+
3b3C2

2

(b3− b2)2
.

Using the second covariant derivative of the conformal 1-form C defined by∑
m

Ci, jmωm = dCi, j +
∑

m

Cm, jωmi +
∑

m

Ci,mωmj ,

and combining (4-29) and (4-42), we can deduce

C3,23 = E3(E2(C3))− 3
[

b1− b2

(b2− b3)3
−

6b2b1(b1− b2)

(b3− b2)4(b1− b3)

]
C2

3C2

+3(C2,2−C3,3)
b3C2

(b3− b2)2

−
3b2

(b3− b2)2

[
C3C2,3+C2C3,3+

3b3

(b3− b2)2
(C2

3C2−C3
2)

]
,

C3,32 = E2(E3(C3))+ 3
[

b1− b3

(b3− b2)3
−

6b3b1(b1− b3)

(b3− b2)4(b1− b2)

]
C3

2

+
6b3

(b3− b2)2
C2C2,2−

18b3b2

(b3− b2)4
C2

3C2.
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Using the Ricci identity C3,23−C3,32 =
∑

l Cl Rl323 = δC2, we obtain

(4-43)
δ

3
C2 =

3b1b3b2+ b2b2
1+ 5b3b2

1− 8b1b2
3− 2b3b2

2− b1b2
2+ 2b2b2

3

(b3− b2)4(b1− b2)
C3

2

+
3b1b3b2+ b3b2

1+ 5b2b2
1− 8b1b2

2− 2b2b2
3− b1b2

3+ 2b3b2
2

(b3− b2)4(b1− b3)
C2C2

3

−
b3

(b3− b2)2
C2C2,2−

b2

(b3− b2)2
C2C3,3+

2b2

b1(b3− b2)2
C2C2

3 ,

where we use the equation

E3(E2(C3))− E2(E3(C3))

= [E3, E2](C3)

= (ω23(E3)E3−ω32(E2)E2)(C3)

=
3b3

(b3− b2)2
C2C3,3−

9b2
3

(b3− b2)4
C3

2 −
3b2

(b3− b2)2
C3C3,2−

9b2
2

(b3− b2)4
C2

3C2.

From the third equation in (4-40) and (4-43), noting that b1b2b3 6= 0, we can deduce

(4-44)
2b2

b1(b3− b2)2
C2C2

3 = 0.

We can assume that C2 = 0. Next we prove that C3 = 0. In fact, if C3 6= 0,
from (4-39), we have

ω12 = 0, ω13 =
B13,1

b1− b3
ω1, ω23 =

B23,2

b2− b3
ω2.

Using

dω12−
∑

k

ω1k ∧ωk2 =−
1
2

∑
kl

R12klωk ∧ωl,

we can derive

(4-45) δ = R1212 =
−9b1b2C2

3

(b1− b3)2(b2− b3)2
.

Since C2 = 0, (4-41) becomes

(4-46)
3[2b4

1+ 2b4
2+ 2b4

3− 9b2
1b2

2− 6b3
1b2− 12b1b3

2]

(b3− b1)2(b3− b2)2
C2

3 =−b1(b1− b3)δ.

Combining (4-45) and (4-46), we have

(4-47) [2b4
1+ 2b4

2+ 2b4
3+ 12b1b2(b1b3− b2

2)]C
2
3 = 0.
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Using b1+ b2+ b3 = 0 and b2
1+ b2

2+ b2
3 =

2
3 , we see that

b4
1+ b4

2+ b4
3 =

2
9 and b1b3− b2

2 =−
1
3 .

Thus (4-47) is written as ( 4
9 − 4b1b2

)
C2

3 = 0.

Since C3 6= 0, 4
9−4b1b2= 0 which implies that b1, b2, b3 are constant. Thus (4-29)

means that C = 0, which is a contradiction. Thus C3= 0 and C = 0. This completes
the proof. �

Combining Propositions 4.2, 4.3, 4.4 and 4.5, we finish the proof of Theorem 1.1.
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