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We present a classification of the complete, simply connected, contact met-
ric (κ, µ)-spaces as homogeneous contact metric manifolds, by studying the
base space of their canonical fibration. According to the value of the Boeckx
invariant, it turns out that the base is a complexification or a paracomplex-
ification of a sphere or of a hyperbolic space. In particular, we obtain a
new homogeneous representation of the contact metric (κ, µ)-spaces with
Boeckx invariant less than −1.
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1. Introduction

The study of the curvature tensor of associated metrics to a contact form is a central
theme in contact metric geometry. Actually some important classes of contact metric
manifolds can be defined using it. We recall for example that Sasakian manifolds,
the odd-dimensional analogues of Kähler manifolds, can be characterized by

R(X, Y )ξ = η(Y )X − η(X)Y,

where X, Y are any vector fields and ξ denotes the characteristic vector field of the
contact metric manifold. A meaningful generalization of this curvature condition is

R(X, Y )ξ = κ(η(Y )X − η(X)Y )+µ(η(Y )h X − η(X)hY ),

where κ, µ are real numbers and 2h is the Lie derivative of the structure tensor ϕ
in the direction of the characteristic vector field ξ .
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The contact metric manifolds with this property were introduced by Blair, Koufo-
giorgos and Papantoniou [1995], and are called contact metric (κ, µ)-spaces in the
literature. These spaces have many interesting geometric properties; first of all,
they are stable under D-homothetic deformations and moreover in the non-Sasakian
case, i.e., when κ 6= 1, the curvature tensor of the associated metric is completely
determined. Looking at contact metric manifolds as strongly pseudoconvex (almost)
CR manifolds, it was shown in [Dileo and Lotta 2009] that the (κ, µ) condition is
equivalent to the local CR-symmetry with respect to the Webster metric, according
to the general notion in [Kaup and Zaitsev 2000]. In this context, another charac-
terization was given by Boeckx and Cho [2008] in terms of the parallelism of the
Tanaka–Webster curvature.

Boeckx gave a crucial contribution to the problem of classifying these manifolds;
after showing that every non-Sasakian contact (κ, µ)-space is locally homogeneous
and strongly locally ϕ-symmetric [Boeckx 1999], he defined a scalar invariant IM

which completely determines a contact (κ, µ)-space M locally up to equivalence
and up to D-homothetic deformations of its contact metric structure [Boeckx 2000].

A standard example is the tangent sphere bundle T1 M of a Riemannian manifold
M with constant sectional curvature c 6= 1. Being a hypersurface of T M , which
is equipped with a natural almost-Kähler structure (J,G), where G is the Sasaki
metric, T1 M inherits a standard contact metric structure (for more details, see
for instance [Blair 2010]). In particular, the Webster metric g of T1 M is a scalar
multiple of G. The corresponding Boeckx invariant is given by

IT1 M =
1+c
|1−c|

.

Hence, as c varies in Rr {1}, IT1 M assumes all real values strictly greater than −1.
The case I 6−1 seems to lead to models of different nature. Namely, Boeckx

found examples of contact metric (κ, µ)-spaces, for every value of the invariant
I 6−1, namely a two parameter family of (abstractly constructed) Lie groups with
a left-invariant contact metric structure. However, he gave no geometric description
of these examples; in particular, to our knowledge, nothing can be found in the
literature regarding the topological structure of these manifolds.

One of the first aims of this paper is to fill this gap, showing that simply connected,
complete contact metric (κ, µ)-spaces of dimension 2n + 1 (where n > 1) with
I <−1 are exhausted by a one parameter family of invariant contact metric structures
on the homogeneous space

SO(n, 2)/SO(n).

Actually, we provide a unified treatment of all the models with IM 6= ±1. Our
classification is accomplished intrinsically, by studying the canonical fibration of
non-Sasakian contact metric (κ, µ)-spaces with Boeckx invariant IM 6= ±1 and
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Boeckx invariant model space base space

IM > 1 SO(n+ 2)/SO(n) SO(n+ 2)/(SO(n)×SO(2))
−1< IM < 1 SO(n+ 1, 1)/SO(n) SO(n+ 1, 1)/(SO(n)×SO(1, 1))

IM <−1 SO(n, 2)/SO(n) SO(n, 2)/(SO(n)×SO(2))

Table 1. Simply connected complete contact metric (κ, µ)-spaces
with IM 6= ±1.

endowing the base spaces of a canonical connection. Here we refer to the fibration
M → M/ξ over the leaf space of the foliation determined by the Reeb vector
field; as such, it depends only on the contact form of M . First, in Theorem 7,
non-Sasakian contact metric (κ, µ)-spaces with Boeckx invariant not equal to ±1
are characterized by admitting a transitive Lie group of automorphisms whose Lie
algebra g has a (canonical) symmetric decomposition. This decomposition yields
a reductive decomposition for the base space B of the canonical fibration and the
associated canonical connection makes B an affine symmetric space (Corollary 8).

Next we show that B admits a uniquely determined standard invariant complex or
paracomplex structure, by which it is a complexification or a paracomplexification
of the sphere Sn or of the hyperbolic space Hn , according to the value of the Boeckx
invariant of the (κ, µ)-space. After identifying the possible base spaces B, in the
final section we construct explicitly our models as homogeneous contact metric
manifolds fiberings onto them. In conclusion, we obtain the classification list in
Table 1. This table also provides a new geometric interpretation of the Boeckx
invariant.

2. Preliminaries

Let M be an odd-dimensional smooth manifold. An almost contact structure on
M is a triple consisting of a (1, 1) tensor field ϕ, a vector field ξ , and a 1-form η

satisfying

ϕ2
=− id+η⊗ ξ, η(ξ)= 1.

An almost contact manifold always admits a compatible metric, namely a Riemann-
ian metric g such that

g(ϕX, ϕY )= g(X, Y )− η(X)η(Y ),

for all vector fields X , Y on M . If such a metric g satisfies also

dη(X, Y )= g(X, ϕY ),
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then (ϕ, ξ, η, g) is called a contact metric structure on M . In this case η is a contact
form; we shall denote by D the corresponding contact distribution D = ker(η) and
by D the module of smooth sections of D.

A contact metric manifold M is said to be a K -contact manifold if its character-
istic vector field ξ is Killing. This condition is equivalent to the vanishing of the
(1, 1) tensor field

h := 1
2Lξϕ,

where Lξ is Lie differentiation in the direction of ξ .
If the curvature tensor R of a contact metric manifold M satisfies the condition

R(X, Y )ξ = η(Y )X − η(X)Y,

for all vector fields X , Y on M , then M is a Sasakian manifold. In this case ξ is a
Killing vector field and hence M is a K -contact manifold.

A contact metric (κ, µ)-space is a contact metric manifold (M, ϕ, ξ, η, g) such
that

R(X, Y )ξ = κ(η(Y )X − η(X)Y )+µ(η(Y )h X − η(X)hY ),

where X, Y ∈ X(M) are arbitrary vector fields and κ , µ are real numbers. The
(κ, µ) condition is invariant under Da-homothetic deformations. We recall that a
Da-homothetic deformation of a contact metric manifold (M, ϕ, ξ, η, g) is given
by the following changing of the structural tensors of M :

(1) η̄ := aη, ξ̄ := 1
a ξ, ḡ = ag+ a(a− 1)η⊗ η,

where a is a positive constant.
By direct computations one can check that a Da-homothetic deformation trans-

forms a contact metric (κ, µ) space into a contact metric (κ̄, µ̄) space where

κ̄ =
κ + a2

− 1
a2 , µ̄=

µ+ 2a− 2
a

.

In particular, a Da-homothetic deformation of a contact metric manifold (M, ϕ, ξ,
η, g) satisfying R(X, Y )ξ = 0 yields

R(X, Y )ξ =
a2
− 1

a2 (η̄(Y )X − η̄(X)Y )+
2a− 2

a
(η̄(Y )h̄ X − η̄(X)h̄Y ).

Blair, Koufogiorgos, and Papantoniou [1995] proved the following result.

Theorem 1. Let (M, ϕ, ξ, η, g) be a contact metric (κ, µ) manifold. Then κ 6 1.
Moreover, if κ = 1 then h = 0 and (M, ϕ, ξ, η, g) is Sasakian. If κ < 1, the contact
metric structure is not Sasakian and M admits three mutually orthogonal integrable
distributions D(0), D(λ), and D(−λ) corresponding to the eigenspaces of h, where
λ=
√

1− κ .
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The explicit expression of the Riemannian curvature tensor of a non-Sasakian
contact metric (κ, µ)-manifold is known (see [Boeckx 1999, Theorem 5]).

Theorem 2. Let M be a contact metric (κ, µ)-space. If κ 6= 1, then

g(R(X, Y )Z ,W )=
(
1− 1

2µ
)
(g(Y, Z)g(X,W )− g(X, Z)g(Y,W ))

+ g(Y, Z)g(h X,W )− g(X, Z)g(hY,W )

− g(Y,W )g(h X, Z)+ g(X,W )g(hY, Z)

+
1−µ/2

1−κ
(g(hY, Z)g(h X,W )− g(h X, Z)g(hY,W ))

−
1
2µ(g(ϕY, Z)g(ϕX,W )− g(ϕX, Z)g(ϕY,W ))

+
κ−µ/2

1−κ
(g(ϕhY, Z)g(ϕh X,W )− g(ϕhY,W )g(ϕh X, Z))

+µg(ϕX, Y )g(ϕZ ,W )

+ η(X)η(W )
((
κ − 1+ 1

2µ
)
g(Y, Z)+ (µ− 1)g(hY, Z)

)
− η(X)η(Z)

((
κ − 1+ 1

2µ
)
g(Y,W )+ (µ− 1)g(hY,W )

)
+ η(Y )η(Z)

((
κ − 1+ 1

2µ
)
g(X,W )+ (µ− 1)g(h X,W )

)
− η(Y )η(W )

((
κ − 1+ 1

2µ
)
g(X, Z)+ (µ− 1)g(h X, Z)

)
.

The class of non-Sasakian contact metric (κ, µ)-spaces coincides with the class
of contact metric manifolds with nonvanishing η-parallel tensor h, according to
[Blair, Koufogiorgos, and Papantoniou 1995, Lemma 3.8] and the following result
of Boeckx and Cho [2005]:

Theorem 3. Let (M, ϕ, ξ, η, g) be a contact metric manifold which is not K -
contact. If g((∇X h)Y, Z)= 0 for all vector fields X , Y , Z orthogonal to ξ , then M
is a contact metric (κ, µ)-space.

Finally, we recall also the following characterization in the context of CR geom-
etry (we refer to [Blair 2010, §6.4; Dragomir and Tomassini 2006] for a general
reference on this topic):

Theorem 4 [Dileo and Lotta 2009, Theorem 3.2]. Let (M, H M, J, η) be a pseudo-
Hermitian manifold. Assume that the Webster metric gη is not Sasakian. The
following conditions are equivalent:

(1) The Webster metric gη is locally CR-symmetric.

(2) The underlying contact metric structure satisfies the (κ, µ) condition.

Non-Sasakian contact metric (κ, µ)-spaces have been completely classified by
Boeckx [2000]. In this case κ < 1 and the real number

IM :=
1−µ/2
√

1− κ
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is an invariant of the (κ, µ)-structure, which we call Boeckx invariant. Indeed we
have:

Theorem 5 [Boeckx 2000]. Let (Mi , ϕi , ξi , ηi , gi ), i = 1, 2, be two non-Sasakian
(κi , µi )-spaces of the same dimension. Then IM1 = IM2 if and only if , up to a D-
homothetic transformation, the two spaces are locally isometric as contact metric
spaces. In particular, if both spaces are simply connected and complete, they are
globally isometric up to a D-homothetic deformation.

Next we recall the notions of straight and twisted complexifications of a Lie
triple system (LTS). For more details we refer the reader to [Bertram 2000; 2001].
Given a Lie triple system (m, [ , , ]) we shall write as usual

R(X, Y )Z := −[X, Y, Z ].

We shall also write (m, R) instead of (m, [ , , ]). An invariant complex structure
on m is a complex structure J :m→m such that for every X, Y, Z ∈m,

[X, Y, J Z ] = J [X, Y, Z ].

An invariant paracomplex structure I on m is a paracomplex structure on m (i.e.,
an endomorphism of m such that I 2

= idm and the ±1 eigenspaces of I have the
same dimension) satisfying

[X, Y, I Z ] = I [X, Y, Z ]

for every X, Y, Z ∈m.
For every LTS m endowed with an invariant (para-)complex structure, the corre-

sponding simply connected symmetric space G/H is canonically endowed with
a G-invariant almost (para-)complex structure and vice versa (see [Bertram 2000,
Proposition III.1.4]).

An invariant (para-)complex structure J on a Lie triple system (m, [ , , ]) is
called straight if

[J X, Y, Z ] = [X, JY, Z ]

or twisted if
[J X, Y, Z ] = −[X, JY, Z ].

Accordingly, a straight or respectively twisted (para-)complex symmetric space is
an affine symmetric space M =G/H endowed with an invariant almost (para-)com-
plex structure J such that

R(J X, Y )Z = R(X,J Y )Z

or respectively
R(J X, Y )Z =−R(X,J Y )Z ,
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where R is the curvature of M .
A (para-)complexification of an LTS m is an LTS (q, [ , , ]) together with an

invariant (para-)complex structure J and an automorphism τ such that τ J+ Jτ = 0,
τ 2
= idq, and the LTS qτ given by the space of τ -fixed points of q is isomorphic

to m. The (para-)complexification (q, [ , , ], J, τ ) of m is called straight or twisted
respectively if J is a straight or twisted.

We recall that every LTS (m, R) has a unique straight complexification given by
the C-trilinear extension RC :mC×mC×mC→mC of R [Bertram 2001, Proposi-
tion 2.1.4]. The existence of a twisted complexification or paracomplexification
of m is instead related to the existence of a particular (1, 3)-tensor, the Jordan
extension of R.

Let M=G/H be a symmetric space endowed with an invariant almost (para-)com-
plex structure J . The structure tensor of J is the (1, 3)-tensor

T (X, Y )Z =− 1
2(R(X, Y )Z −J R(X,J −1Y )Z).

This tensor satisfies the following two properties:

(JT1) T (X, Y )Z = T (Z , Y )X,

(JT2) T (U, V )T (X, Y, Z)
= T (T (U, V )X, Y, Z)− T (X, T (U, V )Y, Z)+ T (X, Y, T (U, V )Z).

Now, a Jordan triple system is a pair (V, T ), where V is a vector space and
T : V ×V ×V → V is a trilinear map satisfying (JT1), (JT2), called a Jordan triple
product on V .

Observe that if T is a JT product on V , then

[x, y, z] := T (x, y)z− T (y, x)z

is a LT product on V .
Let T be a JT product on an LTS (m, R). We set

RT (x, y) := −T (x, y)+ T (y, x).

T is said to be a Jordan extension of R if R = RT .

Theorem 6 [Bertram 2000, Theorem III.4.4]. Let (m, R) be an LTS. The following
objects are in one-to-one correspondence:

(1) twisted complexifications of R,

(2) twisted paracomplexifications of R,

(3) Jordan extensions of R.

In the next section we shall be concerned with the following basic examples,
studying their interplay with the classification of contact metric (κ, µ)-manifolds.
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Consider the Lie triple systems (Rn, R) and (Rn,−R), associated respectively to
the sphere Sn and the hyperbolic space Hn , where R is

R(x, y)z := 2(〈y, z〉x −〈x, z〉y).

On (Rn, R) one can consider the following JT product:

T (x, y)z = 〈x, z〉y−〈x, y〉z−〈y, z〉x .

Then, according to Bertram [2000, Proposition IV.1.5], the corresponding twisted
complexification and paracomplexification of Sn are the symmetric spaces

SO(n+ 2)/(SO(n)×SO(2))
and

SO(n+ 1, 1)/(SO(n)×SO(1, 1)).

In the case of Hn , one can consider −T ; the corresponding twisted complexifica-
tion is (see [Bertram 2000, p. 91])

SO(n, 2)/(SO(n)×SO(2)).

3. A characterization of contact metric (κ, µ)-spaces

Let (M, ϕ, ξ, η, g) be a connected homogeneous contact metric manifold. Consider
a Lie group G acting transitively on M as a group of automorphisms of the contact
metric structure, and denote by H the isotropy subgroup of G at xo ∈ M . The
natural map j :G/H→M given by j (aH)= axo is a diffeomorphism. Thus G/H
is a homogeneous Riemannian space and in particular it is a reductive homogeneous
space (see, e.g., [Tricerri and Vanhecke 1983]). Fix a reductive decomposition of
the Lie algebra g of G:

(2) g= h⊕m,

where h= Lie(H). The identity component Go of G acts again transitively on M ,
and the isotropy subgroup of Go at xo is H ∩Go. Let

π : Go
→ Go/H ∩Go

' M

be the natural fibration of Go onto the homogeneous space Go/H ∩ Go. Since
Lie(H)=Lie(H ∩Go), (2) is also a reductive decomposition for Go/H ∩Go. Then
m decomposes into the direct sum of two H ∩Go-invariant subspaces:

m= RJ ⊕ b,

where J is the vector of m corresponding to ξo and b corresponds to the determina-
tion of the contact distribution D = ker(η) at o := π(e)∼= xo, where e is the neutral
element of G.
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Now, homogeneity ensures that the contact form η is regular (see [Boothby and
Wang 1958, § II]); hence we have a canonical fibration of M , given by (see also
[Musso 1991, p. 225])

Go/H ∩Go
→ Go/So(H ∩Go),

where So is the identity component of the closed Lie subgroup

S := {h ∈ Go
| Ad(h)∗η̃ = η̃}

of Go. Here η̃ denotes the one form on Go pull back of η via π . We have that
H ∩Go

⊂ S [Boothby and Wang 1958, Lemma II.4].
Moreover, the Lie algebra h̄ of H := So(H ∩Go) is given by

h̄= h⊕RJ,

and we have the following decomposition of g:

(3) g= h̄⊕ b.

Our first aim is to characterize the non-Sasakian contact metric (κ, µ)-spaces as
homogeneous contact metric manifolds for which decomposition (3) is symmetric,
i.e.,

[h̄, h̄] ⊂ h̄, [h̄, b] ⊂ b, [b, b] ⊂ h̄.

Using this, in Corollary 8, we shall be able to endow B of Go-invariant affine
connections making it an affine symmetric space.

Theorem 7. Let (M, ϕ, ξ, η, g) be a simply connected, complete, contact metric
manifold. Assume M is not K -contact. Then the following conditions are equivalent:

(a) M is a contact metric (κ, µ)-space.

(b) M admits a transitive, effective Lie group of automorphisms G whose Lie
algebra g is a symmetric Lie algebra with symmetric decomposition (3).

Proof. (a)⇒ (b): According to [Boeckx 1999], (M, ϕ, ξ, η, g) is a homogeneous
contact metric manifold. Let G=Aut(M) be the Lie group of all the automorphisms
of the contact metric structure of M , and H be the isotropy subgroup of G at xo ∈M .

We fix a reductive decomposition of g:

(4) g= h⊕m,

where g and h are respectively the Lie algebras of G and H . Keeping the notation
above we consider also the decompositions

g= h⊕RJ ⊕ b= h̄⊕ b.
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By Theorem 4, for every x ∈ M there exists a local CR-symmetry at x . Since M
is simply connected and complete, the local CR-symmetries are actually globally
defined. Let σ be the CR-symmetry at o = eH . We recall that σ is an isometric
CR diffeomorphism of M , whose differential at o is −Id on Do. In particular, it is
an automorphism of the contact metric structure and an affine automorphism of the
canonical G-invariant affine connection ∇̃ associated to (4). Hence, denoting by T̃
the torsion of ∇̃, we have that, for every X, Y, Z ∈ b⊂m:

go(T̃ (X, Y ), Z)= go(σ?T̃ (X, Y ), σ?Z)= go(T̃ (σ?X, σ?Y ), σ?Z)

=−go(T̃ (X, Y ), Z),

which yields that [X, Y ]m =−T̃o(X, Y ) ∈ RJ , and hence [b, b] ⊂ h̄.
The curvature tensor R̃ of ∇̃ and the Reeb vector field ξ are also preserved by σ .

Hence for every X, Y, Z ∈ b:

go(R̃(J, X)Y, Z)= go(σ? R̃(J, X)Y, σ?Z)= go(R̃(σ? J, σ?X)σ?Y, σ?Z)

=−go(R̃(J, X)Y, Z),

moreover, since ∇̃D ⊂ D we have that R̃(J, X)Y ∈ Do; thus

[[J, X ]h, Y ] = 0

for every X, Y ∈ b. Since G is effective on M , the adjoint representation ad : h→
End(m) is injective; therefore, using also [h, J ] = 0, we conclude that [J, X ]h = 0.

Finally we prove that [J, X ] ∈ b; indeed we have

go(T̃ (J, X), J )= go(σ?T̃ (J, X), σ? J )= go(T̃ (σ? J, σ?X), σ? J )

=−go(T̃ (J, X), J ).

This completes the proof of (b).

(b) ⇒ (a): Let g = h⊕m be a reductive decomposition for the homogeneous
contact metric space M = G/H , where H is the isotropy subgroup of G at a point
xo ∈ M .

Let ∇ and ∇̃ respectively the Levi-Civita connection of g and the canonical
affine connection on M associated to the fixed reductive decomposition. If we set
A =∇ −∇̃, then

(∇X h)Y = (∇̃X h)Y + A(X, hY )− h A(X, Y ).

Now, since the tensor h = 1
2Lξϕ is invariant under automorphisms of the contact

metric structure, it is parallel with respect to the canonical connection ∇̃ [Kobayashi
and Nomizu 1969, p. 193] and hence

(5) (∇X h)Y = A(X, hY )− h A(X, Y ).
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Since ∇̃ is a metric connection, for X, Y, Z ∈ X(M) we have that

(6) g(A(X, Y ), Z)+ g(Y, A(X, Z))= 0.

Then for every X, Y, Z ∈ X(M),

(7) 2g(A(X, Y ), Z)=−g(T̃ (X, Y ), Z)+ g(T̃ (Y, Z), X)− g(T̃ (Z , X), Y ).

Now observe that for every X, Y ∈ b,

T̃o(X, Y )=−[X, Y ]m,
and

[X, Y ] ∈ h⊕RJ,

since g= h̄⊕ b a symmetric decomposition by assumption. Thus T̃o(X, Y ) ∈ RJ .
Hence for every X, Y, Z ∈ D,

g(T̃ (X, Y ), Z)= 0,
and then, by (7),

g(A(X, Y ), Z)= 0.

Thus, using (5), we obtain that

g((∇X h)Y, Z)= 0

for every X, Y, Z ∈D. This implies that M is a contact metric (κ, µ)-space according
to Theorem 3. �

Corollary 8. Let M=G/H be a simply connected, complete, non-Sasakian contact
metric (κ, µ)-manifold. Then the base space B = Go/H of the canonical fibration
of M is an affine symmetric space.

Proof. It suffices to prove that B = Go/H is a homogeneous reductive space
with respect to decomposition (3); indeed, the associated canonical Go-invariant
connection makes B a locally symmetric affine manifold. Observe that B is simply
connected since the fibers of the canonical fibration are connected (see [Boothby
and Wang 1958, Theorem II.4]). Since the canonical invariant connection is always
complete (see [Kobayashi and Nomizu 1969, Chapter X, Corollary 2.5]), B is
actually a symmetric space.

To prove our claim, we recall that H ∩Go
⊂ S; thus So

⊂ So(H ∩Go)⊂ S and
Lie(So)= h̄. Since [h̄, b] ⊂ b and So is connected, it follows that Ad(So)b⊂ b and
hence, since also Ad(H∩Go)(b)⊂b, we conclude that Ad(H)b⊂b, as claimed. �

We remark that the affine symmetric structure on B thus obtained a priori depends
on the initial choice of a reductive decomposition (2) of g. In the next section, we
shall see that actually different choices lead to the same affine symmetric space, up
to isomorphism (see Corollary 10).
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4. The base space of the canonical fibration

The aim of this section is to give a complete classification of the symmetric base
spaces B of the canonical fibrations of simply connected, complete, non-Sasakian
contact metric (κ, µ)-manifolds with Boeckx invariant IM 6= ±1. We obtain that B
is a twisted complexification or paracomplexification of the sphere Sn , or of the
hyperbolic space Hn according to this table:

Boeckx invariant base space type

IM > 1 SO(n+2)/(SO(n)×SO(2)) complexification of Sn

−1< IM < 1 SO(n+1, 1)/(SO(n)×SO(1, 1)) paracomplexification of Sn

IM <−1 SO(n, 2)/(SO(n)×SO(2)) complexification of Hn

Keeping the notations above, we identify the tangent space of B at the base
point with the linear subspace b ∼= Do. Moreover we denote by b+ and b− the
subspaces of b corresponding respectively to the eigenspaces Do(λ) and Do(−λ)

of ho : b→ b.
We start by computing the curvature of B.

Proposition 9. Let (M, ϕ, ξ, η, g) be a simply connected, complete, non-Sasakian
contact metric (κ, µ)-manifold and B the base space of the canonical fibration
of M. If ∇ is the canonical affine connection on B associated to any reductive
decomposition of type (3), then the curvature tensor R of ∇ at the base point o ∈ B
is given by

(8) Ro(X, Y )Z =
((

1− 1
2µ
)
g(Y, Z)+ g(hY, Z)

)
X

−
((

1− 1
2µ
)
g(X, Z)+ g(h X, Z)

)
Y

+

(1−µ/2
1−κ

g(hY, Z)+ g(Y, Z)
)

h X

−

(1−µ/2
1−κ

g(h X, Z)+ g(X, Z)
)

hY

+
((

1− 1
2µ
)
g(ϕY, Z)+ g(ϕhY, Z)

)
ϕX

−
((

1− 1
2µ
)
g(ϕX, Z)+ g(ϕh X, Z)

)
ϕY

+

(1−µ/2
1−κ

g(ϕhY, Z)+ g(ϕY, Z)
)
ϕh X

−

(1−µ/2
1−κ

g(ϕh X, Z)+ g(ϕX, Z)
)
ϕhY

+ (µ− 2)g(ϕX, Y )ϕZ − 2g(ϕX, Y )ϕh Z .

Proof. For every X, Y, Z ∈ b we have

Ro(X, Y )Z =−[[X, Y ]J + [X, Y ]h, Z ]
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(see [Kobayashi and Nomizu 1969, Chapter X]), and hence

(9) Ro(X, Y )Z = R̃(X, Y )Z − [[X, Y ]J , Z ],

where [X, Y ]J and [X, Y ]h are the components of [X, Y ] ∈ g= h⊕RJ ⊕b respec-
tively in RJ and h; R̃ is the curvature tensor of the canonical connection of the
homogeneous reductive space M with reductive decomposition g= h⊕m.

Let ∇ be the Levi-Civita connection of g and R the curvature tensor of ∇. If we
set A := ∇̃ −∇, then a standard computation yields:

R̃(X, Y )Z = R(X, Y )Z − A(X, A(Y, Z))+ A(Y, A(X, Z))

+ A(T̃ (X, Y ), Z)+ (∇̃X A)(Y, Z)− (∇̃Y A)(X, Z),

for every X, Y, Z ∈ X(M). Moreover, since A is a G-invariant tensor, we have that
A is parallel with respect to the canonical connection ∇̃ and hence

R̃(X, Y )Z = R(X, Y )Z − A(X, A(Y, Z))+ A(Y, A(X, Z))+ A(T̃ (X, Y ), Z),

and (9) becomes

Ro(X, Y )Z = R(X, Y )Z − A(X, A(Y, Z))+ A(Y, A(X, Z))

+ A(T̃ (X, Y ), Z)− [[X, Y ]J , Z ].

We already observed in the proof of Theorem 7 that for every X, Y, Z ∈ D,

g(A(X, Y ), Z)= 0, g(T̃ (X, Y ), Z)= 0;

hence

A(X, Y )= g(A(X, Y ), ξ)ξ,(10)

T̃ (X, Y )= g(T̃ (X, Y ), ξ)ξ =−g([X, Y ], ξ)ξ = 2g(X, ϕY )ξ.(11)

In (11) we are using the parallelism of the distributions D(±λ) with respect to ∇̃,
which is a consequence of the fact that ∇̃h = 0.

Moreover, we have

(12) A(X, ξ)= ∇̃Xξ −∇Xξ = ϕX +ϕh X.

Then, using (10), (11), (12), specializing at the point o we obtain

(13) Ro(X, Y )Z = R(X, Y )Z−g(A(Y, Z), J )A(X, J )+g(A(X, Z), J )A(Y, J )

+2g(X, ϕY )A(J, Z)+[T̃ (X, Y ), Z ]

= R(X, Y )Z−g(A(Y, Z), J )(ϕX+ϕh X)

+g(A(X, Z), J )(ϕY+ϕhY )+2g(X, ϕY )A(J, Z)

+2g(X, ϕY )[J, Z ],
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where X, Y, Z ∈ b. The (1, 1)-tensor A(X, · ) is a skew symmetric tensor, since
∇̃g = 0. In particular,

g(A(X, Y ), ξ)=−g(Y, A(X, ξ)),

so that, by (12)

g(A(X, Y ), ξ)=−g(Y, ϕX +ϕh X).

Thus, (13) becomes

Ro(X, Y )Z = R(X, Y )Z + g(Z , ϕY +ϕhY )(ϕX +ϕh X)

− g(ϕX +ϕh X, Z)(ϕY +ϕhY )+ 2g(X, ϕY )A(J, Z)

+ 2g(X, ϕY )[J, Z ].

Now, using Theorem 7,

T̃o(J, Z)=−[J, Z ]m =−[J, Z ];

on the other hand,

T̃ (ξ,W )= ∇̃ξW −∇̃W ξ − [ξ,W ] = ∇ξW + A(ξ,W )− [ξ,W ]

= −ϕW −ϕhW + A(ξ,W ),

for every W vector field on M . Thus,

Ro(X, Y )Z = R(X, Y )Z + g(Z , ϕY +ϕhY )(ϕX +ϕh X)

− g(ϕX +ϕh X, Z)(ϕY +ϕhY )+ 2g(X, ϕY )A(J, Z)

− 2g(X, ϕY )(−ϕZ −ϕh Z + A(J, Z))

= R(X, Y )Z + g(Z , ϕY +ϕhY )(ϕX +ϕh X)

− g(ϕX +ϕh X, Z)(ϕY +ϕhY )+ 2g(X, ϕY )(ϕZ +ϕh Z).

Finally, taking into account the explicit expression of the curvature tensor R of M
(see Theorem 2), we obtain (8). �

Corollary 10. The affine base spaces (B,∇) of a simply connected, complete,
non-Sasakian, contact metric (κ, µ)-manifold are all mutually equivalent affine
symmetric spaces.

For a non-Sasakian contact metric (κ, µ)-space the restriction of the (1, 1) tensor
ϕ to the horizontal distribution does not induce a complex structure on the base
space, as occurs in the homogeneous Sasakian case, because h 6= 0. However,
we shall see in the following that B admits a standard complex or paracomplex
structure, according to the following definition and Theorem 13.
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Definition 11. Let (M, ϕ, ξ, η, g) be a contact metric (κ, µ)-manifold and (B,∇)
the base space of the canonical fibration of M .

A Go-invariant almost complex structure J on B will be called standard complex
structure provided its determination at the base point o is of the form

(14) Jo =

{
aϕ on b+,
1
aϕ on b−,

where a is a positive constant.
A standard paracomplex structure on B is a Go-invariant almost paracomplex

structure on B whose determination at the base point o is of the form

(15) Io =

{
aϕ on b+,

−
1
aϕ on b−,

where a is a positive constant.

Remark 12. A (para-)complex structure J on the vector space b defined as in (14)
or (15) does not induce in general a Go-invariant almost complex or paracomplex
structure on B.

Theorem 13. Let (M, ϕ, ξ, η, g) be a simply connected, complete, contact metric
(κ, µ)-manifold and let (B,∇) be the symmetric base space of the canonical fibra-
tion of M. Then:

(1) |IM |> 1 if and only if B admits a standard complex structure.

(2) |IM |< 1 if and only if B admits a standard paracomplex structure.

Moreover, in each case such a standard complex or paracomplex structure is
uniquely determined; precisely, it corresponds to the following value of the constant
a in (14), (15):

a =

√
IM + 1
IM − 1

when |IM |> 1, and

a =

√
−

IM + 1
IM − 1

when |IM |< 1.

Proof. Let (b, [ , , ]) be the Lie triple system associated to the symmetric space
(B,∇). The Lie triple product [ , , ] is given by the curvature R of ∇ at the base
point o:

[X, Y, Z ] = −Ro(X, Y )Z .
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Let J : b→ b be a complex structure on b of the form

(16) J =

{
aϕ on b+,
1
aϕ on b−,

where a is a real parameter, a > 0.
For every X+, Y+, Z+ ∈ b+ and X−, Y−, Z− ∈ b−, using (8) and (16), by a direct

computation, one can check that

R(X+, Y+)J Z+ = J R(X+, Y+)Z+, R(X+, Y+)J Z− = J R(X+, Y+)Z−,

R(X−, Y−)J Z+ = J R(X−, Y−)Z+, R(X−, Y−)J Z− = J R(X−, Y−)Z−,

R(X+, Y−)J Z− = 1
a (2λ−µ+ 2)g(ϕX+, Y−)Z−,

J R(X+, Y−)Z− =−a(µ− 2+ 2λ)g(ϕX+, Y−)Z−.

Hence, the condition

R(X+, Y−)J Z− = J R(X+, Y−)Z−

is satisfied for every X+ ∈ b+, Y−, Z− ∈ b− if and only if there exists a > 0 such
that 2λ−µ+ 2=−a2(µ− 2+ 2λ).

If µ − 2 + 2λ = 0 then also 2λ − µ + 2 = 0. It follows that κ = 1, but by
assumption M is non-Sasakian, then it must be µ− 2+ 2λ 6= 0 and

−
2λ−µ+2
2λ+µ−2

> 0.

This condition is equivalent to requiring that |IM |> 1.
Finally,

R(X+, Y−)J Z+ =−a(2λ+µ− 2)g(ϕX+, Y−)Z+,

J R(X+, Y−)Z+ = 1
a (2λ−µ+ 2)g(ϕX+, Y−)Z+.

Thus,

R(X+, Y−)J Z+ = J R(X+, Y−)Z+

for every X+, Z+∈b+, Y−∈b− if and only if there exist a>0 such that 2λ−µ+2=
−a2(2λ+µ− 2).

We conclude that the complex structure J is invariant if and only if |IM | > 1.
Moreover, in this case

a =
√

2−µ+2λ
2−µ−2λ

.
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With analogous considerations, we obtain that the paracomplex structure defined
on b by

(17) I =

{
aϕ on b+,

−
1
aϕ on b−,

where a > 0, is an invariant paracomplex structure if and only if −1< IM < 1. In
this case,

a =
√
−

2−µ+2λ
2−µ−2λ

. �

Remark 14. Cappelletti-Montano, Carriazo, and Martín-Molina [2013] showed that
every non-Sasakian contact metric (κ, µ)-manifold (M, ϕ, ξ, η, g) with |IM |> 1
admits a Sasakian structure (ϕ̃, ξ, η, g̃) obtained by deforming the (1, 1)-tensor ϕ
and the Riemannian metric g as

ϕ̃ = ε
1

(1− κ)
√
(2−µ)2− 4(1− κ)

Lξh ◦ h, g̃ =−dη( · , ϕ̃ · )+ η⊗ η,

where

ε =

{
1 if IM > 1,
−1 if IM <−1.

Moreover, for every point of M there exists a local CR-symmetry [Dileo and
Lotta 2009, Theorem 3.2]. Observe that the CR-symmetries preserve the tensor
field h, and hence they preserve also ϕ̃ and g̃. Thus, (M, ϕ̃, ξ, η, g̃) is a Sasakian
ϕ-symmetric space [Dileo and Lotta 2009, Proposition 3.3] and fibers over a Kähler
manifold (B, J̄ , ḡ) that is a Hermitian symmetric space [Takahashi 1977]. One can
check that J̄ coincides with the standard complex structure J on B in our sense.

Proposition 15. The standard (para-)complex structure on the base space (B,∇)
of a simply connected, complete, non-Sasakian, contact metric (κ, µ)-manifold M
with |IM |> 1 (|IM |< 1) is actually a twisted (para-)complex Go-invariant structure.

Proof. This can be easily verified directly using (8). �

Theorem 16. Let M2n+1 be a simply connected, complete, non-Sasakian, contact
metric (κ, µ)-manifold. Then:

(a) IM > 1 if and only if its twisted complex symmetric base space (B,∇,J ) is
the complexification SO(n+ 2)/(SO(n)×SO(2)) of Sn .

(b) −1 < IM < 1 if and only if its twisted paracomplex symmetric base space
(B,∇, I) is the paracomplexification SO(n+ 1, 1)/(SO(n)×SO(1, 1)) of Sn .

(c) IM <−1 if and only if its twisted complex symmetric base space (B,∇,J ) is
the complexification SO(n, 2)/(SO(n)×SO(2)) of Hn .
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Proof. Consider the Lie triple system (b, [ , , ]) associated to the canonical symmet-
ric base space (B,∇). The Lie triple commutator [ , , ] : b×b×b→ b is given by

[X, Y, Z ] = −Ro(X, Y )Z ,

where R is the curvature of ∇. By direct computation, using Proposition 9 we see
that the linear mapping

τ : X ∈ b 7→ 1
λ

h X ∈ b

is an involutive automorphism of the LTS (b, [ , , ]). Thus the space bτ of the
τ -fixed elements of b, together with the induced Lie triple bracket, is a Lie triple
system. Actually, since

bτ = b+,

and because the restriction R+ of R to b+ is given by

R+(X+, Y+)Z+ = (2−µ+ 2λ)(g(Y+, Z+)X+− g(X+, Z+)Y+),

we have that the LTS (b+, R+) is isomorphic to the LTS belonging to the sphere
Sn or the hyperbolic space Hn , according to the circumstance that the Boeckx
invariant IM is greater than −1 or less than −1 respectively; indeed we have
2−µ+ 2λ= 2λ(IM + 1).

Suppose |IM |> 1. Let J be the twisted complex structure on b corresponding to
the standard complex structure J of B. Observe that Jτ+τ J =0, since ϕh+hϕ=0.
Then (b, [ , , ], J, τ ) is a twisted complexification of (b+, R+).

We recall that, by definition, the structure tensor T of J at the base point o is

To(X, Y )Z =− 1
2(Ro(X, Y )Z + J Ro(X, JY )Z),

and that its restriction T+ to b+ yields the Jordan extension (b+, T+) of the LTS
(b+, R+), uniquely associated to its twisted complexification (b, [ , , ], J, τ ) (see
Theorem 6).

Computing T+ we obtain

T+(X+, Y+)Z+ =− 1
2

(
R(X+, Y+)Z++J R(X+, JY+)Z+

)
=

1
2(µ−2−2λ)

(
g(Y+, Z+)X+−g(X+, Z+)Y++g(X+, Y+)Z+

)
.

Hence, taking into account the complexification diagrams of the sphere and of the
hyperbolic space [Bertram 2000, Chapter IV], we obtain assertions (a) and (c).

Now suppose |IM |< 1 and denote by I the twisted paracomplex structure on b

corresponding to the standard paracomplex structure I of B at the base point. We
have that I τ + τ I = 0, since ϕh+ hϕ = 0, and hence (b, [ , , ], I, τ ) is a twisted
paracomplexification of (bτ , R+). The structure tensor of I at the base point o is

To(X, Y )Z =− 1
2(Ro(X, Y )Z − I Ro(X, I Y )Z).
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Then the Jordan extension of R+ uniquely associated to the twisted paracomplexifi-
cation (b, [ , , ], I, τ ) of the LTS (b+,−R+) is

T (X+, Y+)Z+ =− 1
2

(
R(X+, Y+)Z+−I R(X+, I Y+)Z+

)
=−

1
2(2−µ+2λ)

(
g(Y+, Z+)X+−g(X+, Z+)Y++g(X+, Y+)Z+

)
.

Then, comparing again with the complexification diagram of the sphere we obtain
assertion (b). �

5. Homogeneous model spaces of contact metric (κ, µ)-spaces

In this section we complete our classification, showing that one can actually construct
a contact metric (κ, µ)-space with prescribed Boeckx invariant starting from each
of the symmetric spaces in the table on page 50. More precisely, we prove

Theorem 17. The simply connected, complete, contact metric (κ, µ)-spaces of
dimension 2n + 1 (where n > 1) with Boeckx invariant different from ±1 can be
classified as follows:

(a) The homogeneous space SO(n, 2)/SO(n) carries a one-parameter family of
invariant contact metric (κ, µ)-structures whose Boeckx invariant assumes all
the values in ]−∞,−1[.

(b) The homogeneous space SO(n+ 2)/SO(n) carries a one-parameter family of
invariant contact metric (κ, µ)-structures whose Boeckx invariant assumes all
the values in ]1,+∞[.

(c) The homogeneous space SO(n+ 1, 1)/SO(n) carries a one-parameter family
of invariant contact metric (κ, µ)-structures whose Boeckx invariant assumes
all the values in ]−1, 1[.

Proof. Starting from a fixed Hermitian or para-Hermitian symmetric structure on
each of the symmetric spaces,

B1 = SO(n+ 2)/(SO(n)×SO(2)),

B2 = SO(n, 2)/(SO(n)×SO(2)),

B3 = SO(n+ 1, 1)/(SO(n)×SO(1, 1)),

we shall construct explicitly a one-parameter family of invariant contact metric
(κ, µ)-structures on the homogeneous spaces

M1 = SO(n+ 2)/SO(n),

M2 = SO(n, 2)/SO(n),

M3 = SO(n+ 1, 1)/SO(n),

with IM1 > 1, IM2 <−1, and −1< IM3 < 1.
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We first consider the symmetric Lie algebras g1 := so(n+ 2) and g2 := so(n, 2)
with symmetric decompositions

gi = hi ⊕ bi ,

where

h1 = h2 :=


 0 −λ

0
λ 0

0 0 a

 : λ ∈ R, a ∈ so(n)

= so(2)⊕ so(n),

b1 :=


 0

−vT

−wT

v w 0

 : v,w ∈ Rn

' To B1,

b2 :=


 0

vT

wT

v w 0

 : v,w ∈ Rn

' To B2.

The Ad(SO(2)×SO(n))-invariant almost complex structure Ji : bi→ bi defined by

Ji (v w)= (−1)i (w − v),

and the Ad(SO(2)×SO(n))-invariant metric Gi on bi

Gi ((v w), (u z))= 〈v, u〉+ 〈w, z〉,

determine an invariant Hermitian symmetric structure (Ji , ḡi ) on Bi ; here 〈 〉 denotes
the standard inner product on Rn and (v w) denotes the matrix 0 0 −wT

0 0 −vT

v w 0


in the case i = 1, and the matrix 0 0 wT

0 0 vT

v w 0


in the case i = 2. Observe that the decomposition of gi ,

gi = so(n)⊕mi ,(18)

mi := Rξ ⊕ bi , ξ :=

 0 −1
01 0

0 0 0

 ,
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is a reductive decomposition for Mi . Indeed, for every

a =

 1 0
00 1

0 0 a

 ∈ SO(n), X = sξ + (v w) ∈mi ,

we have that Ad(a)X = sξ + (av aw). In particular, we have Ad(a)ξ = ξ for every
a ∈ SO(n).

We have a natural decomposition of bi ,

bi = pi ⊕ qi ,

where
pi := {(v 0) | v ∈ Rn

}, qi := {(0w) | w ∈ Rn
}.

By using this decomposition, we define on mi a (1, 1) tensor ϕi , an inner product
gi , and a 1-form ηi as follows:

(19) ϕi (Z) :=


α J Z if Z ∈ pi ,

1
α

J Z if Z ∈ qi ,

0 if Z ∈ Rξ,

gi (X, Y ) := st + 1
2

(
α〈v, u〉+ 1

α
〈w, z〉

)
, ηi (X) := s,

where α > 0, and X = sξ + (v w), Y = tξ + (u z) are arbitrary elements of mi .
These tensors are Ad(SO(n))-invariant. Indeed for every a ∈ SO(n),

Ad(a)ϕi X = Ad(a)
(
(−1)i

(
α(0 − v)+ 1

α
(w 0)

))
= (−1)i

(
α(0 − av)+ 1

α
(aw 0)

)
= ϕi Ad(a)X,

gi (Ad(a)X,Ad(a)Y )= g(sξ + (av aw), tξ + (au az))

= st + 1
2

(
α〈av, au〉+ 1

α
〈aw, az〉

)
= st + 1

2

(
α〈v, u〉+ 1

α
〈w, z〉

)
= g(X, Y ).

Finally, since Ad(a)ξ = ξ , we also have that Ad(a)∗ηi = ηi . Observe that the
invariance of ηi implies that, for every X ∈ gi and Y ∈ X(Mi ),

0= (LX∗ηi )Y = X∗(ηi Y )− ηi ([X∗, Y ]),

where X∗ is the fundamental vector field determined by X . Thus, for every X, Y ∈mi

2dηi (X∗, Y ∗)= X∗(ηi Y ∗)− Y ∗(ηi X∗)− ηi ([X∗, Y ∗])

=−ηi ([Y ∗, X∗])=−ηi ([X, Y ]∗).
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Evaluating this formula at the base point o ∈ Mi yields

(20) 2(dηi )o(X, Y )=−ηi ([X, Y ]mi ).

By direct computations, using (19), (20), we obtain that

(dηi )o(X, Y )= gi (X, ϕi Y ), X, Y ∈mi .

This proves that the invariant tensors (ϕi , ξ, ηi , gi ) make up a contact metric struc-
ture on Mi . Moreover it is a K -contact structure if and only if α = 1. Indeed, since
ξ and ϕi are invariant tensors on Mi , they are parallel with respect to the canonical
connection ∇̃ associated to the decomposition (18), hence,

(Lξϕi )Y = [ξ, ϕi Y ] −ϕi [ξ, Y ]

= ∇̃ξϕi Y − T̃ (ξ, ϕi Y )−ϕi (∇̃ξY − T̃ (ξ, Y ))

=−T̃ (ξ, ϕi Y )+ϕi T̃ (ξ, Y ),

then

2(hi )o(v w)= (Lξϕi )o(v w)

= [ξ, ϕi (v w)] −ϕi [ξ, (v w)]

= (−1)i
[
ξ,
( 1
α
w −αv

)]
−ϕi (−w v)

= (−1)i
(
αv 1

α
w
)
− (−1)i

( 1
α
v αw

)
= (−1)i

(
α2
−1
α

v −
α2
−1
α

w
)
.

Applying Theorem 7, we see that (ϕi , ξ, ηi , gi ) is a contact metric (κ, µ)-structure
on Mi for every α > 0, α 6= 1; moreover, by construction, Ji is a standard complex
structure on the base space Bi of the canonical fibration of Mi , in the sense of
Definition 11. In particular if 0<α<1 then, by the uniqueness result in Theorem 13,
we must have √

IM1 + 1
IM1 − 1

=
1
α
,

√
IM2 + 1
IM2 − 1

= α,

or equivalently

IM1 =
1+α2

1−α2 , IM2 =−
1+α2

1−α2 .

Thus, as α varies in ]0, 1[, IM1 assumes all the values in ]1,+∞[ and IM2 assumes
all the values in ] −∞,−1[.
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Now we consider the Lie algebra g := so(n+1, 1) with symmetric decomposition
g= h̄⊕ b, where

h̄ :=


 0 λ

0
λ 0

0 0 a

 : λ ∈ R, a ∈ so(n)

= so(1, 1)⊕ so(n),

b :=


 0

vT

−wT

v w 0

 : v,w ∈ Rn

' To B3.

Let (I, ḡ) be the para-Hermitian structure on B3 determined by the Ad(SO(1, 1)×
SO(n))-invariant structure (I,G) on b:

I (v w) := −(w v), G((v w), (u z)) := 〈v, u〉− 〈w, z〉,

where (v w) denotes the matrix 0
vT

−wT

v w 0

 ∈ b.
The homogeneous space SO(n + 1, 1)/SO(n) is reductive with respect to the
decomposition

so(n+ 1, 1)= so(n)⊕m,

where
m := so(1, 1)⊕ b= Rξ ⊕ b,

ξ :=

 0 1
01 0

0 0 0

 ;
indeed

Ad(a)(sξ + (v w))= sξ + (av aw),

for every a ∈ SO(n), X = sξ + (v w) ∈m.
Now we consider the natural decomposition of b:

b= p⊕ q,

where
p := {(v 0) | v ∈ Rn

} ⊂ b,

q := {(0w) | w ∈ Rn
} ⊂ b.
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Using this decomposition, we define on m the following Ad(SO(n))-invariant
tensors:

(21)
ϕ(Z) :=


−α I Z if Z ∈ p,

1
α

I Z if Z ∈ q,

0 if Z ∈ Rξ,

g(X, Y ) := st + 1
2

(
α〈v, u〉+ 1

α
〈w, z〉

)
, η(X) := s,

where α > 0 and X = sξ+ (v w), Y = tξ+ (u z) are any matrices in m. One checks
by the same method used above that (ϕ, ξ, η, g) is a contact metric (κ, µ)-structure.
Moreover

2ho(v w)=
(
−
α2
+1
α

v
α2
+1
α

w
)
.

Then applying again Theorem 13 we get

IM3 =
α2
− 1

α2+ 1

and hence, as α varies in R∗
+

, IM3 assumes all the values in ] − 1, 1[. �

Remark 18. Of course, in the case I > 1 we recover, up to isomorphism, the
unit tangent sphere bundle T1 M of a Riemannian manifold (M, g) with constant
sectional curvature c > 0, c 6= 1.

In the case I <−1, we obtain a new homogeneous representation of the contact
metric (κ, µ)-manifolds M with IM <−1, different from the Lie group representa-
tion furnished by Boeckx. Actually these models can be geometrically interpreted
also as tangent hyperquadric bundle over Lorentzian space forms, as shown in
[Loiudice and Lotta 2018].

Remark 19. The homogeneous model spaces of contact metric (κ, µ)-manifolds
here obtained also appear in the classification list of the simply connected sub-
Riemannian symmetric spaces carried out by Bieliavsky, Falbel, and Gorodski
[1999]. However, in their paper the contact metric structures are not considered.
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