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Let G be a topological group and let G∗(P) be the pointed gauge group of a
principal G-bundle P → M. We prove that if G is homotopy commutative
then the homotopy type of the classifying space BG∗(P) can be completely
determined for certain M. This also works p-locally, and valid choices of
M include closed simply connected four-manifolds when localised at an odd
prime p. In this case, an application is to calculate part of the mod- p ho-
mology of the classifying space of the full gauge group.

1. Introduction

Let G be a topological group and let M be a pointed space. Let P → M be a
principal G-bundle over M . The gauge group G(P) is the group of G-equivariant
automorphisms of P that fix M . The pointed gauge group G∗(P) is the subgroup
of G(P) that fixes the fibre over the basepoint in M . Gauge groups are of wide
interest due to their prominent role in both mathematical physics, Donaldson theory,
and the study of semistable holomorphic vector bundles and their related moduli
spaces. Important problems are to calculate the mod-p homology and cohomology
of the classifying spaces BG(P) and BG∗(P) for a prime p when M is a closed
simply connected four-manifold, and to determine the integral homotopy types of
various spaces related to BG∗(P) when M is an orientable closed Riemann surface.

In this paper, assume that the topological groups have the homotopy type of
connected, finite type CW-complexes. We show that if G is homotopy commu-
tative then for certain spaces M there is a homotopy decomposition of BG∗(P)
as recognisable factors. This also works p-locally. Two applications are given.
The first is in the case when G is a simply connected, simple compact Lie group
and M is a closed simply connected four-manifold. For appropriate primes p, a
p-local homotopy decomposition of BG∗(P) holds and this is used to determine a
large split subalgebra of the mod-p cohomology of the full gauge group BG(P).

The author would like to thank the referee for making many valuable comments that helped improve
the clarity of the paper.
MSC2010: primary 55P15, 55R35; secondary 54C35, 81T13.
Keywords: gauge group, mapping space, homotopy type, homology.

215

http://msp.org/pjm/
http://dx.doi.org/10.2140/pjm.2019.300-1
http://dx.doi.org/10.2140/pjm.2019.300.215


216 STEPHEN THERIAULT

The second is in the case when G is the infinite unitary group and M is a closed
orientable Riemann surface. A homotopy decomposition of BG∗(P) is used to
determine the homotopy type of the space Hom(π1(6g),U ) of homomorphisms
from the fundamental group of the Riemann surface to the infinite unitary group.

The key result is a decomposition of certain pointed mapping spaces. Consider
adjunction spaces of the form

N =
( m∨

i=1

6Ai

)
∪a en,

where
∨m

i=16Ai is a CW-complex of dimension strictly less than n, a : Sn−1
→∨m

i=16Ai is the attaching map of the n-cell, and m ≥ 2. For 1 ≤ i ≤ m, let
ι j : 6A j →

∨m
i=16Ai be the inclusion of the j-th wedge summand. Let N be

the collection of all such adjunction spaces N with the additional property that the
attaching map a factors through a map a′ which is a wedge sum of some of the
Whitehead products 6A j ∧ Ak

[ι j ,ιk ]
−−−→

∨m
i=16Ai .

Observe that there is a cofibration
m∨

i=1

6Ai
b
−→ N q

−→ Sn,

where b is the inclusion and q collapses
∨m

i=16A to a point. Let G be a topological
group and let BG be its classifying space. Then the cofibration sequence induces a
fibration sequence

(1) Map∗(N , BG) b∗
−→Map∗

( m∨
i=1

6Ai , BG
)

a∗
−→Map∗(Sn−1, BG).

Theorem 1.1. Let N ∈N and let G be a topological group whose multiplication is
homotopy commutative. Then the map b∗ in (1) has a right inverse and there is a
homotopy equivalence

Map∗(N , BG)'Map∗
( m∨

i=1

6Ai , BG
)
×Map∗(Sn, BG).

A p-local version of Theorem 1.1 also holds if the multiplication on G is
only homotopy commutative at p. This is particularly relevant since James and
Thomas [1962a] showed that no simply connected, simple compact Lie group has
its standard multiplication being homotopy commutative, but McGibbon [1984]
showed that after localising at an odd prime there are cases when the multiplication
is homotopy commutative and he classified these. The classification is given in
Section 2.
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The connection with gauge groups comes from work of Gottlieb [1972] or Atiyah
and Bott [1983]. They showed that if M is a pointed space and P→ M is a prin-
cipal G-bundle then there is a homotopy equivalence BG∗(P)'Map∗P(M, BG),
where Map∗P(M, BG) is the component of Map∗(M, BG) that contains the map
inducing P . Consider two cases. First, let M be a closed simply connected four-
manifold and let G be a simply connected simple compact Lie group. By [Milnor
1958], M is homotopy equivalent to a CW-complex

(∨m
i=1 S2

)
∪a e4. Second,

let M be an orientable closed Riemann surface of genus g and let G = U (n).
Classically (see [Hatcher 2002] for instance), M is homotopy equivalent to a CW-
complex

(∨2g
i=1 S1

)
∪a e2. In either case, [M, BG] ∼= Z so there is a component

of Map∗(M, BG) for each integer k, and this integer determines a corresponding
equivalence class of principal G-bundles P → M . Write Pk for the equivalence
class corresponding to k and let G∗k (M)= G∗(Pk).

Let �3
0G be the component of �3G containing the basepoint. Write X(p) for a

space X localised at the prime p.

Corollary 1.2. Let M be a closed simply connected Spin four-manifold with m
two-cells, m ≥ 2, and let G be a simply connected simple compact Lie group whose
multiplication is homotopy commutative when localised at p. Then there is a p-local
homotopy equivalence

BG∗k (M)(p) '
( m∏

i=1

�G(p)

)
×�3

0G(p).

In the second case, stabilise by considering the infinite unitary group U . Since
U is an infinite loop space its loop multiplication is homotopy commutative. Write
6g for the surface of genus g, and let �0U be the component of �U containing
the basepoint.

Corollary 1.3. Let 6g be a closed orientable closed Riemann surface of genus
g ≥ 1. Then there is an integral homotopy equivalence

BG∗k (6g)'

( 2g∏
i=1

U
)
×�0U.

Corollaries 1.2 and 1.3 are the first systematic decompositions of the classifying
spaces of pointed gauge groups. In the context of Corollary 1.2, Masbaum [1991]
proved the G = SU (2) case earlier but by using different methods that depended
on the specific group. Also, while a great deal of work has been done recently to
identify the p-local homotopy types of gauge groups [Kishimoto and Kono 2010;
Kishimoto et al. 2013b; 2014; Theriault 2010] and study their properties [Kishimoto
et al. 2013a], nothing has been done for their classifying spaces.
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Applications of these decompositions to the mod-p homology of gauge groups
and the homotopy type of Hom(π1(6g),U ) will be discussed in the final section
of the paper.

2. Preliminary homotopy theory

In this section we discuss some notions from homotopy theory involving Whitehead
products and the homotopy commutativity of topological groups. As we are building
towards a strictly commutative diagram in (6) rather than a homotopy commutative
diagram, some extra care will be taken along the way.

Let G be a topological group and let

ev : 6�BG→ BG

be the evaluation map. Let iL : 6�BG→6�BG ∨6�BG and iR : 6�BG→
6�BG ∨6�BG be the inclusions of the left and right wedge summands respec-
tively and let

[iL , iR] : 6�BG ∧�BG→6�BG ∨6�BG

be the Whitehead product of iL and iR . By [Arkowitz 1962] there is a homotopy
equivalence

(6�BG ∨6�BG)∪[iL ,iR] C(6�BG ∧�BG)'6�BG×6�BG,

where C(6�BG ∧�BG) is the reduced cone on 6�BG ∧�BG. Let t be the
composite

t : 6�BG ∨6�BG ev∨ev
−−−→ BG ∨ BG ∇

−−−→ BG,

where ∇ is the folding map and let

[ev, ev] : 6�BG ∧�BG→ BG

be the Whitehead product of ev with itself. Note that [ev, ev] is homotopic to
∇ ◦ [iL , iR]. The following proposition connects the homotopy commutativity of G
to the existence of a certain extension.

Proposition 2.1. Let G be a topological group. Then the following are equivalent:

(a) G is homotopy commutative.

(b) The Whitehead product [ev, ev] is null homotopic.
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(c) There is a strictly commutative diagram

6�BG ∨6�BG t
//

��

BG

(6�BG ∨6�BG)∪[iL ,iR] C(6�BG ∧�BG)

e

33

for some map e.

Proof. The equivalence of parts (a) and (b) was proved by James and Thomas [1962b]
and the equivalence of parts (b) and (c) was proved by Arkowitz [1962]. �

Remark 2.2. It should be noted that the homotopy commutativity condition in
Proposition 2.1 is fairly restrictive. For example, there are no simply connected,
simple compact Lie groups which are homotopy commutative [James and Thomas
1962a]. However, obstructions to homotopy commutativity may vanish when
localised at a prime p (see [Hilton et al. 1975] for a good discussion of localisation).
McGibbon [1984] classified those simply connected, simple compact Lie groups G
which are homotopy commutative at p. To describe these, recall that G is rationally
homotopy equivalent to a product of spheres, G 'Q

∏l
i=1 S2ni−1. The type of G is

defined to be {n1, . . . , nl}. The loop multiplication on G is homotopy commutative
when localised at p in precisely the following cases:

(2) p > 2nl; G = Sp(2) and p = 3; G = G2 and p = 5.

On the other hand, Bott periodicity implies that the infinite matrix groups U , SU ,
SO , and Sp are all infinite loop spaces and so are integrally homotopy commutative.

Next, we generalise the (a) implies (c) part of Proposition 2.1. Let X1, . . . , Xm be
path-connected, pointed spaces and consider the wedge

∨m
i=16X i . For 1≤ j ≤ m,

let ι j : 6X j →
∨m

i=16X i be the inclusion of the j-th wedge summand. Let

f :
∨

1≤ j<k≤m

6X j ∧ Xk→

m∨
i=1

6X i

be the wedge sum of the Whitehead products [ι j , ιk]. Let

T (6X1, . . . , 6Xm)=

( m∨
i=1

6X i

)
∪ f C

( ∨
1≤ j<k≤m

6X j ∧ Xk

)
.

Observe that there is a homotopy equivalence

T (6X1, . . . , 6Xm)'
⋃

1≤ j<k≤m

6X j ×6Xk .
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To be clear, T (6X1, . . . , 6Xm) is a subspace of 6X1 × · · · ×6Xm , each term
6X j ×6Xk in the union is regarded as including into the ( j, k) coordinates of
6X1× · · ·×6Xm , and intersections are identified.

This construction is natural. Suppose that there are maps g : 6A→ Z , h : 6B→
Z , and t : Z → Z ′. Represent the homotopy class [g, h] as the adjoint of the
Samelson product 〈g′, h′〉, where g′ : A→�Z and h′ : B→�Z are the adjoints of
g and h respectively. The Samelson product is defined by the pointwise commutator
in�Z , which commutes with any loop map�Z �t

−→�Z ′. Thus we obtain t◦[g, h]=
[t ◦ g, t ◦ h] on the nose. Hence, given maps fi : 6X i → 6X ′i for 1 ≤ i ≤ m, we
obtain a strictly commutative diagram

(3)

∨m
i=16X i

∨m
i=1 fi

//

��

∨m
i=16X ′i

��

T (6X1, . . . , 6Xm)
T ( f1,..., fm)

// T (6X ′1, . . . , 6X ′m).

In our case, for 1≤ i ≤m, let X i =�BG. Write T (6�BG) for T (6�BG, . . . ,
6�BG). Let tm be the composite

tm :
m∨

i=1

6�BG
∨m

i=1 ev
−−−−→

m∨
i=1

BG ∇m
−−−→ BG,

where ∇m is the m-fold folding map. By Proposition 2.1, if G is homotopy com-
mutative then the restriction of tm to any pair 6�BG ∨6�BG extends to a map

(6�BG ∨6�BG)∪[iL ,iR] C(6�BG ∧�BG)→ BG.

Construct an extension for all pairs of wedge summands indexed by ( j, k) for
1≤ j < k ≤ m. Observe that the extensions are compatible because they intersect
only on the wedge summands. Thus they may be assembled to produce a map
T (6�BG)→ BG extending tm . This is recorded as follows.

Lemma 2.3. Let G be a topological group whose loop multiplication is homotopy
commutative. Then there is a strictly commutative diagram

∨m
i=16�BG

tm
//

��

BG

T (6�BG)

em

99

for some map em .



HOMOTOPY DECOMPOSITIONS OF POINTED GAUGE GROUPS 221

We close this section with one more observation about T (6X1, . . . , 6Xm). Let
X E
−→�6X be the suspension map, defined by sending x ∈ X to the loop ωx on

6X , where ωx is characterised by ωx(t)= (t, x). The evaluation map 6�Y ev
−→Y

is defined by sending (s, ω) to ω(s). The definitions imply that the composite
6X 6E
−→6�6X ev

−→6X is the identity map on 6X . Now suppose that there is
a map f : 6X → Y . The naturality of the evaluation map implies that there is a
strictly commutative diagram

6�6X
6� f

//

ev
��

6�Y

ev
��

6X

6E
::

6X
f

// Y.

Thus, if f̄ = (6� f ) ◦6E , then we obtain a lift

(4)

6�Y

ev
��

6X
f
//

f̄
;;

Y.

Combining this with (3) we obtain the following:

Lemma 2.4. Suppose that for 1≤ i ≤m there are maps fi : 6X i → Y . Then there
is a strictly commutative diagram

∨m
i=16X i

∨m
i=1 f̄i

//

��

∨m
i=16�Y

��

T (6X1, . . . , 6Xm)
T ( f̄1,..., f̄m)

// T (6�Y, . . . , 6�Y ).

3. The class N

Recall from Section 1 that N is the class of adjunction spaces

N =
( m∨

i=1

6Ai

)
∪a en,

where
∨m

i=16Ai is a CW-complex of dimension strictly less than n, the attaching
map a factors through a map a′ which is a wedge sum of some of the Whitehead
products 6A j ∧ Ak

[ι j ,ιk ]
−−−→

∨m
i=16Ai , and m ≥ 2. The factorisation condition on

a can be restrictive. In the context of gauge groups, one typically wants to work
with an N that is homotopy equivalent to a manifold. Most manifolds do not satisfy
the attaching map condition. However, there are some very interesting families of
manifolds that do. For example,
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(a) if M is a simply connected Spin four-manifold with H 2(M;Z) of rank m ≥ 2,
then M is homotopy equivalent to a CW-complex

(∨m
i=1 S2

)
∪a e4

∈N ;

(b) if 6g is a closed orientable surface of genus g ≥ 1, then 6g is homotopy
equivalent to a CW-complex

(∨2g
i=1 S1

)
∪a e2

∈N ;

(c) if M is a simply connected Spin five-manifold then M is homotopy equivalent
to a CW-complex

(∨m
i=16Ai

)
∪a e5, where each 6Ai is either S2, S3, or a

mod-pr Moore space of dimension three, and if m ≥ 2 then this CW-complex
is in N .

The CW-structure for M in (a) is due to Milnor [1958]; the CW-structure for 6g

in (b) is commonly known, one reference is [Hatcher 2002]; the CW-structure
for M in (c) is given in [Stöcker 1982]. Other examples exist, such as certain
(n− 1)-connected 2n-dimensional manifolds [Wall 1962] and the connected sum
of products of two spheres.

The property that is needed for the spaces in N is the following. Recall that there
is a homotopy cofibration Sn−1 a

−→
∨m

i=16Ai
b
−→ N , where b is the inclusion.

Lemma 3.1. Let N ∈N . Then there is an extension∨m
i=16Ai

b
//

��

N

eN
ww

T (6A1, . . . , 6Am)

for some map eN .

Proof. Since N =
(∨m

i=16Ai
)
∪a en , to show that the extension eN exists it is

equivalent to show that the composite Sn−1 a
−→

∨m
i=16Ai → T (6A1, . . . , 6Am)

is null homotopic. By definition, T (6A1, . . . , 6Am) is the adjunction space formed
from coning off the sum of all the Whitehead products [ι j , ιk] for 1≤ j < k ≤m. In
particular, each composition 6A j∧ Ak

[ι j ,ιk ]
−−−→

∨m
i=16Ai→ T (6A1, . . . , 6Am) is

null homotopic. Thus, as a factors through a wedge sum of some of the Whitehead
products [ι j , ιk], the composite Sn−1 a

−→
∨m

i=16Ai → T (6A1, . . . , 6Am) is also
null homotopic. �

4. A decomposition of Map∗(N, BG)

Let N ∈N . In the sequence of maps

Sn−1 a
−→

m∨
i=1

6Ai
b
−→ N q

−→ Sn,

the maps a and b form a homotopy cofibre sequence, while b and q form a cofibre
sequence on the nose. If G is a topological group then there is an induced sequence
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(5) Map∗(Sn, BG) q∗
−→Map∗(N , BG)

b∗
−→Map∗

( m∨
i=1

6Ai , BG
)

a∗
−→Map∗(Sn−1, BG),

where the maps q∗ and b∗ form a fibre sequence on the nose while b∗ and a∗ form a
homotopy fibre sequence. We will show that if the multiplication on G is homotopy
commutative then the map b∗ has a right inverse.

Let f :
∨m

i=16Ai → BG be a pointed map. Universally, a map out of a wedge
is determined by its restrictions to the wedge summands, so f =

∨m
i=1 fi , where

fi : 6Ai → BG is the restriction of f to 6Ai . By (4), each fi lifts through
6�BG ev

−→ BG to a map f̄i = (6� fi ) ◦6E . So if N ∈N and the multiplication
on G is homotopy commutative, we may combine the diagrams in Lemmas 2.3,
2.4, and 3.1 to obtain a strictly commutative diagram

(6)

∨m
i=16Ai

∨m
i=1 f̄i

//

��

b

ww

∨m
i=16�BG

tm
//

��

BG

N
eN
// T (6A1, . . . , 6Am)

T ( f̄1,..., f̄m)
// T (6�BG).

em

99

By the definitions of tm and each f̄i , we have tm ◦
(∨m

i=1 f̄i
)
=
∨m

i=1 fi . So (6) lets
us define a map

θ : Map∗
( m∨

i=1

6Ai , BG
)
→Map∗(N , BG)

by θ( f ) = θ
(∨m

i=1 fi
)
= em ◦ T ( f̄1, . . . , f̄m) ◦ eN . We wish to show that θ is

continuous and that b∗ ◦ θ is the identity map.

Lemma 4.1. The map θ is continuous.

Proof. The map θ is defined as the composite of the continuous maps em and
eN and the continuous functor T ( f̄1, . . . , f̄m). Note that if Y is a locally compact
Hausdorff space then the composition Map∗(Y, Z)×Map∗(X, Y )→Map∗(X, Z) is
continuous with respect to the compact open topology. Therefore θ is continuous. �

Lemma 4.2. The composite of continuous maps

Map∗
( m∨

i=1

6Ai , BG
)

θ
−→Map∗(N , BG) b∗

−→Map∗
( m∨

i=1

6Ai , BG
)

is equal to the identity map.
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Proof. By definition, b∗ sends a map φ : N → BG to the composite

m∨
i=1

6Ai
b
−→ N φ

−→ BG.

Therefore, by the definition of θ , we have

b∗ ◦ θ( f )= b∗ ◦ θ
( m∨

i=1

fi

)
= b∗(em ◦ T ( f̄1, . . . , f̄m) ◦ eN )= em ◦ T ( f̄1, . . . , f̄m) ◦ eN ◦ b.

By (6) and the definition of tm , we have

em ◦ T ( f̄1, . . . , f̄m) ◦ eN ◦ b = tm ◦
( m∨

i=1

f̄i

)
=

m∨
i=1

fi = f.

Thus b∗ ◦ θ( f )= f . �

Proof of Theorem 1.1. In general, suppose that �B ∂
−→ F r

−→ E s
−→ B is a

homotopy fibration sequence and r has a right homotopy inverse t : E→ F . Then
s is null homotopic because

(i) r ◦ t ' 1E implies that s ' s ◦ r ◦ t , and

(ii) s ◦ r is null homotopic as it is the composition of two consecutive maps in a
homotopy fibration.

The null homotopy for s implies that F ' E ×�B. In our case, consider the
homotopy fibration sequence (5). By Lemma 4.2, the map b∗ has a right inverse.
Therefore there is a homotopy equivalence

Map∗(N , BG)'Map∗
( m∨

i=1

6Ai , BG
)
×Map∗(Sn, BG). �

To illustrate Theorem 1.1 we consider two cases of interest. Note that

Map∗(St , BG)'�t−1G.

Example 4.3. Let M be a simply connected Spin four-manifold with m two-cells,
where m≥2. As in Section 3, there is a homotopy equivalence M'

(∨m
i=1 S2

)
∪a e4.

Let G be a simply connected, simple compact Lie group listed in (2), whose
multiplication is homotopy commutative when localised at p. By [Hilton et al.
1975], p-localisation commutes with mapping spaces in the context of simply
connected (and more generally, nilpotent) spaces, so we have Map∗(M, BG)(p) '
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Map∗(M(p), BG(p)). Thus Theorem 1.1 implies that there is a homotopy equiva-
lence

Map∗(M, BG)(p) '
( m∏

i=1

�G(p)

)
×�3G(p).

Example 4.4. Let 6g be a close orientable surface of genus g ≥ 1. As in Section 3,
6g '

(∨2g
i=1 S1

)
∪a e2

∈ N . Let G = U , the infinite unitary group. Since U is
an infinite loop space it is homotopy commutative so by Theorem 1.1 there is a
homotopy equivalence

Map∗(6g, BU )'
( 2g∏

i=1

U
)
×�U.

We close this section by proving Corollaries 1.2 and 1.3.

Proof of Corollary 1.2. Recall from Section 1 that if G is a simply connected
simple compact Lie group, M is a simply connected four-manifold, and Pk→ M
is a principal G-bundle induced by the homotopy class in [M, BG] ∼= Z corre-
sponding to k, then there is a homotopy equivalence BG∗k (M)'Map∗k(M, BG).
By Example 4.3, there is a p-local homotopy equivalence Map∗k(M, BG)(p) '(∏m

i=1�G(p)
)
×�3

k G(p), where �3
k G is the connected component of �3G that

contains the map S3
→ G of degree k in the third homology group. Since

π0(�
3G) is a group, there is a homotopy equivalence �3

k G ' �3
0G. Therefore

BG∗k (M)(p) '
(∏m

i=1�G(p)
)
×�3

0G(p). �

Proof of Corollary 1.3. Again, recall from Section 1 that if G =U , 6g is a closed
orientable surface of genus g, and Pk → 6g is a principal G-bundle induced by
the homotopy class in [6g, BU ] ∼= Z corresponding to k, then there is a homotopy
equivalence BGk(6g) 'Map∗k(6g, BU ). By Example 4.4, there is a homotopy
equivalence Map∗k(6g, BU ) '

(∏2g
i=1 U

)
×�kU , where �kU is the connected

component of �U that contains the map S1
→U of degree k in the first homology

group. Since π0(�U ) is a group, there is a homotopy equivalence �kU ' �0U .
Therefore there is a homotopy equivalence BGk(6g)'

(∏2g
i=1 U

)
×�U . �

5. Applications

In this section we give two applications, one to the calculation of the mod-p
homology or cohomology of the classifying space of certain full gauge groups, and
the other to the homotopy type of a certain group of homomorphisms.

First, return to the case when G is a simply connected simple compact Lie group,
M is a simply connected four-manifold, and Pk → M is a principal G-bundle
induced by the homotopy class in [M, BG] ∼= Z corresponding to k. By [Atiyah
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and Bott 1983] there is a homotopy commutative diagram

(7)

BG∗k (M) //

ψ∗

��

BGk(M)

ψ

��

Map∗k(M, BG) // Mapk(M, BG),

where ψ∗ and ψ are homotopy equivalences. Observe also that there is a fibration

Map∗k(M, BG)→Mapk(M, BG) ev
−→ BG,

where ev evaluates a map at the basepoint of M . Stated in terms of gauge groups,
up to homotopy equivalences, there is a fibration

BG∗k (M)→ BGk(M)→ BG.

Take homology and cohomology with mod-p coefficients. Corollary 1.2 imme-
diately implies that if G is homotopy commutative when localised at p then there
is a coalgebra isomorphism

H∗(BG∗k (M))∼=
( m⊗

i=1

H∗(�G)
)
⊗ H∗(�2

0G)

and an algebra isomorphism

H∗(BG∗k (M))∼=
( m⊗

i=1

H∗(�G)
)
⊗ H∗(�2

0G).

We aim to prove the following:

Theorem 5.1. Let M be a closed simply connected Spin four-manifold and let G
be a simply connected simple compact Lie group whose multiplication is homotopy
commutative when localised at p. Then the composite of coalgebras

m⊗
i=1

H∗(�G)→ H∗(BG∗k (M))→ H∗(BGk(M))

has a left inverse, and the composite of algebras

H∗(BGk(M))→ H∗(BG∗k (M))→
m⊗

i=1

H∗(�G)

has a right inverse.

For example, let G = SU (2), in which case G is homeomorphic to S3 and
H∗(�S3) is well known. This case is of key interest in Donaldson theory and a
major open problem is calculating the mod-p homology of BGk(M). As SU (2) is
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homotopy commutative when localised at primes p ≥ 5, Theorem 5.1 applies for
any such prime, giving significant information about H∗(BGk(M)).

To prove Theorem 5.1, we begin by recalling some general facts about mapping
spaces. Let X1, . . . , Xm and Y be Hausdorff spaces, and let

∐m
i=1 X i be their

disjoint union. Then there is a homeomorphism

Map
( m∐

i=1

X i , Y
)
∼=

m∏
i=1

Map(X i , Y ).

Further, if each of X1, . . . , Xm and Y are pointed, then there is a homeomorphism

Map∗
( m∨

i=1

X i , Y
)
∼=

m∏
i=1

Map∗(X i , Y ).

These two decompositions are compatible in the following sense. There is a quotient
map

q :

m∐
i=1

X i →

m∨
i=1

X i

which identifies the basepoints in each space X i to a common point. So there is an
induced map

q∗ : Map
( m∨

i=1

X i , Y
)
→Map

( m∐
i=1

X i , Y
)
.

The two homeomorphisms above are compatible via a strictly commutative diagram

(8)

Map∗
(∨m

i=1 X i , Y
) incl

//

∼=

��

Map
(∨m

i=1 X i , Y
) q∗

// Map
(∐m

i=1 X i , Y
)

∼=

��∏m
i=1 Map∗(X i , Y )

∏m
i=1 incl

//
∏m

i=1 Map(X i , Y ).

Returning to the case of interest, as in Section 3, if M is any closed simply
connected Spin four-manifold then there is a space N =

(∨m
i=1 S2

)
∪a e4

∈N . The
inclusion

∨m
i=1 S2 b

−→ N induces a commutative diagram

(9)

Map∗(N , BG) //

b∗
��

Map(N , BG)

b∗
��

Map∗
(∨m

i=1 S2, BG
)

// Map
(∨m

i=1 S2, BG
)
.
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Localising at p, the fact that mapping spaces commute with localisation of nilpotent
spaces [Hilton et al. 1975] implies that there is a homotopy commutative diagram

(10)

Map∗(M, BG)(p) //

'

��

Map(M, BG)(p)

'

��

Map∗(N , BG)(p) // Map(N , BG)(p).

Juxtaposing the diagrams (7), (8), (9), and (10) we obtain a p-local homotopy
commutative diagram

BG∗k (M)(p) //

ψ∗

��

BGk(M)(p)

ψ

��

Map∗k(M, BG)(p) //

'

��

Mapk(M, BG)(p)

'

��

Map∗k(N , BG)(p) //

b∗

��

Mapk(N , BG)(p)

b∗

��

Map∗
(∨m

i=1 S2, BG
)
(p)

//

∼=

��

Map
(∨m

i=1 S2, BG
)
(p)

q∗

��

Map
(∐m

i=1 S2, BG
)
(p)

∼=

��∏m
i=1 Map∗(S2, BG)(p)

∏m
i=1 incl

//
∏m

i=1 Map(S2, BG)(p).

By Lemma 4.2, the map b∗ has a right inverse. Lifting this, up to homo-
topy, through the homotopy equivalences BG∗k (M)(p)

ψ∗
−→Map∗k(M, BG)(p)

'
−→

Map∗k(N , BG)(p), we obtain the following:

Lemma 5.2. Let M be a closed simply connected Spin four-manifold and let G be
a simply connected simple compact Lie group whose multiplication is homotopy
commutative when localised at a prime p. Then there is a homotopy commutative
diagram

Map∗k
(∨m

i=1 S2, BG
)
(p)

//

'

))

BG∗k (M)(p) //

��

BGk(M)(p)

��∏m
i=1 Map∗(S2, BG)(p)

∏m
i=1 incl

//
∏m

i=1 Map(S2, BG)(p).

Lemma 5.2 is used to extract information about H∗(BGk(M)) and H∗(BGk(M)).
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Proof of Theorem 5.1. Consider the map Map∗(S2, BG) incl
−→Map(S2, BG) whose

p-localisation appears in the bottom row of the diagram in Lemma 5.2. The
inclusion is the fibre of the evaluation map Map(S2, BG) ev

−→ BG, which sends
a map f : S2

→ BG to f (∗). Also, we have Map∗(S2, BG)=�G. So there is a
fibration

(11) �G→Map(S2, BG) ev
−→ BG.

By (2), the cases when the multiplication on G is homotopy commutative when
localised at p are known. In each such case, H∗(G) is an exterior algebra on odd
degree generators, so by [Borel 1953] H∗(BG) is a polynomial algebra on even
degree generators. Since cohomology is with mod-p coefficients, we can dualise
to see that H∗(BG) is also concentrated in even degrees. Further, by [Bott 1956],
the integral cohomology of �G is concentrated in even degrees, and therefore so is
the mod-p cohomology. Therefore the homology Serre spectral sequence for the
fibration (11) collapses at the E2-term and there are no extension issues. Hence

H∗(Map(S2, BG))∼= H∗(BG)⊗ H∗(�G).

Consequently, taking homology for the diagram in Lemma 5.2, we see that the
composite

m⊗
i=1

H∗(�G)→ H∗(BG∗k (M))→ H∗(BGk(M))

has a left inverse.
Similarly,

H∗(Map(S2, BG))∼= H∗(BG)⊗ H∗(�G)

and the composite

H∗(BGk(M))→ H∗(BG∗k (M))→
m⊗

i=1

H∗(�G)

has a right inverse. �

We now turn to the second application. Let K and L be topological groups,
and let Hom(K , L) be the set of homomorphisms from K to L , topologised as a
subspace of the mapping space Map(K , L). If BK , BL are the classifying spaces
of K and L respectively, there is a natural map

B : Hom(K , L)→Map∗(BK , BL).

This map has been a subject of intense study due to its connections with the
Sullivan conjecture in homotopy theory, to the moduli space of representations in
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algebraic geometry, and to the space of flat connections modulo gauge equivalence
in Yang–Mills theory. Consider the special case

Hom(π1(6g),U (n))→Map∗(Bπ1(6g), BU (n)).

Since the universal cover of 6g is contractible there is a homotopy equivalence
6g ' Bπ1(6g). So up to a homotopy equivalence we may regard the preceding
map as

Hom(π1(6g),U (n))→Map∗(6g, BU (n)).

Ramras [2011, Theorem 3.4] used gauge theoretic methods to show that this map
is an injection on π0 and an isomorphism on πm for m ≤ 2g(n−1)+1. Stabilising
to the infinite unitary group, we obtain a map

Hom(π1(6g),U )→Map∗(6g, BU ),

which is an injection on π0 and an isomorphism on πm for every m ≥ 1. Thus if
HomI (π1(6g),U )) is the component of Hom(π1(6g),U )) containing the identity
map, from Corollary 1.3 we obtain homotopy equivalences

HomI (π1(6g),U ))
'
−→Map∗0(6g, BU ) '−→

( 2g∏
i=1

U
)
×�0U,

which lets one easily identify πm(Hom(π1(6g),U )) for m ≥ 1.
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