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Higher-dimensional residues can be constructed either following Grothen-
dieck–Hartshorne using local cohomology, or following Tate–Beilinson us-
ing Lie algebra homology. We show that there is a natural link: we develop
the Hochschild analogue of the coniveau spectral sequence. The rows of
our spectral sequence look a lot like the Cousin complexes in Hartshorne’s
Residues and duality, which live in the framework of coherent cohomology.
We prove that the complexes agree by an “HKR isomorphism with sup-
ports”. Using the close ties of Hochschild homology to Lie algebra homology,
this yields a direct comparison.
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Introduction

The coniveau spectral sequence and the Gersten complex originally arose in alge-
braic K -theory. But if one replaces in its construction K -theory by Hochschild
homology, everything goes through. Still, it appears that this analogue has not
really been studied much so far (if at all). We discuss it in this paper, building on
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the work of B. Keller [1998b] and P. Balmer [2009].
Let X/k be a Noetherian separated scheme. Write HH x for the Hochschild

spectrum with support in a point x . Our Hochschild–Cousin complex will take the
form

· · · →

∐
x∈X0

HH x
−q(OX,x)→

∐
x∈X1

HH x
−q−1(OX,x)→ · · ·

→

∐
x∈Xn

HH x
−q−n(OX,x)→ · · ·

and appears as the rows in the E1-page of a corresponding Hochschild coniveau
spectral sequence

(0-1) HH E p,q
1 :=

∐
x∈X p

HH x
−p−q(OX,x)⇒ HH−p−q(X).

Some things are different from K -theory: As Hochschild homology does not satisfy
dévissage, one cannot replace the HH x by Hochschild homology of the residue
field.

There is a similar, but much older complex: The coherent cohomology Cousin
complex from Residues and duality [Hartshorne 1966]. It has the form

(0-2) · · · →
∐

x∈X0

Hq
x (X,F)→

∐
x∈X1

Hq+1
x (X,F)→ · · ·

→

∐
x∈Xn

Hq+n
x (X,F)→ · · · ,

where H•x denotes (coherent) local cohomology of a coherent sheaf F with support in
a point x . It also arises as a row in the E1-page of a spectral sequence Cous E p,q

1 (F)⇒

H p+q(X,F). We prove that if X/k is smooth and F := �∗X/k , this complex is
canonically isomorphic to our Hochschild–Cousin complex. We do this by a
Hochschild–Kostant–Rosenberg (HKR) isomorphism with supports:

Theorem (HKR with supports). Let k be a field, R a smooth k-algebra and
t1, . . . , tn a regular sequence. Then there is a canonical isomorphism

H n
(t1,...,tn)(R, �

n+i )−→∼ HH (t1,...,tn)
i (R).

For n = 0, this becomes the classical HKR isomorphism. On the left, H∗I refers to
(coherent) local cohomology. On the right-hand side, HH I

∗
refers to the Hochschild

homology of the category of I -supported perfect complexes.

Although not being spelled out in this form, this is a consequence of the much
more general theory due to Keller [1998b]. We shall need this explicit formulation,
and give a very elementary proof. This will be Proposition 2.0.1. We feel that this
straight-forward extension of the standard HKR isomorphism deserves to be much
more widely known.
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Theorem. Let k be a field and X/k a smooth separated scheme. For every integer q ,
the q-th row on the E1-page of the Hochschild coniveau spectral sequence is
isomorphic to the zeroth row of the E1-page of the coherent cohomology Cousin
coniveau spectral sequence of �−q . That is: For every integer q , there is a canonical
isomorphism of chain complexes

HH E•,q1 −→
∼ Cous E•,01 (�−q).

Entry-wise, this isomorphism is induced from the HKR isomorphism with supports.

This will be Theorem 2.1.3. As all the other rows on the right-hand side turn out
to vanish, one can repackage this claim as follows:

HH E•,•1
∼
−→

Cous E•,•1 (�̃) with �̃ :=
⊕

m

�m
[m].

Theorem. Let k be a field of characteristic zero and X/k a smooth separated
scheme. Then the Hochschild coniveau spectral sequence of line (0-1) degenerates
on the E2-page.

This kind of behavior is exactly the same as for a spectral sequence due to
C. Weibel [1997], which also converges to the Hochschild homology of X , starting
from Weibel E p,q

2 = H p(X,HH−q), where HH−q is Zariski-sheafified Hochschild
homology. However, his spectral sequence is constructed in a different fashion
(hypercohomology spectral sequence) and does not come with a description of the
E1-page as we give it in (0-1).

The Chern character from algebraic K -theory, K → HH , then induces a mor-
phism of coniveau spectral sequences, and by the above comparison to Residues and
duality, to (coherent) local cohomology. On the E1-page, these maps are induced
by pointwise maps:

Definition (Chern character with supports). If X/k is smooth and x ∈ X any scheme
point, then we construct a map (Section 2.1.2)

Km(κ(x))→ H p
x (X, �

p+m)

with p := codimX {x}, inducing maps K E p,q
1 →

Cous E p,0
1 (�−q), where K E p,q

1 is
the usual coniveau spectral sequence for algebraic K -theory, as in [Quillen 1973].

See Section 2.1.2 for the actual definition.
So far, we work in analogy to algebraic K -theory. In the second part of the paper,

we focus on a completely different issue. The coherent Cousin complex, line (0-2),
appears in Residues and duality [Hartshorne 1966] as an injective resolution − and
is usually looked at from a quite different perspective: If X/k is a smooth proper
variety of pure dimension n with f : X → Spec k the structure map, the shriek
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pullback is known concretely: f !Ok ∼=�
n
X/k[n]. Grothendieck duality then stems

from the adjunction f∗� f ! and the counit map Tr f : f∗ f !Ok→ Ok , which induces

Tr f : H n(X, �n
X/k)→ k.

The coherent Cousin complex then provides an injective resolution of �n
X/k ; even

more than that it is a so-called dualizing complex. Although we will not explain
this here, the map Tr f can be unraveled explicitly in terms of (higher) residues.
Tate [1968] and Beilinson [1980] have proposed an approach to residues based on
higher adèles of a scheme. Adèles provide a further resolution of the sheaf �n

X/k
and give rise to a certain Lie homology map H Lie

n+1(−,−)→ k which turns out to
give an explicit description of these residue maps. The duality theory aspect of the
adèles (in dimension > 1) is due to Yekutieli [1992; 1998].

In [Braunling 2018] it was shown that this approach to the residue can also
be rephrased in terms of the Hochschild homology of certain (noncommutative)
algebras defined from the adèles. Along with the first part of the paper, it seems
more than tempting to believe that this should allow us to phrase the Tate–Beilinson
residue in terms of differentials in the Hochschild–Cousin complex. We show that
this is indeed the case:

Theorem (main comparison theorem). The Tate–Beilinson residue in the Lie ho-
mology of adèles [Tate 1968; Beilinson 1980] can be expressed in terms of the
differentials of our Hochschild–Cousin complex: Specifically, the Tate–Beilinson
Lie homology residue symbol

�n
Frac Ln/k→ H Lie

n+1((An)Lie, k)
φBeil
−→ k

(as defined in [Beilinson 1980, §1, Lemma, (b)]) also agrees with

�n
Frac Ln/k→ HHη0

n (Ln)→ HHη0
n (C0)→ HHn(An)

φHH
−→ k.

(See Theorem 5.2.2 for details and notation.)

This statement is intentionally vague since we do not want to introduce the
necessary notation and background on adèles of schemes in this introduction. This
result will be stated in precise form in Section 5.2, along with a review of the adèle
theory. In coarse strokes, we paint the following picture:

coherent Cousin
complex ←→

Hochschild
Cousin complex ←→ adèles of �n

↑ ↑ ↑

local coherent
cohomology

Hochschild homology
with supports

noncommutative
Hochschild homology

↓

Lie homology
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J. Lipman [1987] already had the idea to use Hochschild homology for residues.
However, his construction is very different from ours. He constructs the residue
manually, while we use Keller’s [1999] analogue of the localization sequence in
K -theory, along with the particularly flexible technique for coniveau due to Balmer
[2009], which is even more recent.

Outline. We proceed as follows: In Section 1 we recall the necessary material on
Hochschild homology. In Section 2 we prove the HKR isomorphism with supports.
In Section 3 we give an independent treatment of the Hochschild residue à la
[Braunling 2018]. In Section 4 we provide the necessary material on Tate categories.
These categories provide the crucial bridge to transport Hochschild homology from
a classical geometric to an adèle perspective. In Section 4.4 we develop a relative
Morita theory. If an exact category C happens to be equivalent to a projective
module category, say C−→∼ P f (E) for an algebra E , we will need to understand
how such a presentation changes if we consider a fully exact subcategory C′ ↪→ C,
or a quotient exact category C/C′, provided C′ is left or right s-filtering. This might
be of independent interest. In Section 5 we combine all these tools to establish a
commutative square relating the Beilinson–Tate residue with boundary maps in
Keller’s localization sequence for Hochschild homology.

1. The many definitions of Hochschild homology

Let us quickly survey what we understand as Hochschild homology. There are a
large number of definitions which apply in greater or smaller generality. We will
quickly sketch the transition from the classical definition of Hochschild up to the
definition for dg categories of Keller.

For k a commutative ring and A a flat k-algebra one classically defines a complex
(C•, b) by Ci (A)= A⊗i+1 as

(1-1) b(a0⊗ · · ·⊗ ai )

:=

i−1∑
j=0

(−1) j a0⊗ · · ·⊗ a j a j+1⊗ · · ·⊗ ai + (−1)i ai a0⊗ a1⊗ · · ·⊗ ai−1

and its homology is the Hochschild homology of A. Philosophically, this is conve-
niently viewed as a concrete complex quasi-isomorphic to a certain derived tensor
product, namely

(1-2) C• ∼ A⊗L
A⊗k Aop A,

but it is the former definition which led to Mitchell’s [1972] generalization to
categories: For A a k-linear small category such that all Homk(−,−) are flat
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k-modules, one defines

(1-3) Ci (A) :=
∐

Hom(X i , X0)⊗k Hom(X i−1, X i )⊗k · · · ⊗k Hom(X0, X1),

where the coproduct runs over all (i + 1) tuples of objects in A. A differential b
can be defined by the same formula as before, but this time instead of multiplying
elements of A, one composes the respective morphisms. In order to stress the
analogy with (1-1) the reader might at first sight prefer to use an indexing starting
with Hom(X0, X1)⊗ · · · but this comes with the disadvantage that in composing
X0

a0
→ X1 and X1

a1
→ X2 the composition is a1a0 and not a0a1. Thus, in order to

use the same formula for b, one has to use a reversed numbering.

Remark 1.0.1. If we regard a ring A as a category A with one object “A” and
HomA(A, A) := A, the classical definition of (1-1) literally becomes a special case
of Mitchell’s categorical definition.

However, both constructions are only the “correct” ones in very special cases.
For example, for A a general k-algebra, i.e., not necessarily flat over k, one works
instead with Ci (A) := A• ⊗k · · · ⊗k A•, where A•→ A is a flat resolution of A
and adapts the definition of the differential to deal with dg algebras, as done by
Keller [1998a]. In a similar spirit, for A a k-linear dg category, one replaces the
definition of (1-3) by a version where the complexes Hom(−,−) get replaced by
flat resolutions. This leads to the definition of Keller that we shall also use in the
present paper; the flat case suffices for our purposes:

Definition 1.0.2. Let k be a commutative ring and A a small k-linear dg-flat dg
category. In particular, all

• HomA(X, Y ) are k-flat dg k-modules, and

• the composition

HomA(Y, Z)⊗k HomA(X, Y )→ HomA(X, Z)

is a morphism of dg k-modules.
Then define for homogeneous morphisms (ai , . . . , a0) ∈Ci (A) (as in (1-3))

b(ai , . . . , a0)

:=

i−1∑
j=0

(−1) j (ai , . . . , ai ◦ ai−1, . . . , a0)+ (−1)n+σ (a0 ◦ ai , ai−1, . . . , a1),

where σ = (deg a0)(deg a1+ · · ·+ deg ai−1).

See for example [Keller 1998b, §3.2] or [Keller 1999, §1.3]. The general version
without flatness assumption is constructed in [Keller 1999, §3.9]. We also remind
the reader that for an exact category the category of complexes itself does not reflect
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any datum of the exact structure, so that the derived category of an exact category
E has to be defined as the Verdier quotient DbE := Kb(E)/Acb(E), where Kb(E)

is the triangulated category of bounded complexes in E modulo chain homotopies
and Acb(E) the subcategory of acyclic complexes, subtly depending on the exact
structure. See [Bühler 2010, §10] for a very detailed excellent review.

As is suggested from the derived category of an exact category, the Hochschild
homology of E is then defined as follows:

Definition 1.0.3 [Keller 1999, §1.4]. Let E be a flat k-linear exact category. Then
its Hochschild homology is

HH(E) := Cone(C•Acb(E)−→ C•Cb(E)),

where Cb(E) is the dg category of bounded complexes in E and Acb(E) its dg
subcategory of acyclic complexes.

In the present paper we will mostly be interested in the Hochschild homology
of perfect complexes with support. Let us briefly recall the concept of perfect
complexes, following Thomason and Trobaugh [1990, §2]: Let X be a scheme. A
complex F• of OX -module sheaves is called perfect if it is locally quasi-isomorphic
to a bounded complex of vector bundles. This definition goes back to [SGA 6 1971,
Exposé I].

For f : X→ Y a morphism, the total left derived functor L f ∗ : D−(ModOY )→

D−(ModOX ) of the pullback f ∗ preserves perfection so that there is a pullback
functor f ∗ :Perf(Y )→Perf(X). If f is flat, this functor is literally just the entrywise
pullback of a perfect complex (see [Thomason and Trobaugh 1990, §2.5.1]).

For f : X→ Y a proper and perfect1 morphism of Noetherian schemes, the total
right derived functor R f∗ : D−(ModOX )→ D−(ModOY ) preserves perfection so
that there is a pushforward functor f∗ : Perf(X)→ Perf(Y ); see [Thomason and
Trobaugh 1990, Theorem 2.5.4].

Let Z be a closed subset. We write PerfZ (X) for the category of perfect complexes
on X whose pullback to the open U := X − Z is acyclic. The homological support
supph(F) of a perfect complex F• is the support of the total homology of F•, i.e.,
it is the union of the supports of the sheaves

⋃
i supp Hi (F•).

The category PerfZ (X) sadly does not fit into the framework of exact categories.
According to taste, the reader may view PerfZ (X) (and then Perf(X)= PerfX (X) as
well) as a stable∞-category. Alternatively, it can also be modeled as a Waldhausen
category, i.e., a classical 1-category with quasi-isomorphisms of complexes as weak
equivalences. Using either formalism there is an associated homotopy category,

1E.g., smooth morphisms or regular closed immersions. A general closed immersion need not be
perfect, in particular a general finite morphism need not be perfect. Any finite type morphism to a
smooth scheme is perfect.
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DZ (X) :=Ho(PerfZ (X)), a triangulated category. The dg perspective leads directly
to a very similar definition as before:

Definition 1.0.4 [Keller 1998b, §4.3]. Let X be a scheme and Z a closed subset.
Define the Hochschild homology of X with support in Z by

HH Z (X) := Cone(C•(Ac Perf X)→ C•(PerfZ X)),

where PerfZ X is the category of perfect complexes on X acyclic on X − Z , and
Ac Perf X is the category of all acyclic perfect complexes. We write HH(X) :=
HH X (X) for the variant without support condition.2

Instead of Ac Perf X we could also write Perf∅ X of course; these are literally
the same categories. Finally, we should also discuss a sheaf perspective [Weibel
1996; Swan 1996, §2, end of p. 59]: Let k be a field now. For X a k-scheme one
can consider the presheaf of complexes of k-modules

(1-4) U 7→ C•(OX (U ))

and let C• be its Zariski sheafification (denoted as Ch
∗

in [Weibel 1996, §1]). Note
that OX (U ) is a flat k-algebra, so for C• one can use the classical definition as in
(1-1). Unfortunately, C• is not a quasicoherent sheaf. However, its homology turns
out to be quasicoherent.

Theorem 1.0.5 [Weibel and Geller 1991, Corollary 0.4]. Let X be a k-scheme.

(1) The homology sheaves HHi := Hi (C•) are quasicoherent.

(2) The Zariski sheafification of U 7→ HHi (OX (U )) agrees with the sheaf HHi .

(3) On each affine open U ⊆ X , one has the canonical isomorphisms

H p(U,HHi )∼=

{
0 for p 6= 0,
HHi (OX (U )) for p = 0.

(4) HHi also makes sense as an étale sheaf and H p(X ét ,HHi )∼= H p(XZar,HHi ).

See [Weibel 1996, Proposition 1.2] for a discussion. This is all we need for the
present paper, but much more is known, e.g., cdh descent for X smooth [Cortiñas
et al. 2008b; 2008a].

Example 1.0.6. The Zariski descent and the Hochschild–Kostant–Rosenberg iso-
morphism imply that on a smooth k-scheme the sheaves HHi and �i (:=�i

X/k) are
isomorphic.

2One might be tempted to prefer writing “HHZ ” for the theory with support in Z , but it leads to the
impractical notation HHZ ,i . Also, for homology with closed support (Borel–Moore), the superscript
notation Hc

i or Hcl
i is widespread. Ultimately, it remains a matter of taste, of course.
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Weibel and Swan [1996, Equation 1.1] now define a version of Hochschild
homology of a scheme via

HH Weibel
i (X) := H−i (XZar,C•),

where H∗ refers to the sheaf (hyper)cohomology of the sheaf of complexes. Geller
and Weibel [Weibel and Geller 1991, Theorem 4.1] show that for X affine this
agrees with the classical definition in terms of rings, HH Weibel

i (X)∼= HHi (OX (X)).
More generally, Keller established a beautiful theorem linking this sheaf perspective
with the categorical viewpoint.

Theorem 1.0.7 [Keller 1998b, Theorem 5.2]3. Let k be a field and X a Noetherian
separated k-scheme. Then there is a canonical isomorphism HH Weibel

i (X) −→∼

HHi (X), where HHi (X) refers to the Hochschild homology of perfect complexes
as in Definition 1.0.4.

Keller’s paper also provides details on the switch between two slightly different
definitions of the sheaf hypercohomology underlying Weibel’s definition. Besides
all this, (1-2) suggests an entirely different definition of Hochschild homology of a
scheme, proposed by Swan [1996]. However, it turns out to agree with the previous
definition:

Theorem 1.0.8 [Yekutieli 2002, Proposition 3.3]. Let k be a field and X a finite type
k-scheme. Then there is a quasi-isomorphism of complexes of sheaves C•OX −→

∼

OX ⊗
L
OX×X

OX .

In the same paper, Yekutieli also constructed an alternative complex Ĉ• of
completed Hochschild chains, which is itself quasicoherent, suitably interpreted,
and not just quasicoherent after taking homology. One can also define Hochschild
homology on the derived level, following Căldăraru and Willerton [2010]. Their
paper also shows equivalence to Weibel’s approach.

Finally, we also need a completely different direction of generalization of
Hochschild homology: the case of rings without units. Formulations in terms
of modules or perfect complexes over nonunital rings appear to be very subtle (but
see work of Quillen [1996] and Mahanta [2011]), so we will not enter into the
matter of setting up a categorical viewpoint, and just stick to algebras.

Conventions. We shall reserve the word ring for a commutative, unital associative
algebra. A ring morphism will always preserve the unit of multiplication. This leaves
us with the word algebra whenever we need to work with more general structures.
For us, an associative algebra A will not be assumed to be unital. Likewise, we
do not require morphisms of algebras to preserve a unit, even if it exists. As an

3Keller proves the result on the level of mixed complexes. But Hochschild homology can be
defined in terms of mixed complexes, leading directly to the present formulation.
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example, note that this implies that any one-sided or two-sided ideal I ⊆ A is itself
an associative algebra and the inclusion I ↪→ A a morphism of algebras.

Definition 1.0.9. The algebra A is called

(1) locally left unital (resp. locally right unital) if for every finite subset S ⊆ A
there exists an element eS ∈ S such that eSa = a (resp. aeS = a) for all a ∈ S;

(2) locally biunital if it is both locally left unital and locally right unital.

Remark 1.0.10. Locally biunital does not imply that we can find eS such that
eSa = a = aeS holds for all a in any finite subset S ⊆ A. It makes no statement
about the mutual relation of left- and right-units.

If A is a nonunital associative k-algebra, the definition of the complex as in (1-1)
still makes perfect sense. Nonetheless, it turns out that this is not quite the right
thing to do; a “correction term” is required, as was greatly clarified and resolved by
M. Wodzicki [1989]: One defines the so-called bar complex B• and with the cyclic
permutation operator t , and one forms the bicomplex

Ccorr
i (A) := [Ci (A)

1−t
−→ Bi+1(A)]

(we will not define B• or t here, all details can be found in [Wodzicki 1989, §2,
especially p. 598, l. 5]). This complex turns out to model a well-behaved theory
of Hochschild homology even if A is nonunital. If A is unital, B• turns out to
be acyclic so that we recover the previous definition, but this works even more
generally:

Proposition 1.0.11 [Wodzicki 1989, Corollary 4.5]. If A is locally left unital (or
locally right unital), B• is acyclic, so that the complex C•(A) models Hochschild
homology.

Let us rephrase this: As long as we only work with locally left or right unital
associative algebras, we may just work with the complex in line (1-1) as the
definition of Hochschild homology. And this will be precisely the situation in this
paper, so the reader may feel free to ignore B• and Ccorr

•
entirely.

We need one more ingredient: Suppose A is a (possibly nonunital) associative
algebra and I a two-sided ideal. Then we get an exact sequence of associative
algebras

(1-5) I ↪→ A � A/I.

Theorem 1.0.12 (Wodzicki). Suppose we are given an exact sequence as in (1-5). If
A and I are locally left unital (or locally right unital), then there is a fiber sequence

HH(I )→ HH(A)→ HH(A/I )→+1.
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Proof. This is just a special case of a more general formalism, we refer to the paper
[Wodzicki 1989] for the entire story, or the book [Loday 1992, §1.4]. In the case at
hand we can proceed as follows: One gets a fiber sequence

HH(A, I )→ HH(A)→ HH(A/I )→+1,

where HH(A, I ) refers to relative Hochschild homology, which is just defined
as the cone, so the existence of this sequence is tautological. By Wodzicki’s
excision theorem [Wodzicki 1989, Theorem 3.1], we get an equivalence HH(I )−→∼

HH(A, I ). This is only true when I and A are H -unital (in the sense of [loc. cit.]),
as is guaranteed by our assumptions and [Wodzicki 1989, Corollary 4.5]. �

1.1. Coniveau filtration.

1.1.1. Coherent cohomology with supports. Let us first recall the construction of
the coniveau spectral sequence in sheaf cohomology. We briefly summarize some
facts about local cohomology that we shall need. A detailed presentation has been
given by Hartshorne [1967], in a different format also in [Hartshorne 1966, Chapter
IV] or [Conrad 2000, §3.1].

Let X be a topological space. A subset Z is called locally closed if it can be
written as the intersection of an open and a closed subset. Equivalently, a closed
subset Z ⊆cl V of V ⊆op X an open subset. For a sheaf F one defines a new sheaf

0Z F(U ) := {s ∈ F(U ) | supp s ⊆ Z},

the sheaf of sections with support in Z . Note that if j : Z ↪→ X is an open
subset, 0Z F= j∗ j−1F. Moreover, 0Z is a left exact functor from the category of
abelian group sheaves on X to itself. Right derived functors exist, are denoted by
H

p
Z F := R p0Z F, and called local cohomology sheaves [Hartshorne 1967, §1]. We

write H p
Z (X,F) for the right-derived functors of the functor F 7→ H 0(X, 0Z F).

There is also a product

(1-6) 0Z1F⊗0Z2G→ 0Z1∩Z2(F⊗G)

for sheaves F,G and locally closed subsets Z1, Z2. We shall mainly need the
following property: If Z is a locally closed subset, Z ′ ⊆ Z a closed subset, then
Z − Z ′ is also a locally closed subset in X and there is a distinguished triangle

(1-7) R0Z ′F→ R0Z F→ R0Z−Z ′F→+1

(see [Hartshorne 1967, Lemma 1.8 or Proposition 1.9], also [Hartshorne 1966,
Chapter IV, “Variation 2”, p. 219]). For Z := X and Z ′ ⊆ X a closed subset, this
specializes to R0Z ′F→F→ j∗ j−1F→+1, where j :U ↪→ X denotes the open
immersion of the open complement U := X \ Z ′ (see [Hartshorne 1966, Chapter
IV, “Variation 3”, p. 220]). If X is a scheme, one can say quite a bit more:
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Lemma 1.1.1. Suppose X is a Noetherian scheme and F a quasicoherent sheaf :

(1) The H
p
Z F are also quasicoherent sheaves [Hartshorne 1967, Proposition 2.1].

(2) If Z is a closed subscheme with ideal sheaf IZ , there is a canonical isomor-
phism of quasicoherent sheaves, functorial in F [Hartshorne 1967, Theo-
rem 2.8],

(1-8) colim
−−−→

` Ext p
OX
(OX/I

`
Z ,F)

∼
−→H

p
Z F.

Lemma 1.1.2 (dual “dimension axiom”). If R is a ring and I = ( f1, . . . , fr ), then
for every R-module M , we have H p

I (R,M)= 0 for p > r .

See for example [Iyengar et al. 2007, Corollary 7.14]. We will frequently use
the following property, often allowing us to reduce to local rings:

Lemma 1.1.3 (Excision [Hartshorne 1967, Proposition 1.3]). Let Z be locally
closed in X , V ⊆ X open so that Z ⊆V ⊆ X. Then there is a canonical isomorphism
H p

Z (X,F) −→∼ H p
Z (V,F |V ), induced by the pullback of sections along the open

immersion.

Lemma 1.1.4 [Hartshorne 1967, Proposition 5.9]. Let R be a Noetherian ring,
I ′ ⊆ I ideals and M a finitely generated R-module. Then there are canonical
isomorphisms H p

I (Spec R,M) −→∼ H p
Î
(Spec R̂, M̂) |R , where (−̂) in both cases

refers to the I ′-adic completion, so that H p
Î
(M̂) is an R̂-module.

If x is a (not necessarily closed) point of the scheme X , we write

H i
x(X,F) := colimZ H i

Z (X,F),

where Z runs through all locally closed subsets of X which contain the point x ,
directed towards smaller sets. Equivalently, let Z run through all locally closed
subsets of X such that

x ∈ Z ⊆ {x},

or equivalently running through all open neighborhoods of x inside (and with respect
to the subspace topology of) the closed subscheme {x}.

Next, one builds the Cousin complex in coherent cohomology. Let Z p denote a
closed subset of X with codimX Z p

≥ p. One can read the colimit (under inclusion)
under all such

(1-9) Fp H i (X,F) := colim
−−−→

Z p

im(H i
Z p(X,F)→ H i (X,F)),

as a filtration of the cohomology of the sheaf F. Taking the underlying filtered
complex spectral sequence, one arrives at the “Cousin coniveau spectral sequence”,
due to Grothendieck:
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Proposition 1.1.5 [Hartshorne 1966, Chapter IV]. This filtration induces a conver-
gent spectral sequence with

Cous E p,q
1 (F) :=

∐
x∈X p

H p+q
x (X,F)⇒ H p+q(X,F).

The rows of the E1-page read

(1-10) 0→
∐

x∈X0

Hq
x (X,F)

d
−→

∐
x∈X1

Hq+1
x (X,F)

d
−→ · · ·

d
−→

∐
x∈Xn

Hq+n
x (X,F)→ 0

(this is the q-th row, concentrated columnwise in the range 0≤ p≤n for n :=dim X ).
The differential d agrees with the upward arrow in the following diagram (1-11):
We get a long exact sequence from (1-7) and replicating suitable excerpts twice,
we get the rows of the diagram

(1-11)

H i+1
Z p+2(X,F) // H i+1

Z p+1(X,F) //
∐

x∈X p+1 H i+1
x (X,F)

∂
// H i+2

Z p+2(X,F)

H i
Z p+1(X,F) // H i

Z p (X,F) //
∐

x∈X p H i
x (X,F)

∂
//

OO

H i+1
Z p+1(X,F)

kk

The leftward diagonal arrow is just the identity morphism. Define the upward arrow
to be the composition. It is precisely the map d . We refer to [Hartshorne 1966] for
more details. For local Cohen–Macaulay schemes we are in the pleasant situation
that the complex in (1-10) is exact. More precisely:

Proposition 1.1.6. Suppose X = Spec R for R a Noetherian Cohen–Macaulay
local ring. Then the sequence in (1-10) is exact. In particular, if we read its entries
as sheaves, i.e.,

U 7→
∐

x∈U p

H p+q
x (X,OX ) (for U ⊆ X Zariski open),

the complex in (1-10) provides a flasque resolution of the sheaf U 7→Hq(U,OX ).

This is a special case of [Hartshorne 1966, Chapter IV, Proposition 2.6], in a
mild variation of [Hartshorne 1966, Chapter IV, Example on p. 239].

Corollary 1.1.7. For X Noetherian and Cohen–Macaulay, suppose F is a coherent
sheaf. Then there is a flasque resolution of the sheaf F, namely

0→ F→
∐

x∈X0

H 0
x (X,F)→ · · · →

∐
x∈Xn

H n
x (X,F)→ 0.
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This is known as the Cousin resolution of F. If X is Gorenstein and F locally free,
this is an injective resolution of F.

Since we shall mostly work with smooth schemes, the weaker Gorenstein and
Cohen–Macaulay conditions are usually implied. In the literature one often allows
more general filtrations than those by codimension, but we have no use for this
increase in flexibility; see however [Conrad 2000, Chapter III] or [Balmer 2009].

1.1.2. Hochschild homology with supports. We now repeat the story of Section 1.1.1
for the Hochschild homology of categories of perfect complexes with support; see
Section 1 for the definition. We assume that the scheme X is Noetherian and
separated.

In principle, we shall do precisely the same constructions, but the inner machinery
is of quite a different type. This has not so much to do with perfect complexes, but
rather with a very different homological perspective. Whereas we based the last
section on the distinguished triangle

(1-12) R0Z ′F→ R0Z F→ R0Z−Z ′F→+1,

regarding just the cohomology with supports of coherent sheaves, we will now
replace this by the localization sequence of categories

PerfZ ′ X→ PerfZ X→ PerfZ−Z ′ X→+1.

Just as the above sequence induces a long exact sequence in cohomology, the latter
induces a long exact sequence in the Hochschild homology of these categories (and
in fact, just as well for their algebraic K -theory, cyclic homology, etc.).

So far HH Z was only defined for Z closed. Using the above sequence, we can
define HH Z for Z locally closed in X by writing it as Z = Z2− Z1 with Z1, Z2

closed in X . If x is a (not necessarily closed) point of the scheme X , we write

HH x(X) := colimZ HH Z (X),

where Z runs through all locally closed subsets of X which contain the point x ,
directed towards smaller sets.

The constructions of this section play a fundamental and classical rôle in alge-
braic K -theory and originate essentially from Quillen [1973]. We adapt them to
Hochschild homology, however. In order to do so, we use a particularly strong
variant of the construction due to Balmer [2009].

Define the full subcategory of perfect complexes of homological support ≥ p by

PerfZ p(X) := {F• ∈ Perf(X) | codimX (supph F)≥ p}.

As before, this can either be viewed as a stable ∞-category or a Waldhausen
category with quasi-isomorphisms as weak equivalences. The analogue of the
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filtration in (1-9) is now the filtration

(1-13) · · · ↪→ PerfZ2(X) ↪→ PerfZ1(X) ↪→ PerfZ0(X)= Perf(X).

Then

(1-14) PerfZ (X)→ Perf(X)→ Perf(U )

is an exact sequence of stable∞-categories, known as the localization sequence.
There is also a product

(1-15)
PerfZ1(X)×PerfZ2(X)→ PerfZ1∩Z2(X),

F•⊗G• 7→ (F⊗L G)•

sending bounded complexes of perfect sheaves to their derived tensor product. By
supp(F ⊗ G) = supp F ∩ supp G, the tensor product of perfect complexes with
supports in Zi (for i = 1, 2) is a biexact functor to perfect complexes with support
in Z1∩ Z2. As before, one can construct a convergent spectral sequence, essentially
due to P. Balmer [2009], namely we obtain the following:

Proposition 1.1.8. The filtration in (1-13) gives rise to a convergent spectral se-
quence with

HHE p,q
1 :=

∐
x∈X p

HH x
−p−q(OX,x)⇒ HH−p−q(X).

The rows of the E1-page read

(1-16) · · · →
∐

x∈X0

HH x
−q(OX,x)

d
−→

∐
x∈X1

HH x
−q−1(OX,x)

d
−→ · · ·

d
−→

∐
x∈Xn

HH x
−q−n(OX,x)→ · · ·

(this is the q-th row, concentrated columnwise in the range 0≤ p≤n for n :=dim X ).
The differential d agrees with the upward arrow in the following Diagram (1-17):
Replicating copies of the long exact sequence in Hochschild homology associated
to localizations as in (1-14), but adapted to the filtration PerfZ p(X), we arrive at
the diagram

(1-17)

HH Z p+2

i−1 (X) // HH Z p+1

i−1 (X) //
∐

x∈X p+1 HH x
i−1(OX,x )

∂
// HH Z p+2

i−2 (X)

HH Z p+1

i (X) // HH Z p

i (X) //
∐

x∈X p HH x
i (OX,x )

∂
//

OO

HH Z p+1

i−1 (X)

kk

imitating Diagram (1-11) that we had constructed before.
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Remark 1.1.9 (failure of A1-invariance). The complex in line (1-16) is the analogue
of the Gersten complex in algebraic K -theory. In the K -theory of coherent sheaves,
one can replace the analogous K -theory groups with support by the K -theory of the
residue field by dévissage. This is why the K -theory Gersten complex is usually
written down in the simpler fashion which does not mention any conditions on
support. One of the starting points of this paper was: How can one formulate a
Gersten complex for Hochschild homology? There is a general device for producing
Gersten complexes for A1-invariant Zariski sheaves with transfers [Voevodsky 2000,
Theorem 4.37] as well as a coniveau spectral sequence [Mazza et al. 2006, Remark
24.12]. However, Hochschild homology is not A1-invariant, so these tools do
not apply in our context. One could still use the technology of [Colliot-Thélène
et al. 1997], which does not depend on A1-invariance in any form. Instead, we
use Balmer’s triangulated technique, which also does not hinge on A1-invariance
[Balmer 2009, Theorem 2].

Proof. We leave it to the reader to fill in the details of the construction as described.
Alternatively, the reader can just follow the argument of Balmer [2009, Theorem 2]
and replace K -theory everywhere with Hochschild homology: Namely, from the
filtration of (1-13) we get an exact sequence of dg categories

PerfZ p+1(X)→ PerfZ p(X)→ PerfZ p(X)/PerfZ p+1(X)

and thanks to a strikingly general result of Balmer [2007, Theorem 3.24] the
idempotent completion of the right-most category can be identified as

(1-18) (PerfZ p(X)/PerfZ p+1(X))ic
−→∼

∐
x∈X p

Perfx(OX,x).

In Balmer’s paper [2009, Theorem 2] this argument is spelled out as an exact
sequence of triangulated categories with Waldhausen models, whereas we have
spelled it out as an exact sequence of dg categories. The exactness of either
viewpoint is equivalent to the other, see [Blumberg et al. 2013, Proposition 5.15].
The rôle of Schlichting’s localization theorem is taken by Keller’s localization
theorem [1999] (a very clean and brief statement is also found in [Keller 1998b,
§5.5, Theorem]). The convergence of the spectral sequence follows readily from
the fact that its horizontal support is bounded since X p

=∅ for p /∈ [0, dim X ]. �

Remark 1.1.10. For later reference, let us make the functor in line (1-18) more
precise: For each point x ∈ X p, this is the pullback along the flat morphism
jx : Spec OX,x ↪→ X . Balmer [2007, §4.1] shows that this induces the relevant
equivalence. In fact, he shows more: Perfect complexes can be regarded as a tensor
triangulated category and under fairly weak assumptions the points of its Balmer
spectrum (i.e., the prime ⊗-ideals, see [Balmer 2005]) correspond canonically to
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the points of the scheme X . If P(x) denotes the prime ⊗-ideal of this point, one
gets an exact sequence of triangulated categories

P(x)→ Perf(X)
j∗
−→ Perf(OX,x).

See [Balmer 2007].

1.2. Hochschild homology of different categories. As for K -theory, one could
consider the Hochschild homology not just of perfect complexes (which is the
standard choice, because it is best-behaved for most applications), but also of coher-
ent sheaves CohZ (X) with support. Both viewpoints are related by the following
standard fact:

Proposition 1.2.1. If X is a regular finite-dimensional Noetherian separated scheme,
there are triangulated equivalences

Perf(X)−→∼ Db
coh(Mod(OX ))

∼
←− Db(Coh(X)),

where the middle term is the bounded derived category of OX -module sheaves
whose cohomology are coherent sheaves.

This was proven in [SGA 6 1971, Exposé I]; see also [Thomason and Trobaugh
1990, §3]. The converse is also true: If the first arrow is a triangle equivalence, X
must have been regular [Lunts and Schnürer 2016, Proposition 2.1]. In analogy to
(1-14) we have a localization sequence in Hochschild homology, but for coherent
sheaves, induced from the exact sequence of abelian categories

CohZ (X)→ Coh(X)→ Coh(U ),

inducing an exact sequence of stable∞-categories. If X is regular, so is U , and
since this exact sequence determines the left-hand side term CohZ (X), it follows
that CohZ (X)' PerfZ (X). In general, [Thomason and Trobaugh 1990, §3] is an
excellent reference for this type of material.

Corollary 1.2.2. If X is a regular Noetherian scheme, it does not make a difference
whether we carry out the constructions of Section 1.1.2 for perfect complexes with
support, or coherent sheaves with support. The results are canonically isomorphic.

Remark 1.2.3. As algebraic K -theory satisfies dévissage, one obtains an equiva-
lence K (Coh(Z))−→∼ K (CohZ (X)) for X Noetherian. The Hochschild analogue

HH(Coh(Z))
?
−→ HH(CohZ (X))

is false. The issue is not on the level of categories, but rather that Hochschild
homology does not satisfy dévissage. The failure of dévissage was originally
discovered by Keller [1999, §1.10].
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Proposition 1.2.4 (Thomason). There is a fully faithful triangular functor

Db VB(X)→ Perf(X)

from the bounded derived category of vector bundles on X to perfect complexes.
If X has an ample family of line bundles, this is an equivalence of triangulated
categories.

See [Thomason and Trobaugh 1990, §3].

1.3. Flat pullback functoriality. Next, we want to study the functoriality of the
coniveau spectral sequences under flat morphisms. There is the standard pullback of
differential forms and moreover the pullback of perfect complexes f ∗ : Perf(Y )→
Perf(X), defined as the total left-derived functor of the pullback of complexes. If f
is flat, this literally sends a strictly perfect complex F• to f ∗F• = f −1F•⊗OY OX .

Lemma 1.3.1. Suppose k is a field. Let X, Y be smooth k-schemes and f : X→ Y
any morphism.

(1) If X, Y are affine, the induced pullbacks induce a commutative square

�i
Y

//

f ∗

��

HHi Perf(Y )

f ∗

��

�i
X

// HHi Perf(X)

with the horizontal arrows the Hochschild–Kostant–Rosenberg (“HKR”) iso-
morphisms; see Section 2 for a reminder on the HKR isomorphism.

(2) For X, Y not necessarily affine, the pullbacks of the Zariski sheafifications

0(Y, �i ) //

f ∗

��

0(Y,HHi )

f ∗

��

0(X, �i ) // 0(X,HHi )

induce a commutative square.

In the case of a flat morphism, we can describe the induced morphisms on the
respective spectral sequences in an explicit fashion.

Proposition 1.3.2 (Flat pullbacks). Let f : X → Y be a flat morphism between
Noetherian schemes.

(1) The pullback of differential forms induces a morphism of spectral sequences

f ∗ : Cous E p,q
r (Y, �n)→ Cous E p,q

r (X, �n).
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On the E1-page this map unwinds as follows: Given x ∈ X p, y ∈ Y p the map
between the respective summands is zero if f (x) 6= y and the canonical map
H p+q

y (OY,y, �
n)→ H p+q

x (OX,x , �
n) otherwise.

(2) The pullback f ∗ : Perf(Y ) → Perf(X) is an exact functor and induces a
morphism of spectral sequences, which we shall also denote by

f ∗ : HH E p,q
r (Y )→ HH E p,q

r (X).

On the E1-page this map unwinds as follows: Given x ∈ X p, y ∈ Y p the map
between the respective summands is zero if f (x) 6= y and the canonical map
HH y
−p−q(OY,y)→ HH x

−p−q(OX,x) otherwise.

(3) In either case for a given y ∈ Y p we have x ∈ X p
∩ f −1(y) exactly if x is

the generic point of an irreducible component of the scheme-theoretic fiber
f −1(y). In particular, for any given y ∈ Y p there are only finitely many such.

Proof. Follow [Sherman 1979, Proposition 1.2], which is written for K -theory, but
can easily be adapted. �

2. Hochschild–Kostant–Rosenberg isomorphism with supports

This section will be devoted to a crucial comparison result: We will show that a
certain excerpt of the long exact sequence in relative local homology, i.e., coming
from (1-7), is canonically isomorphic to a matching excerpt of the localization
sequence in Hochschild homology. This is heavily inspired by Keller’s beautiful
paper [1998b]. The main consequence is that the boundary maps of these two
sequences, even though they originate from quite different sources, actually agree.

Let us briefly recall that if R is a smooth k-algebra, the Hochschild–Kostant–
Rosenberg map

(2-1) φ∗,0 :�
∗

R/k→ HH∗(R),

f0d f1 ∧ · · · ∧ d fn 7→
∑
π∈Sn+1

sgn(π) fπ(0)⊗ · · ·⊗ fπ(n)

induces an isomorphism of graded algebras — this is the classical Hochschild–
Kostant–Rosenberg isomorphism [Loday 1992, Theorem 3.4.4]. We obtain the
following isomorphisms as a trivial consequence:

H 0(R, �i )
ψi,0
−→
'
�i

R/k
φi,0
−→
'

HHi (R).

Here, ψi,0 denotes the tautological identification (we are in the affine situation).
The first part of the following proposition can be seen as a generalization of this fact
to Hochschild homology with support in a regularly embedded closed subscheme.
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Proposition 2.0.1 (HKR with support). Let k be a field, R a smooth k-algebra and
t1, . . . , tn a regular sequence.

(1) (Isomorphisms) There are canonical isomorphisms

(2-2) φi,n ◦ψi,n : H n
(t1,...,tn)(R, �

n+i )→ HH (t1,...,tn)
i (R),

functorial in k-algebra morphisms R → R′ sending t1, . . . , tn to a regular
sequence.

(2) (Boundary maps) The following diagram commutes:

(2-3)

0 // HH (t1,...,tn)
i (R) // HH (t1,...,tn)

i (R[t−1
n+1])

∂
// HH (t1,...,tn+1)

i−1 (R) // 0

0 // H n
(t1,...,tn)

(R, �n+i ) //

∼=

OO

H n
(t1,...,tn)

(R[t−1
n+1], �

n+i )
∂
//

∼=

OO

H n+1
(t1,...,tn+1)

(R, �n+i ) //

∼=

OO

0

where the top row is an excerpt of the localization sequence for Hochschild
homology, the bottom row of the long exact relative local homology sequence
comes from (1-7) and the upward arrows are the isomorphisms φi,n ◦ψi,n . In
particular, these excerpts of the long exact sequences are short exact.

(3) (Products) Suppose t1, . . . , tn and t ′1, . . . , t ′m are regular sequences such that
their concatenation is also a regular sequence (this is also known as “transver-
sally intersecting”). The isomorphisms in (1) respect the natural product
structures, i.e., of (1-6) and (1-15), so that the diagram

H n
(t1,...,tn)(R, �

n+i )⊗ H m
(t ′1,...,t

′
m)
(R, �m+ j ) //

∼=

��

H n+m
(t1,...,tn,t ′1,...,t

′
m)
(R, �n+m+i+ j )

∼=

��

HH (t1,...,tn)
i (R)⊗ HH

(t ′1,...,t
′
m)

j (R) // HH
(t1,...,tn,t ′1,...,t

′
m)

i+ j (R)

commutes.

(4) Part (2) remains true if one replaces the usual (perfect complex) localization
sequence for Hochschild homology by the localization sequence based on
coherent sheaves with support; see Section 1.2.

Proof. This is, albeit not explicitly, a consequence of Keller [1998b, §4–§5] (who
phrases it for mixed complexes à la Kassel, but this clearly implies the Hochschild
case). One can, however, also prove the above claims rather directly by an induction
on codimension, and we will give this alternative proof: It naturally splits into two
parts, establishing first the isomorphisms ψ (this is classical, we just unwind it
explicitly to be sure that all maps agree), and then the isomorphisms φ later, so we
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really want to establish the isomorphisms

(2-4) H n
(t1,...,tn)(R, �

n+i )
ψi,n
−→

�n+i
R[t−1

1 ,...,t−1
n ]/k∑n

j=1�
n+i
R[t−1

1 ,...,t̂−1
j ,...,t−1

n ]/k

φi,n
−→ HH (t1,...,tn)

i (R),

which is a little more detailed than (2-2). Hence, we first focus entirely on estab-
lishing for all i, n, the commutative diagrams:

(2-5)

�n+i
R[t−1

1 ,...,t−1
n ]/k∑n

j=1 �
n+i

R[t−1
1 ,...,t̂−1

j ,...,t−1
n ]/k

//

�n+i
R[t−1

1 ,...,t−1
n ,t−1

n+1]/k∑n
j=1 �

n+i

R[t−1
1 ,...,t̂−1

j ,...,t−1
n ,t−1

n+1]/k

quot
//

�n+i
R[t−1

1 ,...,t−1
n+1]/k∑n+1

j=1 �
n+i

R[t−1
1 ,...,t̂−1

j ,...,t−1
n+1]/k

H n
(t1,...,tn)

(R, �n+i ) //

∼=

OO

H n
(t1,...,tn)

(R[t−1
n+1], �

n+i )
∂
//

∼=

OO

H n+1
(t1,...,tn+1)

(R, �n+i )

∼=

OO

We do this by induction on n. We handle the case n= 0 first: We have H 0(R, �i )∼=

�i
R/k , which settles the entire left square (the denominator sum over j = 1, . . . , n

is void). The long exact sequence from (1-7) tells us that

H 0
(t1)(R, �

i )→ H 0(R, �i )→ H 0(R[t−1
1 ], �

i )→ H 1
(t1)(R, �

i )→ H 1(R, �i )

is exact. Evaluation of the individual terms yields the exact sequence

0→�i
R/k→�i

R[t−1
1 ]/k
→ H 1

(t1)(R, �
i )→ 0,

since H 0
(t1)(R, �

i )= 0 as �i has no sections annihilated by t1 (it is a free module),
and H 1(R, �i )=0 since Spec R is affine, so there is no higher coherent cohomology.
This settles the bottom row of the diagram. The upper-right term fits by direct
inspection.

Suppose the case n is settled. The long exact sequence from (1-7) tells us that

(2-6) · · · → H n
(t1,...,tn+1)

(R, �n+i )
(∗)
→ H n

(t1,...,tn)(R, �
n+i )

→ H n
(t1,...,tn)(R[t

−1
n+1], �

n+i )→ H n+1
(t1,...,tn+1)

(R, �n+i ) · · ·

is exact. The two middle terms by induction hypothesis identify with

(2-7)
�n+i

R[t−1
1 ,...,t−1

n ]/k∑n
j=1�

n+i
R[t−1

1 ,...,t̂−1
j ,...,t−1

n ]/k

α
−→

�n+i
R[t−1

1 ,...,t−1
n+1]/k∑n

j=1�
n+i
R[t−1

1 ,...,t̂−1
j ,...,t−1

n+1]/k

,

which is injective since we invert only nonzero divisors (and the module of differ-
ential forms is free). Thus, the map (∗) must be the zero map. The next term on
the right in line (2-6) would be H n+1

(t1,...,tn)(R, �
n+i ), which is zero since the ideal is

generated by just n elements (Lemma 1.1.2). This proves that the bottom row in
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(2-3) is short exact, and as a result its third term is just the quotient of the map in
(2-7), thus establishing Diagram (2-5). Now take the upward isomorphism on the
right as the definition for

ψi−1,n+1 : H n+1
(t1,...,tn+1)

(R, �n+i )→

�n+i
R[t−1

1 ,...,t−1
n+1]/k∑n+1

j=1�
n+i
R[t−1

1 ,...,t̂−1
j ,...,t−1

n+1]/k

,

establishing the isomorphism ψi−1,n+1 in the first part of the claim (note that i was
arbitrary all along, so it is no problem that we constructed ψi−1,n+1 on the basis of
ψi,n). From now on we can assume to have all ψ−,− and Diagrams (2-5) available
(for all i and n).

Next, we employ the localization sequence for the corresponding categories of
perfect complexes with support, giving the long exact sequence

(2-8) · · · → HH (t1,...,tn+1)

i (R)→ HH (t1,...,tn)
i (R)

→ HH (t1,...,tn)
i (R[t−1

n+1])
∂
→ HH (t1,...,tn+1)

i−1 (R)→ · · ·

We start a new induction, again along n. For n = 0 this sequence reads

· · · → HH (t1)
i (R)→ HHi (R)→ HHi (R[t−1

1 ])
∂
→ HH (t1)

i−1(R)→ · · ·

and via the Hochschild–Kostant–Rosenberg isomorphism identifies with

· · ·→ HH (t1)
i (R)

β
→�i

R/k
α
→�i

R[t−1
1 ]/k

∂
→ HH (t1)

i−1(R)
β
→�i−1

R/k
α
→�i−1

R[t−1
1 ]/k

∂
→· · ·

The maps denoted by α in the localization sequence are induced from the pullback
of a perfect complex to the open along Spec R[t−1

1 ] ↪→ Spec R, and are known to
correspond on differential forms to the same: the pullback to the open. Thus, the
morphisms α are injective and thus the maps denoted by β must be zero maps. This
settles the exactness of the top row in Diagram (2-3) for n = 0. In fact, by direct
inspection of the maps, it establishes the commutativity of the entire diagram. Now
suppose the case n is settled. Using the induction hypothesis we can identify the
middle bit of (2-8) with the map of (2-7). This yields the identification

· · · → HH (t1,...,tn+1)

i (R)
β
→

�n+i
R[t−1

1 ,...,t−1
n ]/k∑n

j=1�
n+i
R[t−1

1 ,...,t̂−1
j ,...,t−1

n ]/k

· · ·
α
→

�n+i
R[t−1

1 ,...,t−1
n ,t−1

n+1]/k∑n
j=1�

n+i
R[t−1

1 ,...,t̂−1
j ,...,t−1

n ,t−1
n+1]/k

∂
→ HH (t1,...,tn+1)

i−1 (R)
β
→ · · ·
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and again the injectivity of α (it is the same map as in (2-7)) implies that the maps β
must be zero. This settles the exactness of the top row and the commutativity of
diagram (2-3) in general. Patching it to the diagrams (2-5) of the first part of the
proof finishes the argument.

It remains to prove (3). The product is induced in local cohomology from (1-6),
composed with the product of the exterior algebra on 1-forms, i.e.,

0Z1�
i
⊗0Z2�

j
→ 0Z1∩Z2(�

i
⊗� j )→ 0Z1∩Z2(�

i+ j );

and in Hochschild homology from the biexact tensor functor

PerfZ1 X ×PerfZ2 X→ PerfZ1∩Z2 X.

The compatibility of products for n = m = 0 follows directly from the classical
HKR isomorphism in (2-1). Consider the commutative diagram of (2-3) for n = 0.
We see that both upward arrows respect the product, and the horizontal arrows (i.e.,
pullback to an open subscheme) respect the product as well. We see that a product
with a term in H 1 can be computed by lifting it along ∂ to H 0 and computing
the product there and mapping it back to H 1 (e.g., in the middle term of (2-4)).
This deduces the claim for all products H i

⊗ H j with i, j ≤ 1 from the H 0-case.
With the same argument, we lift elements along ∂ from H n to H n−1, compute the
products there in order to inductively prove the claim for all products H i

⊗ H j

with i, j ≤ n once it is proven for all i, j ≤ n − 1. For (4) it suffices to invoke
Corollary 1.2.2; everything carries over verbatim. �

2.1. The E1-pages. We can use the results of the previous section in order to
compare the different coniveau spectral sequences from Section 1.1. We need some
basic facts regarding the vanishing of Hochschild or local cohomology groups for
local rings:

Proposition 2.1.1. Let k be a field and (R,m) an essentially smooth local k-algebra
of dimension n. Then

HHm
i (R)=


0 for i > 0,
H n
m(R, �

n+i ) for − n ≤ i ≤ 0,
0 for i <−n,

and if M is a finitely generated R-module,

H p
m(R,M)=

{
HomR(M, �n)∨ for p = n,
0 for p 6= n,

where (−)∨ := HomR(−, E) denotes the Matlis dual (for E some injective hull of
κ(p)= R/m as an R-module).
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Proof. See [Iyengar et al. 2007] for background. Let t1, . . . , tn be a regular sequence,
so that m= (t1, . . . , tn). By Proposition 2.0.1 and because �1 is free of rank n, we
have

HHm
i (R)∼= H n

m(R, �
n+i )∼= H n

m(R, R)⊗�n+i .

Since �n+i is zero for i > 0, and similarly for i <−n, we immediately get the first
claim. Next, by (the simplest form of) local duality we have

H p
(t1,...,tn)(R,M)∼=

{
HomR(M, ωR)

∨ for p = n,
0 for p 6= n,

where M is an arbitrary finitely generated R-module and ωR a canonical module
over k. Since R is a smooth k-algebra, ωR :=�

n is a canonical module, and so we
get the second claim. �

Let us compare the E1-pages of the two different spectral sequences. They are
fairly different. For the coherent Cousin coniveau spectral sequence, it is supported
in the first quadrant and has the following shape:

q
...

2
∐

x∈X0 H 2
x (�

n)
. . .

1
∐

x∈X0 H 1
x (�

n) →
∐

x∈X1 H 2
x (�

n) →
∐

x∈X2 H 3
x (�

n)

0
∐

x∈X0 H 0
x (�

n) →
∐

x∈X1 H 1
x (�

n) →
∐

x∈X2 H 2
x (�

n) → · · ·

0 1 2 p

We have H p
x (X, �n)= H p

x (OX,x , �
n) by excision, Lemma 1.1.3, and since

dim(OX,x)= codimX (x),

Proposition 2.1.1 implies that the groups on this E1-page vanish unless the coho-
mological degree matches the codimension of the point in question. However, this
is only the case for the q = 0 row. We are left with the following E1-page:

q
...

1 0 → 0
. . .

0
∐

x∈X0 H 0
x (�

n) →
∐

x∈X1 H 1
x (�

n) →
∐

x∈X2 H 2
x (�

n) → · · ·

0 1 2 p

Thus, it collapses to a single row already on the E1-page. As it converges to
H p+q(X, �n), we reobtain a special case of Corollary 1.1.7:

Corollary 2.1.2. If X/k is smooth separated, there are canonical isomorphisms

H p(X, �n)∼= H p(X,Cous•(�n)),
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coming from the E1-page degeneration of the coherent Cousin coniveau spectral
sequence.

Now let us compare these results to the Hochschild coniveau spectral sequence.
It is supported in the first and fourth quadrant:

q
...

1
∐

x∈X0 HH x
−1(X)

0
∐

x∈X0 HH x
0 (X) →

∐
x∈X1 HH x

−1(X) →
. . .

−1
∐

x∈X0 HH x
1 (X) →

∐
x∈X1 HH x

0 (X) →
∐

x∈X2 HH x
−1(X)

−2
∐

x∈X0 HH x
2 (X) →

∐
x∈X1 HH x

1 (X) →
∐

x∈X2 HH x
0 (X) → · · ·

...
...

...
...

...

0 1 2 p

If we make use of our HKR theorem with supports, this can be rephrased in terms
of local cohomology groups:

q
...

...

1 0 0 0

0
∐

x∈X0 H 0
x (�

0) →
∐

x∈X1 H 1
x (�

0) →
. . .

−1
∐

x∈X0 H 0
x (�

1) →
∐

x∈X1 H 1
x (�

1) →
∐

x∈X2 H 2
x (�

1)

−2
∐

x∈X0 H 0
x (�

2) →
∐

x∈X1 H 1
x (�

2) →
∐

x∈X2 H 2
x (�

2) → · · ·
...

...
...

...
...

0 1 2 p

In particular, this interpretation reveals that we are actually facing a spectral sequence
which is supported exclusively in the fourth quadrant. So far, this leaves open how
the HKR isomorphism with supports interacts with the rightward arrows. We will
rectify this now.

Theorem 2.1.3 (row-by-row comparison). Let k be a field and X/k a smooth
separated scheme. The (−q)-th row on the E1-page of the Hochschild coniveau
spectral sequence is isomorphic to the zeroth row of the E1-page of the coherent
Cousin coniveau spectral sequence of �q . That is: For every integer q, there is a
canonical isomorphism of chain complexes

HHE•,−q
1 −→∼

Cous E•,01 (�q).

Entry-wise, this isomorphism is induced from the HKR isomorphism with supports.
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Proof. The idea is the following: From Proposition 2.0.1 we already know that if
U is a smooth affine k-scheme and Z a closed subscheme, defined by a regular
element f ∈ O(U ), the boundary maps in Hochschild homology with supports, resp.
local cohomology, are compatible. Thus, in order to prove this claim, we need to
show that the evaluation of the differential d on the respective E1-pages can be
reduced to evaluating such boundary maps.

To carry this out, recall that the equivalence in line (1-18) is induced from
the pullback jx : Spec OX,x ↪→ X (Remark 1.1.10). For every open subscheme
neighborhood U ⊆ X containing x ∈ X , we get a canonical factorization of j∗ as

(2-9) Perf(X)→ Perf(U )→ Perf(OX,x).

Each perfect complex on Spec OX,x comes from all sufficiently small open sub-
schemes U 3 x , and they become isomorphic if and only if this already happens
on a sufficiently small open U . See [Balmer 2007, §4.1, especially p. 1247] for
a discussion of this. Suppose Z [0] ⊇ Z [1] ⊇ · · · are closed subsets of X such that
codimX (Z [p])≥ p. Then we get a filtration

· · · ↪→ PerfZ [2](X) ↪→ PerfZ [1](X) ↪→ PerfZ [0](X)= Perf(X),

analogous to the one in (1-13). There is a partial order on the set of all such
filtrations Z [0]⊇ Z [1]⊇ · · · , where Z ′≥ Z if and only if Z ′[p]⊇ Z [p] holds for all p.
We may form a spectral sequence based on this filtration, as above. We will not have
an analogue of (1-18) available in this context, but we still get a convergent spectral
sequence converging to HH−p−q(X). Taking the colimit of this spectral sequence
over all filtrations {Z [·]}, we obtain the above spectral sequence. The advantage of a
spectral sequence of a filtration {Z [·]} is that the Z [i] are reduced closed subschemes
with open subschemes as complements so that the boundary maps ∂ of this spectral
sequence correspond to a localization sequence for a true open-closed complement.
By the above colimit argument, for any element α ∈ HH x

i (OX,x) for x ∈ X p, we
may compute the differential d on the E1-page by performing the computation
on the E1-page of a concrete filtration {Z [·]}. In particular, we may choose this
filtration sufficiently fine such that

(1) we can work with an affine neighborhood U 3 x in line (2-9),

(2) such that there exists some f ∈ OX (U ) so that the codimension ≥ 1 closed
subset in OX,x is cut out by f , i.e., the stalk of the ideal sheaf IZ [p+1],x ⊆ OX,x

is generated by f and

(3) the class α is pulled back from some α̃ ∈ HH x
i (U ).

If one finds a U such that (1) holds, one may need to shrink it further to ensure
(2) holds as well, and then even smaller to ensure (3). Then, inspecting Diagram



HOCHSCHILD CONIVEAU SPECTRAL SEQUENCE AND THE BEILINSON RESIDUE 283

(1-17), we may compute the differential d on the HH E1-page by∐
x∈X p

HH x
i (OX,x)︸ ︷︷ ︸
3α

←

∐
x∈X p

HH x
i (U )︸ ︷︷ ︸

3α̃

∂
−→ HH Z̃

i−1(U )→
∐

x∈X p+1

HH x
i−1(OX,x).

As we assume that X is smooth, this means that d reduces to evaluating the boundary
map ∂ in the localization sequence corresponding to cutting out a regular element
f from Spec OX (U ), a smooth affine k-scheme. On the other hand, the Cous E1-
differential d is given by Diagram (1-11), and we can factor this analogously (with
the same open subset U ) as∐
x∈X p

H p
x (OX,x , �

∗)︸ ︷︷ ︸
3H K R(α)

←

∐
x∈X p

H p
x (U, �

∗)︸ ︷︷ ︸
3H K R(α̃)

∂
−→ H p+1

Z̃
(U, �∗)→

∐
x∈X p+1

H p+1
x (OX,x , �

∗),

By Proposition 2.0.1 the boundary map ∂ in local cohomology here is compatible
with the corresponding boundary map in Hochschild homology with supports. In
other words, as the differential d of the coherent Cousin coniveau spectral sequence
can be reduced in a completely analogous way to the same affine open U , it follows
that the HKR isomorphism commutes with computing the boundary map in the
respective row of the Cous E1-page. Our claim follows. �

We know from Corollary 2.1.2 that the cohomology of the q-th row agrees with
the sheaf cohomology of �−q . Thus, the E2-page of the Hochschild coniveau
spectral sequence reads

(2-10)

q
...

...

1 0 0 0
0 H 0(X, �0) H 1(X, �0)

. . .

−1 H 0(X, �1) H 1(X, �1) H 2(X, �1)

−2 H 0(X, �2) H 1(X, �2) H 2(X, �2) · · ·
...

...
...

...
...

0 1 2 p

Remark 2.1.4. If X is affine, say X :=Spec A, the higher sheaf cohomology groups
vanish, i.e., H p(X, �−q) = 0 for all p 6= 0. Thus, the E2-page has collapsed to
a single column, and the convergence of the spectral sequence just becomes the
statement that

H 0(X, �−q)∼= HH−q(X) for all q ∈ Z
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and since the left-hand side agrees with �−q
A/k , we recover the ordinary HKR

isomorphism.

At least if the base field k has characteristic zero, this E2-page degenerates in
general, even if X is not affine. This follows from incompatible Hodge degrees, as
we explain in the following subsection:

2.1.1. Interplay with Hodge degrees. Suppose k is a field of characteristic zero.
Then the Hochschild homology of commutative k-algebras comes with a filtration,
known either as Hodge or λ-filtration. It was introduced by Gerstenhaber and
Schack [1987] and Loday [1989]. Weibel [1997] has extended this filtration to
separated Noetherian k-schemes4. One obtains a canonical and functorial direct
sum decomposition

(2-11) HHp(X)=
⊕

j

HHp(X)( j).

See [Weibel 1997, Proposition 1.3]. He also proved that HHp(X)( j)
=H j−p(X, � j )

holds for smooth k-schemes X , providing a very explicit relation to the usual Hodge
decomposition [Weibel 1997, Corollary 1.4]. Based on this, we can define a Hodge
decomposition on Hochschild homology with supports as well.

If the base field k has characteristic zero, we may define

HHZ (X)( j)
:= hofib(HH(X)( j)

→ HH(X − Z)( j)).

Since the usual Hochschild homology just splits into direct summands functorially,
as in (2-11), the spectral sequence constructed in Section 1.1.2 splits into a direct
sum of spectral sequences. The same happens to our HKR isomorphism with
supports, Proposition 2.0.1:

Theorem 2.1.5 (compatibility with Hodge degrees). Let k be a field of characteris-
tic zero.

(1) Suppose R is a smooth k-algebra and t1, . . . , tn a regular sequence. Then
the Hodge decomposition refines the isomorphism of Proposition 2.0.1 in the
following fashion:

HH (t1,...,tn)
i (R)( j)

=

{
H n
(t1,...,tn)(R, �

n+i ) if n+ i = j,
0 if n+ i 6= j.

(2) Suppose X is a smooth separated k-scheme. Then the spectral sequence of
Section 1.1.2 splits as a direct sum of spectral sequences

(HH E p,q
1 )( j)

:=

∐
x∈X p

HH x
−p−q(OX,x)

( j)
⇒ HH−p−q(X)( j).

4Actually to an even broader class of schemes.
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(3) Suppose X is a smooth separated k-scheme. The spectral sequence HHE
degenerates on the E2-page, i.e., all differentials in (2-10) are zero.

Remark 2.1.6. The results (2) and (3) are very close to well-known older results of
Weibel. For example, the spectral sequence in (2) has a large formal resemblance
to the one constructed in Weibel [1997, Proposition 1.2]. However, he uses a quite
different construction to set up his spectral sequence. He uses the hypercohomology
spectral sequence of his sheaf approach to the Hochschild homology of a scheme,
as in (1-4). He also obtains an E2-degeneration statement with essentially the same
proof as ours for his spectral sequence; see [Weibel 1997, Corollary 1.4].

Proof. (1) The proof is exactly the same as we have given for Proposition 2.0.1.
By functoriality the Hodge decomposition can be dragged through the entire proof
systematically. Only the first step of the proof changes, where one has to use that
the ordinary HKR isomorphism is supported entirely in the n-Hodge part:

�n
R/k −→

∼ HHn(R)(n) and HHn(R)( j)
= 0 (for j 6= n).

This is [Loday 1989, Théorème 3.7] or [Loday 1992, Theorem 4.5.12], for example.

(2) This is immediate.

(3) The E1-page of the Hodge degree j graded part takes the shape

q
...

1
∐

x∈X0 HH x
−1(X)

( j)

0
∐

x∈X0 HH x
0 (X)

( j)
→

∐
x∈X1 HH x

−1(X)
( j)
→

. . .

−1
∐

x∈X0 HH x
1 (X)

( j)
→

∐
x∈X1 HH x

0 (X)
( j)
→

∐
x∈X2 HH x

−1(X)
( j)

−2
∐

x∈X0 HH x
2 (X)

( j)
→

∐
x∈X1 HH x

1 (X)
( j)
→

∐
x∈X2 HH x

0 (X)
( j)
→ · · ·

...
...

...
...

...

0 1 2 p

and applying the refined HKR isomorphism with supports to these entries, part (1)
of our claim implies that all rows vanish except for the row with q =− j . As a result,
it follows that the spectral sequence degenerates. As our original spectral sequence
HHE•,• is just a direct sum of these (HHE p,q

1 )( j), it follows that all differentials of
the HHE2-page must be zero (because the differentials then also are direct sums of
the differentials of the individual (HHE p,q

1 )( j), so they cannot map between different
Hodge graded parts). �

This also leads to a version of the “Gersten resolution”, which differs from the
classical coherent Cousin resolution in the way it is constructed, but not in its output.
For an abelian group A, we write (ix)∗A to denote the constant sheaf A on the
scheme point x and extended by zero elsewhere.
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Corollary 2.1.7 (“Hochschild–Cousin resolution”). Suppose X/k is a smooth sep-
arated scheme over a field k. Then

(2-12) HHn −→
∼

[ ∐
x∈X0

(ix)∗HH x
n (OX,x)→

∐
x∈X1

(ix)∗HH x
n−1(OX,x)→ · · ·

]
0,n

is a quasi-isomorphism of complexes of sheaves, and yields a flasque resolution of
the Zariski sheaf HHn ∼=�

n for any n.

It will also be possible to prove this using a transfer-based method à la [Colliot-
Thélène et al. 1997; Weibel 2005].

Proof. We give two proofs:

(1) We can use Theorem 2.1.3, proving that the complex of sheaves on the right is
canonically isomorphic to the coherent Cousin resolution of Corollary 1.1.7. The
latter is a resolution even under far less restrictive assumptions than smoothness,
relying on the tools of [Hartshorne 1966].

(2) Suppose k is of characteristic zero. We may consider the Hochschild coniveau
spectral sequence HHE•,• of U for any open immersion U ↪→ X . We obtain
a presheaf of spectral sequences, which we sheafify in the Zariski topology. We
denote it by HH Ep,q . As this process also sheafifies the limit of the spectral sequence,
we get a spectral sequence of sheaves

HH E
p,q
1 :=

∐
x∈X p

(ix)∗HH x
−p−q(OX,x)⇒HH−p−q(X).

The direct sum decomposition of Theorem 2.1.5 is functorial in pullback along
opens, so HH Ep,q degenerates on the second page. Restrict to the direct summand
of the HHn which we are interested in. This leaves only one nonzero entry on the
E2-page. The sheaves in (2-12) are clearly flasque and since the E2-page has just
one entry, the resolution property follows easily (it implies the exactness in all
higher degrees). �

2.1.2. Chern character with supports. Let X/k be a smooth scheme and x ∈ X a
scheme point of codimension codimX {x} = p. We will define a Chern character
with supports as

T(x) : Km(κ(x))→ H p
x (X, �

p+m).

The definition is simple: As X/k is smooth, dévissage and excision for K -theory
yield a canonical isomorphism K (κ(x))∼= K x(OX,x)∼= K x(X), where K x denotes
K -theory with support in {x}. The spectrum-level Chern character K → HH
(à la McCarthy [1994, Definition 4.4.1], in the version of Keller [1999, Section
0.1]) induces a map K x(X)→ HH x(X). Excision and the HKR isomorphism
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with supports for Hochschild homology then yield HH x
m(X) ∼= HH x

m(OX,x) ∼=

H p
x (OX,x , �

p+m). We call the composition of these maps T(x).

Example 2.1.8. If X/k is an integral smooth scheme with generic point η, the map
T(η) : K∗(k(X))→�∗k(X)/k is just the trace map K → HH , applied to the rational
function field of X .

Proposition 2.1.9. Let X/k be a Noetherian scheme over a field k.

(1) The Chern character (a.k.a. trace map)

K (X)→ HH(X)

induces a morphism of spectral sequences KE•,• → HHE•,•, where KE•,•

denotes Balmer’s coniveau spectral sequence [2009].

(2) If X is smooth over k, we may compose it with the comparison map to the
coherent Cousin spectral sequence, and then the map between the E1-pages is
the Chern character for supports:

T(x) : K E p,q
1 →

CousE p,0
1 (�−q), K−p−q(κ(x))→ H p

x (X, �
−q).

Here we have used that Balmer’s coniveau spectral sequence agrees with
Quillen’s [1973] thanks to the smoothness assumption.

Proof. (1) This is true by functoriality. We have constructed HHE•,• based on
the same filtration that Balmer uses for K -theory (see Proposition 1.1.8). The
Chern character K → HH is compatible with the respective localization sequences,
and thus the trace functorially induces a morphism of spectral sequences. On the
E1-page, this morphism induces morphisms

Tp,q :
∐

x∈X p

K x
−p−q(OX,x)→

∐
x∈X p

HH x
−p−q(OX,x),

and by comparing supports, these morphisms are Cartesian in the sense that the
direct summand of x ∈ X p on the left maps exclusively to the direct summand
belonging to the same x on the right-hand side. That is, Tp,q =

∑
T x

p,q with

T x
p,q : K

x
−p−q(OX,x)→ HH x

−p−q(OX,x).

(2) Now, assume that X/k is smooth and separated. We may then, equivalently,
use the K -theory of coherent sheaves on the left, and then dévissage. So, using the
dévissage isomorphism on the left-hand side in the above equation, and the HKR
isomorphism with supports on the right-hand side, we obtain

T x ′
p,q : K−p−q(κ(x))∼= K x

−p−q(OX,x)→ HH x
−p−q(OX,x)∼= H p

x (OX,x , �
−q).

Using excision of the right-hand side, this transforms into the definition of T(x). �
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3. Cubical algebras and their residue symbol

3.1. Introduction to the comparison problem. The next sections will be devoted
to relating our Hochschild–Cousin complex to the residue theory of [Tate 1968;
Beilinson 1980]. Let us briefly sketch the story in dimension one, in order to
motivate how we shall proceed.

3.1.1. Residue à la Tate. Tate [1968] defines the residue of a rational 1-form on
an integral curve X/k at a closed point x ∈ X as follows: Let K̂X,x := Frac ÔX,x

denote the local field at the point x . It can also be constructed by completing the
function field with respect to the metric of the valuation associated to x . Now K̂X,x

is a locally linearly compact topological k-vector space.5 It has infinite dimension.
Any rational functions f, g ∈ k(X) act on it by continuous k-linear endomorphisms,
i.e., we could also read them as elements f, g ∈ Endcts

k (K̂X,x). If P+ denotes any
projector splitting the inclusion ÔX,x ↪→ K̂X,x , Tate shows that the commutator
[P+ f, g] has sufficiently small image to define a trace on it, and defines a map

�1
K̂X,x/k→ k, f dg 7→ Tr[P+ f, g].

He shows that this agrees with the usual residue of the 1-form ω := f dg at x . In
[Beilinson 1980; Beilinson et al. 1991; 2002] this construction gets interpreted in
terms of a central extension of Lie algebras, giving a Lie algebra cohomology class

(3-1) φTate ∈ H 2
Lie((K̂X,x)Lie, k).

3.1.2. Residue via localization. A completely different approach to think about the
residue might be to use the boundary map ∂ in Keller’s localization sequence,

(3-2) HH1(̂OX,x)→ HH1(K̂X,x)
∂
−→ HH x

0 (̂OX,x)
Tr
−→ k.

Via the HKR comparison map, �1
K̂X,x/k

→ HH1(K̂X,x), this also produces a map
�1

K̂X,x/k
→ k, which should be the residue.

3.1.3. Comparison. We sketch the comparison for n = 1. This can serve as a
guide through the entire proof. We begin with the boundary map in the Hochschild
localization sequence, that is,

(3-3) HH1(K̂X,x)
∂
−→ HH x

0 (̂OX,x)

from (3-2). This is the boundary map coming from the localization sequence of

Coh
{x} ÔX,x → Coh ÔX,x → Coh K̂X,x ,

5In Tate’s set-up [1968, p. 3], given a subspace A ⊂ V , the collection of linear subspaces
{A′ | A′ < A} satisfies the axioms for the closed sets in a (linear) topology, and Tate’s algebra
E is just the ring of operators on V which are continuous with respect to this linear topology.
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where we have taken the freedom to drop writing “Spec” for denoting the affine
schemes attached to these rings. The first idea is to map this sequence to a sequence
built from pro-categories. We will review these categories below; for the moment
just imagine a category whose objects are projective systems

(3-4)

Coh
{x}(̂OX,x ) //

1
��

Coh(̂OX,x ) //

��

Coh(K̂X,x )

��

Coh
{x}(̂OX,x ) // Proa

ℵ0
(Coh

{x}(̂OX,x )) // Proa
ℵ0
(Coh

{x}(̂OX,x ))/Coh
{x}(̂OX,x )

The left downward arrow is the identity functor, while the middle downward functor
“unravels” ÔX,x -modules as a formal projective limit of modules with support in
{x}. For example, OX,x itself would be sent to

lim
←−

i

(OX,x/m
i
x),

but as this projective system, and not in terms of evaluating the limit in some
category. The right downward arrow is the one which makes the diagram commute.
We get a commutative square of boundary maps: Instead of working with ∂ , we
can compatibly work with the boundary map coming from the bottom sequence.
The quotient category on the right can essentially be replaced by a Tate category —
another concept which we shall recall below. The reader may imagine a category
which mixes ind- and pro-limits. The idea is that it models local linear compactness
abstractly. One may visualize the downward right arrow, after this replacement, as
a functor

Coh K̂X,x → Tateℵ0 (̂OX,x)

sending a K̂X,x -module to its realization as a formal inductive-projective system
along

colim
−−−→

s∈OX,x\{0}

lim
←−

i

(1
s

OX,x/m
i
x

)
.

The next idea is to use the philosophy that the pro-categories or Tate categories
in question are module categories over certain noncommutative algebras. Using
a relative Morita theory (a formalism we shall develop below in Section 4.4; it
extends Morita theory to quotient categories), the lower sequence now turns out
to be compatible with the Hochschild sequence attached to an exact sequence of
nonunital noncommutative algebras.

This leads to two facts: Firstly, as the Tate categories and pro-categories were
modeled to imitate locally linearly compact vector spaces, one finds that the noncom-
mutative algebra appearing here (defined without topology, using Tate categories)
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is actually isomorphic to the one which appears in Tate’s work,

(3-5) A := Endcts
k (K̂X,x)∼= EndTateℵ0 (k)(K̂X,x).

Secondly, it remains to identify the boundary map between these noncommutative
algebras (starting from A in the case at hand). These have a special structure; they
are so-called Beilinson cubical algebras (we recall this concept below). Once we
reach this point, we have shown that the boundary map ∂ of line (3-3) is compatible
with a boundary map in the Hochschild homology of such cubical algebras. Finally,
in the paper [Braunling 2018] it was shown that the latter is compatible to Tate
and Beilinson’s map in Lie homology. Concretely, this is the “Lie-to-Hochschild
comparison theorem” of [loc. cit., Introduction]:

H Lie
n (g, g)

uu ))

H Lie
n+1(g, k)

φBeil

""

**

HHn(A)
uu

φHH

}}

HHn(A)

φC
��

k

In the cited paper, this is stated also for cyclic homology HC ; both are possible. Here
A is the cubical algebra in question. In our toy case n = 1 the A is precisely the one
of (3-5), g is its Lie algebra. Next, φBeil is the same as Tate’s map (since Beilinson’s
residue is the higher-dimensional generalization of Tate’s one-dimensional theory),
i.e., φBeil= φTate of (3-1), just write the Lie cohomology class as a functional on Lie
homology. Finally, φC is the trace of the boundary map of algebras discussed above,
so the input which the above discussion had let us to. This closes the circle. The
switch to Lie homology involves a degree jump. This explains why the Hochschild
boundary map

HH1(K̂X,x)
∂
−→ HH x

0 (̂OX,x)
Tr
−→ k

of (3-2) suddenly becomes a map

φTate : H Lie
2 ((K̂X,x,Lie, k)

Tr
−→ k

originating from degree 2 Lie homology (and for general n from degree n+ 1 Lie
homology to k).

How does this picture generalize to n>1? Firstly, instead of working with a single
ind-pro system, we now have to iterate this n times. This complicates the notation.
Instead of a single boundary map, we need to take n boundary maps. However,
on each individual level things remain essentially as in the one-dimensional case.



HOCHSCHILD CONIVEAU SPECTRAL SEQUENCE AND THE BEILINSON RESIDUE 291

On the Lie algebra cohomology side, this does not admit such a reduction as an
inductive step; see [Braunling 2018]. However, in Hochschild homology we can
use a noncommutative form of excision, which circumvents this issue; see [loc. cit.].

3.2. Definition of the abstract symbol.

Definition 3.2.1 [Beilinson 1980]. Let k be a field. A Beilinson n-fold cubical
algebra is

(1) an associative k-algebra A, together with

(2) two-sided ideals I+i , I−i such that I+i + I−i = A for i = 1, . . . , n, and

(3) I 0
i := I+i ∩ I−i . We call Itr :=

⋂
i=1,...,n I 0

i the trace-class operators of A.

A trace on an n-fold cubical algebra is a morphism τ : Itr/[Itr , A] → k.

Although the following property is stronger than necessary to develop the for-
malism, it will be handy to single out a particularly friendly type of such algebras:

Definition 3.2.2. We say that (A, (I±i )) is good if for every c = 1, . . . , n the
intersection I 0

1 ∩ · · · ∩ I 0
c is locally biunital (in the sense of Definition 1.0.9).

This assumption will be made for the following reasons: Firstly, the simplifi-
cations due to Wodzicki’s Proposition 1.0.11 apply, and secondly we can easily
define a whole hierarchy of further cubical algebras, which we may imagine as
going down dimension by dimension.

Lemma 3.2.3. Let (A, (I±i )i=1,...,n) be a good n-fold cubical algebra. Define

A′ := I 0
1 and J±i−1 := I±i ∩ I 0

1

for i = 2, . . . , n.

(1) Then (A′, (Ji )i=1,...,n−1) is a good (n− 1)-fold cubical algebra and both alge-
bras have the same trace-class operators.

(2) The natural homomorphism Itr/[Itr, Itr] −→
∼ Itr/[Itr, A] is an isomorphism.

The proof of the second claim is very easy, but based on a trick which might not
be particularly obvious if one only looks at the claim.

Proof. (Step 1) Clearly A′ = I 0
1 is a (nonunital) associative k-algebra. For i =

1, . . . , n− 1 we compute

J+i + J−i = (I
+

i+1 ∩ I 0
1 )+ (I

−

i+1 ∩ I 0
1 )⊆ A∩ I 0

1 = I 0
1 .

For the converse inclusion, let x ∈ I 0
1 be given. Since (A, (I±i )) is assumed good,

there is a local left unit for the singleton finite set {x} in I 0
1 , say x = ex with

e ∈ I 0
1 . By I+i+1+ I−i+1 = A, write x = x++ x− with x± ∈ I±i+1. Thus, x = ex =

e(x+ + x−) = ex+ + ex− and since I 0
1 is a two-sided ideal, ex s

∈ I 0
1 ∩ I s

i+1 for
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s ∈ {+,−}. As this works for all x ∈ I 0
1 , we get I 0

1 ⊆ J+i + J−i . Thus, A′ is an
(n− 1)-fold cubical algebra. Note that this argument would work just as well with
local right units. The trace-class operators are

Itr (A′)=
⋂

i=1,...,n−1

J+i ∩ J−i =
⋂

i=1,...,n−1

I+i+1∩ I−i+1∩ I 0
1 =

⋂
i=1,...,n

I+i ∩ I−i = Itr(A).

(Step 2) We need to check that (A′, (J±i )i=1,...,n−1) is good, i.e., the local biunitality
of

J 0
1 ∩ · · · ∩ J 0

c = (I
0
1 ∩ I 0

i+1)∩ · · · ∩ (I
0
1 ∩ I 0

c+1)= I 0
1 ∩ · · · ∩ I 0

c+1

for any c = 1, . . . , n− 1. And these are locally biunital since (A, (I±i )) is good.
This completes the proof of the first claim.

(Step 3) It remains to prove the second claim. In fact, this is true as soon as A is
any associative algebra and I any locally right unital two-sided ideal: It is clear that
[I, I ] ⊆ [A, I ] and we shall show the reverse inclusion: Let any t ∈ I and a ∈ A be
given. Let e be a local right unit for the singleton set {t} ⊂ I . By the ideal property,
ea ∈ I and at ∈ I . Thus, the left-hand side of the following equation lies in [I, A],
namely

[ea, t] − [e, at] = eat − tea− eat + ate = ate− tea
(∗)
= at − ta = [a, t],

where we have used the local right unit property for (∗). Without right unitality,
there would have been no chance for this kind of argument. �

Suppose A is a good n-fold cubical algebra with a trace τ . In the paper [Braunling
2018] a canonical functional φHH : HHn(A)→ k was constructed, functorial in
morphisms of cubical algebras. We will give a self-contained exposition of this
construction.

Let (An, (I±i ), τ ) be a good n-fold cubical algebra over k with a trace τ . We
define

(3-6) An−1 := I 0
1 and J±i−1 := I±i ∩ I 0

1 ,

where i = 0, . . . , n−1. By Lemma 3.2.3 this is again a good cubical algebra over k.
Define

(3-7) 3 : An→ An/An−1, x 7→ x+,

where x = x++ x− is any decomposition with x± ∈ I±1 .

Remark 3.2.4. This map is not the natural quotient map!

Lemma 3.2.5. The map 3 is well-defined.
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Proof. By the axiom I+1 + I−1 = An of a cubical algebra, such an element x+

always exists. It is not unique, but if x∗ is another choice, by the exactness of
I 0
1 → I+1 ⊕ I−1 → An→ 0 we have x+− x∗ ∈ I+1 ∩ I−1 = I 0

1 = An−1. �

As An−1 is a two-sided ideal in An , we get an exact sequence of associative
algebras

(3-8) 0→ An−1→ An
quot
−→ An/An−1→ 0.

The above sequence induces a long exact sequence in Hochschild homology via
Theorem 1.0.12, and we shall denote the boundary map by δ.

Definition 3.2.6 [Braunling 2018]. Define

(3-9) d : HH(An)
3
−→ HH(An/An−1)

δ
−→6HH(An−1).

We can repeat this construction and obtain a morphism:

Definition 3.2.7 [Braunling 2018]. Suppose (A, (I±i )) is good n-fold cubical alge-
bra over k with a trace τ . Define

(3-10) φHH : HHn(A)→ HH0(Itr )→ k, γ 7→ τd ◦ · · · ◦ d︸ ︷︷ ︸
ntimes

γ.

We call this the abstract Hochschild symbol of A.

4. Relation with Tate categories

4.1. Exact categories. We will give a brief, almost self-contained review of the
formalism of Tate categories. Let C be an exact category [Bühler 2010]. In particular,
among its morphisms, we reserve the symbol ↪→ (resp. �) for admissible monics
(resp. admissible epics). An admissible subobject refers to a subobject such that the
inclusion is an admissible monic. We write Cic to denote the idempotent completion
of C.

Lemma 4.1.1. Let C be an exact category.

(1) The idempotent completion Cic has a canonical exact structure such that
C ↪→ Cic is an exact functor reflecting exactness.

(2) If C is split exact, so is Cic.

Proof.

(1) [Bühler 2010, Proposition 6.13].

(2) [BGW 2016c, Proposition 5.23]. �
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Next, recall that every exact category can 2-universally be embedded into a
Grothendieck abelian category, called Lex(C), such that it becomes an extension-
closed full subcategory and a kernel-cokernel pair is exact if and only if this is so in
Lex(C), in the classical sense of exactness. This is known as the Quillen embedding
C ↪→ Lex(C). See [Thomason and Trobaugh 1990, §A.7; Schlichting 2004, §1.2;
Bühler 2010, Appendix A] for a detailed treatment.

4.2. Ind- and pro-categories, Tate categories. Let κ be an infinite cardinal. An
admissible ind-diagram of cardinality κ is a functor X : I → C with I a directed
poset of cardinality at most κ which maps the arrows of I to admissible monics in
C. Since Lex(C) is cocomplete, any such diagram has a colimit in this category.
Thus, the following definition makes sense:

Definition 4.2.1. Let C be an exact category and κ an infinite cardinal.

(1) The essential image of all admissible ind-diagrams of cardinality κ in Lex(C)
is the category of admissible ind-objects, and is denoted by Inda

κ(C).

(2) Define Proa
κ(C) := Inda

κ(C
op)op, the exact category of admissible pro-objects.

See also [BGW 2016c, §4] for a different perspective on pro-objects. In the case
κ = ℵ0, Definition 4.2.1 is due to Bernhard Keller [1990]. See [BGW 2016c, §3]
for a detailed treatment of the general case. One shows that Inda

κ(C) is extension-
closed inside Lex(C) and therefore carries a canonical exact structure induced from
Lex(C) [Bühler 2010, Lemma 10.20; BGW 2016c, Theorem 3.7] and the functor
C ↪→ Inda

κ(C), sending objects to the constant diagram, is exact. We write Inda(C),
Proa(C), etc. without a qualifier κ if we do not wish to impose any restriction on
the cardinality.

For the sake of legibility, we shall henceforth mostly drop κ from the notation,
but all these results would also be valid for the variants constrained by an infinite
cardinal κ bound. Precise information about such variations can always be found
in the cited sources.

Definition 4.2.2. Consider the commutative square of exact categories and exact
functors,

(4-1)

C //

��

Inda C

��

Proa C // Inda Proa C

A lattice in an object X ∈ Inda Proa(C) is an admissible subobject L ↪→ X such
that L ∈ Proa(C) and X/L ∈ Inda(C) [BGW 2016c, §5].

(1) The category of elementary Tate objects, denoted by Tateel(C) or 1- Tateel(C),
is the full subcategory of Inda Proa(C) of objects having a lattice (which is not
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part of the data). The category of Tate objects, denoted Tate(C) or 1- Tate(C),
is the idempotent completion Tateel(C)ic [BGW 2016c, §5, Theorem 5.6].

(2) More generally, define

n- Tateel(C) := Tateel((n− 1)- Tate(C))
and

n- Tate(C) := n- Tateel(C)ic

as its idempotent completion. We will refer to the objects of these categories
as n-Tate objects.

(3) Once we fix an elementary Tate object X ∈ Tateel(C), the lattices form a poset,
called the Sato Grassmannian Gr(X), by defining L ′ ≤ L whenever L ′ ↪→ L
is an admissible monic.

We refer to [BGW 2016c] for a detailed treatment. See [Arkhipov and Kremnizer
2010; Previdi 2011] for earlier work on iterating Tate categories. The following
facts are of essential importance:

Theorem 4.2.3. Let C be an exact category.

(1) If L ′ ↪→ L are lattices in an object X ∈ Tateel(C), then L/L ′ ∈ C.

(2) Suppose C is idempotent complete. Then the poset Gr(V ) is directed and
codirected, i.e., any finite set of lattices has a common sublattice and a common
over-lattice.

(3) If X ∈ Tateel(C) lies in the subcategories of pro-objects and ind-objects simul-
taneously, we have X ∈ C. If C is idempotent complete, the same holds true
for X ∈ Tate(C).

Proof.

(1) [BGW 2016c, Proposition 6.6].

(2) [BGW 2016c, Theorem 6.7].

(3) [BGW 2016c, Proposition 5.9, Proposition 5.28]. �

There are also some basic factorizations for in- and out-going morphisms under
the inclusions of categories in Diagram (4-1) and lattices:

Proposition 4.2.4. Let C be an exact category.

(1) Every morphism Y
a
−→ X in Tateel(C) with Y ∈ Proa(C) can be factored as

Y
ã
→ L ↪→ X with L a lattice in X.

(2) Every morphism X
a
−→ Y in Tateel(C) with Y ∈ Inda(C) can be factored as

X � X/L
ã
→ Y with L a lattice in X.

Proof. A complete proof is given in [BGW 2017, Proposition 2.7]. �
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4.3. Quotient exact categories. If C ↪→ D is an exact subcategory, this does not
yet suffice to define a quotient exact category “D/C” with the expected properties.
However, as was shown by Schlichting, a sufficient condition for such a category to
exist is that C ↪→ D is “left or right s-filtering”.6 This is a technical notion and we
refer to the original paper [Schlichting 2004], or for a quick review to [BGW 2016c,
§2]. Ultimately, D/C arises as the localization D[6−1

], where 6 is the smallest
class of morphisms encompassing

(1) admissible epics with kernels in C,

(2) admissible monics with cokernels in C, and

(3) which is closed under composition.

The left/right s-filtering conditions imply the existence of a calculus of left/right
fractions. As was observed by T. Bühler, in the left s-filtering case, these conditions
also imply that inverting admissible epics with kernels in C is sufficient (see [BGW
2016c, Proposition 2.19] for a careful formulation of the latter). Let us summarize
a number of fully exact subcategories which have these particular properties:

Proposition 4.3.1. Let C be an exact category.

(1) C ↪→ Inda(C) is left s-filtering.

(2) C ↪→ Proa(C) is right s-filtering.

(3) Proa(C) ↪→ Tateel(C) is left s-filtering.

(4) Inda(C) ↪→ Tateel(C) is right s-filtering if C is idempotent complete.

(5) Inda(C)∩Proa(C)= C, viewed as full subcategories of Tateel(C).

Proof.

(1) [BGW 2016c, Proposition 3.10].

(2) [BGW 2016c, Theorem 4.2].

(3) [BGW 2016c, Proposition 5.8].

(4) [BGW 2016c, Remark 5.35; BGHW 2018, Corollary 2.4].

(5) [BGW 2016c, Proposition 5.9]. �

The construction of this type of quotient category is compatible with the formation
of derived categories in the following sense:

6For a simple example of why this is needed, let D=Vect f (k) be the category of finite dimensional
vector spaces over a field k, and let C⊂D be the full subcategory of even dimensional vector spaces.
Then C is left special in D but not left filtering (consider the map k⊕2 � k). Because D is generated by
a single object (namely the line k), any exact category quotient D/C would have all objects isomorphic
to 0.
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Proposition 4.3.2 (Schlichting). Let C be an idempotent complete exact category
and C ↪→ D a right (or left) s-filtering inclusion as a full subcategory of an exact
category D. Then

Db(C) ↪→ Db(D)� Db(D/C)

is an exact sequence of triangulated categories.

This is [Schlichting 2004, Proposition 2.6]. The construction of the derived cate-
gory of an exact category is explained in [Keller 1996, §11] or [Bühler 2010, §10].

Theorem 4.3.3 (Keller’s localization theorem, [1999, §1.5, Theorem]). Let C be an
exact category and C ↪→D a right (or left) s-filtering inclusion as a full subcategory
of an exact category D. Then

HH(C)→ HH(D)→ HH(D/C)→+1

is a fiber sequence in Hochschild homology.

This is due to Keller [1999, §1.5, Theorem]. The following result was first proven
for countable cardinality by Sho Saito [2015]:

Proposition 4.3.4. For any infinite cardinal κ and exact category C, there is an
exact equivalence of exact categories

Tateel
κ (C)/Proa

κ(C)−→
∼ Inda

κ(C)/C.

See [BGW 2016c, Proposition 5.32] for a detailed proof. It turns out that this
result admits a symmetric dual statement, which will be more useful for the purposes
of this paper.

Proposition 4.3.5 [BGW 2016c, Proposition 5.34]. Let C be an idempotent com-
plete exact category. There is an exact equivalence of exact categories

Tateel(C)/ Inda(C)−→∼ Proa(C)/C,

sending an object X ∈Tateel(C) to L , where L is any lattice L ↪→ X , and morphisms
f : X → X ′ to a suitable restriction f |L : L → L ′ with L ′ ↪→ X ′ a suitable
lattice (which exists by Proposition 4.2.4(1)). This defines a well-defined functor.
The inverse equivalence is induced from the inclusion of categories Proa(C) ↪→

Tateel(C).

4.4. Relative Morita theory. In this section we develop a series of results aimed
at the comparison of n-Tate categories with projective module categories. The
following lemma is the starting point for this type of consideration. Recall that we
write P f (R) to denote the category of finitely generated projective right R-modules.

Definition 4.4.1. Let C be an exact category. We say that S ∈ C is a generator if
every object X ∈ C is a direct summand of S⊕n for n sufficiently large.
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Lemma 4.4.2. Let C be an idempotent complete and split exact category with
generator S. Then the functor

C→ P f (EndC(S)), Z 7→ HomC(S, Z)

is an exact equivalence of categories.

Proof. This is for example spelled out in [BGW 2016b, Lemma 20]. �

While such comparison results have been known for decades, there seems to be
very little literature studying the 2-functoriality of them. The rest of the section
will work out explicit descriptions of the relevant maps in all the cases relevant for
the paper. A number of these results might be of independent interest.

4.4.1. Subcategories.

Lemma 4.4.3. Let D be a split exact category. Suppose C ↪→ D is a fully exact
subcategory. Then C is also split exact. Suppose S is a generator for C and S̃ ∈D a
generator for D. Suppose

S̃ = S⊕ S′

for some S′ ∈ D. Then there is a commutative diagram

Cic //

∼

��

Dic

∼

��

P f (EndC(S)) // P f (EndD(S̃))

whose downward arrows are exact equivalences and the bottom rightward arrow is

M 7→ M ⊗EndD(S) HomD(S̃, S),

and equivalently this functor is induced by the (nonunital) algebra homomorphism

(4-2) EndC(S)→ EndD(S⊕ S′), f 7→
(

f 0
0 0

)
.

Although it feels like this should be standard, we have not been able to locate a
source in the literature.

Proof. (Step 1) Since C ↪→ D reflects exactness, C is also split exact. Thus, its
idempotent completion Cic is also split exact by Lemma 4.1.1. Moreover, if S is
a generator for C, then it is also a generator for Cic since every object in Cic is a
direct summand of an object in C, and these are in turn direct summands of S⊕n

for some n. The same argument works for Dic. Then the 2-universal property of
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idempotent completion [Bühler 2010, Proposition 6.10] promotes C ↪→ D to the
top row in the following diagram:

(4-3)

Cic //

∼

��

Dic

∼

��

P f (EndC(S)) // P f (EndD(S̃))

As both Cic and Dic are split exact and idempotent complete and possess generators,
Lemma 4.4.2 induces exact equivalences, given by the downward arrows. Note that
an object Z ∈ C is sent to

Z 7→ HomC(S, Z) resp. Z 7→ HomD(S̃, Z),

depending on which path we follow in the above diagram. Since C is a full
subcategory of D, the first functor agrees with Z 7→ HomD(S, Z). We claim that
Diagram (4-3) can be completed to a commutative square of exact functors by
adding the following arrow as the bottom row:

P f (EndC(S))→ P f (EndD(S̃)), M 7→ M ⊗EndD(S) HomD(S̃, S).

This claim is immediate when plugging in Z := S, but since every object in C is a
direct summand of S⊕n and this formula preserves direct summands, this implies the
claim for all objects in C. Since the categories are split exact, checking exactness
of the functor reduces to checking additivity, which is immediate.

(Step 2) By S̃ = S⊕ S′ we get the nonunital homomorphism of associative alge-
bras in (4-2). If M ∈ P f (EndC(S)) and f ∈ EndC(S) this means, just by matrix
multiplication, that the equation

m · f ⊗
(

a b
c d

)
= m⊗

(
f a f b
0 0

)
, m ∈ M,

holds in M ⊗EndC(S) EndD(S⊕ S′). Thus, we find that the map

M ⊗EndC(S) EndD(S⊕ S′)→ M ⊗EndD(S) HomD(S̃, S),

m⊗
(

a b
c d

)
7→ m⊗

(
a b
0 0

)
is an isomorphism of right EndD(S⊕ S′)-modules. As a result, the functor can also
be described by tensoring along the nonunital algebra homomorphism. �

4.4.2. Quotient categories. While the previous result covers the case of a fully
exact subcategory, we now want to address the same problem in the situation
of a quotient category. Suppose C ↪→ D is a fully exact subcategory. We need
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stronger hypotheses to ensure the existence of the quotient category, namely those
of Section 4.3. We then write

〈X→ C→ X with C ∈ C〉

to denote the two-sided ideal of morphisms X→ X , for X ∈ D, which factor over
an object in C. Note that this really produces a two-sided ideal, so it makes no
difference whether we think of this as an ideal or as the ideal generated by such
morphisms.

Lemma 4.4.4. Let D be a split exact category with a generator S. Suppose C ↪→D

is a left (or right) s-filtering subcategory.

(1) Then EndD/C(S)= EndD(S)/〈S→ C→ S with C ∈ C〉.

(2) Moreover, the diagram

Dic //

∼

��

(D/C)ic

∼

��

P f (EndD(S)) // P f (EndD/C(S))

commutes, where the lower horizontal arrow is

M 7→ M ⊗EndD(S) EndD/C(S).

Proof. We only prove the left s-filtering case: As C ↪→D is left s-filtering, the quo-
tient category D/C exists. Idempotent completion has a suitable universal property
as a 2-functor so that the resulting exact functor D→ D/C induces canonically a
functor Dic

→ (D/C)ic, justifying the top row [Bühler 2010, Proposition 6.10].

(Step 1) By Schlichting’s original construction [2004, Lemma 1.13] the quotient
category D/C arises as the localization D[6−1

] with a calculus of left fractions,
where the class 6 is formed of

(1) admissible monics with cokernel in C,

(2) admissible epics with kernels in C and

(3) closed under composition.

For this proof, we shall use that it suffices to localize at 6e = {admissible epics
with kernels in C}, i.e., D/C := D[6−1

] = D[6−1
e ], by [BGW 2016c, Proposition

2.19]. This idea is due to T. Bühler. By [loc. cit.] this localization admits a calculus
of left fractions7. This means that every morphism X→ Y in D/C is represented

7The conventions of left and right fractions are as in Gabriel–Zisman [Gabriel and Zisman 1967]
or Bühler [Bühler 2010]. This means that the meaning of left and right is opposite to the usage in
[Gelfand and Manin 1996], [Kashiwara and Schapira 2006].
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by a left roof

X −→W
∈6e
←− Y.

First of all, we shall show that all morphisms are equivalent to morphisms coming
from D, i.e., left roofs of the shape X→ Y

1
← Y : Suppose we are given an arbitrary

left roof
W

X

f
>>

Y

h
``

As h ∈6e is a split epic, we may write Y =W ⊕C for some object C ∈ C so that
our roof takes the shape

W

X

f
>>

W ⊕C

prW

cc

Thanks to the commutative diagram

W

1
��

X

f
88

f⊕0 &&

W W ⊕C

prW

ff

1xx

W ⊕C

prW

OO

we learn that this left roof is equivalent to the roof X → W ⊕C
1
← W ⊕C and

rewriting this using Y = W ⊕C in terms of Y , we have proven our claim. This
means that HomD(X, Y )→ HomD/C(X, Y ) is surjective. It remains to determine
the kernel. By the calculus of left fractions, two left roofs (which, as we had just
proven, we may assume to come from genuine morphisms in D) are equivalent if
and only if there exists a commutative diagram of the shape

Y

6e
��

X

f
>>

g
  

H Y

1
``

1~~

Y

6e

OO
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The existence of such a diagram is equivalent to the equality of morphism

X
f
⇒
g

Y
∈6e
−→ H

and thus to f − g mapping to zero in H . By the universal property of kernels, this
is equivalent to the existence of a factorization f − g : X → ker(Y � H)→ Y .
Since Y � H lies in 6e, we have ker(Y � H) ∈ C. The converse direction works
the same way. Thus,

EndD/C(S)= EndD(S)/〈S→ C→ S with C ∈ C〉

and since the embedding D/C→ (D/C)ic is fully faithful [Bühler 2010, Remark
6.3], this description also applies to (D/C)ic.

(Step 2) Since D is split exact, Dic is idempotent complete and still split exact by
Lemma 4.1.1. Hence, Lemma 4.4.2 implies that the left-hand side downward arrow,
Z 7→ HomDic(S, Z), is an equivalence of categories. The quotient category D/C is
an exact category where a kernel-cokernel sequence

A→ B→ C

is considered exact if and only if it is isomorphic to the image of an exact sequence
in D [Schlichting 2004, Proposition 1.16]. This is the canonical exact structure
on D/C, making D→ D/C an exact functor. Since D is split exact, this means
B is isomorphic to the direct sum of the outer terms and this property stays true
in D/C. Thus, D/C also has the split exact structure (however there is no reason
why it would have to be idempotent complete). The functor D/C→ (D/C)ic to
the idempotent completion is exact, and the idempotent completion (D/C)ic must
also be split exact by Lemma 4.1.1. If every object in D is a direct summand of
S⊕n , this property stays true in D/C, and thus in (D/C)ic. Hence, Lemma 4.4.2
also applies to (D/C)ic, with the image of the same object, and thus there is an
exact equivalence of categories via Z 7→ Hom(D/C)ic(S, Z). This is a priori a right
End(D/C)ic(S)-module, but by the full faithfulness of the idempotent completion
this algebra agrees with EndD/C(S). Finally, we observe that in order to make the
diagram commute the lower horizontal arrow must be

HomDic(S, Z) 7→ Hom(D/C)ic(S, Z)

for all Z ∈ D. But by Step 1 this is just quotienting out the ideal 〈S → C →
S with C ∈ C〉 from the right, or equivalently tensoring with the corresponding
quotient ring. This proves our claim. �

Although this diverts a bit from our storyline and will not be used anywhere else
in this paper, let us record an immediate application of this lemma:
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Proposition 4.4.5. Drinfeld’s Calkin category CKar
R [2006, §3.3.1] is equivalent

to the Calkin category Calk(C) := (Inda(Mod(R))/Mod(R))ic of [BGW 2016c,
Definition 3.40].

Proof. The category Mod(R) is split exact with generator R. We obtain the claim by
applying Lemma 4.4.4 to the left s-filtering inclusion Mod(R) ↪→ Inda(Mod(R)),
and the description of this category given by the lemma agrees with the definition
used by Drinfeld [2006, §3.3.1]. �

4.5. Applications to Tate categories.
4.5.1. Iterated Morita calculus for n-Tate categories. Now we can apply these
results to ind-, pro- and Tate categories. For the sake of legibility we have divided
the following arguments into several separate propositions. However, there will be
a great overlap in notation so we will introduce some overall notation for the length
of this section.

Assume C is any split exact category with a generator S ∈ C. Then we define
objects

S[t−1
] :=

∐
N

S ∈ Inda(C) and S[[t]] :=
∏

N

S ∈ Proa(C),

where the (co)product is interpreted as the corresponding formal ind-limit, resp. pro-
limit, object. In order to be absolutely precise, let us spell out what this means
explicitly in terms of the actual definition of the respective exact categories, as in
Section 4.2.

We define an admissible ind-diagram and admissible pro-diagram by

(4-4) S[t−1
] : N→ C, n 7→

n∐
i=1

S, S[[t]] : N→ C, n 7→
n∏

i=1

S.

More specifically, we view the natural numbers N as a directed poset and define
admissible diagrams by these formulae, where for S[t−1

] a morphism n 7→ n+1 in
N is sent to the inclusion of

∐n
i=1 S→

∐n+1
i=1 S, while for S[[t]] we send it to the

projection in the opposite direction. Finally, define

(4-5) S((t)) := S[[t]]⊕ S[t−1
] ∈ Tateel(C).

This is clearly an elementary Tate object since S[[t]] is a lattice; see Definition 4.2.2.
These objects completely characterize the Tate object categories in the following
way:

Theorem 4.5.1 [BGW 2016b]. Let C be an idempotent complete split exact cate-
gory with a generator8 S ∈ C.

8Of course, if we instead have a finite system of generators, we can just take their direct sum as a
single-object generator.
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(1) The category n- Tateℵ0(C) is split exact and idempotent complete.

(2) The object S̃n := S((t1)) · · · ((tn)) is a generator of n- Tateel(C) and n- Tate(C)
and we have an exact equivalence of exact categories

(4-6) n- Tateℵ0(C)−→
∼ P f (An) with An := End(S̃n).

(3) For every object X ∈ n- Tateel
ℵ0
(C) its endomorphism algebra canonically

carries the structure of a Beilinson n-fold cubical algebra. (We refer to [BGW
2016b] for the construction.)

This theorem hinges crucially on our restriction to Tate objects of countable
cardinality. See [BGW 2016c] for a detailed discussion and counter-examples
due to J. Št’ovíček and J. Trlifaj for strictly greater cardinalities. Also, if C is not
split exact, there is no way to save the conclusions of this result. We refer to the
introduction of [BGW 2016b] for an overview.

Proof. (Claim 1) By [BGW 2016c, Theorem 7.2] the category n- Tateel
ℵ0
(C) is

split exact. Thus, its idempotent completion n- Tateℵ0(C) fulfills the claim by
Lemma 4.1.1.

(Claim 2) The statement about the generator for n- Tateel(C) is proven in [BGW
2016c, Proposition 7.4]. Since n- Tate(C) is just the idempotent completion of this
category, each of its objects is a direct summand of an object in n- Tateel(C) and
thus this generator also works for the idempotent completion. The equivalence of
(4-6) stems from Lemma 4.4.2. One has to check that the assumptions of the lemma
hold true. See [BGW 2016b, Theorem 1] for the details.

(Claim 3) This is [BGW 2016b, Theorem 1]. We give a brief survey: Call a
morphism f : X → Y of n-Tate objects bounded if it factors through a lattice in
the target, say X → L ↪→ Y , and discrete if it sends a lattice of the source to
zero. For X = Y , one checks that these morphisms form two-sided ideals, I±1 and
moreover I+1 + I−1 = R. For the latter, most assumptions are needed, especially
C split exact and cardinality κ := ℵ0. See [BGW 2016b] for counter-examples
when these assumptions are not met. The ideals I±2 are defined inductively: For
any nested pair of lattices L ′ ↪→ L ↪→ X , the quotient L/L ′ is an (n − 1)-Tate
object, and one defines I+2 to be those morphisms such that for any factorization
f̄ : L1/L ′1→ L ′2/L2 for f |L1 , over suitable lattices L1, L ′1, L2, L ′2, the morphism
f̄ is bounded, as a morphism of (n−1)-Tate objects. Similarly for I−2 . This pattern
can be extended inductively to define I±i for i = 1, . . . , n. �

We need to check that the cubical algebra actually meets the well-behavedness
criteria we are intending to use later.

Proposition 4.5.2. The cubical algebra End(S̃n) is good in the sense of Definition
3.2.2.
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Proof. Let us only treat the case of local left units. We prove this by induction
in n, starting from n = 1. Suppose M := { f : X1→ X2} is a finite set of trace-class
morphisms. In particular, each such f is a finite morphism (viewed as a 1-Tate
object of (n − 1)-Tate objects). Then, for each f ∈ M , being both bounded and
discrete, we can find lattices L ′1 ↪→ X1 and L2 ↪→ X2 so that this f factors as

f : X1 � X1/L ′1→ L2 ↪→ X2.

These being found, we find one L ′1, resp. one L2, having this property simultane-
ously for all f in the set by taking common sublattices, resp. over-lattices, of the
corresponding lattices for the individual f — this uses the (co)directedness of the
Sato Grassmannian (Theorem 4.2.3).

Fix any over-lattice L1 of L ′1. Then for every sublattice L ′2 of L2 we get an
induced morphism

f |L1 : L1/L ′1→ L2→ L2/L ′2.

By assumption, each such f |L1 is a trace-class morphism of (n− 1)-Tate objects,
so we look at a finite set of trace-class morphisms and can find a local left unit, say
e1, by induction (if n = 1 arbitrary morphisms between objects in C are trace-class,
so we can just use the identity morphism of C. If n ≥ 2 we argue by induction). It
remains to lift these local left units to a map from X1 to X2.

(Step A) If we replace L ′2 by a sublattice L ′′2, we get a commutative diagram,
depicted below on the left:

(4-7)

L1/L ′1

�� ##

L ′2/L ′′2
� � // L2/L ′′2 // // L2/L ′2

L2

L1/L ′1

::

� � // L+1 /L ′1 // //

OO

L+1 /L1

The downward arrow exists since we even have a map to L2 without quotienting
out anything. We get

f − σL2/L ′2 f : L1/L ′1→ L ′2/L ′′2,

where σ is a section of the right-hand side epimorphism. Since f is trace-class and
trace-class morphisms form an ideal, this morphism is also trace-class. Thus, we
again face a trace-class morphism of (n− 1)-Tate objects and again, by induction,
we find a local left unit, say e2. Now the diagonal (2×2)-matrix (e1⊕e2) is a local
left unit on L2/L ′′2 = L ′2/L ′′2 ⊕ L2/L ′2.

Since we work with a Tate object of countable cardinality, perform this inductively
on an coexhaustive family of lattices L ′2, going step-by-step to smaller sublattices.
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This produces a local left unit to the morphisms f , each restricted to L1,

L1/L ′1→ L2.

(Step B) Now, we proceed analogously and step-by-step replace L1 by an over-
lattice L+1 . We get the commutative Diagram (4-7) (depicted on the right) above.
This diagram commutes since our morphism was actually defined on X/L ′1, so the
restrictions to any lattices are necessarily compatible. Again, picking a left section
σ in the top row, we get

f − f σ : L+1 /L1→ L2

and since f is trace-class, so is this morphism. Now by Step A, we can find a local
left unit e2 for these morphisms (as f runs through our finite set of morphisms) and
so the diagonal (2×2)-matrix e1⊕e2 is a local left unit on L+1 /L ′1= L1/L ′1⊕L+1 /L1.
For local right units an analogous argument works. This finishes the proof. �

Based on the preceding theorem, we make the following section-wide definitions:
Let C be a split exact and idempotent complete exact category with a generator S.

Let n ≥ 0 be arbitrary. Define

(4-8) Cn := n- Tateℵ0(C), S̃n := S((t1)) · · · ((tn)), An := End(S̃n).

By Theorem 4.5.1, the algebra An is a good n-fold cubical algebra and there is an
exact equivalence of exact categories

(4-9) Cn→ P f (An), Z 7→ Hom(S̃n, Z).

In particular, all these exact categories are idempotent complete, split exact and
come equipped with a convenient fixed generator. Since all An are cubical algebras,
we shall freely write I+i , I−i , I 0

i for the respective ideals of bounded, discrete or
finite morphisms. See [BGW 2016b] for further background.

Below, we shall unravel step-by-step the nature of certain quotient and boundary
homomorphisms coming from Theorem 4.5.1.

Proposition 4.5.3. As always in this section, assume C is an idempotent complete
split exact category with a generator S ∈ C. Then the diagram

Tateℵ0(Cn) //

∼

��

(Tateel
ℵ0
(Cn)/ Inda

ℵ0
(Cn))

ic

∼

��

P f (An+1) // P f (An+1/I−1 )

commutes, where the top row rightward arrow is induced from the quotient functor
of Inda

ℵ0
(Cn) ↪→ Tateel

ℵ0
(Cn), and the bottom row rightward arrow is induced from
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the quotient morphism of the ideal inclusion I−1 ↪→ An+1. The downward arrows
are exact equivalences.

Proof. Firstly, since Cn is split exact, the categories Proa
ℵ0
(Cn) and Tateel

ℵ0
(Cn) are

also split exact categories [BGW 2016c, Theorem 4.2(6) and Proposition 5.23].
Moreover, Cn is idempotent complete and thus Inda

ℵ0
(Cn) ↪→ Tateel

ℵ0
(Cn) is right

s-filtering by Proposition 4.3.1. Furthermore, every object in Tateel
ℵ0
(Cn) is a direct

summand of S̃ := S̃n+1. We use Lemma 4.4.4 in order to deduce that the diagram

Tateℵ0(Cn) //

∼

��

(Tateel
ℵ0
(Cn)/ Inda

ℵ0
(Cn))

ic

∼

��

P f (An+1) // P f (An+1/I ∗)

commutes, where we have used that Tateel
ℵ0
(Cn)

ic
= Tateℵ0(Cn) in the upper left

corner and An+1 := End(n+1)- Tateℵ0 (C)
(S̃), and where the ideal I ∗ is generated by

morphisms admitting a factorization S̃→ I → S̃ with I ∈ Inda
ℵ0
(Cn). We claim

that I ∗ = I−1 , where I−1 refers to the structure of An+1 as an (n+ 1)-fold cubical
algebra: Suppose f ∈ I ∗. Then f factors as S̃→ I → S̃ with I ∈ Inda

ℵ0
(Cn) and

by Proposition 4.2.4 there exists a lattice L ↪→ S̃ such that we obtain a further
factorization S̃ � S̃/L→ I→ S̃. In particular, f sends the lattice L to zero so that
f ∈ I−1 . Conversely, suppose f ∈ I−1 . Let L ↪→ S̃ be a lattice which is sent to zero.

Then f factors as S̃ � S̃/L→ S̃ just by the universal property of quotients. As L is
a lattice, S̃/L ∈ Inda

ℵ0
(Cn), proving f ∈ I ∗. This finishes the proof of I ∗ = I−1 . �

We shall also need the following variation of the same idea.

Proposition 4.5.4. As always in this section, assume C is an idempotent complete
split exact category with a generator S ∈ C. Define

Ŝ := S((t1)) · · · ((tn))[[tn+1]] ∈ Proa
ℵ0
(Cn),

as in (4-4). Then E := EndProa
ℵ0
(Cn)(Ŝ) is an (n+ 1)-fold cubical algebra and we

have a commutative diagram

(4-10)

[Proa
ℵ0
(Cn)]

ic //

∼

��

[Proa
ℵ0
(Cn)/Cn]

ic

∼

��

P f (E) // P f (E/I 0
1 (Ŝ))

where the top row rightward morphism is the quotient functor induced from Cn ↪→

Proa
ℵ0
(Cn), the bottom row rightward morphism stems from the ideal inclusion

I 0
1 ↪→ E and the downward arrows are exact equivalences of exact categories.
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Proof. The (n+ 1)-fold cubical algebra structure is immediate from Theorem 4.5.1,
employing that Proa

ℵ0
(Cn) ↪→ Cn+1 is a full subcategory, so it does not matter

whether we consider endomorphisms in Proa
ℵ0
(Cn) or the (n + 1)-Tate category

Cn+1. By Proposition 4.3.1 the inclusion Cn ↪→ Proa
ℵ0
(Cn) is right s-filtering. This

produces the top row of the following diagram:

(4-11)

Cn
� � // Proa

ℵ0
(Cn)

��

// // Proa
ℵ0
(Cn)/Cn

��

[Proa
ℵ0
(Cn)]

ic

��

// // [Proa
ℵ0
(Cn)/Cn]

ic

��

P f (E) // P f (E/I 0
1 )

We construct the second row from the first by taking the fully faithful embedding into
the idempotent completion; the right-ward functor exists by the 2-universal property
[Bühler 2010, Proposition 6.10]. Next, construct the third row by Lemma 4.4.4. To
this end, we employ the shorthands

Ŝ := S((t1)) · · · ((tn))[[tn+1]] and E := EndProa
ℵ0
(Cn)(Ŝ)

so that this lemma literally yields the third row

(4-12) P f (EndProa
ℵ0
(Cn)(Ŝ))� P f (EndProa

ℵ0
(Cn)/Cn (Ŝ))

along with the description

(4-13) EndProa
ℵ0
(Cn)/Cn (Ŝ)= (EndProa

ℵ0
(Cn) Ŝ)/〈Ŝ→ C→ Ŝ with C ∈ Cn〉.

However, Proa
ℵ0
(Cn) is a full subcategory of Cn+1, so in (4-12) we could just as

well compute the left-hand side endomorphism algebra in Cn+1. By Theorem 4.5.1
the latter is canonically an (n + 1)-fold cubical algebra, so this structure is also
available for the endomorphism algebra on the left-hand side in (4-12), and in
particular we can speak of the two-sided ideal I 0

1 . Next, we claim that

(4-14) I 0
1 = 〈Ŝ→ C→ Ŝ with C ∈ Cn〉

as two-sided ideals in (4-13). Suppose f ∈ I 0
1 . Then f : Ŝ → Ŝ is discrete as

a morphism of 1-Tate objects (with values in n-Tate objects). That is, there is a
lattice L ↪→ Ŝ that is sent to zero. Thus, f factors as Ŝ � Ŝ/L→ Ŝ, where Ŝ/L is
an ind-object (since L is a lattice), and simultaneously a pro-object since it is an
admissible quotient of the pro-object Ŝ. Thus, Ŝ/L ∈ Cn by Theorem 4.2.3, and
thus f lies in the right-hand side ideal in (4-14). Conversely, suppose f lies in the
right-hand side ideal in (4-14). Consider the map Ŝ→ C . Since C ↪→ Proa

ℵ0
(C)
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is right filtering by Proposition 4.3.1, this arrow admits a factorization Ŝ � C̃→ C
with C̃ ∈ Cn . Here ker(Ŝ � C̃) exists, it is a lattice (since it is a subobject of a
pro-object and thus itself a pro-object, and the quotient by it lies in Cn , which can
trivially be viewed as an ind-object), and so Ŝ → C sends a lattice to zero and
therefore so does f : Ŝ→C→ Ŝ. Hence, f ∈ I−1 . As Ŝ is a pro-object, we trivially
have f ∈ I+1 and thus f ∈ I+1 ∩ I−1 = I 0

1 . This finishes the proof of (4-14). Thus,
(4-12) becomes

P f (E)= P f (EndProa
ℵ0
(Cn)(Ŝ))→ P f (EndProa

ℵ0
(Cn)/Cn (Ŝ))= P f (E/I 0

1 ).

This settles the last row in Diagram (4-11). Note that the explicit description of
the middle arrow in Lemma 4.4.4 under these identifications also confirms that
P f (E)→ P f (E/I 0

1 ) just comes from the map E � E/I 0
1 . �

4.5.2. Relation to the abstract Hochschild symbol. Next, we shall replace the
associative algebra E in the previous proposition by a certain ideal: With the
notation of the proposition, write

(4-15) S̃n+1 = S((t1)) · · · ((tn+1))= Ŝ⊕ S((t1)) · · · ((tn))[t−1
n+1].

Now there is an (nonunital) embedding of algebras

(4-16) E ↪→ End(S((t1)) · · · ((tn+1)))= An+1 by f 7→
(

f 0
0 0

)
,

acting only on Ŝ. Clearly, with this interpretation, f is sent into the ideal I+1 (S̃n+1)

since each of these morphisms factors through the lattice Ŝ ↪→ S̃n+1 of S̃n+1 as an
(n+ 1)-Tate object. Analogously, if f lies in I 0

1 (Ŝ), this embedding maps it to I 0
1

of S̃n+1.
Diagram (4-10) induces a commutative square in Hochschild homology, depicted

below as the upper square.

(4-17)

HH [Proa
ℵ0
(Cn)]

ic //

��

HH [Proa
ℵ0
(Cn)/Cn]

ic

��

HH(E) //

��

HH(E/I 0
1 (Ŝ))

��

HH(I+1 ) // HH(I+1 /I 0
1 ).

The lower square arises from the embedding morphism which we have just discussed,
Equation (4-16). Note that I+1 and I 0

1 refer to the ideals of An+1!
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Lemma 4.5.5 [Braunling 2018]. The following diagram of An+1-bimodules

I 0
1

diag
//

=

��

I+1 ⊕ I−1
diff

//

prI+1

��

An+1

(1)

��

3

zz

An //

=

��

I+1 //

incl

��

An+1/I−1

(2)

��

An // An+1 // An+1/An

is commutative with exact rows. The second and third row are also exact sequences
of associative algebras. See (3-7) for the definition of the morphism 3.

Proof. We will construct this diagram row by row. The exactness of the first row
stems from I 0

1 := I+1 ∩ I−1 and I+1 + I−1 = An+1, i.e., it comes directly from the
axioms of a cubical algebra. The second row is obtained from quotienting out I−1 .
The downward arrows, in particular (1), are just the quotient maps. Note that the
exactness of the second row implies that the quotient on the right-hand side can
be rewritten as An ↪→ I+1 � I+1 /An . The inclusion I+1 ↪→ An+1 thus induces the
last exact row. Note that the arrow (2) is induced from I+1 ↪→ An+1. As a result,
the composition of (1) and (2), An+1 → An+1/An , is not the quotient map, but
precisely the map 3 (by diagram chase). �

Now we apply Hochschild homology to Diagram (4-10) of Proposition 4.5.4.
We get a commutative diagram

(4-18)

HH(Proa
ℵ0
(Cn)) //

��

HH(Proa
ℵ0
(Cn)/Cn) //

��

6HH(Cn)

��

HH(E) // HH(E/I 0
1 (Ŝ)) // 6HH(I 0

1 (Ŝ))

This is induced from a square: In the top row we can identify the homotopy fiber by
Keller’s localization sequence, which is applicable by the exactness of the induced
sequence of derived categories (Proposition 4.3.2). In the bottom row we can
identify the homotopy fiber by the long exact sequence in the Hochschild homology
of algebras, Theorem 1.0.12, of the algebra extension I 0

1 (Ŝ) ↪→ E � E/I 0
1 (Ŝ), and

the (one-sided) unitality of I 0
1 (this holds since our cubical algebras are good). In

view of Diagram (4-17) we can replace the lower row of Diagram (4-18) by the
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following middle row:

(4-19)

HH(Proa
ℵ0
(Cn)) //

��

HH(Proa
ℵ0
(Cn)/Cn) //

��

6HH(Cn)

��

HH(I+1 ) //

��

HH(I+1 /I 0
1 )

//

��

6HH(I 0
1 )

��

HH(An+1) // HH(An+1/An) // 6HH(An)

where I+1 , I 0
1 refer to the ideals of An+1 as usual. Correspondingly, the bottom

rows are induced from the inclusion I+1 ↪→ An+1, resp. An+1 ↪→ An , as described
in Lemma 4.5.5.

Proposition 4.5.6. As always in this section, assume C is an idempotent complete
split exact category with a generator S ∈ C. Then the following diagram commutes:

(4-20)

HH(Tateℵ0(Cn))
quot
//

∼

��

HH((Tateel
ℵ0
(Cn)/ Inda

ℵ0
(Cn))

ic)
∼
// HH((Proa

ℵ0
(Cn)/Cn)

ic)

��

HH(An+1)
3

// HH(An+1/An)

Proof. Proposition 4.5.3 provides a commutative diagram of exact categories and
exact functors and applying Hochschild homology gives us the commutative diagram

HH Tateℵ0(Cn) //

∼

��

HH((Tateel
ℵ0
(Cn)/ Inda

ℵ0
(Cn))

ic)

∼

��

HH(An+1) // HH(An+1/I−1 )

whose downward arrows are isomorphisms. Secondly, Proposition 4.3.5 tells us
that the inclusion

(4-21) Proa
ℵ0
(Cn) ↪→ Tateel

ℵ0
(Cn)

induces the exact equivalence of exact categories

(4-22) Proa
ℵ0
(Cn)/Cn −→

∼ Tateel
ℵ0
(Cn)/ Inda

ℵ0
(Cn).
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If we apply Lemma 4.4.3 to the fully exact subcategory of (4-21) we obtain the
commutative square

Proa
ℵ0
(Cn)

ic //

��

Tateel
ℵ0
(Cn)

ic

��

P f (EndC(S̃n[[tn+1]])) // P f (EndD(S̃n+1))

(S̃n[[tn+1]] was previously also called Ŝ; see Proposition 4.5.4) where the bottom
rightward arrow stems from the algebra homomorphism

(4-23) End(S̃n[[tn+1]])→ End(S̃n[[tn+1]]⊕ S̃n[t−1
n+1]), f 7→

(
f 0
0 0

)
.

By Proposition 4.5.3 the equivalence Tate(Cn)−→
∼ P f (An+1) identifies the quotient

functor Tateel
ℵ0
(Cn)→ Tateel

ℵ0
(Cn)/ Inda

ℵ0
(Cn) just with quotienting out the ideal

I−1 . In view of (4-23) the inverse of the equivalence in (4-22) corresponds to
finding an endomorphism of S̃n[[tn+1]] which is mapped under the map of (4-23)
to a given element (alternatively this follows from the description of the inverse
functor on morphisms as given by Proposition 4.3.5). But this is easy to achieve
concretely: Given f ∈ EndD(S̃n+1) we compose it with a projector to S̃n[[tn+1]],
i.e., the composition of both these steps is realized by

(4-24) An+1→ An+1/I−1 → End(S̃n[[tn+1]])
(∗)
−→ E/I 0

1 (Ŝ)

(with E/I 0
1 (Ŝ) and the arrow (∗) as in Diagram (4-10))

f 7→ P+ f 7→ P+ f ,

where P+ is the idempotent projecting S̃n+1 to S̃n[[tn+1]]. Finally, note that we
already know what the map

HH((Proa
ℵ0
(Cn)/Cn)

ic)−→ HH(An+1/An)

does: It arises as the composition of a series of arrows in Diagrams (4-18), (4-19),
namely

HH(Proa
ℵ0
(Cn)/C

n)→ HH(E/I 0
1 (Ŝ))→ HH(I+1 /I 0

1 )→ HH(An+1/An),

where the last two arrows are just induced from nonunital inclusions of associa-
tive algebras into each other. As our lift of (4-24) already gives us a concrete
representative for HH(E/I 0

1 (Ŝ)), we see that

(4-25) f 7→ P+ f
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is a representative of the algebra homomorphism making Diagram (4-20) commuta-
tive. This is by the way indeed a ring homomorphism: The failure of P+ to respect
multiplication of f, g ∈ An+1 is

d := P+( f · g)− (P+ f ) · (P+g)= P+ f (1− P+)g.

Since the image of P+ lies in the lattice S̃n[[tn+1]] of S̃n+1, we have d∈ I+1 , and since
the kernel of 1−P+ contains the lattice, we also have d∈ I−1 . Thus, d∈ I+1 ∩ I−1 = I 0

1
and therefore d≡ 0 in An+1/An = An+1/I 0

1 . Finally, observe that the map in (4-25)
is a concrete representative of the map 3 (see (3-7)). This finishes the proof. �

Theorem 4.5.7. As always in this section, assume C is an idempotent complete
split exact category with a generator S ∈ C. Then the natural diagram

HH(Tateℵ0(Cn)) //

∼

��

6HH(Cn)

∼

��

HH(An+1) d
// 6HH(An)

commutes. Here the downward arrows are the exact equivalences of (4-9), and d is
the homomorphism of degree −1 defined in (3-9) (or in [Braunling 2018, §6]).

Proof. The top row stems from the square of exact categories in line (4-1). By the
crucial idea of Sho Saito [2015] (his proof of the Kapranov–Previdi delooping
conjecture), after taking algebraic K -theory, this diagram becomes homotopy
Cartesian. However, the same idea works with Hochschild homology, and we
get the homotopy commutative diagram

(4-26)

HH(Cn) //

��

HH(Proa
ℵ0
(Cn)) //

��

HH(Proa
ℵ0
(Cn)/Cn)

��

HH(Inda
ℵ0
(Cn)) // HH(Tateel

ℵ0
(Cn)) // HH(Tateel

ℵ0
(Cn)/ Inda

ℵ0
(Cn))

whose rows are fiber sequences, by Keller’s localization theorem; see Theorem 4.3.3.
In more detail: The rows stem from the fact that Cn ↪→Proa

ℵ0
(Cn) is right s-filtering,

resp. Proa
ℵ0
(Cn) ↪→ Tateel

ℵ0
(Cn) is left s-filtering. All of these constructions are

functorial on the level of exact functors of exact categories and this induces the
downward arrows. Following Saito’s idea, since the right-hand side downward map
stems from an exact equivalence, Proposition 4.3.5, it is an equivalence, and thus the
square on the left-hand side is homotopy bi-Cartesian. We obtain the equivalence
HH(Cn) −→

∼ 6HH(Tateel
ℵ0
(Cn)) and equivalences which allow us to phrase this

equivalence as the boundary map of the fiber sequence induced from the top row in
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Diagram (4-26). Aside: Note that the underlying equivalence

HH(Tateel
ℵ0
(Cn))∼ HH(Proa

ℵ0
(Cn)/Cn)

of Hochschild spectra does not come from an exact equivalence of exact categories.
By Proposition 4.5.6 we know that under the identification of either side with the
Hochschild homology of a category of projective modules and following the middle
downward arrow of Diagram (4-19), this is induced from the algebra homomorphism
3 : HH(An+1) → HH(An+1/An). But from Diagram (4-19) we also see that
the boundary map of the localization sequence for Cn ↪→ Proa(Cn) (in the top
row) commutes with the boundary map of the long exact sequence in Hochschild
homology of the algebra extension

An ↪→ An+1 � An+1/An

(in the bottom row). We had denoted the latter boundary map by δ in (3-9). Thus,
in conjunction with the identification with the boundary map of the Tate category
variant (Equation (4-26)), the map is δ ◦3, which is precisely the definition of the
map d in the statement of the theorem. This finishes the proof. �

5. The Beilinson residue

5.1. Adèles of a scheme.

5.1.1. Definition. Let us recall as much material about adèles of schemes as we
need. The original source is Beilinson’s article [1980]. Let k be a field. Suppose X
is a Noetherian separated k-scheme. Given a scheme point η ∈ X , we shall write
{η} for its Zariski closure, equipped with the reduced closed subscheme structure.
Moreover, we also abuse notation and write η for its defining ideal sheaf.

When given points η0, η1 ∈ X , we write “η0 ≥ η1” if {η0} 3 η1, i.e., η1 is a
specialization of η0. Write S(X)n := {(η0 > · · · > ηn), ηi ∈ X} for length n + 1
sequences without repetitions. Suppose Kn ⊆ S(X)n is a subset, for some chosen
n ≥ 0. Following [Beilinson 1980], define η(Kn) := {(η1 > · · · > ηn) such that
(η > η1 > · · ·> ηn) ∈ Kn}, a subset of S(X)n−1.

Definition 5.1.1. Let X be a Noetherian k-scheme.

(1) Assume F is a coherent sheaf. Define inductively

A(K0,F) :=
∏
η∈K0

lim
←−

i

F⊗OX OX,η/η
i

for n = 0, and

(5-1) A(Kn,F) :=
∏
η∈X

lim
←−

i

A(ηKn,F⊗OX OX,η/η
i )

for n ≥ 1.
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(2) For a quasicoherent sheaf F, define A(Kn,F) := colim
−−−→

F j A(Kn,F j ), where
F j runs through the coherent subsheaves of F.

Note that the arguments in (5-1) are usually only quasicoherent, so this additional
definition is necessary to give A(−,F) a meaning, even if F happens to be coherent.

Theorem 5.1.2 (A. Beilinson [1980, §2]). Let X be a Noetherian scheme.

(1) For any n ≥ 0 and subset Kn ⊆ S(X)n , the above defines an exact functor

A(Kn,−) : QCoh(X)→Mod(OX ).

(2) For every quasicoherent sheaf F, this gives rise to a flasque resolution

(5-2) 0→ F→ A0
F→ A1

F→ A2
F→ · · · ,

where Ai
F(U ) := A(S(U )i ,F) for any Zariski open U ⊆ X.

We will not go into further detail. See [Huber 1991] for the proof.

5.1.2. Local structure for a single flag. We fix a flag 4 = (η0 > · · · > ηr ) with
codimX {ηi } = i throughout this subsection. We may evaluate the adèle group
AX (4,OX ) of Definition 5.1.1 for this individual flag. Unraveling the definition, it
consists of alternating the localizations at a multiplicative set, and completions at
ideals. For the sake of the following arguments, we will introduce a notation to keep
these two steps conceptually separated — this notation will not appear anywhere
else again. Namely,

Definition 5.1.3. Set Lr := Oηr and Cr := Ôηr . Inductively for j ≤ r let

• L j−1 := C j [(Oη j − η j−1)
−1
] (“localization”),

• C j−1 := lim
←−
i j−1

L j−1/η
i j−1
j−1 (“completion”).

This proceeds downward along j until we reach AX (4,OX ) = C0. So this is
a step-by-step description of the formation of an adèle completion. A detailed
verification of this is given in [BGW 2016a, §4], which uses notation largely
compatible with ours, except for our C(−) being called A(−) in Definition 4.4. The
localizations and completions are ring maps which, as affine schemes, lead to the
following sequence of flat morphisms:

(5-3) Spec AX (4,F)→ · · · → Spec Cr−1

→ Spec Lr−1→ Spec Cr → Spec Lr → X.

The behavior of the prime ideals under these maps is very carefully studied in
[Yekutieli 1992, §3] and [BGW 2016a], but we will not need more than the
following:

Lemma 5.1.4 [BGW 2016a, Lemma 4.5]. For any i = 0, . . . , r we have
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(1) C j is a faithfully flat Noetherian Oη j -algebra.

(2) The maximal ideals of the ring C j are precisely the primes minimal over η j C j .

(3) The ring C j is a finite product of j-dimensional reduced local rings, each
complete with respect to its maximal ideal.

5.1.3. Coherent Cousin complex. For the sake of legibility, let us allow ourselves
(just for this section) the shorthand

H r
x (X) := H r

x (X, �
n),

where x ∈ X is any scheme point, and n any fixed integer. If R is a ring, we
shall also write H r

x (R) := H r
x (Spec R). We may now consider the coherent Cousin

complex of the scheme X for the coherent sheaf �n , i.e., with the above shorthand

(5-4) Cous•(X) : · · ·
d
−→

∐
xr−2∈Xr−2

H r−2
xr−2

(X)

d
−→

∐
xr−1∈Xr−1

H r−1
xr−1

(X)
d
−→

∐
xr∈Xr

H r
xr
(X)−→ · · ·

We write d for its differential and d∗
∗

for the components of d among the individual
direct summands, as in

d =
∑

xr ,xr+1

(dxr
xr+1
: H r

xr
(X)→ H r+1

xr+1
(X)).

We proceed as follows: For a flat morphism f : X → Y of schemes we know by
Proposition 1.3.2 that there is an induced pullback of coherent Cousin complexes
f ∗ : 0(Y,Cous•(Y )) → 0(X,Cous•(X)) and even better, we understand in a
very precise way the induced morphisms between the individual direct summands
appearing in (5-4) (see again Proposition 1.3.2 for details). For the flag 4 with
ηi ∈ X i that we had fixed, we may consider the diagram consisting only of the
summands of (5-4) for xr := ηr (and the morphisms between them instead of d
being just the respective component dηr

ηr+1). This yields a diagram, call it Q X ,

Q X : · · · → H r−2
ηr−2

(X)→ H r−1
ηr−1

(X)→ H r
ηr
(X)→ 0.

(Of course this will not be a complex anymore; there is no reason the composition
of individual d∗

∗
should be zero). Since f ∗ commutes with the differential d of

the Cousin complex, the components dηr
ηr+1 individually also commute with f ∗.

Therefore f ∗ induces also a flat pullback between the diagrams of shape very much
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like Q X , namely,

Q′ : · · · →
∐

xr−2
H r−2

xr−2
(Y ) →

∐
xr−1

H r−1
xr−1

(Y ) →
∐

xr
H r

xr
(Y ) → 0

↑ ↑ ↑

QY : · · · → H r−2
ηr−2

(Y ) → H r−1
ηr−1

(Y ) → H r
ηr
(Y ) → 0

where for each i the points xi run through the finitely many irreducible components
of the scheme-theoretic fiber f −1(ηi ) (this is because by Proposition 1.3.2 the
pullback f ∗ of the direct summands appearing in the lower row has nonzero image
at most in these direct summands of the coherent Cousin complex of X ). For
example, if each of the points ηi has precisely one preimage under f , the top row
complex would literally have the shape of Q, but with the ηi each replaced by
f −1(ηi ).

Now consider the following commutative diagram (whose construction we will
explain below):

(5-5)

...
...

‖ ‖

4) →
∐

H r−3
ηr−3

(Cr−1) →
∐

H r−2
ηr−2

(Cr−1) →
∐

H r−1
ηr−1

(Cr−1)

↑ ↑ ‖

3) →
∐

H r−3
ηr−3

(Lr−1) →
∐

H r−2
ηr−2

(Lr−1) →
∐

H r−1
ηr−1

(Lr−1)

‖ ‖ ‖

2) →
∐

H r−3
ηr−3

(Cr ) →
∐

H r−2
ηr−2

(Cr ) →
∐

H r−1
ηr−1

(Cr ) → H r
ηr
(Cr )

↑ ↑ ↑ ‖

1) → H r−3
ηr−3

(Lr ) → H r−2
ηr−2

(Lr ) → H r−1
ηr−1

(Lr ) → H r
ηr
(Lr )

‖ ‖ ‖ ‖

0) → H r−3
ηr−3

(X) → H r−2
ηr−2

(X) → H r−1
ηr−1

(X) → H r
ηr
(X)

To construct this diagram, we begin with the bottom row and work upwards. The
bottom row is a sequence of direct summands in the Cousin complex of X . The rows
above now result inductively from applying the flat pullback along the respective
morphisms in the chain of (5-3). More precisely:

(Odd rows) To obtain odd-indexed rows: This is the flat pullback of the row below
along the localization

L j := C j+1[(Oη j+1 − η j )
−1
].

The primes in such a localization correspond bijectively to those primes P of
C j+1 with P ∩ (Oη j+1 − η j )=∅. Hence, the entire flag η0 > · · ·> η j lies also in
Spec L j . Since the local cohomology of the row below takes supports in η0, . . . , η j

respectively, it follows that in each case excision (Lemma 1.1.3) guarantees that
the flat pullback induces an isomorphism, explaining the equalities “‖”. Note that
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under an open immersion a point has at most one preimage, so direct summands do
not fiber up into further direct summands when going upward.

(Even rows) To obtain the even-indexed rows: This is the flat pullback of the row
below along the completion

C j := lim
←−

i j

L j/η
i j
j .

Firstly, we note that in a completion a point can have several (finitely many)
preimages; therefore several summands may appear in the new row (as indicated
in the above diagram); see Proposition 1.3.2 for a precise description of the map
between these direct summands. Applying Lemma 1.1.4 to I = I ′ := η j , we obtain
that the pullback induces an isomorphism

H p
η j
(Spec L j ,M)−→∼ H p

η j
(Spec C j , M̂) |L j ,

producing the isomorphism of the right-most nonzero term with the corresponding
term in the row below.

In the above diagram we find “downward staircase steps” on the right, of the
shape

(5-6)

∐
H r−1
ηr−1

(Cr−1)

‖∐
H r−1
ηr−1

(Lr−1)

‖∐
H r−1
ηr−1

(Cr ) → H r
ηr
(Cr ),

for varying r . The arrows “‖” are actually upward arrows coming from the flat
pullback and we had seen above that these are isomorphisms in the situation at
hand. So we may run them backwards, giving something that could be called an
adèle enrichment of the usual boundary maps of the coherent Cousin complex. Let
us give them a name:

Definition 5.1.5 (Adèle boundary maps, Cousin version). For a flag η0 > · · ·> ηn

and a quasicoherent sheaf F we call the morphisms

∂ηr
ηr+1
: H r

ηr
(Cr )→ H r+1

ηr+1
(Cr+1),

i.e., in self-contained notation,

H r
ηr
(A(ηr > · · ·> ηn,OX ), A(ηr > · · ·> ηn,F))

→ H r+1
ηr+1

(A(ηr+1 > · · ·> ηn,OX ), A(ηr+1 > · · ·> ηn,F)),

the (Cousin) adèle boundary maps.



HOCHSCHILD CONIVEAU SPECTRAL SEQUENCE AND THE BEILINSON RESIDUE 319

Using the HKR theorem with supports and its compatibility with boundary map
on the local cohomology vs. Hochschild side, Proposition 2.0.1, there is also a
Hochschild counterpart of the same map for F :=�n:

Definition 5.1.6 (Adèle boundary maps, Hochschild version). Suppose X is a
smooth separated scheme of pure dimension n. For a flag η0 > · · · > ηn with
codimX ηi = i we call the morphisms

HH∂ηr
ηr+1
: HHηr

n−r (Cr )→ HHηr+1
n−(r+1)(Cr+1)

the (Hochschild) adèle boundary maps.

5.1.4. Tate realization. As explained above, we have the concatenation of flat
morphisms

Spec AX (4,F)→ · · · → Spec Cr−1→ Spec Lr−1→ Spec Cr → Spec Lr → X.

We will now construct exact functors originating from the module categories of the
individual rings appearing along this composition, i.e., functors Mod f (R)→ (•),
where Mod f (R) denotes the category of finitely generated R-modules and “ •”
represents suitably chosen exact categories built from ind-, pro- and Tate objects
(as recalled in Section 4.2). The basic idea is that AX (4,F) is a finite product
of n-local fields [Yekutieli 1992; BGW 2016a] and can be presented as an n-Tate
object in finite-dimensional k-vector spaces, say

AX (4,F)= colim
−−−→

lim
←−
· · · colim
−−−→

lim
←−

←−α−→

Aα with Aα ∈ Vect f (k),

and then there is an exact functor

(5-7) Mod f (AX (4,F))→ n- Tateℵ0(Vect f (k)),

M 7→ colim
−−−→

lim
←−
· · · colim
−−−→

lim
←−

←−α−→

(M ⊗ Aα).

See [BGW 2016c, §7.2] for details. As the rings Ln−r arise from r alternating
localizations and completions, and similarly for Cn−r , there are analogous exact
functors taking values in r-Tate objects. At the risk of repeating ourselves, let us
unravel a bit the structure of these analogues:

Each completion of a ring can be interpreted as a pro-limit, given by a projective
system (as depicted below on the left), and each localization as an ind-limit, given
by the inductive limit of finitely generated submodules inside the localization (as
depicted below on the right):

R̂ = lim
←−

i

R/I i and colim
−−−→

t∈S

1
t

R = R[S−1
].
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We write 1
t R to denote the R-submodule of R[S−1

] generated by the element 1
t . Con-

cretely, let X/k is an n-dimensional scheme. Then, by presenting Cn−r resp. Ln−r

by alternating localizations and completions (as dictated by Definition 5.1.3), the
analogue of the functor in line (5-7) yields exact functors

Mod f (Cn)→ Proa
ℵ0
(Vect f (k))

Mod f (Ln−1)→ Inda
ℵ0

Proa
ℵ0
(Vect f (k))(5-8)

Mod f (Cn−1)→ Proa
ℵ0

Inda
ℵ0

Proa
ℵ0
(Vect f (k))

...

and in fact all the pairs of ind/pro-limits lie in the subcategory of Tate objects so
that

...

Mod f (C1)→ Proa
ℵ0
((n− 1)- Tateℵ0)(Vect f (k))

Mod f (L0)→ (n- Tateℵ0)(Vect f (k))(5-9)

Mod f (C0)→ Proa
ℵ0
(n- Tateℵ0)(Vect f (k))

and C0 = A(4,OX ) still lies in (n- Tateℵ0)(Vect f (k)) since the outermost pro-limit
is just taken over nil-thickenings of the irreducible components/minimal primes.
These pro-limits reduce to an eventually stationary projective system and thus
already exist in the n-Tate category without having to take a further category of
pro-objects. As a result, A(4,OX )-modules can naturally be sent to their associated
n-Tate object in the category of finite-dimensional k-vector spaces.

Remark 5.1.7. The exactness of these functors can be shown step-by-step: For
the inductive systems defining ind-objects the exactness is immediately clear, and
for the projective systems defining the pro-objects one uses the Artin–Rees lemma.
We refer to [BGW 2016c, §7.2]. A more detailed investigation of such functors
CZ : Coh(X)→ Proa

ℵ0
(CohZ (X)), F 7→ [i 7→ F/Ji

Z ], where JZ denotes the ideal
sheaf of Z and i ∈ Z≥1, is given in [BGW 2017]. See [BGW 2017, Proposition
3.25].

Proposition 5.1.8. We obtain a commutative diagram

H r
ηr
(Cr )

∼
//

��

H r
ηr
(Lr , �

n)
∼
//

��

HH ηr
n−r (Lr ) //

��

HHn−r ((n− r)
- Tateℵ0(Vect f (k)))

��

H r+1
ηr+1

(Cr+1)
∼
// H r+1

ηr+1
(Lr+1, �

n)
∼
// HH ηr+1

n−r−1(Lr+1) //
HHn−r−1((n− r − 1)

- Tateℵ0(Vect f (k)))

where
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(1) the first and second downward arrows are the adèle boundary maps ∂ηr
ηr+1

of
Definition 5.1.5,

(2) the third downward arrow is the analogous adèle boundary map in Hochschild
homology (i.e., the maps of Definition 5.1.6 up to the canonical isomorphism
induced from swapping Lr with Cr ),

(3) the fourth downward arrow is induced from the delooping map

HH( j - Tateℵ0(−))−→
∼ 6HH(( j − 1)- Tateℵ0(−)).

Proof. (Left square) In the left-most column we consider the adèle boundary map as
constructed in Definition 5.1.5. The relevant local cohomology groups are invariant
under the last completion (so this is Lemma 1.1.4, or see Diagram (5-6)). This
implies the commutativity of the left-most square.

(Middle square) We use the HKR isomorphism with supports both on the left and
on the right and the fact that this transforms the boundary map in local cohomol-
ogy into the boundary map of the Hochschild homology localization sequence,
Proposition 2.0.1. As these maps are also differentials on the E1-page of the coherent
Cousin vs. coniveau spectral sequence, we may also directly cite Theorem 2.1.3,
but unraveling its proof, both results reduce to the same core.

(Right square) We use the realization functors with values in the relevant higher
Tate categories as in lines (5-8)–(5-9). Thus, the commutativity of this square
is equivalent to the fact that these realization functors transform the localization
sequence boundary map into the delooping map of Hochschild homology. We
discuss this at length in [BGW 2017], but see Appendix for a quick overview. �

Proposition 5.1.9. Pick C := Vect f (k) and let Ai denote the Beilinson cubical
algebra as provided by Theorem 4.5.1 for this choice of C. Then there is a canonical
commutative square

HHηr
n−r (Lr ) //

��

HHn−r (An−r )

d
��

HHηr+1
n−r−1(Lr+1) // HHn−r−1(An−r−1)

where the left downward arrow is as in Proposition 5.1.8, the right downward arrow
is the map d of Definition 3.2.6.

Proof. We pick C := Vect f (k), which is a split exact idempotent complete abelian
category with the generator k (viewed as a one-dimensional k-vector space). Hence,
we may use our version of Morita theory and apply Theorem 4.5.1. We obtain
the cubical algebras An−r and An−r−1. By the cited theorem, there is an exact
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equivalence

(5-10) n- Tateℵ0(C)−→
∼ P f (An),

inducing isomorphisms between the respective Hochschild homology groups. Next,
we use Proposition 5.1.8 and using the isomorphisms of line (5-10), we may replace
the objects in the right-most column by the Hochschild homology of the Ai . Thanks
to Theorem 4.5.7 our diagram remains commutative if we replace the downward
arrow between these objects by the map d. This results precisely in our claim. �

5.2. Comparison with the Tate–Beilinson residue in Lie homology. For every n-
fold cubical algebra A over a field k, Beilinson constructs a canonical map

φBeil : H Lie
n+1(ALie, k)→ k,

where ALie denotes the Lie algebra of the associative algebra A, i.e., [x, y] :=
xy − yx . This is [Beilinson 1980, §1, Lemma, (a)]. For n = 1 this functional
describes a class in H 2(ALie, k), and thus a central extension known as Tate’s central
extension. Although not spelled out explicitly, it was originally constructed by Tate
[1968] to have a coordinate-independent definition of the residue on curves. See
[Braunling 2018] for a detailed review. To connect Lie homology with differential
forms, use the square

(5-11)

Hn(ALie, ALie)
ε
//

I ′
��

HHn(A)

φHH

��

Hn+1(ALie, k)
φBeil

// k

of [Braunling 2018]. The map I ′ is a Lie analogue of the map I in the SBI sequence
of Hochschild homology (also known as Connes’s periodicity sequence, see [Loday
1992, Theorem 2.2.1]). Any element coming from any commutative subalgebra
of A can be lifted to the upper left corner, showing that Beilinson’s map and the
abstract Hochschild symbol agree on such elements. See [loc. cit.] One slogan of
the present paper might be:

We show that both Tate’s and Beilinson’s constructions essentially encode
an iterated boundary map in Keller’s localization sequence for Hochschild
homology, after iteratively cutting out the divisors defining a saturated
flag in the scheme.

The novelty here is the interpretation in terms, essentially, of differentials in the
adèlic variant of the Hochschild–Cousin complex or equivalently coherent Cousin
complex:
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Theorem 5.2.1 (Adèle Cousin differentials via abstract Hochschild symbol). There
is a commutative diagram

H 0
η0
(C0)

χ
//

ρ

��

HHn(An)

φHH

��

H n
ηn
(Cn) // k

where

(1) χ is the composition of all rightward arrows in the top rows of Proposition 5.1.8
and Proposition 5.1.9,

(2) ρ is the composition of the downward arrows in the same propositions, con-
catenated for n, n− 1, . . . down to 0,

(3) ξ is the trace of the local cohomology group of a closed point down to k (equal
to literally the trace of an endomorphism of a finite-dimensional k-vector
space) and

(4) φHH is the abstract Hochschild symbol of Definition 3.2.7.

Proof. The left downward arrow is a composition of adèle boundary maps in
the Cousin version, Definition 5.1.5. Thanks to the HKR isomorphism with sup-
ports, in the concrete guise of Proposition 5.1.8, we may isomorphically work
with Hochschild homology with supports instead, as on the left-hand side in the
diagram in Proposition 5.1.9. Moreover, thanks to this proposition, we might
again isomorphically replace these by maps d between the Hochschild homology
groups of cubical algebras. Next, by the very definition of the abstract Hochschild
symbol (Definition 3.2.7; or see [Braunling 2018]) as a composition of all these
maps d, we learn that by composing the isomorphisms that we have just dis-
cussed, the left downward arrow can be identified with the Hochschild symbol
HHn(An)→ HH0(A0)

τ
→ k. �

Theorem 5.2.2 (Agreement with Tate–Beilinson Lie map). Suppose X/k is a
separated, finite type scheme of pure dimension n. Fix a flag 4= (η0 > · · ·> ηn)

with codimX {ηi } = i . The Tate–Beilinson Lie homology residue symbol

�n
Frac Ln/k→ Hn+1((An)Lie, k)

φBeil
−→ k

(as defined in [Beilinson 1980, §1, Lemma, (b)]) also agrees with

�n
Frac Ln/k→ HHη0

n (Ln)→ HHη0
n (C0)→ HHn(An)

φHH
−→ k.

Here L(−),C(−) are as in Definition 5.1.3; in particular they depend on 4.
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Proof. This is very easy now. As R := Frac Ln is commutative, any differential
form f0 d f1 ∧ · · · ∧ d fn lifts to its symmetrization

∑
(−1)π fπ(0) ⊗ fπ(1) ∧ · · · ∧

fπ(n) in the Chevalley–Eilenberg complex describing the Lie homology group
Hn(RLie, RLie). One checks that the Chevalley–Eilenberg differential vanishes on
commuting elements (this is trivial since the latter is a linear combination of terms
each of which contains at least one commutator). Thus, by functoriality, even after
mapping R into the noncommutative algebra An , we still have a Lie homology
cycle. Thus, we have a lift to the upper left corner in Diagram (5-11) and along
with Theorem 5.2.1 this implies the claim. �

Appendix: Boundary map under localization

We recall the following basic construction:

Proposition A.2.3 (pro-realization). Let X be a Noetherian scheme, Z a closed
subset and U := X \ Z the open complement. Define

(A-1) CZ : Coh(X)→ Proa
ℵ0
(CohZ (X)), F 7→ lim

←−
r

jr,∗ j∗r F,

where

• F is an arbitrary coherent sheaf on X ,

• jr : Z (r) ↪→ X the closed immersion of the r-th infinitesimal neighborhood9 of
Z as a closed subscheme with the reduced subscheme structure and

• the limit lim
←−

r is understood as the admissible pro-diagram N→ jr,∗ j∗r F.

Then this defines an exact functor and it sits in the commutative diagram of exact
categories and exact functors:

(A-2)

CohZ (X) //

1
��

Coh(X) //

CZ

��

Coh(U )

��

CohZ (X) // Proa
ℵ0
(CohZ (X)) // Proa

ℵ0
(CohZ (X))/CohZ (X)

The right downward arrow is induced from CZ to the quotient categories, in view of
the natural exact equivalence Coh(U )∼= Coh(X)/CohZ (X).

Proof. See [BGW 2017, Proposition 3.25] for a discussion of the functor CZ (it is
defined using the same notation). The left commutative square is immediate. For

9If IZ is the radical ideal sheaf such that OX /IZ is reduced and has support Z , then Z (r) is the
closed subscheme determined by the ideal sheaf Ir

Z . These sheaves also have support in Z .
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the right commutative square, see [Lemma 3.27, loc. cit.] Alternatively, a number
of statements of this type are discussed in [BGW 2014]. �

The rows in Diagram (A-2) are exact sequences of exact categories, i.e., on the
left-hand side we have fully exact subcategories that are left- resp. right s-filtering in
the middle exact categories and the right-hand side arrows are the quotient functors
to the quotient exact categories. Thus, we obtain the commutative square

HH Coh(U ) //

��

6HH CohZ (X)

1
��

HH(Proa
ℵ0
(CohZ (X))/CohZ (X)) // 6HH CohZ (X)

from Keller’s localization sequence. Using the equivalence

HH(Proa
ℵ0
(CohZ (X))/CohZ (X))−→∼ HH Tateℵ0(CohZ (X)),

this may be rephrased as

HH Coh(U ) //

��

6HH CohZ (X)

1
��

HH Tateℵ0(CohZ X) // 6HH CohZ (X)

As a result, the boundary map of the localization sequence for Hochschild homology
of a closed-open complement Z ↪→ X←↩U is compatible with a delooping boundary
coming from the delooping property of the Tate category. From this fact, one also
obtains that the differentials on the E1-page of the Hochschild coniveau spectral
sequence are compatible with the functor to a Tate category. This is the same
argument as in the proof of Theorem 2.1.3, and is simply based on the fact that
these E1-differentials can be realized as colimits of boundary maps of the ordinary
localization sequence; see [BGW 2017].
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