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THE GRAPH LAPLACIAN AND MORSE INEQUALITIES

IVAN CONTRERAS AND BOYAN XU

We provide an interpretation of the discrete version of Morse inequali-
ties, following Witten’s approach via supersymmetric quantum mechanics
(J. Differential Geom. 17:4 (1982), 661-692), adapted by Forman to finite
graphs, as a particular instance of Morse–Witten theory for cell complexes
(Topology 37:5 (1998), 945–979). We describe the general framework of
graph quantum mechanics and we produce discrete versions of the Hodge
theorems and energy cut-offs within this formulation.

Introduction

The understanding of physical phenomena, as well as the behavior of information
in networks, have been recently studied from the combinatorial and algebraic
perspective.

In this paper we consider a toy version of quantum mechanics [Del Vecchio 2012;
Mnëv 2016] based on a graph-theoretic analogue of the Schrödinger equation. To a
finite graph we associate a partition function, a discretization of the Feynman path
integral which can be used to count special types of paths on graphs and compute
topological invariants. It relies on the discretized version of the Laplace operator

1=∇2
=

n∑
i=1

∂2

∂x2
i
,

which depends on the combinatorics of the graph. We apply this framework to
Morse theory, and we are able to recover Morse inequalities, by following Witten’s
viewpoint of critical points of Morse functions.

The main idea can be summarized as follows: after introducing the supersym-
metric version of quantum mechanics of graphs in terms of the graph Laplacian, we
describe a version of Morse theory on graphs first by partially ordering the set of
edges and vertices of 0 by declaring each vertex lesser than each edge of which it is
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an endpoint. With respect to this ordering, a discrete Morse function is a real-valued
function f on the set of edges and vertices of 0 such that, for all σ ∈ 0,

#{τ > σ | f (τ )≤ f (σ )} ≤ 1,

#{τ < σ | f (τ )≤ f (σ )} ≤ 1.

A critical point σ of f is one for which the two sets above are empty.
Forman [1998] provided a combinatorial interpretation via cell complexes of

Witten’s approach for Morse inequalities. He shows that, given a Morse function
f on a CW-complex X, there is always an equivalent Morse function g that is flat
and self-indexing (see Definitions 0.7 and 1.3 in [Forman 1998]), which means:

(1) The values of f are nondecreasing as the dimension increases.

(2) The values of f on critical cells are given by the dimension of the corresponding
cell.

It turns out that, by considering the particular case of finite graphs, the computations
of the deformed Laplacian and Morse–Witten complex are explicit, regardless of
whether the function is self-indexing or not. In particular we deduce that the height
function on trees (Section 5) gives rise to the correct Morse complex, after the
deformation procedure.

The Morse inequalities state that Betti numbers h0 and h1 are bounded by the
number of critical vertices and critical edges, respectively. Using Theorem 1.11,
we arrive at these inequalities, drawing inspiration from [Witten 1982]. The idea is
as follows. Deform the supersymmetric Laplacian 1 using the Morse function f
with real parameter s by taking boundary operator ds = exp( f s)d exp(− f s) and
coboundary d∗s = exp(− f s)d∗ exp( f s). The Hodge theorems still hold for the
deformed Laplacian

1s = d∗s ds + dsd∗s ,

and, after taking a limit s →∞, there is an energy level a for which the cutoff
complex C•a approaches the Morse complex as s approaches infinity.

This combinatorial approach, based on the linear algebraic properties of the
deformed Laplacian and incidence matrices, gives an intuitive interpretation of
Witten’s proof of Morse inequalities. In our description, the analytical issues of
explicitly describing the spectra of deformed Laplacian operators (for which Witten
requires the approximation of the operators around the critical points by using the
Morse coordinates) do not exist, since the operators are finite-dimensional.

1. Graph quantum mechanics

In this section we introduce the combinatorial version of quantum mechanics for
finite graphs.
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Figure 1. A connected unoriented graph, with two independent
closed paths.

The graph Laplacian. For the purpose of this paper we consider finite graphs
0 = (V, E), i.e., a finite set V of vertices and a finite set E of edges e = (vi , v j ).
See Figures 1 and 2, for example. We will distinguish between unoriented and
oriented graphs when necessary.

Definition 1.1. The adjacency matrix A0 (or simply A) of the graph 0 is

A0(i, j)=
{

1 if (vi , v j ) ∈ E,
0 otherwise.

Definition 1.2. The valence matrix val0 of the graph 0 is the diagonal matrix such
that the entry (i, i) is the number of neighbors of the vertex vi .

Definition 1.3. The even graph Laplacian 1+,0 is defined by

(1) 1+,0 = val0 −A0

Orientation on graphs. In order to define the incidence matrix of 0, we choose an
orientation, that is, a particular order of the pairs (vi , v j ).

Definition 1.4. Let 0 be an oriented graph. The incidence matrix I0 (or simply I )
is a |V |×|E | matrix defined by

I0(k, l)=


−1 if el starts at vk,

1 if el ends at vk,

0 otherwise.

The following relationship between the even Laplacian and the incidence matrix
follows form the combinatorial description of the even Laplacian.

Proposition 1.5. The even graph Laplacian 1+,0 can be written in terms of the
incidence matrix as follows: 1+,0 = I0 I ∗0 .

v1 v2 v3

v4 v5 v6

e1

e2 e3

e4 e5

e6e7

Figure 2. An oriented labeled graph.
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Note that from Definition 1.3 it follows that the even Laplacian is independent
of the orientation. Based on Proposition 1.5, we have the following definition of
the odd Laplacian, which can be regarded as an operator on functions on edges.

Definition 1.6. The odd Laplacian 1−,0 is defined by

(2) 1−,0 = I ∗0 I0.

The state evolution.

Definition 1.7. An even quantum state 9+ on a graph 0 is a complex-valued
function on the vertices 00, that is, 9+ ∈ C|V |. Similarly, an odd state 9− is an
element of C|E |.

The quantum theory is given by the Schrödinger equation

∂

∂t
9+,t =−1+9+,t

which is solved by
exp(−1+t)9+,0.

We denote Z(t)= exp(−1+,t), the (even) partition function of 0. Indeed, if 0
is regular, then

Z(t)(i, j)= exp(t A) exp(− val t)(i, j)=
∑
γ :i→ j

t |γ |

|γ |!
e− val t,

which is an integral over a space of paths with measure t |γ |
|γ |!

and integrand e− val t.
The “action” on a path is the sum of the valences over the vertices it traverses. Z(t)
is therefore a discretization of the Feynman path integral. Furthermore,

dk Z
dtk

∣∣∣
0
(i, j)

gives a signed count of generalized walks [Yu 2017] of length k from vertex i to j :
a sequence

(v1, e1), (v2, e2), . . . , (vk, ek)

of pairs of vertices and edges in which v j and v j+1 are endpoints to e j (not
necessarily distinct) for all j. In other words, a new path is a sequence of vertices
which may traverse an edge while remaining stationary at a vertex. The precise
combinatorial interpretation of the partition function can be found in [Del Vecchio
2012; Mnëv 2016; Yu 2017]. The sign of such a path is determined by the number
of j such that v j+1 6= v j .
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The supersymmetric version. In the supersymmetric theory, we extend 1 to the
entire simplicial cochain complex C• of 0 with 1 :=1+⊕1−, where 1− and 1+
operate on edges and vertices, respectively. The entries of (1−)k give signed counts
of another type of special path: sequences of edges e1, e2, . . . , ek such that e j is
adjacent to e j+1, with the sign determined by the number of j such that e j meets
e j+1 with opposite orientation. For further details, see, e.g., [Del Vecchio 2012; Yu
2017].

Graph Hodge theory. There is a close relationship between the graph Laplacian
and the topology of the graph. More precisely, we have the following relationship
between 1 and the cohomology groups of 0:

Proposition 1.8. The dimension of ker(1+) is the number of connected compo-
nents of 0.

Proof. By Lemma A.1 in the Appendix, ker(1+) = ker(I ). Now, if the vertices
{vα1, vα2, . . . , vαk } are all the elements of a connected component of 0, the state

9+(v)=

{
1 if v = vα j , 1≤ j ≤ k,
0 otherwise,

is a generator of ker(I ). �

Proposition 1.9. The dimension of ker(1−) is the number of independent cycles
of 0.

Proof. Once again, by Lemma A.1, ker(1−) = ker(I ∗). Now, the combinatorial
interpretation of the elements of the kernel of I ∗ is in terms of closed paths and this
can be interpreted in terms of closed currents. More precisely, one may think of a
state 9− as a current, i.e., a function taking values on edges, obeying Kirchhoff’s
first law: at each vertex, in- and outgoing currents balance. Thus, a current achieves
balance if and only if the current is assigned to a closed path. �

These two propositions lead to the following:

Theorem 1.10. The cohomology groups of 0 can be calculated as

H 0(0,C)= ker(I ∗)= ker(1+)

and
H 1(0,C)= ker(I )= ker(1−).

Thus 1 satisfies a “discrete” Hodge theorem.
We can further simplify the calculation of cohomology by considering energy

cut-offs. Since 1 is symmetric, it is diagonalizable and its eigenvalues are real
(nonnegative, in fact), so the cochain complex decomposes as

C• =
⊕
λ≥0

Eλ,
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where Eλ is the eigenspace of 1 corresponding to λ. Given an energy a ≥ 0, let

C•a =
⊕
λ≤a

Eλ

be the subcochain complex of C• consisting of eigenspaces of energy lower than a.

Theorem 1.11 (energy cut-off). H∗(C•a)= H∗(C•).

Proof. It is clear that C0
a contains ker1+, for all a, thus ker I ∗|C0

a
=ker1+=H 0(0).

For H 1, this follows from the fact that coker(I ∗) is contained in C1
a , for all a, and

from Lemma A.1. �

Remark. In other words, the cohomology of 0 can be calculated by considering
subcomplexes of lower energy!

2. Morse theory

In this section we describe a version of Morse theory on graphs by ordering the set
of edges and vertices of 0 by declaring each vertex lesser than each edge of which
it is an endpoint. With respect to this ordering, we consider special states which
will be the analogue of nondegenerate smooth Morse functions for manifolds. More
precisely we have the following definition, originally due to Forman [2002]:

Definition 2.1. A discrete Morse function is a real-valued function f on the set of
edges and vertices of 0 such that, for all σ ∈ 0,

#{τ > σ | f (τ )≤ f (σ )} ≤ 1,(3)

#{τ < σ | f (τ )≥ f (σ )} ≤ 1.(4)

Definition 2.2. A critical cell (vertex or edge) σ of f is one for which the two sets
above are empty. We denote by c0( f ) the number of critical vertices and by c1( f )
the number of critical edges.

As we have said before, our main goal is to prove the following theorem.

Theorem 2.3 (graph Morse inequalities). Let h0 and h1 be the Betti numbers of 0.
Then h0 ≤ c0( f ) and h1 ≤ c1( f ), for every Morse function f .

Proof. The strategy is as follows. Using Theorem 1.11, we follow Witten’s approach
[1982] to Morse inequalities for Riemannian manifolds, via deformation of the
supersymmetric Laplacian. The precise idea is as follows. We deform the supersym-
metric Laplacian1 using the Morse function f with a real parameter s by deforming
the boundary and coboundary operators d and d∗. The Hodge theorems still hold for
the deformed Laplacian1s , and, taking a limit s→∞, there is an energy level a for
which the cutoff complex C•a approaches the Morse complex as s approaches infinity.



THE GRAPH LAPLACIAN AND MORSE INEQUALITIES 337

Now, let us start by deforming the boundary operator.

Definition 2.4. The deformed boundary and coboundary operators ds and d∗s are
given by

ds = exp( f s)d exp(− f s), d∗s = exp(− f s)d∗ exp( f s).

Remark. Note that the exp ( f s) and exp (− f s) are represented by matrices of, a
priori, different dimensions. For the deformed boundary operator, exp(− f s) is a
diagonal |E |×|E | real matrix, whereas exp( f s) is a diagonal |V |×|V | real matrix.
In the coboundary case, the situation is reversed.

Definition 2.5. The deformed Laplacian 1s is defined as 1s = d∗s ds + dsd∗s .

Therefore we can define the deformed cochain complex C•s as

(5) 0→ C|V |
d∗s
−→ C|E |→ 0.

Similarly we can define the cut-off cochain complexes C•s,a .
If we denote by H•s (0) the cohomology of the cochain C•s,a , the following

proposition follows from Lemma A.3 in the Appendix, since the matrices exp(− f s)
and exp( f s) are both invertible.

Proposition 2.6 (deformed energy cut-off). H•s,a(0)= H•(0).

Now, if we take the limit s→∞ the matrices 1±,∞ become quite simple, and
their kernels become independent on s, only they only depend on the critical cells.
Explicitly we have the following description:

Proposition 2.7. Given a flat Morse function f , the matrices1+,∞ and1−,∞ have
entries 0 and 1, and the number of zero columns is the number of corresponding
critical cells.

Proof. The general entries of the deformed boundary operator have the form exp(ks),
where k is the jump of the Morse function between an edge and its endpoint. Thus,
the graph Laplacian will have an entry of the form exp(qs), with q negative, if
and only if the Morse value of a cell and its incident cell is different. Thus when
s→∞, the 1 entries will occur exactly when there is a noncritical cell, for which
the value of the cell and one of the incident cells is the same. �

From Proposition 2.7 we conclude that the dimension of ker(1+,∞) is c0( f )
and that the dimension of ker(1−,∞) is c1( f ). Therefore, if a is arbitrarily small,
the energy cut-off produces a cochain complex isomorphic to the Morse complex.
More precisely, we observe that Morse homology HMorse(0) for the chain complex
d : ker(1−,∞)→ ker(1+,∞) is isomorphic to the cellular homology of 0. This
follows from the following fact. By collapsing gradient curves (i.e., by identifying
all vertices along them), we construct a new graph 0

′

. The 0- and 1-cells of 0
′

are
precisely the critical 0-cells and 1-cells of the original graph 0. Its chain complex
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C•(0
′

) is isomorphic to the Morse complex and also, since 0
′

is homotopic to 0,
is quasi-isomorphic to C•(0).

This concludes the proof of Theorem 2.3. �

3. Discrete gradient vector fields

In [Witten 1982], the super-symmetric interpretation of Morse inequalities is de-
scribed in terms of instantons, i.e., solutions of the differential equation

(6)
du(t)

dt
=−∇ f (u(t)), u(0)= q,

where q is a given noncritical point, and with boundary conditions

lim
t→∞

u(t)= p, lim
t→−∞

u(t)= r,

for which p and r are critical points of the Morse function f .
The CW-decomposition for a well behaved Morse function (a so-called Morse–

Smale function, with suitable transversality conditions between the descending and
ascending cells) comes equipped with an orientation, and a signed count of the
number of solutions of (6) gives the Morse differential for the Morse complex.

In the graph setting, there is a discrete analogue of a gradient vector field [Forman
2002]. It turns out that noncritical cells always come in pairs. In order to see this,
we observe that given a noncritical edge, it implies by definition that there exists an
incident vertex with a nondecreasing value of the Morse function. In the same way,
a noncritical vertex has an adjacent edge such that the Morse value is nonincreasing.

Definition 3.1. Let f be a discrete Morse function on a graph 0. The discrete
gradient vector field of f , denoted by ∇ f , is the set of adjacent noncritical pairs
(vni , eni ).

Usually discrete gradient fields are represented graphically by arrows having
noncritical vertices as tails and adjacent noncritical edge as arrowheads; see, e.g.,
Figure 6. The following definition of gradient curves for a Morse function is the
graph version of gradient paths given in [Forman 1998]:

Definition 3.2. A gradient curve between two vertices σinitial and σfinal is a finite
sequence

γ : σinitial = σ0, τ0, σ1, τ1, . . . , τk−1, σk = σfinal

such that the following conditions are satisfied:

(1) σi < τi and σi+1 < τi .

(2) σi 6= σi+1.

(3) f (σi )≥ f (τi ) > f (σi+1).
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We should interpret gradient curves as discrete solutions of (6). In [Witten 1982],
each gradient curve is naturally equipped with a sign, so the Morse differential is
obtained by counting the signed gradient curves among critical points of index differ-
ing by 1. In [Forman 1998], the sign (or algebraic multiplicity) of a gradient curve
is defined as follows. Given an orientation on the vertices σi , the sign of a path γ ,
denoted by m(γ ), is said to be+1 if the orientation on σfinal agrees with the induced
orientation on σinitial, and is−1 otherwise. Now, we can define the Morse differential
∂̃ from critical edges to critical vertices as follows. If C1 and C0 denote the vector
spaces generated by critical edges and vertices, respectively, and an inner product
〈• , •〉 is chosen so the critical cells form an orthonormal basis, the linear operator

(7) 〈∂̃τ, σ 〉 =
∑
σ1,τ

〈∂τ, σ1〉
∑

γ∈0(σ1,σ )

m(γ )

is clearly a differential, and furthermore it is the Morse differential [Forman 1998].

4. Examples

The simplest case. Let us consider a very simple graph, that is, a graph with two
vertices and one edge: V = {v1, v2} and E = {e1 = (v1, v2)}.

With respect to the orientation given in Figure 3 we get the following matrices:

(8) I0 =
(
−1
1

)
, 1+,0 =

(
1 −1
−1 1

)
, 1−,0 = [2].

Let us consider the Morse function f on 0 as illustrated in Figure 4.
It is easy to check that c0( f ) = 1 (the vertex v2 is critical) and that c1( f ) = 0

(there are no critical edges). Now, the deformed boundary ds is

(9) ds = I0,s = (exp (s f ))I0(exp (−s f ))=
[

exp(s) 0
0 1

] [
−1
1

]
[exp(−s)]

=

[
1

− exp(−s)

]
.

Therefore, the deformed even Laplacian 1+,s is

(10) 1+,s = dsd∗s =
[

1 − exp (−s)
− exp (−s) exp (−2s)

]
v1

v2

e2

v1

v2

e2

Figure 3. The graph K2 (left) and oriented K2 (right).
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1

0

1

Figure 4. The Morse function f on K2.

and the odd Laplacian 1−,s is

(11) 1−,s = d∗s ds = [1+ exp (−2s)].

Therefore,

(12) 1+,∞ =

[
1 0
0 0

]
,1−,∞ = [1].

It is easy to check that dim(ker (1+,∞))= 1= c0( f ) and that dim(ker (1+,∞))=
0= c1( f ). More precisely,

ker (1+,∞)= 〈v2〉,

ker (1−,∞)= 〈0〉.

The triangle. We illustrate the case in which we have two different Morse functions,
one of each achieving sharpness of the Morse inequalities. Let us consider the
triangle graph K3 with

V = {v1, v2, v3} and E = {e1 = (v1, v2), (v1, v3), (v2, v3)}.

With respect to the orientation given in Figure 5 we get the following incidence
matrix:

(13) I0 =

 0 −1 −1
−1 0 1
1 1 0

.
Now consider the Morse function on K3 illustrated in Figure 6.

v1

v2 v3

e3 e2

e1

v1

v2 v3

e3 e2

e1

Figure 5. The triangle K3 (left) and an orientation on K3 (right).
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1

0 1

1 2
1

Figure 6. The Morse function f on K3 and the corresponding
gradient vector field ∇ f .

It is easy to check that c0( f ) = 1 (the vertex v2 is critical) and that c1( f ) = 1
(the edge e2 is critical). Now, the deformed boundary d∗s is
(14)

ds =

exp(s) 0 0
0 1 0
0 0 exp(s)

 0 −1 −1
−1 0 1
1 1 0

exp(−s) 0 0
0 exp(−2s) 0
0 0 exp(−s)


=

 0 − exp(−s) −1
− exp(−s) 0 exp(−s)

1 exp(−s) 0

.
Therefore, the deformed even Laplacian 1+,s is

(15) 1+,s = dsd∗s =

1+ exp(−2s) − exp(−s) − exp(−2s)
− exp(−s) 2 exp(−2s) − exp(−s
− exp(−2s) − exp(−s) 1+ exp(−2s)


and the odd Laplacian 1−,s is

(16) 1−,s = d∗s ds =

1+ exp(−2s) exp(−s) − exp(−2s)
exp(−s) 2 exp(−2s) − exp(−s
− exp(−2s) − exp(−s) 1+ exp(−2s)

.
Therefore,

(17) 1+,∞ =

1 0 0
0 0 0
0 0 1

=1−,∞.
It is easy to check that dim(ker (1+,∞))= 1= c0( f )= c1( f )= dim(ker (1−,∞))
and that

ker (1+,∞)= 〈v2〉, ker (1−,∞)= 〈e2〉.

As expected, this Morse function achieves the equality for the Morse inequalities.
On the other hand, we might have considered the Morse function on K3 given

by Figure 7. For this function, all the vertices and edges are critical, thus c0(g)=
c1(g)= 3.
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0

0 0

1 1
1

Figure 7. The Morse function g on K3.

Now, the deformed boundary d∗s is

(18) d∗s =

1 0 0
0 1 0
0 0 1

 0 −1 −1
−1 0 1
1 1 0

exp(−s) 0 0
0 exp(−s) 0
0 0 exp(−s)


=

 0 − exp(−s) − exp(−s)
− exp(−s) 0 exp(−s)
exp(−s) exp(−s) 0

.
Therefore, the deformed even Laplacian 1+,s is

(19) 1+,s = d∗s ds =

2 exp(−2s) − exp(−2s) − exp(−2s)
− exp(−2s) 2 exp(−2s) − exp(−2s)
− exp(−2s) − exp(−2s) 2 exp(−2s)


and the odd Laplacian 1−,s is

(20) 1+,s = d∗s ds =

2 exp(−2s) exp(−2s) − exp(−2s)
exp(−2s) 2 exp(−2s) − exp(−2s)
− exp(−2s) − exp(−2s) 2 exp(−2s)

.
Therefore,

(21) 1+,∞ =

0 0 0
0 0 0
0 0 0

=1−,∞,
thus

ker (1+,∞)= 〈v1, v2, v3〉, ker (1−,∞)= 〈e1, e2, e3〉.

5. Morse function of a tree and the boundary map

Given a vertex v in 0, let v′ be the critical vertex obtained by flowing along the
gradient field ∇ f of f . For an edge e in 0 with endpoints v0 and v1, the Morse
boundary map, defined on critical edges, is given by

(22) e 7→ v′1− v
′

0.
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0

1

2

1
1

2 2 2

1 1 1

2 2 2 2

Figure 8. The height function for a rooted tree. Its Morse homology is trivial.

Let T be a spanning tree of 0 and vr a vertex in T, the root. Then it is an easy
observation that the height function h defined by

h(v)= edge distance from vr ,

h(e)=max(h(v0), h(v1)) if e belongs to T ,

h(e)=max(h(v0), h(v1))+ 1 otherwise,

is Morse. See Figure 8 for an example.
The following proposition justifies the fact that we recover the Morse complex

for such functions.

Proposition 5.1. The boundary map is zero on critical edges of h.

Proof. The critical cells of h consist of v0 and all the edges not contained in T, and
the boundary map is zero on critical edges since v′0 = v

′

1. Therefore, the boundary
map coincides with the operator ∂̃ from (7), and this implies that the boundary
maps compute graph homology; see, e.g, [Forman 1998]. �

6. Conclusion and perspectives

We have reproven Morse inequalities in the particular case of finite graphs, by
using Witten’s supersymmetric approach for quantum mechanics on Riemannian
manifolds. The equality is achieved in both examples by a height type Morse
function, which can be defined for a spanning tree in terms of the depth of the
tree, once a root is chosen. The remaining values of the Morse function can be
chosen to be larger than the maximum of the corresponding edges, so the Morse
conditions (3) and (4) are satisfied. We conjecture that the sharpness of the equation
is achieved by such functions in the general case of CW-complexes, for which there
is a generalized notion of a spanning tree and corresponding height function. This
will be part of an upcoming publication. We also intend to describe in detail how
to use Witten’s approach to derive Morse inequalities and define a discrete version
of quantum mechanics in interesting higher dimensional examples such as real
projective spaces and complexes of graphs with a monotone decreasing property
[Forman 2002]. Furthermore, the locality principle of quantum mechanics should
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allow an extension of Witten’s approach to the case of gluing of graphs, giving a
topological interpretation to the gluing formulae for the even and odd Laplacians
found in [Contreras et al. 2018].

Appendix: Linear algebra and the graph Laplacian

The following are technical basic lemmas in linear algebra used throughout the
paper, and they can be found in standard references for matrix linear algebra, such
as [Horn and Johnson 1985].

Lemma A.1. Let A be a matrix and let A∗ be its adjoint. Then ker(A)= ker(A∗A).

Proof. It is clear that ker A ⊆ ker(A∗A). For the other direction, if 〈 · , · 〉 is the
corresponding inner product, then, for each vector v in ker(A∗A),

‖Av‖2 = 〈Av, Av〉 = 〈A∗Av, v〉 = 〈0, v〉 = 0,

thus v ∈ ker(A). �

Lemma A.2. The matrices AA∗ and A∗A are both nonnegative definite and their
spectra coincide (modulo multiplicities).

Lemma A.3. Let A be a p×q matrix, let X be an invertible p×p matrix and let Y
be an invertible q×q matrix. Then

ker(A)∼= ker(X AY ),

where the isomorphism is induced by Y.
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