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SYMMETRY AND MONOTONICITY OF
POSITIVE SOLUTIONS FOR AN INTEGRAL SYSTEM

WITH NEGATIVE EXPONENTS

ZHAO LIU

We study the following integral system with negative exponents:{
u(x)=

∫
Rn |x− y|α−nv− p( y) d y,

v(x)=
∫

Rn |x− y|α−nu−q( y) d y,

with α>n, p, q>0 and 1
p−1 +

1
q−1 =

α−n
n . Such a nonlinear integral system

is related to the study of the best constant of the reversed Hardy–Littlewood–
Sobolev type inequality. Motivated by work of Dou, Guo and Zhu (Adv. Math.
312 (2017) 1–45) where they used the improved method of moving planes, we
prove that each pair of positive measurable solutions is radially symmetric
and monotonic increasing about some point. Our result is an extension of
the work for α<n, p, q<0 of Chen, Li and Ou (Comm. Partial Differential
Equations 30:1–3 (2005), 59–65).

1. Introduction

Let 0< γ < n, and let s1, s2 > 1 such that

1
s1
+

1
s2
=

n+ γ
n

.

The well-known Hardy–Littlewood–Sobolev inequality states that

(1)
∫

Rn

∫
Rn

f (x)|x − y|γ−ng(y) dxdy ≤ C(n, γ, s1)‖ f ‖Ls1 (Rn)‖g‖Ls2 (Rn),

for any f ∈ Ls1(Rn) and g ∈ Ls2(Rn).
It is well known that the Hardy–Littlewood–Sobolev inequality has many im-

portant applications in partial differential equations and geometry, as well as in
quantum field theory. It is also known that the Hardy–Littlewood–Sobolev inequality
is closely related to the Sobolev inequality in Euclidean spaces and Moser–Onofri–
Beckner type inequalities on spheres (see Beckner [1993; 2008]). For more research
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results with integral equations related to the Hardy–Littlewood–Sobolev inequality,
we refer the reader to [Beckner 1993; Brascamp and Lieb 1976; Chen et al. 2005a;
2016; Chen and Li 2008; Lu and Zhu 2011]. For Hardy–Littlewood–Sobolev
inequalities on the Riemannian manifolds and the upper half space Rn

+
, see, e.g.,

[Dou 2016; Dou and Zhu 2015b; Han and Zhu 2016; Ngô and Nguyen 2017b].
To find the best constant C(n, γ, s1) in (1), we can maximize the functional

(2) J ( f, g)=
∫

Rn

∫
Rn

f (x)|x − y|γ−ng(y) dxdy,

under the constraints

(3) ‖ f ‖Ls1 (Rn) = ‖g‖Ls2 (Rn) = 1.

Let ( f, g) be a minimizer, or more generally a critical point of (2) under the
constraints (3). Letting u = a1 f s1−1, v = a2gs2−1, p1 =

1
s1−1 , p2 =

1
s2−1 , and by a

proper choice of constants a1 and a2, we can see that (u, v) satisfies the following
integral system in Rn:

(4)

{
u(x)=

∫
Rn |x − y|γ−nv p2(y) dy,

v(x)=
∫

Rn |x − y|γ−nu p1(y) dy,

with 1
p1+1 +

1
p2+1 =

n−γ
n .

Under the natural integrability conditions u ∈ L p1(Rn) and v ∈ L p2(Rn), Chen,
Li and Ou [Chen et al. 2005b] proved that all the solutions are radially symmetric
and monotonic decreasing about some point.

Suppose that α > n, and 0< r1, r2 < 1 satisfying

1
r1
+

1
r2
=

n+α
n

.

Dou and Zhu [2015a] established the following reversed Hardy–Littlewood–Sobolev
inequality (see also Ngô and Nguyen [2017a]), which can be seen as an extension
of (1), which states

(5)
∫

Rn

∫
Rn

f (x)|x − y|α−ng(y) dxdy ≥ C(n, α, r1)‖ f ‖Lr1 (Rn)‖g‖Lr2 (Rn),

for any f ∈ Lr1(Rn) and g ∈ Lr2(Rn).
The corresponding Euler–Lagrange equation becomes

(6)

{
u(x)=

∫
Rn |x − y|α−nv−p(y) dy,

v(x)=
∫

Rn |x − y|α−nu−q(y) dy,
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with α > n, p, q > 0 and,

(7)
1

p− 1
+

1
q − 1

=
α− n

n
.

The study of system (6), especially the classification result, is a crucial step
in finding the best constant in the reversed Hardy–Littlewood–Sobolev inequality.
Dou and Zhu [2015a] classified the positive solutions of (6) with critical exponents
p= q = n+α

α−n and gave its best constant. Recently, Lei [2015] considered system (6)
and obtained that assumption (7) was the necessary condition for the existence of
C1 positive entire solutions. In fact, (7) is the necessary and sufficient condition
for the existence of C1 positive entire solutions, since the sufficient condition was
proved by Ngô and Nguyen [2017a]. However, as far as we know, there have been
few results about positive solutions of (6) with exponent condition (7) except the
case of both critical exponents p= q = n+α

α−n . This is a problem well worth studying.
Motivated by the work of Dou, Guo and Zhu [Dou et al. 2017; Dou and Zhu

2015a], we investigate the above problem and prove the following results.

Theorem 1. If (u, v) is a pair of positive measurable solutions of (6), then u and v
are radially symmetric and monotonic increasing about some point x0.

In particular, if we set u = v, α− n = ν, and p = q , the integral system (4) will
be reduced to a single equation

(8) u(x)=
∫

Rn
|x − y|νu−p(y) dy.

The negative exponent of integral equation (8) was studied by Li [2004]. Li
classified the positive solutions of (8) for p = 2n+ν

ν
. It turns out that for n = 3

and ν = 1, integral equation (8) is associated with some fourth order conformal
covariant operator on three-dimensional compact Riemannian manifolds, arising
from the study of conformal geometry. See, e.g., [Xu and Yang 2002] and [Chang
and Yang 2002]. Xu [2005] proved that if n = 3 and ν = 1, then p = 7 and u must
take the form u(x)= c(1+ |x |2)

1
2 up to dilation and translation. Furthermore, Xu

[2007] proved that (8) has a C1 positive solution if and only if p = 2n+ν
ν

. For more
related results about integral systems with negative exponents, we refer the reader
to [Choi and Xu 2009; Dou et al. 2016; Guo and Wei 2014; Liu et al. 2018; Ma
and Wei 2008].

To prove the radial symmetry and monotonicity of the solutions, we use the
improved method of moving planes introduced by Dou, Guo and Zhu [2017], which
is slightly different from that introduced by Chen, Li and Ou [2006] because they
rely on iteration of Hardy–Littlewood–Sobolev inequality to start the moving plane
process. In this paper, by the asymptotic behavior and regularity of the solutions,
we are able to establish the symmetry and monotonicity results.
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2. The proof of radial symmetry and monotonicity

In this section, we use the method of moving planes to prove Theorem 1. For a
given real number λ, define

Tλ = {x ∈ Rn
| x1 = λ}, 6λ = {x ∈ Rn

| x1 ≤ λ}.

Let xλ = {2λ− x1, x2, . . . , xn}, uλ(x)= u(xλ) and vλ(x)= v(xλ).
The following lemma was proved in [Li 2004] (see also [Dou and Zhu 2015a]).

Lemma 2. Let (u, v) be a pair of positive measurable solutions of (6). Then:

(i)
∫

Rn
(1+ |y|α−n)u−q(y)dy <∞,

∫
Rn
(1+ |y|α−n)v−p(y) dy <∞.

(ii) 0< a : = lim
|x |→∞

|x |n−αu(x)=
∫

Rn
v−p(y) dx <∞,

0< b : = lim
|x |→∞

|x |n−αv(x)=
∫

Rn
u−q(y) dx <∞.

(iii) There exist some constants C1,C2 > 0 such that

1+ |x |α−n

C1
≤ u(x)≤ C1(1+ |x |α−n),

and
1+ |x |α−n

C2
≤ v(x)≤ C2(1+ |x |α−n).

(iv) u ∈ C∞(Rn) and v ∈ C∞(Rn).

From the above lemma, we know that p > α
α−n and q > α

α−n .

Lemma 3. Let (u, v) be a pair of positive measurable solutions of (6). Then

(9) u(x)− uλ(x)=
∫
6λ

K (λ, x, y)(v−p
λ (y)− v−p(y)) dy

and

(10) v(x)− vλ(x)=
∫
6λ

K (λ, x, y)(u−q
λ (y)− u−q(y)) dy,

where K (λ, x, y)= |xλ− y|α−n
− |x − y|α−n.

Proof. We only prove (9); by (6), we have,

u(x)=
∫
6λ

|x − y|α−nv−p(y) dy+
∫

Rn\6λ

|x − y|α−nv−p(y) dy

=

∫
6λ

|x − y|α−nv−p(y) dy+
∫
6λ

|x − yλ|α−nv
−p
λ (y) dy
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and

uλ(x)=
∫
6λ

|x − y|α−nv−p(y) dy+
∫

Rn\6λ

|x − y|α−nv−p(y) dy

=

∫
6λ

|xλ− y|α−nv−p(y) dy+
∫
6λ

|xλ− yλ|α−nv
−p
λ (y) dy.

Combining with |xλ− y| = |x − yλ| and |xλ− yλ| = |x − y|, we obtain (9). �

To prove Theorem 1, we compare u(x) with uλ(x) and v(x) with vλ(x) on 6λ.
The proof consists of two steps. In Step 1, we show that there exists an N < 0 such
that for λ≤ N,

(11) u(x)≥ uλ(x), v(x)≥ vλ(x), for all x ∈6λ.

Thus we can start moving the plane continuously from λ≤ N to the right as long
as (11) holds. In Step 2, we show that if the plane stops at x1 = λ0 for some λ0 < 0,
then u(x) and v(x) must be symmetric and monotonic increasing about the plane
x1 = λ0. Otherwise, we can move the plane all the way to x1. Since the direction
of x1 can be chosen arbitrarily, we deduce that u(x) and v(x) must be radially
symmetric and monotonic increasing about some point.

Step 1. We first prove that there exists sufficiently negative N < 0 such that

(12) ∇(|x |
n−α

2 u(x)) · x = |x |
n−α

2
(
∇u(x) · x+ n−α

2
u(x)

)
> 0, for all x1 < N .

To obtain (12), it is sufficient to prove that

(13) lim
|x |→∞

|x |n−α
(
∇u(x) · x + n−α

2
u(x)

)
> 0.

We only prove (13) for i =1. Fix x2, x3, . . . , xn . By Lemma 2, u(x) is differentiable
in x1; then, we have∣∣∣∂u(x)

∂x1

∣∣∣= ∣∣∣∣(α− n)
∫

Rn
|x − y|α−n−2(x1− y1)v

−p(y) dy
∣∣∣∣

≤ (α− n)
∫

Rn
|x − y|α−n−1v−p(y) dy.

Now we carry out the proof in two cases.

Case (i): If α− n ≥ 1, then by Lemma 2, letting |x1| ≥ 1, we have∣∣ ∂u(x)
∂x1

∣∣
|x1|α−n−1 ≤

∣∣∣∣(α− n)
∫

Rn
(1+ |y|α−n−1)v−p(y) dy

∣∣∣∣
≤ C

∫
Rn
(1+ |y|α−n)v−p(y) dy.
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Thus, by using Lebesgue’s dominated convergence theorem, we have

lim
|x1|→∞

∣∣ ∂u(x)
∂x1

∣∣
|x1|α−n−1 = a(α− n).

Case (ii): If 0< α− n < 1, we can calculate∣∣ ∂u(x)
∂x1

∣∣
|x |α−n−1 ≤ (α− n)

∫
Rn

|x |n−α+1

|x − y|n−α+1 v
−p(y) dy

= (α− n)
∫

Rn\B(x, |x |2 )

|x |n−α+1

|x − y|n−α+1 v
−p(y) dy

+ (α− n)
∫

B(x, |x |2 )

|x |n−α+1

|x − y|n−α+1 v
−p(y) dy

:= (α− n)J1(x)+ (α− n)J2(x).

For J1(x), since |x − y|> |x |2 , we have

(14) J1(x)≤ C
∫

Rn\B(x, |x |2 )

|x |n−α+1

|x |n−α+1 v
−p(y) dy ≤ C

∫
Rn
v−p(y) dy.

For J2(x), by Lemma 2,

J2(x)= C
∫

B(x, |x |2 )

|x |n−α+1

|z|n−α+1 v
−p(x + z) dz

≤ C
∫

B(0, |x |2 )

|x |n−α+1

|z|n−α+1 (1+ |x + z|α−n)−p dz.

Notice that for |x | large enough and z ∈ B
(
0, |x |2

)
, it easy to check that |x + z| ≥

|x |
2 ≥

|z|
2 . Therefore,

J2(x) ≤C
∫

B(0, |x |2 )

|x |n−α+1

|z|n−α+1 ·
(1+|x+z|α−n)

−p+n−α+1
α−n

(1+|x+z|α−n)
n−α+1
α−n

dz

≤C
∫

B(0, |x |2 )

|x |n−α+1

|z|n−α+1 ·
(1+|z|α−n)

−p+n−α+1
α−n

(1+|x |α−n)
n−α+1
α−n

dz

≤C
∫

Rn

(1+|z|α−n)
−p+n−α+1

α−n

|z|n−α+1 dz

=C
∫

Rn\B(0,1)

(1+|z|α−n)
−p+n−α+1

α−n

|z|n−α+1 dz+C
∫

B(0,1)

(1+|z|α−n)
−p+ n−α+1

α−n

|z|n−α+1 dz

:=C J21(x)+C J22(x).
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Since 0< α− n < 1,

(15) J22(x)≤ C
∫

B(0,1)

1
|z|n−α+1 dz <∞,

and

(16) J21(x)≤C
∫

Rn\B(0,1)

|z|−p(α−n)+n−α+1

|z|n−α+1 dz≤C
∫

Rn\B(0,1)

1
|z|p(α−n) dz<∞,

where we use p > α
α−n .

Combining with (14), (15), (16) and using Lebesgue’s dominated convergence
theorem, we have

lim
|x1|→∞

∣∣ ∂u(x)
∂x1

∣∣
|x1|α−n−1 = a(α− n).

Recall that a = lim|x |→∞ |x |n−αu(x)=
∫

Rn v
−p(y) dx <∞; thus, we obtain (13).

If |x1| ≥ −N and |2λ− x1|>−N, by (12), we have

|x |
n−α

2 u(x) > |xλ|
n−α

2 uλ(x), x ∈6λ.

Then we obtain
u(x)≥ uλ(x).

If |2λ− x1| ≤ −N, by Lemma 2, we can take λ large enough such that

u(x)≥
1+ |x1|

α−n

C1
≥

1+ |λ|α−n

C1
≥C1(1+|N |α−n)≥C1(1+|2λ−x1|

α−n)≥uλ(x).

Therefore (11) holds. This completes Step 1.

Step 2. For x ∈ Rn, define

λ0 = sup{µ < 0 | u(x)≥ uλ(x), v(x)≥ vλ(x) for all λ < µ, x1 ≤ λ}.

It is easy to check that |xλ0 − y|α−n
− |x − y|α−n > 0 for any y1, x1 < λ0. So

by (9) and (10), for all x ∈6λ0 , there are the following four cases:

Case (i): u(x)= uλ0(x), v(x)= vλ0(x).

Case (ii): u(x) > uλ0(x), v(x)= vλ0(x).

Case (iii): u(x)= uλ0(x), v(x) > vλ0(x).

Case (iv): u(x) > uλ0(x), v(x) > vλ0(x).

For Case (i), we are done. Case (ii) and Case (iii) are impossible according to (9)
and (10). Thus it suffices to show that Case (iv) is also impossible. We carry out
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the argument by contradiction. Suppose that Case (iv) is valid. We will show that
there exists an ε > 0 such that

(17) u(x)≥ uλ(x), v(x)≥ vλ(x), for all λ0 < λ < λ0+ ε, x ∈6λ.

By (9) and (10) and Fatou’s lemma, for all x1 ≤ λ0− 1, we can calculate

lim
|x |→∞

inf |x |n−α(u(x)−uλ0(x))

=

∫
6λ0

lim
|x |→∞

inf |x |n−α(|xλ0−y|α−n
−|x−y|α−n)(v

−p
λ0
(y)−v−p(y))dy> 0

and

lim
|x |→∞

inf |x |n−α(v(x)−vλ0(x))

=

∫
6λ0

lim
|x |→∞

inf |x |n−α(|xλ0−y|α−n
−|x−y|α−n)(u−q

λ0
(y)−u−q(y))dy> 0.

Then, for any x1 ≤ λ0− 1, there exists ε1 ∈ (0, 1) such that

u(x)− uλ0(x)≥ ε1|x |α−n, v(x)− vλ0(x)≥ ε1|x |α−n.

We can use continuity of u and v with respect to the variable λ to obtain that

(18) u(x)− uλ(x)≥ ε1|x |α−n
+ (uλ(x)− uλ0(x))

≥
ε1

2
|x |α−n, for all x1 ≤ λ0− 1, λ0 ≤ λ≤ λ0+ ε2

and

(19) v(x)− vλ(x)≥ ε1|x |α−n
+ (vλ(x)− vλ0(x))

≥
ε1

2
|x |α−n, for all x1 ≤ λ0− 1, λ0 ≤ λ≤ λ0+ ε2

for sufficiently small ε2 > 0. Thus, for ε ∈ (0, ε2), which we choose below, it
suffices to verify that for λ0− 1≤ x1 ≤ λ,

u(x)≥ uλ(x), v(x)≥ vλ(x), for all λ0 ≤ λ≤ λ0+ ε.

We only show that

u(x)≥ uλ(x), for all λ0 ≤ λ≤ λ0+ ε, λ0− 1≤ x1 ≤ λ.

By (13), there exists R1 ≥ 4(|λ0| + 1) large enough such that, for any x ∈
(6λ \6λ0−1) \ B(0, R1/2),

∇(|x |
n−α

2 · x)= |x |
n−α

2

(
∇u(x) · x +

n−α
2

u(x)
)
> 0.
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We know that if |x | ≥ R1, then |xλ| ≥ R1
2 ; thus

|x |
n−α

2 u(x) > |xλ|
n−α

2 uλ(x).

Therefore,

u(x)≥ uλ(x), for |x | ≥ R1.

Now we fix R1 and consider

x ∈ (6λ \6λ0−1)∩ B(0, R1).

By Lemma 3, we can write

u(x)− uλ(x)=
∫
6λ

K (λ, x, y)(v−p
λ (y)− v−p(y)) dy

≥

∫
6λ\6λ0−1

K (λ, x, y)(v−p
λ (y)− v−p(y)) dy

+

∫
6λ0−2\6λ0−3

K (λ, x, y)(v−p
λ (y)− v−p(y)) dy

≥

∫
(6λ\6λ0−1)\B(0,R0)

K (λ, x, y)(v−p
λ (y)− v−p

λ0
(y)) dy

+

∫
(6λ\6λ0−1)∩B(0,R0)

K (λ, x, y)(v−p
λ (y)− v−p

λ0
(y)) dy

+

∫
6λ0−2\6λ0−3

K (λ, x, y)(v−p
λ (y)− v−p(y)) dy

:= I1(x)+ I2(x)+ I3(x).

We first estimate I1(x). Take R0 ≥ 2R1 large enough such that

1

R p(α−n)−α+1
0

≤ ε,

where we use p > α
α−n . Since

x ∈ (6λ \6λ0−1)∩ B(0, R1) and y ∈ (6λ \6λ0−1) \ B(0, R0),

it easy to derive that |x − y| ∼ |xλ− y| ∼ |y|; then

K (λ, x, y)= |x − yλ|α−n
− |x − y|α−n

≤ C max{|x − yλ|α−n−1, |x − y|α−n−1
}
∣∣|x − yλ| − |x − y|

∣∣
≤ C |y|α−n−1(λ− x1).
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Thus, by using Lemma 2,

(20)
∣∣∣∣∫
(6λ\6λ0−1)\B(0,R0)

K (λ, x, y)(v−p
λ (y)− v−p

λ0
(y)) dy

∣∣∣∣
≤ C(λ− x1)

∫
(6λ\6λ0−1)\B(0,R0)

|y|α−n−1
|y|−p(α−n) dy

≤ C(λ− x1)

∫
Rn\B(0,R0)

|y|α−n−1−p(α−n) dy

= C(λ− x1)

∫
∞

R0

rα−2−p(α−n) dr

= C(λ− x1)R
α−1−p(α−n)
0

≤ Cε(λ− x1).

Now, we estimate I2(x). We can take 0< ε3 < ε small enough such that for any
λ0 ≤ λ≤ λ0+ ε3 and y ∈ (6λ \6λ0−1)∩ B(0, R0),

|v
−p
λ (y)− v−p

λ0
(y)| ≤ C1ε.

Then,

(21) |I2(x)| ≤
∫
(6λ\6λ0−1)∩B(0,R0)

|K (λ, x, y)(v−p
λ (y)− v−p

λ0
(y))| dy

≤ C(R0, R1)|xλ− x |
∫
(6λ\6λ0−1)∩B(0,R0)

|v
−p
λ (y)− v−p

λ0
(y)| dy

≤ Cε(λ− x1).

For I3(x), we can assume λ0 ≤ λ≤ λ0+ε3. By (18) and (19), there exists δ1 > 0
which is independent of ε3 such that

(22) v
−p
λ (y)− v−p(y)≥ δ1, for any y ∈6λ0−2 \6λ0−3.

Notice that

∂K (λ, x, y)
∂x1

· x1|x1=λ = 2(α− n)|x − y|α−n−2(y1− λ)x1 > 0, y1 < λ.

Since K (λ, x, y)|x1=λ = 0, for any

x ∈ (6λ \6λ0−1)∩ B(0, R1) and y ∈ (6λ0−2 \6λ0−3),

there exists δ2 > 0 which are independent of ε3, ε, such that

(23) K (λ, x, y)| ≥ δ2(λ− x1).
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By (20), (21), (22), and (23), for sufficiently small ε > 0, we conclude that

u(x)− uλ(x)≥ (δ1δ2−C1C2ε)(λ− x1)≥ 0.

Combining with (18) and (19), we can derive a contradiction with the definition
of λ0. This completes the proof of Step 2. Thus, we have finished the proof of the
main theorem.
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