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TOWARDS A SHARP CONVERSE OF WALL’S THEOREM
ON ARITHMETIC PROGRESSIONS

JOSEPH VANDEHEY

Wall’s theorem on arithmetic progressions says that if 0.a1a2a3 . . . is nor-
mal, then for any k, ` ∈ N, 0.akak+`ak+2` . . . is also normal. We examine a
converse statement and show that if 0.an1 an2 an3 . . . is normal for periodic
increasing sequences n1 < n2 < n3 < · · · of asymptotic density arbitrarily
close to 1, then 0.a1a2a3 . . . is normal. We show this is close to sharp in
the sense that there are numbers 0.a1a2a3 . . . that are not normal, but for
which 0.an1 an2 an3 . . . is normal along a large collection of sequences whose
density is bounded a little away from 1.

1. Introduction

We will fix an integer base b ≥ 2 throughout this paper.
Suppose x ∈ [0, 1) has (base-b) expansion x = 0.a1a2a3 . . . . We say x is (base-b)

normal if for every finite string s = [d1, d2, . . . , dk] with di ∈ {0, 1, . . . , b− 1},

(1) lim
n→∞

#{0≤ i ≤ n− 1 : ai+ j = d j , j = 1, 2, . . . , k}
n

=
1
bk .

In other words, a number is normal if every string appears with the same limiting
frequency as every other string of the same length.

In his thesis, Donald Dines Wall [1950] proved that selection along arithmetic
progressions preserves normality. In other words, if 0.a1a2a3 . . . is normal, then
for every k, `∈N, 0.akak+`ak+2` . . . is also normal. This we will refer to as Wall’s
theorem on arithmetic progressions.

At a recent conference on normal numbers in Vienna, Bill Mance described Wall’s
theorem on arithmetic progressions as an “if and only if” statement. That is, “A
number 0.a1a2a3 . . . is normal if and only if for every k, ` ∈N, 0.akak+`ak+2` . . .

is normal.” In the forward direction, this is just Wall’s theorem as it is typically
stated. In the reverse direction, this is trivial, since by letting k = `= 1, the number
0.akak+`ak+2` . . . is just 0.a1a2a3 . . . . Indeed, it can quickly be seen that for any
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k ∈N and `=1, the normality of 0.akak+`ak+2` . . . immediately gives the normality
of 0.a1a2a3 . . . .

However, it is reasonable to ask: if these trivial cases are removed, is Wall’s
theorem still an “if and only if” statement?

We answer this in the negative.

Theorem 1.1. There exists a real number 0.a1a2a3 · · · ∈ [0, 1) that is not normal
such that for every k ∈ N and every ` ∈ N, `≥ 2, the number 0.akak+`ak+2` . . . is
normal.

In particular, if the number 0.a1a2a3 . . . is normal, then 0.a1a1a2a2a3a3 . . . will
satisfy Theorem 1.1. See Remark 5.1.

This, in turn, leads to a deeper question: if a number being normal along nontrivial
arithmetic progressions is not enough to guarantee normality of the original number,
are there other nontrivial sequences one could select along which would, collectively,
imply normality?

First let us consider which sequences trivially give normality. The following
result (whose first half is well known) says that a sequence trivially implies normality
if and only if the sequence has asymptotic lower density equal to 1. The asymptotic
lower density of an increasing sequence A = {n1, n2, n3, . . . } ⊂ N is equal to
lim infN→∞ |A∩ [1, N ]|/N.

Proposition 1.2. Let n1 < n2 < n3 < · · · be an increasing sequence of natural
numbers.

If 0.an1an2an3 . . . ∈ [0, 1) is normal and the asymptotic lower density of the
sequence of ni ’s is equal to 1, then 0.a1a2a3 . . . is normal.

On the other hand, if the asymptotic lower density of the sequence of ni ’s is
strictly less than 1, then there exist numbers 0.a1a2a3 · · · ∈ [0, 1) which are not
normal, even though 0.an1an2an3 . . . is normal.

By altering the method of proving this proposition, we can show a condition
by which normality along nontrivial sequences does imply normality overall. In
particular if we have a collection of increasing sequences whose asymptotic lower
density converges to 1, then normality along these sequences implies normality
overall.

Theorem 1.3. Let 0.a1a2a3 · · · ∈ [0, 1) and suppose that for any ε > 0 there exists
an increasing sequence n1<n2<n3< · · · of positive integers with asymptotic lower
density greater than 1− ε such that 0.an1an2an3 . . . is normal. Then 0.a1a2a3 . . . is
normal.

In the next result we will show that Theorem 1.3 is close to being sharp. For the
purposes of this result, a set A ⊂ N is periodic if there exists an m ∈ N such that
(A−m)∩N= A. Any such m satisfying this condition will be called a period of N.
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Theorem 1.4. Let N be a collection of periodic increasing sequences n1 < n2 <

n3 < · · · of the positive integers. Suppose there exist elements K and L of N such
that

{K (n− 1)+ L , K (n− 1)+ L + 1, K (n− 1)+ L + 2, . . . , K n+ L − 1}

is not a subset of any of the sequences for any n ∈ N.
Then there exists a real number 0.a1a2a3 . . . ∈ [0, 1) that is not normal, yet

0.an1an2an3 . . . is normal for all sequences in N .

In particular, the condition applied to N guarantees it cannot contain a periodic
sequence of density greater than 1− 1/L . However, the additional restriction on
sequences in N is a question of the thickness of a subset of N, here referring to
the length of allowable subsequences of consecutive integers. So this leaves open a
question of whether the condition on asymptotic lower density is the right one, or
whether we should be using a condition on thickness instead.

We conclude the introduction by noting that we seem to have ventured far from
Wall’s theorem. Wall’s theorem states that selecting along an arithmetic progression
preserves normality, but selecting along an arbitrary increasing sequence may not
preserve normality. It was shown by Kamae [1973] and Weiss [1971] that a sequence
is guaranteed to preserve normality if and only if it is “deterministic” and has positive
asymptotic lower density. One could think of this as a generalized Wall’s theorem.

We will come back to the proper definition of deterministic later, as it is compli-
cated. Here we only note that deterministic sequences are a subset of all sequences,
so we could add the requirement in Theorem 1.3 that all sequences under con-
sideration are deterministic. Periodic sequences like those in Theorem 1.4 are
a type of deterministic sequence, and we could likely weaken the condition of
periodicity to a condition of determinism, and in this sense we could see that the
altered Theorem 1.3 does come close to being a sharp converse to the generalized
Wall’s theorem. However, in the interest of keeping the paper short and readable,
we will not give the proof of this.

2. Preliminaries

2A. Strings of strings. Given a finite set of digits D, we let the set of strings of
length k be an ordered k-tuple with elements in D, and denote this by Dk in the
usual way. We will often write [d1, d2, . . . , dk] for such an ordered k-tuple.

We may then compose this notation and write, for example, (Dk)`. By this we
mean the set of all ordered `-tuples whose elements belong to the set Dk of ordered
k-tuples. Such an element might look like[

[d1, d2, . . . , dk], [dk+1, dk+2, . . . , d2k], . . . , [dk(`−1)+1, . . . , dk`]
]
.
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There is a standard bijection from such elements to Dk`, and the element above
would be mapped to

[d1, d2, . . . , dk`].

For the rest of this paper, whenever we refer to considering or interpreting an element
of (Dk)` as an element of Dk` (or vice versa), we mean that we are applying this
standard bijection.

Note that we may allow ` = ∞ and as such would have a standard bijection
between (Dk)∞ and D∞. For readability, if we have an infinite tuple, we will use
regular parenthesis ( · ) rather than brackets [ · ].

2B. Symbolic Bernoulli shifts. While we could express all our results merely in
terms of real numbers, as the last section hints, it will be easier for us if we instead
treat them as manipulations of infinite strings of digits. In this section we will go
over the basics of how to do this.

Let D be a finite set of digits and let X =D∞. We will describe points x ∈ X by

x = (a1(x), a2(x), a3(x), . . . )= (a1, a2, a3, . . . )

with each ai ∈ D.
For a finite string s = [d1, d2, . . . , dk] ∈ Dk we define the cylinder sets Cs to be

all elements x ∈ X such that a1(x)= d1, a2(x)= d2, . . . , ak(x)= dk .
For each d ∈D, let λd be a nonnegative number such that

∑
d∈D λd = 1. Then for

each finite string s = [d1, d2, . . . , dk], we define µ(Cs) to be
∏k

i=1 λdi . We use
the cylinder sets to generate a σ -algebra and extend µ to be a measure on this
σ -algebra.

Finally, let T be the standard forward shift on this space. So T (a1, a2, a3, . . . )=

(a2, a3, a4, . . . ). We will refer to the dynamical system (X, µ, T ) as a Bernoulli
shift on the digit set D.

We say that a point x = (a1, a2, a3, . . . ) ∈ X is normal with respect to this
transformation if for all finite strings s = [d1, d2, . . . , dk], we have

lim
n→∞

#{0≤ i ≤ n− 1 : ai+ j = d j , j = 1, 2, . . . , k}
n

= µ(Cs).

This limit can be rephrased in a more standard ergodic fashion as

lim
n→∞

#{0≤ i ≤ n− 1 : T i x ∈ Cs}

n
= µ(Cs).

Consider the Bernoulli shift (X, µ, T ) on the digit set D= {0, 1, . . . , b−1} with
µ defined by λd = 1/b for all d ∈ D. This is clearly a symbolic representation
of a base-b expansion, with a natural correspondence given by (a1, a2, a3, . . . )↔

0.a1a2a3 . . . . (This is well defined up to a measure-zero set that can be ignored for



TOWARDS A SHARP CONVERSE OF WALL’S THEOREM 503

the purposes of this paper.) This correspondence also clearly preserves normality.
We will therefore, for the rest of this paper, consider all base-b systems as Bernoulli
shifts.

In a more general setting, such symbolic shifts correspond to generalized Lüroth
series. As such, although normal points x ∈ X have full measure by Birkhoff’s
pointwise ergodic theorem, if an explicit construction of such a point is desired,
then examples can be found in [Aehle and Paulsen 2015; Madritsch and Mance
2016; Vandehey 2014b].

Remark 2.1. All of the theorems given in the introduction are stated with respect
to the base-b expansion, but they all hold for any Bernoulli shift. This is because
there is no point where we make special use of the fact that the measure of Cs for a
length-k string s is b−k. We only make use of the fact that the measure is a product
measure on the digits.

In fact, we could allow D to be countably infinite and the results would still hold.
However, for ease of readability, we will express all the proofs with respect to

the base-b expansion given in the introduction.

2C. Normality with respect to T and T k. Let (X, µ, T ) be a Bernoulli shift on
the digit set D as defined above. Consider the Bernoulli shift (Xk, µk, T k) with
Xk = (Dk)∞ and µk defined via λ[d1,d2,...,dk ] = µ(C[d1,d2,...,dk ]). Since there is a
natural bijection between X and Xk , we refer to the single forward shift on Xk

by T k, since it is acting by T k on X.
It makes sense to refer to a point x ∈ X as also belonging to Xk , since we may

apply the standard bijection to achieve the corresponding point in Xk .

Lemma 2.2. Under the definitions above, a point x ∈ X is normal with respect to
(X, µ, T ) if and only if it is normal with respect to (Xk, µk, T k) when seen as an
element of Xk .

Schweiger [1969] was the first to state this result, although his proof in one
direction was erroneous. See [Vandehey 2014a] for a corrected proof. In the special
case of base-b expansions, this was found several years earlier. See [Maxfield 1953;
Schmidt 1960].

2D. Deterministic sequences. In the introduction, we briefly made mention of
deterministic sequences. For completeness, let us define better what we mean.

Consider an increasing sequence of positive integers n1 < n2 < n3 < · · · and let
ω ∈ {0, 1}∞ be such that ωn = 1 if and only if n= ni for some i . A sequence is said
to be completely deterministic in the sense of Weiss [2000] if all the weak limits
of the set of empirical measures for the forward shifts of ω have zero measure-
theoretic entropy. Rauzy [1976] provided an alternative definition where a sequence



504 JOSEPH VANDEHEY

is deterministic if

lim
s→∞

lim sup
N→∞

inf
φ∈Es

1
N

∑
n<N

min{1, |ωn −φ(ωn+1, . . . , ωn+s)|} = 0,

where Es is the set of all functions from {0, 1, . . . , b−1}s to {0, 1, . . . , b−1}. One
can think of the function φ as an attempt to guess at the value of ωn given knowledge
of ωn+1, . . . , ωn+s . So Rauzy’s definition says that a sequence is deterministic if
the value of ωn is “determined” by the tail ωn+1, ωn+2, . . . .

That all periodic sequences are deterministic follows from either definition.
However, we will make use of a special case of a result of Auslander and Dowker
[1979, Theorem 6], as it sets up the connection to normality most clearly.

Proposition 2.3. Let (Y,G, ν) be a compact measure space with ν(Y ) = 1. Let
S :Y→Y be a ν-measure-preserving invertible transformation that has zero entropy.
Let U ⊂ Y be an open set with ν(U ) > 0 and ν(∂U ) > 0. Let y0 ∈ Y be generic.

Let n1 < n2 < n3 < · · · be an increasing sequence of positive integers such that
n = ni for some i if and only if T n y0 ∈U. In other words, the ni ’s are the sequence
of visiting times for the orbit of y0 to the set U.

Then if (a1, a2, a3, . . .) is normal with respect to some Bernoulli shift, then
(an1, an2, an3, . . .) is also normal with respect to the same Bernoulli shift.

We remark that Auslander and Dowker technically only proved this for the
standard base-2 Bernoulli shift, but it is a simple tweak of their proof to get the
result above.

Suppose for some positive integer m ≥ 2, Y = {0, 1, . . . ,m−1}, ν is the normal-
ized counting measure on X, S is given by Sx= x+1 (mod m), U is any subset of Y,
and y0 is any element of Y. This can be used so that the corresponding ni ’s are any
desired periodic sequence and so gives the following as an immediate consequence.

Lemma 2.4. Let (a1, a2, a3, . . .) be normal with respect to some Bernoulli shift
(X, µ, T ) and let n1 < n2 < n3 < · · · be any eventually periodic sequence. Then
(an1, an2, an3, . . .) is also normal with respect to (X, µ, T ).

The sequences covered by Auslander and Dowker’s result are quite varied. For in-
stance, they cover generalized linear functions such as ni =[αi+β] for α> 1, β≥ 0.
However, it is not clear whether they cover all possible deterministic sequences.

3. Proof of Proposition 1.2

Let x = (a1, a2, a3, . . .) belong to the Bernoulli base-b shift.
Let n1 < n2 < n3 < · · · be an increasing sequence of natural numbers with

asymptotic lower density equal to 1. Suppose that y = (an1, an2, an3, . . .) is normal
with respect to this same Bernoulli shift.
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Consider an arbitrary string s= [d1, d2, . . . , dk] with digits belonging to the digit
set {0, 1, . . . , b− 1}. We wish to show that the limiting frequency of s in x is b−k.

Let N be a large positive integer. Let j = j (N ) denote the largest index such
that n j ≤ N. Since the asymptotic lower density of the sequence is 1, we have that
j (N )= N (1+ o(1)).

So consider the number of times that s appears starting in the first N digits of x .
Each such string will also appear in the first j (N ) digits of y unless one of the
digits of the string gets removed in going from x to y. This happens at most o(N )
times. Similarly any such string appearing in the first j (N ) digits of y appears in
the first N digits of x unless a digit was inserted somewhere in the middle of it,
which happens again at most o(N ) times.

Thus,

#{0≤ i ≤ N − 1 : T i x ∈ Cs}

N
=

#{0≤ i ≤ j (N )− 1 : T i y ∈ Cs}+ o(N )
N

=
#{0≤ i ≤ j (N )− 1 : T i y ∈ Cs}

j (N )
(1+ o(1))

= b−k(1+ o(1)),

by the normality of y. Thus x is normal.
For the second part of the proposition, suppose n1<n2<n3< · · · is an increasing

sequence of natural numbers with asymptotic lower density α < 1. Suppose that
y = (an1, an2, an3, . . .) is normal.

Let x = (a1, a2, a3, . . .) be defined such that an = 0 if n 6= ni for any i .
Let N be an integer such that j (N ) (as defined above) is at most N (1+ α)/2.

By our assumption of the density of the sequence, there must be arbitrarily large
such N ’s.

For such an N, consider how many 0’s appear in the first N digits of x . By the
normality of y, there must be j (N )b−k(1+o(1)) such 0’s coming from the 0’s of y,
and there are also N − j (N ) such 0’s coming from the digits an with n 6= ni for
any i .

Thus the total number of 0’s in the first N digits of x is

(N− j (N ))+ j (N )b−k(1+o(1))= Nb−k
+(N− j (N ))+( j (N )−N )b−k

+o( j (N ))

= Nb−k
+(N− j (N ))(1−b−k)+o(N )

≥ N
(

b−k
+

(
1−1+α

2

)
(1−b−k)+o(1)

)
.

For large N, such that j (N ) ≤ N (1+ α)/2, and small ε > 0, this will certainly
exceed N (b−k

+ ε). Thus we have that x is not normal.
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4. Proof of Theorem 1.3

Let x = (a1, a2, a3, . . .) satisfy the conditions of the theorem.
Consider an arbitrary finite string s = [d1, d2, . . . , dk]. We want to show that the

limiting frequency of s in x is b−k.
Select an arbitrary ε > 0 and pick an increasing sequence of positive integers,

n1 < n2 < n3 < · · · , whose asymptotic lower density strictly exceeds 1− ε, such
that y = (an1, an2, an3, . . . ) is normal.

Now we borrow several ideas from the proof of Proposition 1.2. First let N and
j (N ) be defined as in that proof. We will assume that N is sufficiently large so
that j (N )≥ N (1− ε); in particular j (N )= N (1+ O(ε)). Then by the argument
of the previous proof, we have that the number of times s appears starting in the
first N digits of x is equal to the number of times s appears in the first j (N ) digits
of y, up to an error of O(kεN ). (The presence of k in this term comes from the fact
that, for example, if we delete a single digit from x , this alters k different strings of
length k.)

Thus, again mimicking the previous proof, we have

#{0≤ i ≤ N − 1 : T i x ∈ Cs}

N
=

#{0≤ i ≤ j (N )− 1 : T i y ∈ Cs}+ O(kεN )
j (N )(1+ O(ε))

=
#{0≤ i ≤ j (N )− 1 : T i y ∈ Cs}

j (N )
·

1+ O(kε)
1+ O(ε)

= b−k
·
(1+ O(kε))(1+ o(1))

1+ O(ε)
.

Now by letting N go to infinity, we get that the limsup and liminf of the frequency
of s are both b−k(1+ O(kε))/(1+ O(ε)). Then, by taking ε arbitrarily small, we
get the desired limiting frequency of b−k.

5. Proof of Theorem 1.4

Let N , K , L be as in the statement of Theorem 1.4. By shifting everything forward
L − 1 places, we may, without loss of generality, assume L = 1. Let (X, µ, T ) be
the usual base-b symbolic shift.

Let us consider a new symbolic shift on DK, where D= {0, 1, 2, . . . , b−1}. We
will define the measure ν on Y = (DK )∞ by

(2) λ[d1,d2,...,dK ] =


1

bK −
(−1)d1+···+dK

2bK if all the di are either 0 or 1,

1
bK otherwise.

We let the forward shift on this space be called TY .
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Now we wish to consider what we will call “starred digits”, S = (D∪{∗})K
\DK.

These can be seen as elements of DK with at least one digit replaced with ∗ . We
can then consider starred strings to be elements of Sm for some integer m ≥ 1.

Although starred strings are defined over a larger digit set that includes ∗ , we
may interpret them as a collection of strings with digits in DK. In particular, a
starred string in Sm can be considered as the collection of all strings in (DK )m

where each ∗ in any of the starred digits is allowed to be replaced by any of the
digits in D. And, it should be emphasized, we don’t have to use the same digit
from D each time we do this replacement.

Thus, with this new interpretation, we may talk about a starred string s ∈ Sm

“appearing” in the expansion of a point in (DK )∞. In particular, s appears in this
point if one of the corresponding strings in (DK )m appears in this point. Likewise
we may define the measure ν(Cs) to be the sum of the ν-measure of all the cylinder
sets for the corresponding strings in DK. We then note that the relative frequency
with which s appears in a normal point equals the measure ν(Cs).

We claim that for any string s ∈ Sm, we have ν(Cs)= b−n where n is the number
of digits from D that appear in s (when viewed as a string with mK total digits
from the set D∪ {∗}).

As an easy first case, consider s = [[d1, . . . , dK−1, ∗]] ∈ S1. In this case we have

ν(Cs)=
∑

dK∈D

λ[d1,...,dK ] =
1

bK−1 .

This follows because if d1, . . . , dK−1 are all either 0 or 1, then all of the summands
are b−K except for one term of 1.5 ∗ b−K and one term of 0.5 ∗ b−K, and if at least
one of the d1, . . . , dK−1 is not 0 or 1, then all of the summands are b−K.

It is clear the same will hold for any s ∈ S1 that has only one ∗ in it.
Now let us consider, for example, s = [[d1, . . . , dK−2, ∗, ∗]] ∈ S1. Then we have

ν(Cs)=
∑

dK−1,dK∈D

λ[d1,...,dK ] =

∑
dK∈D

1
bK−1 =

1
bK−2 .

A similar result can be seen to hold for any s ∈ S1 that has exactly two ∗’s in it.
The case of two ∗’s is very instructive, and from it we can clearly see that, by

induction, ν(Cs)= b−n for all s ∈ S1. And since (Y, ν, TY ) as defined in this section
is Bernoulli, we see that ν(Cs)= b−n for all s ∈ Sm for any integer m ≥ 1.

Let x = ([a1, . . . , aK ], [aK+1, . . . , a2K ], . . . ) be a normal point for this symbolic
shift (Y, ν, TY ), and let us apply the standard bijection to interpret it as a point in D∞.

First we claim that x cannot be normal with respect to (X, µ, T ). If it were, then
by Lemma 2.2 it would be normal with respect to (X K , µK , T K ). In particular,
the limiting frequency of the digit [0, 0, . . . , 0] ∈ DK should be b−K. However,
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by construction, the actual limiting frequency of the digit [0, 0, . . . , 0] ∈ DK is
ν(C[[0,...,0]]), which will either be 0.5b−K or 1.5b−K. So x cannot be normal with
respect to (X, µ, T ).

On the other hand, we claim that after selecting along any of the periodic
sequences in N, x is normal. In particular, suppose that we are looking at an
increasing periodic sequence of positive integers n1 < n2 < n3 < · · · with period m.
Then this sequence also has period mK. Suppose the periodic sequence contains p
elements in the interval [1,mK ]— in other words, assume that n1 < n2 < · · · <

n p ≤ mK < n p+1.
Let y= (an1, an2, an3, . . . )∈D∞. Then this is normal, by Lemma 2.2, if and only

if yp= ([an1, . . . , an p ], [an p+1, . . . , an2p ], . . . ) is normal in (X p, µp, T p). Consider
any string sp = [d1, d2, . . . , dpj ] ∈ (D p) j of length j ≥ 1. To complete the proof,
we wish to show that the limiting frequency that sp occurs in yp equals b−pj.

Now, let us consider a string s = [[d1, . . . , dK ], . . . , [d(mj−1)K+1, . . . , dmj K ]] ∈

((D∪ {∗})K )mj defined in the following way:

di =

{
di ′ if i = ni ′ for some i ′ ∈ N,

∗ otherwise.

For each set {K (n− 1)+ 1, K (n− 1)+ 2, . . . , K n}, the restriction placed on the
sequences in N guarantees that at least one of the elements does not belong to the
sequence of ni ’s and so each of the mj digits of s contains at least one ∗ . Thus, s
truly is an element of Smj, not just ((D∪ {∗})K )mj.

Now by the work we did earlier, the limiting frequency with which sp occurs
in yp is equal to the frequency with which the starred string s occurs in x ; however,
this is exactly ν(Cs)= b−pj as desired.

This completes the proof.

Remark 5.1. Let us briefly illustrate how the example after Theorem 1.1 is proved.
Suppose (a1, a2, a3, . . . ) is normal, then [0, 0] appears in this with relative

frequency b−2. Thus [0, 0, 0, 0] appears in y = (a1, a1, a2, a2, a3, a3, . . . ) with
relative frequency at least 0.5b−2. However, for any b ≥ 2, this is strictly greater
than b−4, the expected frequency of [0, 0, 0, 0], so y is not normal.

Suppose we label the digits of y by (a′1, a′2, a′3, . . . ) so that a′n = abn/2c. Sup-
pose k, `∈N and `≥ 2, then a′k+`n= ab(k+`n)/2c. By replacing n with n+2 it is easy
to see that b(k+ `n)/2c is (eventually) periodic with period `; thus by Lemma 2.4,
selecting b(k + `n)/2c will preserve normality for x and, hence, selecting along
k+ `n on y will result in a normal number even though y itself is not normal, as
desired.

Finally we note that constructions like y can arise from modified versions of
the proof above. In particular, they come from taking K = 2 and λ[d1,d2] = 1/b if
d1 = d2 and 0 otherwise.
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