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MULTIPLICITY UPON RESTRICTION TO
THE DERIVED SUBGROUP

JEFFREY D. ADLER AND DIPENDRA PRASAD

We present a conjecture on multiplicity of irreducible representations of a
subgroup H contained in the irreducible representations of a group G, with
G and H having the same derived groups. We point out some consequences
of the conjecture, and verification of some of the consequences. We give an
explicit example of multiplicity 2 upon restriction, as well as certain theo-
rems in the context of classical groups where the multiplicity is 1.

1. Introduction

Suppose k is a local field, G is a connected reductive k-group, G′ is a subgroup of G
containing the derived group, and π is a smooth, irreducible, complex representation
of G(k). In an earlier work [Adler and Prasad 2006], we showed that for many
choices of G, the restriction ResG(k)

G′(k) π decomposes without multiplicity.
A number of years ago, in the process of identifying situations where multiplicity

one did not hold, one of us discovered an example of a depth-zero supercuspidal
representation of GU(2d, 2d), a k-quasisplit group, whose restriction to SU(2d, 2d)
decomposes with multiplicity two, and the other formulated a conjecture in the
form of a reciprocity law involving enhanced Langlands parameters. In this paper,
we present both the example and the conjecture, together with some consequences
of the latter, and a verification of some of those consequences. Besides these, the
paper proves several results by elementary means involving classical groups where
multiplicity one holds.

A complete analysis of decomposition of the unitary principal series for U(n, n)
and its restriction to SU(n, n) was done by Keys [1987], who also phrased his
results in terms of “reciprocity” theorems for R-groups; in particular, he found
cases of multiplicity greater than one.

After presenting our conjecture (Section 2), we give some of the heuristics
behind it. In the formulation of the conjecture, we have considered a more general
situation than that of a subgroup. We consider G1 and G2 to be two connected
reductive groups over a local field k, and λ : G1→ G2 to be a k-homomorphism

MSC2010: 22E50.
Keywords: reductive group, derived subgroup, representation, restriction, multiplicity.
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that is a central isogeny when restricted to their derived subgroups, allowing us to
“restrict” representations of G2(k) to G1(k). Since under such a homomorphism λ,
the image of G1(k) is a normal subgroup of G2(k) with abelian quotient, all the
irreducible representations of G1(k) which appear in this restriction problem for
a given irreducible representation of G2(k) appear with the same multiplicity. In
Section 3, we verify that for our conjectural multiplicity, this relationship does
indeed hold. We show (Section 4) that if the conjecture is true for tempered
representations, then via the Langlands classification it holds for all representations.

Our conjecture (for λ :G1→G2 a k-homomorphism) implies multiplicity one in
situations where Langlands parameters for G1 have abelian component groups. We
list a few such situations in Section 5, and prove multiplicity one for restriction from
GU(n) to U(n) (Section 6). Along the way, we prove multiplicity one in some other
cases where it follows from elementary considerations. In Section 7, we present
an example of a depth-zero supercuspidal representation of quasisplit GU(2d, 2d)
that decomposes with multiplicity two upon restriction to SU(2d, 2d). Finally
(Section 8), we give a general procedure for constructing higher multiplicities.

2. The conjecture on multiplicities

Let Gqs
1 and Gqs

2 be two connected quasisplit reductive groups over a local field k
and let λ : Gqs

1 → Gqs
2 be a k-homomorphism that is a central isogeny when

restricted to their derived subgroups. In what follows we will be twisting Gqs
1

by a cohomology class in H 1(Gal(k̄/k),Gqs
1 (k̄)) to construct a pure inner form

G1 of Gqs
1 . Simultaneously, by twisting Gqs

2 by the image of this class under the
map H 1(Gal(k̄/k),Gqs

1 (k̄))→ H 1(Gal(k̄/k),Gqs
2 (k̄)), we will have a pure inner

form G2 of Gqs
2 , together with a map of algebraic groups that we will still call

λ : G1 → G2, which will appear in considerations below, all coming from an
element of H 1(Gal(k̄/k),Gqs

1 (k̄)).
The map λ : G1→ G2 gives rise to a “restriction” map from representations of

G2(k) to those of G1(k), and from [Silberger 1979] one knows that the restriction of
an irreducible representation of G2(k) is a finite direct sum of irreducible represen-
tations of G1(k). In particular, we obtain a functor λ? :Rfin(G2(k))→Rfin(G1(k)),
where Rfin(H) denotes the category of smooth, finite-length representations of a
group H.

Let LG1 = Ĝ1 o W ′k and LG2 = Ĝ2 o W ′k be the L-groups associated to the
quasisplit reductive groups Gqs

1 and Gqs
2 respectively. The map λ : Gqs

1 → Gqs
2 also

gives rise to a homomorphism of L-groups,
Lλ : LG2→

LG1,

as well as a homomorphism of their centers,
Lλ : Z(Ĝ2)

Wk → Z(Ĝ1)
Wk .
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It follows, in particular, that a character χ1 of π0(Z(Ĝ1)
Wk ) gives rise to a char-

acter χ2 of π0(Z(Ĝ2)
Wk ) which, by the Kottwitz isomorphism (assuming k to be

nonarchimedean at this point),

H 1(Gal(k̄/k),Gqs
i (k̄))∼= Hom(π0(Z(Ĝi )

Wk ),Q/Z),

constructs pure inner forms G1 of Gqs
1 and G2 of Gqs

2 , together with a map λ :G1→G2

as before.
Let ϕ2 : W ′k →

LG2, and ϕ1 =
Lλ ◦ ϕ2 : W ′k →

LG1 be associated Langlands
parameters, where W ′k =Wk×SL2(C), with Wk the Weil group of k. Then Lλ gives
rise to a homomorphism of centralizers of the images of the parameters ϕ1 with
values in LG1 and ϕ2 with values in LG2, and also a homomorphism of the groups
of connected components of their centralizers:

π0(
Lλ) : π0(ZĜ2

(ϕ2))→ π0(ZĜ1
(ϕ1)).

This allows one to “restrict” representations of π0(ZĜ1
(ϕ1)) to representations of

π0(ZĜ2
(ϕ2)), giving rise to the restriction functor

λ? : K0(π0(ZĜ1
(ϕ1)))→ K0(π0(ZĜ2

(ϕ2))),

where K0(H) denotes the Grothendieck group of finite-length representations of a
group H.

The formulation of our conjecture below presumes that the local Langlands corre-
spondence involving enhanced Langlands parameters has been achieved, giving rise
to a bijection between enhanced Langlands parameters and the set of isomorphism
classes of irreducible admissible representations of all pure inner forms of quasisplit
groups. This will be needed for both of the groups G1 and G2; it is possible on the
other hand that one could reverse this role, and use the conjectural multiplicity for-
mula to construct an enhanced Langlands parametrization for G2, knowing it for G1.

Conjecture 1. (a) Let G1 and G2 be two connected reductive groups over a local
field k and let λ : G1→ G2 be a k-homomorphism that is a central isogeny when
restricted to their derived subgroups. For i=1, 2, let πi be an irreducible admissible
representation of Gi (k) with Langlands parameter ϕi . Let

m(π2, π1) := dim HomG1(k)[π1, λ
?π2] = dim HomG1(k)[λ

?π2, π1].

Then m(π2, π1)= 0 unless ϕ1 =
Lλ ◦ϕ2.

(b) Let Gqs
1 and Gqs

2 be two connected reductive quasisplit groups over a local field k
and let λ :Gqs

1 →Gqs
2 be a k-homomorphism that is a central isogeny when restricted

to their derived subgroups. Let ϕ1 and ϕ2 be Langlands parameters associated
to the groups Gqs

1 and Gqs
2 with ϕ1 =

Lλ ◦ ϕ2, and let χi be characters of their
component groups π0(ZĜi

(ϕi )). Then, if Homπ0(Z(ϕ2))[χ2, λ?χ1] is nonzero, the
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characters χi define pure inner forms Gi of Gqs
i together with a k-homomorphism,

λ : G1→ G2, as discussed earlier. Then if πi = π(ϕi , χi ) are the corresponding
irreducible admissible representations of Gi (k), we have

m(π2, π1)= dim Homπ0(Z(ϕ2))[χ2, λ?χ1].

The main heuristic for the conjectural multiplicity is the following.

(1) For any L-packet {π} on any reductive group G(k) defined by a parameter ϕ
(that is, {π} = {π(ϕ,χ)} where one takes those characters χ of the component group
which have a particular restriction to Z(Ĝ)Wk defining the group G(k) assumed to
be a pure inner form of a fixed quasisplit group Gqs),∑

χ

χ(1)2(π(ϕ,χ))

is a stable distribution on G(k). Here, for any admissible representation π we are
letting 2(π) denote its character, regarded as a distribution on G(k).

(2) For a homomorphism λ :G1→G2 of reductive groups over k which is an isogeny
when restricted to their derived subgroups, the pullback of a stable distribution on
G2(k) is a stable distribution on G1(k).

(3) The restriction to G1(k) of an irreducible representation π2 of G2(k) is a
finite-length (completely reducible) representation of G1(k), whose irreducible
components are all in the same L-packet. This L-packet for G1(k) depends only on
the L-packet for G2(k) containing π2. If the Langlands parameter of our L-packet
for G2(k) is ϕ2 : W ′k →

LG2, then the Langlands parameter of our L-packet for
G1(k) is ϕ1 :=

Lλ ◦ϕ2 :W ′k→
LG1. (This is part (a) of the conjecture.)

(4) If Conjecture 1 is true, then the pullback from G2(k) to G1(k) of the distribution∑
χ2

χ2(1)2(π(ϕ2,χ2)),

where the sum is taken over those characters χ2 of the component group which
have a particular restriction to Z(Ĝ2)

Wk defining the group G2(k) assumed to be a
pure inner form of a fixed quasisplit group Gqs

2 (k), is a stable distribution on G1(k)
as we check now.

By Conjecture 1, the pullback of the distribution 2π2 =2(π(ϕ2,χ2)) on G2(k) to
G1(k) is∑

π1

m(π2, π1)2(π1)=
∑
χ1

2(π(ϕ1,χ1)) dim Homπ0(Z(ϕ2))[χ2, λ?χ1].
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Therefore, the pullback to G1(k) of the distribution
∑

χ2
χ2(1)2(π(ϕ2,χ2)) on G2(k)

is (assuming Conjecture 1)∑
χ1,χ2

χ2(1)2(π(ϕ1,χ1)) dim Homπ0(Z(ϕ2))[χ2, λ?χ1],

which is the same as∑
χ1,χ2

2(π(ϕ1,χ1)) dim Homπ0(Z(ϕ2))[χ2(1)χ2, λ?χ1],

where the sum is taken over all pairs of characters χ1, χ2 with particular restrictions
to Z(Ĝ1)

Wk and Z(Ĝ2)
Wk. Observe that those characters χ2 whose restrictions to

Z(Ĝ2)
Wk are not compatible with the restriction of χ1 to Z(Ĝ1)

Wk contribute 0 to
the sum. Therefore, we can take the sum over all χ2. The sum then is the same as

(∗)
∑
χ1

2(π(ϕ1,χ1)) dim Homπ0(Z(ϕ2))[R, λ?χ1],

where R =
∑
χ2(1)χ2 is the regular representation of π0(Z(ϕ2)).

By Schur orthogonality,

dim Homπ0(Z(ϕ2))[χ2, λ?χ1] =
1

|π0(Z(ϕ2))|

∑
g∈π0(Z(ϕ2))

χ1(λ
?g)χ2(g),

where λ? denotes the map π0(
Lλ) : π0(Z(ϕ2))→ π0(Z(ϕ1)). So

dim Homπ0(Z(ϕ2))[R, λ?χ1] =
1

|π0(Z(ϕ2))|

∑
g∈π0(Z(ϕ2))

χ1(λ
?g)χR(g),

where R is the regular representation of π0(Z(ϕ2)) and χR its character, thus

χR(g)=
{

0 if g is not the identity,
|π0(Z(ϕ2))| if g is the identity.

Therefore,
dim Homπ0(Z(ϕ2))[R, λ?χ1] = χ1(1).

By (∗) it follows that the pullback of the distribution
∑

χ2
χ2(1)2(π(ϕ2,χ2)) on

G2(k) to G1(k) is equal to
∑

χ1
χ1(1)2(π(ϕ1,χ1)), where the sum is taken over

those χ1 with a given restriction to Z(Ĝ1)
Wk. Thus the pullback of the distribution∑

χ2
χ2(1)2(π(ϕ2,χ2)) on G2(k) to G1(k) is a stable distribution on G1(k) which is

what we set out to prove.

Remark 2. A weaker version of our conjecture says that the pullback to G1(k) of
the stable character

∑
χ χ(1)2χ on G2(k) is

∑
µ µ(1)2µ on G1(k), where both

of the sums are over the characters of component groups defining fixed pure inner
forms that are G2 and G1, respectively.
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3. Some remarks on the multiplicity formula

Conjecture 1 relating m(π2, π1) with dim Homπ0(Z(ϕ2))[λ?χ1, χ2] can be considered
as a set of assertions keeping π2 fixed and varying π1, or keeping π1 fixed and
varying π2, say, inside an L-packet for G2(k). It is easy to see that for G1 and G2

two reductive groups over a local field k, and λ :G1→G2, a k-homomorphism that
is a central isogeny when restricted to their derived subgroups, the image of G1(k)
inside G2(k) is a normal subgroup, and therefore every irreducible representation
of G1(k) that appears inside a given irreducible representation π2 of G2(k) does
so with the same multiplicity (depending, of course, on π2). This section aims to
prove this as a consequence of our Conjecture 1.

This section is meant to prove that dim Homπ0(Z(ϕ2))[λ?χ1, χ2] remains constant
when χ2 is a fixed character of π0(Z(ϕ2)) but χ1 varies among characters of
π0(Z(ϕ1)). This is achieved by combining Corollary 4 with Lemma 5. We begin
with the following lemma whose straightforward proof will be omitted.

Lemma 3. Let N be a normal subgroup of a finite group G with A = G/N an
abelian group. Let π be an irreducible representation of N. Then any two irreducible
representations π1 and π2 of G containing π on restriction to N are twists of each
other by characters of G/N, i.e.,

π2 ∼= π1⊗χ,

for χ : G/N → C×.

Corollary 4. If N is a normal subgroup of a group G with A=G/N a finite abelian
group, and π an irreducible representation of N, then all irreducible G-submodules
of IndG

N (π) appear in it with the same multiplicity.

Lemma 5. Let G1 and G2 be two connected reductive groups over a local field k
and let λ : G1→G2 be a k-homomorphism that is a central isogeny when restricted
to their derived subgroups, and giving rise to a homomorphism Lλ : LG2→

LG1

of the L-groups. Let ϕ2 :W ′k→
LG2, and ϕ1 =

Lλ ◦ϕ2 :W ′k→
LG1 be associated

Langlands parameters. Then for the associated homomorphism of finite groups
λ? : π0(ZĜ2

(ϕ2))→ π0(ZĜ1
(ϕ1)), the image is normal with abelian cokernel.

Proof. It suffices to prove the lemma separately in the two cases:

(1) λ : G1→ G2 is injective as a homomorphism of algebraic groups.

(2) λ : G1→ G2 is surjective as a homomorphism of algebraic groups.

We will address only the first case, the other being very similar.
Assume then that λ : G1→ G2 is injective, and thus λ̂ : Ĝ2→ Ĝ1 is surjective

with kernel, say, Ẑ . Use ϕ2 : W ′k→
LG2 and ϕ1 =

Lλ ◦ϕ2 :W ′k→
LG1 to give Ĝ2
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and Ĝ1, a W ′k-group structure, such that we have an exact sequence of W ′k-groups,

1→ Ẑ→ Ĝ2→ Ĝ1→ 1.

This gives rise to a long exact sequence of W ′k-cohomology sets:

1→ Ẑ W ′k → Ĝ
W ′k
2 → Ĝ

W ′k
1 → H 1(W ′k, Ẑ)→ · · · .

Equivalently, we have the exact sequence of groups,

1→ ZĜ2
(ϕ2)/Ẑ W ′k → ZĜ1

(ϕ1)→ A→ 1,

where A is a subgroup of H 1(W ′k, Ẑ), a locally compact abelian group. Taking
π0 of the terms in the above exact sequence which all fit together in a long exact
sequence of πi ’s (higher homotopy groups), the assertion in the lemma follows on
noting that if E1→ E2 is a surjective map of locally compact and locally connected
topological groups, then the induced map π0(E1)→ π0(E2) is also surjective. �

4. Reduction of the conjecture to the case of tempered representations

As before, let G1 and G2 be two reductive groups over a local field k, and let
λ :G1→G2 be a k-homomorphism that is a central isogeny when restricted to their
derived subgroups, giving rise to the restriction functor

λ? :Rfin(G2(k))→Rfin(G1(k)).

Lemma 6. Let V be a finite-length representation of G2(k) with maximal semisim-
ple quotient Q. Then λ?Q is the maximal semisimple quotient of λ?V, a finite-length
representation of G1(k).

Proof. It suffices to observe that a finite-length representation of G2(k) is semisimple
if and only if its image under λ? is a finite-length, semisimple representation of G1(k).
If Z(G1)(k)·G1(k) is of finite index in G2(k), such as when k is of characteristic zero,
then this is easy to see. By a theorem of Silberger [1979], irreducible representations
of G2(k) remain finite-length semisimple representations when restricted to G1(k),
and the lemma follows in general. �

To set up the next result, let P2 = M2 N2 be a Levi factorization of a parabolic
subgroup in G2. If we let P1 = λ

−1(P2), M1 = λ
−1(M2), and N1 = λ

−1(N2), then
P1=M1 N1 is a Levi factorization of a parabolic subgroup in G1. Then λ : M1→M2

gives us a restriction functor Rfin(M2(k))→Rfin(M1(k)) that we will also denote
by λ?. Since λ gives an isomorphism G1(k)/P1(k)→ G2(k)/P2(k), we have the
following commutative diagram:
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Rfin(G2(k))
λ? // Rfin(G1(k))

Rfin(M2(k))
λ? //

Ind
G2(k)
P2(k)

OO

Rfin(M1(k))

Ind
G1(k)
P1(k)

OO

Lemma 7. Let σ2 be an irreducible, essentially tempered representation of M2(k)
with strictly positive exponents along the center Z(M2)(k) of M2(k). Write

λ?σ2 =
∑
α

mασ1,α,

a sum of irreducible, essentially tempered representations of M1(k) with (finite) mul-
tiplicities mα . Let π2 be the Langlands quotient of the standard module IndG2(k)

P2(k) σ2,
and π1,α the Langlands quotients of IndG1(k)

P1(k) σ1,α. Then

λ?π2 =
∑
α

mαπ1,α.

Proof. Clearly,

λ? IndG2(k)
P2(k) σ2 = IndG1(k)

P1(k) λ
?σ2 =

∑
α

mα IndG1(k)
P1(k) σ1,α.

Since “taking maximal semisimple quotient” commutes with direct sum, our result
follows from Lemma 6. �

Corollary 8. If Conjecture 1 is true for tempered representations, then it is true in
general.

Proof. Every representation π2 of G2(k) can be realized as a Langlands quotient of a
standard module IndG2(k)

P2(k) σ2 for an essentially tempered representation σ2 of M2(k).
The Langlands parameter ϕ2 : W ′F →

LG2 for π2 is the same as the Langlands
parameter ϕ2 for σ2 considered as a map W ′F

ϕ2
−→

L M2→
LG2. The component

groups of these parameters, and thus the representations of these component groups,
correspond as discussed in [Prasad 2019, §5]. Therefore, our result is a consequence
of Lemma 7. �

5. Consequences of the conjecture

If the group of connected components π0(ZĜ1
(ϕ1)) is known to be abelian, as is

the case when G1 is any of the groups SLn , Un , SOn , and Spn , then our conjecture
predicts that for any homomorphism λ : G1 → G2 of connected reductive alge-
braic groups that is an isomorphism up to center (i.e., λ̄ : G1/Z1→ G2/Z2 is an
isomorphism of algebraic groups, where Zi is the center of Gi ), any irreducible
representation of G2(k) when restricted via λ to G1(k) decomposes as a sum of
irreducible representations of G1(k) with multiplicity ≤ 1.
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We note that by our earlier work [Adler and Prasad 2006], we know that multi-
plicity is ≤ 1 whenever the pair (G1,G2) is (SLn,GLn), or (when the characteristic
of k is not two) either (On,GOn) or (Spn,GSpn). In the next section, we will see
that multiplicity ≤ 1 also holds for (Un,GUn). The paper [Gee and Taïbi 2018]
shows that multiplicity ≤ 1 holds for the pair (SOn,GSOn) if k has characteristic
zero.

6. Generalities on restriction to unitary and special unitary groups

Let E/k denote a separable quadratic extension of nonarchimedean local fields,
N = NE/k the norm map from E× to k×, and E1 the kernel of this map.

Let B denote a nondegenerate E/k-hermitian form on some E-vector space V
of some dimension r . Then we can form algebraic groups SU(V, B), U(V, B),
and GU(V, B) whose k-points consist respectively of the elements of SL(r, E) that
preserve B; the elements of GL(r, E) that preserve B; and the elements of GL(r, E)
that preserve B up to a scalar in k×. The group GU(V, B) comes equipped with
a map µ : GU(V, B)→ GL1 called the similitude character. We will write our
algebraic groups as SU(r), U(r), and GU(r) when V and B are understood.

If G is a group, H is a subgroup, and G/Z(G)H is cyclic, then every irreducible
representation of G restricts to H without multiplicity. How far can we exploit this
fact?

Theorem 9. Let p be the residual characteristic of k.

(a) All irreducible representations of GU(r)(k) decompose without multiplicity
upon restriction to U(r)(k). Such a restriction is irreducible when r is odd, and has
at most two components when r is even.

(b) All irreducible representations of U(r)(k) decompose without multiplicity upon
restriction to SU(r)(k) when r is coprime to p, or k =Qp (p odd).

(c) All irreducible representations of GU(r)(k) decompose without multiplicity
upon restriction to SU(r)(k) when r is odd and coprime to p.

Proof. (a) Let µ : GU(r)→ GL(1) denote the similitude character. Clearly the
group GU(r) contains the scalar matrices eIr for all e ∈ E×, and for such matrices
the similitude is NE/k(e). Therefore, the image under µ of the center of GU(r)(k)
is NE/k(E×), so µ thus gives an isomorphism

GU(r)
Z(GU(r))U(r)

−→∼
Im(µ)
N (E×)

.

A scalar a ∈ k× is a similitude for some linear transformation g of V if and only
if for all v,w ∈ V, we have that B(gv, gw) = a · B(v,w). That is, B and a · B
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are equivalent Hermitian forms. It is known that two Hermitian forms over a non-
archimedean local field k are equivalent if and only if their discriminants, which
are elements of k×/N (E×), are the same. Therefore, B and aB are equivalent if
and only if disc B = ar disc B in k×/N (E×) ∼= Z/2. Thus, if r is even, then B
and aB are equivalent for a an arbitrary element of k×, but if r is odd, then a must
lie in N (E×). Thus,

GU(r)
Z(GU(r))U(r)

∼= Z/2 or {1}.

(b) Let RE and PE denote the ring of integers and prime ideal for E . The determi-
nant character gives us an isomorphism,

det :
U(r)(k)

Z(U(r))(k)SU(r)(k)
−→∼

E1

(E1)r
.

As an abstract group, E1 inherits a direct product decomposition from R×E ∼=
k×E ×(1+PE). Thus, E1 is a direct product of a cyclic group (of order coprime to p)
and a pro-p-group A, implying that E1/Er

1 is cyclic if and only A/Ar is cyclic. But
this latter quotient is trivial if r is coprime to p, and is cyclic if k =Qp (p odd).

(c) This follows from the previous two parts of the theorem. �

7. An example of multiplicity upon restriction

Let $ be a uniformizer of k, E/k an unramified quadratic extension, Rk and RE

the rings of integers in k and E , and f and fE the residue fields. Let V be a 4d-
dimensional hermitian space over E , with hyperbolic basis {e1, f1, . . . , e2d , f2d}.
Thus, 〈ei , fi 〉 = 1 for all 1≤ i ≤ 2d , and all the other products being 0. Let U(V )
be the corresponding unitary group. Define the lattice L in E by

L= spanRE
{e1, f1, . . . , ed , fd ,$ed+1, fd+1, . . . ,$e2d , f2d}.

Clearly, L∨ := {v ∈ V |〈v, `〉 ∈ RE for all ` ∈ L} is given by

L∨ = spanRE
{e1, f1, . . . , ed , fd , ed+1,$

−1 fd+1, . . . , e2d ,$
−1 f2d}.

Observe that
$L∨ ⊆ L⊆ L∨,

and L∨/L and L/$L∨ are 2d-dimensional hermitian spaces over fE with natural
hermitian structures. For example, given two elements `1 and `2 in L∨ with images
`1 and `2 in L∨/L, the hermitian structure on L∨/L is defined by having 〈`1, `2〉

as the image of $ 〈`1, `2〉 (which belongs to RE ) in fE .
Define K = U(L) to be the stabilizer of the lattice L in U(V ), i.e., U(L) =
{g ∈U(V )|g` ∈ L for all ` ∈ L}. If an element of U(V ) preserves L, then it clearly
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preserves L∨ and $L, giving a map U(L)→ U(2d, f)×U(2d, f). Similarly, we
have a map SU(L)→ S(U(2d)×U(2d))(f).

Let g0 ∈ GU(V ) be defined (for i ≤ d) by

ei 7→ ed+i , fi 7→$−1 fd+i , ed+i 7→$−1ei , fd+i 7→ fi .

Clearly, g0 has similitude factor $−1, and g0L= L∨. Therefore, we have

g0 U(L)g−1
0 = U(L∨).

Thus conjugation by g0 induces an isomorphism of U(L) into U(L∨), making the
diagram

U(L)
g0 //

��

U(L∨)

��

U(2d, f)×U(2d, f)
j
// U(2d, f)×U(2d, f)

commute, where j (x, y)= (y, x).

Theorem 10. Let ρ be any irreducible cuspidal representation of U(2d)(f) such
that ρ 6∼=ρχ , where χ is a quadratic character of U(2d)(f) trivial on SU(2d)(f). Let
σ := infl(ρ⊗ρχ) denote the inflation of ρ⊗ρχ from (U(2d)×U(2d))(f) to U(L)
and let π = c-IndU(V )

U(L) σ . Then π ⊕π g0 extends to an irreducible representation π̃
of GU(V ) whose restriction to SU(V ) decomposes with multiplicity two.

Proof. From [Moy and Prasad 1996, Proposition 6.6], π is an irreducible, su-
percuspidal representation of U(V ). Let π also denote one of its extensions to
Z(GU(V ))U(V ). From the last sentence of [Moy and Prasad 1994, Theorem 5.2],
π g0 6∼=π , so the sum π⊕π g0 extends to an irreducible (also supercuspidal) represen-
tation π̃ of GU(V ). By the induction-restriction formula (observe that by the explicit
description of U(L), det :U(L)→ E1 is surjective, and hence U(L)SU(V )=U(V )),

π |SU(V ) = c-IndSU(V )
SU(L) (σ |SU(L)),

π g0 |SU(V ) = c-IndSU(V )
SU(L) (σ

g0 |SU(L)).

Since ρ⊗ ρχ ∼= ρχ ⊗ ρ as representations of S(U(2d)×U(2d))(f), we have that
σ ∼= σ g0 as representations of SU(L), so

π̃ |SU(V ) = (π ⊕π
g0)|SU(V ) = 2 · c-IndSU(V )

SU(L) (σ |SU(L)). �

In order to have an example of multiplicity at least two, it is thus sufficient to
find a representation ρ of U(2d)(f) such that ρ 6∼= ρχ , as in the theorem. In fact,
most irreducible Deligne–Lusztig cuspidal representations of U(2d)(f) will have
this property, as they restrict irreducibly to SU(2d)(f).
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Remark 11. In a future work, we will expand upon the example in Theorem 10,
whose essence is the following. Given a supercuspidal representation of G2(k)
whose restriction to G1(k) has regular components (in the sense of Kaletha [2016]),
then the components occur with multiplicity one. (Nevins [2015] already verified
this for many cases.) If the components are not regular, then higher multiplicities
can occur.

Our example begins with ρ, an irreducible cuspidal representation of U(2d)(f)
that arises via Deligne–Lusztig induction from a character θ of the group of f-
points of an anisotropic torus T⊂ U(2d). Suppose also that the restriction of θ to
T(f)∩ SU(2d)(f) remains regular so that the restriction of ρ to SU(2d)(f) remains
irreducible. The torus T× T ⊂ U(2d)×U(2d) lifts to give an unramified torus
T ⊂ GU(V ), and the character θ ⊗ θχ can be inflated and extended to give a
character 2 of T. The representation π̃ of GU(V ) that we have constructed in the
theorem is a regular supercuspidal representation in the sense of Kaletha [2016], but
the irreducible components of its restriction to SU(V ) are not since our character
2 of T, when restricted to T ∩SU(V ), is not regular because of the presence of the
element g0 ∈ GU(V ).

For depth-zero supercuspidal representations of quasisplit unitary groups, the
parahoric that we have used is the only one that can lead to higher multiplicities.

8. Generalities on constructing higher multiplicities

In this section, we discuss some generalities underlying the example of the previous
section, which will be useful for constructing higher multiplicities in general.

Let G be a group, and N a normal subgroup of G such that

G/N ∼= Z/2⊕Z/2.

A good example to keep in mind is G = Q8 = {±1,±i,± j,±k}, the quaternion
group of order 8, and N ={±1}. Let ω1 and ω2 be two distinct, nontrivial characters
of G that are trivial on N.

Suppose π is an irreducible representation of G such that

π ∼= π ⊗ω1 ∼= π ⊗ω2.

By [Gelbart and Knapp 1982, §2], π |N must be one of

(1) a sum of four inequivalent, irreducible representations, or

(2) a sum of two copies of an irreducible representation.

Deciding which of these two options we have is a subtle question, and this is what
we wish to do here.

Let N1 = ker{ω1 : G → Z/2}, so that G ⊃ N1 ⊃ N. Because π ∼= π ⊗ ω1,
π |N1 is equal to π1⊕π2, a sum of inequivalent, irreducible representations. Further,
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since π ∼= π ⊗ω2, we have

(π1⊕π2)∼= (π1⊕π2)⊗ω21,

where ω21 is equal to ω2|N1 , a nontrivial character of N1 of order 2. Therefore, we
have the following two possibilities:

(i) π1 ∼= π1⊗ω21.

(ii) π2 ∼= π1⊗ω21.

In case (i), π1, which is an irreducible representation of N1, decomposes when
restricted to N into two inequivalent irreducible representations, and therefore π
has at least two inequivalent irreducible subrepresentations when restricted to N;
hence, in case (i),

π |N = a sum of 4 inequivalent, irreducible representations.

In case (ii), clearly π |N is twice an irreducible representation.
How does one then construct an example of an irreducible representation π of G

for which π |N is twice an irreducible representation? We start with an irreducible
representation π1 of N1 such that the following equivalent conditions hold:

(i) π1 does not extend to a representation of G.

(ii) π g
1 6
∼= π1 for some g ∈ G.

Given such a representation π1 of N1, next we must ensure that

π
g
1
∼= π1⊗ω21 for g ∈ G \ N .

If we understand N1, together with the action of G on the representations of N1,
then the condition

π
g
1
∼= π1⊗ω21 6∼= π1

is checkable, constructing an irreducible representation π = IndG
N1
π1 of G such

that
π |N = 2π1|N .
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UNKNOTTING NUMBER AND KHOVANOV HOMOLOGY

AKRAM ALISHAHI

We show that the order of h-torsion homology classes in the Bar-Natan de-
formation of Khovanov homology with Z/2Z-coefficients is a lower bound
for the unknotting number. This is not a bound for the slice genus, unlike
most lower bounds for the unknotting number, and only vanishes for the
unknot. We give examples of knots for which this is a better lower bound
than |s(K )/2|, where s(K ) is the Rasmussen s invariant defined by the Bar-
Natan spectral sequence.

1. Introduction

Khovanov [2000] introduced a knot (and link) invariant which categorifies the Jones
polynomial, now known as Khovanov homology. This invariant is constructed by
applying a specific TQFT to the cube of resolutions corresponding to a projection
of the knot. Using a different TQFT, Bar-Natan [2005] defined a deformation of
Khovanov homology, called Bar-Natan homology. Let F= Z/2Z. This invariant
is a bigraded F[h]-module, and in this paper we introduce a lower bound for the
unknotting number in terms of the order of h-torsion elements.

For a knot K, let HB N (K ) denote the Bar-Natan homology of K. A homology
class α ∈ HB N (K ) is called torsion if hn.α = 0 for a positive integer n. The
smallest n with this property is called the order of α, denoted by ord(α). Let
TB N (K ) denote the set of torsion classes in HB N (K ).

Definition 1.1. For a knot K in R3, we define

u(K ) := max
α∈TB N (K )

ord(α).

Theorem 1.2. For any knot K, u(K ) is a lower bound for the unknotting number
of K.

Let K+ and K− be knot diagrams that differ in a single crossing c. Orient them

The author was supported by NSF Grant DMS-1505798.
MSC2010: 57M25, 57M27.
Keywords: unknotting number, Khovanov homology, Bar-Natan homology.
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0-resolution 1-resolution

Figure 1. The two possible resolutions of a crossing.

such that c is a positive crossing in K+ and a negative crossing in K−. We prove
Theorem 1.2 by introducing chain maps

(1) f +c : CB N (K+)→ CB N (K−) and f −c : CB N (K−)→ CB N (K+)

such that the induced maps by f −c ◦ f +c and f +c ◦ f −c on HB N (K+) and HB N (K−),
respectively, are equal to multiplication by h. In [Alishahi and Dowlin 2018], we
introduce similar chain maps for the Lee homology and prove the knight move
conjecture [Khovanov 2000; Bar-Natan 2002] for knots with unknotting number
smaller than 3.

Despite the algebraic definition of the chain maps (1), we show that they can be
described in terms of the cobordism maps associated to specific cobordisms from
K+ to K−#H, and K− to K+#m H, where H is the right-handed Hopf link and m H
is its mirror. In [Alishahi and Eftekhary 2016], we use corresponding cobordism
maps for the knot Floer homology to deduce a lower bound for the unknotting
number, in terms of the order of torsion classes in variants of knot Floer homology.

This paper is organized as follows. Section 2 reviews the Bar-Natan chain
complex and collects some results we will need later. Section 3 proves Theorem 1.2.
Section 4 gives a geometric description, using cobordism maps, for the chain maps,
defined algebraically, in the process of proving Theorem 1.2 in Section 3. Finally,
Section 5 gives examples of knots for which our invariant (Definition 1.1) is a better
lower bound compared to the s-invariant, i.e., u(K ) > |s(K )|/2.

2. Background

In this section, we review the Bar-Natan chain complex, describe its module structure
and discuss some of its basic properties.

Bar-Natan’s deformation of Khovanov homology. Let K be an oriented knot or
link diagram in R2 with n crossings. Denote the set of crossings in K by C =

{c1, . . . , cn}. Each crossing can be resolved in two different ways, the 0-resolution
and the 1-resolution; see Figure 1.

For any vertex v of {0, 1}n, let Kv denote the complete resolution obtained by
replacing the crossing ci by its vi -resolution. Let kv denote the number of connected
components of Kv.
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There is a partial order on {0, 1}n by setting u ≤ v if ui ≤ vi for all 1 ≤ i ≤ n.
Denote u l v if u < v and |v| − |u| = 1, where |v| denotes

∑
i vi . Corresponding

to each edge of the cube, i.e., a pair u l v, there is an embedded cobordism in
R2
×[0, 1] from Ku to Kv , constructed by attaching an embedded one-handle near

the crossing ci where ui < vi . If ku > kv, the cobordism merges two circles, and
otherwise splits two circles.

Set F= Z/2Z. Let A denote the 2-dimensional Frobenius algebra over F[h] with
basis {x+, x−} and multiplication and comultiplication defined as:

x+⊗ x+
m
7→ x+,

x−⊗ x+
m
7→ x−,

x+⊗ x−
m
7→ x−,

x−⊗ x−
m
7→ hx−,

x+
1
7→ x+⊗ x−+ x−⊗ x++ hx+⊗ x+,

x−
1
7→ x−⊗ x−.

The Bar-Natan chain complex is obtained by applying the (1+1)-dimensional
TQFT corresponding to A to the above cube of cobordisms for K. More precisely,
corresponding to a vertex v ∈ {0, 1}n, a Khovanov generator is a labeling of the
circles in Kv by x+ or x−. The module CB N (Kv) is defined as the free F[h]-module
generated by the Khovanov generators corresponding to v and

CB N (K ) :=
⊕

v∈{0,1}n
CB N (Kv).

The differential δB N decomposes along the edges; for any u l v the component

δ
u,v
B N : CB N (Ku)→ CB N (Kv)

is defined by the multiplication if Kv is obtained from Ku by merging two circles;
otherwise, it is defined by the comultiplication. The Bar-Natan chain complex,
(CB N (K ), δB N ), was studied by Bar-Natan [2005]; the homology is denoted by
HB N (K ). For simplicity, we denote the differential by δ.

The chain complex is bigraded by the homological grading grh , and an internal
grading grq , called quantum grading. The homological grading for each sum-
mand CB N (Kv) of CB N (K ) is given by |v| − n−, where n• denotes the number
of •-crossings in K for • ∈ {+,−}. The quantum grading for each Khovanov
generator x at a vertex v is given by

grq(x)= n+− 2n−+ |v| + k+v − k−v ,

where k•v denotes the number of circles labeled by x• in Kv , for •=+,−. Further-
more, the formal variable h has homological grading 0 and quantum grading −2.
Note that if K is a knot, the bigraded module HB N (K ) is independent of the choice
of orientation on K.
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Module structure on Bar-Natan homology and basepoint action. Let K be a knot
diagram and p be a point on K away from the crossings. The choice of p induces a
module structure on the Khovanov homology of K described in [Khovanov 2003].
We recall this structure for Bar-Natan homology. Choose a small unknot U near p
and disjoint from K such that merging the unknot with K gives a knot or link
diagram isotopic to K. Then, attaching the corresponding embedded one-handle to
KqU gives an embedded cobordism in R3

× I from KqU to K , and its associated
cobordism map, denoted by m p,

m p : CB N (K qU )= CB N (K )⊗F[h] A→ CB N (K ),

is given by the multiplication map m of A. More precisely, for a Khovanov generator
x ∈CB N (Kv), m p(x⊗x•) is the Khovanov generator obtained from x by multiplying
the label of the circle containing p with x•.

Similarly, let
1p : CB N (K )→ CB N (K )⊗F[h] A

denote the cobordism map associated to the inverse cobordism from K to K qU.
If K is related to another knot diagram K ′ by a Reidemeister move away from

the basepoint p, it is straightforward that the chain homotopy equivalence between
CB N (K ) and CB N (K ′), defined in [Bar-Natan 2005], commutes with m p. On the
other hand, any Reidemeister move which crosses p is equivalent to a sequence
of Reidemeister moves away from p. So it induces an A-module structure on the
Bar-Natan homology of the underlying knot K.

For a point p on K, let
xp : CB N (K )→ CB N (K )

be the chain map xp(a) = m p(a ⊗ x−), defined as in [Hedden and Ni 2013].
Therefore, for a Khovanov generator x ∈ CB N (Kv) if the circle containing p is
labeled by x+ then xp(x) is the Khovanov generator obtained from x by changing
the label of this circle to x−, otherwise xp(x)= hx . Thus, xp ◦ xp = hxp and xp

reduces the quantum grading by 2.

Lemma 2.1. For any point p ∈ K away from the crossings and a ∈ CB N (K ),

1p(a)= a⊗ x−+ (xp(a)+ ha)⊗ x+.

Proof. It is enough to check this relation for each Khovanov generator x ∈ CB N (Kv).
If the circle containing p is labeled by x+, then by definition

1p(x)= x ⊗ x−+ xp(x)⊗ x++ hx ⊗ x+ = x ⊗ x−+ (xp(x)+ hx)⊗ x+.

If the circle containing p is labeled by x−, then xp(x)+ hx = 0, and by definition

1p(x)= x ⊗ x−. �
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p

q

Figure 2. Two points lying on opposite sides of a single crossing.

In contrast to the Khovanov homology, the chain homotopy type of the module
multiplication map xp is not independent of the marked point p. In fact, [Hedden
and Ni 2013, Lemma 2.3] may be generalized to describe the difference of xp and
xq when p and q lie on the opposite sides of a crossing as follows.

Lemma 2.2. Let p, q ∈ K be points away from the crossings that lie on the opposite
sides of a single crossing as in Figure 2. Then, xp + xq is homotopy equivalent to
multiplication by h.

Before proving this lemma, we review some of the properties of the cobordism
maps associated with oriented saddle moves. Assume K and L are oriented link
diagrams such that L is obtained from K by an oriented saddle move as in Figure 3.
This saddle move represents an oriented, embedded saddle cobordism in R3

×[0, 1]
from K to L . Let

f : CB N (K )→ CB N (L)

denote the chain map on the Bar-Natan chain complex associated with this cobor-
dism.

Lemma 2.3. For any point p on K away from the crossings,

f ◦ xp = xp ◦ f.

Proof. To prove this, it suffices to check two elementary cases:

(1) K is one circle and L is a disjoint union of two circles, and so f=1. Then,

1 ◦ xp(x+)= x−⊗ x− = xq(1x+)= xq ′(1x+)

and
1 ◦ xp(x−)= hx−⊗ x− = xq(x−⊗ x−)= xq ′(x−⊗ x−).

q q ′

Figure 3. Saddle move: q and q ′ are the attaching points of the
corresponding one-handle.
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(2) K is a disjoint union of two circles and L is one circle, and so f= m. Then,

xp ◦m(x+⊗ x+)= x− = m ◦ xp(x+⊗ x+),

xp ◦m(x+⊗ x−)= hx− = m ◦ xp(x+⊗ x−),

xp ◦m(x−⊗ x+)= hx− = m ◦ xp(x−⊗ x+),

xp ◦m(x−⊗ x−)= h2x− = m ◦ xp(x−⊗ x−). �

Let f̄ : CB N (L)→ CB N (K ) be the chain map associated with the inverse saddle
move.

Lemma 2.4. With the above notation fixed, for any a ∈ CB N (K ) we have

(2) f̄ ◦ f(a)= ha+ xq(a)+ xq ′(a).

Proof. Given a vertex v ∈ {0, 1}n, if q and q ′ lie on the same connected component
of the complete resolution Kv, then xq |CB N (Kv) = xq ′ |CB N (Kv). Thus, for any a ∈
CB N (Kv), (2) follows from

m1(x+)= hx+ and m1(x−)= hx−.

Otherwise, if q and q ′ belong to distinct connected components of Kv, for any
Khovanov generator x ∈ CB N (Kv) the statement follows from one of the following
relations, depending on the labels of the circles containing q and q ′:

1m(x+⊗x+)= hx+⊗x++x−⊗x++x+⊗x−,

1m(x−⊗x+)= x−⊗x−= hx−⊗x++m(x−⊗x−)⊗x++x−⊗x−,

1m(x+⊗x−)= x−⊗x−= hx+⊗x−+x−⊗x−+x+⊗m(x−⊗x−),

1m(x−⊗x−)= hx−⊗x−= hx−⊗x−+m(x−⊗x−)⊗x−+x−⊗m(x−⊗x−). �

Proof of Lemma 2.2. The proof is similar to the proof of [Hedden and Ni 2013,
Lemma 2.3]. Denote the crossing between p and q by c. Let K• be the diagram
obtained from K by applying the •-resolution at c. One may orient K0 and K1 such
that K1 is obtained from K0 by an oriented saddle move, and up to appropriate
grading shifts, CB N (K ) is given by the mapping cone

f : CB N (K0)→ CB N (K1),

where f is the corresponding cobordism map. Let f̄ denote the cobordism map
associated with the inverse cobordism from K1 to K0. Under this decomposition
we define

H(a0, a1) := (f̄(a1), 0).
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Then,

δH(a0, a1)+ Hδ(a0, a1)= δ(f̄(a1), 0)+ H(δa0, f(a0)+ δa1)

= (δf̄(a1), ff̄(a1))+ (f̄(f(a0)+ δa1), 0)

= (f̄f(a0), ff̄(a1)),

and thus it follows from Lemma 2.4 that H is a chain homotopy between xp+ xq

and multiplication by h. �

Corollary 2.5. Assume K and L are oriented link diagrams so that L is obtained
from K by an oriented saddle move. If the attaching points of the saddle lie on the
same connected component of K, then f̄◦ f is chain homotopic to multiplication by h.
As before, f and f̄ denote the chain maps associated with the corresponding saddle
cobordism and its inverse, respectively.

Proof. Let p and q be the attaching points of the saddle. Consider an arc α ⊂ K
connecting p to q . Moving the point p along α, it would cross an even number of
crossings until it gets to q; thus Lemma 2.2 implies that xp is homotopy equivalent
to xq . Then, by Lemma 2.4 we have that f̄f is homotopy equivalent to multiplication
by h. �

3. Lower bound for unknotting number

The goal of this section is to prove Theorem 1.2.
Let C be a chain complex of F[h]-modules. Recall that a homology class

α ∈H?(C) is called torsion if hnα = 0 for some positive n, and the smallest such n
is called the order of α, denoted by ord(α). Let T (C) be the set of torsion homology
classes in H?(C) and define

u(C) := max
α∈T (C)

ord(α).

Lemma 3.1. Given chain complexes C and C ′ of F[h]-modules, together with
chain maps

f : C→ C ′ and g : C ′→ C

so that both f? ◦ g? and g? ◦ f? are equal to multiplication by hn for some n > 0,
then

|u(C)− u(C ′)| ≤ n.

Proof. For any homology class α ∈ T (C) we have f?(α) ∈ T (C ′), and it follows
from g? ◦ f?(α)= hnα that

ord(hnα)≤ ord( f?(α))≤ ord(α).

Thus, ord(α)≤ord( f?(α))+n, and so u(C)≤u(C ′)+n. Similarly, u(C ′)≤u(C)+n,
which proves the claim. �
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Suppose K+ and K− are oriented knot diagrams so that K− is obtained from K+
by changing one positive crossing, denoted by c, to a negative crossing. For i = 0, 1,
denote the i-resolution of K+ at the crossing c by Ki . We orient K0 and K1 such
that they are related by an oriented saddle move. Let f and f̄ denote the cobordism
maps corresponding to the saddle cobordism from K0 to K1 and its inverse from
K1 to K0, respectively. The Bar-Natan chain complexes CB N (K+) and CB N (K−),
up to grading shifts, are given by the mapping cones of f and f̄, respectively.

Choose the points p and q on the opposite sides of the crossing c, as in Figure 2
and define

(3)
f +c : CB N (K+)→ CB N (K−),

f +c (a0, a1)= ((xp + xq)(a1), a0),

f −c : CB N (K−)→ CB N (K+),

f −c (a1, a0)= ((xp + xq)(a0), a1),

where ai ∈ CB N (Ki ).

Lemma 3.2. Both f +c and f −c are chain maps.

Proof. Let δ• denote the differential of CB N (K•) for • ∈ {0, 1,+,−}. Then,

f +c δ+(a0, a1)= f +c (δ0a0, δ1a1+ f(a0))= ((xp + xq)(δ1a1+ f(a0)), δ0a0).

Both f and f̄ commute with xp + xq by Lemma 2.3. On the other hand, for any
v ∈ {0, 1}n−1, the points p and q lie on the same component of either K0v or K1v,
the complete resolutions of K0 and K1 by v, respectively. Thus, xp + xq vanishes
on one of CB N (K0v) or CB N (K1v), and so

f ◦ (xp + xq)= (xp + xq) ◦ f= f̄ ◦ (xp + xq)= (xp + xq) ◦ f̄= 0.

As a result, we get

f +c δ+(a0, a1)= ((xp + xq)δ1(a1), δ0(a0))

and
δ− f +c (a0, a1)= δ−((xp + xq)a1, a0)= ((xp + xq)δ1(a1), δ0(a0)).

Therefore, f +c is a chain map. The proof for f −c is similar. �

Corollary 3.3. With the above notation fixed, |u(K+)− u(K−)| ≤ 1.

Proof. By Lemma 2.2 the induced maps on homology by both f +c ◦ f −c and f −c ◦ f +c
are equal to multiplication by h. Thus the claim follows from Lemma 3.1. �

Proof of Theorem 1.2. Consider a diagram for K such that we get a diagram for the
unknot after switching N crossings {c1, . . . , cN }, where N is the unknotting number
of K. Abusing the notation we denote the diagram by K. For any i = 1, . . . , N,
let Ki be the diagram obtained from K after switching the crossings c1, . . . , ci .
The diagrams Ki−1 and Ki differ in a single crossing for each i , so it follows from
Corollary 3.3 that |u(Ki−1)−u(Ki )|≤1. Thus, |u(K )−u(Unknot)|=u(K )≤ N. �
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Setting h = 1, one may think of (CB N (K ), δ) as a filtered chain complex of
F-modules, where the differential increases homological grading by 1 and does not
decrease quantum grading. This gives a spectral sequence from Kh(K )=Kh(K ; F)
to F⊕ F, called the Bar-Natan spectral sequence [Turner 2006].

Lemma 3.4. For any knot K, if the Bar-Natan spectral sequence collapses in the
n-th page, then u(K )= n− 1.

Proof. The power of h induces a filtration on the chain complex (CB N (K ), δ). This
gives a spectral sequence, closely related to the Bar-Natan spectral sequence, from
Kh(K )⊗F F[h] to HB N (K ). For each k, the k-th page of this spectral sequence
has a free part Fk and a torsion part T k. Inductively, it is straightforward to
prove that Fk

= Ek
B N ⊗F F[h], where Ek

B N denotes the k-th page of the Bar-Natan
spectral sequence, and its differential on the k-th page is obtained by multiplying
the differential on Ek

B N by hk. So, the maximum order of elements in T k is k− 1.
If this spectral collapses in the n-th page, T n

= TB N (K ) implies that u(K )= n−1.
Since, this spectral sequence collapses in the same page as the Bar-Natan spectral
sequence, we are done. �

Lemma 3.5. The Bar-Natan spectral sequence for a knot K collapses in the first
page if and only if K is the unknot.

Proof. It follows from [Kronheimer and Mrowka 2011] that K is the unknot if and
only if the reduced Khovanov homology of K, Khr(K )=Khr(K ; F), is isomorphic
to F. Since, Kh(K )∼= Khr(K )⊕Khr(K ) we conclude that Kh(K )∼= F⊕ F, and so
E1
= E∞ if and only if K is the unknot. �

Corollary 3.6. If K is not the unknot, then u(K ) > 0.

Proof. If K is nontrivial, by Lemma 3.5, the Bar-Natan spectral sequence for K
collapses in n-th page for some n>1. Then, Lemma 3.4 implies u(K )=n−1>0. �

4. A geometric interpretation of the chain maps

Suppose K and K ′ are oriented pointed knots, i.e., oriented knots with marked
points on them, such that K ′ is obtained from K by a sequence of crossing changes.
To any such sequence, Eftekhary and the author associate a decorated cobordism
from K to a connected sum of K ′ with some right- or left-handed Hopf links.
Then, by the corresponding cobordism maps for knot Floer homology [Alishahi and
Eftekhary 2016, Section 8.2], we define chain maps between the knot Floer chain
complexes of K and K ′ satisfying the assumptions of Lemma 3.1 [Alishahi and
Eftekhary 2016, Section 8.3]. As a result, one gets a lower bound for the unknotting
number in term of the u-torsion in knot Floer homology.

Following the approach in [Alishahi and Eftekhary 2016], one may use cobordism
maps for Bar-Natan homology to define chain maps between CB N (K ) and CB N (K ′)
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p
c

c′

Figure 4. Connected sum with right-handed Hopf link at p.

which satisfy the assumptions of Lemma 3.1. The goal of this section is to show
that for any crossing change process, these chain maps are equal to the ones defined
in Section 3.

Connected sum with a Hopf link. A connected sum formula for Khovanov ho-
mology has been studied in [Khovanov 2000]. In this section, we recall a special
case of this formula, taking a connected sum with the Hopf link, for the Bar-Natan
homology.

Let H be the right-handed Hopf link. Choose an arbitrary point p ∈ K. We obtain
an oriented diagram L for the link K #H by changing K locally in a neighborhood
of p, as in Figure 4.

Denote the new crossings by c and c′. For i, j ∈ {0, 1}, let L i j denote the
diagram obtained from L by applying i- and j -resolutions at the crossings c and c′,
respectively. We orient these diagrams such that their orientations coincide with
the orientation of K outside the above neighborhood of p. The oriented diagrams
L01 and L10 are isotopic to K, while L00 and L11 are isotopic to a disjoint union
of K with an unknot near the point p. The chain complex CB N (L) is given by the
mapping cone

CB N (L10)= CB N (K )
1p - CB N (L11)= CB N (K )⊗F[h] A

CB N (L00)= CB N (K )⊗F[h] A

m p

6

m p - CB N (L01)= CB N (K )

1p

6

From now on, we use this decomposition to write any a ∈ CB N (L) as a =
(a00, a01, a10, a11) where ai j ∈ CB N (L i j ) and so a00, a11 ∈ CB N (K ) ⊗ A while
a10, a01 ∈ CB N (K ).

We define chain maps i : CB N (K )→ CB N (L) and p : CB N (L)→ CB N (K ) as

(4) i(a)= (0, 0, 0, a⊗ x+) and p(a00, a01, a10, a11)= a−00,

where
a00 = a+00⊗ x++ a−00⊗ x−.

It is clear that both i and p are chain maps.
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Lemma 4.1. The sequence

0→HB N (K )
i?
−→HB N (L)

p?
−→HB N (K )→ 0

is a split exact sequence.

Proof. First, we prove that im(i?) = ker(p?). Consider α ∈ ker(p?) and let a ∈
CB N (L) be a cycle representing α. Since, p(a)= a−00 = δb for some b ∈ CB N (K ),
after adding δ(b⊗ x−, 0, 0, 0) to a, we may assume that a−00 = 0. Then, δa = 0
implies that

0= m p(a00)+ δa01 = a+00+ δa01,

and thus
a+ δ(a01⊗ x+, 0, 0, 0)= (0, 0, a01+ a10, a11).

Again, it follows from δa = 0 and Lemma 2.1 that

δa11 =1p(a10+ a01)= (a10+ a01)⊗ x−+ (xp(a10+ a01)+ h(a10+ a01))⊗ x+.

Therefore, δa−11 = a10+ a01 where a11 = a+11⊗ x++ a−11⊗ x− and so

(0,0,a10+a01,a11)+δ(0,0,a−11,0)=(0,0,0,a11+1pa−11)=i(a+11+xp(a−11)+ha−11).

Note that the last equality follows from Lemma 2.1.
Next, let

r : CB N (L)→ CB N (K ) and s : CB N (K )→ CB N (L)

be the chain maps defined as

r(a00,a01,a10,a11)=a+11+xp(a−11)+ha−11 and s(a)=(xp(a)⊗x++a⊗x−,0,0,0),

where a11 = a+11⊗ x++ a−11⊗ x−. It is clear that r and s are chain maps such that
r ◦ i = id and p ◦ s = id. So i? and p? are injective and surjective, respectively, and
the sequence splits. �

The homomorphism p? preserves the homological grading and decreases the
quantum grading by 1, while i? increases the homological grading by 2 and the
quantum grading by 5.

Combining the chain maps i , p, r and s, we define chain maps

i : CB N (K )→ CB N (L) and p : CB N (L)→ CB N (K )
as

(5) i= i + s and p= p+ r.

Similarly, there exist chain maps i and p for the connected sum of K with the
left-handed Hopf link, K #m H, so that the induced homomorphisms on homology
give a split exact sequence. The only difference is that p? increases the homological
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c1

c2 c

K+ K−#H

c

c3

c1

c2

c3

K̃+ K−

Figure 5. Changing a positive crossing to a negative crossing with an
oriented saddle move followed by the removal of a Hopf link summand.

grading by 2 and quantum grading by 5, while i? preserves the homological grading
and decreases the quantum grading by 1. Also, we define analogous chain maps

i : CB N (K )→ CB N (K #m H) and p : CB N (K #m H)→ CB N (K ).

Crossing change and cobordism maps. As before, let K+ be an oriented knot
diagram with a specific positive crossing c, and K− be the oriented knot diagram
obtained from K+ by changing c into a negative crossing. As in Figure 5, after a
Reidemeister II move near the crossing c on K+, followed by an oriented saddle
move, one gets a diagram for K−#H. Here, H is the right-handed Hopf link.

As in Figure 5, we denote the knot diagram obtained from K+ by the specified
Reidemeister II move by K̃+. Further, let h : CB N (K+) → CB N (K̃+) and h̃ :

CB N (K̃+)→ CB N (K+) be the chain homotopy equivalences corresponding to this
move as defined in [Bar-Natan 2005, Section 4.3]. For the reader’s convenience,
we recall the definition of h and h̃. For i, j = 0, 1, let Ci j

B N (K̃+) denote the direct
sum of the summands of CB N (K̃+) corresponding to vertices v of the cube so
that v(c2) = i and v(c3) = j. Also, let hi j

= πi j ◦ h and h̃i j
= h̃ ◦ ıi j where πi j is

the projection of CB N (K̃+) on Ci j
B N (K̃+) and ıi j is the inclusion of Ci j

B N (K̃+) in
CB N (K̃+). Then, h00

= h11
= h̃00

= h̃11
= 0, h10

= h̃10
= id and h01

= g ⊗ x+,
where g is the cobordism map corresponding to the saddle move along the dashed
curve in Figure 6. In other words, h01 is a chain map for the cobordism which is
the union of a saddle and a cup. Finally, h̃01 is the cobordism map for the inverse
of the aforementioned saddle move union a cap; see Figure 6.

Let f : CB N (K̃+)→ CB N (K−#H) and f̄ : CB N (K−#H)→ CB N (K̃+) denote the
cobordism maps for the saddle move in Figure 5.

Theorem 4.2. With the above notation fixed, f +c = p ◦ f ◦ h and f −c = h̃ ◦ f̄ ◦ i,
where i and p are the chain maps defined in (5).

Proof. We prove both equalities by looking at the cube of resolutions for the
three crossings c1, c2 and c3. For i = 0, 1, let Ci

B N (K+) and Ci
B N (K−) denote

the summands of CB N (K+) and CB N (K−), respectively, corresponding to the i-
resolution at c.
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h
10

h̃
10

h̃ 01

h 01

Figure 6. h10
= h̃10

= id, while h01 and h̃01 are the maps associated
with the cobordism corresponding to the saddle move on the dashed
curve union a cup and its inverse, respectively.

Assume a= (a0, a1) is an element in CB N (K ) such that ai ∈ Ci
B N (K+). It follows

from the definition of h that hi i (a j )= 0 for any i, j = 0, 1. Further, considering the
definition of p, it is enough to compute f(h01(a0)) and f(h10(a1)). As in Figure 7,
h01(a0)=1p(a0)⊗ x+ and so

(6) f(h01(a0))=1p(a0)= a0⊗ x−+ (xp(a0)+ ha0)⊗ x+

by Lemma 2.1.
On the other hand, h10(a1)= a1 and, as Figure 8 shows,

(7) f(h10(a1))=1q(a1)= a1⊗ x−+ (xq(a1)+ ha1)⊗ x+.

Thus, by (6) and (7) and the definition of p, we have

p(f ◦ h(a))= (xp(a1)+ xq(a1), a0).

Let a = (a0, a1) be an element in CB N (K−) where ai ∈ Ci
B N (K−) for i = 0, 1.

By definition,
i(a0)= (xp(a0)⊗ x++ a0⊗ x−, 0, 0, a0⊗ x+),

i(a1)= (xq(a1)⊗ x++ a1⊗ x−, 0, 0, a1⊗ x+).

x+

p

q

h01

a0 1pa0⊗ x+ 1pa0

f

Figure 7. Evaluation of f ◦ h01 over an element a0 ∈ C0
B N (K+).
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p

q

h10 f

a1 a1 1q(a1)

Figure 8. Evaluation of f ◦ h10 over an element a1 ∈ C1
B N (K+).

The only nonzero components of h̃ are h̃01 and h̃10, so

h̃ ◦ f̄ ◦ i(a)= (̃h01
◦ f̄(xq(a1)⊗ x++ a1⊗ x−), h̃10

◦ f̄(a0⊗ x+)).

By Figure 8, we have

h̃10
◦ f̄(a0⊗ x+)= h̃10(a0)= a0,

and by Figure 7,

h̃01
◦ f̄(xq(a1)⊗ x++ a1⊗ x−)

= h̃01(1q(xq(a1)⊗ x++ a1⊗ x−))

= h̃01((xq(a1)⊗ x−)⊗ x++ (a1⊗ x−+ (xq(a1)+ ha1)⊗ x+)⊗ x−)

= xq(a1)+ xp(a1). �

Remark 4.3. Similarly, one may change K− by a Reidemeister II move near c to
get a diagram K̃−, so that K+#m H is obtained from K̃− by a saddle move. Let
h : CB N (K−)→ CB N (K̃−) and h̃ : CB N (K̃−)→ CB N (K−) be the corresponding
chain homotopy equivalences and

f : CB N (K̃−)→ CB N (K+#m H)

and
f̄ : CB N (K+#m H)→ CB N (K̃−)

be the cobordism maps for the saddle move. Then, by the same argument, one can
show that f −c = p ◦ f ◦ h and f +c = h̃ ◦ f̄ ◦ i.

5. Examples

The Rasmussen’s s invariant gives a lower bound for the slice genus, |s(K )|/2, and
thus the unknotting number [Rasmussen 2010]. We used Cotton Seed’s package,
Knotkit [Seed 2011], to compute u and s (defined using the Bar-Natan spectral
sequence) for some knots with more than 12 crossings. We found some examples
where u is a better lower bound compared to |s|/2; for instance, |s|/2 for the knots
13n689, 13n1166, 13n2504 and 13n2807 is equal to 1, while u is equal to 2.
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LIGHT GROUPS OF ISOMORPHISMS OF BANACH SPACES
AND INVARIANT LUR RENORMINGS
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Megrelishvili (2001) defines light groups of isomorphisms of a Banach space
as the groups on which the weak and strong operator topologies coincide,
and proves that every bounded group of isomorphisms of Banach spaces
with the point of continuity property (PCP) is light. We investigate this
concept for isomorphism groups G of classical Banach spaces X without the
PCP, specially isometry groups, and relate it to the existence of G-invariant
LUR or strictly convex renormings of X.

1. Introduction

The general objective of this note is to determine conditions on a bounded group of
isomorphisms of Banach spaces that ensure the existence of a locally uniformly
rotund (LUR) renorming invariant under the action of this group. In particular, we
are interested in this context in the notion of lightness for such groups.

Light groups. A frequent problem in functional analysis is to determine under
which conditions weak convergence and norm convergence coincide. For example,
it is well known that conditions of convexity of the norm of a Banach space
ensure that weak and strong convergence are equivalent on its unit sphere. The
corresponding problem for isomorphisms of Banach spaces (or more generally of
locally convex spaces) was studied by Megrelishvili [2001] in the context of group
representations, using the concept of fragmentability.

Given a (real) Banach space X, we denote by L(X) the set of bounded linear
operators on X, and by GL(X) the group of bounded isomorphisms of X. We
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also denote by Isom(X) the group of surjective linear isometries of X. If G is a
subgroup of GL(X), we write G 6 GL(X). Recall that given a Banach space X,
the strong operator topology on L(X) is the topology of pointwise convergence, i.e.,
the initial topology generated by the family of functions fx : L(X)→ X, x ∈ X,
given by fx(T ) = T x, T ∈ L(X), and the weak operator topology on L(X) is
generated by the family of functions fx,x∗ : L(X)→ R, x ∈ X, x∗ ∈ X∗, given by
fx,x∗(T )= x∗(T x), T ∈ L(X).

Definition 1.1 [Megrelishvili 2001]. A group G 6 GL(X) of isomorphisms on
a Banach space X is light if the weak operator topology (WOT) and the strong
operator topology (SOT) coincide on G.

Observe that since the two operator topologies are independent of the specific
choice of norm on X, the same holds for lightness of G.

Well-known examples of light groups are the groups U(H) of unitary operators
on Hilbert spaces H. However, the main result of [Megrelishvili 2001] concerning
light groups indicates that we have a similar phenomenon in a more general context.
Recall that a Banach space X has the point of continuity property (PCP) if for every
norm-closed nonempty bounded subset C of X, the identity on C has a point of
continuity from the weak to the norm topology:

Theorem 1.2 [Megrelishvili 2001]. If X is a Banach space with the point of conti-
nuity property (PCP) and if G 6 GL(X) is bounded in norm, then G is light.

In particular, if X has the Radon–Nikodym property (RNP) (e.g., if X is reflexive
or is a separable dual space), then every bounded subgroup of GL(X) is light. For
example, the isometry group of `1, Isom(`1), is light.

We note here that in the literature (and indeed in [Megrelishvili 2001]) PCP
sometimes appears as the formally weaker condition “every weakly-closed nonempty
bounded subset has a weak-to-norm point of continuity for the identity”. However,
as was pointed out to us by G. Godefroy, if X satisfies this definition and F is
norm-closed and bounded, then any point of continuity of the weak closure Fw

belongs to F, so the two definitions are equivalent. In fact, if x ∈ Fw is a weak-to-
norm point of continuity for the identity, there exists a net (xα)α∈I ⊂ F such that
xα

w
−→ x . Hence, xα

‖·‖
−→ x and, since F is norm-closed, x ∈ F.

Bounded nonlight groups. A natural question that arises from Megrelishvili’s
result is to investigate in which respect his result is optimal, and whether “smallness”
assumptions on G or weaker assumptions than the PCP on X could imply that G is
light. We show (Theorem 4.6) that any separable space containing an isomorphic
copy of c0 admits a bounded cyclic group of isomorphisms which is not light. This
shows that we cannot really expect further general results in this direction.
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Megrelishvili gives the group Isom(C([−1, 1]2)) as an example of a nonlight
group. His proof uses a construction of Helmer [1980] of a separately continuous
group action on [−1, 1]2 that is not jointly continuous, and the equivalence of
pointwise compactness and weak compactness of bounded subsets of C(K ). This
leads to the following question:

Question 1.3. For which compact sets K is the isometry group Isom(C(K ))
not light?

We first prove (Proposition 4.3) that the isometry group of c, the space of real
convergent sequences, is not light. Neither is the isometry group of C({0, 1}N)
(Corollary 5.6). On the other hand, as a consequence of Theorem 5.9, we show that
the isometry group of C[0, 1] is light, while those of the spaces C([0, 1]n), n ≥ 2,
are not light. These constructions simplify the initial example of Megrelishvili.

Light groups and LUR renormings. In another direction, we study the relation
between light groups and the existence of LUR renormings invariant under the
action of the group. Recall that a norm ‖ · ‖ on X is rotund or strictly convex if
whenever the vectors x, y belong to the unit sphere SX of X and ‖x+ y‖= 2, x = y.
It is locally uniformly convex (LUC) or locally uniformly rotund (LUR) at a vector
x0 ∈ X if whenever (xn)n∈N is a sequence of vectors of X such that lim ‖xn‖= ‖x0‖

and lim ‖x0+ xn‖ = 2‖x0‖, lim ‖xn − x0‖ = 0. Another equivalent definition (in
fact, Lovaglia’s original definition) is the following: the norm is LUR at a vector
x0 ∈ SX if for every ε > 0 there exists δ = δ(ε, x0) > 0 such that

‖x + y‖
2
≤ 1− δ whenever ‖x − y‖ ≥ ε and ‖y‖ = 1.

The norm is said to be LUR in X if it is LUR at every point x0 6= 0 of X (or,
equivalently, of SX ). The property of the dual norm ‖ · ‖∗ on X∗ being strictly
convex or LUR is closely related to the differentiability of the norm ‖ · ‖ on X, in
the senses of Fréchet and Gateaux, respectively. All (real) separable Banach spaces
admit an equivalent LUR renorming. For this and much more on renormings of
Banach spaces, see [Deville et al. 1993].

A fundamental result in the study of LUR renorming is the following theorem:

Theorem 1.4 [Lancien 1993]. If X is a separable Banach space with the RNP, X
admits an isometry invariant LUR renorming.

If G 6 GL(X, ‖ · ‖) is a bounded group of isomorphisms on X, the norm on X
defined by

|||x ||| = sup
g∈G
‖gx‖, x ∈ X,

is a G-invariant renorming of X. In other words, G 6 Isom(X, ||| · |||). So a
consequence of Theorem 1.4 is that whenever X is a separable space with the RNP



34 L. ANTUNES, V. FERENCZI, S. GRIVAUX AND C. ROSENDAL

and G is a bounded group of isomorphisms on X, there exists a G-invariant LUR
renorming of X. The existence of G-invariant LUR renormings for general groups
of isomorphisms G was first investigated by Ferenczi and Rosendal [2013]. They
studied problems of maximal symmetry in Banach spaces, analyzing the structure
of subgroups of GL(X) when X is a separable reflexive Banach space. An example
of a super-reflexive space with no maximal bounded group of isomorphisms was
also exhibited in [Ferenczi and Rosendal 2013].

The relation between light groups and G-invariant LUR renormings is given
by Theorem 2.3. We observe that if a Banach space X admits a G-invariant LUR
renorming, then G is light. In fact, this is true even if the norm is LUR only on a
dense subset of SX . We also show that the converse assertion is false: although
the isometry group of C[0, 1] is light, C[0, 1] admits no strictly convex isometry
invariant renorming (Corollary 5.12). This link between the existence of a G-
invariant LUR renorming and the lightness of G is a natural one: if X is a Banach
space with an LUR norm ‖ · ‖, the weak topology and the norm topology coincide
on the unit sphere of (X, ‖ · ‖).

Light groups and distinguished families. Ferenczi and Galego [2010] investigated
groups that may be seen as the group of isometries of a Banach space under some
renorming. Among other results, they proved that if X is a separable Banach space
and G is a finite group of isomorphisms of X such that − Id ∈ G, X admits an
equivalent norm ||| · ||| such that G = Isom(X, ||| · |||). They also proved that if X is
a separable Banach space with LUR norm ‖ · ‖ and if G is an infinite countable
bounded isometry group of X such that − Id ∈ G and such that G admits a point
x ∈ X with infg 6=Id ‖gx − x‖ > 0, then G = Isom(X, ||| · |||) for some equivalent
norm |||·||| on X. In [Ferenczi and Rosendal 2011], a point x satisfying the condition

inf
g 6=Id
‖gx − x‖> 0

is called a distinguished point of X for the group G.
Ferenczi and Rosendal [2011] generalized results of [Ferenczi and Galego 2010]

to certain uncountable Polish groups, and also defined the concept of a distinguished
family for the action of a group G on a Banach space X. It is clear that if G is
an isometry group with a distinguished point, G is SOT-discrete. However, the
following question remained open: if G is an isomorphism group of X which is
SOT-discrete, should X have a distinguished point for G? In Proposition 6.1 we see
that the answer to this question is negative, and we give an example of an infinite
countable group of isomorphisms G of c0 which is SOT-discrete but does not admit
a distinguished point for G. In addition, this group is also not light.

Light groups on quasinormed spaces. Although Megrelishvili has defined the
concept of light group only for groups of isomorphisms on locally convex spaces,



LIGHT GROUPS AND INVARIANT LUR RENORMINGS 35

we can extend the definition to quasinormed spaces, even if they are not locally
convex. We finish this article by investigating whether the isometry groups of the
quasinormed spaces `p and L p[0, 1], 0< p < 1, are light.

2. LUR renormings and light groups

Let G be a bounded group of isomorphisms on a Banach space (X, ‖ · ‖). In this
section we are interested in the existence of a G-invariant LUR renorming of X, i.e.,
in the existence of an equivalent norm ||| · ||| on X which is both invariant under the
action of G and is LUR; or in the existence of a G-invariant dense LUR renorming,
meaning a renorming which is invariant under the action of G and is LUR on a
dense subset of SX . When G= Isom(X, ‖ · ‖) we shall talk about isometry invariant
renormings. Our first result is the following:

Proposition 2.1. Let X be a Banach space and let G6GL(X). If G is SOT-compact
and if X admits an LUR renorming, X admits a G-invariant LUR renorming.

Proof. Suppose that ‖ · ‖ is an equivalent LUR norm on X. The formula

|||x ||| = sup
T∈G
‖T x‖, x ∈ X,

defines a G-invariant LUR renorming of X. Indeed, suppose that xn and x are
vectors of X such that |||xn||| = |||x ||| = 1 for every n ∈ N and lim |||xn + x ||| = 2.
Then we can find elements Tn , n ∈ N, of G such that lim ‖Tnxn + Tnx‖ = 2. By
SOT-compactness of G we can assume without loss of generality that Tn tends SOT
to some element T of G, from which it follows that ‖Tnxn + T x‖ converges to 2.
Since ‖Tnxn‖ ≤ |||xn||| = 1 for every n ∈ N and ‖T x‖ ≤ |||x ||| = 1, we deduce that
‖T x‖ = 1 and that ‖Tnxn‖ converges to 1. In particular, if we set, for every n ∈ N,
yn = Tnxn/‖Tnxn‖, then yn belongs to the unit sphere of (X, ‖ · ‖) and

‖yn + T x‖ =
1

‖Tnxn‖

∥∥Tnxn +‖Tnxn‖T x
∥∥→ 2.

By the LUR property of ‖ · ‖ at the point T x , we deduce that yn converges to T x .
So Tnxn converges to T x . So |||xn− x ||| = |||Tnxn−Tnx ||| converges to 0 since both
Tnxn and Tnx converge to T x . This shows that ||| · ||| is LUR. �

It is also worth mentioning that every SOT-compact group of isomorphisms is
light:

Proposition 2.2. Let G 6GL(X) be a group of isomorphisms of a Banach space X.
If G is SOT-compact, then G is light.

Proof. The assumption implies that G is also WOT compact, since the WOT
is weaker than the SOT. However, the WOT is also Hausdorff, and so the two
topologies must agree on G. In other words, G is light. �
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Ferenczi and Rosendal [2011] investigated LUR renormings in the context of
transitivity of norms. Recall that a norm ‖ · ‖ on X is called transitive if the
orbit O(x) of every point x ∈ SX under the action of the isometry group Isom(X)
is the whole sphere SX . If for every x ∈ X the orbit O(x) is dense in SX , we say
that ‖ · ‖ is almost transitive, and if the closed convex hull of O(x) is the unit
ball BX , we say that ‖ · ‖ is convex transitive. Ferenczi and Rosendal proved that
if an almost transitive norm on a Banach space is LUR at some point of the unit
sphere, it is uniformly convex. They also proved that if a convex transitive norm on
a Banach space is LUR on a dense subset of the unit sphere, it is almost transitive
and uniformly convex.

In the next theorem, we exhibit a relation between the existence of LUR renorm-
ings and light groups.

Theorem 2.3. Let G 6 GL(X) be a group of isomorphisms of a Banach space X.
If X admits a G-invariant renorming which is LUR on a dense subset of SX , then G
is light.

Proof. Let ‖ · ‖ be a G-invariant renorming of X which is LUR on a dense subset
of SX . Let (Tα) be a net of elements of G which converges WOT to the identity
operator Id on X, and assume that Tα does not converge SOT to Id. Let x ∈ SX be
such that Tαx does not converge to x . Without loss of generality, we can suppose
that the norm is LUR at x , and that there exists δ > 0 such that, for every α,
‖Tαx − x‖ ≥ δ. Since ‖Tαx‖ = ‖x‖ = 1 for every α, the LUR property forbids
having lim ‖Tαx + x‖ = 2. So we can assume that there exists ε > 0 such that
‖Tαx + x‖ ≤ 2− ε for every α.

Let φ ∈ X∗ with ‖φ‖ = 1 be such that φ(x)= 1. Since Tα converges WOT to Id,
φ(Tαx)→ 1. On the other hand,

2− δ ≥ ‖Tαx + x‖

= max
ψ∈X∗, ‖ψ‖=1

|ψ(Tαx + x)| ≥ |φ(Tαx)+ 1| for every α,

which contradicts the WOT convergence of Tα to Id. �

Remark 2.4. In fact, the proof of Theorem 2.3 gives us a formally stronger result:
if X admits a G-invariant renorming which is LUR on a dense subset of SX then G
is orbitwise light. Megrelishvili [2003] defines a group G 6 GL(X) as orbitwise
light (or orbitwise Kadec) if for every x ∈ X the orbit O(x)= {T x ; T ∈ G} is a set
on which the weak and the strong topologies coincide. It is readily seen that if G
is orbitwise light, then it is light, but whether the converse holds is still an open
question.
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3. Light groups and distinguished points

As recalled in the introduction, Lancien [1993] proved that if X is separable with the
RNP, X admits an isometry invariant LUR renorming. Although separable spaces
always admit LUR renormings, the generalization of Lancien’s result to all separable
spaces is false. For example, if X = C([−1, 1]2) and G = Isom(X) then, since G
is not light [Megrelishvili 2001], by Theorem 2.3 there is no equivalent G-invariant
(not even dense) LUR renorming. Another example mentioned in [Ferenczi and
Rosendal 2011] is the case where X = L1[0, 1] and G = Isom(L1[0, 1]). In this
case there is not even a strictly convex G-invariant renorming.

Here we discuss conditions which clarify the relations between the two properties
of a group G 6 GL(X) being light and X having a G-invariant LUR renorming, in
the case when G is SOT-discrete. The following notion was defined in [Ferenczi
and Rosendal 2011].

Definition 3.1. Let X be a Banach space, let G 6 GL(X) be a bounded group of
isomorphisms of X, and let x ∈ X. We say that x is distinguished for G (or for the
action of G on X ) if

inf
T 6=Id
‖T x − x‖> 0.

If {x1, . . . , xn} is a finite family of vectors of X, then it is distinguished for G if

inf
T 6=Id

max
1≤i≤n

‖T xi − xi‖> 0,

or, equivalently, if the n-tuple (x1, . . . , xn) is distinguished for the canonical action
of G on Xn.

This notion does not depend on the choice of an equivalent norm on X. Note
also that G is SOT-discrete exactly when it admits a distinguished finite family of
vectors. We also have, considering the adjoint action of G on X∗:

Lemma 3.2. Assume that G 6 GL(X) is light. If G acts as an SOT-discrete group
on X, then G acts as an SOT-discrete group on X∗.

Proof. Define ψ : G→ GL(X∗) by setting ψ(T )(x∗)= x∗ ◦ T−1 for every T ∈ G
and x∗ ∈ X∗. We want to show that ψ(G) is an SOT-discrete subgroup of GL(X∗).
It suffices to show the existence of ε > 0 and x∗1 , . . . , x∗n ∈ SX∗ such that the only
element T of G such that ‖ψ(T )(x∗i )− x∗i ‖< ε for every 1≤ i ≤ n is the identity
operator IdX on X. Since G is light and acts as an SOT-discrete group on X, it is
WOT-discrete. So there exist ε > 0, x1, . . . , xm ∈ SX and x∗1 , . . . , x∗n ∈ SX∗ such
that the only element T of G such that |x∗i (T

−1x j − x j )|< ε for every 1≤ i ≤ n
and 1≤ j ≤ m is T = IdX . The conclusion follows immediately. �

Lemma 3.3. Let X be a Banach space, let G be a bounded subgroup of GL(X),
and let {x1, . . . , xn} be a distinguished family of vectors for the action of G on X.
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Let ‖ · ‖ be a G-invariant norm on X which is LUR at xi for every 1 ≤ i ≤ n. For
any functional x∗i ∈ SX∗,‖·‖∗ such that x∗i (xi )= ‖xi‖ for every 1≤ i ≤ n, the family
{x∗1 , . . . , x∗n } is distinguished for the action of G on X∗.

Proof. Assume ‖xi‖=1 for every 1≤i≤n. Let α=infT 6=IdX max1≤i≤n ‖T xi−xi‖>0.
For every T 6= IdX , choose 1 ≤ i ≤ n such that ‖T−1xi − xi‖ ≥ α. By the LUR
property of the norm at xi , there exists ε > 0 depending on α but not on i such
that ‖T−1xi + xi‖6 2− ε. So x∗i (T

−1xi )6 1− ε. From this it follows, using the
notation introduced in the proof of Lemma 3.2, that ψ(T )(x∗i )(xi )− x∗i (xi )6−ε,
so that ‖ψ(T )(x∗i )− x∗i ‖ ≥ ε. This being true for every T 6= IdX , {x∗1 , . . . , x∗n } is
distinguished for the action of G on X∗. �

As a direct corollary, we obtain:

Corollary 3.4. Let X be a Banach space, let G 6 GL(X) be SOT-discrete, and
assume that X admits a G-invariant dense LUR renorming. If there exists a dis-
tinguished family of cardinality n for the action of G on X, there also exists a
distinguished family of cardinality n for the action of G on X∗.

4. Bounded groups which are not light

Isometry groups are especially relevant to our study. We introduce the following
definition:

Definition 4.1. A Banach space X is light if Isom(X) is a light subgroup of GL(X).

Observe that since the isometry group of a Banach space (X, ‖·‖) is not invariant
by equivalent renorming, the notion of lightness for a Banach space depends very
much on the choice of the norm. In our terminology, Megrelishvili [2001] proved
that all spaces with the PCP are light but that C([0, 1]2) is not light. Also, we have
the following example:

Example 4.2. The space c0 is light.

In fact, every isometry T of c0 (endowed with the usual supremum norm) has
the form

T ((xk)k∈N)= (εk xσ(k))k∈N, (xk)k∈N ∈ c0,

where (εk)k∈N ∈ {−1, 1}N and σ is a permutation of N. For i ∈N, denote by ϕi the
i-th coordinate functional on c0. Let (Tα) be a net in Isom(c0), such that Tα WOT

−−→Id.
Write each Tα as

Tα((xk)k∈N)= (εα,k xσα(k))k∈N, (xk)k∈N ∈ c0,

with (εα,k)k∈N ∈ {−1, 1}N and σα is a permutation of N. We have for every x ∈ c0

and every i ∈ N,
|ϕi (Tαx)−ϕi (x)| = |εα,i xσα(i)− xi | → 0.
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Since this holds for every x belonging to the space c00 of finitely supported se-
quences, we must eventually have σα(i)= i and εα,i = 1. Hence ‖Tαx − x‖→ 0
for every x ∈ c00, and by density of c00 in c0, ‖Tαx − x‖→ 0 for every x ∈ c0.

Another proof of Example 4.2 is based on the observation that c0 admits a
particular LUR renorming, namely the Day’s renorming given by

‖x‖D = sup
{( n∑

k=1

x2
σ(k)

4k

) 1
2
}
, x ∈ c0,

where the supremum is taken over all n ∈ N and all permutations σ of N (see
[Deville et al. 1993, p. 69]). Since this renorming is isometry invariant, it follows
from Theorem 2.3 that c0 is light.

Note that Day’s renorming is actually defined on `∞, and therefore on the space c
of convergent real sequences. In view of Proposition 4.3, it may be amusing to
observe that Day’s renorming is not strictly convex on c (not even on a dense
subset of Sc). In fact, it is not strictly convex at the point (1, 1, . . .) since for every
x = (xk)k∈N ∈ c such that ‖x‖∞ = 1 and |xk | = 1 for infinitely many indices k, we
have ‖x‖D = ‖(1, 1, . . .)‖D .

We now provide an elementary example of a space which is not light.

Proposition 4.3. There exists a subgroup G 6 Isom(c) which has a distinguished
point, but whose dual action on `1 is not SOT-discrete. In particular the space c is
not light.

Proof. Define G as the subgroup of isometries T of c of the form

T ((xk)k∈N)= (εk xk)k∈N, (xk)k∈N ∈ c,

where the sequence (εk)k ∈ {−1, 1}N is eventually constant. We easily see that
(1, 1, . . .) is a distinguished point for G. On the other hand, the dual space of c
identifies isomorphically with `1, where ϕ = (yk)k∈N ∈ `1 acts on an element
x = (xk)k∈N ∈ c by the formula

ϕ(x)= y1 lim
k→∞

xk +

∞∑
k=2

yk xk−1.

For every n ∈ N, define the operator Tn ∈ G by setting, for every (xk)k∈N ∈ c,

Tn(x1, x2, . . . , xn−1, xn, xn+1, . . .)= (x1, x2, . . . , xn−1,−xn, xn+1, . . .).

Obviously Tn
SOT
−→/ Id, but for every n ∈ N and every x ∈ c we have

ϕ(Tn(x))=y1 lim
k→∞

(Tn(x))k+
∞∑

k=2

yk(Tn(x))k−1=

(
y1 lim

k→∞
xk+

∞∑
k=2

yk xk−1

)
−2ynxn
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which tends to ϕ(x) as n tends to infinity. Hence Tn
WOT
−−→Id and G is not light, which

implies that Isom(c) itself is not light. Actually the inequality |(T ∗n ϕ− ϕ)(x)| =
2|ynxn| ≤ 2|yn|‖x‖, x ∈ c, ϕ ∈ `1, implies that T ∗n tends SOT to Id, so the dual
action of G on `1 is not SOT-discrete. �

Remark 4.4. Note that the nonlight subgroup G of Isom(c) constructed in the
proof of Proposition 4.3 has the property that all its elements belong to the group
Isom f (c) of isometries which are finite rank perturbations of the identity.

We observe the following relation between groups acting on a space and on a
complemented subspace.

Lemma 4.5. Assume Y embeds complementably in X. If every bounded group
of isomorphisms on X is light, then every bounded group of isomorphisms on Y
is light.

Proof. Let Z be a closed subspace of X such that X ' Y ⊕ Z . Let G 6GL(Y ) be a
bounded subgroup and for each T ∈G, consider the operator T̃ = T⊕IdY ∈GL(X).
These operators form a bounded subgroup G̃ of GL(X) which is therefore light.

Let (Tα)α∈I be a net in G such that Tα WOT
−−→ IdY . Then T̃α WOT

−−→ IdX , and since
G̃ is light, T̃α SOT

−−→ IdX . Since for every y ∈ Y,

‖Tα(y)− y‖Y = ‖T̃α(y, 0)− (y, 0)‖X → 0,

it follows that Tα SOT
−−→ IdY . �

Assume that X is separable and that G 6 GL(X) is a bounded group of iso-
morphisms on X. As we have seen, if X has the RNP or if G is SOT-compact,
then X admits a G-invariant LUR-renorming. It is natural to wonder whether the
assumption on G may be weakened somewhat and, in particular, whether a similar
result holds true for cyclic groups G. We show that it is not the case.

Theorem 4.6. Let X be a separable Banach space containing an isomorphic copy
of c0. Then GL(X) contains a WOT-indiscrete bounded cyclic subgroup G with a
distinguished point in X. In particular, G is not light.

Proof. Consider the space c(R2) of convergent sequences in the euclidean space R2

with the supremum norm. We define an isometry T of c(R2) by setting

T ((xn)n∈N)= (Rnxn)n∈N for every x = (xn)n∈N ∈ c(R2),

where, for every n ∈ N,

Rn =

(
cos
( 2π

n

)
− sin

( 2π
n

)
cos
( 2π

n

)
sin
( 2π

n

) )
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is the rotation of R2 of angle 2π/n. Observe that, since limn 2π/n = 0, we have

lim
n

T ((xn)n∈N)= lim
n
(Rnxn)n∈N = lim

n
(xn)n∈N for every x = (xn)n∈N ∈ c(R2).

As also Rk!
n = IdR2 whenever k ≥ n, we deduce that T k! WOT

−−→ Id. So the cyclic
subgroup 〈T 〉 of GL(c(R2)) generated by T is indiscrete in the WOT.

On the other hand, if we define x = (xn)n∈N ∈ c(R2) by setting xn = (1, 0) for
every n ∈ N, we find that, for every k ∈ N,

‖T k x − x‖c(R2) ≥ ‖R
k
2k x2k − x2k‖2 = ‖(−1, 0)− (1, 0)‖2 = 2.

So x is a distinguished point for 〈T 〉.
Observe that c(R2)' c⊕c' c0⊕c0' c0, so T can be seen as an automorphism

of c0. Also, if X is a separable Banach space containing c0, then c0 is complemented
in X by Sobczyk’s theorem, i.e., X can be written as X = c0⊕Y for some subspace
Y of X. Then Lemma 4.5 applies. Actually the group G generated by S = T ⊕ I on
X is not light, since Sk! WOT

−−→ Id, while G has a distinguished point in X. �

Remark 4.7. It follows from Theorem 4.6 that any separable Banach space X
containing an isomorphic copy of c0 admits a renorming ||| · ||| such that (X, ||| · |||)
is not light.

We finish this section with the following observation:

Lemma 4.8. Suppose G is an abelian group acting by isometries on a metric space
(X, d) without isolated points, and inducing a dense orbit G · x for some element
x ∈ X. Then, for every ε > 0, there exists g ∈ G \ {1} such that supz∈X d(gz, z) < ε.

Proof. Indeed, since X has no isolated points and the orbit G · x is dense, we may
pick g ∈ G so that 0< d(gx, x) < ε. For any y in G · x , written y = hx for h ∈ G,
we have

d(gy, y)= d(ghx, hx)= d(hgx, hx)= d(gx, x) < ε.

The result follows by density. �

As a particular instance, note that if G is an SOT-discrete group of isometries of
a Banach space X of dimension > 1 with a dense orbit on SX , then G cannot be
abelian.

5. LUR and strictly convex isometry invariant renormings

Theorem 2.3 leads to the following question:

Question 5.1. Does there exist a light Banach space X which admits no isometry
invariant LUR renorming?
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It was observed in [Ferenczi and Rosendal 2011] that X = L1[0, 1] does not
admit any isometry invariant dense LUR renorming. In fact, since the norm of
L1[0, 1] is almost transitive and is not strictly convex, any equivalent renorming is
just a multiple of the original norm, so it is not strictly convex either, and hence is
not LUR. Thus L1[0, 1] could be a natural example of a light Banach space which
admits no isometry invariant LUR renorming. However, this is not the case:

Proposition 5.2. The space L1[0, 1] is not light.

Proof. For every n ∈ N, define ϕn : [0, 1] → [0, 1] by setting

ϕn(t)= t +
1− cos(2nπ t)

2nπ
, t ∈ [0, 1],

and Tn : L1[0, 1] → L1[0, 1] by

Tn( f )(t)= ϕ′n(t) f (ϕn(t)), f ∈ L1[0, 1], t ∈ [0, 1].

Note that ϕn is a differentiable bijection from [0, 1] into itself. So Tn is a surjective
linear isometry of L1[0, 1]. Moreover, Tn

SOT
−→/ Id, since for f ≡ 1 we have

‖Tn(1)− 1‖1 = ‖ sin(2nπx)‖1 =
2
π

for every n ∈ N.

On the other hand, Tn
WOT
−−→ Id. To prove this, we need to check that∫ 1

0
Tn( f )(t)g(t) dt→

∫ 1

0
f (t)g(t) dt for every f ∈ L1[0, 1] and g ∈ L∞[0, 1].

By the linearity of Tn and the density of step functions in L1[0, 1], it is sufficient to
consider the case where f is the indicator function of a segment Im,k =

[ 2k
2m ,

2(k+1)
2m

]
,

where m ≥ 1 and 0≤ k ≤ 2m−1
− 1. In this case the function ϕn is a bijection from

Im,k into itself for every n ≥ m. Thus f ◦ϕn = ϕn , and∫ 1

0
Tn( f )(t)g(t) dt =

∫ 1

0
ϕ′n(t) f (ϕn(t))g(t) dt =

∫ 1

0
ϕ′n(t) f (t)g(t) dt

=

∫ 1

0
f (t)g(t) dt +

∫ 1

0
sin(2nπ t) f (t)g(t) dt.

The result then follows from the Riemann–Lebesgue lemma. �

Remark 5.3. Another space of which it is well known that it does not admit any
LUR renorming is `∞. Indeed `∞ does not admit any equivalent norm with the
Kadec–Klee property ([Deville et al. 1993, Chapter 2, Theorem 7.10]), while
every LUR norm satisfies the Kadec–Klee property ([Deville et al. 1993, Chapter 2,
Proposition 1.4]). However, `∞ does admit a strictly convex renorming (see [Diestel
1975, p. 120]). We note here that it does not admit any isometry invariant strictly
convex renorming. To see this, consider the points x = (1, 1, 0, 1, 0, 1, 0, . . .) and
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y = (−1, 1, 0, 1, 0, 1, 0, . . .). Setting z = (x + y)/2 = (0, 1, 0, 1, 0, 1, 0, . . .), it
is readily seen that there exist two isometries T and S of `∞ such that T x = y
and Sx = z. So, for any isometry invariant renorming ||| · ||| of `∞ we have |||x ||| =
|||y||| = |||z|||, and therefore ||| · ||| cannot be strictly convex.

Proposition 5.4. The space `∞ is not light.

Proof. Consider the sequence of isometries Tn : `∞→ `∞, n ∈ N, defined by

Tn(x1, . . . , xn−1, xn, xn+1, . . .)= (x1, . . . , xn−1,−xn, xn+1, . . .), x= (xk)k∈N∈`∞.

Notice that Tn
SOT
−→/ Id, since ‖Tn(1, 1, . . .)− (1, 1, . . .)‖∞ = 2 for every n ∈ N. On

the other hand, observe that Tn
WOT
−−→ Id. Indeed, if (e j ) j∈N denotes the canonical

basis of `∞, the sequence (β(e j )) j∈N belongs to `1 for every β ∈ `∗
∞

. In particular,
β(e j )→ 0. Thus β(Tnx − x) = −2xnβ(en)→ 0 for every x ∈ `∞ and β ∈ `∗

∞
,

showing that Tn
WOT
−−→ Id. �

A similar proof allows us to construct many examples of C(K )-spaces which
are not light.

Theorem 5.5. Let K be a compact space with infinitely many connected compo-
nents. Then C(K ) is not light.

Proof. We claim that, under the assumption of Theorem 5.5, there exists a sequence
(Nn)n∈N of disjoint clopen subsets of K. Indeed, choose two points x1 and y1 of K
which belong to two different connected components of K. Since the connected
component of a point x of K is the intersection of all the clopen subsets of K
containing x , there exists a clopen subset K1 of K such that x1 ∈ K1 and y1 ∈

L1 := K \ K1. The two sets K1 and L1 are compact, and one of them, say K1,
has infinitely many connected components. We set then N1 = L1, and repeat the
argument starting from the compact set K1. This yields a sequence (Nn)n∈N of
disjoint clopen subsets of K.

For each integer n ∈N, define Tn ∈ Isom(C(K )) by setting, for every f ∈ C(K )
and every x ∈ K,

Tn( f )(x)=
{
− f (x) if x ∈ Nn,

f (x) otherwise.

If χn denotes the indicator function of the set Nn , we have Tn( f ) = f (1− 2χn)

for every f ∈ C(K ). Applying this to the constant function f ≡ 1, we have
‖Tn( f )− f ‖∞ = 2 for every n ∈N, so that Tn

SOT
−→/ Id. On the other hand, the same

kind of argument as in Proposition 5.4 shows that Tn
WOT
−−→ Id. Indeed, we have

8(Tn f − f )=−28( f χn) for every functional 8 ∈ C(K )∗ and every f ∈ C(K ).
For every sequence (αn)n∈N ∈ c0, the series

∑
n∈N αn f χn converges in C(K ), so

that the series
∑

n∈N αn8( f χn) converges. It follows that8( f χn)→0 as n→+∞,
which proves our claim. �
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As a direct consequence of Theorem 5.5 we retrieve the result, proved in
Proposition 4.3 above, that the space c of convergent sequences is not light. Also,
we immediately deduce that the space of continuous functions on the Cantor space
is not light.

Corollary 5.6. The space C({0, 1}N) is not light.

In view of the results above, combined with the known fact that the space
C([0, 1]2) is not light, it may seem reasonable to conjecture that none of the spaces
C(K ), where K is any infinite compact space, is light. However, our next result
shows that this is not the case.

Theorem 5.7. Let K be an infinite compact connected space. Then C(K ) is light if
and only if the topologies of pointwise and uniform convergence coincide on the
group Homeo(K ) of homeomorphisms of K.

Proof. Suppose first that the topologies of pointwise and uniform convergence
coincide on Homeo(K ). Let (Tα)α∈I be a net of isometries of C(K ) such that
Tα WOT
−−→ Id. By the Banach–Stone theorem and the connectedness of K, each

isometry Tα of C(K ) has the form

Tα( f )= εα f ◦ϕα for every f ∈ C(K ),

where εα ∈ {−1, 1} and ϕα ∈ Homeo(K ). Since Tα WOT
−−→ Id, εα→ 1, so we can

suppose without loss of generality that εα = 1 for every α ∈ I. Moreover, the fact
that Tα WOT

−−→ Id also implies that the net (ϕα)α∈I converges pointwise to the identity
function idK on K. Our assumption then implies that (ϕα)α∈I converges uniformly
to idK on K, from which it easily follows that Tα SOT

−−→ Id. Thus C(K ) is light.
Conversely, suppose that C(K ) is light. Let (ϕα)α∈I be a net of elements of

Homeo(K ) which converges pointwise to ϕ ∈Homeo(K ). Consider the isometries
Tα and T of C(K ) defined by

Tα( f )= f ◦ϕα and T ( f )= f ◦ϕ for every f ∈ C(K ).

Then Tα WOT
−−→ Id. Since C(K ) is light, Tα SOT

−−→ Id and thus (ϕα)α∈I converges to
ϕ uniformly on K. �

Remark 5.8. Theorem 5.7 characterizes the lightness of C(K ) for infinite con-
nected compact spaces K. We may naturally wonder whether the connectedness
assumption is really necessary. It is indeed the case: there exist compact spaces K
with infinitely many connected components which are rigid in the sense that their
homeomorphism group Homeo(K ) is trivial (it consists uniquely of the identity
map on K ). The existence of such compacta is proved in [de Groot and Wille
1958] (see the remark on p. 443 at the end of Section 2). By Theorem 5.5, C(K )
is not light for such a compact K, but the topologies of pointwise and uniform
convergence obviously coincide on Homeo(K ).
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Birkhoff [1934] studied various topologies on so-called “transformation spaces”,
in particular on the groups of homeomorphisms of topological spaces. He introduced
the notions of A-, B- and C-convergence of sequences of homeomorphisms on a
given space X corresponding respectively to pointwise convergence, continuous con-
vergence, and continuous convergence in both directions. Since on compact spaces
continuous convergence and uniform convergence coincide, Theorem 5.7 can be
rephrased, using Birkhoff’s language, as saying that for compact connected spaces K,
C(K ) is light if and only if A- and B-convergence coincide on Homeo(K ). Now, it
is observed in [Birkhoff 1934, Theorem 18] that A-convergence implies B- and C-
convergence for homeomorphisms of (disjoint or not) finite unions of segments of the
real line (this is essentially the content of Dini’s second convergence theorem), while
if K contains an n-dimensional region with n ≥ 2 (i.e., an open set homeomorphic
to an open subset of Rn), A-convergence implies neither B- nor C-convergence for
homeomorphisms of K ([Birkhoff 1934, Theorem 19]). In more modern language,
under this assumption there exists a sequence (ϕn)n∈N of homeomorphisms of K
such that ϕn converges pointwise but not uniformly on K to the identity function
on K. Combined with Theorem 5.7 above, this yields:

Theorem 5.9. Let K be an infinite compact connected space.

(a) If K is homeomorphic to a finite union of segments of R, C(K ) is light.

(b) If K contains an n-dimensional region for some n ≥ 2, C(K ) is not light.

For instance, the space C[0, 1] is light, while spaces C([0, 1]n), n ≥ 2, are not
light. We thus retrieve in a natural way the original example of Megrelishvili of a
nonlight space.

Theorem 5.9 allows us to answer Question 5.1 in the negative. Although C[0, 1]
is light, it does not admit any isometry invariant LUR renorming. In fact, C[0, 1]
does not admit any isometry invariant strictly convex renorming. In order to prove
this, we need the following lemma:

Lemma 5.10. Let f ∈ C[0, 1] be such that there exists an interval [a, b] ⊂ [0, 1],
a < b, on which f is strictly monotone. Then there exists g ∈ C[0, 1] with the
following three properties:

(a) ‖ f ‖∞ = ‖g‖∞ = ‖( f + g)/2‖∞;

(b) ‖ f − g‖∞ > 0;

(c) There exist two homeomorphisms ϕ and ψ of [0, 1] such that g = f ◦ ϕ and
( f + g)/2= f ◦ψ .

Proof. Let 0≤ a < b≤ 1 be such that f is strictly monotone on [a, b]. Without loss
of generality, suppose f is strictly increasing on [a, b]. Let ξ : [a, b]→[ f (a), f (b)]
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be an increasing homeomorphism such that ξ 6≡ f |[a,b]. Define g ∈ C[0, 1] and a
homeomorphism ϕ : [0, 1] → [0, 1] by

g(x)=
{
ξ(x) if x ∈ [a, b],
f (x) otherwise,

ϕ(x)=
{

f −1(ξ(x)) if x ∈ [a, b],
x otherwise.

Then, g = f ◦ϕ, ‖g‖∞ = ‖ f ‖∞ = ‖( f + g)/2‖∞ and ‖ f − g‖∞ > 0. Moreover,
f ◦ψ = ( f + g)/2, where ψ : [0, 1] → [0, 1] is the homeomorphism defined by

ψ(x)=

 f −1
(
ξ(x)+ f (x)

2

)
if x ∈ [a, b],

x otherwise. �

Proposition 5.11. Let ||| · ||| be an isometry invariant renorming of C[0, 1]. Then
there exists a dense subset of C[0, 1] where ||| · ||| is not strictly convex.

Proof. Let f ∈C[0, 1] be a nonconstant and affine function, and take g, ϕ and ψ as
in Lemma 5.10. Since f 7→ f ◦ϕ and f 7→ f ◦ψ define surjective linear isometries
of C[0, 1],

|||g||| = ||| f ◦ϕ||| = ||| f ||| = ||| f ◦ψ ||| =
∣∣∣∣∣∣∣∣∣ f +g

2

∣∣∣∣∣∣∣∣∣.
So ||| · ||| is not strictly convex at the point f . The result then follows from the fact
that the set of piecewise linear functions is dense in C[0, 1]. �

Combining Theorem 5.9 and Proposition 5.11, we obtain:

Corollary 5.12. The space C[0, 1] is light, but does not admit any isometry invari-
ant LUR renorming.

Remark 5.13. Using the same arguments as in the proofs of Proposition 5.11,
Theorem 5.7, and Theorem 5.9 one can prove that C0(R) is light, but does not admit
a strictly convex isometry invariant renorming either.

Remark 5.14. The examples presented in this section show that there is no general
relation between closed subspaces and their respective isometry groups, in terms of
being light, apart from Lemma 4.5. In fact:

(1) c0 is a closed subspace of c, c0 is light, but c is not;

(2) c is isometrically isomorphic to a closed subspace of C[0, 1], c is not light
but C[0, 1] is light.

Corollary 5.12 gives us a positive answer to Question 5.1. On the other hand,
Remark 2.4 suggests the following new question:

Question 5.15. Does there exist a Banach space X and an orbitwise light group
G 6 GL(X) such that X admits no G-invariant LUR renorming?
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The next proposition shows that the isometry group of C[0, 1] also gives a
positive answer to Question 5.15:

Proposition 5.16. The group Isom(C[0, 1]) is orbitwise light.

Proof. Let f ∈ C[0, 1] and let (gα)α∈I be a net in the orbit O( f ) of f under the
action of the group Isom(C[0, 1]) such that gα converges weakly to g ∈ O( f ). By
the Banach–Stone theorem, there exist homeomorphisms ϕ, ϕα ∈ Hom([0, 1]) and
ε, εα ∈{−1, 1} such that g= ε · f ◦ϕ and gα= εα · f ◦ϕα . Since gα converges weakly
to g (hence, pointwise), we can assume that the ϕα are increasing homeomorphisms,
ε = εα = 1 for every α ∈ I and g = f .

Suppose by contradiction that f ◦ ϕα does not converge uniformly to f . Then
we can assume that there exists ε > 0 and for every α ∈ I there exists xα ∈ [0, 1]
such that | f (ϕα(xα))− f (xα)|> 2ε. We also can assume that xα→ x ∈ [0, 1] and
xα ≤ x for every α. Then by the continuity of f at the point x ,

| f (ϕα(xα))− f (x)|> ε.

Let δ>0 be such that |x−y|<δ=⇒| f (x)− f (y)|< ε
8 . Then ϕα(xα) 6∈ (x−δ, x+δ)

for every α, and ϕα(xα) < x−δ for infinitely many indices α ∈ I, or ϕα(xα) > x+δ
for infinitely many indices α ∈ I. Without loss of generality, we may assume that

ϕα(xα) < x − δ, for every α ∈ I.

We also may assume that

x − δ < xα ≤ x, for every α ∈ I

(the cases ϕα(xα) > x + δ and/or x < xα < x + δ for every α ∈ I are similar).
Let α1 ∈ I and let

y1,1 = ϕα1(xα1).

We claim that for every n ≥ 2, there exists a finite sequence in [0, 1],

yn,1 < yn,2 < · · ·< yn,2n−1 < x − δ,

such that

| f (yn,2k+1)− f (x)|> ε− ε
8
−

ε

2k+4

( n−k−2∑
j=0

1
2 j

)
>

3ε
4

for k = 0, 1, . . . , n− 1

and

| f (yn,2k)− f (x)|< ε

8
+

ε

2k+3

( n−k−1∑
j=0

1
2 j

)
<
ε

4
for k = 1, 2, . . . , n− 1.

Notice that the existence of such a sequence for every n ≥ 2 contradicts the uniform
continuity of f on [0, 1]. Hence it suffices to prove this claim in order to complete
the proof of Proposition 5.16.
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We prove this claim by induction. Since f ◦ ϕα converges pointwise to f and
xα→ x , we can take α2<α1 such that xα1< xα2< x , | f (ϕβ(y1,1))− f (y1,1)|< ε/16
and | f (ϕβ(xα1))− f (xα1)|< ε/16 for every β < α2. Let

y2,1 = ϕα2(y1,1), y2,2 = ϕα2(xα1) and y2,3 = ϕα2(xα2).

Since ϕα2 is an increasing homeomorphism and y1,1 < x − δ < xα1 < xα2 , we have
y2,1 < y2,2 < y2,3 and y2,3 = ϕα2(xα2) < x − δ. Moreover,

| f (y2,1)− f (x)|>ε−ε
8
−
ε

16
, | f (y2,2)− f (x)|< ε

8
+
ε

16
, | f (y2,3)− f (x)|>ε−ε

8
,

which proves the inequalities for n = 2.
Suppose the inequalities hold for n. Let αn+1 < αn such that xαn < xαn+1 < x ,
| f (ϕβ(yn,r ))− f (yn,r )|< ε/ 2n+3 and | f (ϕβ(xαn ))− f (xαn )|< ε/ 2n+3 for every
r = 1, 2, . . . , 2n− 1 and every β < α2. Let

yn+1,r = ϕαn+1(yn,r ) for r = 1, . . . , 2n− 1,

and let

yn+1,2n = ϕαn+1(xαn ) and yn+1,2n+1 = ϕαn+1(xαn+1).

It follows that

| f (yn+1,2k+1)− f (x)|> ε− ε
8
−

ε

2k+4

( n−k−1∑
j=0

1
2 j

)
for k = 0, 1, . . . , n,

and

| f (yn+1,2k)− f (x)|< ε

8
+

ε

2k+3

( n−k∑
j=0

1
2 j

)
for k = 1, 2, . . . , n.

Since ϕαn+1 is an increasing homeomorphism, and yn,1 < yn,2 < · · · < yn,2n−1 <

x−δ< xαn < xαn+1 , we have yn+1,1< yn+1,2< · · ·< yn+1,2n+1=ϕαn+1(xαn+1)< x−δ,
which proves the claim. �

6. An example of a group with a discrete orbit but no distinguished point

In this section we solve a problem of [Ferenczi and Rosendal 2011], mentioned in
the introduction, by exhibiting an SOT-discrete group of isomorphisms of c0 which
admits no distinguished point. More generally, we show the following:

Proposition 6.1. For any integer r ≥ 2, there exists a bounded infinite SOT-discrete
group of isomorphisms of c0 of the form Id+F, F ∈ L(c0) of finite rank, admitting
a distinguished family of cardinality r , but none of cardinality r − 1.
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Proof. Since c0' `
r
1⊕∞c0, it is enough to define the group G as an infinite bounded

SOT-discrete group of isomorphisms on `r
1⊕∞ c0.

Let (en)n∈N be the canonical basis of c0, and let (Un)n∈N be the sequence
of isometries of c0 defined by setting, for every n,m ∈ N, Un(en) = −en and
Un(em)= em whenever m 6= n. Let (φn)n∈N be dense in the unit sphere of `r

∞
, and

define the rank-one operator Rn : `
r
1→ c0 by Rn(x)= φn(x)en , x ∈ `1. We then

define an operator Tn on `r
1⊕∞ c0 in matrix form as

Tn =

(
Id 0
Rn Un

)
.

It is readily checked that T 2
n = Id for every n ∈ N and that for all distinct integers

n1, . . . , nk ,

Tn1 . . . Tnk =

(
Id 0

Rn1 + · · ·+ Rnk Un1 . . .Unk

)
.

Therefore the group G generated by the operators Tn is abelian. Furthermore, since
for every x ∈ `r

1

‖(Rn1 + · · ·+ Rnk )x‖ = ‖φn1(x)en1 + · · ·+φnk (x)enk‖ ≤max
i
‖φni (x)‖ · ‖x‖,

it follows that ‖Tn1+· · ·+Tnk‖≤ 2; thus G is a bounded subgroup of GL(`r
1⊕∞c0).

We claim that no family {x1, . . . , xr−1} of `r
1⊕c0 is distinguished for G. Indeed,

writing each vector xi as (yi , zi ) with yi ∈ `
r
1 and zi ∈ c0, we note that Unzi → zi

for every 1 ≤ i ≤ r − 1. Since the vectors y1, . . . , yr−1 generate a subspace of
dimension strictly less than r of `r

1, there exists a norm 1 functional φ ∈ `r
∞

such
that φ(yi )= 0 for every 1 ≤ i ≤ r − 1. Let D ⊂ N be such that φn→ φ in `r

∞
as

n tends to infinity along D. Then Rn(yi )→ 0 as n tends to infinity along D, and
therefore Tn(xi )→ xi as n tends to infinity along D for every 1≤ i ≤ r −1. So the
family {x1, . . . , xr−1} is not distinguished for G.

On the other hand, if we denote by ( f1, . . . , fr ) the canonical basis of `r
1, then

the family { f1⊕ 0, . . . , fr ⊕ 0} is distinguished for G. To check this, note that for
any operator T ∈ GL(`r

1⊕∞ c0) of the form

T =
(

Id 0∑
k∈F Rk U

)
,

where F in a nonempty subset of N, and U is an isometry of c0, we have

‖T ( fs ⊕ 0)− fs ⊕ 0‖ =max
k∈F
|φk( fs)| for every 1≤ s ≤ r.

Since, for each k ∈ F, φk is normalized in `r
∞

, |φk( fs)| ≥ 1 for at least one index s.
It follows that

max
1≤s≤r

‖T ( fs ⊕ 0)− fs ⊕ 0‖ ≥ 1,
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and so
inf

T∈G, T 6=Id
{max

1≤s≤r
‖T ( fs ⊕ 0)− fs ⊕ 0‖} ≥ 1.

Hence { f1, . . . , fr } is a distinguished family for G. �

We immediately deduce the following:

Corollary 6.2. The group of isomorphisms of c0 which is constructed in the proof
of Proposition 6.1 is not light.

Proof. For every x ∈ `r
1, the sequence (Rn(x))n∈N tends weakly to 0 in c0. We also

know that the sequence (Un)n∈N tends WOT to Id. Therefore (Tn)n∈N also tends
WOT to Id. On the other hand, we have for every x ∈ `r

1 and every n ∈ N that

‖Tn(x ⊕ 0)− x ⊕ 0‖ = ‖Rn(x)‖ = ‖φn(x)‖.

By the density of the sequence (φn)n∈N in the unit sphere of `r
∞

, this implies that
the sequence (Tn(x⊕0))n∈N does not tend to x in norm, and thus (Tn)n∈N does not
tend SOT to Id. �

We have thus proved:

Corollary 6.3. There exists a bounded group G of isomorphisms of c0 which is
infinite, not light, SOT-discrete, and does not admit a distinguished point.

Proof. Take r = 2 in Proposition 6.1. �

7. Quasinormed spaces

Although Megrelishvili has defined the concept of light group of isomorphisms
only for locally convex spaces, we can extend the definition to quasinormed spaces,
even if these spaces are not locally convex. One could ask if there is a general
answer for the isometry groups of nonlocally convex spaces, in terms of being light.
The spaces `p and L p[0, 1], 0< p < 1, are examples that give a negative answer
to this question.

Recall that for 0 < p < 1, (L p[0, 1])∗ = {0}, i.e., the only linear continuous
functional f : L p[0, 1] → R is the constant function f ≡ 0 (see [Kalton et al.
1984, p. 18]). Considering the sequence (Tn)n∈N constantly equal to − Id, we
observe that Tn

SOT
−→/ Id while Tn

WOT
−−→ Id. So L p[0, 1] is trivially nonlight for every

0< p < 1. On the other hand, we have:

Proposition 7.1. For 0< p < 1, the space `p is light.

Proof. Let 0 < p < 1, and let (Tα)α∈I be a net in Isom(`p) such that Tα WOT
−−→ Id.

Each Tα acts on vectors (xn)n∈N ∈ `p as Tα((xn)n∈N) = (ε
(α)
n xσα(n))n∈N, where

σα is a permutation of N and (ε(α)n )n∈N is a sequence of elements of {−1, 1} (the
proof of this statement is similar to the case where p > 1 and p 6= 2, which can
be found in [Banach 1932, p. 178]). Assume, by contradiction, that Tα

SOT
−→/ Id.
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Then there exist x ∈ `p, ε > 0 and an infinite sequence (αi )i∈N of indices in I
such that ‖Tαi x − x‖p

p > ε for every i ∈ N. Since x ∈ `p, there exists N ∈ N

such that
∑
∞

k=N+1 |xk |
p < ε/2. The dual space of `p identifies isomorphically

with `∞, where 8= (yk)k∈N acts on an element x = (xk)k∈N ∈ `p by the formula
8(x) =

∑
k∈N yk xk (see [Kalton et al. 1984, p. 21]). Considering for 1 ≤ j ≤ N

the functionals 8 j identified with the vectors of the canonical basis e j ∈ `∞, as
well as the vectors ek ∈ `p for 1≤ k ≤ N, we obtain by the WOT convergence of
Tα to Id that

8 j (Tα(ek))−8 j (ek)= ε
(α)
j δσα(k), j − δk, j → 0,

where δk, j = 1 if k= j and δk, j = 0 if k 6= j. In particular, ε(α)k δσα(k),k→ 1 for every
1≤ k ≤ N. So we may assume that the permutations σα fix the first N integers and
that ε(α)k = 1 for every 1≤ k ≤ N. Hence we have for every i ∈ N

∞∑
k=N+1

|(Tαi (x))k |
p
=

∞∑
k=N+1

|xk |
p <

ε

2
·

However, taking z = (zk)k∈N ∈ `p defined by zk = 0 if 1 ≤ k ≤ N and zk = 1 if
k > N, we have ‖z‖p

p =
∑
∞

k=N+1 |xk |
p < ε/2 and

‖Tαi x − x‖p
p = ‖Tαi z− z‖p

p ≤ ‖Tαi z‖
p
p +‖z‖

p
p = ε

for every i ∈ N, which is a contradiction. �

We finish the paper with a few related questions and comments.

8. Questions and comments

Our first question concerns renormings of the space c. Since c is not light, as proved
in Proposition 4.3, it does not admit any isometry invariant LUR renorming. But it
may still admit an isometry invariant strictly convex renorming.

Question 8.1. Does c admit an isometry invariant strictly convex renorming?

We have observed in Section 4 that if the isometry group Isom(X) of a Banach
space X of dimension > 1 acts almost transitively on SX and is SOT-discrete, it is
not abelian.

Question 8.2. Suppose X is a separable Banach space of dimension > 1 and
G 6 Isom(X) is an SOT-discrete amenable subgroup. Can G have a dense orbit
on SX ?

We have seen in Corollary 6.3 that there exists a bounded group G of iso-
morphisms of c0 which is infinite, not light, SOT-discrete, and does not admit
a distinguished point. We may wonder about the role of the space c0 in this
construction. For example, we can ask:
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Question 8.3. Does there exist a reflexive space X with an SOT-discrete bounded
group G 6 GL(X) that does not admit a distinguished point?

Of course such a group G, if it exists, must be light, as all reflexive spaces
are light. Noting that the example of Proposition 4.3 is a group of finite rank
perturbations of the identity on the space c0, a question in the same vein is:

Question 8.4. Does there exist a reflexive space X with an SOT-discrete infinite
bounded group G 6GL(X) such that all elements of G are finite rank perturbations
of the identity?

This question is relevant to [Ferenczi and Rosendal 2013], where isometry groups
on complex, reflexive, separable, hereditarily indecomposable spaces are studied.
A negative answer would imply that all isometry groups on such spaces act almost
trivially, i.e., there would exist an isometry invariant decomposition F ⊕ H of the
space where F is finite dimensional and all elements of the group act as multiples
of the identity on H, [Ferenczi and Rosendal 2013, Theorem 6.9].

Another natural space which could be investigated in this context is the universal
space of Gurariı̆, whose isometry group possesses a very rich structure (see [Gurariı̆
1966] for its definition and [Garbulińska and Kubiś 2011] for a recent survey).

Question 8.5. Is the isometry group of the Gurariı̆ space light?

Finally, whether the converse to Megrelishvili’s result holds remains an open
question:

Question 8.6. Does a Banach space X have the PCP if and only if all bounded
subgroups of GL(X) are light?

The answer is positive when X has an unconditional basis; this follows from
Theorem 4.6, the fact that an unconditional basis whose span does not contain c0

must be boundedly complete, and the fact that separable dual spaces have the RNP
and therefore the PCP.
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SOME UNIFORM ESTIMATES
FOR SCALAR CURVATURE TYPE EQUATIONS

SAMY SKANDER BAHOURA

We consider the prescribed scalar curvature equation on an open set �
of Rn, −1u = V u(n+2)/(n−2) + un/(n−2) with V ∈ C1,α (0 < α ≤ 1), and we
prove the inequality supK u× inf� u ≤ c where K is a compact set of �.

In dimension 4, we have an idea on the supremum of the solution of the
prescribed scalar curvature if we control the infimum. For this case we
suppose the scalar curvature C1,α (0< α ≤ 1).

1. Introduction and main result

In our work, we denote by 1= ∇ i
∇i the Laplace–Beltrami operator in dimension

n ≥ 2.
Without loss of generality, we suppose � = B = B2(0) the ball of radius 2

centered at 0 of Rn .
Here, we study some a priori estimates of type sup× inf for a perturbed prescribed

scalar curvature equation in all dimensions n ≥ 4.
We have a counterexample to the sharp sup× inf inequality for the prescribed

scalar curvature [Chen and Lin 1997, Proposition 4.3]. In our work the perturbation
by a subcritical term is a sufficient condition to obtain such an inequality.

The sup× inf inequality is characteristic of those equations as the usual Harnack
inequalities are for harmonic functions.

Note that the prescribed scalar curvature equation was studied a lot. We can
find — see, for example, [Aubin 1998; Bahoura 2004; Brezis and Merle 1991;
Brezis et al. 1993; Chen and Lin 1997; 1998; Li 1993; 1995; 1996; 1999; Li and
Shafrir 1994; Li and Zhang 2004; Li and Zhu 1999; Shafrir 1992] — many results
about uniform estimates in dimensions n = 2 and n ≥ 3.

In dimension 2, the corresponding equation is

(E0) −1u = V eu .

Note that Shafrir [1992] obtained an inequality of type sup u+C inf u < c with
only an L∞ assumption on V .

MSC2010: 35B44, 35B45, 35B50, 35J60, 53C21.
Keywords: sup× inf, nonlinear perturbation, dimension 4, minimal conditions.
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To obtain exactly the estimate sup u+ inf u < c, Brezis, Li and Shafrir [Brezis
et al. 1993] assumed that the prescribed scalar curvature V is Lipschitz continuous.
Later, Chen and Lin [1998] proved that, if V is uniformly Hölder continuous, we
can obtain a sup+ inf inequality.

In dimension n ≥ 3, the prescribed curvature equation on general manifold M is

(E ′0) −1u+ Rgu = V u(n+2)/(n−2).

When M =Sn , Li [1993; 1995; 1996] proved a priori estimates for the solutions
of the previous equation. He used the notion of simple isolated points and some
flatness conditions on V .

If we suppose n = 3, 4, we can find in [Li and Zhang 2004; Li and Zhu 1999]
a uniform bound for the energy and a sup× inf inequality. Note that Li and Zhu
[1999] proved the compactness of the solutions to the Yamabe problem using the
positive mass theorem.

In [Bahoura 2004], we can see (on a bounded domain of R4) that we have a
uniform estimate for the solutions of (E ′0) (n = 4 and Euclidean case) by assuming
that those solutions are bounded below by a positive constant; in this case we have
assumed that the prescribed scalar curvature V is only Lipschitz.

Here we extend some result of [Bahoura 2004] to equations with nonlinear terms
or with minimal condition on the prescribed scalar curvature.

For the Euclidean case, Chen and Lin [1997] got some a priori estimates for
general equations

(E ′′0 ) −1u = V u(n+2)/(n−2)
+ g(u)

with some assumption on g and the Li-flatness conditions on V .
Here, we give some a priori estimates with some minimal conditions on the

prescribed curvature, for perturbed scalar curvature equation, in all dimensions
n ≥ 4.

In our work, we use the blow-up analysis, the moving-plane method and a flatness
condition (of order 1) for the prescribed scalar curvature. Note that the flatness
condition which we use is also obtained by a moving-plane argument of Chen and
Lin [1997]. The method of moving plane was developed in particular by Gidas, Ni
and Nirenberg [Gidas et al. 1979] and Serrin [1971].

First, consider the equation

(E1) −1u = V u(n+2)/(n−2)
+ un/(n−2)

with 0< a ≤ V (x)≤ b and ‖V ‖C1,α ≤ A, 0< α ≤ 1.
We have:
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Theorem 1. For all a, b, A, α > 0 (0 < α ≤ 1), and all compact sets K of � of
dimension n ≥ 4, there is a positive constant c = c(a, b, A, α, K , �, n) such that

sup
K

u× inf
�

u ≤ c

for all solutions u of (E1) relative to V .

Now, if we suppose V ∈ C1(�) and V ≥ a > 0, we have:

Theorem 2. For all a > 0, V and all compact K of � of dimension n ≥ 4, there is
a positive constant c = c(a, V, K , �, n) such that

sup
K

u× inf
�

u ≤ c

for all solutions u of (E1) relative to V .

Now, we suppose n=4, and we consider the equation (prescribed scalar curvature
equation)

(E2) −1u = V u3 on �⊂ R4

with 0< a ≤ V (x)≤ b and ‖V ‖C1,α ≤ A, 0< α ≤ 1. We have:

Theorem 3. For all a, b,m, A, α > 0 (0< α ≤ 1) and all compact K of �, there
is a positive constant c = c(a, b,m, A, α, K , �) such that

sup
K

u ≤ c if min
�

u ≥ m

for all solutions u of (E2) relative to V .

If we suppose n = 4 and V ∈ C1(�) and V ≥ a > 0 on �, we have:

Theorem 4. For all a,m> 0, V ∈C1(�) and all compact K ∈�, there is a positive
constant c = c(a,m, V, K , �) such that

sup
K

u ≤ c if min
�

u ≥ m

for all solutions u of (E2) relative to V .

2. Proofs of the theorems

Proof of Theorems 1 and 2.

Proof of Theorem 1. Without loss of generality, we suppose �= B1 the unit ball
of Rn . We want to prove an a priori estimate around 0.

Let (ui ) and (Vi ) be sequences of functions on � such that

−1ui = Vi ui
(n+2)/(n−2)

+ un/(n−2)
i , ui > 0,

with 0< a ≤ Vi (x)≤ b and ‖Vi‖C1,α ≤ A.
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We argue by contradiction, and we suppose that the sup× inf is not bounded.
We have that for all c, R > 0 there exists uc,R a solution of (E1) such that

(H ) Rn−2 sup
B(0,R)

uc,R × inf
M

uc,R ≥ c.

Proposition (blow-up analysis). There is a sequence of points (yi )i , yi → 0, and
two sequences of positive real numbers (li )i and (L i )i (see below), li → 0 and
L i →+∞, such that, if we set vi (y)= ui (y+ yi )/ui (yi ), we have

0< vi (y)≤ βi ≤ 2(n−2)/2,

βi → 1,

vi (y)→
(

1
1+ |y|2

)(n−2)/2

uniformly on all compact sets of Rn,

l(n−2)/2
i ui (yi )× inf

B1
ui →+∞,

Proof. We use the hypothesis (H ); we take two sequences Ri > 0, Ri → 0, and
ci →+∞ such that

Ri
(n−2) sup

B(0,Ri )

ui × inf
B1

ui ≥ ci →+∞.

Let xi ∈ B(x0, Ri ) be a point such that supB(0,Ri )
ui = ui (xi ) and si (x) =

(Ri − |x − xi |)
(n−2)/2ui (x), x ∈ B(xi , Ri ). Then xi → 0.

We have

max
B(xi ,Ri )

si (x)= si (yi )≥ si (xi )= Ri
(n−2)/2ui (xi )≥

√
ci →+∞.

We set

li = Ri−|yi−xi |, ui (y)=ui (yi+y), vi (z)=
ui [yi + (z/[ui (yi )]

2/(n−2))]

ui (yi )
.

Clearly, we have yi → x0.
We take

L i =
li

(ci )1/2(n−2) [ui (yi )]
2/(n−2)

=
[si (yi )]

2/(n−2)

c1/2(n−2)
i

≥
c1/(n−2)

i

c1/2(n−2)
i

= c1/2(n−2)
i →+∞.

If |z| ≤ L i , then y= [yi+z/[ui (yi )]
2/(n−2)

] ∈ B(yi , δi li ) with δi = 1/(ci )
1/2(n−2)

and |y− yi |< Ri − |yi − xi |; thus, |y− xi |< Ri and si (y)≤ si (yi ). We can write

ui (y)(Ri − |y− yi |)
(n−2)/2

≤ ui (yi )(li )
(n−2)/2.
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But |y− yi | ≤ δi li , Ri > li and Ri −|y− xi | ≥ Ri −|xi − yi |− δi li > li − δi li =

li (1− δi ). We obtain

0< vi (z)=
ui (y)
ui (yi )

≤

[
li

li (1− δi )

](n−2)/2

≤ 2(n−2)/2.

We set βi = (1/(1− δi ))
(n−2)/2; clearly, we have βi → 1.

The function vi satisfies

−1vi = Ṽivi
(n+2)/(n−2)

+
v

n/(n−2)
i

[ui (yi )]2/(n−2) ,

where Ṽi (y)=Vi [y+y/[ui (yi )]
2/(n−2)

]. Without loss of generality, we can suppose
that Ṽi → V (0)= n(n− 2).

We use the elliptic estimates of the Ascoli and Ladyzhenskaya theorems to have
the uniform convergence of (vi ) to v on a compact set of Rn . The function v satisfies

−1v = n(n− 2)vN−1, v(0)= 1, 0≤ v ≤ 1≤ 2(n−2)/2, N =
2n

n− 2
.

By the maximum principle, we have v>0 on Rn . If we use the result of Caffarelli,
Gidas and Spruck [Caffarelli et al. 1989], we obtain v(y)= (1/(1+ |y|2))(n−2)/2.
We have the same properties as in [Bahoura 2004]. �

Remark. When we use the convergence on compact sets of the sequence (vi ), we
can take an increasing sequence of compact sets and we see that we can obtain a
sequence (εi ) such that εi → 0 and after we choose (R̃i ) such that R̃i →+∞ and
finally

R̃n−2
i ‖vi − v‖B(0,R̃i )

≤ εi .

We can say that we are in the case of [Chen and Lin 1997, step 1 of the proof of
Theorem 1.2].

Fundamental point (a consequence of the blow-up). According to the work of
Chen and Lin [1997, step 2 of the proof of Theorem 1.3], in the blow-up point, the
prescribed scalar curvature V is such that

(P0) lim
i→+∞

|∇Vi (yi )| = 0.

Polar coordinates (moving-plane method). Now we must use the same method as
in [Bahoura 2004, Theorem 1]. We will use the moving-plane method.

We must prove [Bahoura 2004, Lemma 2].
We set t ∈ ]−∞,− log 2] and θ ∈ Sn−1:

wi (t, θ)= e(n−2)t/2ui (yi + etθ) and V i (t, θ)= Vi (yi + etθ).
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We consider the operator L=∂t t+1σ−(n−2)2/4, with1σ the Laplace–Beltrami
operator on Sn−1.

The function wi satisfies

−Lwi = V iwi
N−1
+ et
×wi

n/(n−2), N =
2n

n− 2
.

Remark. Here wi is a solution to the previous equation with a perturbed term
which contains et . The term et is fundamental in the computations; it corrects the
variation of Vi .

For λ≤ 0, we set

tλ = 2λ− t, wλi (t, θ)= wi (tλ, θ), V λ
i (t, θ)= V i (tλ, θ).

First, like in [Bahoura 2004], we have the following lemma.

Lemma 5. Let Aλ be the property

Aλ = {λ≤ 0 | there exists (tλ, θλ) ∈ ]λ, ti ]×Sn−1, wi
λ(tλ, θλ)−wi (tλ, θλ)≥ 0}.

Then there is ν ≤ 0 such that, for λ≤ ν, Aλ is not true.

Remark. Here we choose ti = log
√

li , where li is chosen as in the proposition.

Like in proof of the Theorem 1 of [Bahoura 2004], we want to prove the following
lemma.

Lemma 6. For λ≤ 0 we have

wi
λ
−wi ≤ 0 =⇒ −L(wi

λ
−wi )≤ 0

on ]λ, ti ]×Sn−1.

Like in [Bahoura 2004], we have:

A useful point. Let ξi = sup{λ≤ λi = 2+ log ηi |wi
λ
−wi < 0 on ]λ, ti ]×Sn−1}.

The real ξi exists.

First,

wi (2ξi − t, θ)= wi [(ξi − t + ξi − log ηi − 2)+ (log ηi + 2)].

Proof of Lemma 6. In fact, for each i we have λ = ξi ≤ log ηi + 2, where ηi =

[ui (yi )]
(−2)/(n−2).

Note that

wi (2ξi − t, θ)= wi [(ξi − t + ξi − log ηi − 2)+ (log ηi + 2)];
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if we use the definition of wi , then for ξi ≤ t ,

wi (2ξi − t, θ)

= e[(n−2)(ξi−t+ξi−log ηi−2)]/2en−2vi [θe2e(ξi−t)+(ξi−log ηi−2)
] ≤ 2(n−2)/2en−2

= c.

We know that

−L(wξi
i −wi )

= [V ξi
i (w

ξi
i )
(n+2)/(n−2)

− V iwi
(n+2)/(n−2)

] + [etξi (w
ξi
i )

n/(n−2)
− etwi

n/(n−2)
].

We denote by Z1 and Z2 the terms

Z1 = (V
ξi
i − V i )(w

ξi
i )
(n+2)/(n−2)

+ V i [(w
ξi
i )
(n+2)/(n−2)

−wi
(n+2)/(n−2)

]

and
Z2 = etξi

[(w
ξi
i )

n/(n−2)
−wi

n/(n−2)
] +wi

n/(n−2)(etξi
− et).

Like in the proof of Theorem 1 of [Bahoura 2004], we have

wi
ξi ≤ wi and w

ξi
i (t, θ)≤ c for all (t, θ) ∈ [ξi ,− log 2]×Sn−1,

where c is a positive constant independent of i and wξi
i for ξi ≤ log ηi + 2.

The (P0) hypothesis. Now we use (P0) (this hypothesis is the same hypothesis as in
the first part of the paper: |∇Vi (yi )| → 0). We write

|∇Vi (yi + etθ)−∇Vi (yi )| ≤ Aeαt ,

Thus,∣∣Vi (yi+etξi θ)−Vi (yi+etθ)−〈∇Vi (yi ) | θ〉(etξi
−et)

∣∣≤ A
1+α

[e(1+α)t
ξi
−e(1+α)t ].

Then
|V ξi

i − Vi | ≤ |o(1)|(et
− etξi ).

Thus, Z1 ≤ |o(1)|(w
ξi
i )
(n+2)/(n−2)(et

− etξi ) and Z2 ≤ (w
ξi
i )

n/(n−2)
× (etξi

− et).
Then

−L(wξi
i −wi )≤ (w

ξi
i )

n/(n−2)
[(|o(1)|wξi

i
2/(n−2)

− 1)(et
− etξi )] ≤ 0.

The lemma is proved. �

We set

ξi = sup{µ≤ log ηi + 2 | wµi (t, θ)−wi (t, θ)≤ 0 for all (t, θ) ∈ [µ, ti ]×Sn−1},

with t0 small enough.
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Like in the proof of Theorem 1 of [Bahoura 2004], the maximum principle implies

min
θ∈Sn−1

wi (ti , θ)≤ max
θ∈Sn−1

wi (2ξi − ti ).

But

wi (ti , θ)= eti ui (yi + eti θ)≥ eti min ui and wi (2ξi − ti )≤
c0

ui (yi )
;

thus,
li
(n−2)/2ui (yi )×min ui ≤ c.

The proposition is contradicted. �

Proof of Theorem 2. The proof of Theorem 2 is similar to the proof of Theorem 1.
Only the “fundamental point” changes.

According to the work of Chen and Lin [1997, step 2 of the proof of Theorem 1.1],
in the blow-up point, the prescribed scalar curvature V is such that

∇V (0)= 0.

The function ∇V is continuous on Br (0) (with r small enough), so it is uniformly
continuous and we write (because yi → 0)

|∇V (yi + y)−∇V (yi )| ≤ ε for |y| ≤ δ� r for all i .

Thus,
|V ξi − V | ≤ o(1)(et

− etξi ).

We see that we have the same computations as in the “polar coordinates” in the
proof of Theorem 1. �

Proof of Theorems 3 and 4. Here, only the “polar coordinates” change; the propo-
sition of the first theorem stays true. First, we have:

Fundamental point (a consequence of the blow-up). According to the work of
Chen and Lin [1997, step 2 of the proof of Theorem 1.3], in the blow-up point, the
prescribed scalar curvature V is such that:

Case 1 (Theorem 3). limi→+∞|∇Vi (yi )| = 0.

We write
|∇Vi (yi + etθ)−∇Vi (yi )| ≤ Aeαt .

Thus,
|V ξi

i − Vi | ≤ |o(1)|(et
− etξi ).

Case 2 (Theorem 4). ∇V (0)= 0.
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The function ∇V is continuous on Br (0) (for r small enough), so it is uniformly
continuous and we write (because yi → 0)

|∇V (yi + y)−∇V (yi )| ≤ ε for |y| ≤ δ� r for all i .

Thus,
|V ξi − V | ≤ o(1)(et

− etξi ),

Conclusion of the proofs of Theorems 3 and 4. Finally, we can note that we are in
the case of Theorem 2 of [Bahoura 2004]. We have the same computations if we
consider the function

wi (t, θ)= wi (t, θ)−
m
2

et .

We set L = ∂t t +1σ −1, where 1σ is the Laplace–Beltrami operator on S3, and
V i (t, θ)= Vi (yi + etθ).

Like in [Bahoura 2004], we want to prove the following lemma.

Lemma 7. w
ξi
i −wi ≤ 0 =⇒ −L(wξi

i −wi )≤ 0.

Proof of Lemma 7. We have

−L(wξi
i −wi )= V ξi

i (w
ξi
i )

3
− V iw

3
i .

Then
−L(wξi

i −wi )= (V
ξi
i − V i )(w

ξi
i )

3
+ [(w

ξi
i )

3
−w3

i ]V i .

For t ∈ [ξi , ti ] and θ ∈ S3,

|V ξi
i (t, θ)− V i (t, θ)| = |Vi (yi + e2ξi−tθ)− Vi (yi + etθ)| ≤ |o(1)|(et

− e2ξi−t).

The real ti = log
√

li → −∞, where li is chosen as in the proposition of
Theorem 1.

But if wξi
i −wi ≤ 0, we obtain

w
ξi
i −wi ≤

m
2
(e2ξi−t

− et) < 0.

Using the fact that 0<wξi
i <wi , we have

(w
ξi
i )

3
−w3

i = (w
ξi
i −wi )[(w

ξi
i )

2
+w

ξi
i wi + (wi )

2
] ≤ 3(wξi

i −wi )× (w
ξi
i )

2.

Thus, we have for t ∈ [ξi , ti ] and θ ∈ S3

(w
ξi
i )

3
−wi

3
≤ 3

m
2
(w

ξi
i )

2(e2ξi−t
− et).

We can write

(∗∗) −L(wξi
i −wi )≤ (w

ξi
i )

2( 3
2 mV i − |o(1)|wi

ξi
)
(e2ξi−t

− et).
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We know that, for t ≤ log(li )− log 2+ log ηi , we have

wi (t, θ)= et
×

ui (yi + etθ/ui (yi ))

ui (yi )
≤ 2et .

We find

wi
ξi (t, θ)≤ 2e2

√
8
a
,

because ξi − log ηi ≤ 2+ 1
2 log(8/V (0)) and ξi ≤ t ≤ ti .

Finally, (∗∗) is negative and the lemma is proved. �

Now, if we use the Hopf maximum principle, we obtain

min
θ∈S3

wi (ti , θ)≤max
θ∈S3

wi (2ξi − ti , θ),

which implies that
li ui (yi )≤ c.

It is a contradiction. �
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COMPLEMENTED COPIES OF c0(τ) IN
TENSOR PRODUCTS OF L p[0, 1]

VINÍCIUS MORELLI CORTES,
ELÓI MEDINA GALEGO AND CHRISTIAN SAMUEL

Let X be a Banach space and τ an infinite cardinal. We show that if τ
has uncountable cofinality, p ∈ [1,∞), and either the Lebesgue–Bochner
space L p([0, 1], X) or the injective tensor product L p[0, 1]⊗̂εX contains a
complemented copy of c0(τ), then so does X . We show also that if p∈ (1,∞)
and the projective tensor product L p[0, 1]⊗̂π X contains a complemented
copy of c0(τ), then so does X .

1. Introduction and preliminaries

We use standard set-theoretical and Banach space theory terminology as may be
found, e.g., in [Jech 2003] and [Johnson and Lindenstrauss 2001]. We denote by
BX the closed unit ball of the Banach space X . If X and Y are Banach spaces,
we denote by L(X, Y ) the space of all bounded linear operators from X to Y and
by K(X, Y ) the subspace of all compact linear operators. We say that Y contains
a copy (resp. a complemented copy) of X , and write X ↪→ Y (resp. X c

↪→ Y ), if
X is isomorphic to a subspace (resp. complemented subspace) of Y. The density
character of X , denoted by dens(X), is the smallest cardinality of a dense subset
of X .

A Banach space X has the bounded approximation property if there exists λ > 0
such that, for every compact subset K of X and every ε > 0, there exists a finite
rank operator T : X→ X such that ‖T ‖ ≤ λ and ‖x − T (x)‖< ε for every x ∈ K.

We shall denote the projective and injective tensor norms by ‖ · ‖π and ‖ · ‖ε,
respectively. The projective (resp. injective) tensor product of X and Y is the
completion of X ⊗ Y with respect to ‖ · ‖π (resp. ‖ · ‖ε) and will be denoted by
X⊗̂πY (resp. X⊗̂εY ).

For a nonempty set 0, c0(0) denotes the Banach space of all real-valued maps
f on 0 with the property that for each ε > 0, the set {γ ∈ 0 : | f (γ )| ≥ ε} is
finite, equipped with the supremum norm. We will refer to c0(0) as c0(τ ) when

MSC2010: primary 46B03, 46E15; secondary 46B25, 46E30, 46E40.
Keywords: c0(0) spaces, injective tensor products, projective tensor products, Lebesgue–Bochner

spaces L p([0, 1], X), complemented subspaces.
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the cardinality of 0 (denoted by |0|) is equal to τ . This space will be denoted
by c0 when τ = ℵ0. By `∞(0) we will denote the Banach space of all bounded
real-valued maps on 0, with the supremum norm. This space will be denoted by
`∞ when 0 = N.

Given X a Banach space and p ∈ [1,∞), we denote by Lp([0, 1], X) the
Lebesgue–Bochner space of all (classes of equivalence of) measurable functions
f : [0, 1] → X such that the scalar function ‖ f ‖p is integrable, equipped with the
complete norm

‖ f ‖p =

[∫ 1

0
‖ f (t)‖p dt

] 1
p

.

These spaces will be denoted by Lp[0, 1] when X = R.
A measurable function f : [0, 1] → X is essentially bounded if there exists

ε > 0 such that the set {t ∈ [0, 1] : ‖ f (t)‖ ≥ ε} has Lebesgue measure zero, and we
denote by ‖ f ‖∞ the infimum of all such numbers ε > 0. By L∞([0, 1], X) we will
denote the space of all (classes of equivalence of) essentially bounded functions
f : [0, 1] → X , equipped with the complete norm ‖ · ‖∞.

Recall that if τ is an infinite cardinal then the cofinality of τ , denoted by cf(τ ), is
the least cardinal α such that there exists a family of ordinals {β j : j ∈ α} satisfying
β j < τ for all j ∈ α, and sup{β j : j ∈ α} = τ . A cardinal τ is said to be regular
when cf(τ )= τ ; otherwise, it is said to be singular.

Many papers in the history of the geometry of Banach spaces have been devoted to
establishing results about when certain Banach spaces contain complemented copies
of c0 or c0(τ ) for uncountable cardinals τ ; see, for example, [Amir and Lindenstrauss
1968; Argyros et al. 2002; Cembranos 1984; Cembranos and Mendoza 1997;
Emmanuele 1988; Sobczyk 1941; Zippin 1977]. The starting points of our research
are three of these results related to the space c0, i.e., Theorems 1, 2 and 3 below.

We begin by recalling the following immediate consequence of the classical
Cembranos–Freniche theorem [Cembranos 1984, Main theorem; Freniche 1984,
Corollary 2.5].

Theorem 1. For each p ∈ [1,∞),

c0
c
↪→ Lp[0, 1]⊗̂ε`∞.

However, c0
c
↪→/ `∞ (see, e.g., [Diestel and Uhl 1977, Corollary 11, p. 156]).

On the other hand, Oja proved the following stability property.

Theorem 2 [Oja 1991, Theorem 3b]. If X is a Banach space and p ∈ (1,∞), then

c0
c
↪→ Lp[0, 1]⊗̂π X =⇒ c0

c
↪→ X.

Observe that Theorem 2 does not hold for p= 1. Indeed, L1([0, 1], X) is linearly
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isometric to L1[0, 1]⊗̂π X [Ryan 2002, Example 2.19, p. 29] and Emmanuele
obtained the following result.

Theorem 3 [Emmanuele 1988, Main theorem]. If X is a Banach space and p∈[1,∞),
then

c0 ↪→ X =⇒ c0
c
↪→ Lp([0, 1], X).

So, in particular, Lp([0, 1], `∞) contains a complemented copy of c0, but once
again c0

c
↪→/ `∞.

We recall also that, denoting by ‖ · ‖1p the natural tensor norm induced on
Lp[0, 1]⊗X by Lp([0, 1], X) and by Lp[0, 1]⊗̂1p X the completion of Lp[0, 1]⊗X
with this norm, the space Lp([0, 1], X) is linearly isometric to Lp[0, 1]⊗̂1p X
[Defant and Floret 1993, Chapters 7.1 and 7.2].

Thus, we are naturally led to the following problem.

Problem 4. For X a Banach space, p ∈ [1,∞), and τ an infinite cardinal, we want
to know under which conditions

c0(τ )
c
↪→ Lp[0, 1]⊗̂αX =⇒ c0(τ )

c
↪→ X

holds, where α denotes either the projective, injective or natural norm.

This problem becomes more interesting if we keep in mind that, in general,
it is not so simple to determine whether the tensor products of E and X contain
complemented copies of a certain space F, even when E contains no complemented
copies of F. Indeed, there are a number of elementary questions about this topic
that remain unanswered. For instance, it is not known whether l∞⊗̂π l∞ contains a
complemented copy of c0 or not [Cabello Sánchez et al. 2006, Remark 3].

In the present paper, we will prove that for every Banach space X , p ∈ (1,∞)
and an infinite cardinal τ ,

c0(τ )
c
↪→ Lp[0, 1]⊗̂π X =⇒ c0(τ )

c
↪→ X.

Additionally, if τ has uncountable cofinality, then for every p ∈ [1,∞),

c0(τ )
c
↪→ Lp[0, 1]⊗̂εX =⇒ c0(τ )

c
↪→ X

and
c0(τ )

c
↪→ Lp([0, 1], X)=⇒ c0(τ )

c
↪→ X.

This paper is organized as follows. We study complemented copies of c0(τ )

in the injective (Section 2), projective (Section 3) and natural (Section 4) tensor
products with Lp[0, 1].
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2. Complemented copies of c0(τ) in X⊗̂εY spaces

The goal of this section is to prove Theorem 7. We recall that given Banach spaces
X and Y, the operator S : X⊗̂εY → K(X∗, Y ) satisfying

S(v)(x∗)=
j∑

i=1

x∗(ai )bi

for every x∗ ∈ X∗ and v=
∑ j

i=1 ai⊗bi ∈ X⊗Y, is a linear isometry onto its image.
We will need the following key lemma.

Lemma 5. Let X and Y be Banach spaces. Suppose that X has the bounded approx-
imation property. Then there exist sets A⊂ X and B⊂ X∗ such that max(|A|, |B|)≤
dens(X) and for every u ∈ X⊗̂εY and δ > 0 there exist x1, . . . , xm ∈ A and
ϕ1, . . . , ϕm ∈ B satisfying∥∥∥∥u−

m∑
n=1

xn ⊗ S(u)(ϕn)

∥∥∥∥
ε

< δ.

Proof. By hypothesis, there exists λ ≥ 1 such that for every finite-dimensional
subspace Z of X there exists a finite rank operator T on X such that ‖T ‖ ≤ λ and
T (x)= x for all x ∈ Z [Casazza 2001, Theorem 3.3.(3), p. 288].

Let D be a dense subset of X with |D| = dens(X) and let F be the family of all
finite, nonempty subsets of D. For each F ∈ F , fix a finite rank operator TF on
X such that ‖TF‖ ≤ λ and TF (d) = d for all d ∈ F. Let m F be the dimension of
TF (X), {x F

1 , . . . , x F
m F
} be a basis of TF (X) and ϕF

1 , . . . , ϕ
F
m F
∈ X∗ such that

TF (x)=
m F∑
n=1

ϕF
n (x)x

F
n ,

for every x ∈ X . Define

A =
⋃
F∈F

{x F
1 , . . . , x F

m F
} and B =

⋃
F∈F

{ϕF
1 , . . . , ϕ

F
m F
}.

We claim that A and B have the desired properties. Indeed, notice that

|A| ≤ |F | sup
F∈F
|{x F

1 , . . . , x F
m F
}| ≤max(|D|,ℵ0)= |D|

and similarly |B| ≤ |D|.
Next, let u ∈ X⊗̂εY and δ > 0 be given. There exists v=

∑k
j=1 d j⊗ y j ∈ X⊗Y

such that d1, . . . , dk ∈ D, di 6= d j if i 6= j , and

‖u− v‖ε <
δ

λ+ 1
.
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Writing G = {d1, . . . , dk}, we see that

mG∑
n=1

xG
n ⊗ S(v)(ϕG

n )=

k∑
j=1

( mG∑
n=1

ϕG
n (d j )xG

n

)
⊗ y j =

k∑
j=1

TG(d j )⊗ y j = v.

Furthermore, since∥∥∥∥ mG∑
n=1

xG
n ⊗ϕ

G
n

∥∥∥∥
ε

= sup
x∈BX

∥∥∥∥ mG∑
n=1

ϕG
n (x)x

G
n

∥∥∥∥= ‖TG‖ ≤ λ,

we obtain∥∥∥∥ mG∑
n=1

xG
n ⊗ S(u− v)(ϕG

n )

∥∥∥∥
ε

= sup
x∗∈BX∗

∥∥∥∥ mG∑
n=1

x∗(xG
n )S(u− v)(ϕ

G
n )

∥∥∥∥
≤ ‖u− v‖ε sup

x∗∈BX∗

∥∥∥∥ mG∑
n=1

x∗(xG
n )(ϕ

G
n )

∥∥∥∥
<

δ

λ+ 1

∥∥∥∥ mG∑
n=1

xG
n ⊗ϕ

G
n

∥∥∥∥
ε

≤
λδ

λ+ 1
.

Thus, ∥∥∥∥u−
mG∑
n=1

xG
n ⊗ S(u)(ϕG

n )

∥∥∥∥
ε

< δ

and we are done. �

The following result [Galego and Cortes 2017] will also be used frequently
throughout this work.

Theorem 6 [Galego and Cortes 2017, Theorem 2.4]. Let X be a Banach space and
τ be an infinite cardinal. The following are equivalent:

(1) X contains a complemented copy of c0(τ ).

(2) There exist a family (x j ) j∈τ equivalent to the unit-vector basis of c0(τ ) in X
and a weak∗-null family (x∗j ) j∈τ in X∗ such that, for each j, k ∈ τ ,

x∗j (xk)= δ jk .

(3) There exist a family (x j ) j∈τ equivalent to the unit-vector basis of c0(τ ) in X
and a weak∗-null family (x∗j ) j∈τ in X∗ such that

inf
j∈τ
|x∗j (x j )|> 0.
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Theorem 7. Let X and Y be Banach spaces and τ be an infinite cardinal. If X has
the bounded approximation property and cf(τ ) > dens(X), then

c0(τ )
c
↪→ X⊗̂εY =⇒ c0(τ )

c
↪→ Y.

Proof. Let A ⊂ X and B ⊂ X∗ be the sets provided by Lemma 5. By Theorem 6,
there exist families (ui )i∈τ in X⊗̂εY and (ψi )i∈τ in (X⊗̂εY )∗ such that (ui )i∈τ

is equivalent to the usual unit-vector basis of c0(τ ), (ψi )i∈τ is weak∗-null and
ψi (u j )= δi j for each i, j ∈ τ . Let s = supi∈τ ‖ψi‖<∞.

For each i ∈ τ there exist x i
1, . . . , x i

mi
∈ A and ϕi

1, . . . , ϕ
i
mi
∈ B such that∥∥∥∥ui −

mi∑
n=1

x i
n ⊗ S(ui )(ϕ

i
n)

∥∥∥∥
ε

<
1
2s

and hence
1
2
<

mi∑
n=1

|ψi (x i
n ⊗ S(ui )(ϕ

i
n))|.

Put M = {mi : i ∈ τ } and for each m ∈M define αm = {i ∈ τ : mi = m}. Since
M is countable and τ has uncountable cofinality, there exists M ∈M such that
|αM | = τ . Setting τ1 = αM , we have

1
2
<

M∑
n=1

|ψi (x i
n ⊗ S(ui )(ϕ

i
n))| for all i ∈ τ1.

Next, for each i ∈ τ1 there exists 1≤ ni ≤ M satisfying

1
2M

< |ψi (x i
ni
⊗ S(ui )(ϕ

i
ni
))|.

Let N = {ni : i ∈ τ1} and for each n ∈N consider βn = {i ∈ τ1 : ni = n}. Since N
is finite, there exists N ∈N such that |βN | = τ . Setting τ2 = βN , we obtain

1
2M

< |ψi (x i
N ⊗ S(ui )(ϕ

i
N ))| for all i ∈ τ2.

Now let A = {x i
N : i ∈ τ2} and for each a ∈ A put γa = {i ∈ τ2 : x i

N = a}. Since
cf(τ ) > dens(X) ≥ |A|, there exists x0 ∈ A such that |γx0 | = τ . Setting τ3 = γx0 ,
we get

1
2M

< |ψi (x0⊗ S(ui )(ϕ
i
N ))| for all i ∈ τ3.

Finally, let B = {ϕi
N : i ∈ τ3}, and for each ϕ ∈ B put λϕ = {i ∈ τ3 : ϕ

i
N = ϕ}. Since

cf(τ ) > dens(X) ≥ |B|, there exists ϕ0 ∈ B such that |λϕ0 | = τ . Setting τ4 = λϕ0 ,
we obtain

(2-1) 1
2M

< |ψi (x0⊗ S(ui )(ϕ0))| for all i ∈ τ4.
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For each i ∈ τ4, write yi = S(ui )(ϕ0) ∈ Y and consider the linear functional
y∗i ∈ Y ∗ defined by y∗i (y)= ψi (x0⊗ y), for every y ∈ Y. By (2-1), we have

1
2M

< |y∗i (yi )| ≤ ‖ψi‖‖x0‖‖yi‖ ≤ s‖x0‖‖yi‖ for all i ∈ τ4,

and therefore

(2-2) 1
2Ms‖x0‖

< ‖yi‖ for all i ∈ τ4.

Denote by (ei )i∈τ the unit-vector basis of c0(τ ) and let T : c0(τ )→ X⊗̂εY be
an isomorphism from c0(τ ) onto its image such that T (ei ) = ui for each i ∈ τ .
Consider P : X⊗̂εY → Y the linear operator defined by P(u)= S(u)(ϕ0) for every
u ∈ X⊗̂εY. The inequality (2-2) then yields

‖(P ◦ T )(ei )‖ = ‖yi‖ ≥
1

2Ms‖x0‖
> 0 for all i ∈ τ4

and thus, by [Rosenthal 1970, remark following Theorem 3.4], there exists τ5 ⊂ τ4

such that |τ5| = τ and P ◦ T|c0(τ5) is an isomophism onto its image. This shows that
(yi )i∈τ5 = (P(T (ei ))i∈τ5 is equivalent to the unit-vector basis of c0(τ5) in Y. Notice
also that

(y∗i (y))i∈τ5 = (ψi (x0⊗ y))i∈τ5 ∈ c0(τ5) for all y ∈ Y,

since (ψi )i∈τ is weak∗-null by hypothesis. Thus, (y∗i )i∈τ5 is weak∗-null in Y ∗.
Combining these facts with (2-1), an appeal to Theorem 6 yields a complemented
copy of c0(τ ) in Y. �

Note that according to Theorem 1, the above result is optimal. Moreover,
Theorem 7 does not hold for cardinals with uncountable cofinality equal to the
density of X. Indeed, by [Galego and Hagler 2012, Theorem 4.5] it follows that
c0(τ )

c
↪→`1(τ )⊗̂ε`∞(τ ), however according to [Diestel and Uhl 1977, Corollary 11,

p. 156], c0(τ )
c
↪→/ `∞(τ ).

As a direct application of Theorem 7, we have:

Corollary 8. Let X be a Banach space, p ∈ [1,∞) and τ an infinite cardinal with
cf(τ ) > ℵ0. Then

c0(τ )
c
↪→ Lp[0, 1]⊗̂εX =⇒ c0(τ )

c
↪→ X.

3. Complemented copies of c0(τ) in Lp[0, 1]⊗̂π X spaces

We will use a convenient characterization of Lp[0, 1]⊗̂π X as a sequence space.
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3.1. The spaces Lweak
p (X) and L p〈X〉. We will denote by (χn)n≥1 the Haar sys-

tem, that is, the sequence of functions defined on [0, 1] by χ1(t) = 1, for every
t ∈ [0, 1], and

χ2k+ j (t)=


1 if t ∈

[
2 j−2
2k+1 ,

2 j−1
2k+1

)
,

−1 if t ∈
[

2 j−1
2k+1 ,

2 j
2k+1

)
,

0 otherwise,

for each k≥ 0 and 1≤ j ≤ 2k. It is well known (see [Lindenstrauss and Tzafriri 1977,
p. 19; 1979, p. 155]) that the Haar system is an unconditional basis of Lp[0, 1],
p ∈ (1,∞), and we will denote its unconditional basis constant by K p. Following
[Bu 2002; Dowling 2004], we renorm Lp[0, 1] by

‖ f ‖new
p = sup

{∥∥∥∥ ∞∑
n=1

θnαnχn

∥∥∥∥
p
: θn =±1, n ≥ 1

}
for each f =

∑
∞

n=1 αnχn ∈ Lp[0, 1]. Then

‖ · ‖p ≤ ‖ · ‖
new
p ≤ K p‖ · ‖p

and (χn)n≥1 is a monotone, unconditional basis with respect to ‖ · ‖new
p . We will

use Lnew
p [0, 1] to denote Lp[0, 1] equipped with the norm ‖ · ‖new

p .
Now, for each n ≥ 1 let

ep
n =

χn

‖χn‖
new
p
.

The sequence (ep
n )n≥1 is a normalized, unconditional basis of Lnew

p [0, 1] whose un-
conditional basis constant is 1. Further, by [Lindenstrauss and Tzafriri 1977, p. 19],
(ep

n )n≥1 is also a boundedly complete basis.
Given X a Banach space and p, q ∈ (1,∞) satisfying 1/p+1/q = 1, we denote

by Lweak
p (X) the space{
(xn)n≥1 ∈ XN

:

∞∑
n=1

x∗(xn)ep
n converges in Lnew

p [0, 1] for each x∗ ∈ X∗
}

equipped with the norm

‖x̄‖weak
p = sup

{∥∥∥∥ ∞∑
n=1

x∗(xn)ep
n

∥∥∥∥new

p
: x∗ ∈ BX∗

}
,

and by Lp〈X〉 the space{
(xn)n≥1 ∈ XN

:

∞∑
n=1

|x∗n (xn)|<∞ for each (x∗n )n≥1 ∈ Lweak
q (X∗)

}
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with the norm

‖x̄‖Lp〈X〉 = sup
{ ∞∑

n=1

|x∗n (xn)| : (x∗n )n≥1 ∈ BLweak
q (X∗)

}
,

where x̄ = (xn)n≥1. With their own respective norms, Lweak
p (X) and Lp〈X〉 are

Banach spaces [Bu 2002].
For each n ≥ 1, we will denote by

In : X→ XN

the natural inclusion

In(x)= (δmnx)m≥1 for all x ∈ X.

It is easy to see that ‖In(x)‖weak
p = ‖x‖ and furthermore, by [Lindenstrauss and

Tzafriri 1977, Proposition 1.c.7], we know ‖In(x)‖Lp〈X〉 ≤ 2‖x‖, for every x ∈ X.
We shall consider also the following closed subspace of Lweak

p (X):

Fp(X)=
{

x̄ = (xn)n≥1 ∈ Lweak
p (X) :

∥∥∥∥x̄ −
m∑

n=1

In(xn)

∥∥∥∥weak

p
→ 0

}
.

Next, we recall some results obtained in [Bu 2002].

Theorem 9 [Bu 2002, Theorem 2.4]. Given X a Banach space, p ∈ (1,∞) and
x̄ = (xn)n≥1 ∈ Lp〈X〉, the series

∑
∞

n=1 In(xn) converges to x̄ in Lp〈X〉.

The next result gives a sequential representation of Lp[0, 1]⊗̂π X.

Theorem 10 [Bu 2002, Theorem 3.4]. Let X be a Banach space and p ∈ (1,∞).
The function 9 : Lp〈X〉 → Lp[0, 1]⊗̂π X defined by

9(x̄)=
∞∑

n=1

ep
n ⊗ xn

for each x̄ = (xn)n≥1 ∈ Lp〈X〉 is an isomorphism onto Lp[0, 1]⊗̂π X.

Theorem 11. Let X be a Banach space and p, q ∈ (1,∞) such that 1/p+1/q = 1.
Then Lweak

q (X) is isomorphic to L(Lp[0, 1], X) and its subspace Fq(X) is isomor-
phic to K(Lp[0, 1], X).

Proof. Let (e∗n)n≥1 be the sequence of coordinate functionals in Lp[0, 1]∗ with
respect to the basis (ep

n )n≥1. It is easy to check that the usual isometry from
Lp[0, 1]∗ onto Lq [0, 1] associates the functional e∗n to eq

n .
Fix x̄ = (xn)n≥1 ∈ Lweak

q (X) and f =
∑
∞

n=1 αnep
n ∈ Lp[0, 1]. We claim that the
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series
∑
∞

n=1 αnxn converges in X. Indeed, given k ≥ j ≥ 1 we have∥∥∥∥ k∑
n= j

αnxn

∥∥∥∥= ∥∥∥∥ k∑
n= j

e∗n( f )xn

∥∥∥∥= sup
x∗∈BX∗

∣∣∣∣ k∑
n= j

e∗n( f )x∗(xn)

∣∣∣∣
= sup

x∗∈BX∗

∣∣∣∣( k∑
n= j

x∗(xn)e∗n

)( k∑
m= j

e∗m( f )ep
m

)∣∣∣∣
≤ sup

x∗∈BX∗

∥∥∥∥ k∑
n= j

x∗(xn)e∗n

∥∥∥∥∥∥∥∥ k∑
m= j

e∗m( f )ep
m

∥∥∥∥
= sup

x∗∈BX∗

∥∥∥∥ k∑
n= j

x∗(xn)eq
n

∥∥∥∥
q

∥∥∥∥ k∑
m= j

e∗m( f )ep
m

∥∥∥∥≤ ‖x̄‖weak
q

∥∥∥∥ k∑
m= j

e∗m( f )ep
m

∥∥∥∥
and therefore the partial sums of the series

∑
∞

n=1 αnxn form a Cauchy sequence
in X, which establishes our claim.

This proves that I : Lweak
q (X)→ L(Lp[0, 1], X) given by

I(x̄)( f )=
∞∑

n=1

αnxn

for each x̄ = (xn)n≥1 ∈ Lweak
q (X) and f =

∑
∞

n=1 αnep
n ∈ Lp[0, 1] is a well-defined

linear operator satisfying ‖I(x̄)‖ ≤ ‖x̄‖weak
q .

Let us show now that I is an isomorphism onto L(Lp[0, 1], X). Fix S ∈
L(Lp[0, 1], X) and consider ȳ = (S(ep

n ))n≥1. We claim that ȳ ∈ Lweak
q . Indeed, for

each m ≥ 1 and x∗ ∈ BX∗ we have∥∥∥∥ m∑
n=1

x∗(S(ep
n ))e

q
n

∥∥∥∥new

q

= sup
θn=±1

∥∥∥∥ m∑
n=1

θnx∗(S(ep
n ))e

q
n

∥∥∥∥
q
= sup
θn=±1

sup
g∈BLp [0,1]

∣∣∣∣x∗( m∑
n=1

θne∗n(g)S(e
p
n )

)∣∣∣∣
≤ sup
θn=±1

sup
g∈BLp [0,1]

∥∥∥∥S
( m∑

n=1

θne∗n(g)e
p
n

)∥∥∥∥≤ ‖S‖ sup
θn=±1

sup
g∈BLp [0,1]

∥∥∥∥ m∑
n=1

θne∗n(g)e
p
n

∥∥∥∥
p

= ‖S‖ sup
g∈BLp [0,1]

∥∥∥∥ m∑
n=1

e∗n(g)e
p
n

∥∥∥∥new

p
≤ ‖S‖ sup

g∈BLp [0,1]

∥∥∥∥ ∞∑
n=1

e∗n(g)e
p
n

∥∥∥∥new

p

≤ K p‖S‖ sup
g∈BLp [0,1]

∥∥∥∥ ∞∑
n=1

e∗n(g)e
p
n

∥∥∥∥
p
= K p‖S‖.
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Since (eq
n )n≥1 is a boundedly complete basis, the claim is established. This shows

that I ′ : L(Lp[0, 1], X)→ Lweak
q (X) defined by I ′(S)= (S(ep

n ))n≥1 is a bounded
linear operator with ‖I ′‖ ≤ K p. Furthermore, it is easy to see that I ′ is the inverse
of I. Thus, I is an isomorphism onto L(Lp[0, 1], X).

Next we will show that I maps Fq(X) onto K(Lp[0, 1], X). It is clear that
I(Fq(X)) is subset of K(Lp[0, 1], X). Next, fix T ∈ K(Lp[0, 1], X). Since I
is onto L(Lp[0, 1], X), there exists a unique ȳ = (yn)n≥1 ∈ Lweak

q (X) such that
I(ȳ) = T. We will show that ȳ ∈ Fq(X). Fix ε > 0 and denote by (Pn)n≥1 the
sequence of projections associated to the basis (ep

n )n . Since (e∗n)n≥1 is a Schauder
basis of Lp[0, 1]∗ and T is compact, the sequence (P∗n )n≥1 converges uniformly
to the identity operator on the compact set T ∗(BX∗). Hence, there exists N ≥ 1
such that ‖P∗m(T

∗(x∗))−T ∗(x∗)‖<ε/K p for every x∗ ∈ BX∗ and m ≥ N, and thus
‖T ◦ Pm − T ‖ ≤ ε/K p for every m ≥ N. It is easy to see that

I
( m∑

n=1

In(yn)

)
= T ◦ Pm

for every m ≥ 1. Therefore we have∥∥∥∥ȳ−
m∑

n=1

In(yn)

∥∥∥∥weak

q
≤ ‖I−1

‖‖T − T ◦ Pm‖< ε

for every m ≥ N, and thus ȳ ∈ Fq(X). The proof is complete. �

3.2. The duals of the spaces Lp〈X〉 and Fq(X). It is well known that Lp〈X〉∗ is
linearly isomorphic to L(Lp[0, 1], X∗) [Ryan 2002, Theorem 2.9] and that Fq(X)∗

is linearly isomorphic to Lp[0, 1]⊗̂π X∗ [Ryan 2002, Theorem 5.33].
This subsection will be devoted to obtaining convenient characterizations of the

duals of the spaces Fq(X) and Lp〈X〉.

Proposition 12. Given X a Banach space, p ∈ (1,∞), x̄ = (xn)n≥1 ∈ Lp〈X〉 and
ϕ ∈ Lp〈X〉∗, the series

∑
∞

n=1(ϕ ◦ In)(xn) converges absolutely.

Proof. For each n ≥ 1, let θn = sign(ϕ ◦ In)(xn). Then ȳ = (θnxn)n≥1 ∈ Lp〈X〉 and
by Theorem 9 we have

∞∑
n=1

|(ϕ ◦ In)(xn)| =

∞∑
n=1

(ϕ ◦ In)(θnxn)= ϕ(ȳ),

as desired. �

Similarly to the previous proposition, we have:

Proposition 13. Given X a Banach space, p ∈ (1,∞), x̄ = (xn)n≥1 ∈ Fp(X) and
ϕ ∈ Fp(X)∗, the series

∑
∞

n=1(ϕ ◦ In)(xn) converges absolutely.
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Proof. For each n ≥ 1, let θn = sign(ϕ ◦ In)(xn). Since (ep
n )n≥1 is an uncon-

ditional basis with unconditional constant equal to 1, it follows that the series∑
∞

n=1 θnx∗(xn)e
p
n converges in L new

p [0, 1] for every x∗ ∈ X∗. Moreover, for every
k ≥ 1 and x∗ ∈ X∗ we have∥∥∥∥ ∞∑

n=k

θnx∗(xn)ep
n

∥∥∥∥ new

p
=

∥∥∥∥ ∞∑
n=k

x∗(xn)ep
n

∥∥∥∥ new

p

and so (θnxn)n≥1 ∈ Fp(X). Thus,
∑
∞

n=1 θn(ϕ ◦ In)(xn) converges. �

Proposition 14. Let X be a Banach space and p,q∈(1,∞) such that 1/p+1/q=1.
A sequence x̄∗= (x∗n )n≥1 of elements of X∗ belongs to Lp〈X∗〉 if , and only if , the se-
ries

∑
∞

n=1 x∗n (xn) converges absolutely for each x̄= (xn)n≥1∈ Fq(X). Furthermore,
in this case one has

‖x̄∗‖Lp〈X〉 ≤ sup
{ ∞∑

n=1

|x∗n (xn)| : x̄ = (xn)n≥1 ∈ BFq (X)

}
<∞.

Proof. Let us show the nontrivial implication. Let x̄∗ = (x∗n )n≥1 be a sequence
of elements of X∗ such that the series

∑
∞

n=1 x∗n (xn) converges absolutely for each
x̄ = (xn)n≥1 ∈ Fq(X). We claim that

S(x̄∗)= sup
{ ∞∑

n=1

|x∗n (xn)| : x̄ = (xn)n≥1 ∈ BFq (X)

}
<∞.

Indeed, for each m ≥ 1, consider the set

Um =

{
x̄ = (xn)n≥1 ∈ BFq (X) :

∑
n≥1

|x∗n (xn)| ≤ m
}
.

It is easy to check that Um is a closed, absolutely convex subset of BFq (X). Since
BFq (X) =

⋃
m≥1 Um has nonempty interior, by Baire’s theorem there exists M ≥ 1

such that UM has nonempty interior. The absolute convexity of UM implies that 0
is an interior point of UM , that is, there exists r > 0 satisfying

{x̄ = (xn)n≥1 ∈ BFq (X) : ‖x̄‖
weak
q ≤ r} ⊂UM .

This proves that S(x̄∗)≤ M/r and our claim is established.
Next, let us show that x̄∗= (x∗n )n≥1 ∈ Lp〈X∗〉. Fix x̄∗∗= (x∗∗n )n≥1 ∈ Lweak

q (X∗∗),
m ≥ 1 and ε > 0. Put Y = span{x∗∗1 , . . . , x∗∗m }. By the principle of local reflexivity
[Martínez-Abejón 1999, Theorem 2], there exists a linear operator T : Y → X
satisfying ‖T ‖ ≤ 1 + ε and x∗n (T (x

∗∗
n )) = x∗∗n (x

∗
n ) for each 1 ≤ n ≤ m. Put

ȳ = (yn)n≥1 ∈ Fq(X), where yn = T (x∗∗n ), if 1≤ n ≤ m, and yn = 0 otherwise.
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Since (eq
n )n≥1 is an unconditional basis, by [Lindenstrauss and Tzafriri 1977,

p. 18] we have

‖ȳ‖weak
q = sup

x∗∈BX∗

∥∥∥∥ m∑
n=1

(x∗ ◦ T )(x∗∗n )e
q
n

∥∥∥∥new

q

≤ (1+ ε) sup
ϕ∈BX∗∗∗

∥∥∥∥ m∑
n=1

ϕ(x∗∗n )e
q
n

∥∥∥∥new

q

≤ (1+ ε) sup
ϕ∈BX∗∗∗

∥∥∥∥ ∞∑
n=1

ϕ(x∗∗n )e
q
n

∥∥∥∥new

q
= (1+ ε)‖x̄∗∗‖weak

q

and hence
m∑

n=1

|x∗∗n (x
∗

n )| ≤ S(x̄∗)‖ȳ‖weak
q ≤ (1+ ε)S(x̄∗)‖x̄∗∗‖weak

q .

Since ε > 0 was arbitrary, we obtain
m∑

n=1

|x∗∗n (x
∗

n )| ≤ S(x̄∗)‖x̄∗∗‖weak
q

for each m ≥ 1, which in turn implies
∞∑

n=1

|x∗∗n (x
∗

n )| ≤ S(x̄∗)‖x̄∗∗‖weak
q .

Thus, x̄∗ ∈ Lp〈X∗〉 and ‖x̄∗‖Lp〈X〉 ≤ S(x̄∗), as desired. �

Theorem 15. Let X be a Banach space and p, q ∈ (1,∞) such that 1/p+1/q = 1.
The function H : Fq(X)∗→ Lp〈X∗〉 defined by

H(ϕ)= (ϕ ◦ In)n≥1

for each ϕ ∈ Fq(X)∗ is a linear isometry onto Lp〈X∗〉.

Proof. Given ϕ ∈ Fq(X)∗, Propositions 13 and 14 imply that (ϕ ◦ In)n≥1 ∈ Lp〈X∗〉.
Thus, H is well defined. It is clear that H is linear.

By Proposition 13, we have

‖H(ϕ)‖Lp〈X∗〉 ≤ sup
{ ∞∑

n=1

|(ϕ ◦ In)(xn)| : x̄ = (xn)n≥1 ∈ BFq (X)

}

= sup
{∣∣∣∣ ∞∑

n=1

(ϕ ◦ In)(xn)

∣∣∣∣ : x̄ = (xn)n≥1 ∈ BFq (X)

}
= sup{|ϕ(x̄)| : x̄ = (xn)n≥1 ∈ BFq (X)} = ‖ϕ‖,
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where the first equality follows immediately from the proof of Proposition 13. On
the other hand,

‖H(ϕ)‖Lp〈X∗〉 = sup
{ ∞∑

n=1

|x∗∗n (ϕ ◦ In)| : x̄∗∗ = (x∗∗n )n≥1 ∈ BLweak
q (X∗∗)

}

≥ sup
{ ∞∑

n=1

|(ϕ ◦ In)(xn)| : x̄ = (xn)n≥1 ∈ BFq (X)

}
= ‖ϕ‖.

This shows that H is an isometry onto its image.
Finally, given x̄∗ = (x∗n )n≥1 ∈ Lp〈X∗〉, the function ψ : Fq(X)→ R defined by

ψ(x̄)=
∑
∞

n=1 x∗n (xn) for each x̄ = (xn)n≥1 ∈ Fq(X) is a linear functional on Fq(X)
and it is clear that H(ψ)= x̄∗. This completes the proof. �

Next, we establish an isomorphism from Lp〈X〉∗ onto Lweak
q (X∗).

Theorem 16. Let X be a Banach space and p, q ∈ (1,∞) such that 1/p+1/q = 1.
The function J : Lweak

q (X∗)→ Lp〈X〉∗ given by

J (x̄∗)(x̄)=
∞∑

n=1

x∗n (xn)

for each x̄∗ = (xn)n≥1 ∈ Lweak
q (X∗) and x̄ = (xn)n≥1 ∈ Lp〈X〉 is an isomorphism

onto Lp〈X〉∗.

Proof. Let 9 : Lp〈X〉→ Lp[0, 1]⊗̂π X be the isomorphism defined in Theorem 10,
I : Lweak

q (X∗)→ L(Lp[0, 1], X∗) be the isomorphism defined in Theorem 11, and
consider 8 : L(Lp[0, 1], X∗) → (Lp[0, 1]⊗̂π X)∗ the canonical linear isometry
[Ryan 2002, p. 24]. Given x̄∗ = (xn)n≥1 ∈ Lweak

q (X∗) and x̄ = (xn)n≥1 ∈ Lp〈X〉,
we have

(9∗ ◦8 ◦ I)(x̄∗)(x̄)= (8 ◦ I)(x̄∗)(9(x̄))=
∞∑

n=1

(8 ◦ I)(x̄∗)(ep
n ⊗ xn)

=

∞∑
n=1

I(x̄∗)(ep
n )(xn)= J (x̄∗)(x̄)=

∞∑
n=1

x∗n (xn)

and therefore J =9∗ ◦8 ◦ I. The proof is complete. �

3.3. Complemented copies of c0(τ) in L p〈X〉 spaces. The next lemma will play
a crucial role in the proof of Theorem 18.

Lemma 17. Let X be a Banach space, τ be an infinite cardinal and p, q ∈ (1,∞)
such that 1/p+1/q = 1. Suppose that (xi )i∈τ = ((x i

n)n≥1)i∈τ is a family equivalent
to the canonical basis of c0(τ ) in Lp〈X〉 and let (ϕi )i∈τ be a bounded family in
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Lp〈X〉∗. Then for each ε > 0 there exists M ≥ 0 such that∣∣∣∣ ∞∑
n=M+1

(ϕi ◦ In)(x i
n)

∣∣∣∣< ε, for all i ∈ τ.

Proof. We recall that the series
∑
∞

n=1(ϕi ◦ In)(x i
n) converges absolutely for each

i ∈ τ , by Proposition 12. Let s = supi∈τ ‖ψi‖<∞.
Suppose the thesis does not hold. Then there exists ε > 0 such that, for each

m ≥ 0, there exists i ∈ τ satisfying∣∣∣∣ ∞∑
n=m+1

(ϕi ◦ In)(x i
n)

∣∣∣∣≥ ε.
We proceed by induction. For M0 = 0, there exists i1 ∈ τ such that∣∣∣∣ ∞∑

n=1

(ϕi1 ◦ In)(x i1
n )

∣∣∣∣≥ ε.
The absolute convergence of

∑
∞

n=1(ϕi1 ◦ In)(x i1
n ) yields M1 ≥ 1 such that

∞∑
n=M1+1

|(ϕi1 ◦ In)(x i1
n )|<

ε

2
.

Thus we have ∣∣∣∣ M1∑
n=1

(ϕi1 ◦ In)(x i1
n )

∣∣∣∣> ε

2
.

Suppose we have obtained, for some k ≥ 1, strictly increasing natural numbers
0= M0 < M1 < · · ·< Mk and distinct i1, . . . , ik ∈ τ satisfying

(3-1)
∣∣∣∣ M j∑
n=N j

(ϕi j ◦ In)(x
i j
n )

∣∣∣∣> ε

2
>

∞∑
n=M j+1

|(ϕi j ◦ In)(x
i j
n )|,

where N j = M j−1 + 1, for each 1 ≤ j ≤ k. By hypothesis, there exists ik+1 ∈ τ

such that ∣∣∣∣ ∞∑
n=Mk+1

(ϕik+1 ◦ In)(x ik+1
n )

∣∣∣∣≥ ε.
The absolute convergence of

∑
∞

n=1(ϕik+1 ◦ In)(x
ik+1
n ) yields Mk+1 ≥ Mk + 1 such

that
∞∑

n=Mk+1

|(ϕik+1 ◦ In)(x ik+1
n )|<

ε

2
.
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Thus we have ∣∣∣∣ Mk+1∑
n=Mk+1

(ϕik+1 ◦ In)(x ik+1
n )

∣∣∣∣> ε

2
.

The above inequality and (3-1) imply that ik+1 /∈ {i1, . . . , ik}.
For each j ≥ 1, consider x̄∗j = (x

∗

j,n)n≥1 ∈ Fq(X∗), where

x∗j,n =

{
ϕi j ◦ In, if N j ≤ n ≤ M j ,

0, otherwise.

We claim that (x̄∗j ) j≥1 is weakly-null in Fq(X∗). Indeed, fix ψ ∈ Fq(X)∗ and δ > 0.
Let J be the isomorphism defined in Theorem 16. By Theorem 15, the sequence
(ψ ◦ Jn)n≥1 belongs to Lp〈X∗〉, where Jn : X∗→ (X∗)N is the usual inclusion. By
Theorem 9, there exists N ≥ 1 such that∥∥∥∥ ∞∑

n=m

Kn(ψ ◦ Jn)

∥∥∥∥
Lp〈X∗〉

<
δ

s‖J −1‖

for each m ≥ N, where Kn : X∗∗ → (X∗∗)N is the usual inclusion. Since the
sequence (N j ) j≥1 is strictly increasing, there exists J ≥ 1 such that N j ≥ N, for all
j ≥ J. Thus we have

|ψ(x̄∗j )| =
∣∣∣∣ M j∑
n=N j

(ψ ◦ Jn)(x∗j,n)
∣∣∣∣≤ ‖x̄∗j ‖weak

q

∥∥∥∥ M j∑
n=N j

Kn(ψ ◦ Jn)

∥∥∥∥
Lp〈X∗〉

≤ ‖(ϕi j ◦ In)n≥1‖
weak
q

δ

s‖J −1‖
= ‖J −1(ϕi j )‖

weak
q

δ

s‖J −1‖
≤ δ

for all j ≥ J. This establishes the claim.
Now, let θ j = J (x̄∗j ) ∈ Lp〈X〉∗ for each j ≥ 1. By our claim, (θ j ) j≥1 is weakly-

null. On the other hand, by (3-1) we have

|θ j (xi j )| =

∣∣∣∣ M j∑
n=N j

(ϕi j ◦ In)(x
i j
n )

∣∣∣∣> ε

2
for all j ≥ 1.

This contradicts the Dunford–Pettis property of c0 [Fabian et al. 2010, p. 596], and
we are done. �

Theorem 18. Given X a Banach space, p ∈ (1,∞) and τ an infinite cardinal,
we have

c0(τ )
c
↪→ Lp[0, 1]⊗̂π X =⇒ c0(τ )

c
↪→ X.

Proof. By Theorems 6 and 10, there exist families (xi )i∈τ = ((x i
n)n≥1)i∈τ in Lp〈X〉

and (ψi )i∈τ in Lp〈X〉∗ such that (xi )i∈τ is equivalent to the usual unit-vector basis
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of c0(τ ), (ψi )i∈τ is weak∗-null and ψi (x j ) = δi j for each i, j ∈ τ . Let s =
supi∈τ ‖ψi‖<∞.

An appeal to Lemma 17 yields M ≥ 0 such that∣∣∣∣ ∞∑
n=M+1

(ϕi ◦ In)(x i
n)

∣∣∣∣< 1
2

for all i ∈ τ.

Since 1= ψi (xi )=
∑
∞

n=1(ϕi ◦ In)(x i
n), we have M ≥ 1 and

1
2
<

M∑
n=1

|(ψi ◦ In)(x i
n)| for all i ∈ τ.

Next, for each i ∈ τ there exists 1≤ ni ≤ M satisfying

1
2M

< |(ψi ◦ Ini )(x
i
ni
)|.

Let N = {ni : i ∈ τ } and for each n ∈N consider αn = {i ∈ τ : ni = n}. Since N is
finite, there exists N ∈N such that |αN | = τ . Setting τ1 = αN , we obtain

(3-2) 1
2M

< |(ψi ◦ IN )(x i
N )| for all i ∈ τ1.

For each i ∈ τ1, define xi = x i
N ∈ X and x∗i = ψi ◦ IN ∈ X∗. By (3-2), we have

1
2M

< |x∗i (xi )| ≤ ‖ψi‖‖IN‖‖xi‖ ≤ s‖IN‖‖yi‖ for all i ∈ τ1,

and therefore

(3-3)
1

2Ms‖IN‖
< ‖xi‖ for all i ∈ τ1.

Next, let (ei )i∈τ denote the unit-vector basis of c0(τ ). By hypothesis, there exists
T : c0(τ )→ Lp〈X〉 an isomorphism from c0(τ ) onto its image such that T (ei )= xi

for each i ∈ τ . By (3-3), we have

‖(PN ◦ T )(ei )‖ = ‖xi‖ ≥
1

2Ms‖IN‖
> 0 for all i ∈ τ1.

Therefore, by [Rosenthal 1970, remark following Theorem 3.4], there exists τ2 ⊂ τ1

such that |τ2|= τ and PN ◦T|c0(τ2) is an isomophism onto its image; hence, (xi )i∈τ2=

(PN (T (ei ))i∈τ2 is equivalent to the unit-vector basis of c0(τ2).
Finally, given x ∈ X, observe that

(x∗i (x))i∈τ2 = (ψi (IN (x)))i∈τ2 ∈ c0(τ2),

since (ψi )i∈τ is weak∗-null by hypothesis. This shows that (x∗i )i∈τ2 is weak∗-null
in X∗.
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Combining these facts with (3-2), an appeal to Theorem 6 yields a complemented
copy of c0(τ ) in X. �

4. Complemented copies of c0(τ) in Lp([0, 1], X) spaces

Let ρ : Lp[0, 1]⊗̂1p X→ Lp([0, 1], X) be the unique linear extension of the natural
mapping g⊗x 7→ g( · )x , where g∈ Lp[0, 1] and x ∈ X. By [Defant and Floret 1993,
Chapters 7.1 and 7.2], ρ is a linear isometry from Lp[0, 1]⊗̂1p X onto Lp([0, 1], X).

For every integer m and u ∈ Lp[0, 1], we define

σm(u)=
m∑

n=1

cnχn(·)

∫ 1

0
χn(s)u(s) ds,

where c1 = 1 and c2k+ j = 2k for each k ≥ 0 and 1≤ j ≤ 2k .
We define also the function Hm on [0, 1]× [0, 1] by

Hm(t, s)=
m∑

n=1

cnχn(t)χn(s).

For every integer k ≥ 1 we denote

Ik,l =


[

l−1
2k ,

l
2k

)
if 1≤ l ≤ 2k

− 1,[
1− 1

2k , 1
]

if l = 2k .

We also write I0,1 = [0, 1] and Ck,l = Ik,l × Ik,l .
It is easy to check by induction that for each k ≥ 0, 1≤ l ≤ 2k and m = 2k

+ l
we have

Hm = 2k+1
2l∑

i=1

1Ck+1,i + 2k
2k∑

i=l+1

1Ck,i ,

[Novikov and Semenov 1997, p. 17], where 1A denotes the characteristic function
of A ⊂ [0, 1], and thus Hm is a positive function on [0, 1]× [0, 1]. Since one has

σm(g)=
∫ 1

0
Hm( · , s)g(s) ds

for each g ∈ Lp[0, 1], we conclude that σm is a positive operator on Lp[0, 1].
Furthermore, ‖σm‖ = 1 and

(4-1) lim
m→∞

‖σm(g)− g‖p = 0

for each f ∈ Lp[0, 1], by [Lindenstrauss and Tzafriri 1977, p. 3] or [Singer 1970,
Example 2.3, p. 13].
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Lemma 19. Given X a Banach space, p ∈ [1,∞) and f ∈ Lp([0, 1], X), the series

∞∑
n=1

cnχn( · )

∫ 1

0
χn(s) f (s) ds

converges to f in Lp([0, 1], X), where c1 = 1 and c2k+ j = 2k for each k ≥ 0 and
1≤ j ≤ 2k.

Proof. The natural tensor norm ‖ · ‖1p is not an uniform cross norm, nevertheless
the operator sm = σm ⊗ IX is bounded and ‖sm‖ = 1 by [Defant and Floret 1993,
Chapter 7.2]. By (4-1), we have

lim
m→∞

‖sm(g⊗ x)− g⊗ x‖1p = 0

and hence
lim

m→∞
‖sm(u)− u‖1p = 0

for every u ∈ Lp[0, 1]⊗̂1p X. The result then follows from the fact that ρ is a linear
isometry onto Lp([0, 1], X). �

We are now ready to prove the main result of this section.

Theorem 20. Let X be a Banach space, τ be an infinite cardinal and p ∈ [1,∞).
If cf(τ ) > ℵ0, then

c0(τ )
c
↪→ Lp([0, 1], X)=⇒ c0(τ )

c
↪→ X.

Proof. By Theorem 6, there exist families ( fi )i∈τ in Lp([0, 1], X) and (ψi )i∈τ in
Lp([0, 1], X)∗ such that ( fi )i∈τ is equivalent to the usual unit-vector basis of c0(τ ),
(ψi )i∈τ is weak∗-null and ψ( f j )= δi j , for each i, j ∈ τ . Let s = supi∈τ ‖ψi‖<∞.

By Lemma 19, for each i ∈ τ we have

1= |ψi ( fi )| ≤

∞∑
n=1

cn|ψi (χn( · )x i
n)|,

where x i
n =

∫ 1
0 χn(t) fi (t) dt , and thus there exists mi ≥ 1 such that

1
2
<

mi∑
n=1

cn|ψi (χn( · )x i
n)|.

Put M = {mi : i ∈ τ } and for each m ∈M define αm = {i ∈ τ : mi = m}. Since
M is countable and τ has uncountable cofinality, there exists M ∈M such that
|αM | = τ . Setting τ1 = αM , we have

1
2
<

M∑
n=1

cn|ψi (χn( · )x i
n)| for all i ∈ τ1.
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Next, for each i ∈ τ1 there exists 1≤ ni ≤ M satisfying

1
2M

< cni |ψi (χni ( · )x
i
ni
)|.

Let N = {ni : i ∈ τ1} and for each n ∈N consider βn = {i ∈ τ1 : ni = n}. Since N
is finite, there exists N ∈N such that |βN | = τ . Setting τ2 = βN , we obtain

(4-2)
1

2McN
< |ψi (χN ( · )x i

N )| for all i ∈ τ2.

For each i ∈ τ2, write xi = x i
N and consider the linear functional x∗i ∈ X∗

defined by
x∗i (x)= ψi (χN ( · )(x)) for all x ∈ X.

By (4-2), we obtain

1
2McN

< |x∗i (xi )| ≤ ‖ψi‖‖χN ( · )xi‖p ≤ δ‖χN‖p‖xi‖ for all i ∈ τ2,

and therefore

(4-3) 1< ‖xi‖ for all i ∈ τ2,

where 1= (2MscN‖χN‖p)
−1.

Next, let (ei )i∈τ be the unit-vector basis of c0(τ ) and T : c0(τ )→ Lp([0, 1], X)
be an isomorphism from c0(τ ) onto its image such that T (ei )= fi for each i ∈ τ .
Consider P : Lp([0, 1], X)→ X the linear operator defined by

P( f )=
∫ 1

0
χN (t) f (t) dt for all f ∈ Lp([0, 1], X).

By (4-3), we have

‖(P ◦ T )(ei )‖ = ‖xi‖ ≥1> 0 for all i ∈ τ2.

Therefore, by [Rosenthal 1970, remark following Theorem 3.4], there exists τ3⊂ τ2

such that |τ3| = τ and P ◦ T|c0(τ3) is an isomorphism onto its image; hence,

(xi )i∈τ3 = (P(T (ei ))i∈τ3

is equivalent to the unit-vector basis of c0(τ3).
Finally, given x ∈ X, observe that

(x∗i (x))i∈τ3 = (ψi (χN ( · )(x)))i∈τ3 ∈ c0(τ3),

since (ψi )i∈τ is weak∗-null by hypothesis. This proves that (x∗i )i∈τ3 is weak∗-null
in X∗.

Combining these facts with (2-1), an appeal to Theorem 6 yields a complemented
copy of c0(τ ) in X. �

We do not know if the statement of Theorem 20 remains true in the case p =∞.
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ON THE VOLUME BOUND IN THE
DVORETZKY–ROGERS LEMMA

FERENC FODOR, MÁRTON NASZÓDI AND TAMÁS ZARNÓCZ

The classical Dvoretzky–Rogers lemma provides a deterministic algorithm
by which, from any set of isotropic vectors in Euclidean d-space, one can se-
lect a subset of d vectors whose determinant is not too small. Pełczyński and
Szarek improved this lower bound by a factor depending on the dimension
and the number of vectors.

Pivovarov, on the other hand, determined the expectation of the square
of the volume of parallelotopes spanned by d independent random vectors
in Rd, each one chosen according to an isotropic measure. We extend Pivo-
varov’s result to a class of more general probability measures, which yields
that the volume bound in the Dvoretzky–Rogers lemma is, in fact, equal to
the expectation of the squared volume of random parallelotopes spanned
by isotropic vectors. This allows us to give a probabilistic proof of the im-
provement of Pełczyński and Szarek, and provide a lower bound for the
probability that the volume of such a random parallelotope is large.

1. Introduction

Given a set of isotropic vectors in Euclidean d-space Rd (see definition below), the
Dvoretzky–Rogers lemma states that one may select a subset of d “well spread out”
vectors. As a consequence, the determinant of these d vectors is at least

√
d!/dd .

This selection is deterministic: we start with an arbitrary element of the set, and
then select more vectors one-by-one in a certain greedy manner.

Pivovarov [2010, Lemma 3, page 49], on the other hand, chooses d vectors ran-
domly and then computes the expectation of the square of the resulting determinant.
In this note, we extend Pivovarov’s result to a wider class of measures, and apply
this extension to obtain the improved lower bound of Pełczyński and Szarek [1991,
Proposition 2.1], on the maximum of the volume of parallelotopes spanned by d
vectors from the support of the measure. Thus, we give a probabilistic interpretation
of the volume bound in the Dvoretzky–Rogers lemma.

MSC2010: 52A22, 52A38, 52A40, 52B11.
Keywords: isotropic vectors, John’s theorem, Dvoretzky–Rogers lemma, decomposition of the

identity, volume.
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We denote the Euclidean scalar product by 〈 · , · 〉 and the induced norm by | · |.
We use the usual notation Bd for the unit ball of Rd centered at the origin o, and
Sd−1 for its boundary bdBd. We call a compact convex set K ⊂ Rd with nonempty
interior a convex body. For detailed information on the properties of convex bodies,
we refer to the books by Gruber [2007] and Schneider [2014].

Let Idd be the identity map on Rd . For u, v ∈ Rd, let u⊗ v : Rd
→ Rd denote

the tensor product of u and v, that is, (u⊗ v)(x)= 〈v, x〉u for any x ∈ Rd . Note
that when u ∈ Sd−1 is a unit vector, u⊗ u is the orthogonal projection to the linear
subspace spanned by u.

For two functions f (n), g(n), we use the notation f (n)∼ g(n) (as n→∞) if
limn→∞ f (n)/g(n)= 1.

An isotropic measure is a probability measure µ on Rd with the following two
properties.

(1)
∫

Rd
x ⊗ x dµ(x)= Idd ,

and the center of mass of µ is at the origin, that is,

(2)
∫

Rd
x dµ(x)= 0.

Pivovarov [2010] proved the following statement about the volume of random
parallelotopes spanned by d independent, isotropic vectors.

Lemma 1 [Pivovarov 2010, Lemma 3]. Let x1, . . . , xd be independent random
vectors distributed according to the isotropic measures µ1, . . . , µd in Rd. Assume
that x1, . . . , xd are linearly independent with probability 1. Then

(3) E([det(x1, . . . , xd)]
2)= d!.

We note that Lutwak, Yang and Zhang [Lutwak et al. 2004, §2] established
similar results for the case of discrete isotropic measures, which could also be used
to prove the volumetric bounds in Theorem 5; see, for example, [Lutwak et al. 2004,
formula (2.5) on page 167].

We extend Lemma 1 to a more general class of measures in the following way.

Lemma 2. Let x1, . . . , xd be independent random vectors distributed according to
the probability measures µ1, . . . , µd in Rd satisfying (1). Assume µi ({0})= 0 for
i = 1, . . . , d. Then (3) holds.

We provide a simple and direct proof of Lemma 2 in Section 2.
Lemmas 1 and 2 yield the value of the second moment of the volume of random

parallelotopes with isotropic generating vectors. On the other hand, Milman and
Pajor [1989, §3.7] gave a lower bound for the p-th moment (with 0 < p < 2) of
this volume in the case when the generating vectors are selected according to the
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uniform distribution from an isotropic and origin-symmetric convex body; for more
general results, see [Brazitikos et al. 2014, §3.5.1]. All of the previously mentioned
results hold in expectation.

As a different approach, we mention Pivovarov’s work [2010], where lower
bounds on the volume of a random parallelotope are shown to hold with high
probability under the assumption that the measures are log-concave.

For more information on properties of random parallelotopes, and random poly-
topes in general, we refer to the book [Schneider and Weil 2008] and the survey
[Schneider 2018].

In this paper, our primary, geometric motivation in studying isotropic measures
is the following celebrated theorem of John [1948], which we state in the refined
form obtained by Ball [1992] (see also [Ball 1997]).

Theorem 3. Let K be a convex body in Rd. Then there exists a unique ellipsoid of
maximal volume contained in K. Moreover, this maximal volume ellipsoid is the d-
dimensional unit ball Bd if and only if there exist vectors u1, . . . , um ∈ bdK ∩ Sd−1

and (positive) real numbers c1, . . . , cm > 0 such that

(4)
m∑

i=1

ci ui ⊗ ui = Idd ,

and

(5)
m∑

i=1

ci ui = 0.

Note that taking the trace in (4) yields
∑m

i=1 ci = d. Thus, the Borel measure
µK on

√
d Sd−1 with suppµK = {

√
du1, . . . ,

√
dum} and µK ({

√
dui }) = ci/d

(i = 1, . . . ,m) is a discrete isotropic measure.
If a finite system of unit vectors u1, . . . , um in Rd, together with a set of positive

weights c1, . . . , cm , satisfies (4) and (5), then we say that it forms a John decompo-
sition of the identity. For each convex body K, there exists an affine image K ′ of K
for which the maximal volume ellipsoid contained in K ′ is Bd, and K ′ is unique up
to orthogonal transformations of Rd .

The classical lemma of Dvoretzky and Rogers [1950] states that in a John
decomposition of the identity, one can always find d vectors such that the selected
vectors are not too far from an orthonormal system.

Lemma 4 (Dvoretzky–Rogers lemma [1950]). Let u1, . . . , um ∈ Sd−1 and let
c1, . . . ,cm > 0 such that (4) holds. Then there exists an orthonormal basis b1, . . . ,bd

of Rd and a subset {x1, . . . , xd} ⊂ {u1, . . . , um} with x j ∈ lin{b1, . . . , b j } and

(6)
√
(d − j − 1)/d ≤ 〈x j , b j 〉 ≤ 1

for j = 1, . . . , d.
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Consider the parallelotope P spanned by the selected d vectors x1, . . . , xd . The
volume of P is bounded from below by

(7) (Vol(P))2 = [det(x1, . . . , xd)]
2
≥

d!
dd .

Our study of (7) is motivated in part by the recent proof [Naszódi 2016] of a
conjecture of Bárány, Katchalski and Pach, where this bound is heavily relied on.

The main results of this paper are the following two theorems. Theorem 5 is
essentially the same as Proposition 2.1 of [Pełczyński and Szarek 1991], however,
here we give a probabilistic proof and interpretation. In Theorem 5 (ii) and (iii), we
also note that when m is small the improvement on the original Dvoretzky–Rogers
bound is larger.

Theorem 5. Let u1, . . . , um ∈ Sd−1 be unit vectors satisfying equation (4) with
some c1, . . . , cm > 0. Then there is a subset {x1, . . . , xd} ⊂ {u1, . . . , um} with

[det(x1, . . . , xd)]
2
≥ γ (d,m) ·

d!
dd ,

where γ (d,m)= md/d!
(m

d

)−1
, and m =min{m, d(d + 1)/2}.

Moreover, for γ (d,m), we have:

(i) γ (d,m)≥γ (d, d(d+1)/2)≥ 3
2 for any d≥2 and m≥d. And γ (d, d(d+1)/2)

is monotonically increasing, and limd→∞ γ (d, d(d + 1)/2)= e.

(ii) Fix a c > 1, and consider the case when m ≤ cd with c ≥ 1+ 1/d. Then

γ (d,m)≥ γ (d, dcde)∼

√
c− 1

c

(
c− 1

c

)(c−1)d

ed , as d→∞.

(iii) Fix an integer k ≥ 1, and consider the case when m ≤ d + k. Then

γ (d,m)≥ γ (d, d + k)∼
k!ek
√

2π

ed

(d + k)k+1/2 , as d→∞.

We note that in (ii) and (iii), the improvements are exponentially large in d as d
tends to infinity.

The following statement provides a lower bound on the probability that d indepen-
dent, identically distributed random vectors selected from {u1, . . . , um} according
to the distribution determined by the weights {c1, . . . , cm} span a parallelotype of
large volume.

Proposition 6. Let λ ∈ (0, 1). With the notation and assumptions of Theorem 5,
if we choose the vectors x1, . . . , xd independently according to the distribution
P(x` = ui )= ci/d for each `= 1, . . . , d and i = 1, . . . ,m, then with probability at
least (1− λ)e−d, we have

[det(x1, . . . , xd)]
2
≥ λγ (d,m) ·

d!
dd .
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The geometric interpretation of Theorem 5 is as follows. If K is a convex polytope
with n facets, and Bd is the maximal volume ellipsoid in K, then the number of
contact points u1, . . . , um in John’s theorem is at most m ≤ n. Thus, Theorem 5
yields a simplex in K of not too small volume, with one vertex at the origin.

In particular, consider k = 1 in Theorem 5 (iii), that is, when K is the regular
simplex whose inscribed ball is Bd. Then the John decomposition of the identity
determined by K consists of d + 1 unit vectors that determine the vertices of a
regular d-simplex inscribed in Bd, which we denote by1d , and note that Vol(1d)=

(d + 1)(d+1)/2/(dd/2d!). Clearly, in this John decomposition of the identity, the
volume of the simplex determined by any d of the vectors u1, . . . , ud+1 is

(8) Vol(1d)/(d + 1)=
(d + 1)

d−1
2

dd/2d!
.

By Theorem 5, we obtain

max[det(ui1, . . . , uid )]
2
≥
(d + 1)d−1

d!
·

d!
dd =

(d + 1)d−1

dd ,

which yields the same bound for the largest volume simplex as the right-hand side
of (8). Thus, Theorem 5 is sharp in this case.

We will use the following theorem in our argument.

Theorem 7 [John 1948; Pełczyński 1990; Ball 1992; Gruber and Schuster 2005].
If a set of unit vectors satisfies (4) (resp., both (4) and (5)) with some positive
scalars c′i , then a subset of m elements also satisfies (4) (resp., both (4) and (5))
with some positive scalars ci , where

(9) d + 1≤ m ≤ d(d + 1)/2

(resp., d + 1≤ m ≤ d(d + 3)/2).

In Section 4, we outline a proof of Theorem 7 for two reasons. First, we will
use the part when only (4) is assumed, which is only implicitly present in [Gruber
and Schuster 2005]. Second, the result is described therein in terms of the contact
points of a convex body with its maximal volume ellipsoid, that is, in the context
of John’s theorem. We, on the other hand, would like to give a presentation where
the linear algebraic fact and its use in convex geometry are separated. Nevertheless,
our proof is very close to the one given in [Gruber and Schuster 2005].

2. Proof of Lemma 2

The idea of the proof is to slightly rotate each distribution so that the probability
that the d vectors are linearly independent is 1. Then we may apply Pivovarov’s
lemma, and use a limit argument as the d rotations each tend to the identity.
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Let A1, . . . , Ad be matrices in SO(d) chosen independently of each other and
of the xi according to the unique Haar probability measure on SO(d). Fix an
arbitrary nonzero unit vector e in Rd. Note that Ai xi/|xi | and Ai e have the same
distribution: both are uniformly chosen points of the unit sphere according to
the uniform probability distribution on Sd−1. Further, the joint distribution of
A1x1/|x1|, . . . , Ad xd/|xd | and the joint distribution of A1e, . . . , Ade are the same:
they are independently chosen, uniformly distributed points on the unit sphere. It
follows that

P(A1x1, . . . , Ad xd are linearly independent)
= P(A1e, . . . , Ade are linearly independent)= 1.

Denote the Haar measure on Z := SO(d)d by ν. Thus, we have

1= P(A1x1, . . . , Ad xd are linearly independent)

=

∫
Z

∫
Rd

∫
Rd
· · ·

∫
Rd

1{A1x1,...,Ad xd are linearly independent}(x1, . . . , xd , A1, . . . , Ad)

dµ1(x1) · · · dµd(xd) dν(A1, . . . , Ad)

=

∫
Z

P(A1x1, . . . , Ad xd are linearly independent | A1, . . . , Ad) dν(A1, . . . , Ad),

where 1 denotes the indicator function.
Thus,

(10) 1= P[P(A1x1, . . . , Ad xd are linearly independent | A1, . . . , Ad)= 1].

We call a d-tuple (A1, . . . , Ad) ∈ Z “good” if A1x1, . . . , Ad xd are linearly inde-
pendent with probability 1. In (10), we obtained that the set of not good elements
of Z is of measure zero.

Thus, we may choose a sequence (A( j)
1 , A( j)

2 , . . . , A( j)
d ), j = 1, 2, . . . in Z , such

that ‖A( j)
i − Idd‖< 1/j for all i and j, and (A( j)

1 , . . . , A( j)
d ) is good for each j.

Note that for any j,

(11) [det(A( j)
1 x1, . . . , A( j)

d xd)]
2
≤ |A( j)

1 x1|
2
|A( j)

2 x2|
2
· · · |A( j)

d xd |
2,

and

(12) E
[
|A( j)

1 x1|
2
|A( j)

2 x2|
2
· · · |A( j)

d xd |
2]
= dd .

We conclude that

E
(
[det(x1, . . . , xd)]

2)
= E

(
[det lim

j→∞
(A( j)

1 x1, . . . , A( j)
d xd)]

2)
(a)
= E

(
[ lim

j→∞
det(A( j)

1 x1, . . . , A( j)
d xd)]

2)
(b)
= lim

j→∞
E
(
[det(A( j)

1 x1, . . . , A( j)
d xd)]

2),
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where, in (a), we use that the determinant is continuous. In (b), Lebesgue’s domi-
nated convergence theorem may be applied by (11) and (12).

Fix j and let y1 = A( j)
1 x1, . . . , yd = A( j)

d xd . In order to emphasize that the
assumption (2) is not needed, and also for completeness, we repeat Pivovarov’s
argument. For k = 1, . . . , d−1, let Pk denote the orthogonal projection of Rd onto
the linear subspace span{y1, . . . , yk}

⊥. Thus,

(13) | det(y1, . . . , yd)| = |y1| |P1 y2| · · · |Pd−1 yd |.

Note that with probability 1, rankPk = d−k. It follows from (1) that E|Pk yk+1|
2
=

d − k. Fubini’s theorem applied to (13) completes the proof of Lemma 2.

3. Proofs of Theorem 5 and Proposition 6

Let u1, . . . um ∈ Sd−1 be a set of vectors satisfying (4) with some positive weights
c1, . . . , cm . We set the probability of each vector ui , i = 1, . . .m, as pi = ci/d,
and obtain a discrete probability distribution.

Let ui1, . . . , uid be independent random vectors from the set u1, . . . , um chosen
(with possible repetitions) according to the above probability distribution.

By Lemma 2, we have

E
(
[det(ui1, . . . , uid )]

2)
=

d!
dd .

Since the probability that the random vectors ui1, . . . , uid are linearly dependent is
positive,

max[det(ui1, . . . , uid )]
2 >

d!
dd .

Our goal is to quantify this inequality by bounding from below the probability that
the determinant is 0. Let

M2
:=max[det(ui1, . . . , uid )]

2.

If an element of {u1, . . . , um} is selected at least twice, then det(ui1, . . . , uid )= 0.
Thus,

E
(
[det(ui1, . . . , uid )]

2)
≤ M2 P1,

where P1 denotes the probability that all indices are pairwise distinct. Therefore,

M2
≥

d!
dd ·

1
P1
.

Note that P1 is a degree d elementary symmetric function of the variables
p1, . . . , pm . Furthermore, p1+ · · · + pm = 1 and pi ≥ 0 for all i = 1, . . . ,m. It
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can easily be seen (using Lagrange multipliers, or by induction on m) that for fixed
m and d , the maximum of P1 is attained when p1 = · · · = pm = 1/m. Thus,

P1 ≤ d!
(m

d

) 1
md .

In summary,

M2
≥

d!
dd ·

md

d!

(m
d

)−1
.

First, we note that γ (d,m) := md

d!

(m
d

)−1 is decreasing in m. Thus, by (9), we
may assume that m is as large as possible, that is, m = d(d+1)

2 proving the first part
of Theorem 5.

3.1. Proof of Theorem 5(i). Let γ (d) := γ (d, d(d+ 1)/2). We show that γ (d) is
increasing in d .

With the notation m := d(d + 1)/2, we note that (d + 1)(d + 2)/2= m+ d + 1.
Thus,

γ (d + 1)
γ (d)

=
(m+ d + 1)d+1m · · ·(m− d + 1)

md(m+ d + 1) · · ·(m+ 1)
=
(m+ d + 1)d

md ·
m · · ·(m− d + 1)
(m+ d) · · ·(m+ 1)

Thus, we need to show that

1+
d + 1

m
>

d
√(

1+ d
m

)(
1+ d

m−1

)
· · ·

(
1+ d

m−d+1

)
,

which, by the arithmetic mean/geometric mean inequality follows, if

1+
d + 1

m
≥ 1+ d

1
m +

1
m−1 + ·· ·+

1
m−d+1

d
,

which is equivalent to

d
m
≥

1
m− 1

+
1

m− 2
+ ·· ·+

1
m− d + 1

.

For this to hold, it is sufficient to show that for every integer or half of an integer
1≤ i ≤ d/2, we have

(14)
2d

(d − 1)m
≥

1
m− i

+
1

m− d + i
.

After substituting m = d(d + 1)/2, it is easy to see that (14) holds.
Finally, limd→∞ γ (d)= e follows from Stirling’s formula.

3.2. Proof of Theorem 5 (ii) and (iii). Stirling’s formula yields both claims.
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3.3. Proof of Proposition 6. Denote the random variable X := [det(x1, . . . , xd)]
2,

and denote E := E(X) = d!/dd and q := P
(
X ≥ λE

P1

)
, where, as in the proof of

Theorem 5, P1 := P(x1, . . . , xd are pairwise distinct).
In the proof of Theorem 5, we established

(15) P1 ≤ (γ (d,m))−1, and thus, q ≤ P
(
[det(x1, . . . , xd)]

2
≥ λγ (d,m) · d!

dd

)
.

Using the fact that X is at most 1, we have

E ≤ λE
P1

P
(

X < λE
P1

and x1, . . . , xd are pairwise distinct
)
+P

(
X ≥ λE

P1

)
.

That is, E ≤ λE
P1
(P1− q)+ q , and thus, by (15),

q ≥
(1− λ)E
1− λE

P1

≥
(1− λ)d!

dd − λγ (d,m)d!
≥ (1− λ)e−d ,

completing the proof of Proposition 6.

4. Proof of Theorem 7

First, observe that (4) holds with some positive scalars ci , if and only if, the matrix
Idd/d is in the convex hull of the set A = {vi ⊗ vi : i = 1, . . . ,m} in the real
vector space of d×d matrices. The set A is contained in the subspace of symmetric
matrices with trace 1, which is of dimension d(d+1)/2−1. Carathéodory’s theorem
[Schneider 2014, Theorem 1.1.4] now yields the desired upper bound on m.

In the case when both (4) and (5) are assumed, we lift our vectors into Rd+1 as
follows. Let v̂i =

√
d/(d + 1)(vi ,1/

√
d) ∈ Rd+1. It is easy to check that |v̂i | = 1,

and that (4) holds for the vectors v̂i with some positive scalars ĉi if, and only if, (4)
and (5) hold for the vectors vi with scalars ci =

d
d+1 ĉi . Now, v̂i ⊗ v̂i , i = 1, . . . ,m

are symmetric (d+ 1)× (d+ 1) matrices of trace 1, and their (d+1,d+1)-th entry
is 1/(d + 1). The dimension of this subspace of R(d+1)×(d+1) is d(d + 3)/2− 1,
thus, again, by Carathéodory’s theorem, the proof is complete.

Acknowledgements

F. Fodor and T. Zarnócz are supported in part by Hungarian National Research,
Development and Innovation Office NKFIH grant K 116451.

M. Naszódi was partially supported by the National Research, Development and
Innovation Office (NKFIH) grant NKFI-K119670 and by the ÚNKP-17-4 New
National Excellence Program of the Ministry of Human Capacities.



98 FERENC FODOR, MÁRTON NASZÓDI AND TAMÁS ZARNÓCZ

Editor’s note
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became aware of the prior treatment of the topic in [Pełczyński 1990; Pełczyński
and Szarek 1991]. The revision was received on April 2, 2019.
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LIFTING OF ELLIPTIC CURVES

SANOLI GUN AND V. KUMAR MURTY

Suppose that for all but finitely many primes p we are given an elliptic curve
E p defined over a finite field F p of p elements. We derive a criterion for
there to exist an elliptic curve E defined over Q for which the reduction of
E modulo p is isogenous to E p for almost all p.

1. Introduction

Throughout the article, p, q, ` will denote rational primes and c1, c2, . . . , c10, c11

will denote positive constants which are absolute and effective unless otherwise
specified. Suppose that for each prime p, we are given an elliptic curve E p defined
over a finite field Fp of p elements. We are interested here in the question of whether
there exists an elliptic curve E over Q for which the reduction of E(mod p) is
isogenous to E p for all but a finite set of primes p.

At the outset, it is clear that some conditions have to be imposed on the set of
curves {E p}. For example, if we choose all of them to be supersingular, E cannot
exist. As we know from [Serre 1981], the set of primes of supersingular reduction
has density 1

2 or 0, depending on whether E has complex multiplication (CM).
On the other hand, if we consider any finite set T of primes, it is clear from the

Chinese remainder theorem that we can find an elliptic curve ET (say) over Q for
which the reduction ET (mod p) is isogenous (even isomorphic) to E p for p ∈ T.
Moreover, we can choose ET so that its discriminant d(ET ) satisfies

d(ET )≤ c1

(∏
p∈T

p
)3

,

where c1 > 0 is an absolute constant. In particular, if we choose T to be the set of
primes p ≤ N, then
(1) d(ET )≤ c1 exp(6N )

by Chebyshev’s estimate.

Murty’s research was partially supported by a Discovery grant from NSERC. Gun’s research was par-
tially supported by a DAE number theory plan project and also by a SERB project MTR/2018/000201.
MSC2010: 11F11, 11G05.
Keywords: lifting of elliptic curves, Chebotarev density theorem, generalized Riemann hypothesis,
`-adic representations attached to elliptic curves.
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If we can find a single curve E whose reduction modulo p is isogenous to E p

for all but a finite set of primes S, then we can choose ET = E for any T disjoint
from S. In this case,

(2) d(ET )≤ c2 as |T | →∞.

Here c2 > 0 can be taken to be dE , the discriminant of E . Our main result shows
that even if we can find a family of curves {ET } for which the sequence {d(ET )}

satisfies a bound significantly weaker than (2) but stronger than (1), then E does
exist. To formulate all of this correctly, we work with conductors rather than
discriminants. We get an unconditional result and a stronger conditional result
assuming the generalized Riemann hypothesis (GRH), i.e., the Riemann hypothesis
for Dedekind zeta functions of number fields.

2. Statement of the result

Let S be a fixed finite set of rational primes and for each prime p 6∈ S, let E p be an
elliptic curve over Fp. For each N, consider the set

6S,N = {E an elliptic curve over Q | for each rational prime p ≤ N , p 6∈ S,
E (mod p) is isogenous to E p}.

Thus for E ∈6S,N the primes of bad reduction are either in S or larger than N. Set

fS,N =minE∈6S,N f (E),

where f (E) denotes the conductor of E . Denote by EN = ES,N a curve in 6S,N

with conductor fS,N .

Theorem 2.1. Let S, N and fS,N be as in the previous paragraph. Assume the
GRH. Suppose that

(3) fS,N ≤ c3 exp(N c4),

where c3, c4 > 0 are absolute constants and c4 <
1
2 . There exists an elliptic curve

E over Q with good reduction outside S for which the reduction E(mod p) is
isogenous to E p for all p 6∈ S.

The same techniques will also prove the following unconditional theorem.

Theorem 2.2. Let S, N and fS,N be as in Theorem 2.1. Suppose that

(4) fS,N ≤ c5 N c6,

where c5, c6 > 0 are absolute constants and c6 < 1. There exists an elliptic curve
E over Q with good reduction outside S for which the reduction E(mod p) is
isogenous to E p for all p 6∈ S.
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Remark. We note that if we consider the subset6∗S,N of curves with good reduction
outside S, then by Tate’s conjecture (Faltings’ theorem), it is contained in a finite
number of isogeny classes. In particular, for infinitely many N , it must intersect
a single isogeny class. This implies that there is a global lift of all the E p, p 6∈ S.
Thus, if we show that the subset 6∗S,N is nonempty, we are done.

Remark. The Deuring lifting theorem enables us to lift a single elliptic curve over
a finite field to an elliptic curve over a number field having CM. In fact, the Deuring
theorem also lifts Frobenius to an endomorphism of the CM curve. We are currently
investigating extensions of this result to the context studied in this note.

3. Application of the Chebotarev density theorem

For any elliptic curve E over Q and any prime q of good reduction, let us set (as
usual),

aq(E)= q + 1− |E(Fq)|.

Tate’s conjecture (Faltings’ theorem) implies that if for two curves E1, E2, we have
aq(E1) = aq(E2) for all but finitely many primes q, then E1 is isogenous to E2.
This can be made effective using the Chebotarev density theorem.

Proposition 3.1. Assume the GRH and let E1 and E2 be two elliptic curves defined
over Q that are not isogenous. There exists a prime q of good reduction for both E1

and E2 with
aq(E1) 6= aq(E2)

and
q ≤ c7 (log[2 ·max( f (E1), f (E2))])

2 ,

where c7 > 0 is an absolute constant. Here f (E1) and f (E2) denote the conductors
of E1 and E2 respectively.

Proof. Serre [1981, théorème 21] proves the above bound weaker by a factor

(log log[max( f (E1), f (E2))])
2

and notes in [Serre 1986, note 632.6 , p. 715] that it can be improved using an
argument of Faltings. Indeed, fix a prime ` and consider the two continuous
semisimple representations

ρ1,`, ρ2,` : Gal(Q/Q)→ GL2(Z`)

which are unramified outside `λ, where λ := f (E1) f (E2). Let M be the image of
Z`[Gal(Q/Q)] under the map

ρ1,`× ρ2,` : Z`[Gal(Q/Q)] → M2(Z`)×M2(Z`).
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Consider the submodule N generated by the images of Frobp for p ≤ B`, a bound
to be specified. We want to find an explicit B` so that M = N. For this purpose,
consider the Z`[Gal(Q/Q)]-module R = M/N. We want to show that R = 0.

As Z` is Noetherian and M2(Z`)×M2(Z`) is finitely generated, so is any sub-
module. In particular, M is finitely generated and so is R.

Thus to show that R=0, it suffices by Nakayama’s lemma to show that R/`R=0.
In other words, it suffices to show that M/`M is generated by the images of Frobp

for p ≤ B`.
Let K` be the fixed field of the kernel of

ρ1,`× ρ2,` : Gal(Q/Q)→ GL2(Z/`Z)×GL2(Z/`Z).

This representation is unramified outside `λ. By Hensel’s inequality [Serre 1981,
p. 129],

log |dK`
| ≤ c8`

8 log(`λ),

where dK`
is the discriminant of K` over Q and c8 > 0 is an absolute constant. Let

f :=max( f (E1), f (E2)). Then

log |dK`
| ≤ 2c8`

8 log(` f ).

Since K` is Galois, using the effective Chebotarev density theorem for K`/Q (see
[Lagarias and Odlyzko 1977, pages 413 and 461]), assuming GRH, we get that
every conjugacy class of Gal(K`/Q) is Frobp for some prime p satisfying

p ≤ c9(log |dK`
|)2.

Here c9 > 0 is an absolute and effective constant. Hence we can take

B` = c9(2c8`
8 log(` f ))2 = 4c10`

16(log(` f ))2,

where c10 > 0 is an absolute constant. In particular, taking `= 2, this gives

B2 = 218c10(log(2 f ))2.

Now choose c7 := 218c10 to get the desired result. �

Proposition 3.2. Let E1 and E2 be two elliptic curves defined over Q that are not
isogenous. Then for any ε > 0, there exists a prime q of good reduction for both E1

and E2 with
q ≤ c(ε)(max f (E1), f (E2))

1+ε,

such that
aq(E1) 6= aq(E2).

Here c(ε) > 0 depends only on ε, and f (E1), f (E2) denote the conductors of E1

and E2 respectively.
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Proof. Since E1 and E2 are defined over Q, we know by the extensive work of
Wiles and Breuil, Conrad, Diamond and Taylor [Breuil et al. 2001] that there are
cuspidal eigenforms f1 and f2 of weight 2 and level f (E1), f (E2) respectively,
with Fourier expansions

fi (z)=
∑
n≥1

an( fi ) exp(2π
√
−1nz), i = 1, 2,

where an( fi ) ∈ Z and a1( fi ) = 1, and such that for all primes q, we have that
aq( fi )= aq(Ei ). Using the Rankin–Selberg method, Lau and Wu [2008] proved
that for any ε > 0, there exists c(ε) > 0 and a prime q not dividing the level of f1

or f2 for which aq( f1) 6= aq( f2) and q ≤ c(ε)(max( f (E1), f (E2))
1+ε . This means

that q is a prime of good reduction for both E1 and E2 such that aq(E1) 6= aq(E2).

�

Remark. We could have used the argument of the previous proposition and in
this case, we would have obtained a bound � (max( f (E1), f (E2)))

A for some
absolute and effective constant A > 0. This bound is weaker than the above result
but has the advantage that it would hold more generally.

4. Proof of Theorem 2.1

Let M and N be sufficiently large such that M < N ≤ 2M and consider the curves
EN and EM. If EN is not isogenous to EM, then by Proposition 3.1, there exists a
prime q with

(5) q ≤ c7(log[2 ·max( f (EN ), f (EM))])
2

such that aq(EN ) 6= aq(EM). By the given assumption, we have

(6) max( f (EN ), f (EM))≤ c3 exp(N c4)

for some c4 <
1
2 . Moreover, as 6S,N ⊂6S,M , we must have

(7) q ≥ N/2.

Hence putting (5), (6) and (7) together, we deduce that N ≤ c11 N 2c4 , where c11 > 0
is an absolute constant. This is a contradiction as c4 <

1
2 .

5. Proof of Theorem 2.2

Let M and N be sufficiently large such that M < N ≤ 2M and consider the curves
EN and EM. If EN is not isogenous to EM, then by Proposition 3.2, for any ε > 0,
there exists a prime q with

(8) q ≤ c(ε)(max( f (EN ), f (EM)))
1+ε
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such that aq(EN ) 6= aq(EM). By the given assumption, we have

(9) max( f (EN ), f (EM))≤ c5 N c6

for some c6 < 1. Moreover, as 6S,N ⊂6S,M , we must have

(10) q ≥ N/2.

Hence putting (8), (9) and (10) together, we deduce that

N ≤ c2(ε)N c6(1+ε),

where c2(ε) > 0 is a constant which depends on ε. Now choosing ε < 1/c6−1, we
get a contradiction.
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LOXODROMICS FOR
THE CYCLIC SPLITTING COMPLEX

AND THEIR CENTRALIZERS

RADHIKA GUPTA AND DERRICK WIGGLESWORTH

We show that an outer automorphism acts loxodromically on the cyclic split-
ting complex if and only if it has a filling lamination and no generic leaf of
the lamination is carried by a vertex group of a cyclic splitting. This is
the analog for the cyclic splitting complex of Handel–Mosher’s theorem on
loxodromics for the free splitting complex. We also show that such outer
automorphisms have virtually cyclic centralizers.

1. Introduction

The study of the mapping class group of a closed orientable surface S has benefited
greatly from its action on the curve complex, C(S), which was shown to be hyper-
bolic in [Masur and Minsky 1999]. Curve complexes have been used for bounded
cohomology of subgroups of mapping class groups, rigidity results, and myriad
other applications.

The outer automorphism group of a finite rank free group F, denoted by Out(F),
is defined as the quotient of Aut(F) by the inner automorphisms, those which arise
from conjugation by a fixed element. Much of the study of Out(F) draws parallels
with the study of mapping class groups. This analogy, however, is far from perfect;
there are several Out(F)-complexes that act as analogs for the curve complex.
Among them are the free splitting complex FS, the cyclic splitting complex FZ ,
and the free factor complex FF , all of which have been shown to be hyperbolic
[Handel and Mosher 2013a; Mann 2014; Bestvina and Feighn 2014]. Just as curve
complexes have yielded useful information about mapping class groups, so too have
these complexes furthered our understanding of Out(F).

The three hyperbolic Out(F)-complexes mentioned above are related via coarse
Lipschitz maps, FS→ FZ→ FF . The loxodromics for FF have been identified

Both authors are partially supported by the U.S. National Science Foundation grant of Mladen Bestvina
(DMS-1607236).
MSC2010: primary 20F65; secondary 20F28, 20E05, 57M07.
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with the set of fully irreducible outer automorphisms [Bestvina and Feighn 2014].
Handel and Mosher [2014] proved that an outer automorphism, φ, acts loxodromi-
cally on FS precisely when φ has a filling lamination, that is, some element of the
finite set of laminations associated to φ (see [Bestvina et al. 2000]) is not carried
by a vertex group of any free splitting. In this paper, we focus our attention on the
isometry type of outer automorphisms, considered as elements of Isom(FZ).

A Z-splitting of F is a splitting in which edge stabilizers are either trivial or cyclic.
The cyclic splitting complex FZ , introduced in [Mann 2014], is defined as follows
(see Section 2L): vertices are one-edge Z-splittings of F and k-simplices correspond
to collections of k+ 1 vertices which are compatible with a common k+ 1-edge
Z-splitting. In this paper, we determine precisely which outer automorphisms act
loxodromically on FZ. Closely related to Z-splittings are the maximally-cyclic
splittings, called Zmax-splittings, in which the edge groups are required to be trivial
or maximal cyclic (i.e., not contained in a larger cyclic subgroup). The results of
this paper also apply to the maximally-cyclic splitting complex FZmax which is
defined exactly as FZ except that splittings are required to be in the class Zmax.
We will use the notation FZ(max) to mean either FZ or FZmax.

In [Bestvina et al. 2000], the authors associate to each φ ∈ Out(F) a finite set
of attracting laminations, denoted by L(φ). We say that a lamination 3 ∈ L(φ) is
Z(max)-filling if no generic leaf (see Section 2N for definitions) of 3 is carried by
a vertex group of a one-edge Z(max)-splitting; we say that φ has a Z(max)-filling
lamination if some element of L(φ) is Z(max)-filling. We prove

Theorem 1.1. For a free group of rank at least 3, an outer automorphism φ acts
loxodromically on FZ(max) if and only if it has a Z(max)-filling lamination. Further-
more, if φ has a filling lamination which is not Z(max)-filling, then a power of φ
fixes a point in FZ(max).

Horbez and Wade [2015] showed that every isometry of FZ(max) is induced by
an outer automorphism. Combining their result with [Handel and Mosher 2014,
Theorem 1.1] and Theorem 1.1, this amounts to a classification of the isometries
of FZ(max).

Corollary 1.2 (classification of isometries). For all φ ∈ Isom(FZ(max)) we have
that:

(1) The action of φ on FZ(max) is loxodromic if and only if some element of L(φ)
is Z(max)-filling.

(2) If the action of φ on FZ(max) is not loxodromic, then it has bounded orbits
(there are no parabolic isometries).

The proof of Theorem 1.1 relies on the description of the boundary of FZ(max)

due to Horbez [2016]; points in the boundary of FZ(max) are equivalence classes of
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Z(max)-averse trees. The proof is carried out as follows. In Section 3, we extend the
theory of folding paths to the boundary of Culler and Vogtmann’s outer space, PO,
defining a folding path guided by φ which is entirely contained in ∂PO. In Section 4,
we show that the limit of the folding path thus constructed is Z(max)-averse. In
Section 5, we show that an outer automorphism with a filling but not a Z(max)-filling
lamination fixes (up to taking a power) a point in FZ(max) and conclude with a
proof of Theorem 1.1.

The remainder of the paper is devoted to a study of the centralizers of automor-
phisms with filling laminations. We prove the following result:

Theorem 1.3. If an outer automorphism φ has a Z-filling lamination, then its
centralizer in Out(F) is virtually cyclic. Conversely, if φ has a filling but not
a Z-filling lamination, then the centralizer of some power of φ in Out(F) is not
virtually cyclic.

The key tools used to prove Theorem 1.3 are the completely split train tracks
introduced in [Feighn and Handel 2011] and the disintegration theory for outer auto-
morphisms developed in [Feighn and Handel 2009]. We first show (Proposition 7.3)
that the disintegration of any outer automorphism φ, that has a Z-filling lamination,
is virtually cyclic. Then we show that Proposition 7.3 implies the centralizer of φ is
also virtually cyclic. Conversely, in Proposition 7.11, we show that if φ has a filling
lamination that is not Z-filling, then φ commutes with an appropriately chosen
partial conjugation.

The method used to prove Theorem 1.3 provides an alternate (and simple) proof
of the well-known fact, due to Bestvina, Feighn and Handel, that centralizers of
fully irreducible outer automorphisms are virtually cyclic. In [Bestvina et al. 2000],
the stretch factor homomorphism is used to show that the stabilizer of the lamination
of a fully irreducible outer automorphism is virtually cyclic, which implies that the
centralizer is also virtually cyclic. In general, little is known about the centralizers
of outer automorphisms. Rodenhausen and Wade [2015] described an algorithm to
find a presentation of the centralizer of a Dehn Twist automorphism. Feighn and
Handel [2009] showed that the disintegration of an outer automorphism D(φ) is
contained in the weak center of the centralizer of φ. Recently, Algom-Kfir and Pfaff
[2017] showed that centralizers of fully irreducible outer automorphisms with lone
axes are isomorphic to Z. We also mention a result of Kapovich and Lustig [2011]:
automorphisms whose limiting trees are free have virtually cyclic centralizers.

The main motivation for examining the centralizers of loxodromic elements of
FZ (and FS) is to understand which automorphisms have the potential to be WPD
elements for the action of Out(F) on these complexes.

Corollary 1.4. Any outer automorphism that is loxodromic for the action of Out(F)
on FS but elliptic for the action on FZ is not a WPD element for the action on FS.
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The result that centralizers of loxodromic elements of FZ are virtually cyclic is
a promising sign for the following conjecture:

Conjecture 1.5. The action of Out(F) on FZ is a WPD action. That is, every
loxodromic element for the action satisfies WPD.

2. Preliminaries

Before proceeding, we fix a free group F of rank ≥ 3.

2A. Isometries of metric spaces. Let X be a Gromov hyperbolic metric space. We
say that an infinite order isometry g of X is loxodromic if it acts with positive
translation length on X : limN→∞(d(x, gN (x))/N ) > 0 for some x ∈ X. Every
loxodromic element has exactly two limit points in the Gromov boundary of X.

Given a group G acting by isometries on the hyperbolic space X, we denote by
3X G the limit set of G in ∂∞X, which is defined as the intersection of ∂∞X with
the closure of the orbit of any point in X under the G-action. The following theorem,
essentially due to Gromov, and formulated here for the case that G is cyclic, gives
a classification of isometry groups of (possibly nonproper) Gromov hyperbolic
spaces. A sketch of a proof can be found in [Caprace et al. 2015, Proposition 3.1].

Theorem 2.1 [Gromov 1987, Section 8.2]. Let X be a hyperbolic geodesic metric
space, and let G be a cyclic group acting by isometries on X. Then G is either

• bounded, i.e., all G-orbits in X are bounded; in this case 3X G =∅, or

• horocyclic, i.e., G is not bounded and contains no loxodromic element; in this
case 3X G is reduced to one point, or

• lineal, i.e., G contains a loxodromic element, and any two loxodromic elements
have the same fixed points in ∂∞X ; in this case 3X G consists of these two
points.

2B. Outer space and its compactification. Culler–Vogtmann outer space, PO, is
defined in [Culler and Vogtmann 1986] as the space of simplicial, free, and minimal
isometric actions of F on simplicial metric trees up to F-equivariant homothety. We
denote by O the unprojectivized outer space, in which the trees are considered up
to isometry, rather than homothety. Each of these spaces is equipped with a natural
(right) action of Out(F).

An F-tree is an R-tree with an isometric action of F. An F-tree is called very
small if the action is minimal, arc stabilizers are either trivial or maximal cyclic,
and tripod stabilizers are trivial. Outer space can be mapped into RF by the map
T 7→ (‖g‖T )g∈F, where ‖g‖T denotes the translation length of g in T. This was
shown in [Culler and Morgan 1987] to be a continuous injection. The closure of the
image of PO under this embedding is compact and was identified in [Bestvina and
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Feighn 1992] and [Cohen and Lustig 1995] with the space of very small F-trees.
We denote by PO the closure of outer space in PRF and by ∂PO its boundary. We
will denote the preimage of PO in RF by O.

2C. Free factor system. A free factor system of F is a finite collection of conjugacy
classes of proper free factors of F of the form A= {[A1], . . . , [Ak]}, where k ≥ 0
and [·] denotes the conjugacy class of a subgroup, such that there exists a free
factorization F= A1 ∗ · · · ∗ Ak ∗ FN . We refer to the free factor FN as the cofactor
of A, keeping in mind that it is not unique, even up to conjugacy.

The main geometric example of a free factor system is as follows: suppose G is
a marked graph and K is a subgraph whose noncontractible connected components
are denoted C1, . . . ,Ck . Let [Ai ] be the conjugacy class of a free factor of F

determined by π1(Ci ). Then A= {[A1], . . . , [Ak]} is a free factor system. We say
A is realized by K and we denote it by F(K ).

2D. Marked graphs. We recall some basic definitions from [Bestvina and Handel
1992]. Identify F with π1(R, ∗) where R is a rose with n petals, n being the rank
of F. A marked graph G is a graph of rank n, all of whose vertices have valence at
least three, equipped with a homotopy equivalence m :R→ G called a marking.
The marking determines an identification of F with π1(G,m(∗)). A homotopy
equivalence f : G→ G induces an outer automorphism of π1(G) and hence an
element φ of Out(F). If f sends vertices to vertices and the restriction of f to edges
is an immersion then we say that f is a topological representative of φ.

2E. Paths, circuits, and tightening. Let 0 be either a marked graph or an F-tree.
A path in 0 is either an isometric immersion of a (possibly infinite) closed interval
σ : I → 0 or a constant map σ : I → 0. If σ is a constant map, the path will be
called trivial. If I is finite, then any map σ : I → 0 is homotopic rel endpoints to
a unique path [σ ]. We say that [σ ] is obtained by tightening σ . If f : 0→ 0 is
continuous and σ is a path in 0, we define f#(σ ) as [ f (σ )]. If the domain of σ
is finite and 0 is either a graph or a simplicial tree, then the image has a natural
decomposition into edges E1 E2 · · · Ek called the edge path associated to σ . If 0 is
a tree, we may use [x, x ′] to denote the unique geodesic path connecting x and x ′.

A circuit is an immersion σ : S1
→ 0. For any path or circuit, let σ be σ with its

orientation reversed. A decomposition of a path or circuit into subpaths is a splitting
for f : 0→ 0 and is denoted σ = · · · σ1 · σ2 · · · if f k

# (σ )= · · · f k
# (σ1) f k

# (σ2) · · ·

for all k ≥ 1.

2F. Turns, directions and train track structure. Let 0 be an F-tree. A direction d
based at p ∈ 0 is a component of 0−{p}. A turn is an unordered pair of directions
based at the same point. In the case that 0 is a simplicial tree, and p is a vertex,
we identify directions at p with edges emanating from p. An illegal turn structure
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on 0 is an equivalence relation on the set of directions at each point p ∈ 0. The
classes of this relation are called gates. A turn (d, d ′) is legal if d and d ′ do not
belong to the same gate. If in addition there are at least two gates at every vertex
of 0, then the illegal turn structure is called a train track structure. A path is legal
if it only crosses legal turns.

2G. Optimal morphism. Given two F-trees 0 and 0′, an F-equivariant map f :
0→ 0′ is called a morphism if every segment of 0 can be subdivided into finitely
many subintervals onto which f restricts to an isometric embedding. A morphism
between F-trees induces an illegal turn structure on the domain 0 as follows:
for every x ∈ 0, the map f determines a map D fx : Dx → D f (x), on the set of
directions Dx at x . For d, d ′ ∈ Dx , we then declare d∼d ′ if D( f k)(d)= D( f k)(d ′)
for some k ≥ 0. A morphism is called optimal if there are at least two gates at
each point of 0. A morphism f that induces a train track structure is an optimal
morphism.

The map f is called alignment preserving (or a collapse map) if the f -image of
every segment in 0 is a segment in 0′.

2H. Train track maps. An optimal morphism is called a train track map if f :
0 → 0′ is an embedding on each edge and maps legal turns to legal turns. In
particular, legal paths map to legal paths. Note that usually the term train track map
is used for self maps, but Bestvina and Feighn [2014] defined it for a map between
different F-trees, each equipped with its own abstract train track structure.

The terminology can also be extended to graphs by passing to their universal
covers. For more details on train track maps, the reader is referred to [Bestvina and
Feighn 2014; Bestvina and Handel 1992].

2I. Relative train track maps and CTs. A filtration for a topological representative
f :G→G of an outer automorphism φ, where G is a marked graph, is an increasing
sequence of f -invariant subgraphs ∅ = G0 ⊂ G1 ⊂ · · · ⊂ G M = G. We let
Hi = Gi \Gi−1 and call Hi the i -th stratum. A turn with one edge in Hi and the
other in Gi−1 is called mixed while a turn with both edges in Hi is called a turn in
Hi . If σ ⊂ Gi does not contain any illegal turns in Hi , then we say σ is i -legal.

We denote by Mi the submatrix of the transition matrix for f obtained by deleting
all rows and columns except those labeled by edges in Hi . For the topological
representatives that will be of interest to us, the transition matrices Mi will come
in three flavors: Mi may be a zero matrix, it may be the 1× 1 identity matrix,
or it may be an irreducible matrix with Perron–Frobenius eigenvalue λi > 1. We
will call Hi a zero (Z), nonexponentially growing (NEG), or exponentially growing
(EG) stratum, respectively. Any stratum which is not a zero stratum is called an
irreducible stratum.
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Definition 2.2 [Bestvina and Handel 1992]. We say that f :G→G is a relative train
track map representing φ ∈ Out(Fn) if for every exponentially growing stratum Hr ,
the following hold:

(RTT i) D f maps the set of oriented edges in Hr to itself; in particular all mixed
turns are legal.

(RTT ii) If σ ⊂ Gr−1 is a nontrivial path with endpoints in Hr ∩Gr−1, then so
is f#(σ ).

(RTT iii) If σ ⊂ Gr is r -legal, then f#(σ ) is r -legal.

Suppose that u < r , that Hu is irreducible, Hr is EG and each component of Gr

is noncontractible, and that for each u < i < r , Hi is a zero stratum which is a
component of Gr−1 and each vertex of Hi has valence at least two in Gr . Then we
say that Hi is enveloped by Hr and we define H z

r =
⋃r

k=u+1 Hk .
A path or circuit σ in a representative f : G→ G is called a periodic Nielsen

path if f k
# (σ )= σ for some k ≥ 1. If k= 1, then σ is a Nielsen path. A Nielsen path

is indivisible, denoted INP, if it cannot be written as a concatenation of nontrivial
Nielsen paths. If w is a closed root-free Nielsen path and Ei is an edge such that
f (Ei ) = Eiw

di, then we say Ei is a linear edge and we call w the axis of E . If
Ei , E j are distinct linear edges with the same axis such that di 6= d j and di , d j > 0,
then we call a path of the form Eiw

∗E j an exceptional path. We say that x and y
are Nielsen equivalent if there is a Nielsen path σ in G whose endpoints are x
and y. We say that a periodic point x ∈ G is principal if neither of the following
conditions hold:

• x is an endpoint of a nontrivial periodic Nielsen path and there are exactly two
periodic directions at x , both of which are contained in the same EG stratum.

• x is contained in a component C of periodic points that is topologically a circle
and each point in C has exactly two periodic directions.

A relative train track map f is called rotationless if each principal periodic vertex
is fixed and if each periodic direction based at a principal vertex is fixed.

For an EG stratum, Hr , we call a nontrivial path σ ⊂ Gr−1 with endpoints in
Hr ∩Gr−1 a connecting path for Hr . Let E be an edge in an irreducible stratum, Hr ,
and let σ be a maximal subpath of f k

# (E) in a zero stratum for some k ≥ 1. Then
we say that σ is taken. A nontrivial path or circuit σ is called completely split
if it has a splitting σ = τ1 · τ2 · · · τk where each of the τi ’s is a single edge in an
irreducible stratum, an indivisible Nielsen path, an exceptional path, or a connecting
path in a zero stratum which is both maximal and taken. We say that a relative
train track map is completely split if f (E) is completely split for every edge E in
an irreducible stratum and if for every taken connecting path σ in a zero stratum,
f#(σ ) is completely split.
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The following theorem/definition is the main existence result for CTs:

Theorem 2.3 [Feighn and Handel 2011, Theorem 4.28; 2009, Corollary 3.5]. There
exists k > 0 depending only on n, so that given any φ ∈ Out(F) and any nested
sequence of φk-invariant free factor systems, there is a completely split improved
relative train track map (CT for short) f : G→ G representing φk such that each
free factor system is realized by some filtration element. The map f satisfies the
following properties:

• (rotationless) f : G→ G is rotationless.

• (completely split) f : G→ G is completely split.

• (filtration) F is reduced. The core of each filtration element is a filtration element.

• (vertices) The endpoints of all indivisible periodic (necessarily fixed) Nielsen
paths are (necessarily principal) vertices. The terminal endpoint of each nonfixed
NEG edge is principal (and hence fixed).

• (periodic edges) Each periodic edge is fixed and each endpoint of a fixed edge is
principal. If the unique edge Er in a fixed stratum Hr is not a loop then Gr−1 is a
core graph and both ends of Er are contained in Gr−1.

• (zero strata) If Hi is a zero stratum, then Hi is enveloped by an EG stratum Hr ,
each edge in Hi is r-taken and each vertex in Hi is contained in Hr and has link
contained in Hi ∪ Hr .

• (linear edges) For each linear Ei there is a closed root-free Nielsen path wi such
that f (Ei )= Eiw

di
i for some di 6= 0. If Ei and E j are distinct linear edges with the

same axes then wi = w j and di 6= d j .

• (NEG Nielsen paths) If the highest edges in an indivisible Nielsen path σ belong
to an NEG stratum then there is a linear edge Ei with wi as in (linear edges) and
there exists k 6= 0 such that σ = Eiw

k
i E i . Moreover, if φ is rotationless in the sense

of [Feighn and Handel 2011], then we may take k = 1.

It follows directly from the definitions that, for completely split paths and circuits,
all cancellation under iteration of f# is confined to the individual terms of the
splitting. Moreover, f#(σ ) has a complete splitting which refines that of σ . Finally,
just as with improved relative train track maps introduced in [Bestvina et al. 2000],
every circuit or path with endpoints at vertices eventually is completely split [Feighn
and Handel 2011, Lemma 4.25]. The reader is directed to [Feighn and Handel
2011, §4] for many useful properties of CTs that we will use frequently in the
sequel, often without a specific reference.

2J. Bounded backtracking ( BBT ). Let f : T→ T ′ be a continuous map between
two R-trees T and T ′. We say that f has bounded backtracking if the f image of
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any path [p, q] is contained in a C-neighborhood of [ f (p), f (q)]. The smallest
such C is called the bounded backtracking constant of f , denoted BBT( f ).

2K. Folding paths. Given simplicial F-trees T and T ′ and an optimal morphism
f : T → T ′ Guirardel and Levitt [2007b, Section 3] construct a canonical optimal
folding path (Tt)t∈R+ guided by f . The tree Tt is constructed as follows. Given
a, b ∈ T with f (a)= f (b), the identification time of a and b is defined as τ(a, b)=
supx∈[a,b] dT ′( f (x), f (a)). Define L := 1

2 BBT( f ). For each t ∈ [0, L], one defines
an equivalence relation ∼t by a ∼t b if f (a)= f (b) and τ(a, b) < t . The tree Tt

is then a quotient of T by the equivalence relation ∼t . Guirardel and Levitt prove
that for each t ∈ [0, L], Tt is an R-tree. The collection of trees (Tt)t∈[0,L] comes
equipped with F-equivariant morphisms fs,t : Tt → Ts for all t < s and these maps
satisfy the semiflow property: for all r < s < t , we have ft,s ◦ fs,r = ft,r . Moreover
TL = T ′ and fL ,0 = f . The trees (Tt)t∈[0,L] and the maps ( fs,t : Tt → Ts)t<s∈[0,L]

are called the connection data for the folding path.

2L. The Z-splitting complex. Let Z be the collection of subgroups of F that are
either trivial or cyclic. We denote by Zmax the collection of elements of Z which are
either trivial or closed under taking roots. We use the notation Z(max) to mean either
Z or Zmax. A Z(max)-splitting is a minimal, simplicial F-tree whose edge stabilizers
belong to the set Z(max); it is a one-edge splitting if there is one F orbit of edges. A
cyclic splitting (resp. maximally-cyclic splitting) is a one-edge Z-splitting (resp.
Zmax-splitting) whose edge stabilizer is infinite cyclic. Two Z(max)-splittings are
equivalent if the corresponding Bass–Serre trees are F-equivariantly homeomorphic.
We will often blur the distinction between a splitting and its Bass–Serre tree.

If S is a one-edge free splitting (resp. Z(max)-splitting) and v is a vertex in the
Bass–Serre tree, then Stab(v) will be called a vertex group of S. Vertex groups of
free splittings are free factors.

Given two Z(max)-splittings T and T, we say that T is a refinement of T if there is
a collapse map from T to T. Two Z(max)-splittings T and T ′ are compatible if they
have a common refinement, i.e., if there exists a tree that collapses onto both T and T ′.
A tree T is Z(max)-incompatible if the set of Z(max)-splittings compatible with T is
empty. The (maximally-) cyclic splitting complex FZ(max) is the simplicial complex
whose vertices are equivalence classes of one-edge Z(max)-splittings and whose
k-simplices are collections of k+1 pairwise compatible one-edge Z(max)-splittings.
Mann [2014] showed that FZ is δ-hyperbolic. More recently, Horbez [2016] used
the same argument to prove that FZmax is δ-hyperbolic.

The results of Shenitzer [1955], Stallings [1991] and Swarup [1986] imply that
every one-edge cyclic splitting of F is obtained from a one-edge free splitting of F

by the “edge folding” process described as follows. Let T be a free splitting of F,
let v be a vertex of T and let Gv be its stabilizer. Consider w ∈ Gv and 〈w〉,



116 RADHIKA GUPTA AND DERRICK WIGGLESWORTH

the cyclic group generated by w. Construct a new F-tree T ′ by first choosing an
edge e incident at v, then, for every γ ∈ F, identifying γ e with its orbit under
〈γwγ−1

〉 ⊆Gγ v . The tree T ′ has an edge with stabilizer equal to 〈w〉. We say T ′ is
obtained from T by an equivariant edge fold, or to be more specific, we sometimes
say that T ′ is obtained from T by performing the edge fold corresponding to 〈w〉.

2M. Z-averse trees and boundary of FZ . A tree T in O is called Z(max)-averse
[Horbez 2016, Definition 4.2] if there is no finite chain of compatibility between T
and a Z(max)-splitting: i.e., if there is no finite set of trees (T = T0, T1, . . . , Tk = T ′)
in O such that T ′ is a Z(max)-splitting and for each i ∈ {0, . . . , k − 1}, the trees
Ti and Ti+1 are compatible. Two Z(max)-averse trees, T, T ′, are called equivalent
if there is a finite chain of compatible trees in O relating T to T ′ as above. The
reader will note that the notions of Z(max)-compatibility and Z(max)-aversity are
independent of the homothety class of T ; in particular, it makes sense to say that
a tree in PO is Z-averse, or that two trees in PO are equivalent. We denote by
X (max) (resp. PX (max)) the subspace of O (resp. PO) consisting of Z(max)-averse
trees.

There is a natural map from a subset of ∂PO to the Gromov boundary of FZ(max)

relating the geometries at infinity of these two spaces, which we now describe. There
is a map ψ (max)

: PO→ FZ(max), which extends to the set of simplicial trees in O
with trivial edge stabilizers, defined by choosing a one-edge collapse of every sim-
plicial tree in PO. This map is not quite Out(F)-equivariant because we must make
choices, however differing choices change distances by at most 2. The following
theorem due to Horbez describes the boundary of the free splitting complex.

Theorem 2.4 [Horbez 2016, Theorem 0.1]. There is a unique Out(F)-equivariant
homeomorphism

∂ψ (max)
: X (max)/∼ −→ ∂∞FZ(max)

so that for all T ∈X (max) and all sequences (Tn)∈ON converging to T, the sequence
(ψ (max)(Tn))n∈N converges to ψ(T ).

Given a tree T ∈O, a Z(max)-splitting S is called a reducing splitting for T, if S
is compatible with some T ′ ∈O, which is itself compatible with T.

2N. Lines and laminations. We briefly recall some definitions, but the reader is
directed to [Bestvina et al. 2000] for details. The space of abstract lines, B̃ =
(∂F× ∂F−1)/Z2, is the set of unordered distinct pairs of points in the boundary
of F and is equipped with the natural (subspace/product/quotient) topology. The
quotient of B̃ by the natural F action is the space of lines in R and is called B. It is
endowed with the quotient topology, which satisfies none of the separation axioms.
Points in B and B̃ will be called lines.
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A closed subset 3 of B is an attracting lamination for φ if it is the closure of a
single line β that is bireccurrent (every finite subpath σ of β occurs infinitely many
times as an unoriented subpath of each end of β), has an attracting neighborhood
(there is some open U 3 β so that φk(γ )→ β for all γ ∈U ), and is not carried by
a rank one φ-periodic free factor. The lines in 3 satisfying the above properties are
called the generic leaves of 3.

A subgroup A of F determines a subset of the boundary of F called ∂A⊂ ∂F. We
say that A carries a line β if there is some lift β̃ whose endpoints are in ∂A. We
then say that the A carries the lamination 3 if A carries some (any) generic leaf
of 3. A lamination 3 is said to be filling (resp. Z(max)-filling) if 3 is not carried
by any vertex group of any free splitting (resp. Z(max)-splitting).

Let πA :G A→R be the immersion from the core of the cover of R corresponding
to the subgroup A and let β be a line. Then clearly β is carried by A if and only if
there exist immersions ρA : R→ G A and ρ : R→ R such that ρ = πAρA. If we
further assume that A is finitely generated, it’s easy to see that β is carried by A if
and only if every finite subsegment of β can be immersed into G A.

3. Folding in the boundary of outer space

Throughout this section, φ will be an outer automorphism with a Z(max)-filling
lamination 3+φ . Our first goal is to extract from φ a folding path converging to a
tree in ∂PO which “witnesses” the lamination 3+φ . The automorphism φ is fully
irreducible relative to some maximal φ-invariant free factor system A. Since φ has
a filling lamination, A is not an exceptional free factor system, that is, it is not of
the form {A} or {A1, A2}, where F= A ∗Z or F= A1 ∗ A2. Let f : T → T be the
universal cover of a relative train track representative of φ realizing the invariant free
factor system A. Let G = T/F be the quotient graph, which comes with a filtration

∅= G0 ⊂ G1 ⊂ · · · ⊂ Gr = G

such that F(Gr−1)=A and Hr is an EG stratum with Perron–Frobenius eigenvalue
λφ . Let Tr (resp. Tr−1) denote the full preimage of Hr (resp. Gr−1) under the
quotient map T → G. We endow G (and hence T ) with a metric by declaring all
edges to have length 1. We will henceforth consider T as a point in unprojectivized
outer space O, whereby f may be thought of as an F-equivariant map T → T ·φ.

Let T ′0 be the tree obtained from T by equivariantly collapsing the A-minimal sub-
tree. Our present aim is to construct a folding path ending at T+φ := limn→∞ T ′0φ

n/λn
φ .

To accomplish this, we will construct simplicial trees T0, T1 and define an optimal
morphism f0 : T0 → T1. From this we will obtain a periodic canonical optimal
folding path ( ft)t∈[0,L] which will end at T+φ . It is worth noting that the natural
map f ′0 : T

′

0→ T ′0φ induced by f is neither optimal nor a morphism as there may
be nondegenerate intervals which are mapped to points.
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We remark that existence of an optimal morphism which is a train track map
representing a relative fully irreducible outer automorphism is a special case of the
results of [Francaviglia and Martino 2015] and [Meinert 2015], for free products
and deformation spaces, respectively. Francaviglia and Martino [2015] developed
metric theory for relative outer space for free products which is used to show the
existence of optimal maps. This requires a considerable amount of work due to
lack of applicability of the Arzela–Ascoli theorem in this setting. In what follows,
we provide a shorter proof of existence of a train track map representing φ in the
context of free groups.

Constructing T0. The following is based on the construction in the proof of [Bestv-
ina and Handel 1992, Lemma 5.10]. Define a measure µ on T with support
contained in the set {x ∈ Tr : f k(x) ∈ Tr for all k ≥ 0} as follows: choose a
Perron–Frobenius eigenvector Ev corresponding to the PF eigenvalue λφ . For an
edge e in Tr , let µ(e) = ve, where ve is the component of Ev corresponding to e.
Define µ(e) = 0 for all edges e ∈ Tr−1. Let V be the set of vertices of T and
let Vm := {x ∈ T : f m(x) ∈ V }. Subdividing T at Vm divides each edge into
segments that map to edge paths under f m. If a is such a segment then define
µ(a)= µ( f m(a))/λm

φ . The definition of µ together with the fact that relative train
track maps take r -legal paths to r -legal paths implies:

Lemma 3.1. If [x, y] is an r-legal path in T, then µ( f#([x, y]))= λφµ([x, y]). If
[x, y] contains an initial or terminal segment of some edge in Tr , then µ([x, y]) > 0.

The measure µ defines a pseudometric dµ on T. Collapsing the sets of µ-measure
zero to make dµ into a metric, we obtain a tree T0. Let p :T→T0 be the collapse map.

Lemma 3.2. T0 is simplicial.

Proof. We will show that the F-orbit of any point in T0 must be discrete. Let x ∈ T0

and choose a point x̃ ∈ p−1(x). The F-orbit of x̃ in T is discrete, and to understand
the orbit of x , we need only understand µ([x̃, gx̃]) for g ∈ F. If [x̃, gx̃] contains no
edges in Tr , then µ([x̃, gx̃])= 0, in which case g ∈Stab(x). Otherwise, the segment
contains an edge in Tr , and hence has positive µ-measure. Since there are only
finitely many F-orbits of edges in Tr , there is a lower bound on the µ-measure of
[x̃, gx̃]. Hence, there is a lower bound on dT0(x, gx). This concludes the proof. �

The trees T0 and T ′0 are F-equivariantly homeomorphic. The problem with T ′0
is that the “obvious” map f ′0 : T

′

0→ T ′0 φ sends nondegenerate segments to points
and, because of that, is not useful for making a folding path. The map f0 defined
in the sequel is an improvement because it can be used to construct a folding path.

Defining f0 : T0 → T1. Let T1 be the tree λ−1
φ T0 · φ: the leading coefficient indicates

that the metric has been scaled by λ−1
φ . The relative train track map f : T → T ·φ
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naturally induces a map f0 : T0→ T1. For each x ∈ T0, its pre-image p−1(x) is
a connected subtree of T with µ-measure zero. The definition of µ guarantees
that the f -image of this set is also connected and has µ-measure zero. Therefore
p ◦ f ◦ p−1(x) is a single point in T0 ·φ, which is identified with T1 and we define
f0 := p ◦ f ◦ p−1.

Lemma 3.3. The map f0 is an optimal morphism.

Proof. We first show that f0 is a morphism, which will follow from the definition
of µ and properties of relative train track maps. Given a nondegenerate segment
[x, x ′] in T0, choose x̃ ∈ p−1(x) and x̃ ′ ∈ p−1(x ′). The intersection of [x̃, x̃ ′] with
the vertices of T is a finite set {x̃1, . . . , x̃k−1}. Let x̃0 := x̃ and x̃k := x̃ ′. Taking
the p-image of x̃i for i ∈ {0, . . . , k} yields a subdivision of [x, x ′] into finitely
many subsegments [xi , xi+1], some of which may be degenerate. We will ignore
the degenerate subdivisions: they occur as the projections of edges in Tr−1 (all of
which have µ-measure zero).

We claim that f0 is an isometry in restriction to each of these subsegments. Indeed,
let e = [x̃i , x̃i+1] be an edge in T. Assume without loss of generality that xi 6= xi+1

so that µ(e) 6= 0 and e is therefore an edge in Tr . It is an immediate consequence
of Lemma 3.1 that for each y ∈ e, we have µ([ f (x̃i ), f (y)]) = λφµ([x̃i , y]) and
hence f0 is an isometry in restriction to [xi , xi+1].

We now address the optimality of f0. There are three types of points to consider:
points in the interior of an edge, vertices with trivial stabilizer, and vertices with
nontrivial stabilizer. We have already established that f0 is an isometry in restriction
to edges, so there are two gates at each x ∈ T0 contained in the interior of an edge.
If x ∈ T0 is a vertex with trivial stabilizer, then p−1(x) is a vertex (Lemma 3.1)
contained in Tr \Tr−1. As f is a relative train track map, there are at least two gates
at p−1(x) and each is necessarily contained in Tr . A short path in T containing
p−1(x) entering through the first gate and leaving through the second will be legal.
Lemma 3.1 gives that f0 is an isometry in restriction to such a path, so there are at
least two gates at x .

Now let x ∈ T0 be a vertex with nontrivial stabilizer. Then p−1(x) is a subtree
which is the inverse image of a component of Gr−1 under the quotient map T → G.
Let x̃, x̃ ′ ∈ p−1(x) be distinct vertices in Tr ∩Tr−1 and let d (resp. d ′) be a direction
based at x̃ (resp. x̃ ′) corresponding to an edge e (resp. e′) in Tr . Lemma 3.1 provides
that d and d ′ determine distinct directions at x . As mixed turns are legal, the path
e ∪ [x̃, x̃ ′] ∪ e′ in T is r-legal. A final application of Lemma 3.1 gives that the
restriction of f0 to the p-image of this path is an isometry, and hence that there are
at least two directions at x . �

The reader will note that we have proved the following:

Lemma 3.4. The map f0 is a train track map.
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As T0 and T ′0 are F-equivariantly homeomorphic, there is a bijection between (F-
orbits of) edges of each. It is easily verified that the transition matrix of f0 and that of
f are equal. In particular, we will speak of edges, transition matrices, PF eigenvalues,
and related notions for f0 : T0→ T1, without reference to this bijection.

Next, we use f0 to construct a folding path starting at S0 := T0. This folding
path will converge in ∂PO to a tree SL . We then prove that SL is in fact the tree T+φ
as defined above.

Folding T0. Applying the canonical folding path construction, we obtain a folding
path (St)t∈[0,L1] guided by f0 :T0→T1 which begins at T0= S0 and ends at T1= SL1 ,
where L1 =

1
2 BBT( f0). Adapting a construction of Handel and Mosher [2011,

Section 7.1], we now extend this to a periodic fold path guided by f0. For each i ∈N,
let Ti = λ

−i
φ T0 ·φ

i, whence we have optimal morphisms fi : Ti → Ti+1 satisfying
BBT( fi )= λ

−i
φ BBT( f0). For each i , inductively define L i := L i−1+

1
2 BBT( fi−1)

and extend the folding path (which has so far been defined on [0, L i−1]) using fi−1

to a folding path (St)t∈[0,L i ]. Define L := limi→∞ L i , which is finite as BBT( fi ) is
a geometric sequence. We have thus defined the trees (St)t∈[0,L).

The notation here is less than ideal. In the above, (Ti )i∈N is used for the trees
λ−i
φ T0 · φ

i, while (St)t∈[0,L) denotes a continuous folding path which is folded at
constant speed. The reason for the differing names (S and T ) is simply that the
parameterizations differ; in particular SL i = Ti .

We now describe the maps ft,s for s, t ∈ [0, L) with s < t . Indeed, given s, t ,
there is a natural choice of a map ft,s : Ss → St . Suppose s ∈ [L i , L i+1) and
t ∈ [L j , L j+1). Then

ft,s := ft,L j ◦ f j−1 ◦ f j−2 ◦ · · · ◦ fi+1 ◦ fL i+1, s .

The semiflow property for the connection data follows from the definitions. Though
our setting differs slightly from that of [Bestvina and Feighn 2014], Proposi-
tion 2.2 (5) therein can still be applied to give that each tree St has a well defined
train track structure.

Along with the connection data, the fold path (St)t∈[0,L) forms a directed system
in the category of F-equivariant metric spaces and distance nonincreasing maps. As
direct limits exist in this category, let SL := lim

−−→
St and let fL ,t be the direct limit

maps. The proof of the following proposition is contained in Section 7.3 of [Handel
and Mosher 2011], though it is not stated in this way. While Handel and Mosher
deal with trees in O rather than ∂PO, the reader will easily verify that their proof
goes through directly in our setting.

Proposition 3.5 [Handel and Mosher 2011]. SL is a non-trivial, minimal, R-tree.
Moreover St converges to SL in the length function topology.

We have described two trees in the boundary of outer space: T+φ = limn→∞ T ′0φ
n

and SL . We observe that both S0 and T ′0 are points in the relative outer space O(F,A),
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which inherits the subspace topology from PO. Moreover, φ is fully irreducible
relative to A, and as such, it acts with north-south dynamics on PO(F,A) [Gupta
2018]. Recall that for each i ∈ N, SL i = λ

−i
φ S0 ·φ

i, and that L i → L . As SL is the
limit of the fold path (St)t∈[0,L), we conclude:

Lemma 3.6. SL = T+φ .

We conclude this section with a lemma.

Lemma 3.7. For all t ∈ [0, L), the tree St is simplicial.

Proof. Let t ∈ [0, L). If t = 0, Lemma 3.2 provides that S0 is simplicial. Since
SL i =λ

−i
φ S0· φ

i, the lemma holds when t= L i for some i ∈N. The other possibility is
that t ∈ (L i , L i+1) for some i . Since both SL i and SL i+1 have trivial edge stabilizers,
Proposition 1.1 of [Horbez 2016] applies to the folding path guided by fi and allows
one to conclude that all trees St , t ∈ [L i , L i+1] are simplicial, as desired. �

4. The stable tree is Z(max)-averse

Our present aim is to understand T+φ ; we would like to show that it is Z(max)-averse.
In this section, we will use the leaves of the topmost lamination 3+φ to construct a
transverse covering of T+φ , and then use the transverse covering to achieve our goal.

Definition 4.1. Let G be a group and T be an R-tree equipped with an action
of G by isometries; and let K ⊆ T be a subtree. We say that the action G y T
is supported on K if for any finite arc J ⊆ T, there are g1, . . . , gr ∈ G such that
I ⊆ g1K ∪ · · · ∪ gr K.

Let I0 be a segment of a leaf of the lamination 3+φ in S0. Define the arc It in
St by It := ft,0(I0). We will denote IL simply by I and we will call any segment
in T+φ obtained in this way a segment of a leaf of 3+φ .

Lemma 4.2. The action F y T+φ is supported on I.

Proof. Let I = [x, y] and let J = [x ′, y′] be a nondegenerate arc in T+φ . The
construction in Section 3 provides an optimal folding path (St)t∈[0,L], and optimal
morphisms fs,t : St → Ss for all s, t ∈ [0, L] with s > t which satisfy the semiflow
property. It follows easily from the definitions that for a folding path (St) and
any z in SL = T+φ , the set f −1

L ,0(z) is a discrete set of points in S0. Let x ′0 ∈ f −1
L ,0(x

′)

and y′0 ∈ f −1
L ,0(y

′) be points in S0 chosen so that (x ′0, y′0) contains no points in
f −1
L ,0(x

′) ∪ f −1
L ,0(y

′) and define J0 = [x ′0, y′0]. Since I0 is legal, it is never folded
under the maps ft,0, so the corresponding property already holds for I0. Define
the arc Jt in Tt by Jt := [ ft,0(J0)]. The definitions of I0 and J0 guarantee that
[ fL ,0(I0)] = I and similarly for J0. The semiflow property of the maps fs,t gives
that for all s, t ∈ [0, L] with s > t , we have [ fs,t(It)] = Is (resp. [ fs,t(Jt)] = Js).
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Since I0 is a leaf segment and therefore legal with respect to the train track
structure on S0, it is never folded under the maps ft,0. In particular, the length of
It is constant in t . The maximum length of any edge in St tends to 0 as t → L
because edge lengths can only decrease along the fold path and the metric in SL i has
been scaled by λ−i

φ . Thus, for sufficiently large t , It crosses an entire edge of St .
Irreducibility of the transition matrix for f0 implies that by further enlarging t , we
may assume that It crosses an edge from every F-orbit of edges in St .

We are now ready to complete the proof. Indeed, write Jt as an edge path
Jt = e0e1 · · · ek in St (the first and last edges may be partial edges). Since It crosses
every F-orbit of edges in St , there exist g0, . . . , gk ∈ F so that for all j, g j It crosses
the edge e j . Now we simply use F-equivariance of the maps fL ,t to conclude that

fL ,t(Jt)⊆ g0 fL ,t(It)∪ g1 fL ,t(It)∪ · · · ∪ gk fL ,t(It)

As It is legal, fL ,t(It) = I. While Jt is not necessarily legal, it’s still true that
J = [ fL ,t(Jt)] ⊆ fL ,t(Jt), completing the proof. �

4A. Mixing and indecomposable trees. A tree T ∈ PO is mixing if for all finite
subarcs I, J ⊂ T, there exist g0, . . . , gk ∈ F such that J ⊆ g0 I ∪g1 I ∪· · ·∪gk I and
g j I ∩g j+1 I 6=∅ for all j ∈ {0, . . . , k−1}. A tree T ∈PO is called indecomposable
[Guirardel 2008] if it is mixing and the g j ’s can be chosen so that g j I ∩ g j+1 I is a
nondegenerate arc for each j ∈ {0, . . . , k− 1}.

Lemma 4.3. T+φ is mixing.

Proof. The proof is similar to that of Lemma 4.2, so we will retain our notation
from that proof. Indeed, it’s clearly enough to show that every arc J can be covered
by finitely many translates with nonempty overlap of the fixed arc I and conversely
that I can be covered similarly by translates of J. Recall the cover of J by translates
of I constructed in proof of Lemma 4.2. Since consecutive edges in the edge path
of Jt = e0 · · · ek intersect in a point, it follows that g j It ∩ g j+1 It 6= ∅ for all
j ∈ {0, . . . , k− 1}. Again, this behavior persists in the limit.

Conversely, to see that I can be covered by translates of J we use essentially the
same argument as before, only now there is a slight difficulty in producing an edge
in some Jt that isometrically embeds in the limit. Now Jt may have illegal turns,
so we write Jt as a concatenation of maximal legal subpaths, Jt = J 0

t J 1
t · · · J

k
t .

Now fL ,t(Jt) is a concatenation of the fL ,t -images of J i
t , which are themselves

segments in SL . Thus, the tightened image J = [ fL ,t(Jt)] is contained in the union
fL ,t(J 0

t )∪ · · · ∪ fL ,t(J k
t ). Now choose an i ∈ {0, . . . , k} so that J ∩ fL ,t(J i

t ) is a
nondegenerate subsegment of J and replace J by the subsegment J ′= J ∩ fL ,t(J i

t ).
The proof of Lemma 4.2 can now be applied to J ′, allowing us to conclude that I
can be covered by finitely many translates J ′ with nonempty overlaps. As J ′ is a
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subsegment of J, the same finite set of group elements witnesses the fact that I can
be covered by finitely many translates J with nonempty overlaps. �

4B. Transverse families and transverse coverings. A subtree Y of a tree T is
called closed [Guirardel 2004, Definition 2.4] if Y ∩ σ is either empty or a path
in T for all paths σ ⊂ T ; recall that paths are defined on closed intervals. A
transverse family [Guirardel 2004, Definition 4.6] of an R-tree T is a family Y of
nondegenerate closed subtrees of T such that any two distinct subtrees in Y intersect
in at most one point. If every path in T is covered by finitely many subtrees in Y ,
then the transverse family is called a transverse covering.

The idea of the following definition is to start with an interval and “fill it out”
into an entire subtree by translating it around, always requiring that overlaps are
nondegenerate.

Definition 4.4 (the transverse family generated by3+φ ). Let I =[x, y] be a segment
of a leaf of 3+φ in T+φ . Define YI as the union of all arcs J such that there exists
g0, . . . , gk ∈ F satisfying:

• J ⊆ g0 I ∪ · · · ∪ gk I.

• g j I ∩ g j+1 I is a nondegenerate segment for each i ∈ {0, . . . , k− 1}.

• g0 I ∩ I is a nondegenerate segment.

It’s immediate that the collection Y = {gYI }g∈F is a transverse family in T+φ since,
by definition, distinct F-translates of YI intersect in a point or not at all. This
construction is essentially due to Guirardel–Levitt.

Lemma 4.5. With notation as above, YI is indecomposable with respect to the
Stab(YI ) action. Moreover, Y = {gYI }g∈F is a transverse covering of T+φ .

Proof. We first show that YI is indecomposable. The proof is similar to that of
Lemmas 4.2 and 4.3, so we will retain our notation from those proofs. As before, it
is enough to show that every arc J ⊆ YI can be covered by finitely many translates
with nondegenerate overlap of the fixed arc I, and conversely that I can be covered
by finitely many translates of J with nondegenerate overlap. The definition of YI

guarantees that J can be covered by finitely many translates of I, so we are left to
show the converse.

First, replace J by an appropriately chosen subinterval exactly as in the proof of
Lemma 4.3. Now we run the proof of Lemma 4.2 with a minor modification. For
t ∈ [0, L), let Jt and It be as in that proof. This time, choose t large enough so that
It crosses every F-orbit of turns taken by a leaf of 3+φ . By further enlarging t if
necessary, we may arrange that Jt also crosses every turn taken by a leaf. Write It

as an edge path It = e0e1 · · · ek in St , where the first and last edges may be partial
edges. Since Jt crosses every F-orbit of turns taken by a leaf in St , there exist
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g0, . . . , gk ∈ F so that for all j ∈ {0, . . . , k−1}, g j Jt crosses the edge path e j e j+1.
Now we conclude exactly as before, using F-equivariance of the maps fL ,t to see
that

fL ,t(It)⊆ g0 fL ,t(Jt)∪ g1 fL ,t(Jt)∪ · · · ∪ gk fL ,t(Jt)

Since both It and Jt are legal, this set containment (and nondegeneracy of the
overlaps) is unaffected by tightening and the proof is complete.

To see that Y is a transverse covering we again reference the proof of Lemma 4.2,
which shows that every path in T+φ can be covered by finitely many trees in Y . �

Lemma 4.6. Let β be a generic leaf of 3+φ and let J be a finite subsegment of a
realization of β in T+φ . Then there exists g ∈ F which is contained in a conjugate of
Stab(YI ) and whose axis, Ag, in T+φ contains the segment J.

Proof. We retain our notation from above, so that Jt is a segment in St which maps
to J under fL ,t . We will denote the realization of β in St by βt . Choose t large
enough so that Jt crosses every turn taken by βt , then lengthen Jt by following the
leaf to arrange that both endpoints of Jt are vertices in the same F-orbit. Write Jt as
an edge path Jt = e0e1 · · · ek . If necessary, further lengthen Jt (again following βt )
to arrange that the turn {e0, ek} is taken by a leaf. Let xt (resp. yt ) be the initial
(resp. terminal) endpoint of Jt .

Now let g ∈ F be a group element taking xt to yt . After postcomposing with an
element of Stab(yt) if necessary, we may assume that the turn {ek, g(e0)} is taken
by a generic leaf of 3+φ . We claim that the axis of g in St crosses Jt . Indeed, to get
from xt to yt , one traverses the edge path e0e1 · · · ek . Thus, to get from yt = g · xt

to g · yt = g2
· xt , one traverses the same (up to F-orbit) edge path. As e0 6= ek and

St is a tree, we have that d(xt , g2
· xt)= 2d(xt , g · xt). It is an elementary exercise

to show that this is equivalent to x being on the axis of g. Both βt and the axis of g
are legal, so the restriction of fL ,t to each is an immersion. Thus, we can push this
picture forward to the limit using fL ,t to reach the desired conclusion.

We’ve seen that any realization of β in T+φ is contained in a single F-translate
of YI . As we have arranged that every turn taken by the axis of g in St is also taken
by a leaf, the argument given in the proof of Lemma 4.5 allows us to conclude that
Ag is contained in a single F-translate of YI . Thus g is contained in a conjugate of
Stab(YI ), as desired. �

For convenience of the reader, we recall two essential facts:

Proposition 4.7 [Horbez 2016, Propositions 4.27, 4.3]. If T ∈O is mixing, then T
is Z(max)-averse if and only if T is Z(max)-incompatible.

Lemma 4.8 [Guirardel 2008, Lemma 1.18]. Let T ∈O be compatible with a Z(max)-
splitting, S. Let H ⊆ F be a subgroup, such that the H-minimal subtree TH of T is
indecomposable. Then H is elliptic in S.
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Proposition 4.9. T+φ is Z(max)-averse.

Proof. We assume that T+φ is not Z(max)-averse and argue towards a contradiction.
Indeed, as T+φ is mixing, Proposition 4.7 implies that it is compatible with a Z(max)-
splitting S. Now let H = Stab(YI ). If YI = T+φ , then H = F and Lemma 4.8 gives
that F is elliptic in S, a contradiction as S is a nontrivial minimal splitting.

The other possibility is that YI is a proper subtree in T+φ , and in this situation we
argue that 3+φ is carried by a vertex group of S. As above, we apply Lemma 4.8 to
conclude that H = Stab(YI ) is carried by a vertex group A of the splitting S. We
have a tower of covers corresponding to subgroups as follows (we temporarily blur
the distinction between F and the universal cover of R):

F
πH,F
−−→ X H

πA,H
−−→ X A

πR,A
−−→R

We denote by G A and G H the core of the corresponding covers.
Let β be a generic leaf of 3+φ . Even though H may not be finitely generated,

we claim it is enough to show that every finite subsegment of β can be immersed
into G H . Indeed, by postcomposing these immersions with πA,H (also an immer-
sion), we see that every finite subpath of β can then be immersed into G A. Since A
is finitely generated, we conclude that β can be immersed into G A, and therefore
that 3+φ is carried by a vertex group of the cyclic splitting S.

Let h : F→ T+φ be an F-equivariant map which is linear on edges and Lipschitz
(it’s easy to see that such maps exist). Lemma 3.1 of [Bestvina et al. 1997] gives
that BBT(h) is finite. Color the line βL in T+φ red and let βF be the realization of β
in F. Pull back the coloring via h to βF as follows (keeping in mind the bounded
cancellation): if x ∈ βF is such that h(x) is red, then color x red, otherwise do not
color x . It’s clear that both ends of βF have red segments.

Let JF be a subsegment of βF. Extend JF along βF if necessary to ensure that both
endpoints of JF are red. Define J = h#(JF). The fact that the endpoints of JF are
red ensures that J is a subsegment of βL . Apply Lemma 4.6 to obtain an element
g ∈ H whose axis contains J. Color the axis of g in T+φ blue. Pull back this coloring
to the axis of g in F exactly as above. Equivariance of h, coupled with the fact that
g is not elliptic in F or T+φ , implies that every subray of the axis of g in F contains
blue points. In particular, there are blue points on either side of JF. Thus the axis
of g in F contains the prescribed segment JF. It’s now evident that JF is contained
in the H -minimal subtree of F. This implies that πH,F(JF) is contained in the core
G H of the cover, completing the proof. �

5. Filling but not Z(max)-filling laminations

In this section, we study filling laminations which are not Z(max)-filling. We then
use this understanding to establish the following proposition, which is a restatement
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of the second claim in Theorem 1.1. This section concludes with a proof of the first
statement in Theorem 1.1.

Proposition 5.1. Let φ be an automorphism with a filling lamination 3+φ that is
not Z(max)-filling, so that 3+φ is carried by a vertex group of a (maximally-) cyclic
splitting S. Then there is a (maximally-) cyclic splitting S′ that is fixed by a power
of φ.

The splitting S′ is canonical in the sense that the vertex group which carries 3+φ
is as small as possible. The proof of Proposition 5.1 will require an excursion into
the theory of JSJ-decompositions; the reader is referred to [Fujiwara and Papasoglu
2006] for details about JSJ theory.

We say a lamination is elliptic in an F-tree T if it is is carried by a vertex stabilizer
of T. Let S be the set of all one-edge Z(max)-splittings in which the lamination 3+φ
is elliptic. Since 3+φ is filling, the set S does not contain any free splittings.

Definition 5.2 (types of pairs of splittings [Rips and Sela 1997]). Let S = A ∗C B
(or A∗C ) and S′ = A′ ∗C ′ B ′ (or A′∗C ′) be one-edge cyclic splittings with corre-
sponding Bass–Serre trees T and T ′. We say S is hyperbolic with respect to S′ if
there is an element c ∈ C that acts hyperbolically on T ′. We say S is elliptic with
respect to S′ if C fixes a point of T ′. We say this pair is hyperbolic-hyperbolic if
each splitting is hyperbolic with respect to the other. We define elliptic-elliptic,
hyperbolic-elliptic and elliptic-hyperbolic splittings similarly.

Lemma 5.3. With notation as above, suppose that S, S′ ∈S, and assume without
loss that 3+φ is carried by the vertex groups A and A′. Then 3+φ is elliptic in the
minimal subtree of A in T ′, denoted T ′A, and in the minimal subtree of A′ in T,
denoted TA′ .

Proof. Since A and A′ both carry3+φ , their intersection A∩ A′ also carries3+φ . The
vertex stabilizers of TA′ are precisely the intersection of vertex stabilizers of T with
A′, namely the conjugates of A∩A′. Thus3+φ is carried by a vertex group of TA′ . �

Lemma 5.4. With notation as above, suppose that S, S′ are one-edge Z(max)-
splittings in S. Then S and S′ are either hyperbolic-hyperbolic or elliptic-elliptic.

Proof. The following is based on the proof of [Fujiwara and Papasoglu 2006,
Proposition 2.2]. We will address the case that both the splittings are free products
with amalgamations; when one or both are HNN extensions, the proof is similar.
Toward a contradiction, suppose some element of C acts hyperbolically in T ′ and
that C ′ is elliptic in T. Without loss of generality, we may assume that C ′ fixes the
vertex stabilized by A in T. Suppose first that both A′ and B ′ fix vertices in T. The
two subgroups cannot fix the same vertex because they generate F. On the other
hand, if the vertices are distinct, then C ′ fixes an edge in T. Hence C ′ must be a
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finite index subgroup of C , in contradiction to the assumption that C is hyperbolic
in T ′. Thus, one of A′ or B ′ does not fix a vertex in T.

Assume without loss that A′ does not fix a vertex of T. The minimal subtree of A′

in T, denoted TA′ , gives a minimal splitting of A′ over an infinite index subgroup of
C (i.e., a free splitting). Indeed, were A′ to split over a finite index subgroup C1 of
C , then C1 would be elliptic in T ′ contradicting our assumption that C is hyperbolic
in T ′. As C ′ is elliptic in T, it is also elliptic in TA′ . Now blow up the vertex
stabilized by A′ in T ′ to the free splitting of A′ just obtained, and then collapse
the edge stabilized by C ′ to get a free splitting T0 of F. Then B ′ is still elliptic in
T0. If 3+φ is carried by B ′, then 3+φ is elliptic in the free splitting T0, which is a
contradiction. If 3+φ is carried by A′, then Lemma 5.3 implies that 3+φ is elliptic
in TA′ . Thus 3+φ is also elliptic in the free splitting T0, again a contradiction. �

In [Fujiwara and Papasoglu 2006], the existence of JSJ decompositions for
splittings with slender edge groups ([loc. cit., Theorem 5.13]) is established via an
iterative process: one starts with a pair of splittings, and produces a new splitting
which is a common refinement (in the case of an elliptic-elliptic pair) [loc. cit.,
Proposition 5.10], or an enclosing subgroup [loc. cit., Definition 4.5] (in the case
of a hyperbolic-hyperbolic pair) [loc. cit., Proposition 5.8]. One then repeats this
process for all the splittings under consideration, and uses an accessibility result due
to Bestvina and Feighn [1991] to conclude that the process stops after finitely many
iterations. In order to use techniques of Fujiwara and Papasoglu, we need only ensure
that if two splittings belong to the set S, then the splittings created in this process
also belong to S. By examining the construction of an enclosing subgroup for a pair
of hyperbolic-hyperbolic splittings [Fujiwara and Papasoglu 2006, Proposition 4.7]
and using Lemma 5.3, we see that the enclosing graph decomposition of F for
this pair of splittings indeed belongs to S. Similarly, Lemma 5.3 implies that
the refinement of two elliptic-elliptic splittings that are contained in S is itself
contained in S. This discussion implies that JSJ decompositions exist for cyclic
splittings of F in which 3+φ is elliptic.

We conclude our foray into JSJ decompositions by using the theory of deforma-
tion spaces [Forester 2002; Guirardel and Levitt 2007a] to show that the set of JSJ
splittings of F in which 3+φ is elliptic is finite. By passing to a power, we will then
obtain a φ-invariant splitting in S.

Definition 5.5 (slide moves [Guirardel and Levitt 2007a, Section 7]). Let e = vw
and f = vu be adjacent edges in an F-tree T such that the edge stabilizer of f ,
denoted G f , is contained in Ge. Assume that e and f are not in the same orbit
as nonoriented edges. Define a new tree T ′ with the same vertex set as T and
replace f by an edge f ′ =wu equivariantly. Then we say f slides across e. Often,
a slide move is described on the quotient of T by F.
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Definition 5.6 [Guirardel and Levitt 2007a; Forester 2002]. The deformation
space D containing a tree T is the set of all trees T ′ such that there are equivariant
maps from T to T ′ and from T ′ to T, up to equivariant isometry.

Definition 5.7 [Forester 2002]. A tree T is reduced if no inclusion of an edge group
into either of its vertex groups is an isomorphism.

Theorem 5.8 [Guirardel and Levitt 2007a, Theorem 7.2]. If D is a nonascend-
ing deformation space, then any two reduced simplicial trees T, T ′ ∈ D may be
connected by a finite sequence of slides.

Deformation spaces consisting of trees such that no edge stabilizer properly
contains a conjugate of itself are examples of nonascending deformation spaces
[Guirardel and Levitt 2007a, Section 7]. We are only interested in such deformation
spaces here.

Lemma 5.9. Given a reduced cyclic splitting S, there are only finitely many slide
moves that can be performed on S. Moreover, any sequence of slide moves starting
at S has bounded length.

Proof. The first statement follows from the fact that S has finitely many orbits of
edges. For the second statement, first suppose that the splitting S/F does not have
any loops or circuits. Then it is clear that only finitely many slide moves can be per-
formed on S. If S has a loop, then we can slide an edge f along the loop e only once.
Indeed, we have G f ⊆ Ge and after sliding we have G f ′ ⊆ tGet−1, where t is the
stable letter corresponding to the loop. Since Ge∼=Z and Ge∩tGet−1

=1, G f ′ 6⊆Ge

which prevents sliding of f ′ over e. The proof in the case of a circuit is similar. �

Proof of Proposition 5.1. By assumption, there exists a one-edge cyclic splitting S
such that 3+φ is elliptic in S. The existence of JSJ decomposition for splittings in S

implies that the deformation space D for cyclic splittings in S is nonempty. Since
the edge stabilizer of the trees in D is Z, the space D is nonascending. Theorem 5.8
and Lemma 5.9 together imply that the set of reduced trees in D is finite. As
the set of reduced trees in D is φ-invariant, passing to a power yields a reduced
cyclic splitting S′ in D which is fixed by φk. The same argument works if S is a
maximally-cyclic splitting. �

Proof of Theorem 1.1 (loxodromic). Suppose that φ has a Z(max)-filling lamination,
whereby φ−1 does as well. Applying Proposition 4.9 we conclude that both T+φ
and T−φ are Z(max)-averse. We now argue that these trees determine distinct points
in X (max). We denote the dual lamination of a tree T by L(T ) [Coulbois et al. 2008].
Since the attracting lamination 3+φ and the repelling lamination 3−φ are different,
and 3∓φ ⊆ L(T±φ ) and 3±φ * L(T±φ ), we have that T+φ and T−φ are distinct points
in O. Both trees are mixing (Lemma 4.3), but [Horbez 2016, Proposition 4.3]
provides that if two mixing trees in O are equivalent (i.e., determine the same point
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in X (max)), then each must collapse onto the other. If there a collapse map from
T → T ′, then L(T ) ⊆ L(T ′). So if T+φ and T−φ were equivalent, then their dual
laminations would be equal, a contradiction.

We now argue that the limit set of 〈φ〉 acting on FZ(max) consists of two points.
There is a minor complication arising from the fact that the folding path con-
structed in Section 3 consisted entirely of trees in the boundary of outer space, but
Theorem 2.4 applies only to sequences in the interior. Indeed, recall from Section 3
that T denotes the universal cover of a relative train track map representing φ and
that T0 was obtained from T by first collapsing the F-translates of the A-minimal
subtree in T, then further collapsing according to a measure µ. Finally, recall
(Proposition 4.9) that the sequence Ti = λ

−i
φ T0φ

i where i ∈ N converges to T+φ ,
which is Z(max)-averse. Let Ri = Tφi and let R∞ = limi→∞ Ri . For all i ∈ N, Ri

collapses onto Ti , so Ri and Ti are compatible. That compatibility passes to the limit
follows from [Guirardel and Levitt 2017, Corollary A.12], so R∞ is compatible
with T+φ and is therefore Z-averse. Applying Theorem 2.4 to the sequence {Ri }i∈N,
we conclude that the image sequence ψ(Ri ) converges to [T+φ ] ∈ X

(max). Finally,
since the set of reducing splittings for a free simplicial F-tree is bounded, if S is
any Z(max)-splitting we have that Sφi converges to [T+φ ], with a similar statement
holding for iterates of φ−1. Thus, 3FZ〈φ〉 consists of exactly two points and φ
therefore acts loxodromically on FZ(max).

We now prove the converse: if φ acts loxodromically on FZ(max), then φ has
a Z(max)-filling lamination. Indeed, if φ acts loxodromically on FZ(max), then
φ necessarily acts loxodromically on FS, and thus has a filling lamination 3+φ .
If the lamination is not Z(max)-filling, then Proposition 5.1 implies that a power
of φ fixes a point in FZ(max), contradicting our assumption on φ. Thus, 3+φ is
Z(max)-filling. �

6. Examples

This section will provide several examples exhibiting the range of behaviors of
outer automorphisms acting on FZ. We begin with an automorphism that acts
loxodromically on FZ .

Example 6.1 (loxodromic element). Let φ be a rotationless automorphism with a
CT representative f : G→ G satisfying the following properties:

• f has exactly two strata, each of which is EG and nongeometric.

• The lamination corresponding to the top stratum of f is filling.

An explicit example satisfying these properties can be constructed using the sage-
train-tracks package written by T. Coulbois [2015]. The fact that the top lamination is
filling guarantees that φ acts loxodromically on FS. As both strata are nongeometric,
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H1

H2
ρ
2

ρ
1

H3

ρ
3

Figure 1. A CT representative for the automorphism constructed
in Example 6.2, which acts with bounded orbits but no fixed point.

[Handel and Mosher 2013b, Fact 1.42(1a)] guarantees that φ does not fix the
conjugacy class of any element of F, and therefore cannot possibly fix a cyclic
splitting. Corollary 1.2 implies that φ acts loxodromically.

Example 6.2 (bounded orbit without fixed point). By building on Example 6.1 and
[Handel and Mosher 2014, Example 4.2], we can construct an automorphism ψ

which acts on FZ with bounded orbits but without a fixed point. Let ψ be a three
stratum automorphism obtained from f by creating a duplicate of H2. Explicitly, ψ
has a CT representative f ′ : G ′→ G ′ defined as follows. The graph G ′ is obtained
by taking two copies of G and identifying them along G1. Each edge E of G ′ is
naturally identified with an edge of G, and f ′(E) is defined via this identification.
Moreover, the marking of G naturally gives a marking of G ′ (by a larger free group).
That f ′ is a CT is evident from the fact that f is a CT.

There are three laminations in L(ψ), and it’s evident that none are filling. Since
the top lamination in L(φ) (where φ is as in Example 6.1) is filling, we know that
L(ψ) must fill. Thus, ψ acts on FS with bounded orbits. As before, [Handel and
Mosher 2013b, Fact 1.42 (1a)] implies that ψ doesn’t fix the conjugacy class of any
element of F: while each stratum may have an INP, ρi , none of these INPs can be
closed loops, nor can they be concatenated to form a closed loop. Thus, ψ does not
fix any one-edge cyclic splitting and therefore must act on FZ with bounded orbits,
but no fixed point. See Figure 1 for a pictorial representation of ψ . The INPs ρ2

and ρ3 must each have at least one endpoint which is not in H1.

Example 6.3 (loxodromic element). Consider the outer automorphism φ : F4→ F4

given by
φ(a)= ab, φ(b)= bcab, φ(c)= d, φ(d)= cd.
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In [Reynolds 2012], it is shown that the stable tree for φ is indecomposable and
hence Z-averse. Therefore φ acts loxodromically on FZ .

Example 6.4 (fixed point). Let 62,1 be the surface of genus two with one puncture.
Consider the free homotopy class of a simple separating curve which divides 62,1

into two subsurfaces: a once punctured torus and a twice punctured torus. Placing
a pseudo-Anosov on each of these subsurfaces and taking the outer automorphism
induced by this mapping class yields an element of Out(F) that acts loxodromically
on FS, but fixes a point in FZ. A similar example using nonseparating simple
curve can be found in the proof of [Mann 2014, Proposition 3].

7. Virtually cyclic centralizers

In this section, we investigate centralizers of automorphisms acting loxodromically
on FZ . To do this, we use the machinery of completely split train tracks, and the
“disintegration” procedure of [Feighn and Handel 2009], which takes a rotationless
outer automorphism and returns an abelian subgroup of Out(F). The main result is:

Theorem 1.3. An outer automorphism with a filling lamination has a virtually
cyclic centralizer in Out(F) if and only if the lamination is Z-filling.

We begin with a terse review of disintegration for outer automorphisms.

7A. Disintegration and rotationless abelian subgroups in Out(F). Given a map-
ping class f in Thurston normal form, there is a straightforward way of making
a subgroup of the mapping class group, called the disintegration of f , by “doing
one piece at a time.” The subgroup is easily seen to be abelian as each pair of
generators can be realized as homeomorphisms with disjoint supports. The process
of disintegration in Out(F) is analogous, but more difficult.

The reader is warned that we will only review those ingredients from [Feighn
and Handel 2009] that will be used directly; the reader is directed there, specifically
to Section 6, for complete details. Given a rotationless outer automorphism φ, one
can form an abelian subgroup called D(φ). The process of disintegrating φ begins
by creating a finite graph, B, which records the interactions between different strata
in a CT representing φ. As a first approximation, the components of B correspond
to generators of D(φ). However, there may be additional relations between strata
that are unseen by B, so the number of components of B only gives an upper bound
to the rank of D(φ).

Let f : G → G be a CT representing the rotationless outer automorphism φ.
While the construction of D(φ) does depend on f , using different representatives
will produce subgroups that are commensurable.

Let Ei , E j be distinct linear edges in G with the same axis w so that f (Ei )=

Eiw
di and f (E j )= E jw

d j for integers di 6= d j . Recall that if di , d j > 0, then any
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path of the form Eiw
∗E j called an exceptional path. In the same scenario, if di

and d j have different signs, we call such a path a quasi-exceptional path. It would
be instructive for the reader to compute the f -image of some exceptional and quasi-
exceptional paths. We will need to consider a weakening of the complete splitting
of paths and circuits in f . The quasi-exceptional splitting of a completely split path
or circuit σ is the coarsening of the complete splitting obtained by considering each
quasi-exceptional subpath to be a single element.

Definition 7.1. Define a finite directed graph B as follows. There is one vertex vB
i

for each nonfixed irreducible stratum Hi . If Hi is NEG, then a vB
i -path is defined

as the unique edge in Hi ; if Hi is EG, then a vB
i -path is either an edge in Hi or a

taken connecting path in a zero stratum contained in H z
i . There is a directed edge

from vB
i to vB

j if there exists a vB
i -path κi such that some term in the QE-splitting

of f#(κi ) is an edge in H j . The components of B are labeled B1, . . . , BK . For
each Bs , define Xs to be the minimal subgraph of G that contains Hi for each NEG
stratum with vB

i ∈ Bs and contains H z
i for each EG stratum with vB

i ∈ Bs . We say
that X1, . . . , X K are the almost invariant subgraphs associated to f : G→ G.

The reader should note that the number of components of B is left unchanged if
an iterate of f# is used in the definition, rather than f# itself. In the sequel, we will
frequently make statements about B using an iterate of f#.

For each K -tuple Ea = (a1, . . . , aK ) of nonnegative integers, define

fEa(E)=
{

f ai
# (E) if E ∈ X i ,

E if E is fixed by f.

It turns out that fEa is always a homotopy equivalence of G [Feighn and Handel
2009, Lemma 6.7], but in general 〈 fEa | Ea is a nonnegative tuple〉 is not abelian. To
obtain an abelian subgroup, one has to pass to a certain subset of tuples which take
into account interactions between the almost invariant subgraphs that are unseen
by B. The reader is referred to [loc. cit., Example 6.9] for an example.

Definition 7.2. A K -tuple (a1, . . . , aK ) is called admissible if, for all axes µ, if

• Xs contains a linear edge Ei with axis µ and exponent di ,

• X t contains a linear edge E j with axis µ and exponent d j ,

• there is a vertex vB of B and a vB-path κ ⊆ Xr such that some element in the
quasi-exceptional family Ei E j is a term in the QE-splitting of f#(κ),

then ar (di − d j )= asdi − at d j .

The disintegration of φ is then defined as

D(φ)= 〈 fEa | Ea is admissible〉,

which is abelian by [loc. cit., Corollary 6.16].
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We now recall some useful facts concerning abelian subgroups of Out(F), which
were studied in [Feighn and Handel 2009].

If an abelian subgroup H is generated by rotationless automorphisms, then all
elements of H are rotationless [loc. cit., Corollary 3.13]. In this case, H is said to be
rotationless. Rotationless abelian subgroups of Out(F) have finitely many attracting
laminations ([loc. cit., Lemma 4.4]), i.e., if H is abelian and L(H) :=

⋃
φ∈H L(φ),

then |L(H)|<∞.
Feighn and Handel [2009] associated to each rotationless abelian subgroup of

Out(F) a finite collection of (nontrivial) homomorphisms to Z. Combining these,
one obtains a homomorphism � : H → ZN that is injective [Feighn and Handel
2009, Lemma 4.6]. An element ψ ∈ H is said to be generic if all coordinates
of �(ψ) are nonzero. For the purposes of this section, we require only two facts
concerning �. First, some of the coordinates of � correspond to elements in the
finite set L(H) (there are other coordinates, which we will not need). Second is the
fact that the coordinate of �(ψ) corresponding to 3 ∈ L(H) is positive if and only
if 3 ∈ L(ψ).

7B. From disintegrations to centralizers. In this subsection, we explain how to
deduce Theorem 1.3 from the following proposition concerning the disintegration of
elements acting loxodromically on FZ . The proof of Proposition 7.3 is postponed
until the next subsection.

Proposition 7.3. If φ is rotationless and has a Z-filling lamination, then D(φ) is
virtually cyclic.

Proof of Theorem 1.3. Suppose ψ ∈ C(φ) has infinite order and assume that
〈φ,ψ〉 ' Z2. If no such element exists, then C(φ) is virtually cyclic, as there is a
bound on the order of a finite subgroup of Out(F) [Culler 1984]. Now let HR be
the finite index subgroup of 〈φ,ψ〉 consisting of rotationless elements [Feighn and
Handel 2009, Corollary 3.14] and let ψ ′ be a generic element of this subgroup. If
the coordinate of �(ψ ′) corresponding to the Z-filling lamination 3+φ is negative,
then replace ψ ′ by (ψ ′)−1, which is also generic. Since 3+φ ∈ L(ψ

′) is Z-filling,
Theorem 1.1 implies that ψ ′ acts loxodromically on FZ. Since ψ ′ is generic in
HR , [Feighn and Handel 2009, Theorem 7.2] says that D(ψ ′)∩ 〈φ,ψ〉 has finite
index in 〈φ,ψ〉. This contradicts Proposition 7.3, which says that the disintegration
of ψ ′ is virtually cyclic. �

7C. The proof of Proposition 7.3. The idea of the proof is as follows. We noted
above that the number of components in B only gives an upper bound to the rank
of D(φ); it may happen that there are interactions between the strata of f that are
unseen by B (Definition 7.2). We will obtain precise information about the structure
of B; it consists of one main component (B1), and several components consisting
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of a single point (B2, . . . , BK ). We will then show that the admissibility condition
provides sufficiently many constraints so that choosing a1 determines a2, . . . , aK .
Thus, the set of admissible tuples consists of a line in ZK.

Let f : G→ G be a CT representing φ with filtration ∅ = G0 ⊂ G1 ⊂ · · · ⊂

G M = G. Let 3+φ ∈ L(φ) be Z-filling and let ` ∈ 3+φ be a generic leaf. As 3+φ
is filling, the corresponding EG stratum is necessarily the top stratum, HM . We
will understand the graph B by studying the realization of ` in G. The results of
[Bestvina et al. 2000, §3.1], together with Lemma 4.25 of [Feighn and Handel
2011] give that the realization of ` in G is completely split, and this splitting is
unique. Thus, we may consider the QE-splitting of `.

We begin with a lemma that allows the structure of INPs and quasi-exceptional
paths to be understood inductively.

Lemma 7.4. Let Hr be a nonfixed irreducible stratum and let ρ be a path of height
s ≥ r which is either an INP or a quasi-exceptional path. Assume further that ρ
intersects Hr nontrivially. Then one of the following holds:
• Hr and Hs are NEG linear strata with the same axis, each consisting of a

single edge Er (resp. Es), and ρ = Esw
k Er , for some k ∈ Z, where w is a

closed, root-free Nielsen path of height < s.

• ρ can be written as a concatenation ρ = β0ρ1β1ρ2β2 · · · ρ jβ j , where each ρi

is an INP of height r and each βi is a path contained in G− int(Hr ) (some of
the βi ’s may be trivial).

Proof. The proof proceeds by strong induction on the height s of the path ρ. In the
base case, s = r , and ρ is either an INP of height r or a quasi-exceptional path of
the form described. The inductive step breaks into cases according whether Hs is
an EG stratum, or an NEG stratum.

If Hs is an EG stratum, then ρ must be an INP, as there are no exceptional paths
of EG height. In this case, [Feighn and Handel 2011, Lemma 4.24 (2)] provides a
decomposition of ρ into subpaths of height s and maximal subpaths of height < s,
and each of the subpaths of height < s is a Nielsen path. The inductive hypothesis
then guarantees that each of these Nielsen paths has the desired form. By breaking
apart and combining these terms appropriately, we conclude that ρ does as well.

Suppose now that Hs is an NEG stratum and let Es be the unique edge in Hs .
Using (NEG Nielsen paths), we see that Es must be a linear edge, and therefore
that ρ is either Esw

k Es or Esw
k E ′, where E ′ is another linear edge with the same

axis and w is a closed root free Nielsen path of height < s. If Hr is NEG linear, and
E ′ = Er , then the first conclusion holds. Otherwise, we may apply the inductive
hypothesis to w to obtain a decomposition as desired. This completes the proof. �

We now begin our study of the graph B. We call the component of B contain-
ing vB

M , the vertex corresponding to the topmost stratum of f , the main component.
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Lemma 7.5. All nonlinear NEG strata are in the main component of B.

Proof. Let Hr be a nonlinear NEG stratum, with single edge Er . It is enough to
show that the single edge Er occurs as a term in the QE-splitting of ` (henceforth,
we will say that Er is a QE-splitting unit in `), as this implies that there is an edge
in B connecting vB

M to vB
r . As ` is filling, we know that its realization in G must

cross Er . If the corresponding QE-splitting unit of ` is the single edge E , then we
are done. The only other possibility is that the QE-splitting unit is an INP or a
quasi-exceptional path of some height s ≥ r . An application of Lemma 7.4 shows
that this is impossible, as it would imply the existence of an INP of height r or a
quasi-exceptional path of the form Erw

∗E ′, contradicting (NEG Nielsen paths). �

Lemma 7.6. All EG strata are in the main component of B.

Proof. Let Hr be an EG stratum. As before, it is enough to show that some
(every) edge of Hr occurs as a QE-splitting unit of `. There are three types of
QE-splitting units that can cross Hr : a single edge in Hr , an INP of height ≥ r , or a
quasi-exceptional path. In the first case, we are done, so suppose that every time `
crosses Hr , the corresponding QE-splitting unit is an INP or a quasi-exceptional
path. We now argue that this situation leads to a contradiction.

We may write ` as a concatenation `= · · · γ1σ1γ2σ2 · · · , where each σi is a QE-
splitting unit of ` which intersects int(Hr ), and each γi is a maximal concatenation
of QE-splitting units of ` which do not intersect int(Hr ) (some γi ’s may be trivial).
By assumption, each σi is an INP or a QEP. Applying Lemma 7.4 to each of the σi ’s,
then combining and breaking apart the terms appropriately, we see that ` can be
written as a concatenation `= · · · γ1ρ1γ2ρ2 · · · where each ρi is the unique INP of
height r or its inverse. Call this INP ρ.

We will now use the information we have about ` to find a Z-splitting in which `
is carried by a vertex group. The existence of such a splitting will contradict our
assumption that ` is a generic leaf of the Z-filling lamination 3+φ .

We now modify G to produce a 2-complex, G ′′, whose fundamental group is
identified with F. First assume Hr is nongeometric, so that ρ has distinct endpoints,
v0 and v1. Let G ′ be the graph obtained from G by replacing each vertex vi for
i ∈ {0, 1} with two vertices, vu

i and vd
i (u and d stand for “up” and “down”),

which are to be connected by an edge Ei . For each edge E of G incident to vi ,
connect it in G ′ to the new vertices as follows: if E ∈ Hr , then E is connected to
vd

i , and if E /∈ Hr , then E is connected to vu
i . G ′ deformation retracts onto G by

collapsing the new edges, and this retraction identifies π1(G ′)with F via the marking
of G. Let R = [0, 1] × [0, 1] be a rectangle and define G ′′ by gluing {i} × [0, 1]
homeomorphically onto Ei for i ∈ {0, 1}, then gluing [0, 1]×{0} homeomorphically
to the INP ρ. As only three sides of the rectangle have been glued, G ′′ deformation
retracts onto G ′, and its fundamental group is again identified with F.
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vd
0 vd

1

vu
1vu

0

E0 E1

edges in H c
r

ρ

edges in Hr

Figure 2. G ′′ when Hr is a nongeometric EG stratum.

The construction of G ′′ differs only slightly if Hr is geometric. In this case, ρ is
a closed loop based at v0 and we blow up v0 to two vertices, vu

0 and vd
0 , that are

connected by an edge E0. Instead of gluing in a rectangle, we glue in a cylinder
R = S1

×[0, 1]; {p}× [0, 1] is glued homeomorphically to E0, where p is a point
in S1, and S1

×{0} is glued homeomorphically to ρ.
Recall that in G, the leaf ` can be written as a concatenation `= · · · γ1ρ1γ2ρ2 · · · ,

where each ρi is either ρ or ρ. Thus we can realize ` in G ′ as `= · · · γ1ρ
′

1γ2ρ
′

2 · · · ,
where each ρ ′i is either E0ρE1 or E1ρE0. In G ′′, each ρ ′i is homotopic rel endpoints
to a path that travels along the top of R, rather than down-across-and-up. Thus, after
performing a (proper!) homotopy to the image of `, we can arrange that it never
intersects the interior of R, nor the vertical sides of R. Cutting R along its centerline
yields a Z-splitting S of F, and ` is carried by a vertex group of this splitting. If
Hr is nongeometric, then S is a free splitting and if Hr is geometric, then S is a
cyclic splitting. In either case, so long as S is nontrivial, we have contradicted our
assumption that the lamination is Z-filling. �

Claim 7.7. The splitting S is nontrivial.

Proof of Claim 7.7. We first handle the case that Hr is geometric. We have
described a one-edge cyclic splitting S which was obtained as follows: cut G ′ along
the edge E0, that is, collapse G ′ − E0 to get a free splitting of F, then perform
the edge fold corresponding to 〈w〉 (see Section 2L for definition), where w is the
conjugacy class of the INP ρ. If G ′ − E0 is connected, then the free splitting is
an HNN extension, and there is no danger of S being trivial as rk(F)≥ 3. On the
other hand, if G ′− E0 is disconnected, then let Gd ′ and Gu ′ be the components of
G ′− E0 containing vd

0 and vu
0 respectively. The free splitting which is folded to

get S is precisely π1(Gd ′) ∗π1(Gu ′). In this case, Gd ′ is necessarily a component
of Gr and [Feighn and Handel 2011, Proposition 2.20 (2)] together with (filtration)
imply that this component is a core graph. As Hr is EG, the rank of π1(Gd ′) is at
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least two and the splitting S is therefore nontrivial. To see that rk(π1(Gu ′)) ≥ 1,
we need only recall that ` is not periodic and is carried by π1(Gc ′) ∗ 〈w〉.

In the case that Hr is nongeometric, the splitting obtained above is a free splitting.
If G ′ − {E0, E1} is connected, then the free splitting is an HNN extension, and
as before S is nontrivial. If G ′ − {E0, E1} is disconnected, then the component
containing vd

0 (and by necessity vd
1 ), denoted Gd ′, corresponds to a vertex group of S.

By the same reasoning as in the previous case, we get that π1(Gd ′) is nontrivial.
As before, the other vertex group of S carries the leaf ` and hence S is a nontrivial
free splitting. �

Remark 7.8. We would like the reader to note that the above proof actually gives
restrictions on the way two EG strata in a CT can interact. For example, suppose
that φ is represented by a CT, f : G→ G, with exactly two strata, both of which
are EG. Assume further that H1 is nongeometric and has an INP. A priori, there
are three ways that H2 can interact with H1: (1) there is some edge E in H2 such
that f#(E) contains an edge from H1 as a splitting unit, (2) the f# image of each
edge in H2 is entirely contained in H2, or (3) whenever E is an edge from H2

and f#(E) crosses H1, the corresponding splitting unit is the INP of height 1. In
the first case, 32 ⊃ 31. In the second case, we may think of the strata as being
side-by-side, rather than H2 being stacked on top of H1. The proof of Lemma 7.6
implies that the third possibility never happens. Indeed, the proof provides a free
splitting which is φ-invariant and the vertex groups of this splitting form a free
factor system which lies strictly between the free factor systems π1(G1) and π1(G2).
This contradicts (filtration) in the definition of a CT, which states that the filtration
∅= G0 ⊂ G1 ⊂ · · · ⊂ G M = G must be reduced.

Before we address the NEG linear strata and conclude the proof of Proposition 7.3,
we present a final lemma concerning the structure of B.

Lemma 7.9. Assume Hr is a linear NEG stratum consisting of an edge Er . If vB
r

is not in the main component of B, then the component of B containing vB
r is a

single point.

Proof. This follows directly from the definition of B, together with Lemmas 7.5
and 7.6. If Hr is a linear NEG stratum, then the definition of B implies that vB

r has
no outgoing edges. For any edge in B whose terminal vertex is vB

r , its initial vertex
necessarily corresponds to a nonlinear NEG stratum or an EG stratum, and hence
is in the main component of B. �

When dealing with an NEG linear stratum, we would like to carry out a similar
strategy to the EG case: blow up the terminal vertex, v0, to an edge and glue in a
cylinder, thereby producing a cyclic splitting in which ` is carried by a vertex group.
The main difficulty in implementing this comes from other linear edges with the
same axis; for each such edge, one has to decide whether to glue it in G ′ to vd

0 or vu
0 .
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Let µ be an axis with corresponding unoriented root-free conjugacy class w.
Let Eµ be the set of linear edges in G with axis µ. Define a relation on Eµ by
declaring E ∼R E ′ if the quasi-exceptional path Ew∗E ′ is a QE-splitting unit in `
or if both E and E ′ are QE-splitting units in `. Then let ∼ be the equivalence
relation generated by ∼R . Note that all edges in Eµ which occur as QE-splitting
units in ` are in the same equivalence class.

As mentioned above, the difficulty in adapting the strategy used for EG stratum to
the present situation lies in deciding where to glue edges (top or bottom) in G ′. The
existence of multiple classes in the equivalence relation ∼ will provide instructions
for how to glue edges from Eµ in G ′ so that the leaf never crosses the cylinder in G ′′.

Lemma 7.10. There is only one equivalence class of ∼. Moreover, at least one
edge in Eµ occurs as a term in the QE-splitting of `.

Proof. Suppose for a contradiction that there is more than one equivalence class
of ∼ and let [E] be an equivalence class for which no edge in [E] is a QE-splitting
unit in `. Now build G ′ as in the proof of Lemma 7.6. Let v0 be the terminal
vertex of the edges in Eµ (they all have the same terminal vertex), and define G ′ by
blowing up v0 into two vertices, vu

0 and vd
0 , which are connected by an edge E0.

The terminal vertex of each edge of [E] is to be glued in G ′ to vu
0 , while all other

edges in G that are incident to v0 are glued to vd
0 . Define G ′′ as before, gluing the

bottom of a cylinder R along the closed loop w, and gluing the vertical interval
above v0 homeomorphically to the edge E0.

The definition of ∼ guarantees that ` is carried by a vertex group of the cyclic
splitting determined by cutting along the centerline of R. Indeed, whenever ` crosses
an edge from [E], the corresponding QE-splitting unit is either an INP or a quasi-
exceptional path E ′w∗E ′′, where E ′, E ′′ ∈ [E]. Repeatedly applying Lemma 7.4 to
each of these terms, then rearranging and combining terms appropriately, we see
that ` can be written in G as a concatenation `= · · · γ1ρ1γ2ρ2 · · · where each ρi

is either E ′w∗E ′ or E ′w∗E ′′ with E ′, E ′′ ∈ [E]. Thus we can realize ` in G ′

as ` = · · · γ1ρ
′

1γ2ρ
′

2 · · · , where each ρ ′i is E ′E0w
∗E0 E ′ or E ′E0w

∗E0 E ′′. In G ′′,
each ρ ′i is homotopic rel endpoints to a path that travels along the top of R, rather
than down-across-and-up. Thus, we have again produced a cyclic splitting in which
` is carried by a vertex group.

We now argue that the splitting is nontrivial. There is a free splitting S which
comes from cutting the edge E0 in G ′, which cannot be a self loop. The cyclic
splitting of interest S′ is obtained from S by performing the edge fold corresponding
to w. If G ′− E0 is connected, then S′ is an HNN extension with edge group 〈[w]〉.
As rk(F) ≥ 3, the vertex group has rank at least two and we are done. Now
suppose E0 is separating so that G ′− E0 consists of two components. Let G ′u be
the component containing the vertex vu

0 and let G ′d be the other component. The
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vertex groups of the splitting S′ are π1(Gd) and π1(Gu) ∗ 〈[w]〉. The fact that v is
a principal vertex guarantees that π1(Gd) 6∼= Z, and the fact that G is a finite graph
without valence one vertices ensures that π1(Gu) is nontrivial.

The proof of the second statement is exactly the same as that of the first. �

Finally, we finish the proof of Proposition 7.3. As before, B1 is the main
component of B, with corresponding almost invariant subgraph X1. All other
components B2, . . . , BK are single points, and each almost invariant subgraph X i

consist of a single linear edge. Let (a1, . . . , aK ) be a K -tuple and suppose that a1

has been chosen. We claim that imposing the admissibility condition determines all
other ai ’s.

Suppose first that Ei , E j are linear edges with the same axis, µ, such that Ei ∈ X1,
E j ∈ Xk , and Ei ∼R E j . Let di and d j be the exponents of Ei and E j respectively.
Applying the definition of admissibility with s = r = 1, t = k, and κ a vB path
such that f#(κ) contains a quasi-exceptional path of the form Eiw

∗E j in its QE-
splitting (such a κ must exist as a quasi-exceptional path of this type occurs in the
QE-splitting of `), we obtain the relation a1(di − d j ) = a1di − akd j . Thus ak is
determined by a1.

Now suppose Ei and E j are as above, but rather than being related by ∼R , we
only have that Ei ∼ E j . There is a finite chain of ∼R-relations to get from Ei to E j .
At each stage in this chain, the definition of admissibility (applied with r = 1 and κ
chosen appropriately) will impose a relation that determines the next coordinate
from the previous ones. Ultimately, this determines ak .

We have thus shown that an admissible tuple is completely determined by
choosing a1, and therefore that the set of admissible tuples forms a line in ZK.
Therefore D(φ) is virtually cyclic.

7D. A converse to Proposition 7.3.

Proposition 7.11. If φ has a filling lamination which is not Z-filling, then the
centralizer of some power of φ in Out(F) is not virtually cyclic.

Proof. Since φ has a filling lamination which is not Z-filling, it follows by
Proposition 5.1 that for some k, φk fixes a one-edge cyclic splitting S.

Suppose S/F is a free product with amalgamation with vertex stabilizers 〈A, w〉
and B and edge group 〈w〉 ⊂ B. Consider the Dehn twist Dw given by S as
follows: Dw acts as identity on B and conjugation by w on A. The automorphism
Dw has infinite order. We claim that Dw and φk commute. Indeed, consider a
generating set {a1, . . . , ak, b1, . . . bm} for F such that the ai ’s generate A and the bi ’s
generate B. Choose a representative8 of φ such that8k(B)= B and8k(〈A, w〉)=
〈A, w〉b for some element b ∈ B. Since Dw is identity on B and 8k(B)= B, we
have 8k(Dw(bi )) = Dw(8

k(bi )) for all generators bi . Since Dw(ai ) = waiw,
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8k(w) = w and 8k(〈A, w〉) = 〈A, w〉b, we have Dw(8
k(ai )) = 8

k(Dw(ai )) for
all generators ai . Thus Dw and φk commute.

We now address the case that S/F is an HNN extension. Assume S/F has stable
letter t , edge group 〈w〉 and vertex group 〈A, t̄wt〉. Since the cyclic splitting S
is obtained from a free HNN extension, with vertex group A and stable letter t ,
by an edge fold, we have that a basis of F is given by {a1, a2, . . . , ak, t}, where
the ai ’s generate A. Consider the Dehn twist Dw determined by S such that Dw

is identity on A and sends t to wt . The automorphism Dw has infinite order.
Choose a representative 8 of φ such that 〈A, t̄wt〉 is 8k-invariant. Then for every
generator ai , 8k(ai ) is a word in the ai ’s and t̄wt . Since Dw is identity on A
and fixes t̄wt , we get 8k(Dw(ai )) = Dw(8

k(ai )). Again, since 〈A, t̄wt〉 is 8k-
invariant, 8k(t) is equal to wm tα, where α is some word in 〈A, t̄wt〉 and m ∈ Z.
On one hand, 8k(Dw(t)) = 8k(wt) = 8k(w)8k(t) = wwm tα and on the other
hand, Dw(8

k(t)) = Dw(w
m tα) = wm Dw(t)Dw(α) = w

mwtα. Thus Dw and φk

commute.
Thus when φk fixes a cyclic splitting, then an infinite order element other than a

power of φk exists in the centralizer of φk. �
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MATCHED PAIRS OF 2-REPRESENTATIONS:

A GEOMETRIC APPROACH
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Li-Bland’s correspondence between linear Courant algebroids and Lie 2-
algebroids is explained at the level of linear and core sections versus graded
functions, and shown to be an equivalence of categories. More precisely, de-
composed VB-Courant algebroids are shown to be equivalent to split Lie 2-
algebroids in the same manner as decomposed VB-algebroids are equivalent
to 2-term representations up to homotopy (Gracia-Saz and Mehta). Several
special cases are discussed, yielding new examples of split Lie 2-algebroids.

We prove that the bicrossproduct of a matched pair of 2-representations
is a split Lie 2-algebroid and we explain this result geometrically, as a conse-
quence of the equivalence of VB-Courant algebroids and Lie 2-algebroids.
This explains in particular how the two notions of the “double” of a matched
pair of representations are geometrically related. In the same manner, we
explain the geometric link between the two notions of the double of a Lie
bialgebroid.
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with a representation of A on B and a representation of B on A,1 satisfying some
compatibility conditions, which can be interpreted in two manners: first the direct
sum A˚B carries a Lie algebroid structure over M, such that A and B are Lie
subalgebroids and such that the representations give “mixed” brackets

Œ.a; 0/; .0; b/�D .�rba;rab/

for all a 2 �.A/ and b 2 �.B/. The direct sum A˚B with this Lie algebroid
structure is called here the bicrossproduct of the matched pair. Note that conversely,
any Lie algebroid with two transverse and complementary subalgebroids defines a
matched pair of Lie algebroids [Mokri 1997].

Alternatively, the fibre product A �M B, which has a double vector bundle
structure with sides A and B and with trivial core, is as follows a double Lie
algebroid: for a 2 �.A/, we write al W B ! A �M B, bm 7! .a.m/; bm/ for
the linear section of A�M B ! B, and similarly, a section b 2 �.B/ defines a
linear section bl 2 �A.A�M B/. The Lie algebroid structure on A�M B! B is
defined by

Œal
1; a

l
2�D Œa1; a2�

l and �.al/D bra 2 X
l.B/

for a; a1; a2 2 �.A/, where we denote by bD 2 X.B/ the linear vector field defined
by a derivation D on B. The Lie algebroid structure on A�M B!A is defined
accordingly by the Lie bracket on sections of B and the B-connection on A. The
double Lie algebroid A�M B is then called the double of the matched pair. Note
that conversely, any double Lie algebroid with trivial core is the fibre product of
two vector bundles and defines a matched pair of Lie algebroids [Mackenzie 2011].

These two constructions encoding the compatibility conditions for a matched
pair of representations seem at first sight only related by the fact that they both
encode matched pairs. A similar phenomenon can be observed with the notion
of Lie bialgebroid: A Lie bialgebroid is a pair of Lie algebroids A;A�!M in
duality, satisfying some compatibility conditions, which can be described in two
manners. First, the direct sum A˚A�!M inherits a Courant algebroid structure
with the two Lie algebroids A and A� as transverse Dirac structures, and mixed
brackets given by

ŒŒ.a; 0/; .0; ˛/��D .�i˛dA�a; £a˛/

for all a 2 �.A/ and ˛ 2 �.A�/. Alternatively, the cotangent bundle T �A, a
double vector bundle with sides A and A� and core T �M, which is isomorphic as
a double vector bundle to T �A�, carries two linear Lie algebroid structures. The
first, on T �A! A, is the cotangent Lie algebroid induced by the linear Poisson

1For the sake of simplicity, we write r W �.A/��.B/! �.B/ and r W �.B/��.A/! �.A/

for the two flat connections. It is clear from the indexes which connection is meant.
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structure defined on A by the Lie algebroid structure on A�. The second, on
T �A' T �A�!A�, is defined in the same manner by the Lie algebroid structure
on A. The compatibility conditions for A and A� to build a Lie bialgebroid are
equivalent to the double Lie algebroid condition for .T �A;A;A�;M / [Mackenzie
2011; Gracia-Saz et al. 2018]. Again, the cotangent double of the Lie algebroid
and the bicrossproduct Courant algebroid seem only related by the fact that they
are two elegant ways of encoding the Lie bialgebroid conditions.

One feature of this paper is the explanation of the deeper, more intrinsic relation
between the bicrossproduct of a matched pair of Lie algebroids and its double on
the one hand, and between the bicrossproduct of a Lie bialgebroid and its cotangent
double on the other hand. In both cases, the bicrossproduct can be understood as a
purely algebraic construction, which is geometrised by the corresponding double
Lie algebroid. More generally, we explain how the matched pair of two 2-term
representations up to homotopy [Gracia-Saz et al. 2018] defines a bicrossproduct
split Lie 2-algebroid, and we relate the latter to the decomposed double Lie al-
gebroid found in [Gracia-Saz et al. 2018] to be equivalent to the matched pair of
2-representations.

These three classes of examples of bicrossproduct constructions versus double Lie
algebroid constructions are described here as three special cases of the equivalence
between the category of VB-Courant algebroid, and the category of Lie 2-algebroids
[Li-Bland 2012].

The equivalence of VB-Courant algebroids with Lie 2-algebroids. Let us be a little
more precise. Supermanifolds were introduced in the 1970s by physicists, as a
formalism to describe supersymmetric field theories, and have been extensively
studied since then (see, e.g., [Sardanashvily 2009; Varadarajan 2004]). A super-
manifold is a smooth manifold the algebra of functions of which is enriched by
anticommuting coordinates. Supermanifolds with an additional Z-grading have
been used since the late 1990s among others in relation with Poisson geometry and
Lie and Courant algebroids [Ševera 2005; Roytenberg 2002; Voronov 2002].

An equivalence between Courant algebroids and N-manifolds of degree 2 en-
dowed with a symplectic structure and a compatible homological vector field
[Roytenberg 2002] is at the heart of the current interest in N-graded manifolds
in Poisson geometry, as this algebraic description of Courant algebroids leads
to possible paths to their integration [Ševera 2005; Li-Bland and Ševera 2012;
Mehta and Tang 2011]. In [Jotz Lean 2018b] we showed how the category of N-
manifolds of degree 2 is equivalent to a category of double vector bundles endowed
with a linear involution. The latter involutive double vector bundles are dual to
double vector bundles endowed with a linear metric. In this paper we extend this
correspondence to an equivalence between the category of N-manifolds of degree 2

endowed with a homological vector field and a category of VB-Courant algebroids,
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i.e., metric double vector bundles endowed with a linear Courant algebroid structure.
We recover in this manner Li-Bland’s one-to-one correspondence between Lie
2-algebroids and VB-Courant algebroids [2012], which we better formulate as an
equivalence of categories.

Li-Bland’s construction of a VB-Courant algebroid from a given Lie 2-algebroid
relies on the equivalence of symplectic Lie 2-algebroids with Courant algebroids
[Roytenberg 2002]: given a Lie 2-algebroid, its cotangent space is a symplectic Lie
2-algebroid, which corresponds hence to a Courant algebroid. The linear property
of the cotangent space induces an additional vector bundle structure on the obtained
Courant algebroid, a linear structure which turns out to be compatible with the
pairing, the anchor and the bracket. While this method is nice and very simple, it is
not constructive in the sense that the sheaf of graded functions on the Lie 2-algebroid
are not described as a sheaf of special sections of the corresponding VB-Courant
algebroid. Further, the exact correspondences of the degree 2 structure with the
linear pairing (that we describe in [Jotz Lean 2018b]) and of the homological vector
field with the linear anchor and bracket cannot be read directly from Li-Bland’s
proof.

We remedy this and provide a new formulation of Li-Bland’s equivalence that
does not use Roytenberg’s description [2002] of Courant algebroids via symplectic
Lie 2-algebroids. Since we explain precisely how functions of degree 0, 1 and 2
on the Lie 2-algebroid side correspond to special functions and sections of the
corresponding VB-Courant algebroid, the result presented here is in our opinion
more convenient to work with when looking at concrete examples.

Original motivation. Let us explain in more detail our methodology and our original
motivation. A VB-Lie algebroid is a double vector bundle .DIA;BIM / with one
side D! B endowed with a Lie algebroid bracket and an anchor that are linear
over a Lie algebroid structure on A!M. Gracia-Saz and Mehta [2010] prove that
linear decompositions of VB-algebroids are equivalent to super-representations, or
in other words, to 2-representations.

The definition of a VB-Courant algebroid is very similar to the one of a VB-
algebroid. The Courant bracket, the anchor and the nondegenerate pairing all have
to be linear. In [Jotz Lean 2018a] we prove that the standard Courant algebroid over
a vector bundle can be decomposed into a connection, a Dorfman connection, a
curvature term and a vector bundle map, in a manner that resembles very much the
main result in [Gracia-Saz and Mehta 2010]. In other words, as linear splittings of
the tangent space TE of a vector bundle E are equivalent to linear connections on
the vector bundle, linear splittings of the Pontryagin bundle TE˚T �E over E are
equivalent to a certain class of Dorfman connections [Jotz Lean 2018a]. Further, as
the Lie algebroid structure on TE!E can be described in a splitting in terms of
the corresponding connection, the Courant algebroid structure on TE˚T �E!E
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is completely encoded in a splitting by the corresponding Dorfman connection
[Jotz Lean 2018a].

Our original goal in this project was to show that the work done in [Jotz Lean
2018a] is in fact a very special case of a general result on linear splittings of VB-
Courant algebroids, in the spirit of Gracia-Saz and Mehta’s work [2010]. Along the
way, we proved the equivalence of Œ2�-manifolds with metric double vector bundles
[Jotz Lean 2018b]. This paper builds upon that equivalence and proves that a
linear Lagrangian splitting of a VB-Courant algebroid decomposes the VB-Courant
algebroid structure in the components of a split Lie 2-algebroid.

Note that our correspondence of decomposed VB-Courant algebroids with split
Lie 2-algebroids is also described (with slightly different conventions) in the inde-
pendent work of del Carpio-Marek [2015].

While the methods used in [Jotz Lean 2018b; Li-Bland 2012] do not use splittings
of the Œ2�-manifolds and metric double vector bundles, it appears here more natural to
us to work with split objects. First, the equivalence of the underlying Œ2�-manifolds
with metric double vector bundles was already established and it is now much
more convenient to work in splittings versus Lagrangian double vector bundle
charts — the definition of the homological vector field that corresponds to a linear
Courant algebroid structure is easily done in splittings (see Section 3B), but we
did not find a good coordinate free definition of it using the techniques given by
[Jotz Lean 2018b]. Second, working with splittings is necessary in order to exhibit
the similarity with Gracia-Saz and Mehta’s techniques [2010], which is one of our
main goals. Finally, as explained below, the construction of the bicrossproduct of a
matched pair of 2-representations is an algebraic description of the construction
of a decomposed VB-Courant algebroid from a decomposed double Lie algebroid,
just as 2-representations are equivalent to decomposed VB-Lie algebroids.

Application: the bicrossproduct of a matched pair of 2-representations. The equiv-
alence of matched pairs of 2-representations with a certain class of split Lie
2-algebroids appears as a natural class of examples of our correspondence of
decomposed VB-Courant algebroids with split Lie 2-algebroids. A double vector
bundle .DIA;BIM /with core C and two linear Lie algebroid structures on D!A

and D! B is a double Lie algebroid if and only if the pair of duals .D�
A
ID�

B
/

is a VB-Lie bialgebroid over C �. Equivalently, D�
A
˚C� D�

B
is a VB-Courant

algebroid over C �, with side A˚B and core B�˚A�, and with two transverse
Dirac structures D�

A
and D�

B
. A decomposition of D defines on the one hand a

matched pair of 2-representations [Gracia-Saz et al. 2018], and on the other hand a
Lagrangian decomposition of D�

A
˚C� D�

B
, hence a split Lie 2-algebroid. Once

this geometric correspondence has been found, it is straightforward to construct
algebraically the split Lie 2-algebroid from the matched pair, and vice versa.
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Outline, main results and applications. This paper is organised as follows.
Section 2: We describe the main result in [Jotz Lean 2018b] — the equivalence

of Œ2�-manifolds with metric double vector bundles — and we recall the background
on double Lie algebroids and matched pairs of representations up to homotopy that
will be necessary for our main application on the bicrossproduct of a matched pair
of 2-representations.

Section 3: We start by recalling necessary background on Courant algebroids,
Dirac structures and Dorfman connections. Then we formulate in our own manner
Sheng and Zhu’s definition [2017] of split Lie 2-algebroids. We write in coordinates
the homological vector field corresponding to a split Lie 2-algebroid, showing
where the components of the split Lie 2-algebroid appear. In Section 3D, we give
several classes of examples of split Lie 2-algebroids, introducing in particular the
standard split Lie 2-algebroids defined by a vector bundle. Finally we describe
morphisms of split Lie 2-algebroids.

Section 4: We give the definition of VB-Courant algebroids [Li-Bland 2012] and
we relate split Lie 2-algebroids with Lagrangian splittings of VB-Courant algebroids,
in the spirit of Gracia-Saz and Mehta’s description of split VB-algebroids via 2-
term representations up to homotopy [2010]. Then we describe the VB-Courant
algebroids corresponding to the examples of split Lie 2-algebroids found in the
preceding section, and we prove that the equivalence of categories established in
[Jotz Lean 2018b] induces an equivalence of the category of VB-Courant algebroids
with the category of Lie 2-algebroids.

Section 5: We construct the bicrossproduct of a matched pair of 2-representations
and prove that it is a split Lie 2-algebroid. We then explain geometrically this result
by studying VB-bialgebroids and double Lie algebroids.

Appendix: We give the proof of our main theorem, describing decomposed
VB-Courant algebroids via split Lie 2-algebroids.

Prerequisites, notation and conventions. We write pM WTM!M, qE WE!M

for vector bundle maps. For a vector bundle Q!M we often identify without
further mention the vector bundle .Q�/� with Q via the canonical isomorphism.
We write h � ; � i for the canonical pairing of a vector bundle with its dual; i.e.,
ham; ˛mi D ˛m.am/ for am 2 A and ˛m 2 A�. We use several different pairings;
in general, which pairing is used is clear from its arguments. Given a section "
of E�, we always write `" WE! R for the linear function associated to it, i.e., the
function defined by em 7! h".m/; emi for all em 2E.

Let M be a smooth manifold. We denote by X.M / and �1.M / the sheaves
of local smooth sections of the tangent and the cotangent bundle, respectively.
For an arbitrary vector bundle E!M, the sheaf of local sections of E will be
written �.E/. Let f WM !N be a smooth map between two smooth manifolds M
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and N. Then two vector fields X 2 X.M / and Y 2 X.N / are said to be f -related
if Tf ıX D Y ıf on Dom.X /\f �1.Dom.Y //. We write then X �f Y . In the
same manner, if � WA! B is a vector bundle morphism over �0 WM !N, then
a section a 2 �M .A/ is �-related to b 2 �N .B/ if �.a.m// D b.�0.m// for all
m 2M. We write then a �� b. The dual of the morphism � is in general not a
morphism of vector bundles, but a relation R�� �A� �B� defined as

R�� D f.�
�
mˇ�0.m/; ˇ�0.m// jm 2M; ˇ�0.m/ 2 B��0.m/

g;

where �m WAm! B�0.m/ is the morphism of vector spaces.
We will say 2-representations for 2-term representations up to homotopy. We

write “Œn�-manifold” for “N-manifolds of degree n”. We refer the reader to [Jotz Lean
2018b; Bonavolontà and Poncin 2013] for a quick review of split N-manifolds, and
for our notation convention. Let E1 and E2 be smooth vector bundles of finite
ranks r1; r2 over M. The Œ2�-manifold E1Œ�1�˚E2Œ�2� has local basis sections
of Ei

� as local generators of degree i , for i D 1; 2, and so dimension .pI r1; r2/.
A Œ2�-manifold MDE1Œ�1�˚E2Œ�2� defined in this manner by a graded vector
bundle is called a split Œ2�-manifold. In other words, we have

C1.M/0DC1.M /; C1.M/1D�.E�1 / and C1.M/2D�.E�2˚^
2E�1 /:

Let N WDF1Œ�1�˚F2Œ�2� be a second Œ2�-manifold over a base N. A morphism � W

F1Œ�1�˚F2Œ�2�!E1Œ�1�˚E2Œ�2� of split Œ2�-manifolds over the bases N and M,
respectively, consists of a smooth map �0 WN !M, three vector bundle morphisms
�1 W F1 ! E1, �2 W F2 ! E2 and �12 W ^

2F1 ! E2 over �0. The morphism
�? W C1.M/! C1.N / sends a degree 1 function � 2 �.E�

1
/ to �1

?� 2 �.F�
1
/,

defined by h�?
1
�; fmi D h�.�0.m//; �1.fm/i for all fm 2 F1.m/. The morphism

�? sends a degree 2 function � 2 �.E�
2
/ to �2

?�C�?
12
� 2 �.F2

�
˚^2F1

�/.

2. Preliminaries

We refer to Section 2.2 of [Jotz Lean 2018b] for the definition of a double vector
bundle, and for the necessary background on their linear and core sections, and on
their linear splittings and dualisations. Sections 2.3–2.5 of [Jotz Lean 2018b] recall
the definition of a VB-algebroid, and also the equivalence of 2-term representations
up to homotopy (called here “2-representations” for short) with linear decompo-
sitions of VB-algebroids [Gracia-Saz and Mehta 2010]. The notation that we use
here is the same as in [Jotz Lean 2018b].

In this section we recall the correspondence of decompositions of double Lie
algebroids with matched pairs of 2-representations. Then we summarise the corre-
spondence found in [Jotz Lean 2018b] between double vector bundles endowed
with a linear metric, and N-manifolds of degree 2.
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2A. Double Lie algebroids and matched pairs of 2-representations. If .D;AI
B;M / is a VB-algebroid with Lie algebroid structures on D! B and A!M,
then the dual vector bundle D�

B
! B has a Lie–Poisson structure (a linear Poisson

structure), and the structure on D�
B

is also Lie–Poisson with respect to D�
B
! C �

[Mackenzie 2011, 3.4]. Dualising this bundle gives a Lie algebroid structure
on .D�

B
/�
C�
! C �. This equips the double vector bundle ..D�

B
/�
C�
IC �;AIM /

with a VB-algebroid structure. Using the isomorphism defined by �h � ; � i, (see
[Mackenzie 2005] and [Jotz Lean 2018b, §2.2.4] for a summary and our sign
convention), the double vector bundle .D�

A
!C �IA!M / is also a VB-algebroid.

In the same manner, if .D!A;B!M / is a VB-algebroid then we use h � ; � i to
get a VB-algebroid structure on .D�

B
! C �IB!M /.

Let † W A�M B!D be a linear splitting of D and denote by .rB;rC ;RA/

the induced 2-representation of the Lie algebroid A on @B W C ! B (see [Gracia-
Saz and Mehta 2010]; this is also recalled in Section 2.5 of [Jotz Lean 2018b]).
The linear splitting† induces a linear splitting†? WA�M C �!D�

A
of D�

A
. The 2-

representation of A that is associated to this splitting is then .rC �;rB�;�R�
A
/ on

the complex @�
B
W B�! C �. This is proved in the appendix of [Drummond et al.

2015].
A double Lie algebroid [Mackenzie 2011] is a double vector bundle .DIA;BIM /

with core C , and with Lie algebroid structures on each of A!M, B!M, D!A

and D! B such that each pair of parallel Lie algebroids gives D the structure of
a VB-algebroid, and such that the pair .D�

A
;D�

B
/ with the induced Lie algebroid

structures on base C � and the pairing h � ; � i, is a Lie bialgebroid.
Consider a double vector bundle .DIA;BIM / with core C and a VB-Lie alge-

broid structure on each of its sides. After a choice of splitting† WA�M B!D, the
Lie algebroid structures on the two sides of D are described by two 2-representations
[Gracia-Saz and Mehta 2010]. We prove in [Gracia-Saz et al. 2018] that .D�

A
;D�

B
/

is a Lie bialgebroid over C � if and only if, for any splitting of D, the two induced
2-representations form a matched pair as in the following definition [Gracia-Saz
et al. 2018].

Definition 2.1. Let .A!M; �A; Œ � ; � �/ and .B!M; �B; Œ � ; � �/ be two Lie alge-
broids and assume that A acts on @B W C ! B up to homotopy via .rB;rC ;RA/

and B acts on @A W C !A up to homotopy via .rA;rC ;RB/.2 Then we say that
the two representations up to homotopy form a matched pair if

(M1) r@Ac1
c2�r@Bc2

c1 D�.r@Ac2
c1�r@Bc1

c2/,

(M2) Œa; @Ac�D @A.rac/�r@Bca,

2For the sake of simplicity, we write in this definition r for all the four connections. It will always
be clear from the indexes which connection is meant. We write rA for the A-connection induced by
rAB and rAC on ^2B�˝C and rB for the B-connection induced on ^2A�˝C .
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(M3) Œb; @Bc�D @B.rbc/�r@Acb,

(M4) rbrac �rarbc �rrbacCrrabc DRB.b; @Bc/a�RA.a; @Ac/b,

.M5/ @A.RA.a1; a2/b/

D�rb Œa1; a2�C Œrba1; a2�C Œa1;rba2�Crra2
ba1�rra1

ba2;

.M6/ @B.RB.b1; b2/a/

D�raŒb1; b2�C Œrab1; b2�C Œb1;rab2�Crrb2
ab1�rrb1

ab2;

for all a; a1; a2 2 �.A/, b; b1; b2 2 �.B/ and c; c1; c2 2 �.C /, and

(M7) drARB D drB RA 2 �
2.A;^2B� ˝ C / D �2.B;^2A� ˝ C /, where

RB is seen as an element of �1.A;^2B� ˝ C / and RA as an element
of �1.B;^2A�˝C /.

2B. The equivalence of Œ2�-manifolds with metric double vector bundles. We
quickly recall in this section the main result in [Jotz Lean 2018b].

A metric double vector bundle is a double vector bundle .E;QIB;M / with
core Q�, equipped with a linear symmetric nondegenerate pairing E�B E!R, i.e.,
such that

(1) h�|
1
; �

|
2
i D 0 for �1; �2 2 �.Q

�/,

(2) h�; �|i D q�
B
hq; �i for � 2 � l

B
.E/ linear over q 2 �.Q/, and � 2 �.Q�/ and

(3) h�1; �2i is a linear function on B for �1; �2 2 �
l
B
.E/.

Note that the opposite .EIQIB;M / of a metric double vector bundle .EIBIQ;M /

is the metric double vector bundle with h � ; � iE D�h � ; � iE.
A linear splitting† WQ�M B!E is said to be Lagrangian if its image is maximal

isotropic in E! B. The corresponding horizontal lifts �Q W �.Q/! � l
B
.E/ and

�B W �.B/! � l
Q
.E/ are then also said to be Lagrangian. By definition, a horizontal

lift �Q W �.Q/! � l
B
.E/ is Lagrangian if and only if h�Q.q1/; �Q.q2/i D 0 for all

q1; q2 2 �.Q/. Showing the existence of a Lagrangian splitting of E is relatively
easy [Jotz Lean 2018b]. Further, if †1 and †2 W Q�M B ! E are Lagrangian,
then the change of splitting �12 2 �.Q

� ˝Q� ˝ B�/ defined by †2.q; b/ D

†1.q; b/CB�.q; b/ for all .q; b/ 2Q�M B, is a section of Q� ^Q�˝B�.

Example 2.2. Let E!M be a vector bundle endowed with a symmetric nonde-
generate pairing h � ; � i WE�M E! R (a metric vector bundle). Then E 'E� and
the tangent double is a metric double vector bundle .TE;EITM;M / with pairing
TE �TM TE ! R the tangent of the pairing E �M E ! R. In particular, we
have hTe1;Te2iTE D `d he1;e2i

, hTe1; e
|
2
iTE D p�

M
he1; e2i and he|

1
; e

|
2
iTE D 0

for e1; e2 2 �.E/.
Recall from [Jotz Lean 2018b, Example 3.11] that linear splittings of TE are

equivalent to linear connections r W X.M / � �.E/ ! �.E/. The Lagrangian
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splittings of TE are exactly the linear splittings that correspond to metric connec-
tions, i.e., linear connections r W X.M /��.E/! �.E/ that preserve the metric:
hr�e1; e2iC he1;r�e2i D dhe1; e2i for e1; e2 2 �.E/.

Let .E;BIQ;M / be a metric double vector bundle. Define C.E/ � � l
Q
.E/

as the C1.M /-submodule of linear sections with isotropic image in E. After
the choice of a Lagrangian splitting † W Q �M B ! E, C.E/ can be written
C.E/ WD �B.�.B//Cf Q! j ! 2 �.Q

� ^Q�/g. This shows that C.E/ together with
�c

Q
.E/' �.Q�/ span E as a vector bundle over Q.

An involutive double vector bundle is a double vector bundle .D;Q;Q;M / with
core B� equipped with a morphism I WD!D of double vector bundles satisfying
I2 D IdD and �1 ı I D �2, �2 ı I D �1, where �1; �2 WD!Q are the two side
projections, and with core morphism � IdB� WB

�!B�. A morphism� WD1!D2

of involutive double vector bundles is a morphism of double vector bundles such that
�ıI1D I2 ı�. [Jotz Lean 2018b, Proposition 3.15] proves a duality of involutive
double vector bundles with metric double vector bundles: the dual .D��1

IQ;BIM /

with core Q� carries an induced linear metric. Conversely, given a metric double
vector bundle .EIQ;BIM / with core Q�, the dual .E�

Q
IQ;QIM / with core B�

carries an induced involution as above. We define morphisms of metric double vector
bundles as the dual morphisms to morphisms of involutive double vector bundles. A
morphism � W F! E of metric double vector bundles is hence a relation �� F� E

that is the dual of a morphism of involutive double vector bundles ! W F�
P
! E�

Q
.

F�
P

!
//

&&

��

E�
Q

&&

��

P

��

!P
// Q

��

P��

''

// Q��

''
N

!0
// M

Note that the dual of � is compatible with the involutions if and only if � is an
isotropic subspace of F� E. Equivalently [Jotz Lean 2018b], one can define a mor-
phism� W F! E of metric double vector bundles as a pair of maps !? W C.E/! C.F/
and !?

P
W �.Q�/! �.P�/ together with a smooth map !0 WN !M such that

(1) !?.B�1 ^ �2/D
F!?

P
�1 ^!

?
P
�2,

(2) !?.q�
Q
f ��/D q�

P
.!�

0
f / �!?.�/ and

(3) !?
P
.f � �/D !�

0
f �!?

P
�

for all �; �1; �2 2 �.Q
�/, f 2 C1.M / and � 2 C.E/. We write MDVB for the

obtained category of metric double vector bundles. The following theorem is proved
in [Jotz Lean 2018b] and independently in [del Carpio-Marek 2015].
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Theorem 2.3 [Jotz Lean 2018b]. There is a (covariant) equivalence between the
category of Œ2�-manifolds and the category of involutive double vector bundles.

Combining the obtained equivalence with the (contravariant) dualisation equiv-
alence of IDVB with MDVB yields a (contravariant) equivalence between the
category of metric double vector bundles with the morphisms defined above and the
category of Œ2�-manifolds. This equivalence establishes in particular an equivalence
between split Œ2�-manifold M D QŒ�1� ˚ B�Œ�2� and the decomposed metric
double vector bundle .Q�M B �M Q�;B;Q;M / with the obvious linear metric
over B. More precisely, the obtained functor from Œ2�-manifolds to metric double
vector bundles sends by construction a split Œ2�-manifold to a decomposed metric
double vector bundle. Conversely, the functor from metric double vector bundles to
Œ2�-manifolds sends decomposed metric double vector bundles to split Œ2�-manifolds.

We quickly describe the functors between the two categories. To construct the
geometrisation functor G W Œ2��Man!MDVB, take a Œ2�-manifold and consider its
local trivialisations. Changes of local trivialisation define a set of cocycle conditions,
that correspond exactly to cocycle conditions for a double vector bundle atlas. The
local trivialisations can hence be collated to a double vector bundle, which naturally
inherits a linear pairing. See [Jotz Lean 2018b] for more details, and remark that
this construction is as simple as the construction of a vector bundle from a locally
free and finitely generated sheaf of C1.M /-modules.

Conversely, the algebraisation functor A sends a metric double vector bundle
E to the Œ2�-manifold defined as follows: the functions of degree 1 are the sec-
tions of �c

Q
.E/' �.Q�/, and the functions of degree 2 are the elements of C.E/.

The multiplication of two core sections �1; �2 2 �.Q
�/ is the core-linear section

B�1 ^ �2 2 C.E/.
Note that while that equivalence can be seen as the special case of trivial ho-

mological vector field versus trivial bracket and anchor of Li-Bland’s bijection of
Lie 2-algebroids with VB-Courant algebroids [Li-Bland 2012], this corollary is not
given there and only a very careful study of Li-Bland’s proof, which would amount
to the work done in [Jotz Lean 2018b] would yield it.

3. Split Lie 2-algebroids

In this section we recall the notions of Courant algebroids, Dirac structures, dull
algebroids, Dorfman connections and (split) Lie 2-algebroids.

3A. Courant algebroids and Dorfman connections. We introduce in this section
a generalisation of the notion of Courant algebroid, namely the one of degenerate
Courant algebroid with pairing in a vector bundle. Later we will see that the fat
bundle associated to a VB-Courant algebroid carries a natural Courant algebroid
structure with pairing in the dual of the base.
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An anchored vector bundle is a vector bundle Q!M endowed with a vector
bundle morphism �Q WQ! TM over the identity. Consider an anchored vector
bundle .E!M; �/ and a vector bundle V over the same base M together with
a morphism Q� W E ! Der.V /, such that the symbol of Q�.e/ is �.e/ 2 X.M /

for all e 2 �.E/. Assume that E is paired with itself via a nondegenerate pairing
h � ; � i WE�M E!V with values in V . Define D W�.V /!�.E/ by hDv; eiD Q�.e/.v/
for all v 2 �.V /. Then E!M is a Courant algebroid with pairing in V if E is in
addition equipped with an R-bilinear bracket ŒŒ � ; � �� on the smooth sections �.E/
such that

(CA1) ŒŒe1; ŒŒe2; e3����D ŒŒŒŒe1; e2��; e3��C ŒŒe2; ŒŒe1; e3����,

(CA2) Q�.e1/he2; e3i D hŒŒe1; e2��; e3iC he2; ŒŒe1; e3��i,

(CA3) ŒŒe1; e2��C ŒŒe2; e1��D Dhe1; e2i,

(CA4) Q�ŒŒe1; e2��D Œ Q�.e1/; Q�.e2/�

for all e1; e2; e3 2 �.E/ and f 2 C1.M /. Equation (CA2) implies ŒŒe1; fe2�� D

f ŒŒe1; e2��C.�.e1/f /e2 for all e1; e22�.E/ and f 2C1.M /. If V DR�M!M

is in addition the trivial bundle, then D D �� ı d W C1.M /! �.E/, where E is
identified with E� via the pairing. The quadruple .E!M; �; h � ; � i; ŒŒ � ; � ��/ is then
a Courant algebroid [Liu et al. 1997; Roytenberg 1999] and (CA4) follows then
from (CA1), (CA2) and (CA3) (see [Uchino 2002] and also [Jotz Lean 2018a] for
a quicker proof).

Note that Courant algebroids with a pairing in a vector bundle E were defined
in [Chen et al. 2010] and called E-Courant algebroids. It is easy to check that Li-
Bland’s AV -Courant algebroids [2011] yield a special class of degenerate Courant
algebroids with pairing in V . The examples of Courant algebroids with pairing in a
vector bundle that we will get in Theorem 4.2 are not AV -Courant algebroids, so
the two notions are distinct.

In our study of VB-Courant algebroids, we will need the following two lemmas.

Lemma 3.1 [Roytenberg 2002]. Let .E!M; �; h � ; � i; ŒŒ � ; � ��/ be a Courant alge-
broid. For all � 2�1.M / and e 2 �.E/, we have

ŒŒe; �����D ��.£�.e/�/; ŒŒ���; e��D���.i�.e/d�/

and so �.���/D 0, which implies � ıDD 0.

Lemma 3.2 [Li-Bland 2012]. Let E!M be a vector bundle, � W E! TM be
a bundle map, h �; � i be a nondegenerate pairing on E, and let S � �.E/ be a
subspace of sections which generates �.E/ as a C1.M /-module. Suppose that
ŒŒ � ; � �� W S �S! S is a bracket satisfying

(1) ŒŒs1; ŒŒs2; s3����D ŒŒŒŒs1; s2��; s3��C ŒŒs2; ŒŒs1; s3����,
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(2) �.s1/hs2; s3i D hŒŒs1; s2��; s3iC hs2; ŒŒs1; s3��i,

(3) ŒŒs1; s2��C ŒŒs2; s1��D �
�dhs1; s2i,

(4) �ŒŒs1; s2��D Œ�.s1/; �.s2/�

for any si 2 S, and that � ı �� D 0. Then there is a unique extension of ŒŒ � ; � �� to a
bracket on all of �.E/ such that .E; �; h � ; � i; ŒŒ � ; � ��/ is a Courant algebroid.

A Dirac structure with support [Alekseev and Xu 2001] in a Courant algebroid
E!M is a subbundle D ! S over a submanifold S of M, such that D.s/ is
maximal isotropic in E.s/ for all s 2 S and

e1jS 2 �S .D/; e2jS 2 �S .D/ ) ŒŒe1; e2��jS 2 �S .D/

for all e1; e2 2 �.E/. We leave to the reader the proof of the following lemma.

Lemma 3.3. Let E!M be a Courant algebroid and D! S a subbundle, with S

a submanifold of M. Assume that D! S is spanned by the restrictions to S of a
family S � �.E/ of sections of E. Then D is a Dirac structure with support S if and
only if

(1) �E.e/.s/ 2 TsS for all e 2 S and s 2 S ,

(2) Ds is Lagrangian in Es for all s 2 S and

(3) ŒŒe1; e2��jS 2 �S .D/ for all e1; e2 2 S.

Next we recall the notion of Dorfman connection [Jotz Lean 2018a]. Let
.Q!M; �Q/ be an anchored vector bundle and let B be a vector bundle over
M with a fibrewise pairing h � ; � i W Q �M B ! R and an R-linear map ı W

C1.M / ! �.B/ with ı.f � g/ D f � ıg C g � ıf for all f;g 2 C1.M /. A
Dorfman (Q-)connection on B is an R-linear map � W �.Q/! �.Der.B// such
that

(1) �q is a derivation over �Q.q/ 2 X.M /,

(2) �fqb D f�qbChq; bi � ıf and

(3) �qıf D ı.�Q.q/f /

for all f 2 C1.M /, q; q0 2 �.Q/, b 2 �.B/. The equality hq; ıf i D �Q.q/.f /

follows from (2) and (3) for q 2 �.Q/ and f 2 C1.M /.
For instance, if B DQ�, the pairing is the canonical one and ı D ��

Q
d , we get a

Q-Dorfman connection on Q�. The map ŒŒ � ; � ��� D �� W �.Q/��.Q/! �.Q/

that is dual to � in the sense of dual derivations, i.e.,

h��q1
q2; �i D �Q.q1/hq2; �i � hq2; �q1

�i

for all q1; q22�.Q/ and � 2�.Q�/, is then a dull bracket on �.Q/ in the following
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sense. A dull algebroid is an anchored vector bundle .Q!M; �Q/ with a bracket
ŒŒ � ; � �� on �.Q/ such that

(1) �QŒŒq1; q2��D Œ�Q.q1/; �Q.q2/�

and (the Leibniz identity)

ŒŒf1q1; f2q2��D f1f2ŒŒq1; q2��Cf1�Q.q1/.f2/q2�f2�Q.q2/.f1/q1

for all f1; f2 2 C1.M /, q1; q2 2 �.Q/. In other words, a dull algebroid is a
Lie algebroid if its bracket is in addition skew-symmetric and satisfies the Jacobi
identity. Note that a dull bracket can easily be skew-symmetrised.

If Q!M is endowed with a dull algebroid structure, the curvature of a Dorfman
connection� W�.Q/��.B/!�.B/ is the map R� W�.Q/��.Q/!�.End.B//
defined on q; q0 2 �.Q/ by R�.q; q

0/ WD �q�q0 ��q0�q ��ŒŒq;q0��. As always,
� is said to be flat if R� vanishes.

If the dull bracket on Q is skew-symmetric, B D Q� and � is the Dorfman
connection that is dual to the bracket, then R� 2�

2.Q;End.Q�//. The curvature
satisfies then also

(2) h�; JacŒŒ�;���.q1; q2; q3/i D hR�.q1; q2/�; q3i

for q1; q2; q3 2 �.Q/ and � 2 �.Q�/, where

JacŒŒ�;���.q1; q2; q3/D ŒŒŒŒq1; q2���; q3��C ŒŒq2; ŒŒq1; q3����� ŒŒq1; ŒŒq2; q3����

is the Jacobiator of ŒŒ � ; � ��. Hence, the Dorfman connection is flat if and only if the
corresponding dull bracket satisfies the Jacobi identity in Leibniz form.

3B. Split Lie 2-algebroids. A homological vector field � on an Œn�-manifold M is a
derivation of degree 1 of C1.M/ such that Q2D

1
2
ŒQ;Q� vanishes. A homological

vector field on a Œ1�-manifold MDEŒ�1� is the de Rham differential dE associated
to a Lie algebroid structure on E [Vaintrob 1997]. A Lie n-algebroid is an Œn�-
manifold endowed with a homological vector field (an NQ-manifold of degree n).

A split Lie n-algebroid is a split Œn�-manifold endowed with a homological vector
field. Split Lie n-algebroids were studied by Sheng and Zhu [2017] and described
as vector bundles endowed with a bracket that satisfies the Jacobi identity up to
some correction terms; see also [Bonavolontà and Poncin 2013]. Our definition of
a split Lie 2-algebroid turns out to be a Lie algebroid version of Baez and Crans’
definition of a Lie 2-algebra [2004].

Definition 3.4. A split Lie 2-algebroid B�!Q is the pair of an anchored vector
bundle3 .Q!M; �Q/ and a vector bundle B!M, together with a vector bundle

3The names that we choose for the vector bundles will become natural in a moment.
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map l W B�!Q, a skew-symmetric dull bracket4 ŒŒ � ; � �� W �.Q/��.Q/! �.Q/,
a linear connection r W �.Q/��.B/! �.B/ and a vector bundle valued 3-form
! 2�3.Q;B�/, such that

(i) r�
l.ˇ1/

ˇ2Cr
�
l.ˇ2/

ˇ1 D 0 for all ˇ1; ˇ2 2 �.B
�/,

(ii) ŒŒq; l.ˇ/��D l.r�qˇ/ for q 2 �.Q/ and ˇ 2 �.B�/,

(iii) JacŒŒ�;��� D l ı! 2�3.Q;Q/,

(iv) Rr.q1; q2/b D l�hiq2
iq1
!; bi for q1; q2 2 �.Q/ and b 2 �.B/, and

(v) dr�! D 0.

From (iii) follows the identity �QılD0. In the following, we will also work with
@B WD l� WQ�! B, with the Dorfman connection � W �.Q/��.Q�/! �.Q�/

that is dual to ŒŒ � ; � ��, and with R! 2 �
2.Q;Hom.B;Q�// which is defined by

R!.q1; q2/b D hiq2
iq1
!; bi. Then (ii) is equivalent to @B ı�q Drq ı @B , (iii) is

R!.q1; q2/ ı @B D R�.q1; q2/ for q; q1; q2 2 �.Q/, and (iv) is Rr.q1; q2/ D

@B ıR!.q1; q2/ for all q1; q2 2 �.Q/.

3C. Split Lie-2-algebroids as split Œ2�Q-manifolds. Before we go on with the
study of examples, we briefly describe how to construct from the objects in
Definition 3.4 the corresponding homological vector fields on split Œ2�-manifolds.
Note that local descriptions of homological vector fields are also given in [Sheng
and Zhu 2017] and [Bonavolontà and Poncin 2013].

Consider a split Œ2�-manifold MDQŒ�1�˚B�Œ�2�. Assume that Q is endowed
with an anchor �Q and a skew-symmetric dull bracket ŒŒ � ; � ��, that it acts on B via a
linear connection r W �.Q/��.B/! �.B/, that ! is an element of �3.Q;B�/

and that @B W Q
� ! B is a vector bundle morphism. Define a vector field Q of

degree 1 on M by the formulas

Q.f /D ��Qdf 2 �.Q�/

for f 2 C1.M /,

Q.�/D dQ� C @B� 2�
2.Q/˚�.B/

for � 2 �.Q�/ and

Q.b/D drb� h!; bi 2�1.Q;B/˚�3.Q/

for b 2 �.B/. Conversely, a relatively easy degree count and study of the graded
Leibniz identity for an arbitrary vector field of degree 1 on MDQŒ�1�˚B�Œ�2�

4To get the definition in [Sheng and Zhu 2017], set l1 WD �l , l3 WD ! and consider the
skew symmetric bracket l2 W �.Q˚B�/ � �.Q˚B�/! �.Q˚B�/, l2..q1; ˇ1/; .q2; ˇ2// D

.ŒŒq1; q2��;r
�
q1
ˇ2 �r

�
q2
ˇ1/ for q1; q2 2 �.Q/ and ˇ1; ˇ2 2 �.B

�/. Note that this bracket satisfies
a Leibniz identity with anchor �Q ı prQ WQ˚B�! TM and that the Jacobiator of this bracket is
given by Jacl2

..q1; ˇ1/; .q2; ˇ2/; .q3; ˇ3//D .�l.!.q1; q2; q3//; !.q1; q2; l.ˇ3//C c:p:
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shows that it must be given as above, defining therefore an anchor �Q, and the
structure objects ŒŒ � ; � ��, r, ! and @B .

We show that Q2 D 0 if and only if .@�
B
W B�!Q; ŒŒ � ; � ��;r; !/ is a split Lie

2-algebroid anchored by �Q. For f 2 C1.M / we have

Q2.f /D dQ.�
�
Qdf /C @B.�

�
Qdf / 2�2.Q/˚�.B/:

Hence Q2.f /D0 for all f 2C1.M / if and only if @Bı�
�
Q
D0 and �QŒŒq1; q2���D

Œ�Q.q1/; �Q.q2/� for all q1; q2 2 �.Q/. Now we assume that these two conditions
are satisfied. For � 2 �.Q�/ we have

Q2.�/D .d2
Q� � h!; @B�i/C .@BdQ� Cdr.@B�// 2�

3.Q/˚�1.Q;B/;

where @B W�
k.Q/!�k�1.Q;B/ is the vector bundle morphism defined by

@B.�1 ^ � � � ^ �k/D

kX
iD1

.�1/iC1�1 ^ � � � ^
Oi ^ � � � �k ^ @B�i

for all �1; �2 2 �.Q
�/. We find d2

Q
�.q1; q2; q3/D hJacŒŒ�;���.q1; q2; q3/; �i and

.@BdQ�/.q; ˇ/D�h@B�q�; ˇi, and so Q2.�/D 0 for all � 2 �.Q�/ if and only
if JacŒŒ�;���.q1; q2; q3/ D @

�
B
!.q1; q2; q3/ for all q1; q2; q3 2 �.Q/ and @B�q� D

rq.@B�/ for all q 2 �.Q/ and � 2 �.Q�/.
Finally, we find for b 2 �.B/:

Q2.b/DQ.drb/�dQh!; bi � @Bh!; bi:

The term @Bh!; bi is an element of �2.Q;B/ and the term dQh!; bi is an element
of �4.Q/. A computation yields that the �4.Q/-term of Q.drb/ is �h!;drbi,
which is defined by

h!;drbi.q1; q2; q3; q4/D
X
�2Z4

.�1/� h!.q�.1/; q�.2/; q�.3//;rq�.4/bi;

where Z4 is the group of cyclic permutations of f1; 2; 3; 4g. The �2.Q;B/-
term is Rr. � ; � /b and the �.S2B/-term is r@�

B
b defined by .r@�

B
b/.ˇ1; ˇ2/ D

hr@�
B
ˇ1

b; ˇ2iChr@�
B
ˇ2

b; ˇ1i for all ˇ1; ˇ2 2�.B
�/. Hence Q2.b/D 0 if and only

if dQh!; biC h!;drbi D 0, which is equivalent to dr�! D 0; r@�
B

b D 0, which
is equivalent to

r
�

@�
B
ˇ1
ˇ2Cr

�

@�
B
ˇ2
ˇ1 D 0

for all ˇ1; ˇ2 2 �.B
�/; and

Rr. � ; � /b D @Bh!; bi;

which is equivalent to Rr�.q1; q2/ˇ D !.q1; q2; @
�
B
ˇ/ for all q1; q2 2 �.Q/ and

ˇ 2 �.B�/.
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3D. Examples of split Lie 2-algebroids. We describe here four classes of examples
of split Lie 2-algebroids. Later we will discuss their geometric meanings. We do
not verify in detail the axioms of split Lie 2-algebroids. The computations in order
to do this for Examples 3D2 and 3D3 are long, but straightforward. Note that,
alternatively, the next section will provide a geometric proof of the fact that the
following objects are split Lie 2-algebroids, since we will find them to be equivalent
to special classes of VB-Courant algebroids. Note finally that a fifth important class
of examples is discussed in Section 5.

3D1. Lie algebroid representations. Let .Q ! M; �; Œ � ; � �/ be a Lie algebroid
and r W �.Q/ � �.B/ ! �.B/ a representation of Q on a vector bundle B.
Then .0 W B� ! Q; Œ � ; � �;r; 0/ is a split Lie 2-algebroid. It is a semidirect
extension of the Lie algebroid Q (and a special case of the bicrossproduct Lie
2-algebroids defined in Section 5A): the corresponding bracket l2 is given by
l2.q1Cˇ1; q2Cˇ2/D Œq1; q2�C.r

�
q1
ˇ2�r

�
q2
ˇ1/ for q1; q2 2�.Q/ and ˇ1; ˇ2 2

�.B�/. Hence .Q˚B�!M , �D �Q ı prQ; l2/ is simply a Lie algebroid.

3D2. Standard split Lie 2-algebroids. Let E!M be a vector bundle, set

@E D prE WE˚T �M !E;

consider a skew-symmetric dull bracket ŒŒ � ; � �� on �.TM ˚E�/, with TM ˚E�

anchored by prTM , and let

� W �.TM ˚E�/��.E˚T �M /! �.E˚T �M /

be the dual Dorfman connection. This defines as follows a split Lie 2-algebroid
structure on the vector bundles .TM ˚E�; prTM / and E�.

Let r W�.TM˚E�/��.E/!�.E/ be the ordinary linear connection5 defined
by r D prE ı� ı �E . The vector bundle map l D pr�

E
W E�! TM ˚E� is just

the canonical inclusion. Define ! by !.v1; v2; v3/D JacŒŒ�;���.v1; v2; v3/. Note that
since TM ˚E� is anchored by prTM , the tangent part of the dull bracket must
just be the Lie bracket of vector fields. The Jacobiator JacŒŒ�;��� can hence be seen as
an element of �3.TM ˚E�;E�/.

A straightforward verification of the axioms shows that l , ŒŒ � ; � ��, r�, ! define
a split Lie 2-algebroid. For reasons that will become clearer in Section 4D1, we
call standard this type of split Lie 2-algebroid.

3D3. Adjoint split Lie 2-algebroids. The adjoint split Lie 2-algebroids can be
described as follows. Let E ! M be a Courant algebroid with anchor �E and
bracket ŒŒ � ; � �� and choose a metric linear connection r W X.M /� �.E/! �.E/,

5To see that r D prE ı� ı �E is an ordinary connection, recall that since TM ˚E� is anchored
by prTM , the map dE˚T �M D pr�

TM
d W C1.M /! �.E˚T �M / sends f ! .0;df /.
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i.e., a linear connection that preserves the pairing. Set @TM D �E W E! TM and
identify E with its dual via the pairing. The map � W �.E/��.E/! �.E/,

�ee0 D ŒŒe; e0��Cr�.e0/e

is a Dorfman connection, which we call the basic Dorfman connection associated
to r. The dual skew-symmetric(!) dull bracket is given by

ŒŒe; e0��� D ŒŒe; e
0��� ��hr�e; e

0
i

for all e; e0 2 �.E/. The map

r
bas
W �.E/�X.M /! X.M /; rbas

e X D Œ�.e/;X �C �.rX e/

is a linear connection, the basic connection associated to r.
We now define the basic curvature Rbas

�
2�2.E;Hom.TM;E// by6

(3) Rbas
� .e1; e2/X D�rX ŒŒe1; e2��C ŒŒrX e1; e2��C ŒŒe1;rX e2��

Crrbas
e2

X e1�rrbas
e1

X e2�ˇ
�1
hrrbas

� X e1; e2i

for all e1; e2 2�.E/ and X 2X.M /. Note the similarity of these constructions with
the one of the adjoint representation up to homotopy (see [Gracia-Saz and Mehta
2010]). The meaning of this similarity will become clear in Section 4D3. The
map l is ��E WT

�M !E and the form ! 2�3.E;T �M / is given by !.e1; e2; e3/D

hRbas
�
.e1; e2/; e3i. Note that it corresponds to the tensor ‰ defined in [Li-Bland

2012, Definition 4.1.2] (the right-hand side of (3)). The adjoint split Lie 2-algebroids
are exactly the split symplectic Lie 2-algebroids, and correspond hence to splittings
of the tangent doubles of Courant algebroids [Jotz Lean 2018b].

3D4. Split Lie 2-algebroid defined by a 2-representation. Let .@B WC!B;r;r;R/

be a representation up to homotopy of a Lie algebroid A on B˚C . We anchor
A˚C � by �A ı prA and define � W �.A˚C �/��.C ˚A�/! �.C ˚A�/ by

�.a; /.c; ˛/D .rac; £a˛Chr
�
� ; ci/;

and r W �.A˚C �/��.B/! �.B/ by r.a; /b Drab. The vector bundle map l

is here l D �C� ı @
�
B

, where �C� W C �!A˚C � is the canonical inclusion, and the
dull bracket that is dual to � is given by

ŒŒ.a1; 1/; .a2; 2/��D .Œa1; a2�;r
�
a1
2�r

�
a2
1/

6 We have then Rbas
�
.e1; e2/X D�rX ŒŒe1; e2���C ŒŒrX e1; e2���C ŒŒe1;rX e2���Crrbas

e2
X e1�

r
rbas

e1
X e2 �ˇ

�1��hRr.X; �/e1; e2i. Using �R�
r
D Rr� D Rr (where we identify E with its

dual using h � ; � i), the identity Rbas
�
.e1; e2/D�Rbas

�
.e2; e1/ is then immediate.
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for a1; a2 2 �.A/, 1; 2 2 �.C
�/. The tensor ! is given by

!..a1; 1/; .a2; 2/; .a3; 3//D hR.a1; a2/; 3iC c.p.

Note that if we work with the dual A-representation up to homotopy .@�
B
W

B�! C �;r�;r�;�R�/, then we get the Lie 2-algebroid defined in [Sheng and
Zhu 2017, Proposition 3.5] as the semidirect product of a 2-representation and a
Lie algebroid. This is then also a special case of the bicrossproduct of a matched
pair of 2-representations (see Section 5A). Later we will explain why the choice
that we make here is more natural.

3E. Morphisms of (split) Lie 2-algebroids. In this section we quickly discuss
morphisms of split Lie 2-algebroids; see also [Bonavolontà and Poncin 2013].

A morphism � W .M1;Q1/ ! .M2;Q2/ of Lie 2-algebroids is a morphism
� WM1!M2 of the underlying Œ2�-manifolds, such that

(4) �? ıQ2 DQ1 ı�
?
W C1.M2/! C1.M1/:

Assume that the two Œ2�-manifolds M1 and M2 are split Œ2�-manifolds M1 D

Q1Œ�1�˚ B�
1
Œ�2� and M2 D Q2Œ�1�˚ B�

2
Œ�2�. Then the homological vector

fields Q1 and Q2 are defined as in Section 3C with two split Lie 2-algebroids;
.�1 W Q1 ! TM1; @1 W Q�

1
! B1; ŒŒ � ; � ��1;r

1; !1/ and .�2 W Q2 ! TM2; @2 W

Q�
2
! B2; ŒŒ � ; � ��2;r

2; !2/. Further, the morphism �? W C1.M2/! C1.M1/

over ��
0
W C1.M2/! C1.M1/ decomposes as �Q WQ1!Q2, �B W B

�
1
! B�

2

and �12 W ^
2Q1! B�

2
, all morphisms over �0 WM1!M2. We study (4) in these

decompositions.

(1) The condition�?.Q2.f //DQ1.�
?.f // for all f 2C1.M2/ is�?

Q
.��

2
df /D

��
1
d.��

0
f / for all f 2 C1.M2/, which is equivalent to

Tm�0.�1.qm//D �2.�Q.qm//

for all qm 2 Q1. In other words �Q W Q1 ! Q2 over �0 W M1 ! M2 is
compatible with the anchors �1 WQ1! TM1 and �2 WQ2! TM2.

(2) The condition �?.Q2.�//DQ1.�
?.�// for all � 2 �.Q�

2
/ reads

�?.d2� C @2�/D @1.�
?
Q�/Cd1.�

?
Q�/

for all � 2 �.Q�
2
/. The left-hand side is

�?Q.d2�/C�
?
12.@2�/„ ƒ‚ …

2�2.Q1/

C�?B.@2�/„ ƒ‚ …
2�.B1/

and the right-hand side is

@1.�
?
Q�/Cd1.�

?
Q�/ 2 �.B1/˚�

2.Q1/:
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Hence, �?ıQ2DQ1ı�
? on degree 1 functions if and only if�Qı@

�
1
D@�

2
ı�B

and �?
Q
.d2�/C�

?
12
.@2�/D d1.�

?
Q
�/ for all � 2 �.Q�

2
/.

(3) Finally we find that �?.Q2.b//DQ1.�
?.b// for all b 2 �.B2/ if and only if

�?.dr2b/D dr1.�?B.b//C @1.�
?
12.b// 2�

1.Q1;B1/

for all b 2 �.B2/ and

�?Q!2 D �B ı!1�d�?
0
r2�12 2�

3.Q1; �
�
0B�2 /:

In the equalities above we have used the following constructions. The form
�?.dr2b/ 2�1.Q1;B1/ is defined by

.�?.dr2b//.qm/D �B
�
m.r

2
�Q.qm/

b/ 2 B1.m/

for all qm 2Q1. Recall that �12 can be seen as an element of �2.Q1; �
�
0
B�

2
/. The

tensors �?
Q
!2 2�

2.Q1; �
�
0
B�

2
/ and �B ı!1 2�

2.Q1; �
�
0
B�

2
/ can be defined as

follows:

.�?Q!2/.q1.m/; q2.m/; q3.m//D !2.�Q.q1.m//; �Q.q2.m//; �Q.q3.m///

in B�
2
.�0.m//, and

.�B ı!1/.q1.m/; q2.m/; q3.m//D�B.!1/.q1.m/; q2.m/; q3.m///2B�2 .�0.m//

for all q1; q2; q3 2 �.Q1/. The linear connection

�?Qr
2
W �.Q1/��.�

�
0B�2 /! �.��0B�2 /

is defined by

.�?Qr
2/q.�

!
0ˇ/.m/Dr

2�

�Q.q.m//
ˇ 2 B�2 .�0.m//

for all q 2 �.Q1/ and ˇ 2 �.B�
2
/.

We call a triple .�Q; �B; �12/ over �0 as above a morphism of split Lie 2-
algebroids. In particular, if M1DM2, �0D IdM WM !M, �QD IdQ WQ!Q

and �B D IdB� W B
�! B�, then �12 2�

2.Q;B�/ is just a change of splitting.
The five conditions above simplify to the following:

(1) The dull brackets are related by ŒŒq; q0��2 D ŒŒq; q0��1C @�B�12.q; q
0/.

(2) The connections are related by r2
q b Dr1

q b� @Bh�12.q; � /; bi.

(3) The curvature terms are related by !1�!2 D d1;r2�12.

The operator d1;r2 W ��.Q;B�/! ��C1.Q;B�/ is defined by the dull bracket
ŒŒ � ; � ��1 and the connection r2�.
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4. VB-Courant algebroids and Lie 2-algebroids

In this section we describe and prove in detail the equivalence between VB-Courant
algebroids and Lie 2-algebroids. In short, a homological vector field on a Œ2�-
manifold defines an anchor and a Courant bracket on the corresponding metric
double vector bundle. This Courant bracket and this anchor are automatically
compatible with the metric and define so a linear Courant algebroid structure on
the double vector bundle. Note that a correspondence of Lie 2-algebroids and
VB-Courant algebroids has already been discussed by Li-Bland [2012]. Our goal is
to make this result constructive by deducing it from the results in [Jotz Lean 2018b]
and presenting it as the counterpart of the main result in [Gracia-Saz and Mehta
2010], and to illustrate it with several (partly new) examples.

4A. Definition and observations. We will work with the following definition of a
VB-Courant algebroid, which is due to Li-Bland [2012].

Definition 4.1. A VB-Courant algebroid is a metric double vector bundle

E�Q

�B
//

��

B

qB

��

QqQ
// M

with core Q� such that E! B is a Courant algebroid and the following conditions
are satisfied.

(1) The anchor map ‚ W E! TB is linear. That is,

(5)

E�Q

�B
//

��

B

qB

��

TBT qB

pB
//

��

B

qB

��

C

  

‚
// B

��

QqQ
// M TMpM

// M

is a morphism of double vector bundles.

(2) The Courant bracket is linear. That is,

ŒŒ� l
B.E/; �

l
B.E/��� �

l
B.E/; ŒŒ� l

B.E/; �
c
B.E/��� �

c
B.E/; ŒŒ�c

B.E/; �
c
B.E/��D 0:

We make the following observations. Let �Q W Q! TM be the side map of
the anchor, i.e., if �Q.�/ D q for � 2 E, then T qB.‚.�// D �Q.q/. In other
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words, if � 2 � l
B
.E/ is linear over q 2 �.Q/ then ‚.�/ is linear over �Q.q/. Let

@B WQ
�! B be the core map defined by the anchor ‚ as

(6) ‚.�|/D .@B�/
"

for all � 2 �.Q�/. (@B is a morphism of vector bundles.) In the following, we call
�Q the side-anchor and @B the core-anchor. The operator DD‚�d W C1.B/!
�B.E/ satisfies D.q�

B
f /D .��

Q
df /| for all f 2 C1.M / and Lemma 3.1 yields

immediately

(7) @B ı �
�
Q D 0; which is equivalent to �Q ı @

�
B D 0:

Recall that if � 2 � l
B
.E/ is linear over q 2 �.Q/, then h�; �|i D q�

B
hq; �i for all

� 2 �.Q�/.

4B. The fat Courant algebroid. Here we denote bybE!M the fat bundle, that is
the vector bundle whose sheaf of sections is the sheaf of C1.M /-modules � l

B
.E/,

the linear sections of E over B. Gracia-Saz and Mehta [2010] showed that if E

is endowed with a linear Lie algebroid structure over B, thenbE!M inherits a
Lie algebroid structure, which is called the “fat Lie algebroid”. For completeness,
we describe here quickly the counterpart of this in the case of a linear Courant
algebroid structure on E! B.

Note that the restriction of the pairing on E to linear sections of E defines a
nondegenerate pairing onbE with values in B�. Since the Courant bracket of linear
sections is again linear, we get the following theorem.

Theorem 4.2. Let .E;B;Q;M / be a VB-Courant algebroid. ThenbE is a Courant
algebroid with pairing in B�.

Note that in [Jotz Lean and Kirchhoff-Lukat 2018] we explain how the Courant
algebroid with pairing in E� that is obtained from the VB-Courant algebroid
TE˚T �E, for a vector bundle E, is equivalent to the omni-Lie algebroids described
in [Chen and Liu 2010; Chen et al. 2011].

We will come back in Corollary 4.8 to the structure found in Theorem 4.2.
Recall that for � 2 �.Hom.B;Q�//, the core-linear section e� of E!B is defined
by e�.bm/D 0bm

CB �.bm/. Note that bE is also naturally paired with Q� via
h�.m/; �.m/i D h�Q.�.m//; �.m/i for all � 2 � l

B
.E/D �.bE/ and � 2 �.Q�/.

This pairing is degenerate since it restricts to 0 on Hom.B;Q�/ �M Q�. The
following proposition can easily be proved.

Proposition 4.3. (1) The map � W �.bE/��.Q�/! �.Q�/ defined by .���/| D
ŒŒ�; �|�� is a flat Dorfman connection, where bE is endowed with the anchor
�Q ı�Q and paired with Q� as above. The map ı W C1.M /! �.Q�/ sends
f to ��df .
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(2) The map r W �.bE/��.B/! �.B/ defined by ‚.�/D br� 2 Xl.B/ is a flat
connection.

The maps � and r satisfy

@B ı�Dr ı @B and ŒŒ�;e���bE DH�� ı� �� ır�
for � 2 �.bE/ and � 2 �.Hom.B;Q�//.

Proof. (1) and (2) are easy to prove. For the first equation, choose � 2 � l
B
.E/ and

� 2 �.Q�/. Then

.@B ı���/
"
D‚.���

|/D‚.ŒŒ�; �|��/D Œ‚.�/; .@B�/
"�D .r�.@B�//

":

The second equation is easy to check by writing e�DPn
iD1 `ˇi

��
|
i with ˇi 2�.B

�/

and �i 2 �.Q
�/. �

Lemma 4.4. For �; 2 �.Hom.B;Q�// and � 2 �.Q�/, we have

(1) ŒŒ�|;e���D .�.@B�//
| D�ŒŒe�; �|�� and

(2) ŒŒe�; e ��DA ı@Bı���ı@Bı .

Remark 4.5. Note that (2) is the bracket of the induced Lie algebra bundle structure
induced on Hom.B;Q�/ by @B .

Proof of Lemma 4.4. We write � D
Pn

iD1 ˇi ˝ �i and  D
Pn

jD1 ˇ
0
j ˝ �j with

ˇ1; : : : ; ˇn; ˇ
0
1
; : : : ; ˇ0n 2 �.B

�/ and �1; : : : ; �n 2 �.Q
�/. Hence, we have e� DPn

iD1 `ˇi
�

|
i and e DPn

jD1 `ˇ0j
�

|
j . First we compute��

�|;

nX
iD1

`ˇi
�

|
i

��
D

nX
iD1

.@B�/
".`ˇi

/�
|
i D

nX
iD1

q�Bh@B�; ˇii�
|
i D

� nX
iD1

h@B�; ˇii�i

�|

and we get (1). Since h�|;e�i D 0, the second equality follows. Then we have�� nX
iD1

`ˇi
�

|
i ;

nX
jD1

`ˇ0
j
�

|
j

��
D

nX
iD1

nX
jD1

`ˇi
.@B�i/

".`ˇ0
j
/�

|
j � `ˇ0j

.@B�j /
".`ˇi

/�
|
i

D

� nX
iD1

nX
jD1

h@B�i ; ˇ
0
j i �ˇi � �j � h@B�j ; ˇii �ˇ

0
j � �i

�|

;

which leads to (2). �

4C. Lagrangian decompositions of VB-Courant algebroids. In this section, we
study in detail the structure of VB-Courant algebroids, using Lagrangian decompo-
sitions of the underlying metric double vector bundle. Our goal is the following
theorem. Note the similarity of this result with Gracia-Saz and Mehta’s theorem
[2010] in the VB-algebroid case.



166 MADELEINE JOTZ LEAN

Theorem 4.6. Let .EIQ;BIM / be a VB-Courant algebroid and choose a La-
grangian splitting † WQ�M B! E. Then there is a split Lie 2-algebroid structure
.�Q; l D @

�
B
; ŒŒ � ; � ��;r; !/ on Q˚B� such that

(8)
‚.�Q.q//D brq 2 X.B/; ŒŒ�Q.q/; �

|��D .�q�/
|

ŒŒ�Q.q1/; �Q.q2/��D �QŒŒq1; q2��� DR!.q1; q2/;

for all q; q1; q2 2 �.Q/ and � 2 �.Q�/, where� W �.Q/��.Q�/! �.Q�/ is the
Dorfman connection that is dual to the dull bracket.

Conversely, a Lagrangian splitting † WQ�B�! E of the metric double vector
bundle E together with a split Lie 2-algebroid on Q˚B� define by (8) a linear
Courant algebroid structure on E.

First we will construct the objects ŒŒ � ; � ���; �;r;R as in the theorem, and then
we will prove in the Appendix that they satisfy the axioms of a split Lie 2-algebroid.

4C1. Construction of the split Lie 2-algebroid. First recall that, by definition, the
Courant bracket of two linear sections of E! B is again linear. Hence, we can
denote by ŒŒq1; q2�� the section of Q such that

(9) �Q ı ŒŒ�Q.q1/; �Q.q2/��D ŒŒq1; q2�� ı qB:

Since for each q 2 �.Q/, the anchor ‚.�Q.q// is a linear vector field on B

over �Q.q/ 2 X.M /, there exists a derivation rq W �.B/! �.B/ over �Q.q/

such that ‚.�Q.q// D brq 2 Xl.B/. This defines a linear Q-connection r W
�.Q/� �.B/! �.B/. For q 2 �.Q/ and � 2 �.Q�/, the bracket ŒŒ�Q.q/; �

|��

is a core section. It is easy to check that the map � W �.Q/� �.Q�/! �.Q�/

defined by
ŒŒ�Q.q/; �

|��D .�q�/
|

is a Dorfman connection.7

The difference of the two linear sections ŒŒ�Q.q1/; �Q.q2/��� �Q.ŒŒq1; q2��� / is
again a linear section, which projects to 0 under �Q. Hence, there exists a vector bun-
dle morphism R.q1; q2/ WB!Q� such that �Q.ŒŒq1; q2��� /� ŒŒ�Q.q1/; �Q.q2/��DCR.q1; q2/. This defines a map R W �.Q/� �.Q/! �.Hom.B;Q�//. We show
in the Appendix that R defines a 3-form ! 2 �3.Q;B�/ by R D R! , that
.l D @�

B
; ŒŒ � ; � ��;r; !/ is a split Lie 2-algebroid, and that ŒŒ � ; � �� is dual to �.

Conversely, choose a Lagrangian splitting † WQ�M B of a metric double vector
bundle .E;QIB;M / with core Q� and let S � �B.E/ be the subset

f�|
j � 2 �.Q�/g[ f�Q.q/ j q 2 �.Q/g � �.E/:

7Note that condition .C 3/ then implies that ŒŒ�|; �Q.q/��D .��q� C �
�
Q

dh�; qi/|.
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Choose a split Lie 2-algebroid .l; ŒŒ � ; � ��;r; !/ on Q˚B� with an anchor �Q on Q.
Consider the Dorfman connection � that is dual to the dull bracket. Define then
a vector bundle map ‚ W E! TB over the identity on B by ‚.�Q.q//D brq and
‚.�|/D .l��/| and a bracket ŒŒ � ; � �� on S by

ŒŒ�Q.q1/; �Q.q2/��D �QŒŒq1; q2��� DR!.q1; q2/; ŒŒ�Q.q/; �
|��D .�q�/

|;

ŒŒ�|; �Q.q/��D .��q� C �
�
Qdh�; qi/|; ŒŒ�

|
1
; �

|
2
��D 0:

We show in the Appendix that this bracket, the pairing and the anchor satisfy the
conditions of Lemma 3.2, and so .E;BIQ;M / with this structure is a VB-Courant
algebroid.

4C2. Change of Lagrangian decomposition. Next we study how the split Lie 2-
algebroid .@�

B
W B�!Q;r; ŒŒ � ; � ��; !/ associated to a Lagrangian decomposition

of a VB-Courant algebroid changes when the Lagrangian decomposition changes.
The proof of the following proposition is straightforward and left to the reader.

Compare this result with the equations at the end of Section 3E, that describe a
change of splittings of a Lie 2-algebroid.

Proposition 4.7. Let †1; †2 W B �M Q! E be two Lagrangian splittings and let
� 2 �.Q�˝Q�˝B�/ be the change of lift.

(1) The Dorfman connections are related by �2
q� D�

1
q� ��.q/.@B�/.

(2) The dull brackets are consequently related by ŒŒq;q0��2D ŒŒq;q0��1C@�B�.q/
�.q0/.

(3) The connections are related by r2
q Dr

1
q � @B ı�.q/.

(4) The curvature terms are related by !1 � !2 D d
r2��, where the operator

d
r2� is defined with the dull bracket ŒŒ � ; � ��1 on �.Q/.

As an application, we get the following corollary of Theorems 4.2 and 4.6.
Given � W �.Q/� �.Q�/! �.Q�/ and r W �.Q/� �.B/! �.B/, we define
the derivations ˙ W �.Q/��.Hom.B;Q�//! �.Hom.B;Q�// by .˙q�/.b/D

�q.�.b//��.rqb/.

Corollary 4.8. Let .Q˚B�!M; �Q; @
�
B
; ŒŒ � ; � ��;r; !/ be a split Lie 2-algebroid.

Then the vector bundle E WDQ˚Hom.B;Q�/ is a Courant algebroid with pairing in
B� given by h.q1; �1/; .q2; �2/iD�

�
1
.q2/C�

�
2
.q1/, with the anchor Q� WE!2Der.B/,

Q�.q; �/� Dr�q C�
� ı @�

B
over �.q/ and the bracket given by

ŒŒ.q1; �1/; .q2; �2/��D
�
ŒŒq1; q2���C @B.�

�
1 .q2//;˙q1

�2�˙q2
�1Cr

�
� .�
�
1 .q2//

C�2 ı @B ı�1��1 ı @B ı�2CR!.q1; q2/
�
:

The map D W �.B�/! �.E/ sends q to .@�
B

q;r�� q/. The bracket does not depend
on the choice of splitting.
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4D. Examples of VB-Courant algebroids and of the corresponding split Lie 2-
algebroids. We give here some examples of VB-Courant algebroids, and we com-
pute the corresponding classes of split Lie 2-algebroids. We find the split Lie
2-algebroids described in Section 3D. In each of the examples below, it is easy
to check that the Courant algebroid structure is linear. Hence, it is easy to check
geometrically that the objects described in 3D are indeed split Lie 2-algebroids.

4D1. The standard Courant algebroid over a vector bundle. We have discussed
this example in great detail in [Jotz Lean 2018a], but not in the language of split
Lie 2-algebroids. Note further that, in [Jotz Lean 2018a], we worked with general,
not necessarily Lagrangian, linear splittings.

Let qE WE!M be a vector bundle and consider the VB-Courant algebroid

TE˚T �E�E

ˆE WD.qE�;rE/
//

��

TM ˚E�

��

EqE
// M

with base E and side TM ˚ E� ! M, and with core E ˚ T �M ! M, or
in other words the standard (VB-)Courant algebroid over a vector bundle qE W

E ! M. Recall that TE ˚ T �E has a natural linear metric (see [Jotz Lean
2018a]). Linear splittings of TE ˚ T �E are in bijection with dull brackets on
sections of TM ˚E� [Jotz Lean 2018a], and so also with Dorfman connections
� W �.TM ˚E�/��.E˚T �M /! �.E˚T �M /, and Lagrangian splittings
of TE˚T �E are in bijection with skew-symmetric dull brackets on sections of
TM ˚E� [Jotz Lean 2018b].

The anchor ‚ D prTE W TE ˚ T �E ! TE restricts to the map @E D prE W

E˚T �M !E on the cores, and defines an anchor

�TM˚E� D prTM W TM ˚E�! TM

on the side. In other words, the anchor of .e; �/| is e" 2Xc.E/ and if A.X; "/ is a lin-
ear section of TE˚T �E!E over .X; "/2�.TM˚E�/, the anchor‚.A.X; "//2
Xl.E/ is linear over X . Let �E W E! E˚T �M be the canonical inclusion. In
[Jotz Lean 2018a] we proved that for q; q1; q22�.TM˚E�/ and �; �1; �22�.E˚

T �M /, the Courant–Dorfman bracket on sections of TE˚T �E!E is given by

(1) ŒŒ�.q/; �|��D .�q�/
|,

(2) ŒŒ�.q1/; �.q2/��D �.ŒŒq1; q2���/�GR�.q1; q2/ ı �E ,

and that the anchor � is described by ‚.�.q//D br�q 2 X.E/, where

r W �.TM ˚E�/��.E/! �.E/

is defined by rq D prE ı�q ı �E for all q 2 �.TM ˚E�/.
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Hence, if we choose a Lagrangian splitting of TE˚T �E, we find the split Lie
2-algebroid of Section 3D2.

4D2. The VB-Courant algebroid defined by a VB-Lie algebroid. More generally, let

D�A

�B
//

��

B

qB
��

AqA
// M

(with core C ) be endowed with a VB-Lie algebroid structure .D! B;A!M /.
Then the pair .D;D�

B
/ of vector bundles over B is a Lie bialgebroid, with D�

B

endowed with the trivial Lie algebroid structure. We get a linear Courant algebroid
D˚B .D

�
B
/ over B with side A˚C �,

D˚B .D
�
B
/ //

��

B

��

A˚C � // M

and core C ˚A�. We check that the Courant algebroid structure is linear. Let
† W A �M B ! D be a linear splitting of D. Recall that we can define a lin-
ear splitting of D�

B
by †? W B �M C �!D�

B
, h†?.bm; m/; †.am; bm/i D 0 and

h†?.bm; m/; c
|.bm/iDhm; c.m/i for all bm2B, am2A, m2C � and c2�.C /.

The linear splitting z† W B �M .A ˚ C �/ ! D ˚B .D�
B
/, z†.bm; .am; m// D

.†.am; bm/; †
?.bm; m// is then a Lagrangian splitting. A computation shows

that the Courant bracket on �B.D˚B .D
�
B
// is given by

ŒŒ Q�A˚C�.a1;1/; Q�A˚C�.a2;2/��

D .Œ�A.a1/; �A.a2/�; £�A.a1/�
?
C�.2/� i�A.a2/d�

?
C�.1//

D
�
�AŒa1; a2�� CR.a1; a2/; �

?
C�.r

�
a1
2�r

�
a2
1/

�hE2;R.a1; � /iChE1;R.a2; � /i
�
;

ŒŒ Q�A˚C�.a;  /; .c; ˛/
|��D .rac|; .£a˛Chr

�
� ; ci/

|/;

ŒŒ.c1; ˛1/
|; .c2; ˛2/

|��D 0;

and the anchor of D˚B .D
�
B
/ is defined by

‚. Q�A˚C�.a;  //D‚.�A.a//D bra 2 X
l.B/; ‚..c; ˛/|/D .@Bc/" 2 Xc.B/;

where .@B W C ! B;r W �.A/� �.B/! �.B/;r W �.A/� �.C /! �.C /;R/

is the 2-representation of A associated to the splitting † W A�M B ! D of the
VB-algebroid .D! B;A!M /. Hence, we have found the split Lie 2-algebroid
described in Section 3D4.
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4D3. The tangent Courant algebroid. We consider here a Courant algebroid

.E; �E; ŒŒ � ; � ��; h � ; � i/:

In this example, E will always be anchored by the Courant algebroid anchor map
�E and paired with itself by h � ; � i and DD ˇ�1 ı ��E ıd W C1.M /! �.E/. Note
that ŒŒ � ; � �� is not a dull bracket.

We show that, after the choice of a metric connection on E and so of a Lagrangian
splitting †r W TM �M E! T E (see Example 2.2), the VB-Courant algebroid
structure on .T E! TM;E!M / is equivalent to the split Lie 2-algebroid defined
by r as in Section 3D3.

Theorem 4.9. Choose a linear connection r WX.M /��.E/!�.E/ that preserves
the pairing on E. The Courant algebroid structure on T E! TM can be described
as follows, for all e; e1; e2 2 �.E/:

(1) The pairing is given by

he
|
1
; e

|
2
i D 0; h�rE .e1/; e

|
2
i D p�M he1; e2i; and h�rE .e1/; �

r
E .e2/i D 0:

(2) The anchor is given by ‚.�rE .e//D brbas
e and ‚.e|/D .�E.e//

".

(3) The bracket is given by

ŒŒe
|
1
; e

|
2
��D 0; ŒŒ�rE .e1/; e

|
2
��D .�e1

e2/
|

and
ŒŒ�rE .e1/; �

r
E .e2/��D �

r
E .ŒŒe1; e2���/�

ERbas
�
.e1; e2/

Proof. We use the characterisation of the tangent Courant algebroid in [Boumaiza
and Zaalani 2009] (see also [Li-Bland 2012]): the pairing has already been discussed
in Example 2.2. It is given by hTe1;Te2i D `d he1;e2i

and hTe1; e
|
2
i D p�

M
he1; e2i.

The anchor is given by‚.Te/D1£�E.e/ 2X.TM / and‚.e|/D .�E.e//
" 2X.TM /.

The bracket is given by ŒŒTe1;Te2��D T ŒŒe1; e2�� and ŒŒTe1; e
|
2
��D ŒŒe1; e2��

| for all
e; e1; e2 2 �.E/.

(1) is easy to check (see Example 2.2 and [Jotz Lean 2018b]). We here check (2),
i.e., that the anchor satisfies ‚.�rE .e//D brbas

e : For � 2�1.M / and vm 2 TM , we
have ‚.�rE .e/.vm//.`� /D `£�E.e/�

.vm/� h�m; �E.rvm
e/i D `

rbas
e
�
�
.vm/ and for

f 2 C1.M /, we have

‚.�rE .e//.p
�
Mf /D p�M .�E.e/f /:

This proves the equality.
Then we compute the brackets of our linear and core sections. Choose sec-

tions �; �0 of Hom.TM;E/. Then ŒŒTe;e���De£e�, with £e� 2 �.Hom.TM;E//

defined by .£e�/.X /D ŒŒe; �.X /����.Œ�E.e/;X �/ for all X 2X.M /. The equality
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ŒŒe�;Te��D�e£e�CD`h�. � /;ei follows. For � 2�1.M /, we compute hD`� ; e|i D

‚.e|/.`� / D p�
M
h�E.e/; �i. Thus, D`� D T .ˇ�1��E�/C

e for a section  2
�.Hom.TM;E// to be determined. Since hD`� ;Tei D ‚.Te/.`� / D `£�E.e/�

,
the bracket hT .ˇ�1��E�/C

e ;Tei D `d h�;�E.e/iCh . � /;ei must equal `£�E.e/�
, and

we find h . � /; ei D i�E.e/d� . Because e 2 �.E/ was arbitrary we find  .X / D
�ˇ�1��EiX d� for X 2 X.M /. We get in particular

ŒŒe�;Te��D�e£e�CT .ˇ�1��Eh�. � /; ei/�
Aˇ�1��EiX dh�. � /; ei:

The formula ŒŒe�; e�0�� DC�0 ı �E ı� �� ı �E ı�0 can easily be checked, as well as
ŒŒe�; e|��D�ŒŒe|;e���D�.�.�E.e///|. Using this, we find now easily that

ŒŒ�rE .e1/; �
r
E .e2/��D ŒŒTe1�

Ar�e1;Te2�
Ar�e2��

D T ŒŒe1; e2���B£e1
r�e2C

B£e2
r�e1�T .ˇ�1��Ehr�e1; e2i/

C
eˇ�1��Edhr�e1; e2iC

Er�E.r�e1/e2�
Er�E.r�e2/e1

D T ŒŒe1; e2����B£e1
r�e2C

B£e2
r�e1C

eˇ�1��Edhr�e1; e2i

CEr�E.r�e1/e2�
Er�E.r�e2/e1:

Since for all X 2 X.M /, we have

�.£e1
r�e2/.X /C.£e2

r�e1/.X /Cˇ
�1��EiX dhr�e1;e2i

D�ŒŒe1;rX e2��CrŒ�E.e1/;X �e2CŒŒe2;rX e1���rŒ�E.e2/;X �e1Cˇ
�1��EiX dhr�e1;e2i

D�ŒŒe1;rX e2��CrŒ�E.e1/;X �e2�ŒŒrX e1;e2���rŒ�E.e2/;X �e1Cˇ
�1��E£X hr�e1;e2i;

we find that ŒŒ�rE .e1/; �
r
E .e2/��D T ŒŒe1; e2��� �

ERbas
�
.e1; e2/. Finally we compute

ŒŒ�rE .e1/; e
|
2
��D ŒŒTe1�

Ar�e1 ; e
|
2
��D ŒŒe1; e2��

|Cr�E.e2/e
|
1
D�e1

e
|
2
. �

4E. Categorical equivalence of Lie 2-algebroids and VB-Courant algebroids. In
this section we quickly describe morphisms of VB-Courant algebroids. Then we
find an equivalence between the category of VB-Courant algebroids and the category
of Lie 2-algebroids. Note that a bijection between VB-Courant algebroids and Lie
2-algebroids was already described in [Li-Bland 2012].

4E1. Morphisms of VB-Courant algebroids. Recall from Section 2B that a mor-
phism � W E1 ! E2 of metric double vector bundles is an isotropic relation
� � E1 � E2 that is the dual of a morphism .E1/

�
Q1
! .E2/

�
Q2

. Assume that
E1 and E2 have linear Courant algebroid structures. Then � is a morphism of
VB-Courant algebroids if it is a Dirac structure (with support) in E1 � E2.

Choose two Lagrangian splittings †1 WQ1 �B1! E1 and †2 WQ2 �B2! E2.
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Then there exist four structure maps

!0 WM1!M2; !Q WQ1!Q2; !B W B
�
1 ! B�2 ; !12 2�

2.Q1; !
�
0 B�2 /

that define completely�. More precisely,� is spanned over Graph.!Q WQ1!Q2/

by sections Qb W Graph.!Q/!�,

Qb.qm; !Q.qm//D .�B1
.!?Bb/.qm/CB!?

12
.b/.qm/; �B2

.b/.!Q.qm///

for all b 2 �M2
.B2/, and �� W Graph.!Q/!�,

��.qm; !Q.qm//D ..!
?
Q�/

|.qm/; �
|.!Q.qm///

for all � 2�M2
.Q�

2
/. Note that� projects under �B1

��B2
to R!�

B
�B1�B2. If q2

�.Q1/ then !!
Q

q 2 �M1
.!�

0
Q2/ can be written as

P
i fi!

!
0
qi with fi 2 C1.M1/

and qi 2 �M2
.Q2/. The pair

.�B1
.!?Bb/.qm/CB!?

12
.b/.qm/; �B2

.b/.!Q.qm///

can be written as�
.�Q1

.q/Ch!12.q; � /; b.!0.m//i
|/.!?Bb.m//;

X
i

fi.m/�Q2
.qi/.b.!0.m///

�
:

Hence, � is spanned by the restrictions to R!�
B

of sections

(10)
�
�Q1

.q/ıpr1Ch!12.q; � /; pr2i
|
ıpr1;

X
i

.fi ıqB1
ıpr1/ �.�Q2

.qi/ıpr2/

�
for all q 2 �M1

.Q1/ and

(11) ..!?Q�/
|
ı pr1; �

|
ı pr2/

for all � 2 �.Q�
2
/.

Checking all the conditions in Lemma 3.3 on the two types of sections (10) and
(11) yields that �!R!�

B
is a Dirac structure with support if and only if

(1) !Q W Q1 ! Q2 over !0 W M1 ! M2 is compatible with the anchors �1 W

Q1! TM1 and �2 WQ2! TM2:

Tm!0.�1.qm//D �2.!Q.qm//

for all qm 2Q1,

(2) @1 ı!
?
Q
D !?

B
ı @2 as maps from �.Q�

2
/ to �.B1/, or equivalently !Q ı@

�
1
D

@�
2
ı!B ,

(3) !Q preserves the dull brackets up to @�
2
!12: i.e., !?

Q
.d2�/C !

?
12
.@2�/ D

d1.!
?
Q
�/ for all � 2 �.Q�

2
/.
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(4) !B and !Q intertwine the connections r1 and r2 up to @1 ı!12:

!?B..!
?
Qr

2/qb/Dr1
q .!

?
B.b//� @1 ı h!12.q; � /; bi 2 �.B1/

for all qm 2Q1 and b 2 �.B2/, and

(5) !?
Q
!R2
�!B ı!R1

D�d.!?
Q
r2/!12 2�

3.Q1; !
�
0

B�
2
/.

We thus find that� is a morphism of VB-Courant algebroids if and only if it induces
a morphism of split Lie 2-algebroids after any choice of Lagrangian decompositions
of E1 and E2.

4E2. Equivalence of categories. The functors Section 2B between the category of
metric double vector bundles and the category of Œ2�-manifolds refine to functors be-
tween the category of VB-Courant algebroids and the category of Lie Œ2�-algebroids.

Theorem 4.10. The category of Lie 2-algebroids is equivalent to the category of
VB-Courant algebroids.

Proof. Let .M;Q/ be a Lie 2-algebroid and consider the double vector bundle EM
corresponding to M. Choose a splitting M'QŒ�1�˚B�Œ�2� of M and consider
the corresponding Lagrangian splitting † of EM.

By Theorem 4.6, the split Lie 2-algebroid .QŒ�1�˚B�Œ�2�;Q/ defines a VB-
Courant algebroid structure on the decomposition of EM and so by isomorphism
on EM. Further, by Proposition 4.7, the Courant algebroid structure on EM does
not depend on the choice of splitting of M, since a different choice of splitting will
induce a change of Lagrangian splitting of EM. This shows that the functor G lifts to
a functor GQ from the category of Lie 2-algebroids to the category of VB-Courant
algebroids.

Sections 3E and 4E1 show that morphisms of split Lie 2-algebroids are sent by G
to morphisms of decomposed VB-Courant algebroids.

The functor F lifts in a similar manner to a functor FVBC from the category of VB-
Courant algebroids to the category of Lie 2-algebroids. The natural transformations
found in the proof of Theorem 2.3 refine to natural transformations FVBCGQ ' Id
and GQFVBC ' Id. �
Remark 4.11. Note that we use splittings and decompositions in order to obtain
this equivalence of categories, which does not involve splittings and decompositions.

First, while the linear metric of the linear VB-Courant algebroid is at the heart of
the equivalence of the underlying (metric) double vector bundle .EIB;QIM / with
the underlying Œ2�-manifold of the corresponding Lie 2-algebroid, the linear Courant
bracket and the linear anchor do not translate to very elegant structures on the linear
isotropic sections of E!Q and on its core sections. Only in a decomposition, the
ingredients of the linear bracket and anchor are recognised in a straightforward
manner as the ingredients of a split Lie 2-algebroid.
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Since our main goal was to show that, as decomposed VB-algebroids are the
same as 2-representations [Gracia-Saz and Mehta 2010], decomposed VB-Courant
algebroids are the same as split Lie 2-algebroids, it is natural for us to establish here
our equivalence in decompositions and splittings. The main work for the “splitting
free” version of the equivalence was done in [Jotz Lean 2018b]. Another approach
can of course be found in [Li-Bland 2012], but the equivalence there is not really
constructive, in the sense that it is difficult to even recognise the graded functions on
the underlying Œ2�-manifold as sections of the metric double vector bundle. To our
understanding, the equivalence of Œ2�-manifolds with metric double vector bundles
is not easy to recognise in the proof of [Li-Bland 2012].

Further, our main application in Section 5 is a statement about a certain class of
decomposed VB-Courant algebroids versus split Lie 2-algebroids. Similarly, in a
sequel of this paper [Jotz Lean 2018c], we work exclusively with decomposed or
split objects to express Li-Bland’s definition of an LA-Courant algebroid [Li-Bland
2012] in a decomposition. This yields a new definition that involves the “matched
pair” of a split Lie 2-algebroid with a self-dual 2-representation. This new approach
is far more useful for concrete computations, since there is no need anymore to
consider the tangent triple vector bundle of E (see [Li-Bland 2012]).

5. VB-bialgebroids and bicrossproducts of
matched pairs of 2-representations

In this section we show that the bicrossproduct of a matched pair of 2-representations
is a split Lie 2-algebroid and we geometrically explain this result.

5A. The bicrossproduct of a matched pair of 2-representations. We construct a
split Lie 2-algebroid .A˚B/˚C induced by a matched pair of 2-representations as
in Definition 2.1. The vector bundle A˚B!M is anchored by �AıprAC�BıprB
and paired with A�˚B� as follows:

h.a; b/; .˛; ˇ/i D ˛.a/�ˇ.b/

for all a2�.A/, b 2�.B/, ˛ 2�.A�/ and ˇ 2�.B�/. The morphism A�˚B�!

C � is @�
A
ıprA� C@

�
B
ıprB� . The A˚B-Dorfman connection on A�˚B� is defined

by
�.a;b/.˛; ˇ/D .r

�
b˛C £a˛� hr�b; ˇi;r

�
aˇC £bˇ� hr�a; ˛i/:

The dual dull bracket on �.A˚B/ is

(12) ŒŒ.a; b/; .a0; b0/��D .Œa; a0�Crba0�rb0a; Œb; b
0�Crab0�ra0b/:

The A˚B-connection on C � is simply given by r�
.a;b/

 Dr�a Cr
�
b
 and the

dual connection is r W �.A˚B/��.C /! �.C /,

(13) r.a;b/c DracCrbc:
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Finally, the form ! 2�3.A˚B;C / is given by

(14) !..a1;b1/; .a2;b2/; .a3;b3//DR.a1;a2/b3CR.a2;a3/b1CR.a3;a1/b2

�R.b1;b2/a3�R.b2;b3/a1�R.b3;b1/a2:

The vector bundle .A ˚ B/ ˚ C ! M with the anchor �A ı prAC�B ı prB W
A˚B! TM , l D .�@AI @B/ W C ! A˚B, !R and the skew-symmetric dull
bracket (12) define a split Lie 2-algebroid. Moreover, we prove the following
theorem:

Theorem 5.1. The bicrossproduct of a matched pair of 2-representations is a split
Lie 2-algebroid with the structure given above. Conversely if .A˚B/˚C has a
split Lie 2-algebroid structure such that

(1) ŒŒ.a1; 0/; .a2; 0/��D .Œa1; a2�; 0/ with a section Œa1; a2� 2 �.A/ for all a1; a2 2

�.A/ and in the same manner ŒŒ.0; b1/; .0; b2/��D .0; Œb1; b2�/ with a section
Œb1; b2� 2 �.B/ for all b1; b2 2 �.B/, and

(2) !..a1; 0/; .a2; 0/; .a3; 0// D 0 and !..0; b1/; .0; b2/; .0; b3// D 0 for all a1,
a2 and a3 in �.A/ and b1, b2 and b3 in �.B/,

then A and B are Lie subalgebroids of .A˚ B/˚ C and .A˚ B/˚ C is the
bicrossproduct of a matched pair of 2-representations of A on B˚C and of B on
A˚C . The 2-representation of A is given by

(15)
@B.c/D prB.l.c//; rab D prB ŒŒ.a; 0/; .0; b/��;

rac Dr.a;0/c; RAB.a1; a2/b D !.a1; a2; b/

and the B-representation is given by

(16)
@A.c/D� prA.l.c//; rbaD prAŒŒ.0; b/; .a; 0/��;

rbc Dr.0;b/c; RBA.b1; b2/aD�!.b1; b2; a/:

Proof. Assume first that .A˚B/˚C is a split Lie 2-algebroid with (1) and (2). The
bracket Œ � ; � � W �.A/��.A/! �.A/ defined by ŒŒ.a1; 0/; .a2; 0/��D .Œa1; a2�; 0/ is
obviously skew-symmetric and R-bilinear. Define an anchor �A on A by �A.a/D

�A˚B.a; 0/. Then we get immediately

.Œa1; fa2�; 0/D ŒŒ.a1; 0/; f .a2; 0/��D f .Œa1; a2�; 0/C �A˚B.a1; 0/.f /.a2; 0/;

which shows that Œa1; fa2� D f Œa1; a2� C �A.a1/.f /a2 for all a1; a2 2 �.A/.
Further, we find

JacŒ�;��.a1; a2; a3/D prA.JacŒŒ�;���..a1; 0/; .a2; 0/; .a3; 0///

D�.prA ıl ı!/..a1; 0/; .a2; 0/; .a3; 0///D 0

since ! vanishes on sections of A. Hence A is a wide subalgebroid of the split Lie



176 MADELEINE JOTZ LEAN

2-algebroid. In a similar manner, we find a Lie algebroid structure on B. Next we
prove that (15) defines a 2-representation of A. Using (ii) in Definition 3.4 we find
for a 2 �.A/ and c 2 �.C / that

@B.rac/D .prB ıl/.r.a;0/c/
.ii/
D prB ŒŒ.a; 0/; l.c/��D prB ŒŒ.a; 0/; .0; prB.l.c///��Dra.@Bc/:

In the third equation we have used condition (1) and in the last equation the
definitions of @B and ra W �.B/ ! �.B/. In the following, we will write for
simplicity a for .a; 0/ 2 �.A˚B/, etc. We easily get

RAB.a1; a2/@Bc D !.a1; a2; prB.l.c///D !.a1; a2; l.c//
.iv/
D Rr.a1; a2/c

and

@BRAB.a1; a2/b D .prB ıl ı!/.a1; a2; b/
.iii/
D � prB.JacŒŒ�;���.a1; a2; b//

for all a1; a2 2 �.A/, b 2 �.B/ and c 2 �.C /. By condition (1) and the definition
of ra W �.B/! �.B/, we find

Rr.a1; a2/b D prB ŒŒa1; ŒŒa2; b����� prB ŒŒa2ŒŒa1; b����� prB ŒŒŒŒa1; a2��; b��

D� prB.JacŒŒ�;���.a1; a2; b//:

Hence, @BRAB.a1; a2/b DRr.a1; a2/b. Finally, an easy computation along the
same lines shows that

(17) h.drHomRAB/.a1; a2; a3/; bi D .dr!/.a1; a2; a3; b/

for a1; a2; a3 2 �.A/ and b 2 �.B/. Since dr! D 0, we find drHomRAB D 0. In
a similar manner, we prove that (16) defines a 2-representation of B. Further, by
construction of the 2-representations, the split Lie 2-algebroid structure on .A˚
B/˚C /must be defined as in (12), (13) and (14), with the anchor �AıprAC�BıprB
and l D .�@A; @B/. Hence, to conclude the proof, it only remains to check that
the split Lie 2-algebroid conditions for these objects are equivalent to the seven
conditions in Definition 2.1 for the two 2-representations.

First, we find immediately that (M1) is equivalent to (i). Then we find by
construction

Œa; @Ac�Cr@BcaD�Œa; prA.l.c//�CrprB.l.c//aD prAŒŒl.c/; a��D� prAŒŒa; l.c/��:

Hence, we find that (M2) holds if and only if prAŒŒa; l.c/��D prA ıl.rac/. But since

ŒŒa; lc��D .prAŒŒa; l.c/��;ra prB l.c//D .prAŒŒa; l.c/��;ra@B.c//

D .prAŒŒa; l.c/��; @Brac/D .prAŒŒa; l.c/��; prB.l.rac///;

we have prAŒŒa; l.c/�� D prA ıl.rac/ if and only if ŒŒa; lc�� D l.rac/. Hence (M2)
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is satisfied if and only if ŒŒa; l.c/��D l.rac/ for all a 2 �.A/ and c 2 �.C /. In a
similar manner, we find that (M3) is equivalent to ŒŒb; lc��D l.rbc/ for all b 2�.B/

and c 2 �.C /. This shows that (M2) and (M3) together are equivalent to (ii).
Next, a simple computation shows that (M4) is equivalent to Rr.b; a/c D

!.b; a; l.c//. Since

Rr.a; a
0/c DRAB.a; a

0/@Bc D !.a; a0; prB.l.c///D !.a; a
0; l.c//

and Rr.b; b
0/c D !.b; b0; l.c//, we get that (M4) is equivalent to (iv).

Two straightforward computations show that (M5) is equivalent to

prA.JacŒŒ�;���.a1; a2; b//D� prA.l!.a1; a2; b//

and that (M6) is equivalent to

prB.JacŒŒ�;���.b1; b2; a//D� prB.l!.b1; b2; a//:

But since prB.JacŒŒ�;���.a1; a2; b//D�Rr.a1; a2/b by construction and

Rr.a1; a2/b D @BRAB.a1; a2/b D prB.l!.a1; a2; b//;

we find
prB.JacŒŒ�;���.a1; a2; b//D� prB.l!.a1; a2; b//;

and in a similar manner

prA.JacŒŒ�;���.b1; b2; a//D� prA.l!.b1; b2; a//:

Since JacŒŒ�;���.a1; a2; a3/D 0, JacŒŒ�;���.b1; b2; b3/D 0, and ! vanishes on sections
of A, and respectively on sections of B, we conclude that (M5) and (M6) together
are equivalent to (iii).

Finally, a slightly longer, but still straightforward computation shows that

.drB RAB/.b1; b2/.a1; a2/� .drARBA/.a1; a2/.b1; b2/D .dr!/.a1; a2; b1; b2/

for all a1; a2 2 �.A/ and b1; b2 2 �.B/. This, (17), the corresponding identity
for RBA, and the vanishing of ! on sections of A, and, respectively, on sections
of B, show that (M7) is equivalent to (v). �

If C D 0, then RAB D 0, RBA D 0, @A D 0 and @B D 0 and the matched pair
of 2-representations is just a matched pair of Lie algebroids. The double is then
concentrated in degree 0, with ! D 0, and l2 is the bicrossproduct Lie algebroid
structure on A ˚ B with anchor �A C �B [Lu 1997; Mokri 1997]. Hence, in
that case the split Lie 2-algebroid is just the bicrossproduct of a matched pair of
representations and the dual (flat) Dorfman connection is the corresponding Lie
derivative. The Lie 2-algebroid is in that case a genuine Lie 1-algebroid.



178 MADELEINE JOTZ LEAN

In the case where B has a trivial Lie algebroid structure and acts trivially up to
homotopy on @AD 0 WC !A, the double is the semidirect product Lie 2-algebroid
found in [Sheng and Zhu 2017, Proposition 3.5] (see Section 3D4).

5B. VB-bialgebroids and double Lie algebroids. Consider a double vector bundle
.DIA;BIM / with core C and a VB-Lie algebroid structure on each of its sides.
Recall from Section 2A that .DIA;B;M / is a double Lie algebroid if and only
if, for any linear splitting of D, the two induced 2-representations (denoted as in
Section 2A) form a matched pair [Gracia-Saz et al. 2018]. By definition of a double
Lie algebroid, .D�

A
;D�

B
/ is then a Lie bialgebroid over C � [Mackenzie 2011], and

so the double vector bundle

D�
A
˚D�

B
//

��

C �

��

A˚B // M

with core B�˚A� has the structure of a VB-Courant algebroid with base C � and
side A˚B. Note that we call the pair .D�

A
;D�

B
/ a VB-bialgebroid over C �. Con-

versely, a VB-Courant algebroid .EIQ;BIM / with two transverse VB-Dirac struc-
tures .D1IQ1;BIM / and .D2IQ2;BIM / defines a VB-bialgebroid .D1;D2/

over B. It is not difficult to see that a VB-bialgebroid8 .DA ! X;A ! M /,
.DB!X;B!M / is equivalent to a double Lie algebroid structure on

..DA/
�
AIB;AIM /' ..DB/

�
BIB;AIM /

with core X �.
Consider again a double Lie algebroid .DIA;BIM /, together with a linear

splitting † WA�M B!D. Then the “dual splittings” �?
A
W �.A/! � l

C�
.D�

A
/ and

�?
B
W �.B/! � l

C�
.D�

B
/ are defined as in Section 2.2.3 in [Jotz Lean 2018b], and

satisfy the equations

(18) h�?A.a/;�
?
B.b/iD0; h�?A.a/;˛

|
iD�q�C�h˛;ai; hˇ|;�?B.b/iDq�C�hˇ;bi;

for all a 2 �.A/, b 2 �.B/, ˛ 2 �.A�/ and ˇ 2 �.B�/.
Then

Q† W .A˚B/�M C �!D�A˚D�B;

defined by Q†..a.m/; b.m//; m/D .�
?
A
.a/.m/; �

?
B
.b/.m//, is a linear Lagrangian

splitting of D�
A
˚D�

B
.

Recall from Section 2A that the splitting

†? WA�M C �!D�A

8DA has necessarily core B� and DB has core A�.
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of the VB-algebroid .D�
A
! C �;A! M / corresponds to the 2-representation

.rC �;rB�;�R�/ of A on the complex @�
B
WB�!C �. In the same manner, the split-

ting†? W B �M C �!D�
B

of the VB-algebroid .D�
B
! C �;B!M / corresponds

to the 2-representation .rC �;rA�;�R�/ of B on the complex @�
A
WA�! C �.

We check that the split Lie 2-algebroid corresponding to the linear splitting Q†
of D�

A
˚D�

B
is the bicrossproduct of the matched pair of 2-representations. The

equalities in (18) imply that we have to consider A˚B as paired with A�˚B� in
the nonstandard way:

h.a; b/; .˛; ˇ/i D ˛.a/�ˇ.b/

for all a 2 �.A/, b 2 �.B/, ˛ 2 �.A�/ and ˇ 2 �.B�/. The anchor of Q�.a; b/D
.�?.a/; �?.b// is br�a Cbr�b 2 Xl.C �/;

and the anchor of .˛; ˇ/| D .ˇ|; ˛|/ 2 �c
C�
.D�

A
˚D�

B
/ is

.@�BˇC @
�
A˛/
"
2 Xc.C �/:

The Courant bracket ŒŒ.�?
A
.a/; �?

B
.b//; .ˇ|; ˛|/�� is

.Œ�?A.a/; ˇ
|�C£�?

B
.b/ˇ

|
�i˛|dD�

B
�?A.a/; Œ�

?
B.b/; ˛

|�C£�?
A
.a/˛

|
�iˇ|dD�

A
�?B.b//;

where dD�
A
W �C�

�V�
D�

B

�
! �C�

�V�C1
D�

B

�
is defined as usual by the Lie alge-

broid D�
A

, and similarly for D�
B

(bear in mind that some nonstandard signs arise
from the signs in (18)). The derivation £ W�.D�

A
/��.D�

B
/!�.D�

B
/ is described by

£ˇ|˛|
D 0; £ˇ|�?B.b/D�hb;r

�
� ˇi

|;

£�?
A
.a/˛

|
D £a˛

|; £�?
A
.a/�

?
B.b/D �

?
B.rab/CCR.a; � /b

in [Gracia-Saz et al. 2018, Lemma 4.8]. Similar formulae hold for

£ W �.D�B/��.D
�
A/! �.D�A/:

We get

ŒŒ.�?A.a/; �
?
B.b//; .ˇ

|; ˛|/��D ..r�aˇC£bˇ�hr�a; ˛i/
|; .r�b˛C£a˛�hr�b; ˇi/

|/:

In the same manner, we get

ŒŒ.�?A.a1/;�
?
B.b1//; .�

?
A.a2/;�

?
B.b2//��

D .�?A.Œa; a
0�Crba0�rb0a/; �

?
B.Œb; b

0�Crab0�ra0b//

C
�
�CR.a1; a2/CDR.b1; �/a2�

DR.b2; �/a1;�CR.b1; b2/CDR.a1; �/b2�
DR.a2; �/b1

�
:
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Hence we have the following result. Recall that we have found above that
double Lie algebroids are equivalent to VB-Courant algebroids with two transverse
VB-Dirac structures.

Theorem 5.2. The correspondence established in Theorem 4.6, between decom-
posed VB-Courant algebroids and split Lie 2-algebroids, restricts to a correspon-
dence between decomposed double Lie algebroids and split Lie 2-algebroids that
are the bicrossproducts of matched pairs of 2-representations.

In other words, decomposed VB-bialgebroids are equivalent to matched pairs of
2-representations.

Recall that if the vector bundle C is trivial, the matched pair of 2-representations
is just a matched pair of the Lie algebroids A and B. The corresponding double
Lie algebroid is the decomposed double Lie algebroid .A�M B;A;B;M / found
in [Mackenzie 2011]. The corresponding VB-Courant algebroid is

A�M B�˚A� �M B //

��

0�M

��

A˚B // M

with core B� ˚A�. In that case there is a natural Lagrangian splitting and the
corresponding Lie 2-algebroid is just the bicrossproduct Lie algebroid structure
defined on A˚B by the matched pair; see also the end of Section 5. This shows
that the two notions of the double of a matched pair of Lie algebroids — the
bicrossproduct Lie algebroid in [Mokri 1997] and the double Lie algebroid in
[Mackenzie 2011] are just the N-geometric and the classical descriptions of the
same object, and special cases of Theorem 5.2.

5C. ExampleW the two “doubles” of a Lie bialgebroid. Recall that a Lie bialge-
broid .A;A�/ is a pair of Lie algebroids .A!M;�; Œ � ; � �/ and .A�!M; �?; Œ � ; � �?/

in duality such that A˚A�!M with the anchor �C �?, the pairing

h.a1; ˛1/; .a2; ˛2/i D ˛1.a2/C˛2.a1/;

and the bracket

ŒŒ.a1; ˛1/; .a2; ˛2/��D .Œa1; a2�C£˛1
a2�i˛2

dA�a1; Œ˛1; ˛2�?C£a1
˛2�ia2

dA˛1/

is a Courant algebroid. Lie bialgebroids were originally defined in a different
manner [Mackenzie and Xu 1994], and the definition above is at the origin of the
abstract definition of Courant algebroids [Liu et al. 1997]. This Courant algebroid
is sometimes called the bicrossproduct of the Lie bialgebroid, or the double of the
Lie bialgebroid.
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Mackenzie [2011] came up with an alternative notion of the double of a Lie
bialgebroid. Given a Lie bialgebroid as above, the double vector bundle

T �A' T �A� //

��

A�

��

A // M

is a double Lie algebroid with the following structures. The Lie algebroid structure
on A defines a linear Poisson structure on A�, and so a linear Lie algebroid structure
on T �A�!A�. In the same manner, the Lie algebroid structure on A� defines a
linear Poisson structure on A, and so a linear Lie algebroid structure on T �A!A

(see [Gracia-Saz et al. 2018] for more details and for the matched pairs of 2-
representations associated to a choice of linear splitting). The VB-Courant algebroid
defined by this double Lie algebroid is .T �A/�

A
˚.T �A/�

A�
which is isomorphic to

TA˚TA� //

��

TM

��

A˚A� // M

Computations reveal that the Courant algebroid structure is just the tangent of the
Courant algebroid structure on A˚A�, and so that the two notions of the double of
a Lie bialgebroid can be understood as an algebraic and a geometric interpretation
of the same object.

Appendix: Proof of Theorem 4.6

Let .EIQ;BIM / be a VB-Courant algebroid and choose a Lagrangian splitting
† W Q �M B. We prove here that the obtained split linear Courant algebroid
is equivalent to a split Lie 2-algebroid. Recall the construction of the objects
@B; �;r; ŒŒ � ; � ��� ;R in Section 4C1, and recall that S � �B.E/ is the subset

f�|
j � 2 �.Q�/g[ f�Q.q/ j q 2 �.Q/g � �B.E/:

Recall also that the tangent double .TB!BITM !M / has a VB-Lie algebroid
structure, which is described in [Jotz Lean 2018b, Section 2.2.2]. We begin by
giving two useful lemmas.

Lemma A.1. For ˇ 2 �.B�/, we have

D.`ˇ/D �Q.@
�
Bˇ/C

Ar�� ˇ;
where r�� ˇ is seen as follows as a section of �.Hom.B;Q�//: .r�� ˇ/.b/ D
hr�� ˇ; bi 2 �.Q

�/ for all b 2 �.B/.
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Proof. For ˇ 2 �.B�/, the section d`ˇ is a linear section of T �B! B. Since the
anchor ‚ is linear, the section D`ˇ D‚�d`ˇ is linear. Since for any � 2 �.Q�/,

hD.`ˇ/; �|
i D‚.�|/.`ˇ/D q�Bh@B�; ˇi;

we find that D.`ˇ/� �Q.@
�
B
ˇ/ 2 �.ker�Q/. Hence, D.`ˇ/� �Q.@

�
B
ˇ/ is a core-

linear section of E! B and there exists a section � of Hom.B;Q�/ such that
D.`ˇ/� �Q.@

�
B
ˇ/D e�. We have

`h�;qi D he�; �Q.q/i D hD.`ˇ/� �Q.@
�
Bˇ/; �Q.q/i D‚.�Q.q//.`ˇ/D `r�q ˇ

and so �.b/D hr�� ˇ; bi 2 �.Q
�/ for all b 2 �.B/. �

For each q 2 �.Q/, rq , and �q define a derivation ˙q of �.Hom.B;Q�// as
follows: for � 2 �.Hom.B;Q�// and b 2 �.B/,

.˙q�/.b/D�q.�.b//��.rqb/:

Lemma A.2. For q 2�.Q/ and � 2�.Hom.B;Q�//, we have ŒŒ�Q.q/;e���DȦq�.

Proof. The proof is an easy computation as in the proof of Lemma 4.4. �
Now we can express all the conditions of Lemma 3.2 in terms of the objects

@B; �;r; ŒŒ � ; � ��� ;R found in Section 4C1.

Proposition A.3. The anchor satisfies ‚ ı‚� D 0 if and only if �Q ı @
�
B
D 0 and

r�
@�

B
ˇ1
ˇ2Cr

�

@�
B
ˇ2
ˇ1 D 0 for all ˇ1; ˇ2 2 �.B

�/.

Proof. The composition ‚ ı‚� vanishes if and only if .‚ ı‚�/dF D 0 for all
linear and pullback functions F 2 C1.B/. For f 2 C1.M /,

‚.‚�d.q�Bf //D ..@B ı �
�
Q/df /

":

For ˇ 2 �.B�/, we find, using Lemma A.1,

‚.‚�d`ˇ/D‚.D`ˇ/D‚.�Q.@
�
Bˇ/C

Ar�� ˇ/D br@�BˇCF@B ı hr
�
� ˇ; �i:

Here, @B ı hr
�
� ˇ; � i is as follows a morphism B! B; b 7! @B.hr

�
� ˇ; bi/. On a

linear function `ˇ0 , ˇ0 2 �.B�/, we have ‚.‚�d`ˇ/.`ˇ0/D `r�
@�

B
ˇ
ˇ0 C `r�

@�
B
ˇ0
ˇ.

On a pullback q�
B
f , f 2 C1.M /, this is q�

B
.£.�Qı@

�
B
/.ˇ/f /. �

Proposition A.4. The compatibility of ‚ with the Courant algebroid bracket ŒŒ � ; � ��
is equivalent to

(1) @B ıR.q1; q2/DRr.q1; q2/,

(2) �Q ı ŒŒ � ; � ��� D Œ � ; � � ı .�Q; �Q/, or �q.�
�
Q

df /D ��
Q

d.�Q.q/.f // for all
q 2 �.Q/ and f 2 C1.M /, and

(3) @B ı�Dr ı @B .
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Proof. We have ‚ŒŒ�Q.q1/; �Q.q2/��D Œ‚.�Q.q1//;‚.�Q.q2//�D Œbrq1
;brq2

� and

‚.�Q.ŒŒq1; q2��� /� CR.q1; q2//D brŒŒq1;q2��� �
G@B ıR.q1; q2/:

Applying both derivations to a pullback function q�
B
f for f 2 C1.M / yields

Œbrq1
;brq2

�.q�Bf /D q�B.Œ�Q.q1/; �Q.q2/�f /:

and
.brŒŒq1;q2��� �

G@B ıR.q1; q2//.q
�
Bf /D q�B.�QŒŒq1; q2��� .f //:

Applying both vector fields to a linear function `ˇ 2 C1.B/, ˇ 2 �.B�/, we get

Œbrq1
;brq2

�.`ˇ/D `r�q1
r�q2

ˇ�r�q2
r�q1

ˇ

and
.brŒŒq1;q2��� �

G@B ıR.q1; q2//.`ˇ/D `r�
ŒŒq1;q2���

ˇ�R.q1;q2/�@
�
B
ˇ:

Since Rr�.q1; q2/D�.Rr.q1; q2//
�, we find that

‚ŒŒ�Q.q1/; �Q.q2/��D Œ‚.�Q.q1//;‚.�Q.q2//�

for all q1; q2 2 �.Q/ if and only if (1) and (2) are satisfied.
In the same manner, for q 2 �.Q/ and � 2 �.Q�/, we compute

‚.ŒŒ�Q.q/; �
|��/D .@B�q�/

"

and
Œ‚.�Q.q//;‚.�

|/�D Œbrq; .@B�/
"�D .rq.@B�//

":

Thus,‚.ŒŒ�Q.q/; �
|��/D Œ‚.�Q.q//;‚.�

|/� if and only if @B.�q�/Drq.@B�/. �

Proposition A.5. The condition (3) of Lemma 3.2 is equivalent to R.q1; q2/ D

�R.q2; q1/ and ŒŒq1; q2��� C ŒŒq2; q1��� D 0 for q1; q2 2 �.Q/.

Proof. Choose q1; q2 in �.Q/. Then we have

ŒŒ�Q.q1/; �Q.q2/��C ŒŒ�Q.q2/; �Q.q1/��

D �Q.ŒŒq1; q2��� C ŒŒq2; q1��� /� CR.q1; q2/� CR.q2; q1/:

By the choice of the splitting, we have Dh�Q.q1/; �Q.q2/i DD.0/D 0. Hence, (3)
of Lemma 3.2 is true on horizontal lifts of sections of Q if and only if R.q1; q2/D

�R.q2; q1/ and ŒŒq1; q2��� C ŒŒq2; q1��� D 0 for all q1; q2 2 �.Q/. Further, we have
ŒŒ�Q.q/; �

|��D .�q�/
| and ŒŒ�|; �Q.q/��D .��q�C�

�
Q

dh�; qi/| by definition. On
core sections (3) is trivially satisfied since both the pairing and the bracket of two
core sections vanish. �
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Proposition A.6. The derivation formula (2) in Lemma 3.2 is equivalent to the
following:

(1) � is dual to ŒŒ � ; � ��� , that is ŒŒ � ; � ��� D ŒŒ � ; � ���,

(2) ŒŒq1; q2��� C ŒŒq2; q1��� D 0 for all q1; q2 2 �.Q/, and

(3) R.q1; q2/
�q3 D�R.q1; q3/

�q2 for all q1; q2; q3 2 �.Q/.

Proof. We compute (CA2) for linear and core sections. First of all, the equations

‚.�
|
1
/h�

|
2
; �

|
3
i D hŒŒ�

|
1
; �

|
2
��; �

|
3
iC h�

|
2
; ŒŒ�

|
1
; �

|
3
��i;

‚.�
|
1
/h�

|
2
; �Q.q/i D hŒŒ�

|
1
; �

|
2
��; �Q.q/iC h�

|
2
; ŒŒ�

|
1
; �Q.q/��i

and
‚.�Q.q//h�

|
1
; �

|
2
i D hŒŒ�Q.q/; �

|
1
��; �

|
2
iC h�

|
1
; ŒŒ�Q.q/; �

|
2
��i

are trivially satisfied for all �1; �2; �3 2 �.Q
�/ and q 2 �.Q/. Next, for q1; q2 2

�.Q/ and � 2 �.Q�/, we have:

‚.�Q.q1//h�Q.q2/; �
|
i � hŒŒ�Q.q1/; �Q.q2/��; �

|
i � h�Q.q2/; ŒŒ�Q.q1/; �

|��i

D brq1
.q�Bhq2; �i/� q�BhŒŒq1; q2��� ; �i � q�Bhq2; �q1

�i

D q�B
�
�Q.q1/hq2; �i � hŒŒq1; q2��� ; �i � hq2; �q1

�i
�

Thus ‚.�Q.q1//h�Q.q2/; �
|i D hŒŒ�Q.q1/; �Q.q2/��; �

|iCh�Q.q2/; ŒŒ�Q.q1/; �
|��i

for all q1; q2 2 �.Q/ and � 2 �.Q�/ if and only if � and ŒŒ � ; � ��� are dual to each
other. Using this, we compute

‚.�|/h�Q.q1/;�Q.q2/i�hŒŒ�
|;�Q.q1/��;�Q.q2/i�h�Q.q1/; ŒŒ�

|;�Q.q2/��i

D 0�h�.�q1
�/|C.��Qdhq1;�i/

|; �Q.q2/i�h�Q.q1/;�.�q2
�/|C .��Qdhq2; �i/

|
i

D �q�BhŒŒq1; q2��� C ŒŒq2; q1��� ; �i:

Finally we have ‚.�Q.q1//h�Q.q2/; �Q.q3/i D 0 for all q1; q2; q3 2�.Q/, and
hŒŒ�Q.q1/; �Q.q2/��; �Q.q3/i D `�R.q1;q2/�q3

. This shows that

‚.�Q.q1//h�Q.q2/; �Q.q3/i

D hŒŒ�Q.q1/; �Q.q2/��; �Q.q3/iC h�Q.q2/; ŒŒ�Q.q1/; �Q.q3/��i

if and only if 0D�R.q1; q2/
�q3�R.q1; q3/

�q2. �

Proposition A.7. Assume that � and ŒŒ � ; � ��� are dual to each other. The Jacobi
identity in Leibniz form for sections in S is equivalent to

.1/ R.q1; q2/ ı @B DR�.q1; q2/;
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.2/ R.q1; ŒŒq2; q3���/�R.q2; ŒŒq1; q3���/�R.ŒŒq1; q2���/; q3/

C˙q1
.R.q2; q3//�˙q2

.R.q1; q3//C˙q3
.R.q1; q2//

Dr
�
� .R.q1; q2/

�q3/

for all q1; q2; q3 2 �.Q/.

If R is skew-symmetric as in (1) of Proposition A.5, then the second equation is
dr�! D 0 for ! 2�3.Q;B�/ defined by !.q1; q2; q3/DR.q1; q2/

�q3.

Proof. The Jacobi identity is trivially satisfied on core sections since the bracket
of two core sections is 0. Similarly, for �1; �2 2 �.Q

�/ and q 2 �.Q/, we find
ŒŒ�Q.q/; ŒŒ�

|
1
; �

|
2
����D 0 and ŒŒŒŒ�Q.q/; �

|
1
��; �

|
2
��C ŒŒ�

|
1
; ŒŒ�Q.q/; �

|
2
����D 0. We have

ŒŒ�Q.q1/; ŒŒ�Q.q2/; �
|����� ŒŒ�Q.q2/; ŒŒ�Q.q1/; �

|����

D ŒŒ�Q.q1/; .�q2
�/|��� ŒŒ�Q.q2/; .�q1

�/|��

D .�q1
�q2

�/|� .�q2
�q1

�/|;

and
ŒŒŒŒ�Q.q1/; �Q.q2/��; �

|��D ŒŒ�Q.ŒŒq1; q2���/� CR.q1; q2/; �
|��

D .�ŒŒq1;q2����/
|
C .R.q1; q2/.@B�//

|

by Lemma 4.4. We now choose q1; q2; q3 2 �.Q/ and compute

ŒŒŒŒ�Q.q1/; �Q.q2/��; �Q.q3/��

D ŒŒ�Q.ŒŒq1; q2���/� CR.q1; q2/; �Q.q3/��

D �Q.ŒŒŒŒq1; q2���; q3���/�HR.ŒŒq1; q2���; q3/�D`hR.q1;q2/�;q3i
CF˙q3

R.q1; q2/

D �Q.ŒŒŒŒq1; q2���; q3���/�HR.ŒŒq1; q2���; q3/

� �Q.@
�
BhR.q1; q2/�; q3i/�er�� hR.q1; q2/�; q3iC

F˙q3
R.q1; q2/

and

ŒŒ�Q.q2/; ŒŒ�Q.q1/; �Q.q3/����

D ŒŒ�Q.q2/; �Q.ŒŒq1; q3���/� CR.q1; q3/��

D �Q.ŒŒq2; ŒŒq1; q3������/�HR.q2; ŒŒq1; q3���/�F˙q2
R.q1; q3/:

We hence find that

ŒŒŒŒ�Q.q1/; �Q.q2/��; �Q.q3/��C ŒŒ�Q.q2/; ŒŒ�Q.q1/; �Q.q3/����

D ŒŒ�Q.q1/; ŒŒ�Q.q2/; �Q.q3/����

if and only if

ŒŒŒŒq1; q2���; q3���C ŒŒq2; ŒŒq1; q3������ D ŒŒq1; ŒŒq2; q3������C @
�
BhR.q1; q2/�; q3i
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and

R.ŒŒq1; q2���; q3/Cr
�
� hR.q1; q2/�; q3i �˙q3

R.q1; q2/

CR.q2; ŒŒq1; q3���/C˙q2
R.q1; q3/

DR.q1; ŒŒq2; q3���/C˙q1
R.q2; q3/:

We conclude using (2) on page 156. �
A combination of Propositions A.3, A.4, A.5, A.6, A.7 and Lemma 3.2 proves

Theorem 4.6.
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ALGORITHMIC HOMEOMORPHISM OF 3-MANIFOLDS
AS A COROLLARY OF GEOMETRIZATION

GREG KUPERBERG

We prove two results, one semi-historical and the other new. The semi-
historical result, which goes back to Thurston and Riley, is that the ge-
ometrization theorem implies that there is an algorithm for the homeomor-
phism problem for closed, oriented, triangulated 3-manifolds. We give a
self-contained proof, with several variations at each stage, that uses only the
statement of the geometrization theorem, basic hyperbolic geometry, and
old results from combinatorial topology and computer science. For this
result, we do not rely on normal surface theory, methods from geometric
group theory, nor methods used to prove geometrization.

The new result is that the homeomorphism problem is elementary recur-
sive, i.e., that the computational complexity is bounded by a bounded tower
of exponentials. This result relies on normal surface theory, Mostow rigidity,
and bounds on the computational complexity of solving algebraic equations.

1. Introduction

In this paper, we will prove the following two theorems.

Theorem 1.1 (After Thurston [49]). Suppose that M1 and M2 are two finite, sim-
plicial complexes that represent closed, oriented 3-manifolds. Then, as a corollary
of the geometrization theorem, it is recursive to determine if there is an orientation-
preserving homeomorphism M1 ∼= M2.

Theorem 1.2. The oriented homeomorphism problem for closed, oriented 3-mani-
folds is elementary recursive.

Theorem 1.1 implies that the geometrization theorem is a classification of closed,
oriented 3-manifolds by the standard of computer science, where the term recursive
used here means the same thing as decidable or computable. Geometrization
intuitively presents itself as a classification of closed 3-manifolds, or at least a big
step towards one. However, the question of what counts as a “classification" in
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mathematics is generally not rigorous, even though it is typically a debate over
rigorous results. The computability interpretation is thus important because it
is rigorous, even though it is not by any means the only important standard of
classification. (For instance, the set of twin primes is recursive, but they remain
unclassified in the sense that it is not even proven that there are infinitely many.)
Note that Thurston himself [49, Sec. 3] seriously addressed the relation between
geometrization and computability.

We argue that Theorem 1.1 should largely be credited to Riley and Thurston
from the 1970s, even though they did not publish a complete proof. (See Section 1.1
for more details.) To support this interpretation, we will prove Theorem 1.1 directly
using hyperbolic geometry, and using other background results on computability and
triangulations of manifolds that seem standard and germane. The most important
results of the latter type are the Tarski-Seidenberg theorem, Theorem 2.8, that real
algebraic equations can be solved recursively; the Kantorovich-Neuberger theorem
on the convergence of Newton’s method, Theorem 5.8; and the stellar and bistellar
move theorems of Alexander, Newman, and Pachner, Theorems 3.2 and 3.3. Despite
this restriction on methods, we give more than one argument for each of several
stages of the proof. (For instance, although the papers of Neuberger and Pachner
came after geometrization was formulated, the earlier results of Kantorovich in the
former case and Alexander-Newman in the latter case suffice in context.)

In the intervening years, Jaco-Tollefson, Manning, Scott-Short, and others have
published proofs of major parts of Theorem 1.1 [18; 29; 43; 4]. These approaches
have various new ideas and implications, which is in keeping with Thurston’s
philosophy concerning the nature of progress in mathematics [50]. Even so, the
status of Theorem 1.1 has remained unsettled. At one extreme, it has been interpreted
as a folklore theorem and therefore standard knowledge, even if the proof is not
elementary. At the other extreme, it has been interpreted as still an open problem.
In the middle, one could argue that the published partial results piece together
to make an entire proof. The problem with the middle position is that the total
structure of an arbitrary closed, oriented 3-manifold is somewhat complicated; see
Theorems 5.1, 5.2, and 5.3. So, one purpose of our proof of Theorem 1.1 is to give
a complete proof in one paper, as requested by Aschenbrenner-Friedl-Wilton [4].

The intervening results also typically use either normal surface theory [24; 13]
or geometric group theory [11; 46; 8]. While these methods certainly work, they
arguably overshoot Theorem 1.1. Both theories are highly non-trivial in their own
right, and they continued to be developed after the geometrization conjecture was
stated. In particular the key results of Jaco-Tollefson [18] and Sela [46] came
later. Sela’s theorem applies to Gromov-hyperbolic groups, which are vastly more
general than the Kleinian groups that arise in Theorem 1.1. Meanwhile Haken and
Jaco-Tollefson prove sharper results than strictly necessary for their components
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of Theorem 1.1; namely, they establish algorithms with quantitative bounds on
execution time. This brings us to Theorem 1.2.

In Theorem 1.2, an algorithm is elementary recursive if its execution time is
bounded by a bounded tower of exponentials; for instance, time O(22n

). (See
Section 2.2.) In contrast with Theorem 1.1, the proof of Theorem 1.2 does use
normal surface theory, as well as Mostow rigidity, and improved bounds on the
computational complexity of solving algebraic equations [10]. The connected-sum
and JSJ decomposition stages of Theorem 1.2 were partly known. For instance,
using similar methods, Mijatović [32; 31] established an elementary recursive bound
on the number of Pachner moves needed to standardize either S3 or a Seifert-fibered
space with boundary.

The hyperbolic case of Theorem 1.2 is new. By contrast, Mijatović also es-
tablished a primitive recursive bound on the number of Pachner moves needed to
equate two hyperbolic, fiber-free, Haken 3-manifolds. However, primitive recursive
is significantly weaker than elementary recursive; the Haken condition is also a
significant restriction. Theorem 1.2 also has the advantage of combining a mixed
set of methods to handle the full generality of closed, oriented 3-manifolds.

Remark. We leave the non-orientable versions of Theorems 1.1 and 1.2 for future
work. This case includes new details such as 3-manifolds with essential, two-sided
projective planes and Klein bottles. A more thorough result would also handle
compact 3-manifolds with boundary.

1.1. History and discussion. As already mentioned, the geometrization conjecture
has often been interpreted as a classification of closed 3-manifolds, and computabil-
ity is one candidate standard of what it means to classify mathematical objects. In
Thurston’s famous survey of his results in the AMS Bulletin [49, Sec. 3], he says:

Riley’s work makes it clear that there is a rigorous, but not generally
practical, algorithm for computing hyperbolic structures.

Thurston then sketches an algorithm which is similar to Manning’s construction
[29] in some ways and to our arguments in other ways. This passage, and some
other aspects of the Bulletin article, support the conclusion that Thurston anticipated
not only the statement of Theorem 1.1, but also its proof. The author also discussed
Theorem 1.1 in personal communication with Thurston in the late 1990s.

At first glance, an algorithm that can only find a hyperbolic structure on a 3-
manifold is both less general and weaker than Theorem 1.1. It is less general because
a 3-manifold may also have non-hyperbolic components; it is weaker because the
homeomorphism problem for two hyperbolic manifolds M1 and M2 takes more
work than just finding their hyperbolic structures. However, in the theorem that
it is recursive to geometrize a 3-manifold (Theorem 5.4), the hyperbolic pieces
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(Lemma 5.7) are the hardest part. The geometric structure of the other pieces
and the data to glue the pieces together are complicated to describe carefully,
but the proof that this data is computable only requires moves on triangulations
(Corollary 3.4), the principle that nested infinite loops can be combined into a single
infinite loop (Proposition 2.5), and some facts about Seifert fibrations (Lemma 5.11
and Theorem 5.12).

In the second stage, the homeomorphism problem for hyperbolic 3-manifolds
(Theorem 6.1) reduces to calculating isometries by Mostow rigidity, and a typical
algorithm for this is similar to one for computing a hyperbolic structure. The
homeomorphism problem for Seifert-fibered components and glued combinations
of components (Section 6) requires little more than the ideas of Waldhausen [51] in
his classification of graph manifolds.

Later in the Bulletin article [49, Sec. 6], Thurston gives a list of open problems
and projects, including:

21. Develop a computer program to calculate hyperbolic structures on
3-manifolds.

Jeff Weeks’ SnapPea [53] (now SnapPy [6]), which was originally written in the
1980s, met this challenge. It is fast and reliable in practice, it can also compute the
isometries between two hyperbolic 3-manifolds, and it has been supremely useful
for a lot of research in 3-manifold topology. SnapPea also supports the belief that
the homeomorphism problem follows from geometrization, given its spectacular
record in practice. However, its specific algorithms are not rigorous. SnapPea
uses ideal triangulations of cusped 3-manifolds, together with Dehn fillings to
make spun triangulations of closed 3-manifolds; it is only conjectured that such a
structure always exists. SnapPea also uses non-rigorous methods to find suitable
triangulations. In particular it uses limited-precision floating point arithmetic; it has
no rigorous model of necessary precision as a function of geometric complexity.
(Note that current versions of SnapPy can rigorously certify an answer, when its
SnapPea engine finds one.) In contrast to the SnapPea data structure, and other
reasons that ideal and spun triangulations are important, we will use triangulations
with semi-ideal and finite tetrahedra to prove Theorem 1.1 (see Section 5.2.5).

To start the rigorous discussion of computable classification and the homeomor-
phism problem, we can say that closed 3-manifolds are classified if we can:

1. specify every closed 3-manifold by a finite data structure;

2. algorithmically generate a standard list of closed 3-manifolds without repetition;
and

3. given any 3-manifold M , algorithmically identify the standard manifold M ′

such that M ∼= M ′.
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For closed 3-manifolds, condition 1 is addressed by the fact that every 3-manifold
has a unique smooth structure and a unique PL structure. As a result, we can
describe a closed 3-manifold as a finite simplicial complex. Unlike in higher
dimensions, it is easy to check whether a simplicial complex is a 3-manifold
(Section 3). Conditions 2 and 3 are equivalent to an algorithm to determine whether
two closed 3-manifolds M1 and M2 are homeomorphic by the following simple
argument. In one direction, if both conditions 2 and 3 are satisfied, then Condition
3 immediately implies a homeomorphism algorithm. In the other direction, given
a homeomorphism algorithm, we can lexicographically order all descriptions of
all closed 3-manifolds according to condition 1, and then list only those examples
that are not homeomorphic to any earlier example. This satisfies condition 2. Then
given a description of a closed 3-manifold M , we can search the list in order to
find the standard M ′ ∼= M to satisfy condition 3. (Haken calls this argument the
“cheapological trick" [52, Sec. 4]. Arguably it is not a cheap trick after all, since it
is similar to the nomenclature in tables of knots and 3-manifolds.)

As mentioned, Manning [29] and Scott and Short [43] give partial results toward
Theorem 1.1, but they use more recent tools. In particular, Manning uses Sela’s
algorithm [46] for the isomorphism problem for word-hyperbolic groups, while
Scott and Short use the theory of biautomatic groups [8].

Both Short-Scott and Aschenbrenner-Friedl-Wilton [4, Sec. 2.1] mention a par-
ticular subtlety in approaches to Theorem 1.1 that are based on analyzing the
fundamental group π1(M) or the fundamental groups of its components. Namely,
π1(M) is insensitive to the orientation of M . Worse, if

M ∼=W1 # W2 # . . . # Wn

is a decomposition of M into prime summands, then the orientation of each summand
Wk can be chosen separately without changing π1(M). Or the summands can be lens
spaces; two lens spaces can have the same fundamental group without even being
unoriented homeomorphic. We surmount this subtlety by modelling all 3-manifolds
and their components with triangulations that are decorated with orientations; see
Section 5.2.
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2. Computability

We recommend Arora-Barak [3] and the Complexity Zoo [54] for modern introduc-
tions to models of computation and complexity classes.

2.1. Recursive and recursively enumerable problems. Let A be an alphabet (a
finite set with at least two elements) and let A∗ be the set of all finite words over
that alphabet. A decision problem is a function

d : A∗→ {yes, no}.

A function problem is likewise a function f : A∗→ A∗, which can be multivalued.
The input space A∗ is equivalent to many other types of input by some suitable
encoding: Finite sequences of strings, finite simplicial complexes, etc.

A decision problem or a function problem can be a promise problem, meaning
that it is defined only on some subset of inputs P ⊆ A∗ which is called a promise.
Whether two closed n-manifolds are PL homeomorphic is an example of a promise
decision problem: The input consists of two simplicial complexes that are promised
to be manifolds; then the yes/no decision is whether they are homeomorphic. (But
see Proposition 3.1.)

A decision algorithm is a mathematical computer program, which can be mod-
elled by a Turing machine (or some equivalent model of computation), that takes
some input x ∈ A∗ and can do one of three things: (1) Terminate with the an-
swer “yes", (2) terminate with the answer “no", or (3) continue in an infinite loop.
Similarly, a function algorithm can terminate and report an output y ∈ A∗, or it
can continue in an infinite loop. Given a multivalued function f , then a function
algorithm is only required to calculate one of the values of f (x) on input x .

A complexity class or computability class is some set of decision or function
problems, typically defined by the existence of algorithms of some kind. For
example, a decision problem d or a function problem f is recursive (or computable
or decidable) if it is computed by an algorithm that always terminates. By definition,
the complexity class R is the set of recursive decision problems. By abuse of notation,
R can also denote the set of recursive, promise decision problems; or the set of
recursive function problems, with or without a promise. The following proposition
is elementary.

Proposition 2.1. If d is a recursive promise problem, and if the promise itself is
recursive, then d is a recursive non-promise problem if we let d(x)= no when the
promise is not satisfied.

The complexity class RE is the set of recursively enumerable decision problems.
These are problems with an algorithm that terminates with “yes" when the answer
is yes; but if the answer is “no", the algorithm might not terminate. The complexity
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class coRE is defined in the same way as RE, but with yes and no switched. We
review the following standard propositions and theorems.

Proposition 2.2. A non-promise decision problem d is in RE if and only if there is
an algorithm that lists all solutions x1, x2, . . . to d(x)= yes without repetition.

Proposition 2.2 justifies the name “recursively enumerable" for the class RE.
(Note that if the algorithm lists the solutions in non-decreasing order of length,
|x1| ≤ |x2| ≤ . . . , then d ∈ R.) The proof is left as an exercise. Also, in the spirit of
Proposition 2.2, a decision problem d can be identified with the set of solutions to
d(x)= yes; in this way we can call a set recursive, recursively enumerable, etc.

Proposition 2.3. R= RE∩ coRE.

The proof of Proposition 2.3 is elementary but important: Given separate RE

algorithms for both the “yes" and “no" answers, we can simply run them in parallel;
one of them will finish. The proposition and its proof reveal the important point
that a recursive algorithm might come with no bound whatsoever on its execution
time.

Theorem 2.4 (Turing). The halting problem is in RE but not in R. In particular,
RE 6= R.

Informally, the halting problem is the question of whether a given algorithm with
a given input terminates. Let h be the halting decision problem, where the input
x in the value h(x) is an encoding of an algorithm and its input (or, traditionally,
an encoding of a Turing machine). It is easy to show that h is RE-complete in the
following sense: Given a problem d ∈ RE, there is a recursive function f such that
d(x)= h( f (x)) for any input x . Any other problem in RE with this same property
is also called RE-complete.

The following proposition is important for recursively enumerable infinite sear-
ches. The interpretation of the proposition, which is conveyed by the proof, is that
nested infinite loops can be reorganized into a single infinite loop.

Proposition 2.5. Let G be a graph structure on A∗. If the edge set of G is recur-
sively enumerable, then so is the set of pairs (x, y), where x and y are vertices in
the same connected component of G.

Proof. By Proposition 2.2, we can model a recursively enumerable set by an
algorithm that lists its elements. The proposition states that the elements can be
listed without repetition; but this is optional, since we can store all of the elements
already listed and omit duplicates.

We use a recursive bijection f between the natural numbers N and N∗, the set
of finite sequences of elements of N. We can express any element of N∗ uniquely
in an alphabet that consists of the ten digits and the comma symbol. We can then
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list of all of these strings first by length, and then in lexicographic order for each
fixed length. We can then let f (n) be the nth listed string.

We can now convert the value f (n) to a finite path (x0, . . . , xk) in the graph G,
in such a way that every finite path is realized. If

f (n)= (n0, . . . , nk),

then we let x0 be the n0th string in A∗. For each j > 0, we let x j be the n j th
neighbor of x j−1. In order to find the n j th neighbor of x j−1, we list the elements of
the edge set of G until the edge (x j−1, x j ) arises as the j th edge from x j−1. There
is the technicality that x j−1 might not have an n j th neighbor if it only has finitely
many neighbors. To avoid this problem, we intersperse trivial edges of the form
(x, x) infinitely many times, for every string x ∈ A∗, along with the non-trivial
edges of G.

Since the algorithm finds every finite path in G, it finds every pair of vertices x
and y in the same connected component. Thus, the set of such pairs is recursively
enumerable. �

2.2. Elementary recursive problems. As mentioned after Proposition 2.3, a recur-
sive algorithm need not have any explicit upper bound on its execution time, beyond
the tautological bound that running it is a way to calculate how long it runs. This
motivates smaller complexity classes that are defined by explicit bounds. The most
common notation for a bound on the execution time of an algorithm is asymptotic
notation as a function of the input length n = |x | to a decision problem d(x). For
example, we could ask for a polynomial-time algorithm, by definition one that runs
in time O(nk) for some fixed k.

We have two reasons to consider a fairly generous bound in this paper. First, the
recursive class R is unfathomably generous, so any explicit bound can be considered
a major improvement. Second, the computational complexity of a problem or
algorithm depends somewhat on the specific computational model, but certain
relatively generous complexity bounds are substantially model-independent.

We consider a traditional Turing machine first. By (informal) definition, a
Turing machine is a finite-state “head" with an infinite linear memory tape, and
deterministic dynamical behavior. We say that an algorithm is elementary recursive
if it runs in time

O

22.
. .

2n

︸ ︷︷ ︸
k


for some constant k. We call the corresponding complexity class ER. By abuse of
terminology, we use ER to refer to both decision problems and function problems,
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and to numerical bounds. (Note that if f (n) can be computed in ER, then a running
time bound of O( f (n)) is itself a subclass of ER.)

Without reviewing rigorous definitions, we list some of the many variations in
the computational model that do not affect the class ER in the following proposition.
The proposition is not really needed in this paper except to motivate ER as an
important complexity class. The only tacit dependence is that a random access
machine is somewhat closer to both intuitive descriptions of algorithms and actual
computers than a Turing machine with a linear tape is.

Proposition 2.6. Each of the following four computational models is the same as
standard ER.

1. A Turing machine with an n-dimensional tape, or a random access tape ad-
dressable by a separate address tape, with an elementary recursive bound on
computation time.

2. A Turing machine restricted to an elementary recursive bound on computa-
tional space and unrestricted computation time.

3. A randomized Turing machine whose answers are probably correct, with an
elementary recursive bound on computation time.

4. A quantum Turing machine that can compute in quantum superposition, with
an elementary recursive bound on computation time.

Proof. Instead of a self-contained proof, we justify each case of the proposition
with specific references to Arora-Barak [3].

1. This follows from Exercises 1.7 and 1.9 in Arora-Barak.

2. This follows from Theorem 4.2 in Arora-Barak.

3. This reduces to case 4 by the proof of Corollary 10.11 in Arora-Barak.

4. This reduces to case 2 by the proof of Theorem 10.23 in Arora-Barak. �

Remark. An elementary recursive bound is also a major improvement over another
bound that is popular in logic and computer science: primitive recursive. An
algorithm is primitive recursive if it runs in time O(n[k]b) for some fixed k and b,
where the kth operation a[k]b is defined inductively as follows:

a[1]b = a+ b a[2]b = ab a[3]b = ab

a[k+ 1]b = a[k](a[k](· · · (a[k]a) · · · ))︸ ︷︷ ︸
b

.

For example, the operation a[4]b, which is called tetration, is defined as a tower
of exponentials of height b. The primitive recursive complexity class is denoted
PR. We can organize PR into a complexity hierarchy by defining Ek to be the set of
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functions computable in time O(n[k+1]b) for some fixed b. Then E2=P, E3=ER,
E4 consists of complexity bounds which are bounded towers of tetrations, etc.

2.3. Computable numbers. A computable real number r ∈R is a real number with
a computable sequence of bounding rational intervals. In other words, there is an
algorithm that generates rational numbers an, bn ∈ Q such that x ∈ [an, bn] and
bn − an→ 0. Many standard algorithms from numerical analysis, including field
operations, integration of continuous functions, Newton’s method, etc., have the
property that if the input consists of computable numbers, then so does the output.
One main limitation of computable real numbers is that inequality tests such as
a > b or a 6= b are only recursively enumerable, not recursive. In other words, if
a 6= b, then there is an algorithm to eventually confirm this fact and say which one
is greater; but there is no terminating algorithm that always confirms that a = b.

We can avoid this shortcoming of the field of computable numbers by passing
to a smaller subfield where equality is also recursive. In particular, we will use
Q̂ = R∩ Q̄, the real algebraic closure of the rational numbers Q, which has this
property.

Theorem 2.7. There is an encoding of the elements of Q̂ such that field operations,
order relations, and conversion to computable real numbers are all recursive.

One encoding of a real algebraic number x that can be used to prove Theorem 2.7
is to describe it by a minimal polynomial together with an isolating interval x ∈[a, b]
with rational endpoints to distinguish x from its Galois conjugates. Note that
the isolating interval may be made arbitrarily small since algebraic numbers are
computable, for instance by Newton’s method. Note also that a computable encoding
of elements of Q̂ yields a computable encoding of elements of Q̄⊆ C the field of
all algebraic numbers.

Remark. The field of real algebraic numbers together with reliable equality testing
is implemented in Sage [41].

Theorem 2.8 (Tarski-Seidenberg [47; 44]). It is recursive to determine whether
there is a solution to a finite list of polynomial equalities and inequalities with
coefficients in Q̂ in finitely many variables; or to find a solution.

Actually, Tarski and Seidenberg proved the stronger result that it is recursive
to decide any assertion over R expressed with polynomial relations and first-order
quantifiers.

Remark. Given Theorem 2.7, it is elementary that solvability of polynomial equa-
tions in Q̂ is in RE. However, the proof of Theorem 2.8 shows that the problem is
in R directly without using Proposition 2.3.
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3. Triangulations of manifolds and moves

In this section, we will analyze the form of the input to Theorem 1.1. We first
assume some convenient syntax to describe any finite simplicial complex by a data
string, so that it is easy to check whether the input is a valid simplicial complex 2.
We would like to know whether 2 describes a closed, orientable PL manifold. We
take the convention that closed manifolds are connected; it is also easy to check
whether any finite simplicial complex 2 is connected.

We will review that there is a routine algorithm to confirm whether a simplicial
complex represents a closed, orientable 3-manifold. Thus Proposition 2.1 applies:
we can view the homeomorphism problem as a non-promise problem. Actually, we
will extend this to dimension 4 in Proposition 3.1, which is a much harder case
than dimension 3 that we need.

We then discuss moves between triangulations of a manifold, mainly to estab-
lish Corollary 3.4. In light of Proposition 2.3, Corollary 3.4 is an easy half of
Theorem 1.1, one that holds in any dimension n.

Proposition 3.1. If 2 is a finite simplicial complex of dimension n ≤ 4, then it is
recursive to determine whether it is a closed PL n-manifold, and whether or not it
is orientable.

Proof. The proof is partly by induction on dimension n. The result is trivial if
n = 0, where we need only check that 2 is a single point. Otherwise, we must
check that the link 3 of every vertex of 2 is both a closed (n− 1)-manifold and
a PL n-sphere. The former condition is the inductive step. The latter condition
requires an algorithm to recognize an (n− 1)-sphere. If 3 is a closed 1-manifold,
then it is immediately a 1-sphere, i.e., a circle. If 3 is a closed 2-manifold, then we
can compute its Euler characteristic. If 3 is a closed 3-manifold, then Theorem 1.1
implies that it is recursive to determine if 3 is a 3-sphere, although this result was
obtained without geometrization by Rubinstein and Thompson (Theorem 8.7) [40;
48].

We can check that 2 is orientable (and orient it) algorithmically by computing
its simplicial homology. �

The stellar and bistellar subdivision theorems establish that every two triangula-
tions of a compact n-manifold, in particular a compact 3-manifold, are connected
by a finite sequence of explicit moves. See Lickorish [28] for a modern treatment
and a historical review.

Theorem 3.2 (Alexander-Newman). If two finite simplicial complexes 21 and 22

are PL equivalent, then they are connected by a sequence of stellar subdivision
moves and their inverses.
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Briefly, a stellar move in a simplicial complex 2 consists of replacing the star
st(1) of some simplex 1 in 2 with a cone over the subcomplex of simplices in
st(1) that do not contain 1. Equivalently, the apex v of this cone is placed in the
interior of 1, and all simplices that contain 1 are subdivided to support the new
vertex v.

Theorem 3.3 (Pachner). If 21 and 22 are two triangulations of a compact, PL
manifold M , then they are connected by bistellar moves.

Figure 1. A bistellar move as the composition of a stellar move
and an inverse stellar move.

A bistellar move of a triangulation of an n-manifold M consists of a stellation
followed by the inverse of a different stellation at the same vertex. Equivalently, two
triangulations of M differ by a bistellar move when there is a minimal “cobordism"
between them consisting of a single (n+1)-simplex. (It is not strictly a cobordism in
the sense of a connecting (n+ 1)-manifold.) In particular, a shellable triangulation
of M × I yields a sequence of bistellar moves.

Lickorish points out that Newman conjectured and partially proved Theorem 3.3
in an earlier paper, before he and Alexander separately proved Theorem 3.2. Bistellar
moves are also called Pachner moves, although arguably they should be called
Newman-Pachner moves.

Theorem 3.3 also holds for ideal or semi-ideal triangulations of a compact
3-manifold with torus boundary components. (In other words, it holds for a 3-
dimensional pseudomanifold with singular points with torus links, which are the
ideal vertices.)

Theorems 3.2 and 3.3 each have the following corollary.

Corollary 3.4. The PL homeomorphism problem for compact PL n-manifolds is in
RE.

Remark. There is a proof of Corollary 3.4 that works directly from the definition
of PL equivalence without using Theorem 3.2 or 3.3, nor even Proposition 2.5. For
each n, choose a linear embedding of an n-simplex 1n

⊆ Rn with rational vertices
(i.e., vertices in Qn). Then a geometric refinement of 1n is a simplicial complex
2 with a homeomorphism onto 1n which is affine-linear on each simplex of 2.
Likewise a refinement of a simplicial complex 21 is another simplicial complex 22

with a homeomorphism f :22→21, such that f yields a geometric refinement of
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each simplex of 21. By definition, two complexes 21 and 22 are PL equivalent if
they share a refinement 23. We can perturb any geometric refinement so that the
new vertices are all at rational positions in their respective simplices. its vertices are
all rational. The set of rational mutual refinements of two finite complexes 21 and
22 is recursive by direct verification. (In other words, given a simplicial complex
23, and given rational target positions for its vertices in both 21 and 22, we can
algorithmically check whether this data yields a mutual refinement.) Therefore
the question of whether there exists a mutual refinement is directly recursively
enumerable.

Proposition 3.5. If 21 is a finite simplicial complex with n1 simplices (of arbitrary
dimension) and n2 ≥ n1, then it is recursive to produce a complete list of geometric
subdivisions 22 of 21 with n2 simplices.

Proof. There are only finitely many simplicial complexes 22 with n2 simplices, and
they can be generated recursively. For each candidate for 22, there are only finitely
many combinatorial choices for a function from the simplices of22 to the simplices
of 21. For each such choice, we can first check that the simplices of 22 that land
in a k-simplex 1 ∈21 support a simplicial cycle that represents the fundamental
class in H k(1, ∂1). We solve for each such cycle for all 1 (where each must be
unique if 22 indeed subdivides 21). Then the constraint that each simplex of 22

must be positively oriented in 21 yields we obtain algebraic inequalities for the
positions of all vertices. We can then apply Theorem 2.8 to see if there is a solution
for those positions. �

We conclude this section with the following theorem which combines results of
P.S. Novikov, Boone, Adian, Rabin, Markov, and S.P. Novikov [39]. We will not
need this result; rather it stands in contrast to Theorem 1.1.

Theorem 3.6 (NBARMN). The isomorphism problem for finitely presented groups,
the PL homeomorphism problem for 4-manifolds, and the recognition of Sn among
PL n-manifolds for each n ≥ 5 are all RE-complete.

It is not known whether either topological or PL recognition of S4 is recursive.

Remark. The homeomorphism problem for PL n-manifolds in Theorem 3.6, or even
recognition of Sn , needs to be handled with some care, for several reasons. First,
because recognizing whether the input is a PL n-manifold is (by Theorem 3.6!) an
uncomputable promise when n ≥ 6. Second, because there are closed manifolds
that are homeomorphic but not PL homeomorphic [23]. Third, because there are
simplicial complexes that are not PL n-manifolds at all, but that are homeomorphic
to Sn , for each n ≥ 5 [7]. The proof of Theorem 3.6 dispenses with all of these
concerns as follows. Given an input x to the halting problem h(x) and an integer
n ≥ 4, there is an algorithm that constructs an n-manifold M(x) such that:
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1. M(x) is manifestly a closed PL manifold.

2. M(x) is PL homeomorphic to Sn when n ≥ 5, or to a connected sum of copies
of S2

× S2 when n = 4, if and only if M(x) is simply connected.

3. M(x) is simply connected if and only if h(x)= yes.

Remark. By contrast with Theorem 3.6, the PL homeomorphism problem for simply
connected n-manifolds with n ≥ 5 is recursive [36].

4. Some notation

We summarize some notation for specific topological spaces, beyond the most
standard notation that Sn is an n-sphere, Dn is an n-disk, Pn is real projective
n-space, and I = D1 is an interval.

We let X n Y denote a fiber bundle with base X and fiber Y . Although the
notation X×̃Y is reasonably standard for a twisted bundle, we prefer to write X nY ,
for two reasons. First, because the notation specifies which side is the fiber; we can
write X n Y ∼= Y o X . Second, because a fiber bundle is analogous to a semidirect
product in group theory.

We review Seifert’s description of oriented Seifert-fibered spaces [45]. If F is
a compact surface which may or may not be orientable, then there is a unique,
canonically oriented I -bundle F n I . If F is orientable, then this I -bundle is simply
F × I ; in this case we assume an orientation for the base F and the fiber I . We
consider the double F n S1 of F n I , which again when F is orientable is just
F × S1.

If p1, p2, . . . , pn are points of F , then we can apply a Dehn surgery with slope
bk/ak to a solid torus neighborhood of the fiber over pk in F n S1, where ak is a
positive integer and bk is a relatively prime integer of either sign. The resulting
oriented 3-manifold N is thus constructed from its Seifert data, namely the multiset

{F, (a1, b1), (a2, b2), . . . , (an, bn)}.

In general we interpret F as an orbifold. If ak ≥ 2, then we interpret pk ∈ F as an
orbifold point of order ak , and the circle over it is an exceptional fiber. By Seifert’s
classification, the integers ak with ak ≥ 2 together with the residues bk ∈ Z/ak are
all topological invariants of the fibration of N . If F and therefore N has boundary,
then this is a complete set of invariants. If N is closed, then the Euler number

e(N )=
∑

k

bk

ak
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is the only additional necessary invariant. Thus there is a canonicalized version of
the Seifert data in the form

{F, b, (a2, b2), (a3, b3), . . . , (an, bn)},

where b represents (1, b) and otherwise ak ≥ 2 and 1≤bk <ak . If F is non-compact,
then b is irrelevant and we omit it in the canonical form.

With the notation of fiber bundles and Seifert-fibered spaces, we name these
specific manifolds:

1. We use S1
× S1 to denote the standard 2-torus, and T to denote an arbitrary

2-torus, i.e., T ∼= S1
× S1.

2. K 2
= S1 n S1 is the 2-dimensional Klein bottle.

3. L(m, n) is the lens space defined by the Seifert data {S2, 0, (n,m)}.

4. R(m, n) denotes the prism space defined by the Seifert data {P2, 0, (m, n)}.

5. Geometrization is recursive

The goal of this section is to prove Theorem 5.4, which says that the geometric
decomposition of a 3-manifold M is computable.

5.1. Statement of geometrization. We begin with three results that, together, are
one formulation of the geometrization theorem for closed, oriented 3-manifolds.

Theorem 5.1 (Kneser-Milnor [24; 34]). Every closed, oriented 3-manifold (other
than S3) is a connected sum of prime, closed, oriented 3-manifolds (none of which
are S3). The summands are unique up to oriented homeomorphism.

We will adopt the convenience that a 3-sphere S3 counts as a prime 3-manifold,
notwithstanding that Theorem 5.1 would be easier to state if S3 were instead
interpreted as the “unit" in the terminology of unique factorization.

Theorem 5.2 (Jaco-Shalen-Johansson [19; 20]). A closed, oriented, prime 3-
manifold has a minimal collection of incompressible tori, unique up to isotopy
and possibly empty, with the property that the complementary regions are either
Seifert-fibered or atoroidal.

Recall that a 3-manifold N which may have boundary is atoroidal if every essen-
tial torus in N is parallel to some boundary component of N . The decomposition
in Theorem 5.2 is called the JSJ decomposition. We can call the tori JSJ tori, and
the complementary regions JSJ components. We will use M to denote a general
closed, oriented 3-manifold; then W to denote a prime summand of M ; then N to
denote a JSJ component of W .
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Theorem 5.3 (Thurston-Hamilton-Perelman). Suppose that N is an oriented, prime,
atoroidal 3-manifold which is either closed or has torus boundary components. Then
N is either Seifert-fibered, or it is closed and has a unique hyperbolic structure, or
its interior N ∗ has a unique, complete hyperbolic structure with torus cusps.

As everyone knows, Theorem 5.3 was conjectured and partly proven by Thurston
[49], then fully proven by Perelman using the Ricci flow program of Hamilton
[35]. (Note that Theorem 5.3 implicitly includes the Poincaré conjecture in the
Seifert-fibered case.)

Remark. Mixing the JSJ decomposition with hyperbolization is a less pure approach
than Thurston’s decomposition into geometric components, but we find it convenient
for Theorem 1.1. We could recognize spherical and Euclidean components with the
same methods as hyperbolic components (Lemma 5.7), while several of the other
Thurston geometries induce canonical Seifert fibrations. In fact, every Seifert-fibered
3-manifold or component is geometric. Conversely, every geometric 3-manifold or
component is hyperbolic unless it is Seifert-fibered or a Sol manifold. Thus, the
JSJ decomposition of a prime 3-manifold W differs from the minimal geometric
decomposition only when W is Sol; in this case W is a torus bundle over a circle
and has a JSJ torus which is one of the fibers.

5.2. Statement of computational geometrization.

Theorem 5.4. If M is a triangulated 3-manifold, then it is recursive to compute a
decorated triangulation which is adapted to its geometric decomposition.

Before proving Theorem 5.4, we need to state it more precisely. When 2 is a
decorated, adapted triangulation of M it means that:

1. M has a distinguished (but possibly empty) collection of disjoint, separating
2-spheres, each triangulated with 4 triangles in 2, that separates it into prime
summands {W }. Each W is closed; it inherits its triangulation from 2 and its
holes are plugged with fresh tetrahedra.

2. The triangulation of each W supports a distinguished (but possibly empty)
collection of disjoint thickened tori T× I and restricts to a shelled triangulation
of each one. These thickened tori separate W into JSJ components {N }.

3. The tetrahedra at all stages are consistently oriented, to express an orientation
of each summand W and each JSJ component N that is consistent with the
orientation of M .

4. If N is Seifert-fibered with base F , then we make a triangulation which is
adapted to Seifert’s description of N by Dehn surgery on F × S1 when F
is orientable, or Dehn surgery on a twisted bundle F n S1 when F is non-
orientable. This includes the case where N =W = M is a 3-sphere.
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5. If N is hyperbolic, then it is marked as the barycentric subdivision of a regular,
adapted cellulation 3. 3 comes from a geometric triangulation 3∗ of the
interior N ∗, in which each tetrahedron has at most one ideal vertex. If 1 ∈3∗

has an ideal vertex, then it is truncated to a triangular prism in 3; if not, then it
is kept in 3. Each tetrahedron in 3∗ is also decorated with its dihedral angles.

We proceed to explain each stage of the definition.

5.2.1. The prime decomposition. Note that we take a triangulation to be a simplicial
complex structure rather than a generalized triangulation. In geometric topology, for
instance in the SnapPea census, a generalized triangulation is sometimes defined
to be a CW-complex whose cells are simplices and whose attaching maps take
simplices to simplices. In particular, a simplex in a generalized triangulation need
not have distinct vertices and two simplices may have the same vertices. We
can form a connected sum of two triangulated 3-manifolds by removing a single
tetrahedron from each one and gluing the sphere boundaries.

5.2.2. Shelled triangulations. If X is a closed n-manifold with two triangulations
20 and21, then a shelled triangulation of X× I is a simplicial complex20,1 whose
(n+ 1)-simplices are numbered. Taken in order, the (n+ 1)-simplices connect the
triangulation 20 of X ×{0} to the triangulation 21 of X ×{1} via a sequence of
bistellar moves. Note that this combinatorial restriction on 20,1 implies 20,1 is
PL homeomorphic to X × I . In other words, if we build 20,1 from a sequence of
bistellar moves, and if X ×{0} and X ×{1} are disjoint in the result, then 20,1 is a
triangulation of X × I .

5.2.3. Orientations. To be precise, we can decorate each tetrahedron by ordering
its vertices, where two orderings are equivalent if they differ by an even permutation.

5.2.4. Seifert-fibered components. We begin with preliminaries on cellulations and
barycentric subdivisions that we will also need in Section 5.2.5.

A cellulation of a topological space X is a CW complex3with a homeomorphism
to X . The complex 3 is regular if 3 is locally finite; and if the attaching map of
each k-cell is an embedding in the (k− 1)-skeleton, so that each closed k-cell of 3
is embedded in X .

We will use the following standard proposition to model regular CW complexes
using triangulations.

Proposition 5.5 ([26, Sec. 10.3.5]). Every regular CW complex3 has a barycentric
subdivision 2 which is a simplicial complex, and the spaces of 2 and 3 are
homeomorphic.

See Figure 2 for an example.
If N is a Seifert-fibered component, then as described in Section 4, it has a

base orbifold F with one circle for each boundary torus of N . The fibration has
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Figure 2. A barycentric subdivision of part of a cellulation of a surface.

canonical Seifert data

{F, b, (a1, b1), (a2, b2), . . . , (an, bn)},

with b omitted when F or N has boundary. The data indicates surgery with slope
bk/ak at the fiber over some pk ∈ F and (if it exists) surgery with slope b at p0 ∈ F .

We choose a triangulation 2F of F such that each pk (including p0, if it exists)
lies in the interior of a triangle, and such that all of these triangles are disjoint.
We can lift 2F to a cellulation 3F such that the solid torus 1× S1 over each
triangle 1 in 2F is tiled by two vertical triangular prisms. We take the barycentric
subdivision of 3F to obtain a triangulation of F × I or F n I . If a triangle 1 ∈3
contains some pk , we remove the solid torus 1× S1 (which is now triangulated
with 72 tetrahedra) and glue it back using Dehn surgery. The gluing involves a
homeomorphism of the boundary ∂(1× S1), which we implement with a shelled
triangulation of a thickened torus, as in Section 5.2.2. The result is a triangulation
of N , which we decorate with information about how it was constructed, so that
the canonical Seifert data is part of the decoration.

5.2.5. Hyperbolic components. If the component N is hyperbolic, then we choose
a geometric triangulation2∗ of N ∗, meaning one whose tetrahedra lift to geometric
tetrahedra in the universal cover H3. Recall from the beginning of Section 5.2 that
the geometry of each such tetrahedron is specified by giving its dihedral angles.

More precisely, if N̂ is the compactification of N given by collapsing each torus
boundary component to a point, we assume a continuous map

f :2∗→ N̂

such that the image f (1) of each combinatorial tetrahedron 1 lifts to a geometric
tetrahedron in the standard compactification H3 of hyperbolic space. If none of
the vertices of f (1) are at infinity, then f (1) is finite; if they are all at infinity,
then f (1) is ideal; and if some are at infinity, then f (1) is semi-ideal. We will
assume that all of the simplices of our 2∗ are either finite or semi-ideal with one
ideal vertex. If N = N ∗ is closed, then all tetrahedra in 2∗ must be finite; if N has
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boundary components and thus N ∗ has cusps, then some of the tetrahedra must be
semi-ideal.

Before proceeding further, we contrast this with some other models that have
also been studied as geometric triangulations. In some treatments f is not a
homeomorphism but only a homotopy equivalence. In the case we can still ask for
the restriction of f to each tetrahedron 1 to be affine-linear in the Klein model
of H3. However, f (1) may be degenerate, meaning that it has zero volume, or
it may be flipped over, meaning that it has negative signed volume relative to the
orientation of 2∗ and the standard orientation of H3. In another variation, which is
often used when N is closed, the inverse map g : N̂ →2∗ is defined, and a finite
set of closed geodesic curves in N̂ collapse to ideal points; but the inverse image of
any open tetrahedron in 2∗ is still a geometric tetrahedron in N̂ . Such a structure
is a spun triangulation, because a geodesic circle C ⊆ N is approached by cusps
of ideal tetrahedra that wind helically around it. In particular SnapPea uses spun
triangulations.

Ideal geometric triangulations are especially desirable in computational hyper-
bolic geometry because they are rigid and algebraically the simplest. However, it
is only a conjecture that every suitable hyperbolic manifold has an ideal, possibly
spun geometric triangulation. Such a structure does always exist with degenerate or
flipped-over tetrahedra, but these are less desirable. We will use finite and semi-
ideal tetrahedra in order to avoid this impasse. The following proposition is then
standard:

Proposition 5.6. If N ∗ is a complete hyperbolic manifold which is either cusped or
closed, then it has a geometric triangulation with finite and semi-ideal tetrahedra
(none of which are spun, degenerate, or flipped over). Also, every semi-ideal
tetrahedron has only one ideal vertex.

Proof. We can choose a point p ∈ N ∗ and consider the Voronoi tiling of its orbit in
H3. Each Voronoi cell is a fundamental domain and yields a cellulation 31 of N̂ .
31 is not in general regular, but it has a barycentric subdivision 32 which is regular.
Moreover, each simplex of 32 has at most one vertex of V and thus at most one
ideal vertex. We can let 2=33 be a second barycentric subdivision, which is then
a simplicial complex and still has the property that each tetrahedron has at most
one ideal vertex. �

Given a semi-ideal triangulation of N ∗, we can truncate the cusps so that each
semi-ideal tetrahedron becomes a triangular prism, as in Figure 3. A barycentric
subdivision of this cellulation is then the desired adapted triangulation.

5.3. Proof of Theorem 5.4.
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Figure 3. A tetrahedron truncated at one vertex.

Lemma 5.7. It is recursive to find a geometric triangulation of a hyperbolic 3-
manifold N which is either closed or has torus boundary components, using either
of two descriptions of each dihedral angle 0< α < π of each tetrahedron:

1. Each imaginary exponential exp(iα) is specified as an element of Q̄.

2. Each angle α is given as a computable real number.

Hence, it is in RE to determine if N is hyperbolic.

Although the second case of Lemma 5.7 immediately follows from the first one,
we will give a separate proof of each case. Moreover, even the weaker second case
of Lemma 5.7 is sufficient to prove Theorem 1.1.

Remark. Manning [29, Thm. 5.2] also proves Lemma 5.7, but as a corollary of
a harder result. His results show (without geometrization) that it is recursive to
decide whether N is hyperbolic, when there is an algorithm for the word problem
for π1(N ). He also uses a single polyhedral fundamental domain to describe the
geometry of N . Although this differs from a hyperbolic triangulation, which is
what we use, the two models are somewhat interchangeable for our purposes.

Proof of case 1 of Lemma 5.7. Suppose that 2∗ is a geometric triangulation of N ∗.
We can model each tetrahedron 1 ∈2∗ (non-uniquely) by choosing four vertices
in the Poincaré upper half-space model, including one on the boundary if 1 is
semi-ideal. (Note that the ideal vertices of 2∗ are marked in advance.) There is
an algebraic formula for each finite edge length ` and each dihedral angle α of 1,
if these are represented by their exponential values exp(`) and exp(iα). The main
matching condition for 2∗ to be geometric is that if two tetrahedra share a finite
edge, then the edge lengths agree; and the total dihedral angle around each edge
equals 2π . The first condition is immediately an algebraic condition, although note
that if an edge is semi-ideal, then it has infinite length and its length equation is
vacuous.
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The second condition is almost an algebraic condition since the product of the
exponentiated angles must be 1; this shows that the total angle is a multiple of 2π ,
although not which one. However, this can be remedied with additional algebraic
inequalities, recalling that we are allowed real algebraic equations for the real and
imaginary parts cos(α) and sin(α) of each complex variable exp(iα). Suppose
that every edge of 2∗ has at most n incident tetrahedra. Then we can make a
finite covering of the unit circle S1

⊆ C by rational rectangles, such that the radial
projection of each rectangle onto the circle has length less than 2π/n. We can then
loop over choices for which rectangle contains each exponentiated angle exp(iα).
If each exponentiated angle is confined to such a rectangle, we can know whether
the sum of the angles around an edge is specifically 2π and not some other multiple
of 2π .

After forming algebraic equations for all of the geometric data, the equations
have a solution in terms of real algebraic numbers when they have a solution at
all. For any fixed triangulation 2, we can thus use Theorem 2.7 (not Theorem 2.8;
see the remark after the proof) to search for a solution and eventually find it, if it
exists. We must also search over triangulations using Theorem 3.2 or Theorem 3.3.
Since the result is a nested infinite search (over triangulations and then candidate
geometric structures), we can apply Proposition 2.5. �

Remark. Although an infinite search for a solution to algebraic gluing equations is
preposterous in practice, it is good enough for an algorithm in RE. Alternatively,
for each triangulation, we can apply the more difficult Theorem 2.8 to determine in
R if there is a solution.

Remark. If we allowed geometric triangulations with fully ideal edges, then it
would not be enough for the sum of the angles around such an edge e to be 2π .
Since e goes to itself under hyperbolic translation as well as rotation, gluing together
the tetrahedra that contain e could create a non-trivial translational holonomy. The
two conditions together, that the total angle is 2π and the translational holonomy
vanishes, are known as a Neumann-Zagier gluing relation [38].

Remark. Instead of calculating lengths and angles using positions of vertices in hy-
perbolic geometry, we can also relate them directly using formulas from hyperbolic
and spherical trigonometry.

The separate proof of the second case of Lemma 5.7 works directly with com-
putable numbers, in effect using numerical analysis to calculate better and better
approximate solutions. In this approach, we need a criterion to know that an
approximate solution is close to an exact one. Given a smooth multivariate equation
f (x)= 0, the Newton-Kantorovich theorem [21] establishes a sufficient criterion for
Newton’s method to converge from an approximate solution x0 to an exact solution
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x∞. Neuberger [37] points out that an ODE analogue of Newton’s method, which is
called the continuous Newton’s method, simplifies the Newton-Kantorovich result.

Theorem 5.8 (Newton-Kantorovich-Neuberger [37, Thm. 2]). Let Bε(x0)⊂ Rn be
the open ball of radius ε > 0 around x0 ∈ Rn , and let

f : Bε(x0)→ Rn

be a C2-smooth function with non-singular matrix derivative D f . Suppose that

(1) ||(D f (x))−1 f (x0)||< ε

for all x ∈ Bε(x0), where || · || is the Euclidean norm on Rn . Then there is a unique
x∞ ∈ Bε(x0) such that f (x∞)= 0. Also, given a solution x∞ such that D f (x∞) is
non-singular, equation (1) eventually holds as x0→ x∞, moreover with ε→ 0.

Although we will not reprove Theorem 5.8, we can discuss where the theorem
and its proof come from. Newton’s method to find a root of a univariate function
f : (a, b)→ R begins at an approximate root x0 ∈ (a, b) and applies the iteration

xn+1 = xn −
f (xn)

f ′(xn)
,

which in favorable cases converges to a solution x∞ of the equation f (x)= 0. If f
is multivariate as in Theorem 5.8, then this has the well-known matrix generalization

xn+1 = xn − (D f (xn))
−1 f (x).

Finally in the continuous version, we let x(0)= x0 and define the ODE

x ′(t)=−(D f (x(t)))−1 f (x).

Then in favorable cases the limit

x∞ = lim
t→∞

x(t)

is again a solution to f (x)= 0.

Remark. Although Neuberger’s paper on the continuous Newton’s method is more
recent than Thurston’s work, Kantorovich’s earlier, more complicated formula also
suffices for Lemma 5.7 and Theorem 1.1.

If the equation f (x)= 0 has a non-singular Jacobian D f in a neighborhood of a
solution, as in Theorem 5.8, then the system of equations is also called transverse
or first-order rigid. We will need a generalization of this concept. Given a smooth
function

U ⊆ Rn f :U → Rm,
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where n and m need not be equal, if D f has constant rank k, then the image
f (U ) is a manifold and f is a submersion onto its image. In this case the equation
f (x)= 0 is first-order rigid except for the directions parallel to the manifold f −1(0).
By the implicit function theorem, we can discard some set of n − k coordinates
in the domain and project to some set of k coordinates in the target to achieve
unconditional first-order rigidity that satisfies the hypotheses of Theorem 5.8.

To establish first-order rigidity in our case, we will need a corollary of the
Calabi-Weil rigidity theorem.

Theorem 5.9 (Calabi-Weil [22, Sec. 8.10]). If N is a closed, hyperbolic 3-manifold,
then the induced representation of its fundamental group,

ρ : π1(N )→ Isom(H3),

is first-order rigid except for conjugacy. (I.e., it is infinitesimally rigid at the level of
the first derivative.) The same is true if N is cusped, among representations that are
parabolic at the torus cusps.

Corollary 5.10 (Stated by Izmestiev [15, Sec. 1.3]). If 2 is a geometric triangu-
lation of a closed or cusped hyperbolic 3-manifold N ∗, then it is first-order rigid
except for motion of the non-ideal vertices.

Since we could not find a proof of Corollary 5.10 in the literature, we provide
one in Section 5.4.

Proof of case 2 of Lemma 5.7. We fix the model of each tetrahedron in the upper
half space model so that it has exactly six degrees of freedom, or five if one of the
vertices is ideal. After ordering the vertices v1, v2, v3, v4, we can put vertex v1 at
(0, 0, 1); we can put vertex v2 directly below it (or at (0, 0, 0), allowing it to be the
ideal vertex); and we can put v3 at a position of the form (a, 0, b). We approximate
the positions of the vertices approximately with rational numbers. We can then
approximate the lengths and angles of each tetrahedron in the same form, as well as
the first and second derivatives of the lengths and angles as a function of the main
variables, the separate positions of the vertices in the ideal models of the tetrahedra.

Suppose that there are n non-ideal vertices. By the implicit function theorem,
any exact solution to the gluing equations for the tetrahedra can be perturbed so
that some 3n of the coordinates are exactly rational. Also by the implicit function
theorem, some 3n of the angle conditions are implied by the other angle conditions
and can be omitted. Finally, the fixed coordinates and omitted angle conditions
can be chosen so that the remaining system of constraints, which we can write
abstractly as f (x)= 0, has a non-singular Jacobian D f .

Moreover, the mapping f is real analytic with an explicit formula. Thus, given
an approximate solution x0 which is within ε of a true solution and ε is small
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enough, we can majorize ||(D f (x))−1
|| on the ball Bε(x0) using Taylor series, to

confirm equation (1). �

Just as Lemma 5.7 addresses the hyperbolic case of Theorem 5.4, the following
lemma addresses the Seifert-fibered case.

Lemma 5.11. It is recursive to find an adapted triangulation of a Seifert-fibered
manifold N which is either closed or has torus boundary components. Hence, it is
in RE to determine if it is Seifert-fibered.

Proof. We can search through triangulations until we find one that is a barycentric
subdivision of a cellulation by triangular prisms. It is then easy to check whether
the prisms fit together following the rules in Section 5.2. �

Finally, a torus T that has matching Seifert-fibered structure on both sides is not
needed and is not a JSJ torus. It is easy to see this case in the proof of Theorem 5.2.
The more subtle possibility is that one or both sides might have more than one
Seifert fibration. Fortunately this is rare for Seifert-fibered manifolds with boundary.
It is addressed by the following result.

Theorem 5.12 (Waldhausen [16, Thm. VI.17 & Lem. VI.19]). Let N be an oriented
3-manifold with non-empty boundary ∂N and which has at least one Seifert fibration.
Then the fibration is uniquely determined up to isotopy by its restriction to ∂N , and
is outright unique except the following cases:

1. If N is a solid torus D2
× S1, then every fibration of ∂N extends to a fibration

of N over a disk D2 with at most one exceptional fiber.

2. If N is a thickened torus S1
× S1
× I , then every fibration is a trivial circle

bundle over an annulus. There is such a fibration for every rational slope in a
single torus S1

× S1.

3. If N is a twisted I -bundle K 2 n I over a Klein bottle K 2, then it has two
non-isotopic fibrations. One fibration is over a Möbius strip with Seifert data
{S1 n I }, and one is over a disk D2 with Seifert data {D2, (2, 1), (2, 1)}.

Proof of Theorem 5.4. We search over triangulations2 of M using stellar or bistellar
moves, and decorations of them, to find an adapted triangulation as described in
Section 5.2. A decoration that shows that the triangulation is adapted consists of
distinguished spheres and thickened tori, and a reverse barycentric subdivision
in each JSJ component N to make triangular prisms in the Seifert-fibered case
and a combination of once-truncated and ordinary tetrahedra in the hyperbolic
case. Within this search, we search for geometric data to describe the hyperbolic
structure of each N which is not Seifert-fibered. Since these are nested, infinite
searches, we combine them using the RE search algorithm of Proposition 2.5. By
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the geometrization theorem, we will eventually find a 2 that fits the description of
Section 5.2.

In the search, we need to veto a decorated triangulation whose 2-spheres do not
represent a connected sum decomposition, or such that the tori in a summand do
not represent a JSJ decomposition. We do this with the following checks:

1. All 2-spheres in the decoration of M are separating.

2. All tori in each summand W are essential.

3. Either M is a 3-sphere or no summand W is a 3-sphere.

4. Each summand W is prime.

5. No two tori in one summand W are parallel.

6. No torus T in a summand W has Seifert-fibered components on both sides
that restrict to the same fibration of T .

7. No torus T in W has Seifert-fibered components on both sides that induce the
same fibration of T , after refibering components.

Arguing each case separately, case 1 is straightforward.
In case 2, if a summand W is a torus sum of hyperbolic and Seifert-fibered

components, and if some torus is inessential, then some torus bounds a Seifert-
fibered solid torus with base D2 and at most one exceptional fiber.

In case 3, we can recognize when M or a summand W is a 3-sphere by confirming
that it is Seifert fibered with base S2 and at most two exceptional fibers, and trivial
homology. (This is assuming case 2, there are no inessential tori.)

In case 4, if a summand W is either closed hyperbolic or a torus sum of hyperbolic
and Seifert-fibered components with essential tori, then it has trivial π2 and is
therefore prime. On the other hand, if W is closed Seifert-fibered, then it is prime
unless it is P3 # P3 with Seifert data {P2, 0} [16, Lem. VI.7].

In case 5, we check that no Seifert-fibered component N of a summand W is a
thickened torus (with base an annulus and no singular fibers), unless W is a torus
bundle over a circle.

Case 6 is straightforward.
By Theorem 5.12 and the comments after it, in case 7 we only have to consider

two types of Seifert-fibered components, which can be recognized explicitly from
any of their fibrations:

7a. N ∼= S1
× S1
× I , or

7b. N ∼= K 2 n I .

Case 7a is only possible if N is glued to itself to make W a torus bundle over a
circle, S1 n (S1

× S1), because we have already eliminated parallel tori. The torus
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is needed if and only if W is a Sol manifold. We can verify this case by confirming
that the holonomy matrix in SL(2,Z) has distinct, real eigenvalues.

In case 7b, N ∼= K 2 n I only has one torus boundary component T , so its
refibration does not affect any other torus. In this case the fibration of N may have
Seifert data {S1 n I } or {D2, (2, 1), (2, 1)}. The resulting binary choice may occur
on one or both sides of T , and we veto 2 if the Seifert fibrations extend across T
for any of these choices. �

5.4. Proof of Corollary 5.10. The idea of the proof is that we can convert a first-
order deformation of a triangulation of N ∗ to a deformation of a representation of
ρ, in much the same way that we can convert a triangulation to ρ in the first place.

Proof. In general, if 0 is a discrete group (such as the fundamental group of
a topological space) and G is a Lie group, then we can describe a first-order
deformation of a homomorphism ρ : 0→ G as a homomorphism

(ρ, ρ ′) : 0→ G n g.

Here g is the Lie algebra of G viewed as a group under addition, while G n g is
the semidirect product in which the non-normal subgroup G acts on the normal
subgroup g by conjugation. Also, (ρ, ρ ′) should reduce to ρ under the quotient
map

π : G n g→ G.

Note that G n g is also the total space of the tangent bundle T G. In other words,
the extension ρ ′ is a choice of a tangent vector ρ ′(g) ∈ Tρ(g)G for every g ∈ 0,
such that the pairs (ρ(g), ρ ′(g)) together make a group homomorphism.

Suppose that 0 = 01(X) is the fundamental group of a based CW complex
X . Then we can model ρ (non-uniquely) as a non-commutative cellular cocycle
α ∈C1(X;G). Given ρ, we can likewise model the extension ρ ′ (also non-uniquely)
as a commutative cocycle α′∈C1(X; g), where here g is a coefficient system twisted
by α.

Now let X = N , where N has a cellulation 2 that comes from a closed or cusped
hyperbolic structure on N ∗ and a geometric triangulation 2∗. If N is cusped and
2∗ is a semi-ideal triangulation, then we make 2 by truncating the ideal vertices
of 2∗. We then want to make a cocycle α from γ . To do this, we first choose a
specific isometry Ñ ∗ ∼= H3. Then we choose an orthonormal tangent frame at each
vertex of 2. Given an edge e ∈2, we let α(e) be the element of G = Isom+(H3)

that takes the tail ṽ of a lift ẽ to the head w̃, and takes the lifted frame of ṽ to the
lifted frame of w̃. If N ∗ is cusped, then we require that each truncation edge in N
is assigned a parabolic element that fixes the corresponding ideal vertex in N ∗.

In this setting, Theorem 5.9 says that H 1(N ; g) = 0 in the closed case and
H 1(N , ∂N ; g, p)= 0 in the cusped case, where g is the parabolic Lie subalgebra
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of g. The theorem is typically proved using de Rham cohomology rather than
cellular cohomology, but these models of cohomology are isomorphic as usual.
More explicitly, every 1-cocycle α′ = δβ, where β is an g-valued 0-cochain on the
vertices of 2.

Finally, suppose that γ ′ is a first-order deformation of the hyperbolic structure γ
of 2∗ that satisfies the first derivative of the gluing equations. Then we can lift γ ′

to a cocycle α′ (non-uniquely) in the same way that γ lifts to α. Then Theorem 5.9
provides β, and β descends to a first-order motion of the vertices of 2∗ that induces
the deformation γ ′. �

6. Homeomorphism is recursive

In this section we will prove Theorem 1.1, postponing only the proof of Theorem 6.1
below until Section 7.

6.1. Connected sums. If M1 and M2 are two closed, oriented 3-manifolds given
by triangulations, then by Theorem 5.4, we know the direct sum decompositions
of each one into prime 3-manifolds. These summands can be freely permuted
and can only be matched in finitely many ways. If we search over the ways to

match them, we then reduce the oriented homeomorphism problem M1
?
∼= M2 to the

oriented homeomorphism problem W1
?
∼=W2 for prime summands W1 and W2. To

review, each summand Wk inherits an orientation from its parent Mk ; in the reverse
direction, there is no ambiguity in forming an oriented connected sum.

6.2. One JSJ component. We switch to the other end of geometric decompositions
to analyze a single pair of JSJ components N1 ⊆W1 ⊆ M1 and N2 ⊆W2 ⊆ M2. We
are interested not only in the isomorphism problem, but also in the effect of the
mapping class group of a component N on the boundary ∂N .

Theorem 6.1. Suppose that N is an oriented, hyperbolic JSJ summand such that
N ∗ is either closed or cusped. Then the mapping class group of N is its isometry
group. It is a finite group and its computation is recursive. If N1 and N2 are two
such manifolds, then they are homeomorphic if and only if they are isometric, and
recognizing this condition is recursive.

Again, we will prove Theorem 6.1 in Section 7. Note that if N is hyperbolic and
has torus boundary components, then each such component inherits a Euclidean
structure from the hyperbolic structure on N ∗.

Suppose instead that N is Seifert-fibered (and, as usual, oriented). Then in the
direct sense the automorphism problem only matters for Theorem 1.1 when the JSJ
graph is non-trivial and thus N has boundary. However, we will learn the relevant
automorphism properties from an associated closed Seifert-fibered space.
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Lemma 6.2. Let N be a closed, oriented 3-manifold which is decorated with a
Seifert fibration with Seifert data

{F, b, (a1, b1), (a2, b2), . . . , (an, bn)}.

Then:

1. The exceptional fibers of N are freely permutable by automorphisms of the
Seifert fibration, provided that the permutation preserves the orbifold number
ak ≥ 2 and the residue bk ∈ Z/ak of each exceptional fiber.

2. Any finite set of regular fibers is freely permutable.

3. If the base F is orientable, then N has an orientation-preserving homeomor-
phism that inverts all fibers together, but they cannot be inverted separately.

4. If the base F is non-orientable, then given two disjoint finite sets A, B ⊆ F ,
N has a homeomorphism that inverts the fibers over A in place and fixes the
fibers over B.

Proof. Cases 1, 2, and 4 can all be established by isotopies of F that move points
that correspond to the distinguished fibers. In case 4, using the hypothesis that F is
non-orientable, we can move a point p ∈ A around an orientation-reversing loop in
F that stays away from B and from the rest of A.

Meanwhile in case 3, the fibration itself is orientable, which means that an
orientation of any one fiber induces a canonical orientation of all fibers. On the
other hand, Seifert’s construction of the fibration via vertical Dehn surgery on F×S1

is invariant with respect to inverting the S1 factor and simultaneously applying an
orientation-reversing homeomorphism to F . �

We also need the counterpart to Theorem 5.12 for closed Seifert-fibered spaces.

Theorem 6.3 (Waldhausen [16, Thm. VI.17]). If N is a closed, oriented Seifert-
fibered 3-manifold, then its Seifert fibration is unique up to homeomorphism except
in the following cases:

1. A Seifert-fibered space with base S2 and at most two exceptional fibers is either
a lens space L(m, n), S2

× S1, or S3

2. A Seifert-fibered space with base P2 and at most one exceptional fiber is either
a lens space L(4, n), a prism space R(m, n), or P3 # P3.

3. The space with Seifert data

{S2, b, (2, 1), (2, 1), (a1, b1)}

is a prism space R(m, n).
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4. The twisted bundle K 2 n S1 which is the double of K 2 n I has the double of
its two fibrations, namely the Seifert data {K 2, 0} and the Seifert data

{S2, 0, (2, 1), (2, 1), (2, 1), (2, 1)}.

Theorem 6.3 comes with simple formulas for which lens space or prism space is
obtained, which we omit. In particular, the answer is recursive and (as we will later
want) elementary recursive.

6.3. The JSJ graph. If W is a prime 3-manifold, then its JSJ decomposition is
modelled by a labelled graph 0, whose vertices represent JSJ components and whose
edges represent connecting tori. Each vertex is labelled by the homeomorphism
type of its component, which is either Seifert-fibered or hyperbolic. In addition,
each edge is decorated with gluing data and peripheral data which will be described
precisely in the proof of Theorem 1.1 below.

Remark. This graph structure inspired the term graph manifold for a prime 3-
manifold whose JSJ components are all Seifert-fibered [51]. This terminology is
standard but ironic, since geometrization shows that the same graph concept is
important for all prime 3-manifolds.

The labelled graph 0 is an invariant of W , which at first glance may seem like
a complete invariant, provided that the homeomorphism problem for each JSJ
component is recursive. However, it is not that simple, because we have to know
the allowed permutations of the torus boundary components of a JSJ component N ,
and the allowed homeomorphisms of each torus boundary component. Finally, we
need to deal with the special case that N is either K 2 n I or S1

× S1
× I and thus

has more than one Seifert fibration.

Proof of Theorem 1.1. (Proof using case 1 of Lemma 5.7.) As explained in

Section 6.1, it suffices to solve the homeomorphism problem W1
?
∼=W2 for prime

3-manifolds W1 and W2. The proof is divided into three steps. In steps 1 and 2, we
let W be a prime 3-manifold and let 0 be its JSJ graph. It is recursive to calculate
0 and the isomorphism types of its vertices.

Step 1: We address the cases in which a JSJ component of W has more than one
Seifert fibration. If any component is a K 2 n I , then its two fibrations (described
in Theorem 5.12) are inequivalent; we choose one of them and use it for every
occurrence of K 2 n I in W . If a JSJ component N is a thickened torus, then as in
the proof of Theorem 5.4, W is a Sol manifold and a torus bundle over a circle,
S1 n (S1

× S1). In this case the homeomorphism type of W is given by a pair of
conjugacy classes in SL(2,Z), one for each orientation of the base circle. Recall that
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the conjugacy classes in SL(2,Z) can be classified with the aid of the isomorphism

PSL(2,Z)∼= C2 ∗C3.

If g ∈ SL(2,Z) has non-zero trace (which it does if W is Sol), then its conjugacy
class is given by the sign of its trace and its reduced cyclic word in C2 ∗C3.

Step 2: We suppose that W is not a Sol torus bundle over a circle. If T is a
JSJ torus in W and one side of T is a hyperbolic component N , then T inherits a
Euclidean structure which we can normalize to have area 1. This Euclidean structure
can be described by a quadratic form Q on the first homology H1(T )= H1(T ;Z),
where Q(c) is the square of the minimum length of c ∈ H1(T ). Moreover, the
coefficients of Q are real algebraic numbers computable from the geometry of
N . On the other hand, if N is Seifert-fibered, then the induced fibration of T
selects a line in H1(T ), by which we mean a rank-one subgroup L ⊆ H1(T ) with a
torsion-free quotient H1(T )/L .

Since T has two sides, it is then decorated by a pair of quadratic forms on H1(T ),
or a quadratic form and a line, or a pair of lines. In the third case when both sides
of T are Seifert-fibered, the fibrations must be mismatched at T , so the two lines
L1, L2 ⊆ H1(T ) must be distinct. Hence they constitute a rational line basis in the
sense that

H1(T ;Q)= (L1⊗Q)⊕ (L2⊗Q).

We also obtain a rational line basis in the second case, when one side is Seifert-
fibered and produces a line L1 = L , and the other side is hyperbolic and produces a
quadratic form Q. In this case, there exist a finite set of pairs of homology classes
±c ∈ H1(T ) \ L1 that minimize Q(c). If there is only one such pair, we let L2 be
the line generated by ±c. If there is more then one, we let L2 be the line generated
by the first such pair in the clockwise direction from L1.

Note that each possible decoration of T induced by the geometry on both of
its sides has a finite stabilizer in the oriented mapping class group SL(H1(T ))∼=
SL(2,Z) of T . If we order the two sides of T , then the stabilizer usually has two
elements; in rare cases it is a cyclic group of order 4 or 6.

If N is a Seifert-fibered component of W , then each of its torus boundary
components is decorated by a rational line basis. We can thus make a closed Seifert-
fibered space N̂ by collapsing a circle fibration of each component T ⊆ ∂N that
represents the opposite line in H1(T ), the one that does not come from N itself.
Each torus component of ∂N becomes a distinguished fiber in N̂ which may be
either regular or exceptional.

Step 3: Suppose that W1 and W2 are two prime, closed, oriented 3-manifolds. If
they do not have any JSJ tori, then each one is either closed hyperbolic or Seifert-
fibered, and we can use Theorems 6.1 and 6.3 to tell if they are the same. Meanwhile
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if W1 and W2 are both Sol torus bundles, then we can use the algorithm in step 1 to
determine if they are homeomorphic.

Otherwise we can assume that W1 and W2 each have at least on JSJ torus, and
that each JSJ torus has a canonical decoration as described in step 2. To determine
if W1 and W2 are homeomorphic, we search over isomorphisms f : 01 → 02

between their JSJ graphs. For every pair of T1 ⊆W1 and T2 ⊆W2 that are matched
by f , we search over mapping classes that preserve the canonical decorations of
T1 and T2. In the innermost part of the search, we want to calculate whether the
homeomorphisms of the JSJ tori extends to each matched pair of JSJ components
N1 ⊆W1 and N2 ⊆W2. If N1 and N2 are hyperbolic, then we can use Theorem 6.1
to determine if the homeomorphism ∂N1 ∼= ∂N2 extends. If they are both Seifert-
fibered, then we can use Lemma 6.2 to determine whether the corresponding closed
Seifert-fibered manifolds N̂1 and N̂2 have a homeomorphism that extends the given
homeomorphism ∂N1 ∼= ∂N2. Note that we can employ Lemma 6.2 because any
relevant homeomorphism N1 ∼= N2 preserves the fibration at the boundary, and is
thus isotopic to a fibration-preserving homeomorphism by Theorem 5.12. �

Proof of Theorem 1.1. (Proof using case 2 of Lemma 5.7.) If the geometric data of
each hyperbolic JSJ component N of a summand W is described with computable
real numbers rather than real algebraic numbers, then the induced Euclidean structure
on a JSJ torus T ⊆ ∂N is only given by a convergent sequence of approximations.
Thus, it is not possible to definitively calculate the isometries of T or the shortest
cycles, as expressed with the quadratic form Q(c). However, all non-isometries
and all non-zero classes in H1(T ) that are not shortest are eventually revealed. This

yields an algorithm in coRE for the homeomorphism problem M1
?
∼= M2, which is

enough to show that the problem is recursive per the discussion at the beginning of
Section 7. �

7. Proofs of Theorem 6.1

In this section we will give several proofs of Theorem 6.1. Recall that Corollary 3.4
says that the existence of a PL homeomorphism N1 ∼= N2 is in RE; it is also easy to
check whether it preserves orientation. So, by Proposition 2.3, it suffices to show
that homeomorphism is in coRE, although only one of the proofs will make use of
this directly. By a similar argument, finding elements in the mapping class group
of a single N is in RE; the remaining task is an algorithm to show that the list is
complete.

Recall that if N has boundary, then its interior N ∗ is cusped and has a semi-ideal
triangulation 2∗. In this case, 2 is a cellulation in which semi-ideal tetrahedra
are once truncated. We want to geometrize the truncation that produces 2. We
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consider a horospheric truncation which is almost but not quite unique, with the
following three properties:

1. The horosphere sections lie entirely within the semi-ideal tetrahedra of 2∗,
and therefore do not intersect each other.

2. For some common integer n, every horospheric torus has area 2−n .

3. We do not use the smallest value of n that satisfies conditions 1 and 2.

For convenience, we let N ∗ = N and 2∗ =2 if N is closed.
Some of the proofs make use of the following lemma.

Lemma 7.1. It is recursive to obtain a lower bound in the injectivity radius of N
and 2.

First proof. Suppose first that N is closed. For each vertex v ∈ 2, let Uv be the
open star of 2 containing p. Then the collection {Uv} is a finite open cover of N .
It follows just from topology that there is some radius ε such that every ball of
radius ε is contained in some Uv . For an explicit calculation, let 2′ be a barycentric
subdivision of 2, and for each v ∈ 2, let Xv be the closed star of v ∈ 2′; then
the sets Xv are a closed cover. We can calculate or bound the distance from Xv to
N \Uw for some w ∈2 with Xv ⊆Uw. The minimum of all of these distances is
thus a lower bound ε for the injectivity radius. �

Second proof. In general we use the notation B(p, r) for a hyperbolic ball of radius
r centered at p.

Let r be the exact injectivity radius of N , and let p be a point on a closed geodesic
of N of length 2r . Then p ∈1 for some cell 1 ∈2, and we can let ` be an upper
bound of the diameter of 1. Then in the universal cover

Ñ ⊆ Ñ ∗ ∼= H3,

we obtain that at least 1/2r lifts of 1 intersect B(p, 1), and thus at least this many
copies of 1 are contained in B(p, `+ 1). Thus

1
2r
≤

Vol(B(p, `+ 1))
Vol(1)

,

hence

(2) r >
Vol(1)

2Vol(B(p, `+ 1))
.

We can calculate an upper bound of this form, if necessary using a lower bound for
the numerator and an upper bound for the denominator, for every cell in 2, since
we do not know the position of the shortest geodesic loop in advance. �
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Third proof. This proof is a variation of the second proof using the entire diameter
and volume of N . Jørgensen and Thurston proved that the set of possible volumes
of N ∗ is well-ordered. In particular, there is one of least volume, so there is some
constant c > 0 such that

Vol(N ∗) > c.

Our construction of the geometry of N spares more than half of the volume of N ∗,
so

Vol(N ) >
Vol(N ∗)

2
>

c
2
= c′.

We can obtain an upper bound ` on the diameter of all of N by adding bounds on
the diameters of the cells in 2. Then, we let D be a convex fundamental domain
for N ; it has the same volume and diameter at most 2`. Thus we obtain an estimate
similar to (2), but more robust:

r >
Vol(D)

2Vol(B(p, `+ 1))
>

c′

2Vol(B(p, `+ 1))
. �

Remark. Without an explicit bound on least-volume closed or cusped hyperbolic
manifold, the third proof has the unusual feature of non-constructively proving
that an algorithm exists, i.e., without fully stating the algorithm. Meyerhoff [30]
established the first lower bound

Vol(N )≥
2
54

in the closed case. In the same paper, he and Jørgensen established

Vol(N ∗)≥

√
3

4
=⇒ Vol(N )≥

√
3

8

in the cusped case. The exact minimum values are now known [9].

First proof of Theorem 6.1. This proof is similar to one given by Scott and Short
[43]. We assume geometric triangulations 2∗1 and 2∗2 of N ∗1 and N ∗2 .

If N ∗1 and N ∗2 are homeomorphic and therefore isometric, then we can intersect
the tetrahedra of2∗1 and2∗2 to make a tiling of N1∼= N2 by various convex cells with
8 or fewer sides; we can then take a barycentric subdivision to make tetrahedra. We
thus obtain a mutual refinement 23 of 21 and 22. If we can bound the complexity
of 23, then we can find it with a finite search or show that it does not exist, rather
than using stellar or bistellar moves in both the up and down directions.

Let 11 ∈2
∗

1 and 12 ∈2
∗

2 be two tetrahedra in the separate triangulations. In the
universal cover Ñ ∗1 , any two lifts of 11 and 12 only intersect in a single cell with
at most 8 sides. In N ∗1 itself they can intersect many times; however, only as often
as different lifts of 11 intersect one fixed lift of 12. If 11 and/or 12 are semi-ideal,
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then their lifts intersect if and only if their truncations do. There is a recursive
volume bound on the number of possible intersections by the same argument as the
second proof of Lemma 7.1.

Having bounded the necessary complexity of a mutual refinement 23, we can
now search over separate refinements 23 of 21 and 24 of 22 using Proposition 3.5,
and look for an orientating-preserving simplicial isomorphism 23 ∼=24. The same
method can be used to calculate the mapping class group of a single N . �

Second proof. Suppose that X1 and X2 are two compact metric spaces, and suppose
that for each ε > 0 we have a way to make finite ε-nets S1 and S2 for X1 and X2,
and calculate or approximate all distances within S1 and within S2. If X1 and X2

are isometric, then there is a function f : S1→ S2 that changes distances by at most
2ε. On the other hand, if there is such a function for every ε, then X1 and X2 must
be isometric.

In our case, we let Xk = Nk , where we make sure to use the same truncation area
2−n to geometrize N1 and N2 given the geometries of N ∗1 and N ∗2 . We calculate a
common lower bound δ on the injectivity radius.

We can choose some convenient coordinates inside each cell 1 ∈2k . We then
have the ability to calculate geodesic segments in Nk that are made of geodesic
segments in the separate tetrahedra. If 1 is truncated, then the geodesic segment
might hug the truncation boundary for part of its length, but it still has a finite
description. Without more work, we don’t know which of these geodesics are
shortest geodesics. However, if a geodesic is shorter than δ, then it is shortest.
Taking δ� ε→ 0, we can make ε-nets of both N1 and N2 and look for approximate
isometries between these ε-nets; it suffices to check distances below the fixed value
δ.

More explicitly, we can use the covering by open stars Sv in the first proof
of Lemma 7.1. There is a δ such that if d(x, y) < δ, then x and y and even the
connecting short geodesic are all in some open star.

This algorithm does not by itself ever prove that N1 and N2 are isometric, only
that they aren’t. Thus it shows that the homeomorphism problem is in coRE. This
is good enough by Proposition 2.3 and Corollary 3.4.

The algorithm also does not by itself determine whether the isometry is orientation-
preserving. However, this is very little extra work. Given ε� δ and given ε-nets
S1⊆ N1 and S2⊆ N2, we can let p1, p2, p3, p4 be 4 points in S1 that lie in a ball of
radius δ/2 and that make an approximately regular tetrahedron 1. If f : S1→ S2

is an approximate isometry, then we can check whether f flips over 1. If no
orientation-preserving isometry exists, then when ε is small enough, either f will
cease to exist or 1 will be flipped over.

We can use similar methods to find the mapping class group of a single N ,
since by Mostow rigidity it is also the isometry group of N . We assume that N
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has boundary, which is technically short of the full generality of Theorem 6.1,
but enough to prove Theorem 1.1. Just as with the method to check whether an
approximate f preserves orientation, we can when ε is small enough compute the
effect of f on H1(∂N ), which determines which isometry is close to f (if any). �

Third proof. In this proof, we restrict attention to case 1 of Lemma 5.7 and thus work
over the ring Q̂ of real algebraic numbers. We assume real algebraic coordinates
for H3 and for its isometry group Isom+(H3); for example we can take H3 to be
the set of positive, unit timelike vectors in 3+ 1-dimensional Minkowski geometry,
and we can take Isom+(H3) = SO+(3, 1). We again assume that N1 and N2 are
made from N ∗1 and N ∗2 using a common truncation area 2−n .

We assume geometric triangulations2∗1 and2∗2 of N ∗1 and N ∗2 with real algebraic
descriptions. Using these triangulations, we can find finite, open coverings of N1

and N2 by metric balls B(p, ε), where each point p has a real algebraic position
and the common radius is (a) also real algebraic, and (b) less than half of the
injectivity radius of N1 and N2. Then we can give each ball the same algebraic
coordinates as H3, and we can also calculate the relative position of every pair of
balls as some element in Isom+(H3). In other words, we obtain atlases of charts for
N1 and N2 using the Isom+(H3) pseudogroup. In fact, everything is constructed in
the subgroup and sub-pseudogroup with real algebraic matrix entries.

If there is an isometry between N1 and N2, then their atlases combine into a
larger atlas. There are only finitely many possible patterns of intersection between
the balls of N1 and the balls of N2. For each such pattern, we obtain a finite
system of algebraic equalities and inequalities, which says first that the intersection
pattern is what is promised, and second that the gluing maps between the atlases
are consistent. Theorem 2.8 then says that it is recursive to determine whether this
system of equations has a solution. Since we work in the group Isom+(H3), we are
looking only for orientation-preserving isometries. �

8. Homeomorphism is in ER

We will use the basic fact that a finite composition of ER functions is in ER. In
other words, if an algorithm has a bounded number of stages that expand its data
by an exponential amount or otherwise by an ER amount, then it is still in ER.

8.1. The outer proof. In this section we will prove Theorem 1.2. The proof is
a combination of the proof of Theorem 1.1 together with several computational
improvements. We summarize these computational improvements in this section
by stating some supporting theorems which we will prove ourselves (or prove by
citation) with two main supporting tools. The first tool is normal surface theory,
which we can use to find essential spheres and tori and Seifert fibrations. Note that
Jaco, Letscher, and Rubinstein [17] sketched ideas that are similar to our proof.
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The second tool is an ER version of Theorem 2.8 [10], which we use to bound
the complexity of a geometric triangulation of a hyperbolic manifold, and the
complexity of recognizing small Seifert-fibered spaces.

Theorem 8.1. It is in ER to find and triangulate the prime summands {W } of a
closed, oriented 3-manifold M , to find and triangulate the JSJ components {N }
within each prime summand W , to find their JSJ graph 0, and to recognize which
components N are Seifert-fibered and find their fibrations.

We will prove most of Theorem 8.1 in Section 8.2 using normal surface theory.
Small Seifert-fibered spaces are a particularly difficult special case of Theorem 8.1
that we list as a separate theorem. Recall that a Seifert-fibered space is small if it is
non-Haken (and therefore closed).

Theorem 8.2. Recognizing small Seifert-fibered spaces is in ER.

We will prove Theorem 8.2 in Section 8.5 using a combination of normal surface
theory and algebraic methods. Note that Li [27] shows that recognizing small Seifert-
fibered spaces with infinite π1 is recursive, and his algorithm should be elementary
recursive. However, we will use a different approach for this part of the theorem.
Li also addresses the finite π1 case in two different ways. Without assuming
geometrization (which was still open at the time), he cites work of Rubinstein and
Rannard-Rubinstein on small Seifert-fibered spaces. He also outlines a simplified
argument for the finite π1 case that depends on geometrization; we give a detailed
argument which is in a similar spirit.

Theorem 8.3. If a compact, oriented 3-manifold N has a closed or cusped hyper-
bolic structure, then it is in ER to find a geometric triangulation and specify its
geometric data with algebraic numbers. The homeomorphism and automorphism
problems are also both in ER.

We will prove Theorem 8.3 in Section 8.4 using both Mostow rigidity and
methods from algebraic geometry.

Proof of Theorem 1.2. We consider each stage of the proof of Theorem 1.1 in
turn. The proof begins with a geometric recognition of a single closed, oriented
3-manifold M in Theorem 5.4. This is not elementary recursive as described, but
we can replace it with Theorem 8.1 to find the direct sum and JSJ decomposition.
Each JSJ component N which is not Seifert fibered must be hyperbolic, so we
can apply Theorem 8.3, which is an ER version of Lemma 5.7, to calculate the
hyperbolic structure of each such N . This calculation also yields a description of
the Euclidean structure of each torus component of ∂N .

Finally given two closed, oriented 3-manifolds M1, M2, we first decompose them
into summands. For each bijection among the summands, we want to calculate
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W1
?
∼=W2 for each pair of matching summands. This is a calculation with JSJ graphs

which is done in Section 6.3 to complete the proof of Theorem 1.1. This calculation
is already elementary recursive, given the data computed for each JSJ component
of each Wi , and given the fibration or Euclidean structure of each JSJ torus of each
Wi . �

8.2. Normal surfaces. Let M be a compact 3-manifold with triangulation 2. Re-
call that a normal surface S ⊆ M intersects each tetrahedron 1 ∈2 in 7 types of
elementary disks, namely 4 types of triangles and 3 types of quadrilaterals. The
surface S = Sv is given by a vector v ∈ Z7t

≥0 that lists the number of each type of
elementary disk. If v is such a vector, then Sv is embedded (and uniquely defined)
provided that it only uses at most one type of quadrilateral in each tetrahedron.
After specifying which type of quadrilateral is allowed in each tetrahedron, the
normal surface equations then have a polytopal cone

C ⊆ Z5t
≥0 ⊆ Z7t

≥0

of solutions. We define a fundamental surface Sv to be one whose vector v ∈ C
is not the sum of two other solutions in C . If Sv is non-orientable, then S2v is its
orientable double cover and we call it fundamental as well.

Lemma 8.4 (Haken). The number of elementary disks in a fundamental surface in
M is bounded above by an exponential in t . (Thus it is elementary recursive.)

We can represent a normal surface S by listing all triangles and quadrilaterals
in order in each tetrahedron 1 ∈ 2. It is then easy to separate S into connected
components and calculate the topology of each component. This is exponentially
inefficient compared to algorithms such as Agol-Hass-Thurston [2], but it has no
effect on whether the resulting algorithm is in ER.

We define a complete set of essential 2-spheres in a 3-manifold M to be a
collection C such that cutting M along each 2-sphere in M and capping off the
resulting boundary components produces irreducible 3-manifolds. Likewise a
complete set of essential disks is a collection C of properly embedded disks which
are not boundary parallel, such that the compression of every disk in C renders M
boundary-incompressible.

Theorem 8.5 (Jaco-Tollefson). Let M be a compact, oriented, triangulated 3-
manifold. Then:

1. M has a collection of disjoint, fundamental surfaces which form a complete
set of essential 2-spheres [18, Thm. 5.2].

2. If M has no essential 2-spheres, then it has a collection of disjoint, fundamental
surfaces which form a complete set of essential disks [18, Thm. 6.2].
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3. If M has no essential 2-spheres or disks, and it has an essential torus, then it
has one which is fundamental [18, Cor. 6.8].

4. If M has no essential 2-spheres or disks, and it has an essential annulus, then
it has one which is fundamental [18, Cor. 6.8].

Jaco and Tollefson also show that each type of surface described in Theorem 8.5
is a vertex surface, which is a special case of a fundamental surface. Case 1 of
Theorem 8.5 is stated for closed manifolds, but the proof is the same for manifolds
with boundary. Finally, given Lemma 8.4, the surfaces produced by Theorem 8.5
all have an elementary recursive bound on their size.

We will use the following variation of Theorem 8.5, where we now define a com-
plete set of essential tori in each summand W similarly, so that each complementary
region in W is atoroidal. (A complete set of essential tori must include all of the
JSJ tori of each W , but will be a strict superset when some of the Seifert-fibered
JSJ have additional essential tori.)

Theorem 8.6 (Hass-K. [14]). If M is a closed, oriented 3-manifold with a triangu-
lation 2, then it has a collection of disjoint normal surfaces which form a complete
set of essential spheres and tori, such that the total number of elementary disks is
bounded above by an exponential in t .

Briefly, Theorem 8.6 uses a generalization of the normal surface equations
which we call the disjoint normal surface equations. (They are similar to the
crushed triangulation technique defined by Casson [17].) They are equations for a
normal surface S which is disjoint from a fixed normal surface R ⊆ M . To prove
Theorem 8.6, we find each surface S or T sequentially as a fundamental surface,
relative to the union of previous surfaces.

Theorem 8.7 (Rubinstein [40], Thompson [48]). Recognizing the 3-sphere S3 is in
ER.

The proof of Theorem 8.7 uses a variant known as almost normal surfaces that
are allowed one exceptional intersection with a tetrahedron that is either an octagon,
or a triangle and a quadrilateral with a connecting annulus. The original papers only
claim a recursive algorithm, but the algorithm is based on normal surface theory.
In fact, the proof also uses disjoint normal surface equations. Schleimer [42] also
refines the Rubinstein-Thompson algorithm to show that 3-sphere recognition is in
the complexity class NP, which is a much better bound than just ER.

Proof of Theorem 8.1. As a first step, we check whether M ∼= S3 using Theorem 8.7.
If not, we search over collections C of normal surfaces in M with a suitable
elementary recursive complexity bound in order to find a set of surfaces that meets
the conclusion of case 1 of Theorem 8.5. To test whether a given collection C is one
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that we want, we first calculate whether each surface in it is a 2-sphere. Then we
can cut along all of the spheres (and retriangulate) and cap them to make a multiset
of summands of M . For each non-separating sphere, we create a separate S2

× S1

summand. What remains is a putative prime factorization {W }, but we must check
whether the summands are irreducible and not S3. We can use Theorem 8.7 to check
that no summand W is S3. If not, then we can again use case 1 of Theorem 8.5
to look for an essential 2-sphere in each W , and again use Theorem 8.7 to check
whether it is essential.

For each summand W , we similarly search for a collection C that meets the
conclusion of Theorem 8.6. We can check that each surface in C is a torus. We
can then cut W along C to make a putative decomposition of W into atoroidal
components {Q}. Geometrization gives us the following possibilities for each
component Q:

1. Q has an essential disk, which necessarily cuts it into a ball. In this case,
Q ∼= S1

× D2 is a solid torus.

2. Q has no essential disk, but it has a separating essential annulus that cuts it
into two solid tori. In this case Q fibers over a disk with two exceptional fibers.

3. Q does not have a separating essential annulus, but it does have a non-separating
essential annulus that cuts it into a solid torus. In this case Q fibers over an
annulus or a Möbius strip with at most one exceptional fiber.

4. Q has a separating annulus that cuts it into two thickened tori. In this case
Q ∼= S1

× F , where F is a pair of pants.

5. Q has an essential torus, specifically an incompressible torus which is not
boundary-parallel.

6. Q =W is closed and has no essential torus. In this case Q is either hyperbolic
or small Seifert-fibered.

7. Q has boundary, and it has no essential disk, annulus, or torus. In this case, Q
is hyperbolic.

To see that this is an exhaustive list, first recall from geometrization that each Q is
either hyperbolic or Seifert-fibered. (This is because a complete set of essential tori
includes all of the JSJ tori, and the other essential tori are all vertical with respect
to some fibration.) If Q is Seifert-fibered with boundary and is atoroidal, then
with one exception its orbifold base is planar, and the total number of boundary
circles plus exceptional fibers is at most three. The only exception is that Q ∼=
K 2 n I has a Möbius strip base; but it also has its other fibration with Seifert data
{D2, (2, 1), (2, 1)}.

We claim that we can recognize each possibility for Q by a bounded number of
applications of Theorem 8.5; the recognition algorithm is therefore in ER. Indeed,
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each case reduces to earlier cases when a putative essential surface is found. The
most subtle case is case 5, where we can check whether a candidate torus in Q
is essential by checking that it is not compressible (case 1) and does not bound a
thickened torus (case 3). Note that if Q is a solid torus (case 1) or a thickened torus
that is not glued to itself (case 3), or if Q has an essential torus (case 5), then the
collection C in W should be rejected.

In case 6, we use Theorem 8.2 to determine if W is small Seifert-fibered, and if
so, its homeomorphism type.

If Q is a thickened torus which is glued to itself, then W is a torus bundle over
a circle, and we can find its monodromy matrix A ∈ SL(2,Z) with a homology
calculation. We can solve the conjugacy problem in SL(2,Z) using the usual trick
that PSL(2,Z)∼=C3∗C2, and thus determine the homeomorphism type of W . (Note
that W may be either Sol, Nil, or Euclidean.)

Otherwise we can piece together the JSJ decomposition {N } of W from the
(often non-unique) atoroidal decomposition {Q}. In each remaining case Q has
either 0 Seifert fibrations (if it is hyperbolic), or 2 fibrations (if it is K 2 n I ), or 1
fibration (in all other Seifert-fibered cases). Using the recognition of Q, we can
calculate its Seifert data and express the fibration of each boundary torus T ⊆ ∂Q
by the corresponding line L ⊆ H1(T ). We can then piece together adjacent fibered
components to make JSJ components, when the fibrations match. The Seifert
data produced in this manner is not necessarily canonical, but canonicalizing it is
straightforward. �

8.3. Algebraic algorithms. We list several complexity bounds concerning alge-
braic numbers and solutions to algebraic equations.

Theorem 8.8 (Collins, Monk, Vorobiev-Grigoriev, Wüthrich [10, Thm. 4]). Sup-
pose that a set S ⊆ Rn is defined by a finite set of polynomial equalities and
inequalities over Q. Then it is in ER to calculate a representative finite set F ⊆ Q̂n ,
with one point p ∈ F in each connected component of S.

Theorem 8.8 is of course an ER version of Theorem 2.8. In the statement of the
theorem, each element α ∈ Q̂ is described by its minimal polynomial a(x) ∈ Z[x]
and an isolating interval α ∈ [b, c] that contains exactly one root of a(x).

Lemma 8.9. If α ∈ Q̂ is a non-zero complex root of a polynomial a(x) ∈ Z[x], then
there is an ER upper bound on |α| and |α−1

|.

Proof. Let n = deg a and write

a(x)= anxn
+ an−1xn−1

+ · · ·+ a1x + a0.

We can assume without loss of generality that a0 6= 0. If |α| >
∑

k ak , then us
that |anα

n
| is larger than the total norm of all of the other terms, so by the triangle
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inequality, a(α) 6= 0. This establishes
∑

k ak as an upper bound on |α|. For the
lower bound, we can observe that β = α−1 is a root of the polynomial

b(x)= a0xn
+ a1xn−1

+ · · ·+ an−1x + an = xna(x−1).

We can thus repeat the argument. �

If x1, . . . , xn are algebraic numbers, then we say that an algebraic number z is an
integral primitive element if each xk = fk(z) for some integer polynomial fk ∈Z[x].
It is a result of Galois that every finite set of algebraic numbers has a primitive
element; we are interested in a computationally bounded version.

Theorem 8.10 (Koiran [25, Thm. 4]). If x1, . . . , xn are algebraic numbers, then
they have an integer primitive element z which can be computed in ER, and such
that polynomials fk with fk(z)= xk can also be computed in ER.

Koiran states the result in the form xk = fk(z)/ak , where the denominator ak is
an elementary recursive integer. However, it is not difficult to modify z to eliminate
these denominators. (Proof: Let f ∈ Z[x] be the minimal polynomial of z and let

z1 =
z

f (0)
∏

k ak
.

Then both 1/ak and fk(z) are expressible as integer polynomials in z1. Therefore,
so is their product.)

Lemma 8.11. If h ∈ Z[x] is an integer polynomial, then there is a prime p that can
be computed in ER such that h(x) has a root in Z/p.

Proof. If d = deg h, then h attains the values ±1 at most 2d times. Therefore there
is an integer a with |a| ≤ d such that h(a) is not ±1, and we can let p be a prime
divisor of h(a). �

Using the results so far in this section, we obtain an elementary recursive version
of Mal’cev’s theorem, which says that finitely generated residually linear groups
are residually finite. Our computational version requires a finitely presented group
rather than just a finitely generated group.

Theorem 8.12. Let 0 be a finitely presented group, let g ∈ 0 \ {1} be a non-trivial
element given by a word w in the generators of 0, and suppose that there is a
representation

ρ : 0→ GL(n,C)

that distinguishes g from the identity. Then 0 admits a finite representation

ρp : 0→ GL(n,Z/p)
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that distinguishes g from the identity, where p is a prime number. Moreover, we
can find such a p and ρp in ER given the presentation of 0, the word w, and the
integer n.

Proof. A function from the generators of 0 to n×n matrices forms a representation

ρ : 0→ GL(n,C)

if and only if the matrix entries satisfy equations that come from the relators of the
presentation of 0. We also want ρ(g) 6= I . To this end, we assume another matrix
of variables Y and impose the condition

tr(Y (ρ(g)− I ))= 1.

By hypothesis ρ and Y exist, and Theorem 8.8 then produces an algebraic, elemen-
tary recursive solution. By Theorem 8.10, the matrix entries are generated by an
integer primitive element z, and by Lemma 8.11, we can replace z by a residue
α ∈Z/p for some prime p computable in ER. We thus get a modular representation

ρp : 0→ GL(n,Z/p)

and a matrix Yp over Z/p again with the same properties. Since Yp exists, ρp(g)
cannot be the identity. �

Remark. Assuming the Generalized Riemann Hypothesis, Koiran’s work implies
Theorem 8.12 with a much better bound, namely that log(p) can be bounded by a
polynomial in the length of the presentation of 0 and the length of the word w.

8.4. The hyperbolic case. To prove Theorem 8.3, we will need a quick mutual
corollary of Theorem 8.8 and the proof of Proposition 3.5.

Corollary 8.13. If 21 is a finite simplicial complex with n1 simplices (of arbitrary
dimension) and n2 ≥ n1, then it is in ER to produce a complete list of geometric
subdivisions 22 of 21 with n2 simplices.

Proof of Theorem 8.3. Let 2 be the input triangulation of N as a compact manifold,
and let 2∗ be the result of adding a cone to each component of ∂N to make a semi-
ideal combinatorial triangulation of N ∗. The manifold N ∗ also has a hyperbolic
structure which we interpret as a separate manifold. We rename the hyperbolic
version X and assume a homeomorphism

f : N ∗→ X.

We fix the vertices of N ∗ in the map f , and straighten all of the tetrahedra, to
make a map g that represents 2∗ as a self-intersecting geometric triangulation of
X . Since g is homotopic to f (or properly homotopic if N ∗ is not compact), it
has (proper) degree 1. Since g need not be a homeomorphism, it may flatten or
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Figure 4. We straighten f to g, then subdivide the image, and
finally subdivide the domain to make g a simplicial map. In the
proof the image is barycentrically subdivided, but any refinement
which is a triangulation suffices.

flip over some of its simplices. The self-intersections of g(2∗) yield a cellulation
3 of X with convex cells. Thus 3 has a barycentric subdivision 8 which is a
geometric triangulation of X . Also let 9 = g−1(8). Then 9 is a refinement of the
triangulation 2∗, and g is now a simplicial map from 9 to 8. See Figure 4. (The
figure uses a simplicial refinement of the self-intersections which is simpler than
barycentric subdivision; this is not important for the proof.)

Now suppose that we do not know the hyperbolic structure of N , only that it
must have one because it prime, atoroidal, and acylindrical. If we are given 9 as a
combinatorial refinement of the triangulation 2∗, then we can search for 8 as a
simplicial quotient of 9, such that we can solve the hyperbolic gluing equations
for 8 to recognize it as a geometric triangulation of a hyperbolic manifold X . We
obtain a candidate map g : N ∗→ X . If g has degree 1, and there is also a degree
1 map h : X→ N ∗, then Mostow rigidity tells us that g and h are both homotopy
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equivalences and that X and N ∗ are homeomorphic. (Note that there can be a degree
1 map in one direction between two hyperbolic 3-manifolds that is not a homotopy
equivalence [5], even though this cannot happen in the case of hyperbolic surfaces.)
We can search for h by the same method of simplicial subdivision that we used to
find g. This establishes an algorithm to calculate the hyperbolic structure of N ∗.

We claim that a modified version of this algorithm is in ER. We first consider
ER candidates for the map g. To do this, we make a non-commutative cocycle
α ∈ C1(N ;G) as in the proof of Corollary 5.10, where

G = Isom+(H3)∼= SO+(3, 1),

and with the extra restriction that α is parabolic on each component of ∂N . These
cocycle equations are algebraic, so Theorem 8.8 guarantees a representative set of
solutions. By Mostow or Calabi-Weil rigidity, one of components of the solution
space yields a discrete homomorphism

ρ : π1(N )→ Isom+(H3)

that describes the hyperbolic geometry of X . If we assign some point p ∈ H3 to
one of the vertices of 2, then in the closed case, its orbit under α is in ER and can
be extended on each simplex of 2 to the map g. In the cusped case, there are also
ideal vertices whose position on the sphere at infinity can be calculated from α as
well.

If N has boundary, then we also want a truncated version of 2∗ which is larger
than the original2, and slightly different from the horospheric truncation description
in Section 7. If that 1 ∈2∗ is semi-ideal, then let p be its ideal vertex, let F be the
hyperplane containing the face of 1 opposite to p, and let F ′ be the hypersphere at
distance log(2) from F which is on the same side as p. Then we truncate 1 with
F ′ to make 1′; or if 1 ∈ 2∗ is a non-ideal tetrahedron, we let 1′ = 1. We let
X ′ ⊆ X be the union of all 1′. (In the closed case, we obtain X ′ = X .) X ′ can have
a complicated shape because the truncations are usually mismatched, but we can
calculate the positions of its vertices, and it is easy to confirm that it has at least
half of the volume of X .

Our algorithm does not know which cocycle α gives us a desired g and we do not
compute this directly. Instead, we can calculate an ER bound for its data complexity,
using the complexity bounds in the statement of Theorem 8.8.

In particular, the existence of the map g gives us ER bounds on the parameters
used in the third proof of Lemma 7.1. Using Lemma 8.9, the existence of g yields
an ER upper bound on the diameter ` of X ′ and then a lower bound on its injectivity
radius r .

We can now follow the first proof of Theorem 6.1. If 11,12 ∈ 2
∗ are two

tetrahedra, then the intersection complexity of g(11) and g(12) is no worse than
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that of g(1′1) and g(1′2), and is bounded by an ER function of ` and r . This yields
an ER bound on the complexity of the refinements 8 and 9. Recall that 9 is a
refinement of 2∗, which is a slightly modified version of the input description of
N . Having bounded the complexity of 9, we can search for it using Corollary 8.13
and solve for 8 and its geometry. We can also discard g if it does not have degree
1.

Thus far, the algorithm finds an ER collection of candidate maps g : X∗→ N of
degree 1, where N varies as well as g. At least one of these maps is a homotopy
equivalence. Instead of finding an inverse h, We can repeat the algorithm to look
for degree one maps among the target manifolds {N }. This induces a transitive
relation among these manifolds. If N is chosen at the top of this relation, then the
associated map g : X∗→ N must be a homotopy equivalence.

To solve the homeomorphism problem, we find geometric triangulations 81 and
82 of the manifolds N ∗1 and N ∗2 . We can again follow the first proof of Theorem 6.1,
except now with an ER bound on the complexity of 81 and 82, and we can again
use Corollary 8.13. The same argument applies for the calculation of the isometry
group of a single N ∗. �

8.5. The small Seifert-fibered case. In this section we will prove Theorem 8.2.
Let N be a closed, oriented 3-manifold which has been recognized as irreducible

and atoroidal by the relevant algorithm in the proof of Theorem 8.1. We want to
distinguish between the case that N is small Seifert-fibered and the case that N is
hyperbolic; and in the former case, find its homeomorphism type. By Theorem 8.7,
we also may as well assume that N 6∼= S3. We divide the proof into two cases,
according to whether π1(N ) is finite or infinite. (Recall that N is spherical if and
only if π1(N ) is finite.)

Proposition 8.14. It is in ER to determine if π1(N ) is finite and compute its oriented
homeomorphism type.

Proof. We work from the fact [16, Sec. VI.11 & VI.16] that if π1(N ) is finite, then
N has a Seifert fibration whose base F is S2 with at most two orbifolds points, or
three orbifolds points of order a1, a2, and a3 with

1
a1
+

1
a2
+

1
a3
> 1.

Such a fibration of N lifts to the Hopf fibration of its universal cover S3, and with
the extra property that the action of π1(N ) preserves an orientation of the Hopf
fibers. Thus π1(N ) can be realized as a finite subgroup of the unitary group U(2)
that acts freely on the unit sphere S3

⊆ C2. Moreover, the 2-sphere S2 which is the
set of Hopf fibers is the orbifold universal cover of the base F . Thus the orbifold
fundamental group π1(F) is the image of π1(N ) in PU(2)∼= SO(3).
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If N has at most two exceptional fibers, then its the union of two solid tori and
thus a lens space with a cyclic fundamental group. On the other hand, if N has
three exceptional fibers, then π1(F) is a dihedral or Platonic subgroup of SO(3).
In either of these latter two cases, the kernel of the projection π1(N )→ π1(F) is
the center Z(π1(N )). This classification also tells us that if we pass to a cyclic
subgroup of π1(F) and its inverse image in π1(N ), we get an intermediate cover
Ñ of N with π1(Ñ ) abelian, so Ñ must be a lens space. Every dihedral or Platonic
group has a cyclic subgroup of index at most 12.

We first calculate whether N is a lens space. We calculate H1(N ) by applying the
Smith normal form algorithm to its chain complex. If H1(N ) is infinite, then N is not
small Seifert-fibered. Otherwise the cardinality of H1(N ) is elementary recursive.
We can calculate whether N is a lens space by checking whether H1(N ) ∼= Z/m
is cyclic and calculating whether its abelian universal cover Ñ is isomorphic to
S3. To determine the parameter n in the homeomorphism type of N ∼= L(m, n),
we can calculate the Reidemeister torsion of the twisted homology of N over the
ring Z[ζ ], where ζ is an mth root of unity. This is a determinant calculation which
is a priori elementary recursive. Note that this torsion determines the oriented
homeomorphism type of N .

If N is spherical but not a lens space, then again it has a finite covering space Ñ
of order at most 12 which is a lens space. We thus obtain an elementary recursive
bound on the cardinality of π1(N ). Using a presentation of π1(N ) obtained from the
triangulation of N , we can search exhaustively among surjective homomorphisms
φ : π1(N )→ 0, where 0 is a finite candidate for π1(N ). For each such surjective
homomorphism, we can build the corresponding covering space Ñ and calculate
whether Ñ ∼= S3. If this happens, then we know that N ∼= S3/0 as unoriented
3-manifolds.

Finally in the spherical case, we want to pass from the unoriented to the oriented
homeomorphism type of N when N is spherical but not lens. (Note that every such
N is chiral.) As a first warm-up, recall that we can distinguish the lens space L(4, 1)
from its reverse L(4,−1)= L(4, 3) by computing its Reidemeister torsion. As a
second warm-up, we consider the simplest prism space R(1, 2) whose fundamental
group 0 = π1(R(1, 2)) is the quaternionic 8-element group. We can build R(1, 2)
as a coset space inside SU(2):

0 ⊆ SU(2) R(1, 2)∼= SU(2)/0.

The group 0 has four cyclic subgroups of order 4 which are not conjugate in 0 itself,
but which are conjugate in SU(2). Matching this calculation to the Seifert data,
R(1, 2) has three double covers which are all-oriented homeomorphic to L(4, 1).
We can thus calculate the orientation of N by calculating whether any double cover
is L(4, 1) or L(4, 3).
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If N is spherical but not lens, then again π1(N )/Z(π1(N )) is either dihedral,
which is the prism case; or the isometry group of a Platonic solid: tetrahedral,
octahedral, or icosahedral. In the case that N ∼= R(m, n) and m is odd, as well as
in the Platonic cases, π1(N ) has a unique subgroup isomorphic to the quaternionic
group. Thus we can form the corresponding covering space Ñ ∼= R(1, 2) and
calculate its orientation as in the second warmup. Mean while if N ∼= R(m, n) and
m is even, then the center Z(π1(N ))∼= Z/(2m) has a unique subgroup of order 4.
Thus π1(N ) has a canonically chosen cyclic subgroup of order 4, and we can again
form Ñ and calculate whether it is L(4, 1) or L(4, 3). �

To prove Proposition 8.15, we will use a different combinatorial model of Seifert-
fibered spaces than the one in Section 5.2.4. If N is Seifert-fibered with base F ,
then we can consider a triangulation 2 of F with the orbifold points placed at the
vertices. For each triangle 1 ∈2, we make a solid torus 1× S1 which we interpret
as a chart for a circle bundle with structure group S1. Then we can construct N
with an atlas of charts of this type. (It is an atlas with closed charts rather than open
charts, but this is valid in context.) When two triangles 11 and 12 intersect in an
edge, we glue the charts together with a transition map

f12 :11 ∩12→ S1 ∼= R/Z.

We can assume that each transition map f12 is affine-linear if lifted to R, so that
the endpoint values of f12 lie in Q/Z, and its slope is also in Q. Moreover, it is
not hard to convert the Seifert data for N into these transition functions, for any
triangulation of F . Finally, note that if p ∈ F is an orbifold point of order a and
1 ∈2 is any triangle that has p as a vertex, then the gluing maps between charts
glue the circle over p in such a way that it shortens by a factor of a and becomes a
singular fiber of N .

Proposition 8.15. It is in ER to determine if N is small Seifert-fibered with infinite
π1(N ), and if so, compute its oriented homeomorphism type.

Proof. If π1(N ) is infinite and N is small Seifert-fibered, then the base F of N is a
2-sphere with orbifold points of order a1 ≥ a2 ≥ a3 with

1
a1
+

1
a2
+

1
a3
≤ 1.

In the equality case F is Euclidean and N is either Euclidean or Nil; otherwise F

is hyperbolic and the geometry of N is either H2
×R or ˜Isom(H2). The orbifold

fundamental group π1(F) is a von Dyck group D(a1, a2, a3)which is the orientation-
preserving subgroup of index two in the corresponding triangle group 1(a1, a2, a3)

in either Isom(E2) or Isom(H2), and π1(N ) is a central extension of D(a1, a2, a3)

by Z.
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We first consider the case in which F is Euclidean, which implies that (a1, a2, a3)

is either (3, 3, 3), (4, 4, 2), or (6, 3, 2). In this case there is a homomorphism

φ : π1(N )→ G,

where the target group is respectively the dihedral group D3, D4, or D6, such that
the corresponding regular cover Ñ is a circle bundle over a torus. Given a putative
choice for G and φ, we can construct the regular cover Ñ and apply the large
Seifert-fibered case of Theorem 8.1 to recognize it. (Lest this look circular, only
the small Seifert-fibered case of Theorem 8.1 needs the current Proposition 8.15.)
If Ñ is indeed a circle bundle over a torus, then we know that N must be small
Seifert-fibered with a Euclidean base, and the remaining question is to confirm that
G and φ were correctly chosen and thus compute the specific Seifert data of N .

Either Ñ is S1
×S1
×S1 (so that N itself is Euclidean), or it is a circle bundle over

S1
× S1 with a non-trivial Euler number and thus has Nil geometry. We thus obtain

an explicit form of π1(Ñ ) which is either Z3 or a central extension of Z2 by Z. At
the same time, since the recognition of the structure of Ñ is based on normal surface
theory, it thus yields a retriangulation of Ñ in ER from the triangulation induced by
the input triangulation of N to one that reveals the Seifert structure. Therefore we
obtain an explicit (and elementary recursive) description of π1(N ) as an extension
of the finite group G by π1(Ñ ). We can thus match π1(N ) to the corresponding
model Seifert-fibered space to determine the unoriented homeomorphism type of N .
Finally we have to calculate the oriented homeomorphism type. In the Euclidean
case, the recognition of Ñ gives us an orientation of π1(Ñ ) ∼= Z3. Similarly in
the Nil case, when π1(Ñ ) is an extension of Z2 by Z, the orientation of Ñ still
gives an orientation of both the center Z and the quotient Z2, up to switching both
orientations. This lets us compare the given orientation of N to an orientation of
the model to thus determine the oriented type of N .

The argument when the base F is hyperbolic is similar to the Euclidean case
but more complicated. In this case, π1(N ) has a non-trivial homomorphism to
Isom(H2), which in turn embeds in SL(2,C), so Theorem 8.12 tells us that π1(N )
has a non-trivial finite quotient G which we can find in ER even if we do not know
the linear representation that explains that it exists.

We construct the finite cover Ñ of N corresponding to the quotient map φ :
π1(N )→ G, and we apply part of Theorem 8.1 to determine if Ñ is large Seifert-
fibered, and if so calculate its fibration and its base F̃ . As before, we can first learn
from this whether N is indeed small Seifert-fibered. Second, as before this part of
Theorem 8.1 gives us an ER retriangulation from the initial triangulation of Ñ as a
covering space of N , to a triangulation that reflects its Seifert fibration. In particular,
we obtain a triangulation 2 of F̃ together with an atlas of charts to describe Ñ .
Third, we can choose an orientation of F̃ and an orientation of the circle fibers so
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that the two orientations together are consistent with the orientation of Ñ inherited
from N . Fourth, using the orbifold point orders of F̃ and the cardinality of G, we
obtain an ER upper bound on a1, a2, and a3.

For each candidate for (a1, a2, a3), the given representation of D(a1, a2, a3) in
Isom(H2) is rigid. It is still rigid even as a representation of π1(N ), because any
nearby representation must still annihilate the kernel Z(π1(N )). Passing to the
covering space F̃ , we obtain a preferred hyperbolic structure on F̃ and we can
realize 2 as a geometric triangulation. (In two dimensions, every triangulation of a
hyperbolic surface is geometric.) Now Theorem 8.8, combined with the fact that
the retriangulation of Ñ is in ER, gives us an ER upper bound on the lengths of the
edges of 2. At the same time, we get a second triangulation 8 of F̃ by tiling it
by lifts of the triangular fundamental domain of the triangle group 1(a1, a2, a3).
The triangulation 8 is both geometric and π1(N )-invariant. It is sometimes only a
generalized triangulation in the sense that its 1-skeleton could have double edges or
self-loops, but this doesn’t matter for our arguments. Using the same arguments
as in the proof of Theorem 8.3 in Section 8.4, 8 and 2 have a mutual refinement
that can be found in ER. Thus we can search over retriangulations of F̃ in ER until
we find one that is π1(N )-invariant. We can then use this to compute the Seifert
structure on N , moreover preserving the orientation information inherited from the
fibration of Ñ . �

9. Open problems

Theorem 1.2, together with the fact that ER is a fairly generous complexity class,
suggests the following conjectures.

Conjecture 9.1. If M is a closed, Riemannian 3-manifold, then Ricci flow with
surgery on M can be accurately simulated in ER.

In other words, we conjecture that Perelman’s proof of geometrization can be
placed in ER.

Conjecture 9.2. Every closed, hyperbolic manifold N has a finite-sheeted Haken
covering which is computable in ER.

In other words, we conjecture that the statement of the virtual Haken conjecture,
now the theorem of Agol et al [1], can be placed in ER. Maybe the known proof
can be as well.

Conjecture 9.3. Any two triangulations of a closed 3-manifold M have a mutual
refinement computable in ER.

Conjecture 9.3 does not follow from our proof of Theorem 1.2, because the
algorithm in Theorem 8.3 only establishes a simplicial homotopy equivalence and
then relies on Mostow rigidity. However, the rest of the proof of Theorem 1.2 uses a
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bounded number of normal surface dissections, which does establish an ER mutual
refinement according to the arguments of Mijatović [31; 32]. Also, Conjecture 9.2
and the Haken case of Conjecture 9.3 would together imply the hyperbolic case of
Conjecture 9.3, which would then imply the full conjecture. Mijatović [33] also
established that any two triangulations of a fiber-free Haken 3-manifold have a
primitive recursive mutual refinement.

Cases 3 and 4 of Proposition 2.6 are expected to be false for typical bounds on
complexity that are better than ER. Thus, in discussing further improvements to
Theorem 1.2, we should consider qualitative complexity classes, such as the famous
NP, rather than just bounds on execution time. For one thing, ER is the union of an
alternating, nested sequence of time and space complexity classes, as follows:

P⊆ PSPACE⊆ EXP⊆ EXPSPACE⊆ EEXP⊆ · · · .

Here P is the set of decision problems that can be solved in deterministic polynomial
time; PSPACE is solvability in polynomial space with unrestricted (but deterministic)
computation time; EXP is deterministic time exp(poly(n)); etc. The author does
not know where a careful version of our proof of Theorem 1.2 would land in this
hierarchy.
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HARISH-CHANDRA MODULES FOR
DIVERGENCE ZERO VECTOR FIELDS ON A TORUS

ZHIQIANG LI, SHAOBIN TAN AND QING WANG

The Lie algebra of divergence zero vector fields on a torus is an infinite-
dimensional Lie algebra of skew derivations over the ring of Laurent polyno-
mials. We consider the semidirect product of the Lie algebra of divergence
zero vector fields on a torus with the algebra of Laurent polynomials. In
this paper, we prove that a Harish-Chandra module of the universal central
extension of the derived Lie subalgebra of this semidirect product is either
a uniformly bounded module or a generalized highest weight module. We
also classify all the generalized highest weight Harish-Chandra modules.

1. Introduction

Harish-Chandra modules, i.e., irreducible weight modules with finite-dimensional
weight spaces, are no doubt one of the most important families in the study of the
representation theory of infinite-dimensional Lie algebras. The classifications of
Harish-Chandra modules over the Virasoro algebra ([Kaplansky and Santharoubane
1985; Mathieu 1992]), higher rank Virasoro algebras ([Su 2003; Lu and Zhao 2006]),
and many other Lie algebras related to the Virasoro algebra have been achieved in
[Guo et al. 2011; 2012; Lu and Zhao 2010; Liu and Jiang 2008; Mazorchuk 2000;
Su 2004a; 2004b; Su et al. 2012; 2013; Wang and Tan 2007]. Let A = C[t±1

1 , t±1
2 ]

be the algebra of Laurent polynomials in commuting variables and B be the set of
skew derivations of A. Let L be the universal central extension of the derived Lie
subalgebra of the Lie algebra A o B. Set L̃ = L ⊕Cd1⊕Cd2, where d1, d2 are
two degree derivations. In this paper, we study Harish-Chandra modules over the
Lie algebra L̃ = L ⊕Cd1⊕Cd2, this Lie algebra is a generalization of the twisted
Heisenberg–Virasoro algebra from rank one to rank two (see [Xue et al. 2006; Tan
et al. 2015] for details). The structure of the Lie algebra L has been studied in [Xue
et al. 2006]. Recently, the connection of the Lie algebra L with the vertex algebra

Tan was partially supported by China NSF grants (Nos. 11471268, 11531004). Wang was par-
tially supported by China NSF grants (Nos. 11531004, 11622107), Natural Science Foundation
of Fujian Province (No. 2016J06002) and Fundamental Research Funds for the Central University
(No. 20720160008).
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has been established in [Guo and Wang 2016] and the representation theory of the
Lie algebra L has been studied in [Tan et al. 2015; Guo and Liu 2019; Billig and
Talboom 2018]. However, the classification of the Harish-Chandra modules over
the Lie algebra L̃ is unknown. We prove that a Harish-Chandra module of L̃ is
either a uniformly bounded module or a generalized highest weight module, and
we classify the nonzero level Harish-Chandra modules of the Lie algebra L̃ . Based
on these results, the classification of Harish-Chandra modules of L̃ reduces to the
classification of uniformly bounded modules of L̃ . In [Guo and Liu 2019], the
uniformly bounded modules satisfying the condition that the torus subalgebra acting
nonzero were classified. Another reason to study the Harish-Chandra modules of
the Lie algebra L̃ comes from the representation theory of the nullity 2 toroidal
extended affine Lie algebras (see [Chen et al. 2018]). It was proved therein that the
classification of irreducible integrable modules with finite-dimensional spaces of
the nullity 2 toroidal extended affine Lie algebras of type A1 can be reduced to the
classification of Harish-Chandra modules of L̃ . This phenomenon is similar to the
fact that the classification of irreducible integrable modules of the full toroidal Lie
algebra can be reduced to the classification of irreducible (Der(An)n An)-modules
(see [Eswara Rao and Jiang 2005]), where

An = C[t±1
1 , . . . , t±1

n ].

The techniques in this paper follow from [Lin and Tan 2006; Lin and Su 2013;
Lu and Zhao 2006; Su 2003]. However, we want to point out that in [Lin and Tan
2006], the construction of the generalized highest weight modules of the Virasoro-
like algebra is induced from the Z-graded irreducible modules of a Heisenberg
subalgebra, while in this paper, the construction of the generalized highest weight
module of the Lie algebra L̃ comes from the Z-graded irreducible module of the
subalgebra Hb1 (see the definition in Section 2), which is the twist of three Heisen-
berg subalgebras. So we first need to classify the Z-graded irreducible Hb1-modules
with finite-dimensional graded spaces, which we do in Propositions 2.6 and 2.8. For
the classification of generalized highest weight Harish-Chandra modules of L̃ , we
achieve this by considering the tensor product of the highest weight modules of the
Lie algebra L with a torus. Moreover, we prove that these tensor modules of L̃ are
completely reducible, and every generalized highest weight Harish-Chandra module
of L̃ is isomorphic to one of the irreducible components of these tensor modules.

The paper is organized as follows. In Section 2, we prove that a Harish-Chandra
module of L̃ is either a uniformly bounded module or a generalized highest weight
module. In Section 3, we prove that a nonzero level Harish-Chandra module of L̃ is
a generalized highest weight module. Then we characterize the generalized highest
weight Harish-Chandra modules with nonzero level. In Section 4, we classify the
generalized highest weight Harish-Chandra modules of L̃ .
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Throughout this paper we use C, Z, Z+, N to denote the sets of complex numbers,
integers, nonnegative integers and positive integers respectively. All the vector
spaces mentioned in this paper are over C. As usual, if u1, u2, . . . , uk are elements of
a certain vector space, we denote by 〈u1, u2, . . . , uk〉 the linear span of the elements
u1, u2, . . . , uk over C. The universal enveloping algebra for a Lie algebra g is
denoted by U(g) and GLn×n(Z) denotes the set of n× n invertible matrices with
entries from Z.

2. Harish-Chandra modules of L̃

In this section, we first recall some basic definitions about Harish-Chandra modules
of L̃ and some results for Heisenberg algebras. Then we prove that a Harish-Chandra
module of L̃ is either a uniformly bounded module or a generalized highest weight
module.

Let e1 = (1, 0), e2 = (0, 1), 0 = Ze1+Ze2. Letting (x1, x2), (y1, y2) ∈ 0, we
define (x1, x2)> (y1, y2) if and only if x1> y1 and x2> y2, and (x1, x2)≥ (y1, y2) if
and only if x1≥ y1 and x2≥ y2. For any b1= b11e1+b12e2, b2= b21e1+b22e2 ∈0,
we set

det
(

b1

b2

)
= b11b22− b12b21.

Now we recall the definition of the Lie algebra arising from the two-dimensional
torus (also called the Heisenberg–Virasoro algebra of rank two). See [Xue et al.
2006] (cf. [Tan et al. 2015]) for details.

Definition 2.1. The Heisenberg–Virasoro algebra of rank two is the Lie algebra
spanned by

{t m, E(m), Ki | m ∈ 0 \ {0}, i = 1, 2, 3, 4}

with Lie bracket defined by

[t m, tn
] = 0, [Ki , L] = 0, i = 1, 2, 3, 4,

[t m, E(n)] = det
( n

m

)
t m+n
+ δm+n,0 h(m),

[E(m), E(n)] = det
( n

m

)
E(m+ n)+ δm+n,0 f (m),

where m = m1e1+m2e2, h(m)= m1K1+m2K2, f (m)= m1K3+m2K4.

We denote this Lie algebra by L . Set E(0)= t0
=0 for convenience. Obviously L

is a Z2-graded Lie algebra and the subalgebra 〈E(m), K3, K4 | m ∈ 0 \ {0}〉 of L
is a Virasoro-like algebra. Let L̃ = L ⊕Cd1⊕Cd2, where d1, d2 are two degree
derivations defined by

[di , E(m)] = mi E(m), [di , t m
] = mi t m, [di , K j ] = 0, [d1, d2] = 0,

for m=m1e1+m2e2 ∈ 0, i = 1, 2 and j = 1, 2, 3, 4. Lemma 2.2 is easy to check.
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Lemma 2.2. Let 0 6= b1 = b11e1+ b12e2 ∈ 0 and b2 = b21e1+ b22e2 ∈ 0.

(1) Then 〈E(±kb1), f (b1) | k ∈ N〉 and 〈E(kb1), t−kb1, h(b1) | k ∈ N〉 and
〈E(−kb1), tkb1, h(b1) | k ∈ N〉 are three Heisenberg subalgebras of L̃ , and

(2) {b1, b2} is a Z-basis of 0 if and only if det
( b1

b2

)
=±1.

Now we recall some definitions related to the Harish-Chandra modules for L̃ . A
weight module of L̃ is a module V with weight space decomposition

V =
⊕
λ∈C6

Vλ,

where Vλ = {v ∈ V | div = λiv, K jv = λ j+2v, i = 1, 2, j = 1, 2, 3, 4} and
λ= (λ1, . . . , λ6) ∈ C6. For a weight module V, we define the weight set of V by
P(V )= {λ ∈ C6

| Vλ 6= 0}. A weight module is said to be quasifinite if all weight
spaces Vλ are finite-dimensional. Furthermore, if there exists a positive integer N
such that dim Vλ ≤ N for all λ ∈ C6, we call V a uniformly bounded module. An
irreducible quasifinite weight module is called a Harish-Chandra module. Note
that the centers K1, K2, K3, K4 of L̃ act on an irreducible weight module V as
scalars, i.e., Ki .v = civ for certain ci ∈ C, i = 1, 2, 3, 4, for all v ∈ V. And we
call (c1, c2, c3, c4) the level of the module V. For simplicity of notation, we write
V(λ1,λ2) instead of V(λ1,...,λ6) if the module V is irreducible, i.e., the level (c1, . . . , c4)

is fixed. One can easily see that there exist λ1, λ2 ∈C such that P(V )⊆ (λ1, λ2)+0

for an irreducible weight module V of L̃ . If there exists a Z-basis B = {b1, b2}

of 0 and 0 6= vλ ∈ Vλ such that V = U(L̃)vλ and E(m)vλ = t mvλ = 0, for all
m ∈ Z+b1+Z+b2, we call V a generalized highest weight module with generalized
highest weight λ corresponding to the Z-basis B. The nonzero vector vλ is called
a generalized highest weight vector corresponding to the Z-basis B, or simply
generalized highest weight vector.

Let {b1, b2} be a Z-basis of 0 and let

Hb1 = 〈E(kb1), tkb1, Ki | k ∈ Z \ {0}, i = 1, 2, 3, 4〉.

Denote
L̃0 =Hb1 ⊕Cd1⊕Cd2,

L̃ i = 〈E(mb1+ i b2), tmb1+i b2 | m ∈ Z〉, i 6= 0,

L̃+ =⊕i>0 L̃ i , L̃− =⊕i<0 L̃ i .

Then L̃ = L̃+⊕ L̃0⊕ L̃−. Let V be an irreducible weight L̃0-module. We extend V
to be a (L̃+ ⊕ L̃0)-module by defining L̃+.V = 0. Then we obtain the induced
L̃-module

M̃(V )= M̃(b1, b2, V )= IndL̃
L̃+⊕L̃0

V = U(L̃)⊗U(L̃+⊕L̃0)
V .
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It is clear that, as vector spaces,

M̃(b1, b2, V )' U(L̃−)⊗C V.

The L̃-module M̃(b1, b2, V ) has a unique maximal submodule J (b1, b2, V ) trivially
intersecting with V. Then we obtain the unique irreducible quotient module

M(V )= M(b1, b2, V )= M̃(b1, b2, V )/J (b1, b2, V ).

It is clear that M(V ) is uniquely determined by the Z-basis {b1, b2} of 0 and the
L̃0-module V.

Remark 2.3. The irreducible L̃-module M(b1, b2, V ) constructed above is a gener-
alized highest weight module corresponding to the Z-basis {b1+ b2, b1+2b2} of 0.

We recall some results about the Z-graded module for Heisenberg Lie algebras.
For any 0 6= b1 ∈ 0, denote the subalgebra 〈E(±kb1), f (b1) | k ∈ N〉 of L̃

by Eb1 . For any Eb1-module V, if the eigenvalue of f (b1) is a scalar then we call it
the level of V. Let

E±b1
= 〈E(kb1) | ±k ∈ N〉.

For 0 6= a ∈ C, let Cva be a one-dimensional (Eεb1
⊕C f (b1))-module such that

Eεb1
.va = 0, f (b1).va = ava , ε ∈ {+,−}. Consider the induced Eb1-module

Mε(a)= U(Eb1)⊗U(Eεb1
⊕C f (b1)) Cva

associated with a and ε (a is the level of Mε(a)). Then the Eb1-module Mε(a) is
irreducible.

The following result is due to Propositions 4.3(i) and 4.5 in [Futorny 1997].

Theorem 2.4. If V =
⊕

i∈Z Vi is a Z-graded Eb1-module of level 0 6= a ∈ C and
dim Vi <∞ for at least one i ∈ Z then

(1) if V is an irreducible module then V ' Mε(a) for some ε ∈ {+,−};

(2) V is completely reducible.

Let {b1, b2} be a Z-basis of 0. For a Hb1-module V, if f (b1), h(b1), f (b2), h(b2)

act as scalars c1, c2, c3, c4 ∈ C, then we call (c1, c2, c3, c4) the level of the Hb1-
module V. Furthermore if (c1, c2, c3, c4) = (0, 0, c3, c4), we say that V is a Hb1-
module of level zero. Otherwise, V is nonzero level. In the following, we will
discuss the irreducible Hb1-modules. First we recall the classification of Z-graded
irreducible Hb1-modules of level zero. Then we classify the Z-graded Hb1-modules
of nonzero level with finite-dimensional graded subspaces.
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Set T = C[t±1
]. Let ρ : Hb1 → C be a linear function with ρ( f (b1)) =

ρ(h(b1))= 0. We can define a Hb1-module structure on T by

f (b1).tn
= 0, E(kb1).tn

= ρ(E(kb1))tk+n,(2-1)

h(b1).tn
= 0, tkb1 .tn

= ρ(tkb1)tk+n,(2-2)

f (b2).tn
= ρ( f (b2))tn, h(b2).tn

= ρ(h(b2))tn,(2-3)

where n ∈ Z, k ∈ Z \ {0}. We denote

Tρ,i (Hb1)= U(Hb1).t
i

the Hb1-submodule of T generated by t i for i ∈ Z. And we write Tρ,0(Hb1) as
Tρ(Hb1) for short. From the definition, we see that

(2-4) Tρ,i (Hb1)' Tρ, j (Hb1)

for i, j ∈ Z as Hb1-modules.

Remark 2.5. For linear function ρ : Eb1 → C with ρ( f (b1))= 0, we can define a
Eb1-module structure on the Laurent polynomial ring T with the action given by
(2-1). Similarly, let Tρ,i (Eb1) := U(Eb1).t

i be the Eb1-submodule of T generated
by t i for i ∈ Z. And we also write Tρ,0(Eb1) as Tρ(Eb1) for short.

Then we have the following results from Lemma 3.6 and Proposition 3.8 in
[Chari 1986].

Proposition 2.6. (1) The Hb1-module Tρ(Hb1) (resp. Eb1-module Tρ(Eb1)) is irre-
ducible if and only if Tρ(Hb1) = Tr (resp. Tρ(Eb1) = Tr ) for some r ∈ Z+, where
T0 = C1 and Tr = C[tr , t−r

] if r ∈ N.

(2) If V is a Z-graded irreducible Hb1-module (resp. Eb1-module) of level zero, then
V ' Tρ(Hb1) for some linear function ρ :Hb1 → C with ρ( f (b1))= ρ(h(b1))= 0
(resp. V ' Tρ(Eb1) for some linear function ρ : Eb1 → C with ρ( f (b1))= 0), and
Tρ(Hb1)= Tr (resp. Tρ(Eb1)= Tr ) for some r ∈ Z+.

Remark 2.7. Since 〈tkb1,E(−kb1),h(b1) |k∈N〉 and 〈t−kb1,E(kb1),h(b1) |k∈N〉

are two Heisenberg Lie subalgebras of L̃ , Theorem 2.4 and Proposition 2.6 also
hold for their corresponding Z-graded irreducible modules.

For convenience, we let Eb1 denote the set of all linear functions ρ :Hb1 → C

with ρ( f (b1)) = ρ(h(b1)) = 0 such that the Hb1-module Tρ(Hb1) is irreducible.
Let tb1 = 〈t

±kb1 | k ∈ N〉. Note that tb1 is a centerless Heisenberg subalgebra of L̃ .
Let Tρ(tb1) be the submodule of T generated by 1, where ρ is a linear function
ρ : tb1 → C. The structure of the tb1-module T is defined in a way similar to
that of Eb1 . In the following proposition we classify the Z-graded irreducible
Hb1-modules with nonzero level.
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Proposition 2.8. Let V =
⊕

i∈Z Vi be a Z-graded irreducible Hb1-module with
dim Vi <∞ for all i ∈ Z. Suppose f (b1).v = c1v, h(b1).v = c2v, f (b2).v = c3v

and h(b2).v = c4v for v ∈ V, where c1, c2, c3, c4 ∈ C and (c1, c2) 6= 0.

(1) If c1 6= 0 and c2 6= 0, then

V ' U(Hb1)⊗U(〈E(kb1), tkb1 , f (bi ), h(bi )|k∈N, i=1,2〉) C1,

where 〈E(kb1), tkb1 | k ∈N〉.1= 0, f (b1).1= c11, h(b1).1= c21, f (b2).1= c31
and h(b2).1= c41 or

V ' U(Hb1)⊗U(〈E(−kb1), t−kb1 , f (bi ), h(bi )|k∈N, i=1,2〉) C1,

where 〈E(−kb1), t−kb1 | k ∈N〉.1= 0, f (b1).1= c11, h(b1).1= c21, f (b2).1=
c31 and h(b2).1= c41.

(2) If c1 6= 0 and c2 = 0, then

V ' Tρ(tb1)⊗Mε(c1),

for some linear function ρ : tb1 → C such that Tρ(tb1) = Tr for some r ∈ Z+,
where Mε(c1) is the irreducible Eb1-module of level c1, ε ∈ {+,−}.

(3) If c1 = 0 and c2 6= 0, then

V ' U(Hb1)⊗U(〈E(kb1), tkb1 , f (bi ), h(bi )|k∈N, i=1,2〉) C1,

where 〈E(kb1), tkb1 | k ∈ N〉.1 = 0, f (b1).1 = 0, h(b1).1 = c21, f (b2).1 = c31
and h(b2).1= c41 or

V ' U(Hb1)⊗U(〈E(−kb1), t−kb1 , f (bi ), h(bi )|k∈N, i=1,2〉) C1,

where 〈E(−kb1), t−kb1 | k ∈N〉.1= 0, f (b1).1= 0, h(b1).1= c21, f (b2).1= c31
and h(b2).1= c41.

Proof. (1) If c1 6= 0 and c2 6= 0, by Theorem 2.4 we know that there exists some
0 6= v0 ∈ Vi0 for some i0 ∈ Z such that E(kb1).v0 = 0 for any k ∈ N or −k ∈ N.
Without loss of generality, we assume k ∈ N; then U(〈E(−kb1) | k ∈ N〉)v0 is an
irreducible Eb1-module. Let

W := U(〈tkb1, E(lb1), f (b1), h(b1) | k ∈ N, l ∈ Z \ {0}〉)v0 ⊆ V .

Note that W as a Z-graded 〈tkb1, E(−kb1), h(b1) | k ∈ N〉-module is completely
reducible. Then we have that

W =
(⊕

i∈I

(⊕
mi∈X i

V+i,mi

))
⊕

(⊕
j∈J

(⊕
n j∈Y j

V−j,n j

))
,

where
V+i,mi
= U(〈tkb1, E(−kb1), h(b1) | k ∈ N〉)vi,mi ' M+(c2),
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for some 0 6= vi,mi ∈ Vi ∩W with tkb1 .vi,mi = 0 for all k ∈ N, i ∈ I, mi ∈ X i , and

V−j,n j
= U(〈tkb1, E(−kb1), h(b1) | k ∈ N〉)u j,n j ' M−(c2),

where 0 6= u j,n j ∈ V j ∩W with E(−kb1).u j,n j = 0 for all k ∈ N, j ∈ J, n j ∈ Y j ,
I, J, X i , Y j ⊆ Z. Note that I has an upper bound, J has a lower bound and all
X i , Y j are finite sets since dim Vn <∞ for all n ∈ Z. Assume J 6=∅; then there
exists some nonzero vector w0 ∈W ∩ Vi such that E(−kb1).w0 = 0 for all k ∈ N

and some i ∈ Z. Consider W0 = U(Eb1)w0 ⊆W, then

W0 = U(〈E(lb1) | l ∈ N〉).w0

and W0 is a free U(〈E(lb1) | l ∈N〉)-module. On the other hand, sincew0 ∈W, there
exists k ∈ N such that E(kb1).w0 = 0, which is a contradiction. Thus J =∅ and
W =

⊕
i∈I

(⊕
mi∈X i

V+i,mi

)
. Since I has an upper bound, there exists 0 6=u0∈W∩Vi1

for some i1 ∈ Z such that E(kb1).u0 = tkb1 .u0 = 0 for all k ∈ N. This shows that

V ' U(Hb1)⊗U(〈E(kb1), tkb1 , f (bi ), h(bi )|k∈N, i=1,2〉) Cu0.

Another case is similar.

(2) If c1 6= 0 and c2 = 0, we can write

Hb1 = tb1 ⊕ Eb1 ⊕C f (b2)⊕Ch(b1)⊕Ch(b2).

From Theorem 2.4, Proposition 2.6 and [Li 2004, Lemma 2.7], this result follows.

(3) If c1 = 0 and c2 6= 0, by Theorem 2.4, V is completely reducible when we
view V as a module of the two subalgebras 〈t−kb1, E(kb1), h(b1) | k ∈ N〉 and
〈tkb1, E(−kb1), h(b1) | k ∈ N〉. We write

V =
(⊕

i∈I

(⊕
mi∈X i

V+i,mi

))
⊕

(⊕
j∈J

(⊕
n j∈Y j

V−j,n j

))
when it is viewed as the module of the Lie algebra 〈t−kb1, E(kb1), h(b1) | k ∈N〉,
where I, J, X i , Y j ⊆ Z,

V+i,mi
= U(〈t−kb1, E(kb1), h(b1) | k ∈ N〉)vi,mi ' M+(c2)

with E(kb1).vi,mi = 0 for all k ∈ N, i ∈ I, mi ∈ X i , 0 6= vi,mi ∈ Vi and

V−j,n j
= U(〈t−kb1, E(kb1), h(b1) | k ∈ N〉)u j,n j ' M−(c2)

with t−kb1 .u j,n j = 0 for all k ∈N, j ∈ J, n j ∈ Y j and 0 6= u j,n j ∈ V j . Similarly, we
write

V =
(⊕

i∈I ′

(⊕
pi∈X ′i

W+i,pi

))
⊕

(⊕
j∈J ′

(⊕
q j∈Y ′j

W−j,q j

))
when it is viewed as the module of the Lie algebra 〈tkb1, E(−kb1), h(b1) | k ∈N〉.
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Note that both I and I ′ have upper bounds, J and J ′ have lower bounds and all
X i , Y j , X ′i , Y ′j are finite sets as dim Vn <∞ for all n ∈ Z. If I =∅, similar to the
proof in (1), we get

V ' U(Hb1)⊗U(〈E(kb1), tkb1 , f (bi ), h(bi )|k∈N, i=1,2〉) C1,

where 〈E(kb1), tkb1 | k ∈ N〉.1= 0, f (b1).1= 0, h(b1).1= c21, f (b2).1= c31
and h(b2).1= c41. Now suppose I 6=∅. We can choose 0 6= v0 ∈ V+i0,mi0

for some
i0 ∈ I, mi0 ∈ X i0 such that E(kb1).v0= 0 for all k ∈N. Then we have v0=w1+w2,
where

w1 ∈

(⊕
i∈I ′

(⊕
pi∈X ′i

W+i,pi

))
∩ Vi0 and w2 ∈

(⊕
j∈J ′

(⊕
q j∈Y ′j

W−j,q j

))
∩ Vi0 .

If w1 6= 0, we can choose large enough k0 ∈ N such that E(−k0b1).w2 = 0 since
J ′ has a lower bound. Since

⊕
i∈I ′
(⊕

pi∈X ′i
W+i,pi

)
is a free 〈E(−kb1) | k ∈ N〉-

module, we have 0 6= E(−k0b1).w1 = E(−k0b1).v0 ∈
⊕

i∈I ′
(⊕

pi∈X ′i
W+i,pi

)
and

E(kb1).E(−k0b1).v0 = E(−k0b1).E(kb1).v0 = 0 for all k ∈ N. Now we claim
that there exists 0 6= v ∈ Vi for some i ∈ Z such that tkb1 .v = E(kb1).v = 0 for
all k ∈ N. In fact, if tkb1 .(E(−k0b1).v0) = 0 for all k ∈ N, this is done by setting
v = E(−k0b1).v0. If there exists k1 ∈ N such that tk1b1 .(E(−k0b1).v0) 6= 0, set
v1 = tk1b1 .(E(−k0b1).v0). We can repeat this process, and, since I ′ has an upper
bound, we know that it will terminate after finitely many steps. This implies that

V ' U(Hb1)⊗U(〈E(kb1), tkb1 , f (bi ), h(bi )|k∈N, i=1,2〉) C1,

where 〈E(kb1), tkb1 | k ∈N〉.1=0, f (b1).1=0, h(b1).1= c21, f (b2).1= c31 and
h(b2).1= c41. If w1 = 0, i.e., v0 =w2, we know that there exists some 0 6= u ∈ V j0
for some j0 ∈Z such that E(kb1).u= 0 for k ∈Z\{0}. In fact, if there exists n1 ∈N

such that E(−n1b1)v0 6= 0, set u1 = E(−n1b1)v0. We also have E(kb1).u1 = 0 for
all k ∈ N since f (b1).V = 0. We can repeat this process, and, since J ′ has a lower
bound, we know that it will terminate after finitely many steps. Then,

V ' U(Hb1)⊗U(〈E(mb1), f (bi ), h(bi )|m∈Z\{0}, i=1,2〉) C1,

where E(mb1).1= 0 for all m ∈Z\{0}, f (b1).1= 0, h(b1).1= c21, f (b2).1= c31
and h(b2).1 = c41. This contradicts the condition that dim Vi <∞ for all i ∈ Z.
Then the conclusion follows. �

Fix a Z-basis {b1, b2} of 0, b1 = b11e1+ b12e2, and λ1, λ2 ∈ C. Any Z-graded
Hb1-module V =⊕i∈ZVi with fixed level can be extended to a weight module of L̃0

by defining
d1v j = (λ1+ jb11)v j , d2v j = (λ2+ jb12)v j ,

for v j ∈ V j , j ∈Z. One can easily see that the vector space V is a weight L̃0-module
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and P(V ) ⊆ (λ1, λ2)+Zb1. For the Z-graded irreducible Hb1-modules given in
Propositions 2.6 and 2.8, we let

V+(c)= U(Hb1)⊗U(〈E(kb1), tkb1 , Ki |k∈N, i=1,2,3,4〉) C1,

V−(c)= U(Hb1)⊗U(〈E(−kb1), t−kb1 , Ki |k∈N, i=1,2,3,4〉) C1,

Mε
ρ(c)=Tρ(tb1)⊗Mε(c1) and Tρ(Hb1)(c)=Tρ(Hb1). We can extend these modules

to weight L̃0-modules by the above method, and then we denote the corresponding
L̃0-module by V+(c,λ), V−(c,λ), Mε

ρ(c,λ) and Tρ(Hb1)(c,λ) respectively, where
c = (c1, c2, c3, c4), λ = (λ1, λ2), and f (b1), h(b1), f (b2) and h(b2) act as the
scalars c1, c2, c3, c4 ∈ C, respectively.

With this notation, the following results can be obtained from Propositions 2.6
and 2.8.

Corollary 2.9. Let V =
⊕

i∈Z Vi be any irreducible weight module of L̃0 with
dim Vi <∞ for all i ∈ Z, and f (b1).v = c1v, h(b1).v = c2v, f (b2).v = c3v and
h(b2).v = c4v for v ∈ V, where Vi := V(λ1,λ2)+i b1 for some fixed λ= (λ1, λ2) ∈ C2.

(1) If (c1, c2) 6= 0, then V ' V ε(c,λ) or V ' Mε
ρ(c,λ) for some linear function

ρ : tb1 → C with Tρ(tb1)= Tr for some r ∈ Z+ and ε ∈ {+,−}.

(2) If (c1, c2)= 0, then V ' Tρ(Hb1)(c,λ) for some ρ ∈ Eb1 .

The following lemma give the characterization of the irreducible weight modules
of L̃ with finite-dimensional weight spaces.

Lemma 2.10. Let {b1, b2} be a Z-basis of 0. V is an irreducible weight module
of L̃ with finite-dimensional weight spaces and f (b1), h(b1), f (b2), h(b2) act on V
as scalars c1, c2, c3, c4 respectively. If there exist λ1, λ2 ∈ C such that V(λ1,λ2) 6= 0
and P(V )∩ ((λ1, λ2)+Zb1+Nb2)=∅, we have:

(1) If c1 = c2 = 0, V ' M(b1, b2, Tρ(Hb1)(c,λ)) for some ρ ∈ Eb1 .

(2) If c1 6=0, c2=0, V 'M(b1, b2,Mε
ρ(c,λ)) for some linear function ρ : tb1→C

satisfying Tρ(tb1)= Tr for some r ∈ Z+.

(3) If c2 6= 0, V ' M(b1, b2, V ε(c,λ)), where ε ∈ {+,−}, λ = (λ1, λ2), c =
(c1, c2, c3, c4).

Proof. Let W = ⊕i∈ZV(λ1,λ2)+i b1 . Since P(V ) ∩ ((λ1, λ2) + Zb1 + Nb2) = ∅,
we see that W is an irreducible L̃0 weight module and L̃+W = 0. Thus by the
construction of M̃(b1, b2,W ) and the PBW theorem, there exists an epimorphism ϕ

from M̃(b1, b2,W ) to V such that ϕ |W= idW . Therefore, the lemma follows from
Corollary 2.9 and the irreducibility of V. �

Using the same notation as in Lemma 2.10, the following lemma shows that the
cases (2) and (3) of Lemma 2.10 don’t occur.



HARISH-CHANDRA MODULES FOR VECTOR FIELDS ON A TORUS 253

Lemma 2.11. For any Z-basis {b1, b2} of 0, neither M( b1, b2,Mε
ρ(c,λ)) nor

M(b1, b2, V ε(c,λ)) is a Harish-Chandra module.

Proof. Using the notation in Lemma 2.10, for the case that f (b1) acts as the scalar
c1 6= 0, the lemma follows from Lemma 2.6 in [Lin and Tan 2006]. So we only need
to consider the case where c1=0, c2 6=0. Without loss of generality, we may assume
that there exists a weight vector 0 6= v0 ∈ V ε(c,λ) such that E(kb1)v0 = tkb1v0 = 0
and E(−kb1)v0 6= 0 and t−kb1v0 6= 0 for all k ∈N (see Proposition 2.8(3)). For any
n ∈ N, we can choose k j ∈ Z, 1 ≤ j ≤ n with 0 < k1 < k2 < · · · < kn such that
h(−k j b1+ b2)v0 6= 0 for 1≤ j ≤ n. We claim that

{E(k j b1− b2)t−k j b1v0 | 1≤ j ≤ n} ⊆ M(b1, b2, V ε(c,λ))(λ1,λ2)−b2

is a set of linear independent vectors, therefore the conclusion follows. In fact, if∑n
j=1 a j E(k j b1− b2)t−k j b1v0 = 0, then

0= t−k1b1+b2

n∑
j=1

a j E(k j b1− b2)t−k j b1v0

= a1h(−k1b1+ b2)t−k1b1v0+

n∑
j=2

a j det
(

k j b1− b2

−k1b1+ b2

)
t (k j−k1)b1 t−k j b1v0.

Since h(−k1b1+ b2) 6= 0, this implies a1 = 0. Similarly, we can prove a2 = a3 =

· · · = an = 0. Therefore the conclusion follows. �

From Lemmas 2.10 and 2.11, we have:

Proposition 2.12. Let {b1, b2} be a Z-basis of 0 and let V be a Harish-Chandra
module of L̃. If there exist λ1, λ2 ∈C such that P(V )∩ ((λ1, λ2)+Zb1+Nb2)=∅
and V(λ1,λ2) 6= 0, then V ' M(b1, b2, Tρ(Hb1)(c,λ)) for some ρ ∈ Eb1 .

Remark 2.13. If V is a Harish-Chandra module V of L̃ satisfying the conditions
in Proposition 2.12, then c= (0, 0, c3, c4), i.e., f (b1), h(b1) act trivially.

As one of the main results in this paper, we prove that a Harish-Chandra module
of L̃ is either a generalized highest weight module or a uniformly bounded module.
First, we need the following lemma.

Lemma 2.14. An irreducible weight L̃-module V is a generalized highest weight
module if there is a Z-basis {b1, b2} of 0 and a weight vector v 6= 0 such that
E(b1)v = E(b2)v = t b1v = 0.

Proof. Since there is a weight vector v 6= 0, such that E(b1)v = E(b2)v = t b1v = 0,
by induction, we have

E(m)v = t mv = 0

for m ∈ Nb1+Nb2. Therefore, we have

E(m)v = t mv = 0
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for m ∈ Z+b′1 + Z+b′2, where b′1 = 2b1 + b2, b′2 = 3b1 + b2 ∈ 0. It is obvious
that {b′1, b′2} is a Z-basis of 0. Now we get that V is a generalized highest weight
module since V is irreducible. �

Proposition 2.15. A Harish-Chandra module V of L̃ is either a generalized highest
weight module or a uniformly bounded module.

Proof. Let (λ1, λ2) ∈ P(V ) and let Vb := V(λ1,λ2)+b for b ∈ 0. Then V =
⊕

b∈0 Vb.
If V is not a generalized highest weight module, for m = (m1,m2) ∈ 0, consider
the linear maps E(−m1e1 + e2) : V(m1,m2) → V(0,m2+1), E((1 − m1)e1 + e2) :

V(m1,m2)→V(1,m2+1) and t−m1e1+e2 :V(m1,m2)→V(0,m2+1). By Lemma 2.14, we have

ker E(−m1e1+ e2)∩ ker E((1−m1)e1+ e2)∩ ker t−m1e1+e2 = 0.

This shows that

dim V(m1,m2) ≤ 2 dim V(0,m2+1)+ dim V(1,m2+1).

Now we consider the linear maps E(−e1 + (1 − m2)e2) : V(0,m2+1) → V(−1,2),
E(−e1−m2e2) : V(0,m2+1)→ V(−1,1) and t−e1−m2e2 : V(0,m2+1)→ V(−1,1). By the
same reasoning, we get

dim V(0,m2+1) ≤ 2 dim V(−1,1)+ dim V(−1,2).

Similarly, we have

dim V(1,m2+1) ≤ 2 dim V(0,1)+ dim V(0,2).

Thus, V is a uniformly bounded module. �

3. Nonzero level Harish-Chandra modules of L̃

In this section, we study the nonzero level Harish-Chandra module V of L̃ , which
satisfies Ki .v = civ for v ∈ V, 0 6= (c1, c2, c3, c4) ∈ C4.

We denote
[p, q] = {x | x ∈ Z, p ≤ x ≤ q}

and similarly for (−∞, p], [q,∞) and (−∞,+∞). First, we have:

Theorem 3.1. If V is a nonzero level Harish-Chandra module of L̃ , then V is a
generalized highest weight module.

Proof. Without loss of generality, we may assume the center element K1 acts
as 0 6= c1 ∈ C. Let (λ1, λ2) ∈ P(V ). Set W0 := ⊕i∈ZV(λ1,λ2)+ie1 6= 0. From
Theorem 2.4, we see that W0 as a 〈E(ke1), t−ke1, K1 | k ∈N〉-module is completely
reducible. Also from Theorem 2.4, we know that V is not a uniformly bounded
module. Thus V is a generalized highest weight module. �
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Corollary 3.2. If V is a uniformly bounded Harish-Chandra module of L̃ , then
Ki .v = 0 for v ∈ V, i = 1, 2, 3, 4.

We assume that V =
⊕

n∈0 Vλ+n is a nontrivial generalized highest weight Harish-
Chandra L̃-module with generalized highest weight λ= (λ1, λ2) corresponding to
a Z-basis B = {b1, b2} of 0. Without loss of generality, we assume λ= 0.

Lemma 3.3. (1) For any v ∈ V, there exists p > 0 such that E(i b1 + j b2)v =

t i b1+ j b2v = 0 for all (i, j)≥ (p, p).

(2) For any 0 6= v ∈ V, (m1,m2) > 0, we have E(−m1b1−m2b2)v 6= 0.

(3) If b := i1b1+ i2b2 ∈ P(V ), then for any (m1,m2) > 0, there exists m ≥ 0 such
that {x ∈ Z | b+ xa ∈ P(V )} = (−∞,m], where a = m1b1+m2b2.

Proof. Let v0 be the generalized highest weight vector of V corresponding to the
Z-basis B.

(1) Since v = uv0 for some u ∈ U(L̃), u can be written as a linear combination of
elements of the form um,n= t i1b1+ j1b2 · · · t im b1+ jm b2 E(k1b1+l1b2) · · · E(kn b1+ln b2).
Without loss of generality, we may assume u = um,n . Take

p1 =−6is<0is −6kt<0kt + 1, p2 =−6 js<0 js −6lt<0lt + 1.

Fix m ∈ Z+. By induction on n, one gets E(i b1 + j b2)v = t i b1+ j b2v = 0 for all
(i, j)≥ (p1, p2). Take p =max{p1, p2}. Then the result follows.

(2) Suppose E(−m1b1−m2b2)v = 0 for some 0 6= v ∈ V and some (m1,m2) > 0.
Let p be as in the proof of (1). Then one gets

E(−m1b1−m2b2)v= E(b1+ p(m1b1+m2b2))v= E(b2+ p(m1b1+m2b2))v= 0

t b1+p(m1b1+m2b2)v = t b2+p(m1b1+m2b2)v = 0.

Note that the Lie algebra L is generated by these elements, so we have Lv = 0,
which contradicts V being a nontrivial irreducible module.

(3) See Lemma 3.2 in [Lin and Tan 2006]. �

The following lemma follows from Lemma 3.3 and the proof is given in [Lin
and Tan 2006].

Lemma 3.4. There exists a Z-basis B ′ = {b′1, b′2} of 0 such that:

(1) V is a generalized highest weight module with generalized highest weight 0
corresponding to the Z-basis B ′.

(2) {Z+b′1+Z+b′2} ∩P(V )= 0.

(3) {−Z+b′1−Z+b′2} ⊆ P(V ).

(4) If i1b′1+ i2b′2 /∈ P(V ), then k1b′1+ k2b′2 /∈ P(V ) for (k1, k2)≥ (i1, i2).
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(5) If i1b′1+ i2b′2 ∈ P(V ), then k1b′1+ k2b′2 ∈ P(V ) for (k1, k2)≤ (i1, i2).

(6) For any 0 6= (k1, k2)≥ 0, (i1, i2) ∈ 0, we have

{x ∈ Z | i1b′1+ i2b′2+ x(k1b′1+ k2b′2) ∈ P(V )} = (−∞,m]

for some m ∈ Z.

From now on, we assume that V is a nontrivial generalized highest weight
Harish-Chandra module with generalized highest weight 0 corresponding to the
Z-basis B = {b1, b2} and B satisfies the properties in Lemma 3.4. To characterize
the nontrivial generalized highest weight Harish-Chandra module V of L̃ , we need
the following lemmas due to [Lin and Tan 2006] (cf. [Lu and Zhao 2006; Su 2003]).

Lemma 3.5. If there exist an integer s > 0 and (i1, i2), (k1, k2) ∈ 0 such that k1,
k2 are coprime, and

{i1b1+ i2b2+ x1sb1+ x2sb2 | (x1, x2) ∈ 0, k1x1+ k2x2 = 0} ∩P(V )=∅,

then V ' M(b′1, b′2, Tρ(Hb′1)(c,λ)) for some Z-basis {b′1, b′2} of 0 and some
ρ ∈ Eb′1 , where f (b′1), h(b′1), f (b′2), h(b′2) act as scalars c1 = 0, c2 = 0, c3, c4

respectively and c= (c1, c2, c3, c4).

Lemma 3.6. If there exist (i1, i2), (0, 0) 6= (k1, k2) ∈ 0 such that

{i1b1+ i2b2+ x(k1b1+ k2b2) | x ∈ Z} ∩P(V )=∅,

then V ' M(b′1, b′2, Tρ(Hb′1)(c,λ)) for some Z-basis {b′1, b′2} of 0 and some
ρ ∈ Eb′1 .

Lemma 3.7. If there exist (0, 0) 6= (m, n) ∈ 0, (i, j) ∈ 0, p, q ∈ Z such that

{x ∈ Z | i b1+ j b2+ x(mb1+ nb2) ∈ P(V )} ⊇ (−∞, p] ∪ [q,∞),

then V ' M(b′1, b′2, Tρ(Hb′1)(c,λ)) for some Z-basis {b′1, b′2} of 0 and some
ρ ∈ Eb′1 .

Lemma 3.8. If there exist (i, j), (k, l) ∈ 0 and x1, x2, x3 ∈ Z with x1 < x2 < x3

such that

i b1+ j b2+ x1(kb1+ lb2) /∈ P(V ),(3-1)

i b1+ j b2+ x2(kb1+ lb2) ∈ P(V ),(3-2)

i b1+ j b2+ x3(kb1+ lb2) /∈ P(V ),(3-3)

then V ' M(b′1, b′2, Tρ(Hb′1)(c,λ)) for some Z-basis {b′1, b′2} of 0 and some
ρ ∈ Eb′1 .
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Proof. Without loss of generality, we may assume k, l are coprime. Thus we
can choose (m, n) ∈ 0 with kn − lm = 1. Let b′1 = kb1 + lb2 and let b′2 =
mb1 + nb2; then {b′1, b′2} is a Z-basis of 0. Replacing x2 by the largest x < x3

with i b1+ j b2+ x(kb1+ lb2) ∈ P(V ), then replacing x3 by x2+ 1 and (i, j) by
(i, j)+ x2(k, l), we can assume

(3-4) x1 < x2 = 0< x3 = 1.

We may assume that there exists s ∈ Z with

i b1+ j b2+ b′2+ sb′1 = (i +m)b1+ ( j + n)b2+ s(kb1+ lb2) /∈ P(V ).(3-5)

Otherwise, by Lemma 3.7, we are done. Thus by (3-1)–(3-5), we have

E(x1b′1)vi b1+ j b2 = E(x1(kb1+ lb2))vi b1+ j b2 = 0,

t x1b′1vi b1+ j b2 = t x1(kb1+lb2)vi b1+ j b2 = 0,

E(b′1)vi b1+ j b2 = E(kb1+ lb2)vi b1+ j b2 = 0,

t b′1vi b1+ j b2 = tkb1+lb2vi b1+ j b2 = 0,

E(b′2+ sb′1)vi b1+ j b2 = 0,

t b′2+sb′1vi b1+ j b2 = 0,

where 0 6= vi b1+ j b2 ∈ Vi b1+ j b2 . Note that since x1 < 0, we have that

{E(pb′1+ qb′2), t pb′1+qb′2 | p ∈ Z, q ∈ N}

belongs to the subalgebra generated by

{E(x1b′1), E(b′1), E(b′2+ sb′1), t x1b′1, t b′1, t b′2+sb′1}.

We obtain E(pb′1+qb′2)vi b1+ j b2 = t pb′1+qb′2vi b1+ j b2 = 0 for p ∈ Z, q ∈N. Since
{b′1, b′2} is a Z-basis of 0 and V is irreducible, from the PBW theorem, we have
V = U(L̃)vi b1+ j b2 and

{i b1+ j b2+Zb′1+Nb′2} ∩P(V )=∅.

Thus the result follows from Proposition 2.12. �

Lemma 3.9. If there exist i>0, j <0 and 0 6=va ∈Va, a∈C2, b=mb1+nb2 6=0,
such that E(i b)va = 0, E( j b)va = 0, then V ' M(b′1, b′2, Tρ(Hb′1)(c,λ)) for
some Z-basis {b′1, b′2} of 0 and some ρ ∈ Eb′1 .

Proof. Write (m, n)= s(m′, n′) with m′, n′ coprime and s ≥ 1. Then we can choose
(m2, n2) ∈ 0 with n′m2 −m′n2 = 1. Let b′1 = m′b1 + n′b2, b′2 = m2b1 + n2b2;
then {b′1, b′2} is a Z-basis of 0. Fix any 0 6= q ∈ Z.

Case 1: If {a+qb′2+ x b′1 | x ∈ Z}∩P(V )=∅, then, by Lemma 3.7, we are done.
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Case 2: If there exist integers x1 < x2 < x3 with a + qb′2 + x2b′1 ∈ P(V ) and
a+ qb′2+ xi b′1 /∈ P(V ), i = 1, 3, then, by Lemma 3.9, we are done.

Case 3: If there exist m, n ∈ Z with

(−∞,m] ∪ [n,∞)⊆ {x ∈ Z | a+ qb′2+ x b′1 ∈ P(V )},

then, by Lemma 3.8, we are done.
Now if the above three cases don’t occur, we know that there exists some

integer pq such that Aq := {x ∈ Z | a + qb′2 + x b′1 ∈ P(V )} = (−∞, pq ] or
[pq ,∞). We first assume Aq = (−∞, pq ]. Thus

E(qb′2− j xsb′1± b′1)va = tqb′2− j xsb′1±b′1va = 0

for a sufficiently large integer x > 0. Since E( j b)va = E( jsb′1)va = 0, we can
obtain

E(qb′2± b′1)va = tqb′2±b′1va = 0.

If Aq = [pq ,∞), by a similar argument, we can also obtain

E(qb′2± b′1)va = tqb′2±b′1va = 0.

This implies

E(±(b′1+ b′2))va = E(±(b′1+2b′2))va = 0, t±(b
′
1+b′2)va = t±(b

′
1+2b′2)va = 0.

Since {b′1+ b′2, b′1+ 2b′2} is a Z-basis of 0, L is generated by

{E(±(b′1+ b′2)), E(±(b′1+ 2b′2)), t±(b
′
1+b′2), t±(b

′
1+2b′2)}.

Thus V = U(L̃)va is a trivial module, which is a contradiction. �

The following proposition gives the characterization of the nontrivial generalized
highest weight Harish-Chandra module.

Proposition 3.10. If V is a nontrivial generalized highest weight Harish-Chandra
L̃-module with generalized highest weight λ= (λ1, λ2) corresponding to a Z-basis
B = {b1, b2} of 0, then V ' M(b′1, b′2, Tρ(Hb′1)(c, λ)) for some Z-basis {b′1, b′2}
of 0 and some ρ ∈ Eb′1 .

Proof. From Lemma 3.9 and the proof of Proposition 3.9 in [Lin and Tan 2006],
we can obtain our result. �

Together with Theorem 3.1 and Proposition 3.10, we have:

Theorem 3.11. If V is a nonzero level Harish-Chandra L̃-module, then

V ' M(b′1, b′2, Tρ(Hb′1)(c,λ))

for some Z-basis {b′1, b′2} of 0 and some ρ ∈ Eb′1 , λ ∈ C2.
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4. Classification of generalized highest weight Harish-Chandra L̃-modules

In this section, we will provide the classification of generalized highest weight
Harish-Chandra modules of L̃ by using the highest weight modules of L . From
Proposition 3.10, we only need to find in which case the irreducible generalized
highest weight L̃-module M(b1, b2, Tρ(Hb1)(c,λ)) is a Harish-Chandra module.

First we give a triangular decomposition of L and construct a class of Z-graded
irreducible highest weight modules of L . Recall that

L̃ i = 〈E(mb1+ i b2), tmb1+i b2 | m ∈ Z〉, i ∈ Z \ {0},

and
L̃+ =

⊕
i>0

L̃ i , L̃− =
⊕
i<0

L̃ i .

Then L = L̃+⊕Hb1 ⊕ L̃−.

Remark 4.1. In this section, we call a L-module V a highest weight module
(corresponding to the Z-basis {b1, b2}) if there exists a nonzero v ∈ V such that
V = U(L)v and L̃+.v = 0.

For any linear function ρ :Hb1→C with ρ( f (b1))= ρ(h(b1))= 0, we define a
one-dimensional (Hb1 ⊕ L̃+)-module Cv0 as follows:

L̃+.v0 = 0, x .v0 = ρ(x)v0, x ∈Hb1 .(4-1)

Then we have an induced L-module

V (ρ)= IndL
Hb1⊕L̃+

Cv0 = U(L)⊗U(Hb1⊕L̃+) Cv0.(4-2)

We see that V (ρ) is a Z-graded module. It is clear that V (ρ) has a unique maximal
Z-graded submodule J (ρ). Then we obtain a Z-graded irreducible highest weight
L-module

V (ρ)= V (ρ)/J (ρ)=⊕i∈ZV (ρ)i ,

where, for i ∈ Z,

V (ρ)i =

SpanC

{
E(i1b1+ j1b2)E(i2b1+ j2b2) · · · E(im b1+ jm b2)t s1b1+k1b2 · · · t sn b1+kn b2v0

|m, n ∈ Z+,

m∑
p=1

jp +

n∑
p=1

kp = i
}
.

We call V (ρ)i for i ∈Z the weight space of the L-module V (ρ). If dim V (ρ)i <∞,
we say that the weight space V (ρ)i is finite-dimensional.
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For later use, we need a conception of an exp-polynomial function. Recall from
[Billig and Zhao 2004] that a function f : Z→ C is said to be exp-polynomial if it
can be written as a finite sum

f (n)=
∑

cm,anman,

for some cm,a ∈ C, m ∈ Z+ and 0 6= a ∈ C.
The following lemma is due to [Wilson 2008].

Lemma 4.2. A function f : Z→ C is an exp-polynomial function if and only if
there exist a0, . . . , an ∈ C with a0an 6= 0, such that

n∑
i=0

ai f (m+ i)= 0,

for all m ∈ Z.

Remark 4.3. In general, for fixed a0, . . . , an ∈C with a0an 6=0, the exp-polynomial
function f satisfying

∑n
i=0 ai f (m+ i)= 0, for all m ∈ Z, is not unique.

Then we have the following result.

Proposition 4.4. Suppose the linear function ρ : Hb1 → C such that ρ( f (b1)) =

ρ(h(b1)) = 0. Then the Z-graded L-module V (ρ) has finite-dimensional weight
spaces if and only if there exist two exp-polynomials g j : Z → C satisfying∑n

i=0 ai g j (k+ i)= 0 for j = 1, 2, k ∈ Z, ai ∈ C, a0an 6= 0 and

g1(0)= det
(

b1

b2

)
ρ( f (b2)), g2(0)= det

(
b1

b2

)
ρ(h(b2)),

g1(m)= ρ(m E(mb1)), g2(m)= ρ(mtmb1), m ∈ Z \ {0}.

Proof. First, we define two linear maps φ1, φ2 : C[t±1
1 , t±1

2 ] → L by

φi (t
m1
1 tm2

2 )=

{
E(m1b1+m2b2) if i = 1,
tm1b1+m2b2 if i = 2.

If V (ρ) has finite-dimensional weight spaces, since dim V (ρ)−1 <∞ and

φ1(t i
1t−1

2 )v0 ∈ V (ρ)−1

for all i ∈Z, there exists k ∈Z and a nonzero polynomial P(t1)=
∑n

i=0 ai t i
1 ∈C[t1]

with a0an 6= 0 such that
φ1(t−1

2 tk
1 P(t1))v0 = 0.

Applying φi (t s
1 t2) for any s ∈ Z, i = 1, 2 to the above equation respectively, we get( n∑

i=0

ai (k+ s+ i)E((k+ s+ i)b1)+ det
(

b1

b2

)
a−k−s f (b2)

)
.v0 = 0,(4-3)
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and ( n∑
i=0

ai (k+ s+ i)t (k+s+i)b1 + det
(

b1

b2

)
a−k−sh(b2)

)
.v0 = 0,(4-4)

where a−k−s = 0 if −k − s /∈ {0, 1, . . . , n}. Set g1 : Z→ C such that g1(0) =
det
( b1

b2

)
ρ( f (b2)) and g1(m)= ρ(m E(mb1)) for m ∈ Z \ {0}. Then (4-3) becomes

n∑
i=0

ai g1(m+ i)= 0, for all m ∈ Z.

Set g2 : Z → C such that g2(0) = det
( b1

b2

)
ρ(h(b2)) and g2(m) = ρ(mtmb1) for

m ∈ Z \ {0}. Then (4-4) becomes
n∑

i=0

ai g2(m+ i)= 0, for all m ∈ Z.

From Lemma 4.2, we have that g1, g2 are exp-polynomial functions.
Conversely, we use Theorem 1.7 in [Billig and Zhao 2004] to prove that the Z-

graded L-module V (ρ) has finite-dimensional weight spaces, i.e., dim V (ρ)i <∞
for all i ∈ Z. Since Cv0 is a one-dimensional Hb1-module with exp-polynomial
action, i.e., Hb1 acts on Cv0 through two exp-polynomials g1, g2, and L̃+.v0 = 0,
from Theorem 1.7 in [Billig and Zhao 2004], we just need to prove that L is
Z-extragraded (see Definition 1.4 of the same work). Set the index sets X i =

{(1, i), (2, i)} for i ∈ Z \ {0} and X0 = {(i, 0) | i = 1, 2, . . . , 6}. For i ∈ Z \ {0}, let

Li
k( j)=

{
E(ib2+ jb1), k = (1, i), j ∈ Z,

t ib2+ jb1, k = (2, i), j ∈ Z,

and

L0
k( j)=


j E( jb1), k = (1, 0), j 6= 0,
j t jb1, k = (2, 0), j 6= 0,
Ki , k = (i + 2, 0), i = 1, 2, 3, 4, j = 0.

Claim 1: L is a Z-graded exp-polynomial Lie algebra (see Definition 1.2 in [Billig
and Zhao 2004]).

In fact, let L=
⊕

j∈Z L( j), where L( j)=〈Li
k( j)|i∈Z, k∈X i 〉. [L( j1), L( j2)]⊆

L( j1+ j2) for j1, j2 ∈ Z. Thus L is Z-graded, and it is straightforward to check
that L is an exp-polynomial Lie algebra with the distinguished spanning set
{Li

k( j) | k ∈ X i , i, j ∈ Z}.

Claim 2: The Z-graded exp-polynomial Lie algebra L is Z-extragraded.
In fact, let L =

⊕
i∈Z L(i), where L(i)=〈Li

k( j) | j ∈Z, k∈ X i 〉. [L(i1), L(i2)] ⊆

L(i1+i2) for i1, i2 ∈ Z, i.e., L has another Z-gradation. �
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For linear function ρ :Hb1 → C with ρ( f (b1))= ρ(h(b1))= 0, we say that ρ
is an exp-polynomial function over Hb1 if there exist a0, . . . , an ∈ C, a0an 6= 0 and
two exp-polynomials g0, g1 given by

g1(0)= det
(

b1

b2

)
ρ( f (b2)), g2(0)= det

(
b1

b2

)
ρ(h(b2)),

and
g1(m)= ρ(m E(mb1)), g2(m)= ρ(mtmb1)

for all m ∈ Z \ {0} such that
∑n

i=0 ai g j (k+ i)= 0 for j = 1, 2, k ∈ Z.
Let (

b1

b2

)−1

=

(
p1 q1

p2 q2

)
∈ GL2×2(Z).

Set d̃1 = p1d1+ p2d2, d̃2 = q1d1+ q2d2. Then we have

[d̃i , E(m1b1+m2b2)] = mi E(mb1+ nb2), [d̃i , tm1b1+m2b2] = mi tm1b1+m2b2

for i = 1, 2, m1,m2 ∈ Z.
Now we construct a class of Z2-graded irreducible generalized highest weight

L̃-modules by using the above Z-graded highest weight L-module V (ρ). For any
linear function ρ :Hb1 → C with ρ( f (b1))= ρ(h(b1))= 0, we set

V̂ (ρ)= V (ρ)⊗C[t±1
]

and define the actions of L̃ on V̂ (ρ) as

E(mb1+ nb2).(v⊗ tk)= (E(mb1+ nb2).v)⊗ tm+k,

tmb1+nb2 .(v⊗ tk)= (tmb1+nb2 .v)⊗ tm+k,

d̃1.(v⊗ tk)= k(v⊗ tk),

d̃2.(v⊗ tk)= j (v⊗ tk),

Ki .(v⊗ tk)= (Ki .v)⊗ tk

for (m, n) ∈ Z2
\ {0}, v ∈ V (ρ) j , j ∈ Z, i = 1, 2, 3, 4. It is clear that V̂ (ρ) is a

Z2-graded L̃-module, and

V̂ (ρ)=
⊕

m,n∈Z

V̂ (ρ)(m,n),

where V̂ (ρ)(m,n) = V (ρ)m ⊗ tn. We call V̂ (ρ)(m,n), m, n ∈ Z weight spaces of the
module V̂ (ρ) with respect to d̃1, d̃2.

Let W (i) be the L̃-submodule of V̂ (ρ) generated by v0⊗ t i, i ∈ Z, where v0 is
defined in (4-1).
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Lemma 4.5. Let ρ ∈ Eb1 and W (i) be a Z2-graded irreducible L̃-submodule
of V̂ (ρ).

(1) If Tρ(Hb1)= T0, then V̂ (ρ)=
⊕

i∈Z W (i).

(2) If Tρ(Hb1)= Tr for some r ∈ N, then V̂ (ρ)=
⊕r−1

i=0 W (i).

Proof. We need to notice the following two facts. First, any nonzero L̃-submodule of
V̂ (ρ) contains v0⊗t i for some i ∈Z. Second, the two L̃-submodules W (m)=W (n)
if and only if tm−n

∈ Tr , where Tr = Tρ(Hb1), r ∈ Z+. For (1), that W (i) is an
Z2-graded irreducible L̃-module follows from V (ρ) being an irreducible L-module.
For (2), let M be a nonzero submodule of the L̃-module W (i); then v0⊗ tn

∈M for
some n ∈ Z. Since U(Hb1)(v0⊗ t i )= v0⊗ (Tr · t i ) and v0⊗ tn

∈ U(Hb1)(v0⊗ t i ),
we have tn

∈ Tr · t i . This implies that v0⊗ t i
∈ W (n)⊆ M, i.e., W (i)⊆ M. Thus

M =W (i), which shows that W (i) is irreducible. �

For ρ ∈ Eb1 , we know that there exists a unique maximal Z2-graded submodule
J (i) of V̂ (ρ)which insects W (i) trivially by Lemma 4.5. Then we get the Z2-graded
irreducible L̃-module

V̂ (ρ, i)= V̂ (ρ)/J (i)'W (i).

Remark 4.6. (1) From Lemma 3.3 in [Wilson 2008], we see ρ ∈ Eb1 if ρ is an
exp-polynomial function over Hb1 .

(2) For ρ ∈ Eb1 , W (i) ' W ( j) as an L̃-module up to a shift of the action of d̃1,
i, j ∈ Z from (2-4) and Lemma 4.5.

Lemma 4.7. (1) For any linear function ρ :Hb1→C with ρ( f (b1))=ρ(h(b1))=0,
the L̃-module V̂ (ρ) has finite-dimensional weight spaces if and only if L-module
V (ρ) has finite weight spaces.

(2) For ρ ∈ Eb1 , M(b1, b2, Tρ(Hb1)(c,λ))' V̂ (ρ, 0) as an L̃-module up to scalar
shifts of the actions of d1, d2.

Proof. (1) Since V̂ (ρ)(m,n) = V (ρ)m ⊗ tn , m, n ∈ Z, the first assertion is obvious.

(2) For any L̃-module W, it is clear that we can modify the actions of d1 and d2. In
fact, let σ be the corresponding representation of this L̃-module W. Set π(x)=σ(x)
for x ∈ L , and π(di )= σ(di )+ ai IdW for some fixed ai ∈ C, i = 1, 2. Obviously,
π : L̃→gl(W ) is a representation of L̃ , i.e., one can define a new L̃-module structure
on W through shifting the actions of d1, d2. Note that U(Hb1).(v0⊗ 1)' Tρ(Hb1)

for ρ ∈ Eb1 and L̃+.(U(Hb1).(v0 ⊗ 1)) = 0. Then the result follows from the
irreducibility of V̂ (ρ, 0). �

By Lemma 4.7, together with Proposition 4.4, we obtain the main result in this
section.
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Theorem 4.8. For ρ ∈ Eb1 , the irreducible generalized highest weight L̃-module
M(b1, b2, Tρ(Hb1)(c,λ)) is a Harish-Chandra module if and only if ρ is an exp-
polynomial function over Hb1 .

Remark 4.9. If ρ is an exp-polynomial function over Hb1 , then the generalized
highest weight Harish-Chandra M(b1, b2, Tρ(Hb1)(c,λ)) is a one-dimensional triv-
ial module if and only if ρ = 0, i.e., Tρ(Hb1)= T0, c= 0.
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WEIGHTED ESTIMATES FOR
ROUGH SINGULAR INTEGRALS WITH

APPLICATIONS TO ANGULAR INTEGRABILITY

FENG LIU AND DASHAN FAN

We study certain singular integral operators, as well as their corresponding
truncated maximal operators, along polynomial curves. Assuming that the
kernels of operators are rough not only on the unit sphere but also on the
radial direction, we establish certain weighted estimates for these operators.
As applications, we obtain that these operators are bounded on the mixed
radial-angular spaces L p

|x|
L p̃
θ (R

n) and on the vector-valued mixed radial-
angular spaces L p

|x|
L p̃
θ (R

n, ` p̃). The bounds are independent of the coeffi-
cients of the polynomials in the definition of the operators. Our results we
obtained improve theorems of Antonio Córdoba (2016) and Piero D’Ancona
and Renato Lucà (2016).

1. Introduction

Let Rn be the Euclidean space of dimension n and Sn−1 denote the unit sphere in
Rn (n ≥ 2) equipped with the normalized Lebesgue measure dσ . The mixed radial-
angular spaces L p

|x |L
p̃
θ (R

n), 1 ≤ p, p̃ ≤ ∞, consist of all functions u satisfying
‖u‖L p

|x |L
p̃
θ (R

n)
<∞, where

‖u‖L p
|x |L

p̃
θ (R

n)
:=

(∫
∞

0
‖u(ρ · )‖p

L p̃(Sn−1)
ρn−1 dρ

)1/p

,

‖u‖L∞
|x |L

P̃
θ (R

n)
:= sup

ρ>0
‖u(ρ · )‖L p̃(Sn−1).

The spaces L p
|x |L

p̃
θ (R

n) have the following easy properties:

(i) If p = p̃ and 1≤ p ≤∞, then

(1-1) ‖u‖L p
|x |L

p̃
θ (R

n)
= ‖u‖L p(Rn).

MSC2010: primary 42B20; secondary 42B25.
Keywords: singular integral, maximal singular integral, rough kernel, mixed radial-angular space,

vector-valued mixed radial-angular space, vector-valued norm inequality.
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(ii) If u is a radial function on Rn and 1≤ p ≤∞, 1≤ p̃ ≤∞, then

‖u‖L p
|x |L

p̃
θ (R

n)
' ‖u‖L p(Rn).

(iii) If 1≤ p̃1 ≤ p̃2 ≤∞ and 1≤ p ≤∞, then

‖u‖
L p
|x |L

p̃1
θ (R

n)
≤ Cn,p, p̃1, p̃2‖u‖L p

|x |L
p̃2
θ (R

n)
.

Here the notation A ' B means that there are positive constants C , C ′ such that
A ≤ C B and B ≤ C ′A.

One might think that the mixed radial-angular space L p
|x |L

p̃
θ (R

n) is merely a
formal extension of the Lebesgue space L p, but recently it has been successfully
used in studying Strichartz estimates and dispersive equations (see [Cho and Ozawa
2009; Cacciafesta and D’Ancona 2013; Fang and Wang 2011; Lucà 2014; Machihara
et al. 2005; Ozawa and Rogers 2013; Sterbenz 2005; Tao 2000]). Also, it plays
active roles in the theory of singular integral operator. Córdoba [2016] proved that
the singular integral

(1-2) T� f (x)= p.v.
∫

Rn
f (x − y)

�(y)
|y|n

dy,

where � is a homogeneous function of degree zero, is bounded on L p
|x |L

2
θ (R

n) for
all 1< p <∞, provided that � ∈ C1(Sn−1) and satisfies

(1-3)
∫

Sn−1
�(y) dσ(y)= 0.

D’Ancona and Lucà [2016] then used the argument in Córdoba’s Theorem 2.1 to
extend the above result:

Theorem A. Let � ∈ C1(Sn−1) satisfy (1-3) and 1< p <∞, 1< p̃ <∞. Then

‖T� f ‖L p
|x |L

p̃
θ (R

n)
≤ C�,p, p̃‖ f ‖L p

|x |L
p̃
θ (R

n)
.

Recently, Cacciafesta and Lucà [2016, Theorem 1.1] extended Theorem A to the
weighted setting.

On the other hand, it is a long-time interesting topic to study the rough singular
integral operators. Precisely, by assuming that � ∈ L log L(Sn−1), Calderón and
Zygmund [1956] proved that T� is bounded on L p(Rn) for 1< p<∞. Their proof
is based on the rotation method to reduce the operator T� to the directional Hilbert
transform so that the well-known Riesz theorem can be applied. Fefferman [1979]
considered another singular integral

(1-4) Th,� f (x)= p.v.
∫

Rn
f (x − y)

h(|y|)�(y)
|y|n

dy,
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where � is given as in (1-2) and h( · ) ∈ L∞(R+) with R+ := (0,∞). Clearly,
the operator T� corresponds to the special case of Th,� for h(t) ≡ 1. Fefferman
discovered that the Calderón–Zygmund rotation method is no longer available if the
operator Th,� is also rough in the radial direction, for instance h ∈ L∞, so that new
methods must be addressed. In his fundamental work on Th,�, Fefferman [1979]
proved that Th,� is bounded on L p(Rn) for all 1< p <∞ if � ∈ Lipα(S

n−1) for
some α > 0 and h ∈ L∞(R+). Afterwards, Namazi [1986] improved Fefferman’s
result by assuming�∈ Lq(Sn−1) for q>1 instead of�∈Lipα(S

n−1). Subsequently,
Duoandikoetxea and Rubio de Francia [1986] used the Littlewood–Paley theory to
improve the above results to the case � ∈ Lq(Sn−1) for any q > 1 and h ∈12(R+).
Here 1γ (R+), γ > 0, is the set of all measurable functions h defined on R+

satisfying

‖h‖1γ (R+) := sup
R>0

(
1
R

∫ R

0
|h(t)|γ dt

)1/γ

<∞.

In the same article, they also studied the L p(Rn) boundedness for the maximal
operator

T ∗h,� f (x)= sup
ε>0

∣∣∣∣∫
|y|>ε

f (x − y)
h(|y|)�(y)
|y|n

dy
∣∣∣∣.

These results were improved and extended by many authors (see [Al-Salman and
Pan 2002; Fan and Pan 1997; Liu 2014; Liu et al. 2016; Sato 2009]). It is worth
remarking the following inclusion relations:

C1(Sn−1)( Lipα(S
n−1)( Lq(Sn−1),(1-5)

L∞(R+)=1∞(R+)(1γ2(R+)(1γ1(R+) for 1≤ γ1 < γ2 <∞.(1-6)

In light of the above background and observation, a question that arises naturally
is the following:

Question B. Are Th,� and T ∗h,� bounded on L p
|x |L

p̃
θ (R

n) (p 6= p̃) if � ∈ Lq(Sn−1)

and h ∈1γ (R+) for some 1< q, γ ≤∞?

In this paper we will give an affirmative answer to the above question by treating
a family of operators that are even broader than Th,� and T ∗h,�. To be more precise,
let h, � be given as in (1-4) and PN (t) be a real polynomial on R of degree N
satisfying P(0) = 0. The corresponding singular integral operator TPN and the
related maximal singular integral operator T ∗PN

along the “polynomial curve” PN

on Rn are defined by

TPN f (x)= p.v.
∫

Rn
f (x − PN (|y|)y′)

h(|y|)�(y)
|y|n

dy,

T ∗PN
f (x)= sup

ε>0

∣∣∣∣∫
|y|>ε

f (x − PN (|y|)y′)
h(|y|)�(y)
|y|n

dy
∣∣∣∣,
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where y′ = y/|y| for y 6= 0. Clearly, TPN = Th,� and T ∗PN
= T ∗h,� if PN (t)= t .

In order to obtain the L p
|x |L

p̃
θ (R

n) boundedness of Th,� and T ∗h,�, we will establish
some weighted inequalities. Our main results can be stated as follows.

Theorem 1.1. Let PN (t) be a real polynomial on R of degree N and satisfy
PN (0) = 0. Suppose that � ∈ Lq(Sn−1) satisfies (1-3) and h ∈1γ (R+) for some
1< q , γ ≤∞:

(i) Let 2≤ p <∞. Then for any nonnegative measurable function u on Rn , the
following inequality holds:

(1-7) ‖TPN f ‖L p(u) ≤ Ch,�,q,γ,p,s,N‖ f ‖L p(3N ,su) ∀s > 1.

(ii) Let 1< p<2 and {tk}k∈N be a sequence of positive numbers satisfying t1=2/p
and

1
tk+1
=

1
tk
+

p
2

(
1− 1

tk

)
.

Then for any nonnegative measurable function u on Rn and any fixed k ∈ N,
the following inequality holds:

(1-8) ‖TPN f ‖L p(u) ≤ Ch,�,q,γ,p,s,N ,tk‖ f ‖L p(3N ,su) ∀s > tk .

Here and throughout the paper we use Ch,�,α,β,γ,... to denote positive constants that
depend on the functions �, h and parameters α, β, γ, . . . appearing either in the
definitions of the operators or in the statements of the theorems. In particular, they
are independent of the coefficients of the polynomial PN in the definition of TPN .
In (1-8) we also used the notation

3N ,su =
{

MN
s u+M2

s M̃N
s u+ HN ,su if 1< p < 2,

L N ,su if 2≤ p <∞,

Lλ,su =
λ∑

i=0

Mλ+1−i
s M σ̃

i,sMsu, Hλu =
λ∑

i=1

M2 M σ̃
i Mλ+1−i u ∀1≤ λ≤ N

and M σ̃
λ,su = (M σ̃

λ (u
s))1/s , Mk

s u = (Mkus)1/s for any k ∈ N, Hλ,su = (Hλus)1/s .
Here Mk denotes the Hardy–Littlewood maximal operator M iterated k times for all
k ∈ N and M σ̃

λ is a maximal operator given as in the proof of Theorem 1.1.

Theorem 1.2. Let PN (t) be a real polynomial on R of degree N and satisfy
PN (0) = 0. Suppose that � ∈ Lq(Sn−1) satisfies (1-3) and h ∈1γ (R+) for some
1< q , γ ≤∞:

(i) Let 2≤ p <∞. Then for any nonnegative measurable function u on Rn , the
following inequality holds:

(1-9) ‖T ∗PN
f ‖L p(u) ≤ Ch,�,q,γ,p,s‖ f ‖L p(2N ,sMsu+2N ,sM2

s u) ∀s > 1.
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(ii) Let 1< p<2 and {tk}k∈N be given as in Theorem 1.1. Then for any nonnegative
measurable function u on Rn and any fixed k ∈ N, the following inequality
holds:

(1-10) ‖T ∗PN
f ‖L p(u) ≤ Ch,�,q,γ,p,s,N ,tk‖ f ‖L p(2N ,sMsu+2N ,sM2

s u) ∀s > tk .

Here

2N ,su =
{

MN
s u+M2

s M̃N
s u+ HN ,su if 1< p < 2,

MN
s u+ L N ,su+ IN ,su+ JN ,su if 2≤ p <∞,

where L N ,s is given as in Theorem 1.1 and

Iλ,su =
λ∑

i=1

Ms M σ̃
i,sMλ−i

s u, Jλ,su =
λ∑

i=1

M2
s M σ̃

i−1,sMλ−i
s u ∀1≤ λ≤ N .

As applications of Theorems 1.1 and 1.2, we obtain the L p
|x |L

p̃
θ (R

n) boundedness
of the operators TPN and T ∗PN

in following results.

Corollary 1.3. Let PN (t) be a real polynomial on R of degree N and satisfy
PN (0) = 0. Suppose that � ∈ Lq(Sn−1) satisfies (1-3) and h ∈1γ (R+) for some
1 < q, γ ≤∞. Then for 1 < p <∞ and 1 < p̃ <∞, the following inequalities
hold:

‖TPN f ‖L p
|x |L

p̃
θ (R

n)
≤ Ch,�,q,γ,p, p̃,N‖ f ‖L p

|x |L
p̃
θ (R

n)
,(1-11) ∥∥∥∥(∑

j∈Z

|TPN f j |
p̃
)1/ p̃∥∥∥∥

L p
|x |L

p̃
θ (R

n)

(1-12)

≤ Ch,�,q,γ,p, p̃,N

∥∥∥∥(∑
j∈Z

| f j |
p̃
)1/ p̃∥∥∥∥

L p
|x |L

p̃
θ (R

n)

,

where the constants Ch,�,q,γ,p, p̃,N > 0 are independent of the coefficients of PN .

Corollary 1.4. Let PN (t) be a real polynomial on R of degree N and satisfy
PN (0) = 0. Suppose that � ∈ Lq(Sn−1) satisfies (1-3) and h ∈1γ (R+) for some
1< q, γ ≤∞. Then for 1< p̃ ≤ p <∞, the following inequalities hold:

‖T ∗PN
f ‖L p

|x |L
p̃
θ (R

n)
≤ Ch,�,q,γ,p, p̃,N‖ f ‖L p

|x |L
p̃
θ (R

n)
,(1-13) ∥∥∥∥(∑

j∈Z

|T ∗PN
f j |

p̃
)1/ p̃∥∥∥∥

L p
|x |L

p̃
θ (R

n)

(1-14)

≤ Ch,�,q,γ,p, p̃,N

∥∥∥∥(∑
j∈Z

| f j |
p̃
)1/ p̃∥∥∥∥

L p
|x |L

p̃
θ (R

n)

,

where the constants Ch,�,q,γ,p, p̃,N > 0 are independent of the coefficients of PN .
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Corollary 1.5. Let PN (t) be a real polynomial on R of degree N and satisfy
PN (0) = 0. Suppose that � ∈ Lq(Sn−1) satisfies (1-3) and h ∈1γ (R+) for some
1< q, γ ≤∞:

(i) If 1< p <∞ and 1< p̃ <∞, then

(1-15)
∥∥∥∥(∑

j∈Z

|TPN f j |
p̃
)1/ p̃∥∥∥∥

L p(Rn)

≤ Ch,�,q,γ,p, p̃,N

∥∥∥∥(∑
j∈Z

| f j |
p̃
)1/ p̃∥∥∥∥

L p(Rn)

.

(ii) If 1< p̃ ≤ p <∞, then

(1-16)
∥∥∥∥(∑

j∈Z

|T ∗PN
f j |

p̃
)1/ p̃∥∥∥∥

L p(Rn)

≤ Ch,�,q,γ,p, p̃,N

∥∥∥∥(∑
j∈Z

| f j |
p̃
)1/ p̃∥∥∥∥

L p(Rn)

.

The above constants Ch,�,q,γ,p, p̃,N > 0 are independent of the coefficients of PN .

Remark 1.6. Corollary 1.3 improves and generalizes Theorem A by (1-5) and
(1-6).

The rest of this paper is organized as follows. Section 2 contains a key criterion,
which says that certain weighted norm inequalities for an operator will automatically
imply its boundedness on the mixed radial-angular spaces, vector-valued mixed
radial-angular spaces, and vector-valued inequalities. The main results of this
paper will be proved in Section 3, where the proofs of Corollaries 1.3–1.5 are
based on Theorems 1.1 and 1.2 and the criterion established in Section 2 (see
Proposition 2.1). Finally, we will discuss several corresponding results concerning
the Hardy–Littlewood maximal operator, Calderón–Zygmund operators, and the
singular integral operators with Grafakos–Stefanov kernels. We would like to remark
that the main idea in the proofs of our results is a combination of ideas and arguments
from [Córdoba 2016; D’Ancona and Lucà 2016; Hofmann 1993; Liu 2014].

Throughout this note, for any p ∈ (1,∞), we let p′ denote the dual exponent
to p defined as 1/p+ 1/p′ = 1. In what follows, for any function f , we define f̃
by f̃ (x)= f (−x). We denote by Mk the Hardy–Littlewood maximal operator M
iterated k times for all k = 1, 2, . . . Specifically, Mk

=M when k = 1. For s > 1,
we denote Msu = (Mus)1/s . For f ∈ L p(u), we set

‖ f ‖L p(u) =

(∫
Rn
| f (x)|pu(x) dx

)1/p

.

2. A criterion

To prove our main results, we need the following proposition, which is of interest
in its own right.



ESTIMATES FOR SINGULAR INTEGRALS WITH APPLICATIONS TO INTEGRABILITY 273

Proposition 2.1. Let 1< p <∞ and {tk}k∈N be a strictly decreasing sequence of
positive numbers satisfying limk→∞ tk = 1. Assume that T is a linear or sublinear
operator such that

(2-1) ‖T f ‖L p(u) ≤ C p,s,tk‖ f ‖L p(Gs(u)) ∀s > tk

for any fixed positive integer k and any nonnegative measurable function u on Rn ,
where Gs is a bounded operator from Lq(Rn) to itself for any q ∈ (s,∞) with s > tk .
Then for any p < q <∞, the following inequalities hold:

‖T f ‖Lq
|x |L

p
θ (R

n) ≤ C p,q‖ f ‖Lq
|x |L

p
θ (R

n),(2-2) ∥∥∥∥(∑
j∈Z

|T f j |
p
)1/p∥∥∥∥

Lq
|x |L

p
θ (R

n)

≤ C p,q

∥∥∥∥(∑
j∈Z

| f j |
p
)1/p∥∥∥∥

Lq
|x |L

p
θ (R

n)

,(2-3)

∥∥∥∥(∑
j∈Z

|T f j |
p
)1/p∥∥∥∥

Lq (Rn)

≤ C p,q

∥∥∥∥(∑
j∈Z

| f j |
p
)1/p∥∥∥∥

Lq (Rn)

.(2-4)

Proof. We only prove (2-2) since (2-3) and (2-4) can be proved similarly. The
argument in the proof of (2-2) is essentially the same as in the proof of [D’Ancona
and Lucà 2016, Theorem 2.6]. Let 1< p < q <∞ and write r = q/(q− p). Fix a
number s in the interval (1, r) and choose k0 as the smallest integer for which we
have tk0 < s. We denote by X the set of all g ∈ S(R) with

∫
∞

0 gr (ρ)ρn−1 dρ ≤ 1.
By polar coordinates, we write

(2-5) ‖T f ‖p
Lq
|x |L

p
θ (R

n)
=

(∫
∞

0

(∫
Sn−1
|T f (ρθ)|pdσ(θ)

)q/p

ρn−1 dρ
)p/q

= sup
g∈X

∫
∞

0

∫
Sn−1
|T f (ρθ)|pg(ρ)ρn−1 dσ(θ) dρ

= sup
g∈X

∫
Rn
|T f (x)|pg(|x |) dx .

Fix g ∈ X . Let I (g) :=
∫

Rn |T f (x)|pg(|x |) dx and h(x) = g(|x |). Changing
variables, we obtain from (2-1) and Hölder’s inequality that

I (g)≤ C p,s,tk0

∫
Rn
| f (x)|pGs(h)(x) dx

≤ C p,s,tk0

∫
∞

0

∫
Sn−1
| f (ρθ)|p dσ(θ)Gs(g)(ρ)ρn−1 dρ

≤ C p,s,tk0

(∫
∞

0

(∫
Sn−1
| f (ρθ)|pdσ(θ)

)q/p

ρn−1dρ
)p/q

×

(∫
∞

0
(Gs(g)(ρ))rρn−1 dρ

)1/r
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≤ C p,q‖ f ‖p
Lq
|x |L

p
θ (R

n)
‖Gs(h)‖Lr (Rn)

≤ C p,q‖ f ‖p
Lq
|x |L

p
θ (R

n)
,

which, together with (2-5), yields (2-2). �

3. Proofs of main results

In this section we shall present the proofs of Theorems 1.1 and 1.2 and Corollaries
1.3–1.5. In what follows, we may assume, without loss of generality, that PN (t)=∑N

i=1 ai t i with ai 6= 0. We also let Pλ(t) =
∑λ

i=1 ai t i for λ = 1, 2, . . . , N and
P0(t)= 0.

Proof of Theorem 1.1. For λ ∈ {1, 2, . . . , N }, we define two families of measures
{σk,λ}k∈Z and {|σk,λ|}k∈Z respectively by∫

Rn
f (x) dσk,λ(x)=

∫
2k<|x |≤2k+1

f (Pλ(|x |)x ′)
h(|x |)�(x)
|x |n

dx

and ∫
Rn

f (x) d|σk,λ|(x)=
∫

2k<|x |≤2k+1
f (Pλ(|x |)x ′)

|h(|x |)�(x)|
|x |n

dx .

We also define the maximal operators Mσ
λ and M σ̃

λ respectively by

Mσ
λ f (x)= sup

k∈Z

||σk,λ| ∗ f (x)|

and
M σ̃
λ f (x)= sup

k∈Z

||σ̃k,λ| ∗ f (x)|,

where ∫
Rn

f (x) d|σ̃k,λ|(x)=
∫

Rn
f (−x) d|σk,λ|(x).

One can easily verify that

Mσ
0 f (x)≤ Ch,�,q,γ | f (x)|,(3-1)

M σ̃
λ f (x)= Mσ

λ f̃ (x),(3-2)

TPN f (x)=
∑
k∈Z

σk,N ∗ f (x).(3-3)

Also, from [Liu 2014, Lemma 2.2] and a direct computation, one has

max
{
|σ̂k,λ(ξ)− σ̂k,λ−1(ξ)|, ||̂σk,λ|(ξ)− ̂|σk,λ−1|(ξ)|

}
≤ Ch,�,q,γ min{1, |2kλaλξ |},

(3-4)

max
{
|σ̂k,λ(ξ)|, ||̂σk,λ|(ξ)|

}
≤ Ch,�,q,γ (min{1, |2kλaλξ |−1

})1/(4λq ′γ ′).(3-5)

We shall prove Theorem 1.1 by considering the following three steps:
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Step 1: The bounds for Mσ
λ . We want to show that

(3-6) ‖Mσ
λ f ‖L p(Rn) ≤ Ch,�,q,γ ‖ f ‖L p(Rn)

for all 0 ≤ λ ≤ N and 1 < p <∞. It is obvious that (3-6) holds for λ = 0 by
(3-1). Choose a nonnegative function φ ∈ S(Rn) supported in {|t | ≤ 1} satisfying
φ(t) = 1 when |t | < 1

2 . For λ ∈ {1, 2, . . . , N }, we define the family of functions
{ψk,λ}k∈Z via the Fourier transform ψ̂k,λ(ξ) = φ(2kλ

|aλξ |). Define the family of
Borel measures {ωk,λ}k∈Z on Rn by

(3-7) ω̂k,λ(ξ)= |̂σk,λ|(ξ)−ψk,λ(ξ) ̂|σk,λ−1|(ξ).

One easily checks that (or see [Liu 2014])

|ω̂k,λ(x)| ≤ Ch,�,q,γ (min{1, |2kλaλx |, |2kλaλx |−1
})1/(4λq ′γ ′),(3-8)

Mω
λ f (x)≤ Mσ

λ | f |(x)+MMσ
λ−1| f |(x),(3-9)

Mσ
λ f (x)≤MMσ

λ−1| f |(x)+Gω
λ f (x),(3-10)

where Mω
λ f (x)= supk∈Z ||ωk,λ| ∗ f (x)| and Gω

λ f (x)=
(∑

k∈Z |ωk,λ ∗ f (x)|2
)1/2.

By (3-1), (3-8)–(3-10) and a standard iteration argument from [Duoandikoetxea
and Rubio de Francia 1986], we can obtain (3-6) for all 1≤ λ≤ N . The details are
omitted.

Step 2: The proof of (i) of Theorem 1.1. For 1 ≤ λ ≤ N and s > 1, let 3λ,s be
given as in Theorem 1.1. Let φ be given as above. We define the family of functions
{8λ}

N
λ=1 by

8λ(ξ)=

N∏
j=λ

φ(|2k j a jξ |).

For 1≤ λ≤ N , define the Borel measures {µk,λ}k∈Z on Rn by

µ̂k,λ(ξ)= σ̂k,λ(ξ)8λ+1(ξ)− σ̂k,λ−1(ξ)8λ(ξ).

Here we use the convention
∏

j∈∅ a j = 1. One can easily check that (or see [Liu
2014])

σk,N =

N∑
λ=1

µk,λ,(3-11)

Mµ
λ f (x)≤MN−λMσ

λ | f |(x)+MN−λ+1 Mσ
λ−1| f |(x),(3-12)

|µ̂k,λ(x)| ≤ Ch,�,q,γ (min{1, |2kλaλx |, |2kλaλx |−1
})1/(4λq ′γ ′).(3-13)

Equation (3-3) and (3-11) clearly yield that

(3-14) TPN f (x)=
∑
k∈Z

N∑
λ=1

µk,λ ∗ f (x)=
N∑
λ=1

∑
k∈Z

µk,λ ∗ f (x)=:
N∑
λ=1

Tλ f (x).
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Notice that u ≤Msu, Msu ∈ A1 (see [Coifman and Rochberg 1980]), and
N∑
λ=1

Ms M µ̃
λ,sMsu ≤

N∑
λ=1

(MN+1−λ
s M σ̃

λ,sMsu+MN+2−λ
s M σ̃

λ−1,sMsu)≤ L N ,su

by (3-12). Therefore, (1-7) reduces to the following inequality:

(3-15) ‖Tλ f ‖L p(u) ≤ Ch,�,q,γ,p,λ,s‖ f ‖L p(3N ,su)

for all 1≤ λ≤ N , 2≤ p <∞, s > 1 and any nonnegative measurable function u
on Rn .

We now prove (3-15). For 1≤λ≤ N , let9λ(t)∈C∞c
((1

4 , 1
))

such that 0≤9λ≤1
and

∑
k∈Z(9λ(2

kλ
|aλξ |))3= 1. Define the Fourier multiplier operators {Sk,λ}k∈Z by

Sk,λ f (x)=2k,λ∗ f (x), where 2̂k,λ(ξ)=9λ(2kλ
|aλξ |). It was shown in [Hofmann

1993] that

(3-16)
∥∥∥∥(∑

k∈Z

|Sk,λ f |2
)1/2∥∥∥∥

L p(w)

≤ C p,w,λ‖ f ‖L p(w)

and

(3-17)
∥∥∥∥∑

k∈Z

Sk,λ fk

∥∥∥∥
L p(w)

≤ C p,w,λ

∥∥∥∥(∑
k∈Z

| fk |
2
)1/2∥∥∥∥

L p(w)

for all 1< p <∞ and w ∈ Ap.
Write

(3-18) Tλ f (x)=
∑
k∈Z

∑
j∈Z

S3
j+k,λ(µk,λ ∗ f )(x)

=

∑
j∈Z

∑
k∈Z

S3
j+k,λ(µk,λ ∗ f )(x)=:

∑
j∈Z

Tλ, j f (x).

By (3-13) and Plancherel’s theorem, it holds that

(3-19)
∫

Rn
|µk,λ ∗ S j+k,λw(x)|2 dx ≤ Ch,�,q,γ 2−| j |/(2q ′γ ′)

∫
Rn
|w(x)|2 dx

for an arbitrary function w on Rn . Fix a nonnegative measurable function u on Rn .
It is easy to see that

(3-20)
∫

Rn
|µk,λ ∗ S j+k,λw(x)|2us(x) dx

≤ ‖µk,λ‖‖2 j+k,λ‖L1(Rn)

∫
Rn
|µk,λ| ∗ |2 j+k,λ| ∗ |w|

2(x)us(x) dx

≤ Ch,�,q,γ

∫
Rn
|w(x)|2MM µ̃

λ us(x) dx
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for any s > 1. By (3-19) and (3-20) and the interpolation of L2-spaces with a
change of measure [Bergh and Löfström 1976, Theorem 5.4.1], we obtain

(3-21)
∫

Rn
|µk,λ ∗ S j+k,λw(x)|2u(x) dx

≤ Ch,�,q,γ,s2−(1−1/s)/(2q ′γ ′)| j |
∫

Rn
|w(x)|2Ms M µ̃

λ,su(x) dx

for any s > 1. By (3-21) with w = S j+k,λ f and (3-16), it follows that

‖Tλ, j f ‖2L2(u)=

∥∥∥∥∑
k∈Z

S3
j+k,λµk,λ ∗ f

∥∥∥∥2

L2(u)

≤Cλ
∑
k∈Z

∫
Rn
|µk,λ ∗ S2

j+k,λ f (x)|2u(x) dx

≤Ch,�,q,γ,λ,s2−(1−1/s)/(2q ′γ ′)| j |
∑
k∈Z

∫
Rn
|S j+k,λ f (x)|2Ms M µ̃

λ,su(x) dx

≤Ch,�,q,γ,λ,s2−(1−1/s)/(2q ′γ ′)| j |
‖ f ‖2

L2(Ms M µ̃
λ,su)

.

Hence we obtain

(3-22) ‖Tλ, j f ‖L2(u) ≤ Ch,�,q,γ,λ,s2−(1−1/s)/(4q ′γ ′)| j |
‖ f ‖L2(Ms M µ̃

λ,su).

Next, we shall only prove

(3-23) ‖Tλ, j f ‖L p(u) ≤ Ch,�,q,γ,p,λ,s‖ f ‖L p(Ms M µ̃
λ,su)

for all 2 < p <∞. Actually, by (3-22), (3-23), and an interpolation (see [Bergh
and Löfström 1976, Corollary 5.5.4]), one has

(3-24) ‖Tλ, j f ‖L p(u) ≤ Ch,�,q,γ,p,λ,s2−α(p,q,γ,s)| j |‖ f ‖L p(Ms M µ̃
λ,su)

for 2≤ p <∞ and s > 1. Here α(p, q, γ, s) > 0 depends only on p, q, γ , and s.
Equation (3-24) together with (3-18) yields (3-15).

To prove (3-23), it suffices to show that

(3-25)
∥∥∥∥(∑

k∈Z

|µk,λ ∗ gk |
2
)1/2∥∥∥∥

L p(u)
≤ Ch,�,q,γ,p,s

∥∥∥∥(∑
k∈Z

|gk |
2
)1/2∥∥∥∥

L p(M µ̃
λ,su)

for all 2 < p <∞ and any s > 1. In fact, by (3-16), (3-17), (3-25), and the fact
M µ̃
λ,su ≤Ms M µ̃

λ,su, it holds that

‖Tλ, j f ‖L p(u) =

∥∥∥∥∑
k∈Z

S3
j+k,λµk,λ ∗ f

∥∥∥∥
L p(u)
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≤ C p,λ

∥∥∥∥(∑
k∈Z

|µk,λ ∗ S2
j+k,λ f |2

)1/2∥∥∥∥
L p(u)

≤ Ch,�,q,γ,p,λ,s

∥∥∥∥(∑
k∈Z

|S2
j+k,λ f |2

)1/2∥∥∥∥
L p(M µ̃

λ,su)

≤ Ch,�,q,γ,p,λ,s‖ f ‖L p(Ms M µ̃
λ,su)

for all 2< p <∞ and any s > 1. This yields (3-23).
Below we prove (3-25). Fix 2< p <∞. By duality we can choose a function

v ∈ L(p/2)
′

(u) with unit norm such that∥∥∥∥(∑
k∈Z

|µk,λ ∗ gk |
2
)1/2∥∥∥∥2

L p(u)
=

∫
Rn

∑
k∈Z

|µk,λ ∗ gk(x)|2 · v(x)u(x) dx .

This together with the fact that ‖µk,λ‖ ≤ Ch,�,q,γ yields that

(3-26)
∥∥∥∥(∑

k∈Z

|µk,λ ∗ gk |
2
)1/2∥∥∥∥2

L p(u)

≤ Ch,�,q,γ

∫
Rn

∑
k∈Z

|gk(x)|2||µ̃k,λ| ∗ (vu)(x)| dx .

Fix s > 1 and let r = 1
2 ps. Hölder’s inequality yields

(3-27) ||µ̃k,λ| ∗ (vu)| ≤ (|µ̃k,λ| ∗ us)1/r (|µ̃k,λ| ∗ (ur ′/(p/2)′vr ′))1/r ′ .

By Hölder’s inequality with exponents 1
2 p and

( 1
2 p
)′ again and (3-26), (3-27), it

holds that∥∥∥∥(∑
k∈Z

|µk,λ ∗ gk |
2
)1/2∥∥∥∥2

L p(u)
(3-28)

≤ Ch,�,q,γ

∫
Rn

∑
k∈Z

|gk(x)|2(M
µ̃
λ us)1/r M µ̃

λ (u
r ′/(p/2)′vr ′))1/r ′(x) dx

≤ Ch,�,q,γ

∥∥∥∥(∑
k∈Z

|gk |
2
)1/2∥∥∥∥2

L p(M µ̃
λ,su)
‖M µ̃

λ (u
r ′/(p/2)′vr ′)‖

1/r ′

L(p/2)′/r ′ (Rn)
.

By (3-1), (3-6), and (3-12), one has

(3-29) ‖M µ̃
λ f ‖L t (Rn) ≤ Ch,�,q,γ,t‖ f ‖L t (Rn) ∀1< t <∞.
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Since 1
2 p = r/s < r , then

( 1
2 p
)′
> r ′. Equation (3-29) leads to

‖M µ̃
λ (u

r ′/(p/2)′vr ′)‖
1/r ′

L(p/2)′/r ′ (Rn)

≤ Ch,�,q,γ,p,s‖ur ′/(p/2)′vr ′
‖

1/r ′

L(p/2)′/r ′ (Rn)
≤ Ch,�,q,γ,p,s .

This together with (3-28) yields (3-25) and completes the proof of (i) of Theorem 1.1.

Step 3: The proof of (ii) of Theorem 1.1. For 1≤ λ≤ N and s > 1, let 3λ,s , Hλ,s ,
and {tk}k∈N be given as in Theorem 1.1. To prove (1-8), it suffices to show that

(3-30) ‖Tλ f ‖L p(u) ≤ Ch,�,q,γ,p,λ,s,tk‖ f ‖L p(3N ,su) ∀s > tk

for all 1≤ λ≤ N , 1< p < 2, all k ∈N, and any nonnegative measurable function
u on Rn . Actually, (3-30) reduces to the following

(3-31)
∫

Rn
|Tλ f (x)|pu1/s(x) dx

≤ Ch,�,q,γ,p,λ,s,tk

∫
Rn
| f (x)|p(MN u+M2M̃N u+ HN u)1/s(x) dx ∀s > tk

for all 1≤ λ≤ N , 1< p < 2, all k ∈N, and any nonnegative measurable function
u on Rn . To this end, we substitute us for u in (3-31). With this substitution,
the weight on the left becomes u and the weight on the right is not more than
MN

s u+M2
s M̃N

s u+ HN ,su.
We now prove (3-31). Fix s > 1 and a nonnegative measurable function u on Rn .

It follows from (3-10) that

(3-32)
∫

Rn
(Mσ

λ f (x))pu1/s(x) dx

≤

∫
Rn
(MMσ

λ−1| f |(x))
pu1/s(x) dx +

∫
Rn
(Gω

λ f (x))pu1/s(x) dx

for all 1< p < 2. Hence by the well-known Fefferman–Stein inequality for M (see
(3-102) below) we have

(3-33)
∫

Rn
(MMσ

λ−1| f |)(x))
pu1/s(x) dx

≤ C p‖Mσ
λ−1| f |‖

p
L p(Mu1/s)

≤ C p‖Mσ
λ−1| f |‖

p
L p((Mu)1/s)

for 1< p <∞. Next, we consider Gω
λ f . By Minkowski’s inequality, we obtain

Gw
λ f (x)=

(∑
k∈Z

∣∣∣∣ωk,λ ∗
∑
j∈Z

S3
j+k,λ f (x)

∣∣∣∣2)1/2

≤

∑
j∈Z

(∑
k∈Z

|ωk,λ ∗ S3
j+k,λ f (x)|2

)1/2
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=:

∑
j∈Z

Gλ, j f (x).

It follows that

(3-34) ‖Gω
λ f ‖L p(u1/s) ≤

∑
j∈Z

‖Gλ, j f ‖L p(u1/s)

for all 1< p <∞. It is obvious to see that

‖ωk,λ ∗ f ‖L∞(Rn) ≤ Ch,�,q,γ ‖ f ‖L∞(Rn),(3-35)

‖ωk,λ ∗ f ‖L1(u) ≤ C‖ f ‖L1(M σ̃
λ u+M σ̃

λ−1Mu) ≤ C‖ f ‖L1(MM σ̃
λ u+MM σ̃

λ−1Mu).(3-36)

Thus, by interpolating between (3-35) and (3-36), we obtain

(3-37) ‖ωk,λ ∗ f ‖L p(u) ≤ Ch,�,q,γ,p‖ f ‖L p(MM σ̃
λ u+MM σ̃

λ−1Mu)

for all 1< p < 2. It follows from (3-37) that

(3-38)
∫

Rn

∑
k∈Z

|ωk,λ ∗ fk(x)|pu(x) dx

≤ Ch,�,q,γ,p

∫
Rn

∑
k∈Z

| fk(x)|p(MM σ̃
λ u+MM σ̃

λ−1Mu)(x) dx

for all 1< p < 2. On the other hand, we get from (3-6) and (3-9) that

(3-39)
∫

Rn
(sup

k∈Z

|ωk,λ ∗ fk(x)|)p dx ≤ Ch,�,q,γ,p

∫
Rn
(sup

k∈Z

| fk(x)|)p dx

for all 1< p < 2. An interpolation between (3-38) and (3-39) now yields

(3-40)
∫

Rn

(∑
k∈Z

|ωk,λ ∗ fk(x)|2
)p/2

u1/t1(x) dx

≤ Ch,�,q,γ,p,t1

∫
Rn

(∑
k∈Z

| fk(x)|2
)p/2

(MM σ̃
λ u+MM σ̃

λ−1Mu)1/t1(x) dx

for all 1< p < 2, where t1 = 2/p. Substitute ut1 for u in (3-40), we obtain that

(3-41)
∫

Rn

(∑
k∈Z

|ωk,λ ∗ fk(x)|2
)p/2

u(x) dx

≤Ch,�,q,γ,p,t1

∫
Rn

(∑
k∈Z

| fk(x)|2
)p/2

(MM σ̃
λ ut1 +MM σ̃

λ−1Mut1)1/t1(x) dx

≤Ch,�,q,γ,p,t1

∫
Rn

(∑
k∈Z

| fk(x)|2
)p/2

(Mt1 M σ̃
λ,t1u+Mt1 M σ̃

λ−1,t1Mt1u)(x) dx .
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Since Mt1 M σ̃
λ,t1u+Mt1 M σ̃

λ−1,t1Mt1u ∈ A1, by the weighted Littlewood–Paley theory,
(3-41) yields that

(3-42) ‖Gλ, j f ‖L p(u)

=

∥∥∥∥(∑
k∈Z

|ωk,λ ∗ S3
j+k,λ f |2

)1/2∥∥∥∥
L p(u)

≤ Ch,�,q,γ,p,t1

∥∥∥∥(∑
k∈Z

|S3
j+k,λ f |2

)1/2∥∥∥∥
L p(Mt1 M σ̃

λ,t1
u+Mt1 M σ̃

λ−1,t1
Mt1 u)

≤ Ch,�,q,γ,p,λ,t1‖ f ‖L p(Mt1 M σ̃
λ,t1

u+Mt1 M σ̃
λ−1,t1

Mt1 u)

for all 1< p < 2. Substituting u1/t1 for u in (3-42), one finds

(3-43) ‖Gλ, j f ‖L p(u1/t1 ) ≤ Ch,�,q,γ,p,λ,t1‖ f ‖L p((MM σ̃
λ u+MM σ̃

λ−1Mu)1/t1 )

for all 1< p < 2. On the other hand, by (3-8) and the arguments similar to those
used in deriving (3-21),

(3-44)
∫

Rn
|ωk,λ ∗ S j+k,λw(x)|2u(x) dx

≤ Ch,�,q,γ,s2−(1−1/s)/(2q ′γ ′)| j |
∫

Rn
|w(x)|2Ms M ω̃

λ,su(x) dx

for any function w and any s > 1. By (3-44) with w = S2
j+k,λ f and (3-17), we

obtain that

‖Gλ, j f ‖2L2(u)(3-45)

=

∫
Rn

∑
k∈Z

|ωk,λ ∗ S3
j+k,λ f (x)|2u(x) dx

≤

∑
k∈Z

∫
Rn
|ωk,λ ∗ S3

j+k,λ f (x)|2u(x) dx

≤ Ch,�,q,γ,s2−(1−1/s)/(2q ′γ ′)| j |
∫

Rn

∑
k∈Z

|S2
j+k,λ f (x)|2Ms M ω̃

λ,su(x) dx

≤ Ch,�,q,γ,s2−(1−1/s)/(2q ′γ ′)| j |
∫

Rn
| f (x)|2Ms M ω̃

λ,su(x) dx .

Take s = t1. Substituting u1/t1 for u in (3-45), we get

(3-46) ‖Gλ, j f ‖L2(u1/t1 ) ≤ Ch,�,q,γ,λ,t12−(1−1/t1)/(4q ′γ ′)| j |
‖ f ‖L2((MM ω̃

λ u)1/t1 ).

It follows from (3-9) that

(3-47) MM ω̃
λ u ≤MM σ̃

λ |u| +M2 M σ̃
λ−1|u| ≤MM σ̃

λ Mu+M2 M σ̃
λ−1Mu.
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Formula (3-47) together with (3-46) implies that

(3-48) ‖Gλ, j f ‖L2(u1/t1 )

≤ Ch,�,q,γ,λ,t12−(1−1/t1)/(4q ′γ ′)| j |
‖ f ‖L2((MM σ̃

λ Mu+M2 M σ̃
λ−1Mu)1/t1 ).

By an interpolation between (3-43) and (3-48), we obtain

(3-49) ‖Gλ, j f ‖L p(u1/t1 )

≤ Ch,�,q,γ,p,λ,t12−β(p,q,γ,t1)| j |‖ f ‖L p((MM σ̃
λ Mu+M2 M σ̃

λ−1Mu)1/t1 )

for all 1< p < 2, where β(p, q, γ, t1) > 0. We get from (3-49) and (3-34) that

(3-50) ‖Gω
λ f ‖L p(u1/t1 ) ≤ Ch,�,q,γ,p,λ,t1‖ f ‖L p((MM σ̃

λ Mu+M2 M σ̃
λ−1Mu)1/t1 )

for all 1< p < 2. Combining (3-50) with (3-32), (3-33), we now have

(3-51)
∫

Rn
(Mσ

λ f (x))pu1/t1(x) dx

≤ Ch,�,q,γ,p,λ,t1

(∫
Rn
(Mσ

λ−1| f |(x))
p(Mu)1/t1(x) dx

+

∫
Rn
| f (x)|p(MM σ̃

λ Mu+M2 M σ̃
λ−1Mu)1/t1(x) dx

)
for all 1< p < 2. We want to show that

(3-52)
∫

Rn
(Mσ

λ f (x))pu1/t1(x) dx

≤ Ch,�,q,γ,p,λ,t1

∫
Rn
| f (x)|p(Mλu+M2M̃λu+ Hλu)1/t1(x) dx

for all 1≤ λ≤ N and 1< p < 2. When λ= 1, (3-1) and (3-51) imply∫
Rn
(Mσ

1 f (x))pu1/t1(x) dx

≤ Ch,�,q,γ,p,t1

(∫
Rn
(Mσ

0 | f |(x))
p(Mu)1/t1(x) dx

+

∫
Rn
| f (x)|p(MM σ̃

1 Mu+M2 M σ̃
0 Mu)1/t1(x) dx

)
≤ Ch,�,q,γ,p,t1

∫
Rn
| f (x)|p(Mu+M2M̃u+MM σ̃

1 Mu)1/t1(x) dx

≤ Ch,�,q,γ,p,t1

∫
Rn
| f (x)|p(Mu+M2M̃u+ H1u)1/t1(x) dx
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for any 1 < p < 2. This yields (3-52) for λ = 1. Assume that (3-52) holds for
λ= ι− 1 with ι ∈ {2, . . . , N }. We obtain, from (3-51) and our assumption,∫

Rn
(Mσ

ι f (x))pu1/t1(x) dx

≤ Ch,�,q,γ,p,ι,t1

(∫
Rn
(Mσ

ι−1| f |(x))
p(Mu)1/t1(x) dx

+

∫
Rn
| f (x)|p(MM σ̃

ι Mu+M2 M σ̃
ι−1Mu)1/t1(x) dx

)
≤ Ch,�,q,γ,p,ι,t1

(∫
Rn
| f (x)|p(MιMu+M2M̃ι−1Mu+ Hι−1Mu)1/t1(x) dx

+

∫
Rn
| f (x)|p(MM σ̃

ι Mu+M2 M σ̃
ι−1Mu)1/t1(x) dx

)
≤ Ch,�,q,γ,p,ι,t1

∫
Rn
| f (x)|p(Mιu+M2M̃ιu+ HιMu)1/t1(x) dx

for all 1< p < 2. This yields (3-52) for λ= ι. Thus, (3-52) is proved. Inequality
(3-52) together with (3-9) and (3-33) yields that

(3-53)
∫

Rn
(sup

k∈Z

|ωk,λ ∗ f (x)|)pu1/t1(x) dx

≤

∫
Rn
(Mω

λ | f |(x))
pu1/t1(x) dx

≤

∫
Rn
(Mσ

λ | f |(x))
pu1/t1(x) dx +

∫
Rn
(MMσ

λ−1| f |(x))
pu1/t1(x) dx

≤ Ch,�,q,γ,p,λ,t1

∫
Rn
| f (x)|p(Mλ+1u+M2M̃λu+ HλMu)1/t1(x) dx

for all 1 < p < 2. Since MM σ̃
λ u +MM σ̃

λ−1Mu ≤ Hλu, an interpolation between
(3-38) and (3-53) yields

(3-54)
∫

Rn

(∑
k∈Z

|ωk,λ ∗ fk(x)|2
)p/2

u1/t2(x) dx

≤ Ch,�,q,γ,p,λ,t2

∫
Rn

(∑
k∈Z

| fk(x)|2
)p/2

(Mλu+M2M̃λu+ Hλu)1/t2(x) dx

for all 1< p < 2, where 1/t2 = 1/t1+ 1
2 p(1− 1/t1). Using (3-54) and arguments

similar to those used in deriving (3-52), we obtain

(3-55)
∫

Rn
(Mσ

λ f (x))pu1/t2(x) dx

≤ Ch,�,q,γ,p,λ,t2

∫
Rn
| f (x)|p(Mλu+M2M̃λu+ Hλu)1/t2(x) dx
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for all 1 ≤ λ ≤ N and 1 < p < 2. As the same reason as above, we can obtain a
strictly decreasing sequence {tk}k∈N by the recursion formula

t1 =
2
p
,

1
tk+1
=

1
tk
+

p
2

(
1− 1

tk

)
, k = 2, 3, . . .

such that

(3-56)
∫

Rn
(Mσ

λ f (x))pu1/tk (x) dx

≤ Ch,�,q,γ,p,λ,tk

∫
Rn
| f (x)|p(Mλu+M2M̃λu+ Hλu)1/tk (x) dx

for all 1≤λ≤ N , 1< p<2, and all k ∈N. Using (3-12), (3-56), and the well-known
Fefferman–Stein inequality for M (see (3-102) below), we have

(3-57)
∫

Rn
(Mµ

λ f (x))pu1/tk (x) dx

≤

∫
Rn
(MN−λMσ

λ | f |(x))
pu1/tk (x) dx

+

∫
Rn
(MN−λ+1 Mσ

λ−1| f |(x))
pu1/tk (x) dx

≤ C p

(∫
Rn
(Mσ

λ | f |(x))
p(MN−λu)1/tk (x) dx

+

∫
Rn
(Mσ

λ−1| f |(x))
p(MN−λ+1u)1/tk (x) dx

)
≤ Ch,�,q,γ,p,λ,tk

(∫
Rn
| f (x)|p

(
Mλ(MN−λu)

+M2 ˜Mλ(MN−λu)+ Hλ(MN−λu)
)1/tk

(x) dx

+

∫
Rn
| f (x)|p

(
Mλ−1(MN−λ+1u)

+M2 ˜Mλ−1(MN−λ+1u)+ Hλ−1(MN−λ+1u)
)1/tk

(x) dx
)

≤ Ch,�,q,γ,p,λ,tk

∫
Rn
| f (x)|p(MN u+M2M̃N u+ HN u)1/tk (x) dx .

By (3-57) and the lemma in [Zhang 2008, p.1574] we can get (3-31). �

Proof of Theorem 1.2. For 1 ≤ λ ≤ N , let 2λ,s be given as in Theorem 1.2. We
shall prove Theorem 1.2 by combining the method used in the proof of [Zhang
2008, Theorem 1.2] with ideas from [Duoandikoetxea and Rubio de Francia 1986;
Fan et al. 1999]. For any ε > 0, there exists an integer k such that 2k−1

≤ ε < 2k .
We now write

(3-58) T ∗PN
f (x)≤ Mσ

N f (x)+ sup
k∈Z

∣∣∣∣ ∞∑
j=k

σ j,N ∗ f (x)
∣∣∣∣.
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We shall prove Theorem 1.2 by considering the following two steps:

Step 1: The proof of (i) of Theorem 1.2. By (3-58), to prove (1-9), it suffices to
show that

(3-59) ‖Mσ
N f ‖L p(u) ≤ Ch,�,q,γ,p,N ,s‖ f ‖L p(2N ,sMsu)

and

(3-60)
∥∥∥∥sup

k∈Z

∣∣∣∣ ∞∑
j=k

σ j,N ∗ f
∣∣∣∣∥∥∥∥

L p(u)
≤ Ch,�,q,γ,p,N ,s‖ f ‖L p(2N ,sMsu+2N ,sM2

s u)

for all 2≤ p <∞, s > 1, and any nonnegative measurable function u on Rn .
Let us first prove (3-59). Fix u ∈ A1 and 1 ≤ λ ≤ N . By arguments similar to

those used in deriving (3-25),

(3-61)
∥∥∥∥(∑

k∈Z

|ωk,λ ∗ gk |
2
)1/2∥∥∥∥

L p(u)
≤ Ch,�,q,γ,p,s

∥∥∥∥(∑
k∈Z

|gk |
2
)1/2∥∥∥∥

L p(M ω̃
λ,su)

for all 2< p <∞ and any s > 1. It follows from (3-61) that

(3-62) ‖Gλ, j f ‖L p(u) =

∥∥∥∥(∑
k∈Z

|ωk,λ ∗ S3
j+k f |2

)1/2∥∥∥∥
L p(u)

≤ Ch,�,q,γ,p,s

∥∥∥∥(∑
k∈Z

|S3
j+k f |2

)1/2∥∥∥∥
L p(Ms M ω̃

λ,su)

≤ Ch,�,q,γ,p,λ,s‖ f ‖L p(Ms M ω̃
λ,su)

for all 2 < p <∞ and any s > 1. In the last inequality of (3-62), we used the
weighted Littlewood–Paley theory and the fact that Ms M ω̃

λ,su ∈ A1. On the other
hand, it follows from (3-45) that

(3-63) ‖Gλ, j f ‖L2(u) ≤ Ch,�,q,γ,λ,s2−(1−1/s)/(4q ′γ ′)| j |
‖ f ‖L2(Ms M ω̃

λ,su).

By (3-62), (3-63), and an interpolation (see [Bergh and Löfström 1976, Corollary
5.5.4]), we have

(3-64) ‖Gλ, j f ‖L p(u) ≤ Ch,�,q,γ,p,λ,s2−ϑ(p,q,γ,s)| j |‖ f ‖L p(Ms M ω̃
λ,su)

for all 2 ≤ p <∞ and s > 1, where ϑ(p, q, γ, s) > 0 depends on p, q, γ and s.
Combining (3-64) with (3-34) yields that

(3-65) ‖Gω
λ f ‖L p(u) ≤ Ch,�,q,γ,p,λ,s‖ f ‖L p(Ms M ω̃

s u)

for all 2≤ p <∞ and s > 1. We get from (3-9) that

(3-66) Ms M ω̃
λ,su ≤ C(Ms M σ̃

λ,s |u| +M2
s M σ̃

λ−1,s |u|).
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Inequality (3-66) together with (3-65) yields

(3-67) ‖Gω
λ f ‖L p(u) ≤ Ch,�,q,γ,p,λ,s‖ f ‖L p(Ms M σ̃

λ,s |u|+M2
s M σ̃

λ−1,s |u|)

for all 2 ≤ p <∞ and s > 1. On the other hand, from (3-10), (3-67), and the
well-known Fefferman–Stein inequality for M (see (3-102) below) we have

(3-68) ‖Mσ
λ f ‖L p(u)

≤ ‖MMσ
λ−1| f |‖L p(u)+‖Gω

λ f ‖L p(u)

≤ C p‖Mσ
λ−1| f |‖L p(Mu)+Ch,�,q,γ,p,λ,s‖ f ‖L p(Ms M σ̃

λ,s |u|+M2
s M σ̃

λ−1,s |u|)

for all 2≤ p <∞ and any s > 1. Formula (3-68) together with (3-1), (3-2), and an
induction argument implies that

(3-69) ‖Mσ
λ f ‖L p(u) ≤ Ch,�,q,γ,p,λ,s‖ f ‖L p(Mλu+Iλ,su+Jλ,su) ∀1≤ λ≤ N .

Since u ≤Msu and Msu ≤ A1, (3-69) leads to

(3-70) ‖Mσ
λ f ‖L p(u) ≤ Ch,�,q,γ,p,λ,s‖ f ‖L p(Mλ+1

s u+Iλ,sMsu+Jλ,sMsu)

for all 2≤ p <∞, s > 1, and any nonnegative function u on Rn . Inequality (3-70)
yields that (3-59) holds for all 2≤ p <∞.

We now prove (3-60). It follows from (3-11) that

(3-71) sup
k∈Z

∣∣∣∣ ∞∑
j=k

σ j,N ∗ f (x)
∣∣∣∣≤ N∑

λ=1

sup
k∈Z

∣∣∣∣ ∞∑
j=k

µ j,λ ∗ f (x)
∣∣∣∣=: N∑

λ=1

T ∗λ f (x).

Fix 1≤ λ≤ N , let ψk,λ be given as in (3-7). We write

∞∑
j=k

µ j,λ∗ f (x)=ψk,λ∗Tλ f (x)−ψk,λ∗

k−1∑
j=−∞

µ j,λ∗ f (x)+(δ−ψk,λ)∗

∞∑
j=k

µ j,λ∗ f (x).

Here, δ is the Dirac-delta and Tλ is given as in (3-14). It follows that

(3-72) T ∗λ f (x)≤ sup
k∈Z

|ψk,λ ∗ Tλ f (x)| + sup
k∈Z

∣∣∣∣ψk,λ ∗

k−1∑
j=−∞

µ j,λ ∗ f (x)
∣∣∣∣

+ sup
k∈Z

∣∣∣∣(δ−ψk,λ) ∗

∞∑
j=k

µ j,λ ∗ f (x)
∣∣∣∣

=: A1,λ f (x)+ A2,λ f (x)+ A3,λ f (x).
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For A1,λ f , by the well-known Fefferman–Stein inequality for M (see (3-102)
below) and (3-15), we obtain

(3-73) ‖A1,λ f ‖L p(u) ≤ ‖M(Tλ f )‖L p(u) ≤ C p‖Tλ f ‖L p(Mu)

≤ Ch,�,q,γ,p,λ,s‖ f ‖L p(3N ,sMu)

≤ Ch,�,q,γ,p,λ,s‖ f ‖L p(2N ,sMu)

for all 2≤ p <∞, s > 1, and any nonnegative measurable function u on Rn .
For A2,λ f , it is clear that

A2,λ f (x)= sup
k∈Z

∣∣∣∣ ∞∑
j=1

ψk,λ ∗µk− j,λ ∗ f (x)
∣∣∣∣

≤

∞∑
j=1

sup
k∈Z

|ψk,λ ∗µk− j,λ ∗ f (x)| =:
∞∑
j=1

I j f (x).

Consequently,

(3-74) ‖A2,λ f ‖L p(u) ≤

∞∑
j=1

‖I j f ‖L p(u)

for all 1 < p <∞ and any nonnegative measurable function u on Rn . We shall
show that

(3-75) ‖I j f ‖L p(u) ≤ Ch,�,q,γ,p,λ,s‖ f ‖L p(2N ,sM2
s u)

for all 2≤ p <∞, any s > 1, and any nonnegative measurable function u on Rn .
We get by the well-known Fefferman–Stein inequality for M (see (3-102) below),
(3-12), and (3-70), that

‖I j f ‖L p(u)

≤ ‖MMµ
λ | f |‖L p(u) ≤ C p‖M

µ
λ | f |‖L p(Mu)

≤ C p(‖Mσ
λ | f |‖L p(MN−λ+1u)+‖M

σ
λ−1| f |‖L p(MN−λ+2u))

≤ Ch,�,q,γ,p,λ,s‖ f ‖L p(MN+2
s u+Iλ,sMN−λ+2

s u+Iλ,sMN−λ+3
s u+Jλ,sMN−λ+2

s u+Jλ−1,sMN−λ+3
s u)

≤ Ch,�,q,γ,p,λ,s‖ f ‖L p(MN+2
s u+IN ,sM2

s u+JN ,sM2
s u)

for all 2≤ p <∞, any s > 1, and any nonnegative measurable function u on Rn .
This proves (3-75).
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On the other hand, by (3-13) and Plancherel’s theorem, we get

‖I j f ‖2L2(Rn)
≤

∥∥∥∥(∑
k∈Z

|ψk,λ ∗µk− j,λ ∗ f |2
)1/2∥∥∥∥2

L2(Rn)

≤

∑
k∈Z

∫
{|aλξ |≤2−kλ}

|µ̂k− j,λ(ξ)|
2
| f̂ (ξ)|2 dξ

≤ C
∫

Rn

∑
k∈Z

|µ̂k− j,λ(ξ)|
2χ{|aλξ |≤2−kλ}| f̂ (ξ)|

2 dξ

≤ Ch,�,q,γ sup
ξ∈Rn

∑
k∈Z

|aλ2λ(k− j)ξ |1/(2λq ′γ ′)χ{|aλξ |≤2−kλ}‖ f ‖2L2(Rn)

≤ C− j/(2q ′γ ′)
h,�,q,γ sup

ξ∈Rn

∑
k∈Z

|2kλaλξ |1/(2λq ′γ ′)χ{|aλξ |≤2−kλ}‖ f ‖2L2(Rn)

≤ Ch,�,q,γ 2− j/(2q ′γ ′)
‖ f ‖2L2(Rn)

,

where the last inequality is obtained by the properties of the lacunary sequence. It
follows that

(3-76) ‖I j f ‖L2(Rn) ≤ Ch,�,q,γ 2− j/(4q ′γ ′)
‖ f ‖L2(Rn).

On the other hand, by (3-75) with p = 2 and u replacing us , we get

(3-77) ‖I j f ‖L2(us) ≤ Ch,�,q,γ,λ,s‖ f ‖L2(2N ,sM2
s us).

An interpolation between (3-76) and (3-77) yields

(3-78) ‖I j f ‖L2(u) ≤ Ch,�,q,γ,λ,s2−(1−1/s)/(4q ′γ ′) j
‖ f ‖L2((2N ,sM2

s us)1/s)

≤ Ch,�,q,γ,λ,s2−(1−1/s)/(4q ′γ ′) j
‖ f ‖L2(2N ,s2 M2

s2 u).

Take s2 replacing s. Formula (3-78) leads to

(3-79) ‖I j f ‖L2(u) ≤ Ch,�,q,γ,λ,s2−(1−1/
√

s)/(4q ′γ ′)
‖ f ‖L2(2N ,sM2

s u).

Interpolating between (3-79) and (3-75) (see [Bergh and Löfström 1976, Corollary
5.5.4]) yields

(3-80) ‖I j f ‖L p(u) ≤ Ch,�,q,γ,p,λ,s2−ς(p,q,γ,s) j
‖ f ‖L p(2N ,sM2

s u),

for all 2≤ p <∞, where ς(p, q, γ, s) > 0. Thus, we get from (3-80) and (3-74),

(3-81) ‖A2,λ f ‖L p(u) ≤ Ch,�,q,γ,p,λ,s‖ f ‖L p(2N ,sM2
s u)

for all 2≤ p <∞, s > 1, and any nonnegative measurable function u on Rn .
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Finally we estimate A3,λ f . Obviously,

A3,λ f (x)= sup
k∈Z

∣∣∣∣ ∞∑
j=0

(δ−ψk,λ) ∗µk+ j,λ ∗ f (x)
∣∣∣∣

≤

∞∑
j=0

sup
k∈Z

|(δ−ψk,λ) ∗µk+ j,λ ∗ f (x)|

=:

∞∑
j=0

J j f (x).

It follows that

(3-82) ‖A3,λ f ‖L p(u) ≤

∞∑
j=0

‖J j f ‖L p(u)

for all 1 < p < ∞ and any nonnegative measurable function u on Rn . By the
argument similar to those used to derive (3-75),

(3-83) ‖J j f ‖L p(u) ≤ Ch,�,q,γ,p,λ,s‖ f ‖L p(2N ,sM2
s u)

for all 2≤ p <∞, any s > 1, and any nonnegative measurable function u on Rn .
On the other hand, using (3-13) and the Plancherel theorem, we can obtain

‖J j f ‖2L2(Rn)
≤

∥∥∥∥(∑
k∈Z

|(δ−ψk,λ) ∗µ j+k,λ ∗ f |2
)1/2∥∥∥∥2

L2(Rn)

≤

∑
k∈Z

∫
{2kλaλξ |≥1}

|µ̂ j+k,λ(ξ)|
2
| f̂ (ξ)|2 dξ

≤

∑
k∈Z

k∑
i=−∞

∫
{2−λi≤|aλξ |<2−λ(i−1)}

|µ̂ j+k,λ(ξ)|
2
| f̂ (ξ)|2 dξ

≤ Ch,�,q,γ

∑
k∈Z

k∑
i=−∞

2−( j+k−i)/(2q ′γ ′)
∫
{2−λi≤|aλξ |<2−λ(i−1)}

| f̂ (ξ)|2 dξ

≤ Ch,�,q,γ 2− j/(2q ′γ ′)
∞∑

i=0

2−i/(2q ′γ ′)
‖ f ‖2L2(Rn)

≤ Ch,�,q,γ 2− j/(2q ′γ ′)
‖ f ‖2L2(Rn)

.

It follows that

(3-84) ‖J j f ‖L2(Rn) ≤ Ch,�,q,γ 2− j/(4q ′γ ′)
‖ f ‖L2(Rn).
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By (3-83), (3-84), and arguments similar to those used in deriving (3-80),

(3-85) ‖J j f ‖L p(u) ≤ Ch,�,q,γ,p,λ,s2−τ(p,q,γ,s) j
‖ f ‖L p(2N ,sM2

s u)

for all 2 ≤ p <∞ and s > 1, where τ(p, q, γ, s) > 0. Equation (3-85) together
with (3-82) yields

(3-86) ‖A3,λ f ‖L p(u) ≤ Ch,�,q,λ,γ ‖ f ‖L p(2N ,sM2
s u)

for all 2≤ p <∞ and s > 1. Then (3-60) follows from (3-71)–(3-73), (3-81), and
(3-86). �

Step 2: The proof of (ii) of Theorem 1.2. Let 1 < p < 2 and {tk}k∈N be given as
in Theorem 1.2. Fix a nonnegative measurable function u on Rn . By (3-58), to
prove (1-10), it suffices to show that

(3-87) ‖Mσ
N f ‖L p(u) ≤ Ch,�,q,γ,p,N ,s,tk‖ f ‖L p(2N ,sMsu) ∀s > tk

and

(3-88)
∥∥∥∥sup

k∈Z

∣∣∣∣ ∞∑
j=k

σ j,N ∗ f
∣∣∣∣∥∥∥∥

L p(u)

≤ Ch,�,q,γ,p,N ,s,tk‖ f ‖L p(2N ,sMsu+2N ,sM2
s u) ∀s > tk

for all k ∈ N.
We first prove (3-87). Fix k ∈ N. Substitute utk for u in (3-56), one has

(3-89)
∫

Rn
(Mσ

λ f (x))pu(x) dx

≤ Ch,�,q,γ,p,λ,tk

∫
Rn
| f (x)|p(Mλutk +M2M̃λutk + Hλutk )1/tk (x) dx

for all 1≤ λ≤ N . Notice that

(Mλutk +M2M̃λutk + Hλutk )1/tk (x)≤ Cs,tk (M
λus
+M2M̃λus + Hλus)1/s(x)

for any s > tk by Hölder’s inequality. Then (3-89) yields that

(3-90)
∫

Rn
(Mσ

λ f (x))pu(x) dx

≤ Ch,�,q,γ,p,λ,tk

∫
Rn
| f (x)|p(Mλ

s u+M2
s M̃λ

s u+ Hλ,su)(x) dx ∀s > tk

holds for all 1≤ λ≤ N and any fixed positive integer k, which gives (3-87).
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Below we prove (3-88). For A1,λ f , by the well-known Fefferman–Stein inequal-
ity for M (see (3-102) below) and (3-30), we obtain

(3-91) ‖A1,λ f ‖L p(u) ≤ C‖M(Tλ f )‖L p(u) ≤ C p‖Tλ f ‖L p(Mu)

≤ Ch,�,q,γ,p,λ,s,tk‖ f ‖L p(3N ,sMu)

≤ Ch,�,q,γ,p,λ,s,tk‖ f ‖L p(2N ,sMu) ∀s > tk

for any fixed positive integer k.
For A2,λ f , it follows from the well-known Fefferman–Stein inequality for M

(see (3-102) below), (3-12), and (3-91) that

(3-92) ‖I j f ‖L p(u)

≤ C‖MMµ
λ f ‖L p(u) ≤ C p‖M

µ
λ f ‖L p(Mu)

≤ C p(‖Mσ
λ | f |‖L p(MN−λ+1u)+‖M

σ
λ−1| f |‖L p(MN−λ+2u))

≤ Ch,�,q,γ,p,λ,s,tk‖ f ‖
L p(MN

s Mu+M2
s M̃N

s Mu+Hλ,sMN−λ+1u+Hλ−1,sMN−λ+2u)

≤ Ch,�,q,γ,p,λ,s,tk‖ f ‖
L p(MN

s Mu+M2
s M̃N

s Mu+HN ,sMu)

≤ Ch,�,q,γ,p,λ,s,tk‖ f ‖L p(2N ,sM2
s u) ∀s > tk

for any fixed positive integer k. Interpolating between (3-79) and (3-92) (see [Bergh
and Löfström 1976, Corollary 5.5.4]) yields

(3-93) ‖I j f ‖L p(u) ≤ Ch,�,q,γ,p,λ,s,tk 2−δ(p,q,γ,s) j
‖ f ‖L p(2N ,sM2

s u) ∀s > tk,

where δ(p, q, γ, s) > 0. Thus, we get from (3-93) and (3-74) that

(3-94) ‖A2,λ f ‖L p(u) ≤ Ch,�,q,γ,p,λ,s,tk‖ f ‖L p(2N ,sM2
s u) ∀s > tk

for any fixed positive integer k.
For A3,λ f , by the argument similar to those used to derive (3-92),

(3-95) ‖J j f ‖L p(u) ≤ Ch,�,q,γ,p,λ,s,tk‖ f ‖L p(2N ,sM2
s u) ∀s > tk

for any fixed positive integer k. By (3-95), (3-84), and arguments similar to those
used in deriving (3-85),

(3-96) ‖J j f ‖L p(u) ≤ Ch,�,q,γ,p,λ,s,tk 2−o(p,q,γ,s) j
‖ f ‖L p(2N ,sM2

s u) ∀s > tk

for any fixed positive integer k, where o(p, q, γ, s) > 0. Inequality (3-96) together
with (3-82) yields

(3-97) ‖A3,λ f ‖L p(u) ≤ Ch,�,q,γ,p,λ,s,tk‖ f ‖L p(2N ,sM2
s u) ∀s > tk

for any fixed positive integer k. Then (3-88) follows from (3-71), (3-72), (3-92),
(3-94), and (3-97).
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We now turn to proving Corollaries 1.3–1.5.

Proof of Corollary 1.3. By (3-6), one finds that

(3-98) ‖3N ,s f ‖Lr (Rn) ≤ Ch,�,q,γ ‖ f ‖Lr (Rn)

for any 1< s <∞ and r > s. We let {tk} be the sequence as in (ii) of Theorem 1.1
when 1< p < 2, and, for the sake of convenience, we set {tk} = {1+ 1/k} when
2 ≤ p <∞. It is clear that {tk}k∈N is strictly decreasing and limk→∞ tk = 1. It
follows from (1-7) and (1-8) that for 1< p <∞, it holds that

(3-99) ‖TPN f ‖L p(u) ≤ Ch,�,q,γ,p,s,N ,tk‖ f ‖L p(3N ,su) ∀s > tk

for any fixed positive integer k and any nonnegative measurable function u on Rn .
By (3-98), (3-99), and Proposition 2.1, we have (1-11) and (1-12) for the case of
1< p̃ < p <∞. On the other hand, by duality, we can obtain (1-11) and (1-12) for
the case of 1 < p < p̃ <∞. Taking u = 1, we obtain 3N ,su ≤ C . This together
with (3-99) yields that TPN is bounded on L p(Rn) for all 1 < p <∞. It leads to
(1-11) for the case p= p̃ by (1-1). The inequality (1-12) for the case p= p̃ follows
from (1-1) and (1-15). This completes the proof of Corollary 1.3. �

Proof of Corollary 1.4. By (3-6), one finds that

(3-100) ‖2N ,sMsu+2N ,sM2
s u‖Lr (Rn) ≤ Ch,�,q,γ ‖u‖Lr (Rn)

for any 1< s <∞ and r > s. We let {tk} be the sequence as in (ii) of Theorem 1.1
when 1< p < 2, and, for the sake of convenience, we set {tk} = {1+ 1/k} when
2≤ p <∞. Then Theorem 1.2 yields

(3-101) ‖T ∗PN
f ‖L p(u) ≤ Ch,�,q,γ,p,s,N ,tk‖ f ‖L p(2N ,sMsu+2N ,sM2

s u) ∀s > tk

for any fixed positive integer k and any nonnegative measurable function u on Rn .
By (3-100), (3-101), and Proposition 2.1, we obtain (1-13) and (1-14) for the case
1 < p̃ < p <∞. It was known that T ∗PN

is bounded on L p(Rn) for 1 < p <∞.
This together with (1-1) yields (1-13) for the case of p = p̃. The inequality (1-14)
for the case of p = p̃ follows from (1-1) and (1-16). This finishes the proof of
Corollary 1.4. �

Proof of Corollary 1.5. By (3-98), (3-99), and Proposition 2.1, we obtain (1-15) for
the case of 1< p̃ < p <∞. On the other hand, a duality argument yields (1-15)
for the case of 1< p < p̃ <∞. Inequality (1-15) for the case p = p̃ follows from
(3-98), (3-99), and the L p bounds for TPN . Similarly, we can obtain (1-16) for the
case of 1< p̃ ≤ p <∞ by (3-100), (3-101), and the L p boundedness of T ∗PN

. This
completes the proof of Corollary 1.5. �
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We want to make a few remarks before ending the paper. Since Proposition 2.1
plays a crucial rule to show the boundedness of an operator T on the mixed radial-
angular space L p

|x |L
p̃
θ (R

n), we expect to establish a suitable weighted L p inequality
for T . To this end, for the operator Th,�, we need to treat some technical difficulties
for different assumptions on �. This is a key step, but is definitely not trivial. For
instance, we have no idea how to establish a suitable weighted L p inequality for
Th,�, although the L p(Rn) boundedness of Th,� is well known, if � is a function
in the function class L log L(Sn−1). For the singular integral T�, another roughness
assumption on � is that � lies in the Grafakos–Stefanov class Fα(Sn−1), where

Fα(Sn−1)

:=

{
� ∈ L1(Sn−1) : sup

ξ∈Sn−1

∫
Sn−1
|�(y′)|

(
log

1
|ξ · y′|

)α
dσ(y′) <∞

}
for α > 0,

and this class was originally introduced by Grafakos and Stefanov [1998] in the
study of L p boundedness of T�. With the help of the established weighted L p

inequality for T� (see [Zhang 2008, Lemma 2]) applying [Zhang 2008, Theorems 1
and 2], and Proposition 2.1, we can show that both T� and its maximal operator
T ∗� are bounded on L p

|x |L
p̃
θ (R

n) for any 1 < p < ∞ and 1 < p̃ < ∞ provided
� ∈ Fα(Sn−1) for all α > 1.

Not only for rough singular integrals, Proposition 2.1 also works for all linear
or sublinear operators. The Hardy–Littlewood maximal function M is bounded on
L p
|x |L

p̃
θ (R

n), based on Proposition 2.1 and the well-known Fefferman–Stein [1971]
weighted norm inequality

(3-102) ‖M f ‖L p(u) ≤ C p‖ f ‖L p(Mu).

Also, any Calderón–Zygmund operator T is bounded on L p
|x |L

p̃
θ (R

n) for any
1< p<∞ and 1< p̃<∞ because of Proposition 2.1 and the well-known inequality

‖T f ‖L p(u) ≤ C p‖ f ‖L p(Msu), s > 1.
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∞-TILTING THEORY

LEONID POSITSELSKI AND JAN ŠŤOVÍČEK

We define the notion of an infinitely generated tilting object of infinite ho-
mological dimension in an abelian category. A one-to-one correspondence
between ∞-tilting objects in complete, cocomplete abelian categories with
an injective cogenerator and ∞-cotilting objects in complete, cocomplete
abelian categories with a projective generator is constructed. We also intro-
duce ∞-tilting pairs, consisting of an ∞-tilting object and its ∞-tilting class,
and obtain a bijective correspondence between ∞-tilting and ∞-cotilting
pairs. Finally, we discuss the related derived equivalences and t-structures.
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Introduction

The phrase “tilting theory” is often used to refer to a well-developed general machin-
ery for producing equivalences between triangulated categories (see [Angeleri Hügel
et al. 2007] for an introduction, history and applications). Such equivalences are
often represented by a distinguished object, a so-called tilting object, and it is
crucial to most of the theory that such a tilting object is homologically small. If
A is an abelian category with exact coproducts (e.g., a category of modules over
a ring or sheaves on a topological space) and T is a tilting object, the smallness
typically translates at least to the assumptions that T is finitely generated and of
finite projective dimension.
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In this paper we introduce and systematically develop∞-tilting theory, where
all homological smallness assumptions are dropped. This brings under one roof
various concepts and results from the literature:

(1) Wakamatsu tilting modules [Mantese and Reiten 2004; Wakamatsu 1988;
1990] over finite-dimensional algebras.

(2) Semidualizing bimodules and the Foxby equivalence [Christensen 2000; Holm
and White 2007; Positselski 2017a].

(3) The comodule-contramodule [Positselski 2010, Section 0.2 and Chapter 5] and
the semimodule-semicontramodule [Positselski 2010, Sections 0.3.7 and 6.3]
correspondences.

These results come with rather different motivations: from criteria for stable
equivalences of finite-dimensional self-injective algebras in (1), through Gorenstein
homological algebra in (2), to the representation theory of infinite-dimensional Lie
algebras (e.g., the Virasoro or Kac–Moody algebras) in (3).

A part of the work has been done in our previous paper [Positselski and Št’ovíček
2019], where we explained how the finite generation assumption can be natu-
rally dropped with help of additive monads and, in several cases of interest, with
topological rings.

In this paper we focus on dropping the assumption of finite homological di-
mension. It turns out that we still obtain triangulated equivalences and (co)tilting
t-structures, but in general not for the conventional derived categories of two abelian
categories, but rather for a so-called pseudo-coderived category of one of them and
a pseudo-contraderived category of the other.

Here, a pseudo-coderived category of an abelian category A is a certain tri-
angulated category D to which A fully embeds as the heart of a t-structure and
such that ExtiA(X, Y ) is canonically isomorphic to HomD(X, Y [i]) for all X, Y ∈ A
and i ≥ 0. The term “pseudo-coderived” comes from the fact that, under reasonable
assumptions satisfied in particular in the situations (1)–(3) above, the pseudo-
coderived category is an intermediate Verdier quotient between the conventional
derived category D(A) and the coderived category Dco(A) (which is none other
than the homotopy category Hot(Ainj) of complexes of injective objects if A is
a locally Noetherian Grothendieck category). A pseudo-contraderived category
has formally dual properties. Pseudo-co/contraderived categories are in fact not
determined uniquely by their abelian hearts, but depend on a certain parameter, so
that we often do not get just a single triangulated equivalence, but rather a family
of compatible triangulated equivalences. We refer to [Positselski 2017a] for an
in-depth discussion of this new class of triangulated categories.

To put our results into context, we briefly recall the history of tilting theory,
which evolved through a series of successive generalizations in several directions.
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The definition of what is now known as a finitely generated tilting module of
projective dimension 1 over a finite-dimensional associative algebra first appeared
in [Happel and Ringel 1982] (see also [Bongartz 1981]), which built upon [Brenner
and Butler 1980]. The main result was the so-called tilting theorem, or the Brenner–
Butler theorem, establishing equivalences between certain additive subcategories
of the categories of finitely generated modules over an algebra R and over the
endomorphism algebra S of a tilting R-module. Happel [1987] proved that a tilting
module induces a triangulated equivalence between the derived categories of finitely
generated R-modules and S-modules.

Finitely presented tilting modules of projective dimension 1 over arbitrary rings
were discussed by Colby and Fuller [1990], while finitely presented tilting modules
of arbitrary finite projective dimension n were studied by Miyashita [1986] and
Cline, Parshall and Scott [Cline et al. 1986]. The tilting theorem (for categories
of infinitely generated modules) was proved in [Miyashita 1986], and the related
derived equivalence was constructed in [Cline et al. 1986]. Infinitely generated
tilting modules of projective dimension 1 (now also known as big 1-tilting modules)
were defined by Colpi and Trlifaj [1995]. The tilting theorem for self-small tilting
objects of projective dimension 1 in Grothendieck abelian categories was obtained
by Colpi [1999]. Cotilting modules of injective dimension 1 were introduced
by Colby and Fuller [1990] and Colpi, D’Este and Tonolo [Colpi et al. 1997a]
(see also [Colpi et al. 1997b]). Finally, infinitely generated tilting modules of
projective dimension n and cotilting modules of injective dimension n (big n-tilting
and n-cotilting modules) were defined by Angeleri Hügel and Coelho [2001] and
characterized by Bazzoni [2004].

The main results of the infinitely generated tilting theory claim that all n-tilting
modules are of finite type [Bazzoni and Št’ovíček 2007] and all n-cotilting modules
are pure-injective [Št’ovíček 2006]. The tilting theorem for big 1-tilting modules was
obtained in some form by Gregorio and Tonolo [2001]. Another approach, based on
a previous work by Facchini, was developed by Bazzoni [2010], who also proved
that the derived category of R-modules is equivalent to a full subcategory and a
quotient category of the derived category of S-modules when S is the endomorphism
ring of a big 1-tilting R-module. This was extended to big n-tilting modules by
Bazzoni, Mantese, and Tonolo [Bazzoni et al. 2011]. A correspondence between
n-cotilting modules and small n-tilting objects in Grothendieck abelian categories
together with the related derived equivalence were constructed in [Št’ovíček 2014a].
Big n-tilting objects in abelian categories were defined and the related derived
equivalence was obtained by Nicolás, Saorín and Zvonareva [Nicolás et al. 2019]
and Fiorot, Mattiello and Saorín [Fiorot et al. 2017] (see also Psaroudakis and
Vitória [2018]). Finally, a correspondence between big n-tilting and n-cotilting
objects in abelian categories was constructed in [Positselski and Št’ovíček 2019].
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The main innovation in [Positselski and Št’ovíček 2019], which allows one to
obtain very naturally derived equivalences from big n-tilting objects and which
is based on the ideas previously developed in [Št’ovíček 2014a; Psaroudakis and
Vitória 2018; Nicolás et al. 2019; Positselski and Rosický 2017], is that to a big
tilting object T in an abelian category A one can assign a richer structure than
its ring of endomorphisms HomA(T, T ). For any set X, consider the set of all
morphisms T → T (X) in A, where T (X) denotes the coproduct of X copies of T.
Then the endofunctor X 7→HomA(T, T (X)) is a monad on the category of sets. The
tilting heart B corresponding to the tilting object T ∈ A is the abelian category of all
algebras (which we also call modules) over this monad. In many naturally occurring
situations, one can equip HomA(T, T ) with a complete and separated topology so
that HomA(T, T (X)) identifies with families of elements of HomA(T, T ) indexed
by X which converge to zero.

A notion of a finitely generated tilting module of infinite projective dimension
(now known as Wakamatsu tilting modules) was introduced in the representation
theory of finite-dimensional algebras by Wakamatsu in [Wakamatsu 1988; 1990]
and it was studied further by Mantese and Reiten in [2004].

In the present paper we work out a common generalization of two lines of thought
described above, namely of big n-tilting/cotilting modules and finite-dimensional
Wakamatsu tilting modules. We develop a theory of big tilting and cotilting objects
of possibly infinite homological dimension in abelian categories. Our goal is also
to put on a rigorous footing the discussion of “∞-tilting objects” in [Positselski
and Št’ovíček 2019, Sections 10.1, 10.2 and 10.3]. The structure of the paper is as
follows.

To a complete, cocomplete abelian category A with an injective cogenerator J
and an∞-tilting object T we associate in Section 2 a complete, cocomplete abelian
category B with a projective generator P and an∞-cotilting object W. We do so in
such a way that, up to equivalence, this induces a bijective correspondence between
the triples (A, T, J ) and (B, P,W ).

In order to obtain the announced version of derived equivalences, we need to
associate to each∞-tilting object a certain coresolving subcategory E⊂ A which
plays the role of the tilting class in [Positselski and Št’ovíček 2019]. This is discussed
in Section 3. Such a class E is in general not unique, but the possible choices form
a complete lattice with respect to the inclusion. Having chosen E, we already obtain
a uniquely determined full subcategory F⊂ B which plays the role of a cotilting
class, and equivalences E ' F and D(E) ' D(F). Each of D(E) and D(F) comes
naturally equipped with two t-structures, and the two abelian categories A and B

are the hearts of these two t-structures (see Section 5).
If, moreover, the ∞-tilting class E is closed under coproducts in A and the
∞-cotilting class F is closed under products in B, then we show in Section 4 that
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D(E) is a pseudo-coderived category and D(F) is a pseudo-contraderived category
in the sense of [Positselski 2017a]. Although the above closure properties of E and
F are not automatic in our setup, they are satisfied for our motivating classes of
examples mentioned above and examined in detail in Section 6.

1. The tilted and cotilted abelian categories

Given an additive category C with set-indexed coproducts and an object M ∈ C,
we denote by Add(M) ⊂ C the full subcategory formed by the direct summands
of coproducts of copies of M in C. Similarly, given an additive category C with
set-indexed products and an object L ∈ C, we denote by Prod(L) ⊂ C the full
subcategory formed by the direct summands of products of copies of L in C. Given
a set X, the coproduct of X copies of M is denoted by M (X)

∈ Add(M) and the
product of X copies of L is denoted by L X

∈ Prod(L).
We say that an additive category is idempotent-complete (or, in other termi-

nology, Karoubian or pseudo-abelian) if it contains the images of all idempotent
endomorphisms of its objects.

Theorem 1.1. (a) Let C be an idempotent-complete additive category with co-
products and M ∈ C be an object. Then there exists a unique abelian category
B with enough projective objects such that the full subcategory of projective ob-
jects Bproj ⊂ B is equivalent to the full subcategory Add(M) ⊂ C. The abelian
category B has products, coproducts, and a natural projective generator P ∈ Bproj

corresponding to the object M ∈ Add(M).

(b) Let C be an idempotent-complete additive category with products and L ∈ C

be an object. Then there exists a unique abelian category A with enough injective
objects such that the full subcategory of injective objects Ainj⊂A is equivalent to the
full subcategory Prod(L)⊂C. The abelian category A has products, coproducts, and
a natural injective cogenerator J ∈ Ainj corresponding to the object L ∈ Prod(L).

Proof. (a) The category B is unique, because an abelian category with enough pro-
jective objects is determined by its full subcategory of projective objects [Št’ovíček
2014a, proof of Theorem 6.2; Positselski 2015, proof of Theorem 3.6].

To prove existence, one can construct B as the category of finitely presented
(coherent) contravariant functors on Add(M). This category can be also described
as the quotient category of the category Add(M)2 of morphisms in Add(M) by
the ideal of all morphisms in Add(M)2 which factorize through objects of the
full subcategory in Add(M)2 consisting of all the split epimorphisms in Add(M)
[Beligiannis 2000]. The category B is abelian, because the additive category
Add(M) is right coherent (has weak kernels) [Freyd 1966, Corollary 1.5; Krause
1998, Lemma 2.2, Proposition 2.3; Beligiannis 2000, Proposition 4.5(1); Krause
2002, Lemma 1(1)] (see also [Fiorot 2016, Appendix B] for a further discussion
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and references). Indeed, if f : M ′ → M ′′ is a morphism in Add(M) and X is
the set of all morphisms M→ M ′ whose composition with f vanishes, then the
natural morphism M (X)

→ M ′ is a weak kernel of f in Add(M) (cf. [Krause 2002,
Lemma 2(1)]).

Even more explicitly, B is the category of modules over the monad

T : X 7→ HomC(M,M (X))

on the category of sets (we call modules here what are often called monadic T-
algebras, since they generalize ordinary modules over a ring; see the discussions in
the introduction to [Positselski and Rosický 2017], [Positselski 2017b, Lemma 1.1
and Example 1.2(2)], and [Positselski and Št’ovíček 2019, Sections 6.1 and 6.3]).

Coproducts in the category of coherent functors exist [Krause 2002, Lemma 1(2)];
more generally, whenever the category of projective objects Bproj in an abelian
category B with enough projective objects has coproducts, the coproducts in B

can be constructed in terms of the coproducts in Bproj (and the embedding functor
Bproj→ B preserves coproducts). Products exist in the category of algebras over
every monad T : Sets→ Sets and are preserved by the forgetful functor from the
category of T-algebras to Sets (coproducts also exist in the category of T-algebras,
but are not preserved by the forgetful functor). The natural projective generator
P ∈ Bproj is the free T-algebra/module with one generator.

(b) This is dual to the proof of (a). Explicitly, A is the opposite category to the cate-
gory of coherent covariant functors on Prod(L), or the opposite category to the cate-
gory of modules over the monad T : X 7→HomC(L X , L) on the category of sets. �

We will use the notation B= σM(C) and A= πL(C). Assuming that M ∈ C is a
“tilting object” in one sense or another (cf. Section 2), one can call B the abelian
category tilted from C at M . Similarly, assuming that L ∈ C is a “cotilting object”
in some sense, one can call A the abelian category cotilted from C at L .

Now let us assume that C is an abelian category. Then, in the context of
Theorem 1.1(a), the additive embedding functor 8proj : Bproj ' Add(M) → C

can be uniquely extended to a right exact functor 8 : B→ C. To compute the
object 8(B) ∈ C for a given object B ∈ B, one can present B as the cokernel of a
morphism of projective objects f : P ′′→ P ′ in B and put 8(B)= coker8proj( f ).

The additive embedding functor Add(M)' Bproj→ B can be extended to a (left
exact) functor9 :C→B right adjoint to8. Representing the objects of B as modules
over the monad T : X 7→HomC(M,M (X)) on the category of sets, one can compute
the functor 9 as the functor N 7→ HomC(M, N ), with the T-module structure on
the set HomC(M, N ) constructed as explained in [Positselski and Št’ovíček 2019,
Section 6.3] (in this case HomC(M, N ) of course carries the structure of an abelian
group, even a right T(∗)-module, where ∗ stands for a one-element set).
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Indeed, let us show that the functor 8 is left adjoint to 9. First of all, the natural
projective generator P ∈ B (corresponding to the object M ∈ Add(M)) corepresents
the forgetful functor from the category B'T–mod to the category of sets or abelian
groups, that is, for any object B ∈ T–mod one has HomB(P, B)' B. In particular,
for any object N ∈ C we have a natural isomorphism of the Hom groups

HomB(P, 9(N ))=HomB(P,HomC(M, N ))'HomC(M, N )=HomC(8(P), N ).

Hence for any set X there are natural isomorphisms

HomB(P (X), 9(N ))'HomC(M, N )X
'HomC(M (X), N )'HomC(8(P (X)), N ).

Passing to the direct summands, we get a natural isomorphism of the Hom groups

HomB(P ′, 9(N ))' HomC(8(P ′), N )

for all objects P ′ ∈ Bproj and N ∈ C. This isomorphism is clearly functorial in
an object N ∈ C; and the construction of the action of the monad T on the set
9(N )= HomC(M, N ) in [Positselski and Št’ovíček 2019, proof of Proposition 6.2
and Remark 6.4] is designed so as to make these isomorphisms compatible with
all the morphisms P ′′ → P ′ in the category Bproj ' Add(M). Finally, both the
contravariant functors HomB(−, 9(N )) and HomC(8(−), N ) take the cokernels of
morphisms in B to the kernels of morphisms of abelian groups, so our isomorphism
of the Hom groups extends from P ′ ∈ Bproj to all objects B ∈ B.

Similarly, in the context of Theorem 1.1(b), the additive embedding functor
9inj :Ainj'Prod(L)→C can be uniquely extended to a left exact functor9 :A→C.
The additive embedding functor Prod(L)' Ainj→ A can be extended to a (right
exact) functor 8 : C→ A left adjoint to 9.

For more explicit descriptions of abelian categories B arising in connection with
objects M in more specific classes of additive categories C in Theorem 1.1(a),
we refer to [Positselski and Št’ovíček 2019, Theorems 7.1, 9.9, and 9.11, and
Proposition 9.1].

The following question will be addressed in Section 2: given an abelian category A

with coproducts and an object M ∈ A, under which assumptions is there an object L
in the abelian category B=σM(A) such that πL(B)=A ? Similarly, given an abelian
category B with products and an object L ∈ B, under which assumptions is there an
object M in the abelian category A= πL(B) such that σM(A)= B ?

2. ∞-tilting-cotilting correspondence

Let A be an abelian category with coproducts. We will say that an object T ∈ A is
weakly tilting if one has

ExtiA(T, T (X))= 0 for all sets X and all integers i > 0.
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Given two objects T ′ ∈Add(T )⊂ A and A ∈ A, a morphism t : T ′→ A is said to
be an Add(T )-precover if every morphism t ′′ : T ′′→ A with T ′′ ∈Add(T ) factorizes
through the morphism t . Equivalently, this means that the map of abelian groups
HomA(T, t) : HomA(T, T ′)→ HomA(T, A) is surjective. For every object A ∈ A,
the natural morphism T (HomA(T,A))→ A is an Add(T )-precover.

Let T ∈ A be a weakly tilting object. By the definition, the full subcategory
Emax(T )⊂A consists of all the objects E ∈A satisfying the following two conditions:

(imax) ExtiA(T, E)= 0 for all i > 0.

(iimax) There exists an exact sequence

· · · → T2→ T1→ T0→ E→ 0

in A such that T j ∈ Add(T ) for all j ≥ 0 and the sequence remains exact
after applying the functor HomA(T,−).

Notice that the condition of exactness of the sequence of abelian groups obtained
by applying HomA(T,−) in (iimax) can be equivalently restated as the condition that
the images Z j of the morphisms T j+1→ T j satisfy Ext1A(T, Z j )= 0 for all j ≥ 0.
In this case, assuming (imax), one also has ExtiA(T, Z j )= 0 for all j ≥ 0 and i > 0.
As (iimax) is obviously satisfied for Z j , it follows that Z j ∈ Emax(T ) for all j ≥ 0.

Conversely, given a short exact sequence 0→ Z0→ T0→ E→ 0 with E satis-
fying (imax), Z0 satisfying (iimax), T0 ∈ Add(T ), and HomA(T, T0)→HomA(T, E)
a surjective map, one clearly has E ∈ Emax(T ).

The following lemma is a generalization of [Wakamatsu 1990, Proposition 2.6].

Lemma 2.1. For any weakly tilting object T ∈ A, the full subcategory Emax(T ) in
the abelian category A is closed under

(a) extensions,

(b) the cokernels of monomorphisms,

(c) the kernels of those epimorphisms which remain epimorphisms after applying
the functor HomA(T,−), and

(d) direct summands.

Proof. To prove parts (a)–(c), consider a short exact sequence 0→E ′→E→E ′′→0
in the abelian category A.

(a) Clearly, the object E satisfies the condition (imax) whenever the objects E ′ and
E ′′ do. Suppose that T ′0→ E ′ and T ′′0 → E ′′ are epimorphisms onto the objects
E ′ and E ′′ from objects T ′0, T ′′0 ∈ Add(T ) that remain epimorphisms after applying
the functor HomA(T,−). Since Ext1A(T

′′

0 , E ′)= 0, the morphism T ′′0 → E ′′ can
be lifted to a morphism T ′′0 → E . Hence we obtain a morphism from the split
short exact sequence 0→ T ′0→ T ′0 ⊕ T ′′0 → T ′′0 → 0 to the short exact sequence
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0→ E ′→ E → E ′′→ 0. Being an epimorphism at the leftmost and rightmost
terms, this morphism of short exact sequences is also an epimorphism at the middle
term. The short sequence of kernels 0→ Z ′0→ Z0→ Z ′′0→ 0 is then also exact, and
the vanishing of ExtiA(T, Z ′0) and ExtiA(T, Z ′′0 ) implies the same of ExtiA(T, Z0).
We can thus proceed with the construction of a resolution as in (iimax) inductively.

(b) Clearly, the object E ′′ satisfies the condition (imax) whenever the objects E ′ and
E do. Moreover, the epimorphism E→ E ′′ remains an epimorphism after applying
HomA(T,−), since Ext1A(T, E ′)= 0. Let T0→ E be an epimorphism onto E from
an object T0 ∈ Add(T ) that remains an epimorphism after applying HomA(T,−).
Then the composition T0→ E→ E ′′ has the same property. Let Z0 and Z ′′0 be the
kernels of the epimorphisms T0→ E and T0→ E ′′. Then there is a short exact
sequence 0→ Z0→ Z ′′0 → E ′→ 0. Assuming that Z0 ∈ Emax(T ), one can apply
part (a) in order to conclude that Z ′′0 ∈ Emax(T ); hence E ′′ ∈ Emax(T ).

(c) Let us first show that the kernel of every Add(T )-precover t ′ : T ′→ E belongs to
Emax(T ) whenever E ∈ Emax(T ). By the definition, there exists an Add(T )-precover
t0 : T0 → E with the kernel Z0 belonging to Emax(T ). Consider the following
pullback diagram:

Z ′
��

��

Z ′
��

��

Z0 // // S // //

����

T ′

t ′
����

Z0 // // T0 t0
// // E

As Z0 and T ′ are in Emax(T ), we have S ∈ Emax(T ) by part (a). Furthermore, since
t ′ stays an epimorphism after applying HomA(T,−) and T ′, E satisfy (imax), it
follows that Z ′ satisfies (imax) and the middle column splits. Hence there exists a
short exact sequence 0→ T0→ S→ Z ′→ 0 and Z ′ ∈ Emax(T ) by part (b).

Now we can return to our short exact sequence 0→ E ′→ E→ E ′′→ 0. Clearly,
if the objects E and E ′′ satisfy (imax) and the map HomA(T, E)→ HomA(T, E ′′)
is surjective, then the object E ′ also satisfies (imax). Furthermore, if T0 → E is
an Add(T )-precover with the kernel Z0 and if Z ′′0 is the kernel of the composition
T0→ E→ E ′′, then Z0, Z ′′0 ∈ Emax(T ) by the previous paragraph. It remains to
apply part (b) to the short exact sequence 0→ Z0→ Z ′′0 → E ′→ 0 in order to
conclude that E ′ ∈ Emax(T ).

(d) Let E ′ and E ′′ be two objects in A for which E = E ′⊕ E ′′ ∈ Emax(T ). Then it
is obvious that E ′ and E ′′ satisfy (imax). Starting from the exact sequence (iimax) for
the object E , we will simultaneously construct similar exact sequences for the two
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objects E ′ and E ′′. Applying the construction of part (b) to the short exact sequence
0→ E ′→ E→ E ′′→ 0, we get an epic Add(T )-precover T0→ E ′′ with the kernel
Z ′′0 included in a short exact sequence 0→ Z0→ Z ′′0 → E ′→ 0. Applying the
same construction to the short exact sequence 0→ E ′′→ E→ E ′→ 0, we have
an epic Add(T )-precover T0 → E ′ with the kernel Z ′0 included in a short exact
sequence 0→ Z0→ Z ′0→ E ′′→ 0.

Continuing with an epic Add(T )-precover T1→ Z0 and applying the construction
of part (a), we obtain an epic Add(T )-precover T1⊕ T0→ Z ′′0 with the kernel Z ′′1
included in a short exact sequence 0→ Z1→ Z ′′1→ Z ′0→ 0. Proceeding in this way,
we obtain an epic Add(T )-precover T2⊕T1⊕T0→ Z ′′1 with the kernel Z ′′2 included
in a short exact sequence 0→ Z2 → Z ′′2 → Z ′1 → 0, an epic Add(T )-precover
T3⊕T2⊕T1⊕T0→ Z ′′2, etc. Hence we obtain a long exact sequence satisfying the
requirements of (iimax) for E ′′ of the form

· · · → T2⊕ T1⊕ T0→ T0⊕ T1→ T0→ E ′′→ 0,

and there is a similar sequence of the same form for E ′. �

It follows from Lemma 2.1(c) that, given an object E ∈ Emax(T ), one can
construct an exact sequence (iimax) for it by choosing an arbitrary Add(T )-precover
T0→ E , taking its kernel Z0, choosing an arbitrary Add(T )-precover T1→ Z0, etc.
Whichever Add(T )-precovers one chooses, all the subsequent Add(T )-precovers
will be epimorphisms, so one will not encounter any problems in this process.

In view of Lemma 2.1(a), for any weakly tilting object T ∈A, the full subcategory
Emax(T )⊂A inherits a Quillen exact category structure from the abelian category A.
There are enough projective objects in the exact category Emax(T ), and the full
subcategory of projective objects in Emax(T ) coincides with Add(T )⊂Emax(T )⊂A.

Given a full subcategory E of an idempotent complete exact category A, we will
call E a coresolving subcategory provided that

(a) E is closed under extensions, cokernels of admissible monomorphisms, and
direct summands in A, and

(b) E is cogenerating in A, i.e., each A ∈ A admits an admissible monomorphism
A→ E in A with E ∈ E.

Coresolving subcategories provide a suitable framework to speak of coresolution
dimensions of objects [Št’ovíček 2014a, §2; Auslander and Bridger 1969, Chapter 3].

Let now A be an abelian category with set-indexed products and an injective
cogenerator J ∈A. Then set-indexed coproducts exist and are exact in A [Positselski
and Št’ovíček 2019, Section 2]. The full subcategory of injective objects in A can
be described as Ainj = Prod(J ).

We will say that an object T ∈ A is∞-tilting (or big Wakamatsu tilting) if T is
weakly tilting and Ainj ⊂ Emax(T ). In this case, the full subcategory Emax(T )⊂ A is
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coresolving, there are enough injective objects in the exact category Emax(T ), and
these are precisely the injective objects of the ambient abelian category A.

Now let us present the dual definitions. Let B be an abelian category with
products. We will say that an object W ∈ B is weakly cotilting if one has

ExtiB(W
X ,W )= 0 for all sets X and all integers i > 0.

Let W ∈ B be a weakly cotilting object. By the definition, the full subcate-
gory Fmax(W )⊂ B consists of all the objects F ∈ B satisfying the following two
conditions:

(i∗max) ExtiB(F,W )= 0 for all i > 0.

(ii∗max) There exists an exact sequence

0→ F→W 0
→W 1

→W 2
→ · · ·

in B such that W j
∈ Prod(W ) for all j ≥ 0 and the sequence remains exact

after applying the contravariant functor HomB(−,W ).

Lemma 2.2. For any weakly cotilting object W ∈ B, the full subcategory Fmax(T )
in the abelian category B is closed under

(a) extensions,

(b) the kernels of epimorphisms,

(c) the cokernels of those monomorphisms which are transformed into surjective
maps by the contravariant functor HomB(−,W ), and

(d) direct summands.

Proof. Dual to Lemma 2.1. �

The definition of a Prod(W )-preenvelope in B is dual to the above definition of
an Add(T )-precover in A. The morphism F → W 0 in an exact sequence (ii∗max)
is a Prod(W )-preenvelope. Denoting the cokernel of this morphism by Z0, the
morphism Z0

→W 1 is also a Prod(W )-preenvelope, etc.
Conversely, it follows from Lemma 2.2(c) that, given any object F ∈ Fmax(W ),

one can construct an exact sequence (ii∗max) for it by choosing some arbitrary
Prod(W )-preenvelope F → W 0, taking its cokernel Z0, choosing an arbitrary
Prod(W )-preenvelope Z0

→ W 1, etc. Whichever Prod(W )-preenvelopes one
chooses in this process, all the subsequent Prod(W )-preenvelopes will be monomor-
phisms, so one will not encounter any problems.

In view of Lemma 2.2(a), for any weakly cotilting object W ∈ B, the full
subcategory Fmax(W ) ⊂ B inherits an exact category structure from the abelian
category B. There are enough injective objects in the exact category Fmax(W ), and
the full subcategory of injective objects in Fmax(W ) coincides with Prod(W ).
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Figure 1. Illustration of the ∞-tilting-cotilting correspondence
(see Theorems 2.3 and 2.4 and Corollary 2.5).

Let B be an abelian category with set-indexed coproducts and a projective
generator P ∈ B. Then set-indexed products exist and are exact in B. The full
subcategory of projective objects in B can be described as Bproj = Add(P).

We will say that an object W ∈ B is∞-cotilting (or big Wakamatsu cotilting) if
W is weakly cotilting and Bproj ⊂ Fmax(T ).

When the object W is∞-cotilting, the full subcategory Fmax(W )⊂B is resolving
(i.e., generating and closed under extensions, kernels of epimorphisms and direct
summands). In this case, there are enough projective objects in the exact category
Fmax(W ), and these are precisely the projective objects of the ambient abelian
category B.

Theorem 2.3. Let A be a complete, cocomplete abelian category with an injective
cogenerator J and an∞-tilting object T ∈ A. Put B= σT (A), and let 8 : B→ A be
the right exact functor identifying the full subcategory of projective objects Bproj⊂B

with the full subcategory Add(T )⊂ A. Let 9 : A→ B be the left exact functor right
adjoint to 8; so P =9(T ) is a projective generator of B. Set W =9(J ) ∈ B.

Then W is an ∞-cotilting object in B, and the restrictions of the functors 9
and 8 induce a pair of inverse equivalences of exact categories between Emax(T )
and Fmax(W ) (see Figure 1), which identify the∞-tilting object T ∈ A with the
projective generator P ∈ B and the∞-cotilting object W ∈ B with the injective
cogenerator J ∈ A.

Proof. The functor 9|Emax(T ) : Emax(T )→ B is exact, because the functor 9 can
be computed as HomA(T,−), and the condition (imax) is imposed.

To check that the functor 9|Emax(T ) is fully faithful, one can choose for any
two objects E ′ and E ′′ ∈ Emax(T ) two initial fragments T ′1 → T ′0 → E ′ → 0
and T ′′1 → T ′′0 → E ′′→ 0 of exact sequences (iimax). The two sequences being
exact in the exact category Emax(T ) and the objects of Add(T ) being projective in
Emax(T ), one can compute the group HomA(E ′, E ′′) as the group of all morphisms
T ′0→ T ′′0 forming a commutative square with some morphism T ′1→ T ′′1 , modulo
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those morphisms that come from some morphism T ′0→ T ′′1 . The functor 9 takes
the exact sequences T (k)

1 → T (k)
0 → E (k) → 0, k = 1, 2, to exact sequences

9(T (k)
1 )→9(T (k)

0 )→9(E (k))→ 0 with the objects 9(T (k)
j ) belonging to Bproj,

so the groups HomB(9(E ′),9(E ′′)) can be computed similarly in terms of mor-
phisms between the objects 9(T (k)

j ). It remains to recall that the functor 9|Add(T )
is fully faithful (see Section 1).

Furthermore, since the functor 9|Emax(T ) is exact and fully faithful, and takes the
projective objects of Emax(T ) to projective objects in B, and since there are enough
projectives in Emax(T ), it follows that the functor 9|Emax(T ) induces isomorphisms
of the Ext groups

ExtiEmax(T )(E
′, E ′′)' ExtiB(9(E

′),9(E ′′))

for all objects E ′ and E ′′ ∈ Emax(T ) and all i ≥ 0. Similarly, as there are enough
injectives in Emax(T ) and the injectives of Emax(T ) are injective in A, one has

ExtiEmax(T )(E
′, E ′′)' ExtiA(E

′, E ′′), E ′, E ′′ ∈ Emax(T ), i ≥ 0.

The functor 9, being right adjoint, preserves products; so the equations Prod(J )=
Ainj and W = 9(J ) imply Prod(W ) = 9(Ainj). In particular, W X

= 9(J X ) for
any set X. As Ainj ⊂ Emax(T ) and ExtiA(J

X , J ) = 0 for i > 0, it follows that
ExtiB(W

X ,W )= 0. So the object W ∈ B is weakly cotilting.
Moreover, for the same reasons one has ExtiB(9(E),W )= 0 for all E ∈ Emax(T )

and i > 0. In other words, the objects 9(E) ∈ B satisfy the condition (i∗max).
Let us show that they also satisfy (ii∗max), that is 9(Emax(T )) ⊂ Fmax(W ). Let
0→ E→ J 0

→ J 1
→ J 2

→· · · be an injective coresolution of E in A. In view of
Lemma 2.1(b), this coresolution is an acyclic complex in the exact category Emax(T ).
The object J ∈ A being injective, this coresolution is taken to an acyclic complex of
abelian groups by the contravariant functor HomA(−, J ). Hence, applying the fully
faithful exact functor9|Emax(T ), we obtain a coresolution (ii∗max) for the object9(E).
Thus Bproj =9(Add(T ))⊂9(Emax(T ))⊂ Fmax(W ), and we have shown that the
object W is∞-cotilting in B.

There are enough injective objects in the category A, and the left exact functor 9
establishes an equivalence Ainj ' Prod(W ). Hence we have A = πW (B). The
assertions dual to what we have already proved now tell that the functor 8 is exact
and fully faithful in restriction to Fmax(W ) and that 8(Fmax(W ))⊂ Emax(T ). Being
an adjoint pair of exact and fully faithful functors, 9|Emax(T ) and 8|Fmax(W ) are
equivalences of the exact categories Emax(T ) and Fmax(W ). �

Theorem 2.4. Let B be a complete, cocomplete abelian category with a projective
generator P and an∞-cotilting object W ∈ B. Put A= πW (B), and let 9 : A→ B

be the left exact functor identifying the full subcategory of injective objects Ainj ⊂ A
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with the full subcategory Prod(W )⊂ B. Let 8 : B→ A be the right exact functor
left adjoint to 9; so J =8(W ) is a injective cogenerator of A. Set T =8(P) ∈ A.

Then T is an∞-tilting object in A, and the restrictions of the functors 8 and 9
induce a pair of inverse equivalences of exact categories between Fmax(W ) and
Emax(T ) (see Figure 1), which identify the ∞-cotilting object W ∈ B with the
injective cogenerator J ∈ A and the ∞-tilting object T ∈ A with the projective
generator P ∈ B.

Proof. Dual to Theorem 2.3. �

Corollary 2.5. The constructions of Theorems 2.3 and 2.4 establish a one-to-one
correspondence between equivalence classes of

(1) complete, cocomplete abelian categories A with an injective cogenerator J
and an∞-tilting object T, and

(2) complete, cocomplete abelian categories B with a projective generator P and
an∞-cotilting object W. �

3. ∞-tilting and ∞-cotilting pairs

As above, let A be an abelian category with set-indexed products and an injective
cogenerator J ∈ A. Let T ∈ A be an object and E ⊂ A be a full subcategory. We
will say that (T, E) is an∞-tilting pair in A if the following conditions hold:

(i) Ainj ⊂ E.

(ii) Add(T )⊂ E.

(iii) Ext1A(T, E)= 0 for all E ∈ E.

(iv) E is closed under the cokernels of monomorphisms and extensions in A.

(v) Every Add(T )-precover T ′→ E of an object E ∈ E is an epimorphism in A

with the kernel belonging to E.

Due to the condition (iv), the full subcategory E⊂ A inherits an exact category
structure from the abelian category A. According to the condition (i), there are
enough injective objects in the exact category E, and these are precisely the injective
objects of the ambient abelian category A, that is, Einj = Ainj.

It follows from the condition (iii) together with the condition (i) and the first part
of the condition (iv) that

ExtiA(T, E)= 0 for all E ∈ E and all integers i > 0.

Hence, in view of the condition (ii), the object T ∈ A has to be weakly tilting.
From the conditions (ii) and (iii) we see that the objects of Add(T ) are projective

in the exact category E. It follows from the condition (v) that there are enough
projective objects belonging to Add(T ) in E. Hence there are enough projective
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objects in E and the class of all projective objects in E coincides with Add(T ), that
is Eproj = Add(T ).

Now it is clear that all the objects E ∈E satisfy the conditions (imax) and (iimax); so
we have E⊂ Emax(T )⊂ A. From the condition (i) we conclude that Ainj ⊂ Emax(T ).
Thus the object T ∈ A has to be∞-tilting. Conversely, according to Lemma 2.1,
for any∞-tilting object T ∈ A, the pair (T, Emax(T )) is an∞-tilting pair in A. To
summarize, we have shown the following.

Lemma 3.1. Let A be a complete, cocomplete abelian category with an injective
cogenerator. Then an object T ∈ A is a part of an∞-tilting pair (T, E) in A if and
only if it is an∞-tilting object. The full subcategory E= Emax(T ) is the maximal of
all full subcategories E⊂ A forming an∞-tilting pair with T ∈ A. �

In general, we do not assume that E is closed under direct summands. However,
we can add that assumption whenever convenient (e.g., in Sections 4 or 5):

Lemma 3.2. If (T, E) is an∞-tilting pair in A and E′ is the closure of E under
direct summands, then (T, E′) is also an ∞-tilting pair and E′ is a coresolving
subcategory in A.

Proof. The conditions (i)–(iii) are obviously true for E′. To prove (iv), suppose that
we have an exact sequence

0→ E ′1→ E1→ E ′′1 → 0

with E ′1, E ′′1 ∈ E′, i.e., there exist E ′2, E ′′2 ∈ A such that E ′ = E ′1 ⊕ E ′2 and E ′′ =
E ′′1 ⊕ E ′′2 belong to E. Then E1 ⊕ E ′2 ⊕ E ′′2 is an extension of E ′ by E ′′ in A,
and hence E1 ∈ E′. Similarly, if f1 : E ′1 → E1 is a monomorphism in A with
E ′1, E1 ∈ E

′, then there is a split monomorphism f2 : E ′2→ E2 such that f1⊕ f2 is
a monomorphism in A between objects of E. Finally, to prove (v), it suffices to note
that if E = E1⊕ E2 ∈ E and if t1 : T1→ E1 and t2 : T2→ E2 are Add(T )-precovers,
then also t1⊕ t2 : T1⊕ T2→ E is an Add(T )-precover. �

Now we present the dual definitions. Let B be an abelian category with set-
indexed coproducts and a projective generator P ∈ B. Let W ∈ B be an object and
F⊂ B be a full subcategory. We will say that (W, F) is an∞-cotilting pair in B if
the following conditions hold:

(i*) Bproj ⊂ F.

(ii*) Prod(W )⊂ F.

(iii*) Ext1B(F,W )= 0 for all F ∈ F.

(iv*) F is closed under the kernels of epimorphisms and extensions in B.

(v*) Every Prod(W )-preenvelope F→W ′ of an object F ∈F is a monomorphism
in B with the cokernel belonging to F.
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As above, it follows from the conditions (i*)–(v*) that

ExtiB(F,W )= 0 for all F ∈ F and all integers i > 0,

the object W ∈ B is weakly cotilting, and the full subcategory F ⊂ B inherits
an exact category structure from the abelian category B. The exact category F

has both enough projective and enough injective objects; the full subcategories of
projective and injective objects in F are described as Fproj=Bproj and Finj=Prod(W ).
Moreover, as before one also has:

Lemma 3.3. Let B be a complete, cocomplete abelian category with a projective
generator. Then an object W ∈ B is a part of an∞-cotilting pair (W, F) in B if and
only if it is an∞-cotilting object. The full subcategory F= Fmax(W ) is the maximal
of all full subcategories F⊂ B forming an∞-cotilting pair with W ∈ B.

Moreover, if (W, F) is an ∞-cotilting pair and F′ is the closure of F under
direct summands, then (W, F′) is also an ∞-cotilting pair and F′ is a resolving
subcategory of B.

Proof. This is dual to Lemmas 3.1 and 3.2. �

The∞-tilting-cotilting correspondence from the last section now extends to one
between∞-tilting and∞-cotilting pairs.

Proposition 3.4. In the context of Corollary 2.5 (see also Figure 1), the assignments
F=9(E) and E=8(F) establish a bijective correspondence between

(1) the full subcategories E⊂ Emax(T ) forming an∞-tilting pair with T ∈ A and

(2) the full subcategories F⊂ Fmax(W ) forming an∞-cotilting pair with W ∈ B.

Proof. Let (T, E) be an∞-tilting pair in the category A. Put F=9(E). We have to
show that (W, F) is an∞-cotilting pair in the category B.

Indeed, the condition (i*) follows from (ii) and the condition (ii*) follows from (i),
as Bproj = 9(Add(T )) and Prod(W ) = 9(Ainj). The condition (iii*) holds, since
F=9(E)⊂9(Emax(T ))= Fmax(W ) and all F ∈ Fmax(W ) satisfy (iii*).

The full subcategory F is closed under extensions in Fmax(W ), because 9 :
Emax(T )→ Fmax(W ) is an equivalence of exact categories and the full subcategory
E is closed under extensions in Emax(W ). Since the full subcategory Fmax(W ) is
closed under extensions in B by Lemma 2.2(a), it follows that F is closed under
extensions in B.

Let f : F ′→ F ′′ be an epimorphism in B between two objects F ′, F ′′ ∈ F. Then
there exists a morphism e : E ′→ E ′′ in E such that F (s) '9(E (s)), s = 1, 2, and
f = 9(e). The map of abelian groups HomE(T, e) is surjective, since the map
HomF(P, f ) is and P = 9(T ). Let T0 → E ′ be an Add(T )-precover; then the
composition T0→ E ′→ E ′′ is also an Add(T )-precover. Denote the kernels of the
morphisms T0→ E ′ and T0→ E ′′ by Z ′0 and Z ′′0 , respectively. Then Z ′0, Z ′′0 ∈ E by
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the condition (v) and the natural morphism Z ′0→ Z ′′0 is a monomorphism. Hence
ker(e)= coker(Z ′0→ Z ′′0 )∈E by the condition (iv) and ker( f )=9(ker e)∈ F. This
proves that the full subcategory F⊂ B is closed under the kernels of epimorphisms
in B and finishes the proof of the condition (iv*).

To prove the condition (v*), let f : F→ W 0 be a Prod(W )-preenvelope of an
object F ∈ F. Then f =9(e), where e : E→ J 0 is a morphism in E and J 0

∈ Ainj.
The map HomE(e, J ) is surjective, since the map HomF( f,W ) is and W =9(J ).
Since J is an injective cogenerator of A, it follows that e is a monomorphism in A.
By the condition (iv), the cokernel of e belongs to E, so e is a monomorphism in E.
Since the functor 9|E is exact, it follows that f is a monomorphism in B with the
cokernel belonging to F.

To summarize these arguments, the conditions (iv) and (v) essentially say that
the full subcategory E is closed under the cokernels of monomorphisms, extensions,
and kernels of epimorphisms in Emax(T ), while the conditions (iv*) and (v*) mean
that the full subcategory F is closed under the kernels of epimorphisms, extensions,
and cokernels of monomorphisms in Fmax(W ). �

Corollary 3.5. The constructions of Theorems 2.3 and 2.4 and Proposition 3.4
establish a one-to-one correspondence between equivalence classes of

(1) quadruples (A,E, T, J ), where A is a complete, cocomplete abelian category
with an injective cogenerator J and (T, E) is an∞-tilting pair in A, and

(2) quadruples (B, F, P,W ), where B is a complete, cocomplete abelian category
with a projective generator P and (W, F) is an∞-cotilting pair in B.

In this correspondence, the exact categories E and F are naturally equivalent, E' F,
and the equivalence identifies T with P and W with J. �

In general, there can be many classes E which form an ∞-tilting pair with a
given∞-tilting object T ∈ A. Thanks to the following lemma, we know that they
form a complete lattice.

Lemma 3.6. Let A be a complete, cocomplete abelian category with an injective
cogenerator and let T ∈ A be an∞-tilting object. If Ei ⊂ A, i ∈ I, is a collection of
full subcategories such that (T, Ei ) is an∞-tilting pair for each i ∈ I, then (T, E)
is an∞-tilting pair with E=

⋂
i∈I Ei .

Dually, if B is a complete, cocomplete abelian category with a projective genera-
tor, W ∈ B is an∞-cotilting object and (W, F j ) are∞-cotilting pairs, j ∈ J, then
(W, F) is an∞-cotilting pair with F=

⋂
j∈J F j .

Proof. It is straightforward to check that each of the conditions (i)–(v) and (i*)–(v*)
is preserved by intersections of classes. �

Example 3.7. In particular, whenever T is an∞-tilting object in A, there exists a
unique minimal full subcategory Emin(T )⊂A for which (T, Emin(T )) is an∞-tilting
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pair in A. In fact, the full subcategory Emin(T ) consists of all the objects in A that can
be obtained from the objects of Ainj ⊂ Emin(A) and Add(T )⊂ Emin(A) by applying
iteratively the operations of the passage to the cokernel of a monomorphism, an
extension, or the kernel of an Add(T )-precover. For every ∞-tilting pair (T, E)
in A, one then has Emin(T )⊂ E.

Similarly, whenever W is an ∞-cotilting object in B, there exists a unique
minimal full subcategory Fmin(W )⊂ B such that (W, Fmin(W )) is an∞-cotilting
pair in B. For every∞-cotilting pair (W, F) in B, one has Fmin(W )⊂ F.

In the situation of Corollary 2.5 (and Figure 1), the full subcategories Emin(T )⊂A

and Fmin(W )⊂ B are transformed into each other by the functors 9 and 8, that is

Fmin(W )=9(Emin(T )) and Emin(T )=8(Fmin(W )).

Remark 3.8. There is a certain similarity between our results in Sections 1–3 of
this paper and those in [Enomoto 2017, Sections 2–3]. Let us explain the connection
and the differences between our approaches. The paper [Enomoto 2017] is a far-
reaching development of the traditional point of view in Wakamatsu tilting theory,
in which finitely generated modules over Artinian algebras are the main objects of
study. Enomoto [2017] works with skeletally small exact categories, and essentially
never considers infinite products or coproducts. The definition of a projective
generator in [Enomoto 2017, paragraph before Corollary 2.14] presumes an exact
category with enough projective objects in which every projective object is a direct
summand of a finite direct sum of copies of the (single) generator.

Nevertheless, the generality level in [Enomoto 2017, Sections 2–3] exceeds that
of our exposition. In particular, our Lemma 2.2 is but a particular case of [Enomoto
2017, Proposition 3.2] (while our Lemma 2.1 is dual). Enomoto achieves this
generality by working with arbitrary (skeletally small) additive categories in place
of our classes Add(T ) and Prod(W ). An exact category playing the role of our F is
generally denoted by E in [Enomoto 2017], an additive category playing the role of
our Add(T )= Fproj = Bproj is denoted by C, an additive category in the role of our
Prod(W )= Finj is denoted by W, and the exact category in the role of our Fmax(W )

is denoted by XW. (The reader should be warned that Enomoto calls “Wakamatsu
tilting” what we would call “Wakamatsu cotilting” or “∞-cotilting”.)

Finally, in the role of our abelian category B, Enomoto has an exact category
which he denotes by modC. This difference occurs because our observation that
the category Add(T ) always has weak kernels (as pointed out in the proof of
Theorem 1.1) has no counterpart in [Enomoto 2017].

4. ∞-tilting-cotilting derived equivalences

Unlike in [Positselski and Št’ovíček 2019, Sections 3–5], in our present situation the
coresolution dimensions of objects of the category A with respect to its coresolving
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Hot(Ainj) Hot(Bproj)

D(E) D(F)

D(A) D(B)

�� ��

�� ��

Figure 2. Equivalences induced by∞-tilting/∞-cotilting pairs in general.

subcategory E or Emax(T ) can well be infinite, and so can the resolution dimensions
of objects of the category B with respect to its resolving subcategory F or Fmax(W ).
Hence the equivalence of exact categories E ' F does not generally lead to any
equivalence between the derived categories D(A) and D(B). All one can say is that
there is the commutative diagram formed by triangulated functors and a triangulated
equivalence in Figure 2. Here Hot(Ainj) and Hot(Bproj) are the homotopy categories
of (unbounded complexes in) the additive categories Ainj and Bproj, while D(E) and
D(F) are the (unbounded) derived categories of the exact categories E and F, and
D(A) and D(B) are the similar derived categories of the abelian categories A and B.

If A is a Grothendieck category, the canonical functor Hot(Ainj)→ D(A) in the
left-hand side column of Figure 2 is a Verdier quotient functor. This follows, e.g.,
from [Alonso Tarrío et al. 2000, Theorem 5.4]. If the full subcategories E⊂ A and
F⊂ B have additional closure properties, we will obtain a similar diagram below
where all the functors are Verdier quotients.

One issue here is that, unlike for tilting modules of finite projective dimension,
the class E in the definition of a tilting pair need not be closed under coproducts in
A (cf. [Positselski and Št’ovíček 2019, Lemma 5.3]). Dually, the class F need not
be closed under products. There are some elementary relations between the closure
properties of E and F, however.

Lemma 4.1. In the context of Corollary 3.5, if the full subcategory E⊂ A is closed
under products, then the full subcategory F⊂ B is closed under products. If the full
subcategory F⊂ B is closed under coproducts, then the full subcategory E⊂ A is
closed under coproducts.

Proof. The first assertion holds, since F=9(E) and the functor9 :A→B preserves
products (see Figure 1). The second assertion holds, since E=8(F) and the functor
8 : B→ A preserves coproducts. �

It would be interesting to know whether the converse assertions to those of
Lemma 4.1 are true.

Suppose now that E is a part of an ∞-tilting pair in a complete, cocomplete
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abelian category A with an injective cogenerator. Then A has exact coproducts
([Mitchell 1965, Exercise III.2]) and, if E is closed under coproducts, E has exact
coproducts too. In such a situation the following definition from [Positselski 2010,
Sections 2.1 and 4.1] or [Positselski 2012, Section A.1] applies and gives a more
adequate replacement of Hot(Ainj)= Hot(Einj) in Figure 2.

If E is an exact category with arbitrary coproducts which are exact, we call a
complex coacyclic if it belongs to the smallest localizing subcategory of Hot(E)
which contains the total complexes of short exact sequences of complexes over E.
The coderived category of E, which we denote by Dco(E), is defined as the Verdier
quotient category of Hot(E) by the subcategory of coacyclic complexes.

Note that it follows from the above definition that each coacyclic complex is
exact and, thus, we have a Verdier quotient functor Dco(E)→ D(E). On the other
hand, if E in addition has enough injectives, the natural functor Hot(Einj)→ Dco(E)

is fully faithful by [Positselski 2012, Lemma A.1.3]. To summarize, we have
triangulated functors

Hot(Einj) // // Dco(E) // // D(E),

where the first functor is fully faithful and the second one is a Verdier quotient.
In fact, the fully faithful functor was proved to be an equivalence in some cases
[Positselski 2017c, Theorem 2.4].

If F is an exact category with arbitrary products which are exact, the class of
contraacyclic complexes in Hot(F) and the contraderived category Dctr(F) of F are
defined dually, and we have triangulated functors

Hot(Fproj) // // Dctr(F) // // D(F).

As above, the fully faithful functor in the leftmost arrow is known to be an equiva-
lence in some cases [Positselski 2017c, Theorem 4.4(b)].

Now we can state the main result of the section (see also Figure 3 below).

Proposition 4.2. (a) Let A be an exact category where set-indexed coproducts
exist and are exact, and let E ⊂ A be a coresolving subcategory closed under
coproducts. Then the functor between the coderived categories Dco(E)→ Dco(A)

induced by the embedding of exact categories E→ A is a triangulated equivalence.
The triangulated functor between the conventional derived categories D(E)→D(A)

induced by the same exact embedding is a Verdier quotient functor.

(b) Let B be an exact category where set-indexed products exist and are exact,
and let F⊂ B be a resolving subcategory closed under products. Then the functor
between the contraderived categories Dctr(F)→ Dctr(B) induced by the embedding
of exact categories F→ B is a triangulated equivalence. The triangulated functor
between the conventional derived categories D(F)→ D(B) induced by the same
exact embedding is a Verdier quotient functor.
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Dco(A) Dctr(B)

D(E) D(F)

D(A) D(B)

���� ����

���� ����

Figure 3. Equivalences induced by ∞-tilting/∞-cotilting pairs
when E is closed under coproducts and F under products.

Proof. The first assertion of part (b) is [Positselski 2012, Proposition A.3.1(b)], and
the first assertion of part (a) is the dual result.

To prove the second assertion of part (a), notice that we have a commutative
diagram of triangulated functors Dco(E) = Dco(A)→ D(E)→ D(A), where both
the functors Dco(A)→ D(E) and Dco(A)→ D(A) are Verdier quotient functors. It
follows that the functor D(E)→ D(A) is also a Verdier quotient. �

In particular, Proposition 4.2 tells that, when in the situation of Corollary 3.5 the
full subcategory E⊂ A is closed under coproducts and the full subcategory F⊂ B is
closed under products, we have a commutative diagram formed by Verdier quotient
functors and a triangulated equivalence as in Figure 3.

Remark 4.3. Let A be an exact category with exact coproducts, and let E′⊂ E′′⊂A

be two coresolving subcategories closed under coproducts. Then one has Dco(E′)'

Dco(E′′) ' Dco(A), while the natural functors between the conventional derived

Dco(A) Dctr(B)

D(E′) D(F′)

D(E′′) D(F′′)

D(A) D(B)

���� ����

���� ����

���� ����

Figure 4. Compatible equivalences for different choices of ∞-
tilting/∞-cotilting pairs.
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categories D(E′)→ D(E′′)→ D(A) are Verdier quotient functors. Thus, when a
coproduct-closed coresolving subcategory is being enlarged, its derived category
gets deflated. In other words, the larger the subcategory E ⊂ A, the smaller its
derived category D(E).

Similarly, let B be an exact category with exact products, and let F′ ⊂ F′′ ⊂ B be
two resolving subcategories closed under products. Then one has

Dctr(F′)' Dctr(F′′)' Dctr(B),

while the natural functors between the conventional derived categories

D(F′)→ D(F′′)→ D(B)

are Verdier quotient functors.
In particular, when in the situation of Proposition 3.4 there are two∞-tilting

pairs (T, E′) and (T, E′′) with E′ ⊂ E′′ ⊂ A, and the corresponding two∞-cotilting
pairs are (W, F′) and (W, F′′), so F′ ⊂ F′′ ⊂ B, we obtain the commutative diagram
of Verdier quotient functors and triangulated equivalences as in Figure 4. We refer
to [Positselski 2017a, Section 1] for a further discussion.

5. ∞-tilting and ∞-cotilting t-structures

The aim of the section is to lift the canonical t-structures from D(A) and D(B) to
D(E) and D(F), respectively, in Figures 2 or 3 in the previous section. By doing
this, we obtain a picture very similar to the classical tilting theory, where both A

and B can be viewed as full subcategories of D(E) such that E= A∩B (since E' F,
we of course obtain the same picture in D(F)).

We start with a lemma showing that t-structures can be lifted with respect to
certain triangulated functors with partial adjoints.

Lemma 5.1. Let D and ′D be triangulated categories and let (D≤0, D≥0) be a
t-structure on D. Let F : ′D→ D be a triangulated functor such that a right adjoint
functor to F is defined on D≥0

⊂D, that is, for every object X ∈D≥0 there exists an
object G(X) ∈ ′D such that the functors HomD(F(−), X) and Hom′D(−,G(X))
are isomorphic on ′D. Assume that the adjunction morphism εX : FG(X)→ X is
an isomorphism in D for all objects X ∈ D≥0.

Set ′D≤0
= F−1(D≤0)⊂ ′D to be the full preimage of D≤0 under F and ′D≥0

=

G(D≥0) ⊂ ′D to be the essential image of D≥0 under G. Then the pair of full
subcategories (′D≤0, ′D≥0) is a t-structure on ′D. The functors F and G restrict to
mutually inverse equivalences between the abelian hearts A= D≤0

∩D≥0
⊂ D and

′A= ′D≤0
∩
′D≥0
⊂
′D of the two t-structures.

Proof. One can easily check that the functor G commutes with the shift functors
[−1] on ′D and D (since the functor F does). Let us show that Hom′D(′X, ′Y )= 0
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for all ′X ∈ ′D≤0 and ′Y ∈ ′D≥1. Indeed, we have F(′X) ∈ D≤0 and ′Y = G(Y ) for
some Y ∈ D≥1. Hence

Hom′D(′X, ′Y )= Hom′D(′X,G(Y ))= HomD(F(′X), Y )= 0.

Now let ′X ∈ ′D be an arbitrary object. Set X = F(′X) ∈ D, and consider a
distinguished triangle
(1) τ≤0 X→ X→ τ≥1 X→ (τ≤0 X)[1]

in D with τ≤0 X ∈ D≤0 and τ≥1 X ∈ D≥1. Put τ≥1
′X = G(τ≥1 X) ∈ ′D≥1. Then the

morphism F(′X)= X→ τ≥1 X in D corresponds to a certain morphism
′X→ G(τ≥1 X)= τ≥1

′X

in ′D. Denote by τ≤0
′X a cocone of the latter morphism, so that we have a distin-

guished triangle
(2) τ≤0

′X→ ′X→ τ≥1
′X→ (τ≤0

′X)[1]

in ′D. Applying the functor F to the morphism ′X→ τ≥1
′X produces the morphism

X = F(′X)→ F(τ≥1(
′X)) = FG(τ≥1(X)) = τ≥1(X). Thus the triangulated func-

tor F takes the distinguished triangle (2) to the distinguished triangle (1), and it
follows that the object F(τ≤0

′X) is isomorphic to τ≤0 X. In other words, we have
τ≤0
′X ∈ ′D≤0 and τ≥1

′X ∈ ′D≥1
:=
′D≥0
[−1] in (2). It follows that (′D≤0, ′D≥0) is

a t-structure.
Furthermore, the functors F and G restrict to an equivalence between the coaisles

D≥0
⊂ D and ′D≥0

⊂
′D. Indeed, if ′X ∈ ′D≥0, then ′X = G(X) for some X ∈ D≥0

and F(′X)= FG(X)= X ∈ D≥0. Thus the functor F restricts to F : ′D≥0
→ D≥0,

the functor G : D≥0
→
′D≥0 is its (honest) right adjoint, and the composition

D≥0 G
−−→

′D≥0 F
−−→D≥0

is the identity functor by assumption. Hence the functor G is fully faithful; and its
essential image coincides with ′D≥0 by the definition. Finally, for any ′X ∈ ′D≥0

we have ′X ∈ ′A if and only if F(′X) ∈ A, because we have ′X ∈ ′D≤0 if and only if
F(′X) ∈ D≤0. �

Remark 5.2. In the special case where the functor F : ′D→ D from the former
lemma is a part of a recollement

D
66 ((

((

G

66

oo F ′D
))

55

oo oo ′′D,

the t-structure (′D≤0, ′D≥0) coincides with the result of gluing (D≤0, D≥0) with the
trivial t-structure (′′D, 0) on ′′D in the sense of [Beı̆linson et al. 1982, Théorème
1.4.10].
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We recall that for any t-structure (D≤0, D≥0) on a triangulated category D with
the abelian heart A= D≤0

∩D≥0
⊂ D there are natural maps

(3) θ i
A,D=θ

i
A,D(X, Y ) :ExtiA(X, Y )→HomD(X, Y [i]) for all X, Y ∈ A, i ≥ 0.

A t-structure (D≤0, D≥0) is said to be of the derived type if the maps θ i
A,D(X, Y )

are isomorphisms for all X, Y ∈ A and i ≥ 0 (see [Beı̆linson et al. 1982, Remarque
3.1.17; Positselski 2011, Corollary A.17; Positselski and Št’ovíček 2019, Section 4]
for further details).

Lemma 5.3. In the context of Lemma 5.1, the t-structure (′D≤0, ′D≥0) on the trian-
gulated category ′D is of the derived type if and only if the t-structure (D≤0, D≥0)

on the triangulated category D is.

Proof. According to Lemma 5.1, the functor F : ′A→ A is an equivalence of
categories. So, according to the proof of Lemma 5.1, is the functor F : ′D≥0

→D≥0.
It remains to observe that the domain of the map (3) is an Ext group computed
in the abelian heart of the t-structure, while the codomain is a Hom group in the
coaisle: HomD(X, Y [i]) = HomD(X [−i], Y ), and both the objects X [−i] and Y
belong to D≥0. �

Lemma 5.4 describes the situation in which we want to apply Lemma 5.1.

Lemma 5.4. Let A be an abelian category and E⊂ A be a coresolving subcategory,
viewed as an exact category with the exact category structure inherited from A.
Then the functor between the derived categories of bounded below complexes
D+(E)→ D+(A) induced by the exact embedding functor E→ A is a triangulated
equivalence. The inverse functor to this equivalence D(A)⊃D+(A)→D+(E)⊂D(E)

is a partially defined right adjoint functor (in a sense analogous to the statement of
Lemma 5.1) to the functor between the unbounded derived categories D(E)→ D(A)

induced by the exact embedding E→ A.

Proof. For any bounded below complex A• in A there exists a bounded below
complex E• in E together with a quasi-isomorphism A•→ E• of complexes in A

[Hartshorne 1966, Lemma I.4.6(1)]. Thus, the functor D+(E)→D+(A) is essentially
surjective.

Since E is closed under the cokernels of monomorphisms, any bounded below
complex in E that is acyclic in A is also acyclic in E. From this we will deduce that
for any complex E• in E and any bounded below complex F• in E the natural map

(4) HomD(E)(E•, F•)→ HomD(A)(E•, F•)

is an isomorphism, which implies both that the functor D+(E)→ D+(A) is fully
faithful (hence, a triangulated equivalence) and that the inverse functor to it is
partially right adjoint to the canonical functor D(E)→ D(A).
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Indeed, an arbitrary morphism E•→ F• in the derived category D(A) can be
represented by a fraction of morphisms of complexes E•→ X•← F•, where X•

is a complex in A and F•→ X• is a quasi-isomorphism of complexes in A. Now
the complex X• is acyclic in low cohomological degrees, so for n� 0 the natural
morphism from X• to its canonical truncation X•→ τ≥n X• is a quasi-isomorphism
of complexes in A. The complex τ≥n X• is bounded below, so there exists a bounded
below complex G• in E together with a quasi-isomorphism τ≥n X•→ G• of com-
plexes in A. Then the composition F•→ X•→τ≥n X•→G• is a quasi-isomorphism
of complexes in the exact category E. This allows us to represent our morphism
E•→ F• in D(A) by a fraction E•→ G•← F• of morphisms of complexes in E.
This proves surjectivity of the map (4).

The injectivity is similar. If a fraction E•→ X•← F• vanishes in the group
HomD(A)(E•, F•), then there exists a quasi-isomorphism X•→ G• of complexes
in A such that E• → X• → G• is null-homotopic. As above, we can choose
X• → G• so that G• is a bounded below complex in E, and it follows that the
fraction vanishes in HomD(E)(E•, F•) as well. �

Given an abelian category A with a coresolving subcategory E ⊂ A, for any
complex E• in E we denote by H n

A(E
•)∈ A the cohomology objects of the complex

E• viewed as a complex in A. Consider the following two full subcategories in the
unbounded derived category D(E):

• D≤0
A (E) ⊂ D(E) is the full subcategory of all complexes E• in E such that

H n
A(E

•)= 0 for all n > 0.

• D≥0(E) ⊂ D(E) is the full subcategory of all objects in D(E) that can be
represented by complexes E• in E with En

= 0 for all n < 0.

As in the usual notation, for any n ∈ Z we set D≤n
A (E)= D≤0

A (E)[−n] ⊂ D(E) and
D≥n(E)= D≥0(E)[−n] ⊂ D(E).

Proposition 5.5. Let A be an abelian category and E ⊂ A be a coresolving sub-
category. Then the pair of full subcategories (D≤0

A (E), D
≥0(E)) is a t-structure on

the unbounded derived category D(E) of the exact category E. Moreover, this is a
t-structure of the derived type, and the triangulated functor D(E)→ D(A) induced
by the exact embedding E→ A identifies its heart D≤0

A (E)∩D
≥0(E) with the abelian

category A.

Proof. We apply Lemma 5.1 to the situation described in Lemma 5.4, where
′D= D(E), D= D(A), and F : D(E)→ D(A) is the canonical functor. Moreover,
we set (D≤0, D≥0) to be the canonical t-structure on D(A), which is certainly of
the derived type. Then G = F |−1

D≥0(E)
: D≥0

→ D≥0(E)⊂ D(E) is a partially defined
right adjoint to F in the sense of Lemma 5.1 and (D≤0

A (E), D
≥0(E)) is precisely
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the lifted t-structure from the conclusion of the lemma. It is of the derived type by
Lemma 5.3.

For clarity, we summarize the construction of the t-structure truncations τE
≤0 E•

and τE
≥1 E• for a given complex E• over E. One first considers its canonical trun-

cation τA
≥1 E• as a complex in A, in the standard t-structure on D(A). So τA

≥1 E•

is a complex in A with the terms concentrated in the cohomological degrees ≥ 1;
hence there exists a complex F• in E with the terms concentrated in the cohomo-
logical degrees ≥ 1 endowed with a quasi-isomorphism τA

≥1 E•→ F• of complexes
in A. One sets τE

≥1 E• = F•, and τE
≤0 E• is a cocone of the morphism of complexes

E•→ F• in D(E). �

Remark 5.6. It is useful to look into (non)degeneracy properties of the t-structure
(D≤0

A (E), D
≥0(E)) on D(E). The intersection

⋂
n≥0 D

≥n(E) ⊂ D(E) consists of
some bounded below complexes in E with vanishing cohomology in A. All such
complexes are acyclic in E, so this intersection is a zero category. On the other
hand, the intersection

⋂
n≤0 D

≤n
A (E) ⊂ D(E) consists of all the complexes in E

with vanishing cohomology in A. This is precisely the kernel of the triangulated
functor D(E)→ D(A), and it can very well be nontrivial. Indeed, let k be a field,
A= k[x]/(x2)–mod and E= Ainj (see also Example 6.3 below). Since the complex

· · · → k[x]/(x2)
x
−−→ k[x]/(x2)

x
−−→ k[x]/(x2)→ · · ·

is acyclic but not contractible, it is nonzero in D(E) = Hot(Ainj), but it becomes
zero in D(A).

Let us formulate the dual assertions. Given an abelian category B with a resolving
subcategory F ⊂ B, for any complex F• in F we denote by H n

B(F
•) ∈ B the

cohomology objects of the complex F• viewed as a complex in B. Consider the
following two subcategories in the unbounded derived category D(F):

• D≤0(F) ⊂ D(F) is the full subcategory of all objects in D(F) that can be
represented by complexes F• in F with Fn

= 0 for all n > 0.

• D≥0
B (F) ⊂ D(F) is the full subcategory of all complexes F• in F such that

H n
B(F

•)= 0 for all n < 0.

Proposition 5.7. Let B be an abelian category and F ⊂ B be a resolving subcat-
egory. Then the pair of full subcategories (D≤0(F), D≥0

B (F)) is a t-structure on
the unbounded derived category D(F) of the exact category F. Moreover, this is a
t-structure of the derived type, and the triangulated functor D(F)→ D(B) induced
by the exact embedding F→ B identifies its heart D≤0(F)∩D≥0

B (F) with the abelian
category B.

Proof. Dual to Proposition 5.5. �
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Now we are well-equipped for the discussion of ∞-tilting and ∞-cotilting
t-structures. Let A be a complete, cocomplete abelian category with an injective
cogenerator J and an∞-tilting pair (T, E), and let B be the corresponding complete,
cocomplete abelian category with a projective generator P and an∞-cotilting pair
(W, F), as in Corollary 3.5. Suppose further for convenience that E, and hence
also F, are idempotent complete. Then the exact category E' F is simultaneously
a coresolving subcategory in A and a resolving subcategory in B.

Thus we have two t-structures

(D≤0
A (E), D

≥0(E)) and (D≤0(F), D≥0
B (F))

on the unbounded derived category D(E)=D=D(F). The hearts of these t-structures
are the abelian categories A and B, respectively.

From the point of view of the category A, the t-structure (D≤0
A (E), D

≥0(E)) on
the triangulated category D can be called the standard t-structure, and the t-structure
(D≤0(F), D≥0

B (F)) is the∞-tilting t-structure. Looking from the point of view of
the category B, the t-structure (D≤0(F), D≥0

B (F)) on the triangulated category D is
the standard t-structure, and the t-structure (D≤0

A (E), D
≥0(E)) is the∞-cotilting

t-structure. The abelian category B is the∞-tilting heart, and the abelian category A

is the∞-cotilting heart.

6. Examples

Example 6.1. Let A be a complete, cocomplete abelian category with an injective
cogenerator J and an∞-tilting object T ∈ A, and let B be the corresponding com-
plete, cocomplete abelian category with a projective generator P and an∞-cotilting
object W ∈ B, as in Corollary 2.5. In this context, if both the projective dimension
of the∞-tilting object T ∈ A and the injective dimension of the∞-cotilting object
W ∈B are finite, then they are equal to each other, pdA T = n= idB W. Furthermore,
this holds if and only if the object T ∈A is n-tilting if and only if the object W ∈B is
n-cotilting (both in the sense of [Positselski and Št’ovíček 2019, Sections 2 and 4]).

Indeed, suppose that pdA T <∞ and idB W <∞ and denote by n the maximum
of the two values. Then the left exact functor 9 : A→ B has finite homological
dimension, since it can be computed as the functor HomA(T,−); and the right exact
functor 8 : B→ A has finite homological dimension, since it can be computed as
the functor HomB(−,W )op. Denote by ET ⊂ A the full subcategory of all objects
E ∈ A such that ExtiA(T, E)= 0 for all i > 0, and by FW ⊂ B the full subcategory
of all objects F ∈ B such that ExtiB(F,W )= 0 for all i > 0. (By the definition, we
have Emax(T )⊂ ET and Fmax(W )⊂ FW .)

Then the functor 9 is exact on the exact category ET and the functor 8 is exact
on the exact category FW . The full subcategory ET is coresolving in A, and the full
subcategory FW is resolving in B, with both the (co)resolution dimensions bounded
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by the finite constant n. The latter fact is due to the observation that, thanks to a
simple dimension-shifting argument, any n-th cosyzygy object in A belongs to ET

and any n-th syzygy object in B belongs to FW .
Let us show that the functors 8 and 9 restrict to mutually inverse equivalences

between the exact categories ET and FW . Given an object E ∈ ET , choose an
exact sequence 0→ E→ J 0

→ · · · → J d−1
→ E ′→ 0 in A with J i

∈ Ainj with
d ≥max(n, 2). Then the sequence

0→9(E)→9(J 0)→ · · · →9(J d−1)→9(E ′)→ 0

is exact in B, and the objects 9(J i ) belong to the full subcategory Prod(W ) ⊂

FW ⊂ B. Hence 9(E) ∈ FW by dimension shifting.
Furthermore, we have E ′ ∈ ET , hence 9(E ′) ∈ FW . It follows that the sequence

0→89(E)→89(J 0)→· · ·→89(J d−1)→89(E ′)→ 0 is exact in A. Since
the adjunction morphisms 89(J i )→ J i are isomorphisms for i equal to 0 and 1,
so is the adjunction morphism 89(E)→ E . Similarly one shows that 8(F) ∈ ET

for all F ∈ FW , and the adjunction morphism F→98(F) is an isomorphism.
According to [Bondal and van den Bergh 2003, Lemmas 5.4.1, 5.4.2; Fiorot

et al. 2017, Proposition 1.5; Positselski and Št’ovíček 2019, Theorem 5.5], the
triangulated functors D(ET )→ D(A) and D(FW )→ D(B) induced by the exact
embedding functors ET→A and FW→B are equivalences of triangulated categories.
Thus we obtain a triangulated equivalence

D(A)' D(ET )= D(FW )' D(B).

Applying, e.g., [Positselski and Št’ovíček 2019, Proposition 2.5 and Corollary 4.4(b)],
one can conclude that the conditions (i)–(iii) and (i*)–(iii*) of [Positselski and
Št’ovíček 2019, Sections 2 and 4] hold for T and W, respectively. That is, T is
n-tilting, W is n-cotilting and, moreover, pdA T = n = idB W by [Positselski and
Št’ovíček 2019, Corollary 4.12].

Following [Positselski and Št’ovíček 2019, Lemma 5.1], the two conditions (imax)
and (iimax) defining the full subcategory Emax(T )⊂A are equivalent in this case. Sim-
ilarly, the two conditions (i∗max) and (ii∗max) defining the full subcategory Fmax(W )⊂B

are equivalent. So either one of the two conditions is sufficient to define these classes
in the n-(co)tilting case, and we actually have Emax(T )= ET and Fmax(W )= FW .
It is only in the∞-(co)tilting situation that we need to impose both the conditions.
The full subcategory E = Emax(T ) is the n-tilting class of an n-tilting object T,
and the full subcategory F = Fmax(W ) is the n-cotilting class of an n-cotilting
object W, as discussed in [Positselski and Št’ovíček 2019, Sections 3–4]. According
to [Positselski and Št’ovíček 2019, Lemma 5.3 and Remark 5.4], both the full
subcategories E and F are closed under both the infinite products and coproducts in
A and B.
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Finally, note that if T is n-tilting, then W is n-cotilting and vice versa by
[Positselski and Št’ovíček 2019, Corollary 4.12]. Thus, both the projective dimension
of T and the injective dimension of W need to be finite for either of the two objects
to be n-(co)tilting.

Example 6.2. Let A be a complete, cocomplete abelian category with an injective
cogenerator J and an∞-tilting pair (T, E), and let B be the corresponding complete,
cocomplete abelian category with a projective generator P and an∞-cotilting pair
(W, F), as in Corollary 3.5. Suppose that the full subcategory E ⊂ A is closed
under coproducts and the full subcategory F⊂ B is closed under products. Then, by
Proposition 4.2, the triangulated functors D(E)→ D(A) and D(F)→ D(B) induced
by the exact embeddings E→ A and F→ B are Verdier quotient functors.

Assume that only one of the objects T and W has finite homological dimension,
or more specifically, that pdA T <∞. Then the left exact functor 9 : A→ B has
finite homological dimension and the full subcategory

ET = {E ∈ A | ExtiA(T, E)= 0 for all i > 0}

of A has finite coresolution dimension, as in the previous example. In particular, the
complex 9(E•) is acyclic in B for any complex E• in the category E that is acyclic
in A. So the composition of triangulated functors D(E)' D(F)→ D(B) factorizes
through the Verdier quotient functor D(E)→ D(A), or in other words, the triangu-
lated equivalence D(E) ' D(F) descends to a triangulated functor D(A)→ D(B)

in Figure 3. This is also a Verdier quotient functor (since such is the functor
D(F)→ D(B)).

Similarly, assume that idB W <∞. Then the right exact functor 8 : B→ A

has finite homological dimension. In particular, the complex 8(F•) is acyclic in
A for any complex F• in the category F that is acyclic in B. Hence the triangu-
lated equivalence D(F)' D(E) descends to a triangulated Verdier quotient functor
D(B)→ D(A).

In the representation theory of finite-dimensional algebras, it is an open problem
whether a finite-dimensional ∞-tilting module of finite projective dimension is
already n-tilting for some n. It goes under the name of the Wakamatsu tilting
conjecture, and it is a member of a family of long standing so-called homological
conjectures for finite-dimensional algebras [Mantese and Reiten 2004, Section 4;
Beligiannis and Reiten 2007, §IV.3].

Example 6.3. Let A be a locally Noetherian Grothendieck abelian category (see
[Positselski and Št’ovíček 2019, Section 10.2]). Choose an injective object J ∈ A
such that Ainj = Add(J ); then it follows that J is an injective cogenerator of A,
and one also has Ainj = Prod(J ). Set T = J and E= Ainj ⊂ A. Then (T, E) is an
∞-tilting pair in A.
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In the corresponding abelian category B with a natural projective generator P
[Positselski 2015, Theorem 3.6], one has Bproj = Add(P) = Prod(P) (see also
Lemma 4.1). The related ∞-cotilting pair in B is (W, F), where W = P and
F = Bproj. So both the full subcategories E ⊂ A and F ⊂ B are closed under both
the products and coproducts. As always in the context of Corollary 3.5, one has an
equivalence of additive/exact categories E' F.

The derived category D(E) is simply the homotopy category Hot(Ainj); it is
equivalent to the coderived category Dco(A) (see the argument for [Positselski
2017c, Theorem 2.4]). The derived category D(F) is simply the homotopy category
Hot(Bproj); it is equivalent to the contraderived category Dctr(B) (cf. [Positselski
2017c, Theorem 4.4(b)] and [Positselski 2012, Corollary A.6.2]). Hence the derived
equivalence

Dco(A)' Hot(Ainj)= Hot(Bproj)' Dctr(B).

These are the minimal∞-tilting and∞-cotilting pair for the∞-tilting object
T ∈ A and the ∞-cotilting object W ∈ B, in the sense of Example 3.7: one has
Emin(T )= E= Ainj and Fmin(W )= F= Bproj.

Example 6.4. In the context of the previous example, it is also instructive to
consider the maximal∞-tilting pair (T, Emax(T )) for the∞-tilting object T = J in
the category A and the maximal∞-cotilting pair (W, Fmax(W )) for the∞-cotilting
object W = P in the category B.

The full subcategory Emax(T ) ⊂ A consists of all the objects E ∈ A for which
there exists an unbounded acyclic complex of injective objects

· · · → J−2
→ J−1

→ J 0
→ J 1

→ J 2
→ · · ·

such that the complex HomA(J, J •) is acyclic and E is the image of the morphism
J−1
→ J 0. This is known as the full subcategory of Gorenstein injective objects in

the abelian category A.
Similarly, the full subcategory Fmax(W )⊂ B consists of all the objects F ∈ B for

which there exists an unbounded acyclic complex of projective objects

· · · → P2→ P1→ P0→ P−1→ P−2→ · · ·

such that the complex HomB(P•, P) is acyclic and F is the image of the morphism
P0→ P−1. This is known as the full subcategory of Gorenstein projective objects
in the abelian category B (cf. [Enomoto 2017, Definition 3.7]).

Hence we can conclude from Theorems 2.3 and 2.4 that the exact categories of
Gorenstein injective objects in A and Gorenstein projective objects in B are naturally
equivalent.

If A has a generating set of objects of finite projective dimension, then, by
[Gillespie 2017, Theorem 5.7] or [Št’ovíček 2014b, Lemma 7.2], the class of acyclic
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complexes of injectives is closed under products (although products may not be exact
in A). In particular, Emax(T )⊂ A is closed under products, and so is Fmax(W )⊂ B

by Lemma 4.1. Dually, if B has a cogenerating set of objects of finite injective
dimension, then both Emax(T )⊂ A and Fmax(W )⊂ B are closed under coproducts.

In particular, if A is the category of quasi-coherent sheaves on a quasi-compact
semiseparated scheme X, then any quasi-coherent sheaf on X is the quotient of one
of the so-called very flat quasi-coherent sheaves [Positselski 2012, Lemma 4.1.1]
(see [Murfet 2006, Section 2.4] or [Efimov and Positselski 2015, Lemma A.1] for the
more widely known, but weaker assertion with flat sheaves in place of the very flat
ones). If X is covered by n affine open subschemes, then the projective dimension
of any very flat quasi-coherent sheaf, as an object of A, does not exceed n, as one
can show using a Čech resolution for the affine covering, together with the fact that
the projective dimension of a very flat module does not exceed 1 (cf. [Positselski
and Slávik 2017, properties (VF5) and (VF6)]). Thus the class of acyclic complexes
of injectives is closed under products in A. If X is also Noetherian, then A is a
locally Noetherian category, and the discussion in the previous paragraph applies.

Example 6.5. In the context of Examples 6.3 and 6.4, one can say that a locally
Noetherian Grothendieck abelian category A is n-Gorenstein if the∞-tilting object
T = J is n-tilting. This means that pdA T = idB W ≤n (cf. [Positselski and Št’ovíček
2019, Theorem 10.3]).

In this case, we have the minimal∞-tilting and∞-cotilting pair (T, Emin(T )) and
(W, Fmin(W )) with Emin(T )=Ainj and Fmin(W )=Bproj, as in Example 6.3. We also
have the maximal∞-tilting and∞-cotilting pair (T, Emax(T )) and (W, Fmax(W ))

with Emax(T )= ET being the n-tilting class of the n-tilting object T ∈ A (consisting
of all the Gorenstein injectives in A) and Fmax(W )= FW being the n-cotilting class
of the n-cotilting object W ∈ B (consisting of all the Gorenstein projectives in B),
as in Examples 6.1 and 6.4.

The two related derived equivalences (as in Section 4) form a commutative
diagram with the natural Verdier quotient functors as follows:

Dco(A) Hot(Ainj) Hot(Bproj) Dctr(B)

D(A) D(ET ) D(FW ) D(B)

���� ���� ���� ����

Example 6.6. Let A and B be associative rings, and let C be an A-B-bimodule.
One says that C is a semidualizing bimodule (in the terminology of [Holm and
White 2007]) or a pseudo-dualizing bimodule (in the terminology of [Positselski
2017a], which we adopt here) for the rings A and B if the following conditions are
satisfied:
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• The left A-module C has a projective resolution by finitely generated projective
left A-modules, and the right B-module C has a projective resolution by finitely
generated projective right B-modules.

• The homothety maps A→ Ext∗Bop(C,C) and Bop
→ Ext∗A(C,C) are isomor-

phisms of graded rings (where Bop denotes the opposite ring to B).

This definition is (essentially) obtained by dropping the finite injective dimension
condition in the definition of a dualizing module over a pair of associative rings.

Let C be a pseudo-dualizing A-B-bimodule. Set A= A–mod and B= B–mod

to be the abelian categories of left modules over the rings A and B. Then T = C is
a (finitely generated)∞-tilting object in A. The related maximal∞-tilting class
Emax(T )⊂ A is known as the Bass class [Holm and White 2007, Theorem 6.1], and
it contains the injective left A-modules by [Holm and White 2007, Lemma 4.1].

The corresponding tilted abelian category is σT (A)=B, and its natural projective
generator is P = B. Choosing J =HomZ(A,Q/Z) as the injective cogenerator of A,
the corresponding ∞-cotilting object in B is W = HomZ(C,Q/Z). The related
maximal∞-cotilting class Fmax(W )⊂B is known as the Auslander class [Holm and
White 2007, Theorem 2]. The objects of the full subcategory Add(T )⊂A are called
C-projectives in [Holm and White 2007], and the objects of the full subcategory
Prod(W )⊂ B are called C-injectives. The equivalence of exact categories

Emax(T )' Fmax(W )

is a part of what is known as the Foxby equivalence [Holm and White 2007,
Theorem 1 or Proposition 4.1].

Both the full subcategories Emax(T )⊂A and Fmax(W )⊂B are closed under both
the infinite products and coproducts [Holm and White 2007, Proposition 4.2], so the
results of our Section 4 apply and provide a commutative diagram of a triangulated
equivalence and Verdier quotient functors:

Dco(A–mod) Dctr(B–mod)

D(Emax(T )) D(Fmax(W ))

D(A–mod) D(B–mod)

���� ����

���� ����

The paper [Positselski 2017a] is devoted to generalizing this theory to the case of
a pseudo-dualizing complex of bimodules. In particular, (a coproduct and product-
closed version of) the minimal∞-tilting and∞-cotilting classes for T and W are
discussed in [Positselski 2017a, Section 5].
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Example 6.7. Let C be a coassociative, counital coring over an associative ring A
(see [Positselski and Št’ovíček 2019, Section 10.3]). Assume that C is a projective
left and a flat right A-module. Let A=C–comod be the category of left C-comodules;
it is a Grothendieck abelian category. Set T ∈ A to be the cofree left C-comodule
T = C. We claim that T is an∞-tilting object in A.

Indeed, it was explained in [Positselski and Št’ovíček 2019, Section 10.3] that T
is weakly tilting, so it remains to show that the injective objects of A satisfy the
condition (iimax). A left C-comodule is injective if and only if it is a direct summand
of a C-comodule C⊗A I coinduced from an injective left A-module I [Positselski
2010, Sections 1.1.2 and 5.1.5]. Now applying the coinduction functor C⊗A −

to a projective resolution of the A-module I produces an Add(T )-resolution of
the C-comodule C⊗A I as in (iimax). This resolution remains exact after applying
the functor HomA(T,−), because HomC(C,C⊗A V ) ' HomA(C, V ) and C is a
projective left A-module.

The abelian category B = σT (A) is the category of left C-contramodules, B =
C–contra [Positselski and Št’ovíček 2019, Section 10.3]. The natural projective
generator is P = HomC(C,C) = HomA(C, A). Given an injective cogenerator I
of the category of left A-modules, one can choose J = C⊗A I as the injective
cogenerator of A= C–comod; then the related cotilting object in B= C–contra is
W = HomC(C,C⊗A I )= HomA(C, I ).

When the left homological dimension of the ring A is finite, we can describe
the minimal class Emin(T ) which forms an ∞-tilting pair with T (Example 3.7)
more explicitly as the full subcategory E⊂ A of all C/A-injective left C-comodules
[Positselski 2010, Sections 5.1.4 and 5.3], [Positselski 2015, Section 3.4]. Here,
a left C-comodule M is called C/A-injective if ExtiC(L,M)= 0 for all i > 0 and
all left C-comodules L with projective underlying left A-modules. The class E is
coresolving and contains all the coinduced C-comodules C⊗A M, M ∈ A–mod. In
particular, Add(T ) ⊂ E, objects of Add(T ) are by definition projective in E, and
by [Positselski 2010, Lemma 5.2(a) and the proof of Lemma 5.3.2(a)], there are
enough such projectives. On the other hand, E has enough injectives, Einj = Ainj,
and the proof of [Positselski 2010, Theorem 5.3] reveals that any object of E has
finite injective dimension bounded by the left homological dimension of A. Now
we can use the following observation.

Lemma 6.8. Let (T,E) be an ∞-tilting pair in a complete, cocomplete abelian
category A with an injective cogenerator. If E has finite homological dimension as
an exact category, then E= Emin(T ).

Proof. If n is the homological dimension of E, then any object E ∈ E admits a long
exact sequence

0→ E→ J 0
→ · · · → J n

→ 0
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in E with J 0, . . . , J n
∈ Einj = Ainj. Since this sequence remains exact after apply-

ing HomA(T,−), it follows that E ∈ Emin(T ) by the conditions (i) and (v) from
Section 3. �

Dually, the full subcategory F⊂ B in the related∞-cotilting pair (W, F) consists
of all the C/A-projective left C-contramodules. This is analogously the minimal
∞-cotilting pair for the∞-cotilting object W ∈ B. Since the class of C/A-injective
comodules is closed under products and the class of C/A-projective contramodules
is closed under coproducts, both the full subcategories E⊂ A and F⊂ B are closed
under both the infinite products and coproducts by Lemma 4.1. The related derived
equivalence [Positselski 2010, Section 5.4] is

Dco(C–comod)' D(E)= D(F)' Dctr(C–contra).

For comparison, when C is a left Gorenstein coring in the sense of [Positselski
and Št’ovíček 2019, Section 10.3], i.e., T ∈ A is an n-tilting object, considering
the corresponding tilting and cotilting classes Emax(T ) ⊂ A and Fmax(W ) ⊂ B

produces a triangulated equivalence between the conventional derived categories,
D(C–comod)' D(C–contra).

Example 6.9. The case of a coassociative coalgebra C over a field k is a com-
mon particular case of Examples 6.3, 6.4 and 6.7. It is also a particular case of
Example 6.10.

In this case, one has A = C–comod and B = C–contra. The ∞-tilting object
T =C= J is the natural injective cogenerator of the locally Noetherian Grothendieck
abelian category A, and the∞-cotilting object W = C∗ = Homk(C, k)= P is the
natural projective generator of the abelian category B.

When C is a Gorenstein coalgebra, we are in the situation of Example 6.5 (see
[Positselski and Št’ovíček 2019, Section 10.1]).

Example 6.10. Let S be a semiassociative, semiunital semialgebra over a coasso-
ciative, counital coalgebra C over a field k (see [Positselski and Št’ovíček 2019,
Section 10.3]). Assume that S is an injective left and right C-comodule. Let
A= S–simod be the category of left S-semimodules; it is a Grothendieck abelian
category. Set T ∈ A to be the semifree left S-semimodule T = S, and take E⊂ A to
be the full subcategory of all left S-semimodules whose underlying left C-comodules
are injective, E= S–simodC−inj. Then (T, E) is an∞-tilting pair in A.

The related abelian category B = σT (A) is the category of left S-semicontra-
modules, B = S–sicntr [Positselski and Št’ovíček 2019, Section 10.3]. The nat-
ural projective generator is P = HomS(S,S) ∈ S–sicntr. The full subcategory
F = 9(E) ⊂ B consists of all left S-semicontramodules whose underlying left
C-contramodules are projective, F= S–sicntrC−proj. The∞-cotilting object W ∈ B
corresponding to the natural choice of an injective cogenerator J ∈ A is W = S∗ =
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Homk(S, k) ∈ S–sicntr. Both the full subcategories E ⊂ A and F ⊂ B are closed
under both the products and coproducts. A detailed discussion of the equivalence of
exact categories S–simodC−inj ' S–sicntrC−proj can be found in [Positselski 2015,
Section 3.5].

The derived category D(E) of the exact category E is called the semiderived cate-
gory of left S-semimodules and denoted by D(S–simodC−inj)=Dsi(S–simod) [Posit-
selski 2010, Section 0.3.3]. Generally speaking, it is properly intermediate between
the coderived category Dco(S–simod) and the derived category D(S–simod). Simi-
larly, the derived category D(F) of the exact category F is called the semiderived cate-
gory of left S-semicontramodules and denoted by D(S–sicntrC−proj)=Dsi(S–sicntr)
[Positselski 2010, Section 0.3.6]. Generally speaking, it is properly intermedi-
ate between the contraderived category Dctr(S–sicntr) and the derived category
D(S–sicntr).

The triangulated equivalence Dsi(S–simod)' Dsi(S–sicntr) is called the derived
semimodule-semicontramodule correspondence [Positselski 2010, Sections 0.3.7
and 6.3]. For an application to representation theory of infinite-dimensional Lie
algebras (such as the Virasoro or Kac–Moody algebras), see [Positselski 2010,
Corollary D.3.1].

Acknowledgements

The authors are grateful to Jan Trlifaj, Sefi Ladkani, and Luisa Fiorot for helpful
discussions and comments. Leonid Positselski’s research is supported by research
plan RVO: 67985840, by the Israel Science Foundation grant # 446/15, and by the
Grant Agency of the Czech Republic under the grant P201/12/G028. Jan Št’ovíček’s
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Int. Math. Res. Not. IMRN (online publication July 2019). arXiv

[Psaroudakis and Vitória 2018] C. Psaroudakis and J. Vitória, “Realisation functors in tilting theory”,
Math. Z. 288:3-4 (2018), 965–1028. MR Zbl
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THE “QUANTUM” TURÁN PROBLEM
FOR OPERATOR SYSTEMS

NIK WEAVER

Let V be a linear subspace of Mn(C) which contains the identity matrix
and is stable under Hermitian transpose. A “quantum k-clique” for V
is a rank k orthogonal projection P ∈ Mn(C) for which dim(PV P) = k2,
and a “quantum k-anticlique” is a rank k orthogonal projection for which
dim(PV P) = 1. We give upper and lower bounds both for the largest di-
mension of V which would ensure the existence of a quantum k-anticlique,
and for the smallest dimension of V which would ensure the existence of a
quantum k-clique.

1. Background

In finite dimensions, an operator system is a linear subspace V of Mn(C) with the
properties

• In ∈ V ,

• A ∈ V⇒ A∗ ∈ V ,

where In is the n× n identity matrix and A∗ is the Hermitian transpose of A.
A natural class of examples arises from graphs with vertex set {1, . . . , n}. Given

such a graph G, we can define an operator system

VG = span{Ei j : i = j or i is adjacent to j},

where Ei j is the n×n matrix with a 1 in the (i, j) entry and 0’s elsewhere. Note that
the symmetry of the edge set of G is reflected in the stability of VG under Hermitian
transpose. (These are precisely the operator systems which are bimodules over the
diagonal subalgebra of Mn(C).)

Operator systems have been studied by C*-algebraists for decades, but only
recently have they begun to be thought of as being, in some way, a matrix or
“quantum” analog of graphs. More generally, we can regard the notion of a linear
subspace of Mn(C) as a linearization of the notion of a subset of {1, . . . , n}2, i.e., a
relation on the set {1, . . . , n}. The two conditions which define operator systems
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are then matrix versions of reflexivity and symmetry, so that an operator system
becomes a matrix version of a reflexive, symmetric relation on a set — which is
effectively the same as a graph on that set.1 This point of view was developed in
[Weaver 2012; 2015].

The term “quantum” is supported by the fact that operator systems appear in the
theory of quantum error correction, playing a role exactly analogous to the role
played by ordinary graphs in classical error correction [Duan et al. 2013]. In the
classical case we have a confusability graph which tells us when two transmitted
signals could be received as the same signal, and in the quantum case we have
a confusability operator system which tells us when two transmitted states could
be received as the same state. The two settings even have a natural common
generalization; see [Weaver 2015].

The first paper to demonstrate that there could be a “quantum graph theory” for
operator systems was [Duan et al. 2013], where, driven by the needs of quantum
error correction, a “quantum Lovász number” was defined for an arbitrary operator
system, in analogy to the classical Lovász number of a graph. The error correction
perspective on quantum graphs was developed further in [Stahlke 2016].

The present paper is a sequel to [Weaver 2017], where an operator system
version of Ramsey’s theorem was proven. This result involves quantum versions
of graph-theoretic cliques and anticliques. The theory of error correction tells us
what a quantum anticlique should be, because in classical error correction a “code”
is realized as an anticlique in the confusability graph, whereas in quantum error
correction a “code” is realized as an orthogonal projection P ∈ Mn(C) satisfying
PAP =λP for all A belonging to the confusability operator system V . Equivalently,
this condition can be stated as dim(PVP)= 1, where PVP = {PAP : A ∈ V}.

Observe that if P ∈ Mn(C) is any orthogonal projection (i.e., P = P2
= P∗)

and V ⊆ Mn(C) is any operator system, then PVP is effectively a set of linear
transformations from ran(P) to itself, and the condition that P should be a code is
that this set should be minimal, consisting only of the scalar multiples of the identity
operator on ran(P). If these are the anticliques of V , then it is natural to take the
cliques of V to be the orthogonal projections P for which PVP is maximal, i.e., it
consists of all linear operators from ran(P) to itself. This can also be expressed by
saying that dim(PVP)= k2. We therefore make the following definition.

Definition 1.1. Let V ⊆ Mn(C) be an operator system. A rank k orthogonal projec-
tion P ∈ Mn(C) is a quantum k-anticlique for V if dim(PVP)= 1, and a quantum
k-clique for V if dim(PVP)= k2.

1There is an obvious 1-1 correspondence between graphs on a vertex set V and reflexive, symmetric
relations on V. This correspondence is more natural if we adopt the convention that graphs must have
a loop at each vertex; in the error correction setting discussed below, where an edge between two
vertices expresses that they are “sufficiently close”, this is in fact a good convention.
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In general, if we identify P Mn(C)P with Mk(C), where k = rank(P), then
PVP becomes an operator system in Mk(C). This is the induced operator system
which is analogous to a subgraph induced on a subset of the vertex set of a graph.
(Some intuition for this analogy is given in [Weaver 2015], again with the natural
common generalization mentioned earlier.) Thus P is a quantum clique if the
induced operator system is a full matrix algebra and it is a quantum anticlique if
the induced operator system is trivial.

The classical theorem of Ramsey states that for any k there exists n such that
every graph with n vertices has either a k-clique or a k-anticlique. The quantum
Ramsey theorem proven in [Weaver 2017] states that for any k there exists n such
that every operator system in Mn(C) has either a quantum k-clique or a quantum
k-anticlique. The most surprising aspect of this result is that in the quantum setting n
grows polynomially in k, not exponentially as in the classical case. (The specific
value given in [Weaver 2017] is n = 8k11, but this is surely not optimal. An easy
lower bound is

n = (k− 1)(k2
− 1)= k3

− k2
− k+ 1,

obtained by taking r = k2
− 1 in the construction described in Proposition 2.1

below.) A quantum Ramsey theorem for infinite-dimensional operator systems was
proven in [Kennedy et al. 2017].

Michael Jury suggested to me the problem of finding a version of Turán’s theorem
for operator systems. The classical theorem of Turán gives the maximum number of
edges a graph with n vertices can have without having any (k+1)-cliques; by taking
edge complements, we see that

(n
2

)
minus this number is the minimum number of

edges a graph with n vertices can have without having any (k+ 1)-anticliques. The
analogous questions for operator systems are: what is the maximum dimension
T ↑(n, k) of an operator system in Mn(C) having no quantum (k+ 1)-cliques, and
what is the minimum dimension T ↓(n, k) of an operator system in Mn(C) having
no quantum (k+ 1)-anticliques? These two questions constitute a “quantum Turán
problem”. The goal of this paper is not to give exact answers to them, but merely
to provide upper and lower bounds for both values. Specifically, we prove√

n
k
< T ↓(n, k)≤

⌈n
k

⌉
and 2(k−1)n−(k−1)2+3≤ T ↑(n, k) < 16(k+1)8n.

Because, unlike the classical case, there is no natural symmetry between quantum
cliques and quantum anticliques, we are really dealing with two distinct questions.
Broadly speaking, it is easy to find quantum cliques and hard to find quantum
anticliques. This is dramatically illustrated by the fact that our upper bound on the
maximum dimension of an operator system having no quantum (k+ 1)-cliques is
linear in n. As there are n2 available dimensions in Mn(C), this means that when n
is large compared to k one needs only a comparatively small number of dimensions
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to guarantee that quantum (k+1)-cliques exist. In contrast, the upper bound on the
lower quantum Turán number is

⌈n
k

⌉
, meaning that dim(V) has to be even smaller

than this to ensure that quantum (k+ 1)-anticliques exist.

2. Lower quantum Turán numbers

We define the lower quantum Turán number T ↓(n, k) to be the smallest number d
such that some operator system in Mn(C) whose dimension is d has no quantum
(k+ 1)-anticliques.

Every rank 1 projection is always both a quantum 1-anticlique and a quantum
1-clique for any operator system, so let us assume throughout that k ≥ 1.

Classically, a graph on n vertices which lacks (k+ 1)-anticliques, and has the
minimum number of edges for doing so, looks like a disjoint union of k many
cliques of equal or nearly equal size. So a natural guess for an operator system
in Mn(C) which lacks quantum (k+ 1)-anticliques and has the smallest possible
dimension is a direct sum of k many matrix algebras of equal or nearly equal
size, V = Mn1(C)⊕ · · ·⊕Mnk−1(C). This operator system indeed has no quantum
(k+ 1)-anticliques; in fact, it has no quantum 2-anticliques because it contains the
diagonal operator system Dn , which itself has no quantum 2-anticliques [Weaver
2017, Proposition 2.1]. But this shows that this V is far from being minimal: its
dimension is approximately n2/k, whereas the dimension of Dn is n. Quantum
(k+ 1)-anticliques for k > 1 can be blocked using even fewer dimensions.

Proposition 2.1. Let P1, . . . , Pr be orthogonal projections in Mn(C), each of
rank at most k, satisfying P1 + · · · + Pr = In . Then the operator system V =
span(P1, . . . , Pr ) has no quantum (k+ 1)-anticliques.

Proof. Let P be a rank k + 1 orthogonal projection in Mn(C) and assume that
PVP = C · P. For each i , the matrix P Pi P has rank at most rank(Pi )≤ k, so the
only way it can be a scalar multiple of P is for it to be zero. But this implies that
P = P(P1+ · · ·+ Pr )P = 0, a contradiction. �

(If r = dim(V)≤ k2
−1 and each Pi has rank k−1, then this operator system has

neither quantum k-cliques nor quantum k-anticliques, explaining a parenthetical
comment made in the introduction.)

Note that P1+· · ·+ Pr = In implies that the ranges of the Pi are orthogonal and
their direct sum is Cn. The minimum value of r for which there exist r projections,
each of rank at most k, which sum to In is therefore

⌈ n
k

⌉
. Thus the following

corollary is immediate.

Corollary 2.2. T ↓(n, k)≤
⌈ n

k

⌉
.

If r =
⌈ n

k

⌉
then the operator system described in Proposition 2.1 is minimal in

the sense that every operator system properly contained in it does have a quantum
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(k + 1)-anticlique. In order to prove this, it will be useful to have the following
alternative characterization of quantum anticliques. (This characterization is implicit
in [Knill et al. 2000].)

Lemma 2.3. Let V ⊆ Mn(C) be an operator system. Then V has a quantum k-
anticlique if and only if there exists an orthonormal set {v1, . . . , vk} in Cn such that
for every Hermitian A ∈ V

〈Avi , v j 〉 = 0 and 〈Avi , vi 〉 = 〈Av j , v j 〉

whenever i 6= j.

Proof. If there is a quantum k-anticlique P for V then any orthonormal basis
{v1, . . . , vk} of its range is easily seen to have the stated properties, since PAP=λP
implies 〈Avi , v j 〉 = 〈PAPvi , v j 〉 = λ〈vi , v j 〉 for all i and j. Conversely, suppose
we are given a set {v1, . . . , vk} satisfying the conditions of the lemma and let P
be the orthogonal projection onto its span. Since every matrix in V is a linear
combination of two Hermitian matrices in V , the stated equations will be true of
any matrix in V . So fix a matrix A ∈ V and let λ be the common value of the inner
products 〈Avi , vi 〉. Then P =

∑
viv
∗

i and so

PAP =
∑
i, j

viv
∗

i Av jv
∗

j =
∑

λviv
∗

i = λP,

since v∗i Av j = 〈Av j , vi 〉 is 0 when i 6= j and λ when i = j. Thus PAP is a scalar
multiple of P for every A ∈ V , i.e., P is a quantum anticlique. �

Proposition 2.4. Let P1, . . . , Pr be orthogonal projections in Mn(C) satisfying
P1 + · · · + Pr = In . Then any operator system properly contained in V =
span(P1, . . . , Pr ) has a quantum k-anticlique where k is the sum of the two smallest
ranks of the Pi ’s.

Proof. Let V0 be an operator system properly contained in V . Its Hermitian part Vh
0

has the form
Vh

0 =

{∑
ai Pi : Ea = (a1, . . . , ar ) ∈ E

}
,

where E is some proper subspace of Rr which includes the vector (1, . . . , 1) (since
we require In ∈ V0). So we can find a nonzero Eb ∈ Rr such that Ea · Eb = 0 for all
Ea ∈ E . Since (1, . . . , 1) ∈ E , it follows that Eb contains both strictly positive and
strictly negative components; by rearranging, we can assume that b1, . . . , b j > 0
and b j+1, . . . , br ≤ 0. We can also assume that b1+· · ·+b j =−b j+1−· · ·−br = 1.

For each i let ei,1, . . . , ei,rank(Pi ) be an orthonormal basis of ran(Pi ). Let k1 be the
smallest rank among P1, . . . , Pj and let k2 be the smallest rank among Pj+1, . . . , Pr ,
so that k ≤ k1+ k2. Then for 1≤ l ≤ k1 set vl =

√
b1e1, l + · · ·+

√
b j e j, l , and for

1 ≤ l ≤ k2 set vk1+ l =
√
−b j+1e j+1, l + · · · +

√
−br er, l . The vectors vl form an
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orthonormal set of size k1+ k2. For any A = a1 P1+ · · ·+ ar Pr ∈ Vh
0 we then have

〈Avl, vl ′〉 = 0 whenever l 6= l ′, and for any 1 ≤ l ≤ k1 and k1 + 1 ≤ l ′ ≤ k1 + k2

we also have

〈Avl, vl〉 = a1b1+ · · ·+ a j b j =−a j+1b j+1− · · ·− ar br = 〈Avl ′, vl ′〉.

So Lemma 2.3 implies that V0 has a quantum (k1+ k2)-anticlique. �

Corollary 2.5. Let V be the operator system from Proposition 2.1 and assume
that r =

⌈ n
k

⌉
. Then every operator system properly contained in V has a quantum

(k+ 1)-anticlique.

Proof. Any family of projections, each of rank at most k, which sums to In must
contain at least r =

⌈ n
k

⌉
members. Thus if it contains exactly this many members

then the sum of the two smallest ranks of the Pi ’s must be at least k+1, as otherwise
these two projections could be replaced by a single projection of rank at most k.
The conclusion now follows from Proposition 2.4. �

It is not to be expected that the kind of minimality expressed in Corollary 2.5
can only happen at dimension

⌈n
k

⌉
. The following is an easy counterexample.

Example 2.6. Take n= 6 and suppose P1+P2= I6 where rank(P1)= rank(P2)= 3.
Then by Propositions 2.1 and 2.4, span(P1, P2) is a two-dimensional operator system
with no quantum 4-anticliques, but every operator system properly contained in it
(there is only one, namely C · I6) has a quantum 4-anticlique.

Alternatively, suppose Q1 + Q2 + Q3 = I6, where rank(Q1) = rank(Q2) =

rank(Q3) = 2. Then span(Q1, Q2, Q3) is a three-dimensional operator system
which has no quantum 4-anticliques (Proposition 2.1), but I claim that any operator
system properly contained in it does have a quantum 4-anticlique. To see this,
note first that any two-dimensional operator system in M6(C) equals span(I6, A)
for some Hermitian matrix A, and if it is contained in span(Q1, Q2, Q3) then we
can write A = aQ1+ bQ2+ cQ3 for some a, b, c ∈ R. Without loss of generality
assume a ≤ b ≤ c. If either a = b or b = c then the existence of a quantum
4-anticlique is immediate: just take Q1+ Q2 or Q2+ Q3. Otherwise let {ei,1, ei,2}

be an orthonormal basis for ran(Qi ) (i = 1, 2, 3) and set α = (c − b)/(c − a)
and γ = (b − a)/(c − a), so that α + γ = 1 and aα + cγ = b. Then the set
S = {
√
αe1,1+

√
γ e3,1,

√
αe1,2+

√
γ e3,2, e2,1, e2,2} satisfies the conditions given

in Lemma 2.3, so span(I6, A) has a quantum 4-anticlique.

In general, for any Hermitian A ∈ Mn(C), a straightforward modification of
the argument used in this example shows that we can always find a quantum

⌈ n
2

⌉
-

anticlique for the two-dimensional operator system V = span(In, A). Let us record
this fact:
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Proposition 2.7. Let A ∈ Mn(C) be Hermitian. Then span(In, A) has a quantum⌈ n
2

⌉
-anticlique.

This is proven by ordering the eigenvalues of A as λ1 ≤ · · · ≤ λn , then letting
r =

⌈ n
2

⌉
and for 1≤ i ≤ r − 1 finding a convex combination αiλi +αr+iλr+i = λr ,

and then applying Lemma 2.3 to the vectors
√
αivi +

√
αr+ivr+i plus the one

additional vector vr , where vi is the eigenvector belonging to λi .
In Example 2.6 this number is improved to

⌈ n
2

⌉
+ 1 because the two middle

eigenvalues of A are equal and their corresponding eigenvectors can both be used
separately.

Actually, Turán’s theorem does not just give the minimum number of edges in a
(k + 1)-anticliqueless graph on n vertices, it explicitly describes the structure of
such a graph with that minimum number of edges — and there is only one up to
isomorphism. I do not know whether

⌈n
k

⌉
is the minimum dimension of a quantum

(k+ 1)-anticliqueless operator system in Mn(C), but the operator system described
in Proposition 2.1 with r =

⌈ n
k

⌉
is not the only quantum (k + 1)-anticliqueless

operator system of that dimension. We can see this from the following extension
of Proposition 2.1.

Proposition 2.8. Let A1, . . . , Ar be positive matrices in Mn(C), each of rank at
most k, and suppose that the dimension of ker

(∑
Ai
)

is also at most k. Then the
operator system V = span(In, A1, . . . , Ar ) has no quantum (k+ 1)-anticliques.

Proof. As in the proof of Proposition 2.1, if we assume that P is a quantum
(k+1)-anticlique for V then comparing ranks shows that P Ai P = 0 for all i . Thus
P
(∑

Ai
)
P = 0, which implies that

(∑
Ai
)1/2 P = 0 and hence that

(∑
Ai
)
P =(∑

Ai
)1/2(∑ Ai

)1/2 P = 0. This shows that ran(P) is contained in ker
(∑

Ai
)
,

which contradicts the hypothesis that dim
(
ker
(∑

Ai
))
≤ k. �

Thus there are many operator systems of dimension
⌈ n

k

⌉
which have no quantum

(k + 1)-anticliques. Indeed, if A1, . . . , Ar are positive matrices of rank k, where
r =

⌈ n
k

⌉
−1, then generically the kernel of their sum will have dimension at most k

and Proposition 2.8 will apply.
Now let us turn to lower bounds for T ↓(n, k). The next pair of results are

basically Theorems 3 and 4 of [Knill et al. 2000], with two small improvements.
For the reader’s convenience I include the full proofs.

Lemma 2.9. Let V be an operator system in Mn(C) and let d = dim(V). Assume
every matrix in V is diagonal. If (k−1)d+1≤ n then V has a quantum k-anticlique.

Proof. Write V = span(A1, . . . , Ad) with each Ai Hermitian and A1 = In . Then
for each 1 ≤ j ≤ n let Eb j ∈ Rd−1 be the vector whose components are the ( j, j)
entries of A2, . . . , Ad . That is, Eb j is the sequence of eigenvalues of the Ai , ex-
cepting A1 = In , belonging to the j-th standard basis vector e j . By a theorem of
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Tverberg [1966; 1981], if n ≥ kd − (d − 1) = (k − 1)d + 1, then the index set
{1, . . . , n} can be partitioned into k blocks S1, . . . , Sk such that the convex hulls
of the sets {Eb j : j ∈ Sl} ⊂ Rd−1, for 1 ≤ l ≤ k, have nonempty intersection. That
is, we can find a single point Eb ∈ Rd−1 such that for each 1≤ l ≤ k some convex
combination

∑
j∈Sl
µ j Eb j equals Eb. Letting vl =

∑
j∈Sl

√
µ j e j , we then have that

〈Aivl, vl ′〉 = 0 whenever l 6= l ′, for any i (even i = 1), and if i 6= 1 then 〈Aivl, vl〉

equals the i-th component of Eb, while 〈A1vl, vl〉 = 1 for any l. So V has a quantum
k-anticlique by Lemma 2.3. �

Theorem 2.10. Let V be an operator system in Mn(C) and let d = dim(V). If
(k− 1)d + 1≤

⌈ n
d−1

⌉
then V has a quantum k-anticlique.

Proof. We reduce to Lemma 2.9 by compressing V to an operator system which
contains only diagonal matrices. To do this, write V = span(A1, . . . , Ad) with
each Ai Hermitian and A1 = In . Start the construction by letting v1 be a norm 1
eigenvector of A2. Then let E1 = Vv1 = {Bv1 : B ∈ V} and let P1 be the orthogonal
projection onto E⊥1 . Having constructed v j , E j , and Pj , let v j+1 ∈ ran(Pj ) be a
norm 1 eigenvector for Pj A2 Pj , let E j+1= PjVv j+1, and let Pj+1 be the orthogonal
projection onto (E1+ · · ·+ E j )

⊥. Continue until all of Cn is exhausted.
Since v j is an eigenvector for Pj−1 A2 Pj−1 (setting P0 = In), and also since

Pj−1 A1 Pj−1v j = v j , it follows that the dimension of E j is at most d − 1. Thus
we have a sequence (v1, . . . , vr ) with r ≥

⌈ n
d−1

⌉
. Also, by construction Aiv j is

orthogonal to v j ′ when j < j ′, for any i . Thus if P is the orthogonal projection
onto the span of the v j ’s, then the matrices P Ai P are diagonal with respect to
the v j basis. In other words, PVP satisfies the hypotheses of Lemma 2.9 with
r ≥

⌈ n
d−1

⌉
in place of n. So (k−1)d+1≤

⌈ n
d−1

⌉
implies that PVP has a quantum

k-anticlique, and hence that V does as well. �

The only novel aspects of these two proofs are (1) elimination of the first coordi-
nates of the vectors Eb j in Lemma 2.9 and (2) our choice of v j to be an eigenvector
of Pj−1 A2 Pj−1. Both yield small improvements on the inequality that has to be
assumed, meaning that in both cases the inequality is slightly weakened.

Replacing
⌈ n

d−1

⌉
with n

d−1 yields, if anything, a stronger condition on k. So
(k− 1)d + 1≤ n/(d − 1) implies that V has a quantum k-anticlique. Substituting
k+1 for k and solving for d yields the condition d ≤ (k−1+

√
(k+ 1)2+ 4kn)/2k,

and thus any operator system whose dimension is at most this value must have a
quantum (k+ 1)-anticlique. As√

n
k
=

√
4kn
2k
≤

k− 1+
√
(k+ 1)2+ 4kn
2k

,

T ↓(n, k) must be larger than this value. Together with Corollary 2.2, this yields
the following estimate.
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Theorem 2.11.
√

n
k
< T ↓(n, k)≤

⌈n
k

⌉
.

The more precise lower bound
(
k− 1+

√
(k+ 1)2+ 4kn

)
/2k is only marginally

better than
√

n/k. But when k=1 it improves T ↓(n, 1)>
√

n to T ↓(n, 1)>
√

n+ 1.
The obvious inefficiency in the proof of Theorem 2.10, where we start by

compressing to a diagonal operator system, plus the minimality demonstrated
in Corollary 2.5, make it natural to conjecture that the lower quantum Turán
number T ↓(n, k) exactly equals

⌈n
k

⌉
. When n = 3 and k = 1, Proposition 2.7 and

Corollary 2.2 yield T ↓(3, 1)= 3; so the first interesting case is n = 4, k = 1, when
Theorem 2.11 yields 3≤ T ↓(4, 1)≤ 4 and the natural conjecture is T ↓(4, 1)= 4, i.e.,
that every three-dimensional operator system in M4(C) has a quantum 2-anticlique.
But even this special case seems hard. I have only been able to prove two partial
positive results. The first is an immediate consequence of either Corollary 2.5 or
Lemma 2.9. (It can also be inferred from Theorem 2.14 below.)

Proposition 2.12. Let V be an operator system in M4(C) consisting of diagonal
matrices, and whose dimension is at most 3. Then V has a quantum 2-anticlique.

The other partial result is more substantive. Its content resides almost entirely in
the next lemma, which is a slightly modified version of a theorem of Bryant [2017].

Lemma 2.13. Let B1, B2, B3 ∈ M2(C) with B1 and B3 Hermitian and let a ≥ 1.
Then there exist λ ∈ [0, 1] and U ∈ SU(2) such that

SB1S+CU B2S+ SB∗2 U∗C +CU B3U∗C

is a scalar multiple of I2, where

S = diag(
√
λ,
√
λ/a) and C = diag(

√
1− λ,

√
1− λ/a).

Proof. For any unit vector Ez = (z0, z1) ∈ C2 we have a special unitary ma-
trix UEz =

[ z0
z1

−z̄1
z̄0

]
, and this identifies the 3-sphere S3 with SU(2). Define fλ :

SU(2)→ M2(C)
h by fλ(U )= SB1S+CU B2S+ SB∗2 U∗C +CU B3U∗C , with S

and C as given above. (Recall that M2(C)
h is the Hermitian part of M2(C).) Also

define g : M2(C)
h
→ R⊕C by

g(A)= (a11− a22, 2a12)

where A =
[a11

a21

a12
a22

]
. Note that g is real-linear and g(A) = 0 if and only if A is a

scalar multiple of I2. Finally, let Fλ : SU(2)→ R⊕C be the map Fλ = g ◦ fλ.
If B3 is a scalar multiple of I2 then f0(U ) = U B3U∗ is a scalar multiple of

I2 for any U ∈ SU(2), and we are done. So assume this is not the case. Since
S2
+C2

= I2, adding a scalar multiple of I2 to both B1 and B3 does not change the
problem, so we can assume one of the eigenvalues of B3 is 0. Multiplying B1, B2,
and B3 by a nonzero scalar, we can assume the other eigenvalue is 1. We can then
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find V ∈ SU(2) such that V B3V ∗ = diag(1, 0), and if U solves the problem for B1,
V B2, and V B3V ∗ then U V solves the problem for B1, B2, and B3. So we may
assume B3 = diag(1, 0).

To reach a contradiction, suppose Fλ(U ) 6= 0 for all λ ∈ [0, 1] and U ∈ SU(2).
Then we can define F̃λ : SU(2)→ S2

⊂ R⊕C∼= R3 by F̃λ(U )= Fλ(U )/|Fλ(U )|.
The family of maps F̃λ constitutes a homotopy from F̃0 to F̃1. Now S = 0 and

C = I2 when λ = 0, so that f0(U ) = U B3U∗. Recalling that we have reduced to
the case where B3 = diag(1, 0), a short computation shows that

F̃0(UEz)= F0(UEz)= (|z0|
2
− |z1|

2, 2z0 z̄1),

i.e., it is the Hopf map from S3 to S2.
This map is homotopically nontrivial, so to generate a contradiction we need

only to show that F̃1 is null homotopic. When λ= 1 we have C = diag(0, a′) with
a′=
√

1− 1/a. So F1(U )∈R⊕C is a constant (namely, g(SB1S)) plus something
real-linear in the entries of U (namely, g(CU B2S+ SB∗2 U∗C)) plus something in
R⊕0 (namely, g(CU B3U∗C)). Letting X ={U ∈SU(2) : F1(U )∈R⊕0}, it follows
that X is the intersection of SU(2)∼= S3 with an affine real-linear subspace of{[

α −β̄

β α

]
: α, β ∈ C

}
∼= R4

whose real dimension is at least 2. Thus X is connected, and therefore its image
under F1 in R ⊕ 0 is connected. Since this image does not contain 0, it must
therefore lie entirely in (0,∞)⊕ 0 or (−∞, 0)⊕ 0; in either case, the image of
F̃1 cannot be all of S2 and so F̃1 must be null homotopic. This contradicts the
homotopic nontriviality of F̃0, and we conclude that g( fλ(U ))= Fλ(U ) ∈ R⊕C

must be 0 for some λ ∈ [0, 1] and U ∈ SU(2). So fλ(U ) is a scalar multiple of I2

for this λ and U. �

Theorem 2.14. Let A, B ∈ M4(C) be Hermitian and assume A has a repeated
eigenvalue. Then V = span(I4, A, B) has a quantum 2-anticlique.

Proof. If A has a triple eigenvalue then there is a rank 3 orthogonal projection P
such that PAP is a scalar multiple of P. We can then identify P M4(C)P with
M3(C) and invoke Proposition 2.7 to infer that span(I3, P B P) has a quantum
2-anticlique Q. This Q will then be a quantum 2-anticlique for V .

So assume A has an eigenvalue of multiplicity exactly 2. By adding a scalar
multiple of I4 to A, we can assume that this eigenvalue is 0. There are now two cases
to consider. First, suppose the two nonzero eigenvalues of A have opposite sign.
Without loss of generality say A = diag(a,−b, 0, 0) with a, b > 0. Multiplying A
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by a nonzero scalar, we can also assume that 1
a +

1
b = 1. Then let

W =


1
√

a 0 0
1
√

b
0 0

0 1 0
0 0 1

,
so that W ∗W = I3 and W ∗AW = 0. Again by Proposition 2.7, span(I3,W ∗BW )⊂

M3(C) has a quantum 2-anticlique Q, and P = W QW ∗ is then a quantum 2-
anticlique for V .

In the other case, the two nonzero eigenvalues of A have the same sign. Multi-
plying by a scalar and diagonalizing, we can assume that A = diag(1, a, 0, 0) with
a ≥ 1. In this basis write B =

[ B1
B2

B∗2
B3

]
with B1, B2, B3 ∈ M2(C) and B1 and B3

Hermitian. Then find λ and U as in Lemma 2.13 and define

P =
[

S2 SCU
U∗SC U ∗C2U

]
,

with S and C as in the statement of that lemma. A computation now shows that
both PAP and P B P are scalar multiples of P. To see that rank(P)= 2, observe
that P is unitarily conjugate to

[ S2

SC
SC
C2

]
, which after interchanging the middle two

basis vectors is the direct sum of[ √
λ

√
1− λ

] [√
λ
√

1− λ
]

and
[ √

λ/a
√

1− λ/a

] [√
λ/a
√

1− λ/a
]
. �

In other words, any three-dimensional operator system in M4(C) has a quantum
2-anticlique provided it contains a nonscalar matrix that has a repeated eigen-
value. Unfortunately, for generic Hermitian A, B ∈ M4(C) the operator system
span(I4, A, B) does not have this property [Bryant 2018].

3. Upper quantum Turán numbers

We define the upper quantum Turán number T ↑(n, k) to be the largest number d
such that some operator system in Mn(C) whose dimension is d has no quantum
(k+ 1)-cliques. As before, we restrict attention to the case k ≥ 1.

Evaluating T ↑(n, k) and T ↓(n, k) are very different problems. In general there
is no natural “quantum” analog of edge complementation which would interchange
quantum cliques and anticliques. In finite dimensions we can consider the ortho-
complement V⊥ of an operator system V ⊆ Mn(C) relative to the Hilbert–Schmidt
inner product 〈A, B〉 = tr(AB∗), but it will not contain In . In order to produce a
“complementary” operator system we could define V†

= V⊥+C · In , and this is
a genuine complementation operation in the sense that V††

= V . This operation
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transforms quantum anticliques into quantum cliques, but not vice versa (incidentally
making precise the idea that anticliques are more special than cliques). We can infer
from this fact that T ↑(n, k) ≤ n2

+ 1− T ↓(n, k), but this upper bound is terrible
compared to the one proven below.2

For k = 1, evaluation of T ↑(n, 1) is not trivial, but it is completely solved:

Theorem 3.1 [Weaver 2017, Theorem 3.3]. For any n ≥ 2, T ↑(n, 1)= 3.

(The cited result only states that T ↑(n, 1) < 4, but the reverse inequality follows
from the trivial lower bound T ↑(n, k)≥ (k+ 1)2− 1. If dim(V) < (k+ 1)2 then V
obviously cannot have any quantum (k+ 1)-cliques.)

In contrast, it follows from [Weaver 2017, Proposition 2.3] that T ↑(n, 2)→∞
as n→∞. The example which shows this can be described more abstractly, in a
way that generalizes to larger values of k.

Proposition 3.2. Let Q be an orthogonal projection in Mn(C) of rank n− k + 1.
Then the operator system

VQ = {A ∈ Mn(C) : Q AQ is a scalar multiple of Q}

has no quantum (k+ 1)-cliques. Indeed, no two-dimensional extension of VQ has
any quantum (k + 1)-cliques, but every three-dimensional extension of VQ does
have a quantum (k+ 1)-clique.

Proof. Let P be a rank k+1 orthogonal projection. Then since rank(P)+rank(Q)=
n+ 2 there is a rank 2 orthogonal projection P0 which lies below both P and Q.
Since Q is a quantum anticlique for VQ , so is P0, i.e., dim(P0VQ P0)= 1. Thus any
two-dimensional extension V ′Q of VQ must satisfy dim(P0V ′Q P0) ≤ 3, so that P0

cannot be a quantum 2-clique for V ′Q . This implies that P cannot be a quantum
(k+ 1)-clique for V ′Q .

Now let V ′′Q be a three-dimensional extension of VQ . Then dim(QV ′′Q Q) = 4.
(Consider the map F : A 7→ Q AQ from Mn(C) to QMn(C)Q. We have VQ =

ker(F)+C· In , so if V is a d-dimensional extension of VQ then dim(F(V))= d+1.)
So by Theorem 3.1 QV ′′Q Q has a quantum 2-clique Q0, and I claim that the
projection P = (I−Q)+Q0 is then a quantum (k+1)-clique for V ′′Q . To see this, let
A ∈Mn(C) be any matrix which satisfies PAP = A; we must show that A ∈ PV ′′Q P.

2Maybe quantum clique for V should be redefined to simply mean quantum anticlique for V†?
This would automatically introduce a symmetry between quantum cliques and quantum anticliques,
but it suffers from two drawbacks: first, it does not generalize to the infinite-dimensional setting, and
second, the quantum Ramsey theorem from [Weaver 2017] would fail. According to [Weaver 2017,
Proposition 2.1] the diagonal operator system Dn has no quantum 2-anticliques, but D†

n also has no
quantum 2-anticliques. (Suppose P is a quantum 2-anticlique for D†

n. Let v1 and v2 be orthonormal
vectors in ran(P) and consider the operator A : v 7→ 〈v, v1〉v2. Then A= PAP and tr(A)= 0, so that
tr(AB∗)= tr(AP B∗P)= 0 for all B ∈ D†

n , which implies that A ∈ Dn . But A cannot belong to Dn
because it does not commute with A∗, which is a contradiction.)
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Since Q0 is a quantum 2-clique for V ′′Q , we can find B0 ∈ V ′′Q such that Q0 B0 Q0 =

Q0 AQ0. Let B1 = Q B0 Q; then Q(B1− B0)Q = 0 and so B1− B0 ∈ VQ , which
implies B1 ∈ V ′′Q . Similarly, Q(A− Q0 AQ0)Q = Q(PAP − Q0 AQ0)Q = 0 so
A− Q0 AQ0 ∈ VQ , and finally B = A− Q0 AQ0+ B1 belongs to V ′′Q and satisfies
P B P = A. Thus we have shown that PV ′′Q P contains A, as desired. �

The last part of Proposition 3.2 shows that the operator systems V ′Q are maximal
for not having any quantum (k+ 1)-cliques. Of course, this does not rule out the
possibility that other operator systems whose dimensions are larger could lack
quantum (k+ 1)-cliques.

If Q is diagonalized as Q=diag(0, . . . , 0, 1, . . . , 1) (with k−1 zeros and n−k+1
ones) then VQ appears as the set of matrices whose restriction to the bottom right
(n− k+1)× (n− k+1) corner is a scalar multiple of the (n− k+1)× (n− k+1)
identity matrix, and which can be anything on the top and left (k − 1)× n and
n × (k − 1) strips. Thus dim(VQ) = 2(k − 1)n − (k − 1)2 + 1 and we infer the
following corollary.

Corollary 3.3. T ↑(n, k)≥ 2(k− 1)n− (k− 1)2+ 3.

The classical analog of the operator system VQ is the graph on n vertices which
is the edge complement of a single (n − k + 1)-clique. In other words, the only
missing edges are those both of whose endpoints lie within a fixed set of n− k+ 1
vertices. Such a graph contains no (k+ 1)-cliques, but the number of edges it has
is linear in n, whereas the classical Turán numbers grow like n2.

We could try to get a better lower bound by considering the matrix analog of
a (k + 1)-cliqueless graph with the maximal number of edges. This graph is the
edge complement of a disjoint union of k many cliques of equal or nearly equal
size. The matrix analog would be the operator system {A ∈ Mn(C) : Pi APi is a
scalar multiple of Pi for 1≤ i ≤ k} where P1, . . . , Pk are orthogonal projections of
equal or nearly equal rank which sum to In . But this idea does not work because
this operator system typically does have quantum (k + 1)-cliques. This is most
simply illustrated in the case k = 2 when we are dealing with a “complete bipartite”
operator system which might be expected to have no quantum 3-cliques. This
expectation fails badly, however:

Proposition 3.4. Let V0 ⊂ M2k(C) be the set of matrices of the form
[ 0

B
A
0

]
with

A, B ∈ Mk(C), and let V be the operator system V = V0 +C · I2k . Then V has a
quantum k-clique.

Proof. Let E = {v⊕ v : v ∈ Ck
} ⊂ C2k and let P be the orthogonal projection onto

E . Any linear operator from E to itself has the form (v⊕ v) 7→ (Av⊕ Av) for
some A ∈ Mk(C). But for any A ∈ Mk(C) the matrix A′ =

[ 0
A

A
0

]
satisfies

(P A′P)(v⊕ v)= A′(v⊕ v)= Av⊕ Av,
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so that PVP contains every linear operator from E to itself. That is, P is a quantum
k-clique. �

In fact, linearity in n is the most we can ask for in a lower bound on T ↑(n, k),
because — incredibly — we can give an upper bound on T ↑(n, k) which is also
linear in n. The argument uses the following result from [Weaver 2017]. Let (ei )

be the standard basis of Cn.

Lemma 3.5 [Weaver 2017, Lemma 4.4]. Let n = k4
+ k3
+ k− 1 and let V be an

operator system contained in Mn(C). Suppose V contains matrices A1, . . . , Ak4+k3

such that for each i we have 〈Ai ei , ei+1〉 6= 0, and also 〈Ai er , es〉 = 0 whenever
max(r, s) > i + 1 and r 6= s. Then V has a quantum k-clique.

We need this lemma to prove the next result, which is extracted from the proof of
[Weaver 2017, Theorem 4.5]. For the reader’s convenience I include the proof here.

Lemma 3.6. Let V be an operator system in Mn(C) and suppose that for each
nonzero v ∈ Cn we have dim(Vv)≥ 8k8. Then V has a quantum k-clique.

Proof. Let v1 be any nonzero vector in Cn and find A1 ∈ V such that v2 = A1v1 is
nonzero and orthogonal to v1. Then find A2 ∈ V such that v3 = A2v2 is nonzero
and orthogonal to each of v1, A1v1, A∗1v1, A1v2, and A∗1v2. Continue in this way,
at the r -th step finding Ar ∈ V such that vr+1 = Arvr is nonzero and orthogonal to
the span of the vectors v1 and Aiv j and A∗i v j for i < r and j ≤ r . The dimension
of this span is at most 2r2

− 2r + 1, so as long as r ≤ 2k4 its dimension is less
than 8k8 and a suitable matrix Ar can be found. Compressing to the span of the vi

for 1≤ i ≤ k4
+ k3
+ k− 1 then puts us in the situation of Lemma 3.5, so there is a

quantum k-clique by that result. �

Theorem 3.7. Let V be an operator system in Mn(C) of dimension at least 16k8n.
Then V has a quantum k-clique.

Proof. Fix k; the proof goes by induction on n. The smallest sensible value of n
is n = 16k8; as for smaller values of n the dimension of V is at most n2 < 16k8n.
When n exactly equals 16k8, the only way to have dim(V)≥ 16k8n is if V =Mn(C),
so it certainly has a quantum k-clique. In the induction step, first suppose that
there exists a nonzero vector v ∈ Cn such that dim(Vv) < 8k8. Let P be the rank
n − 1 orthogonal projection onto the orthocomplement of C · v in Cn. If A ∈ V
satisfies PAP = 0 then, with respect to an orthonormal basis of which v is the first
element, A is the sum of a matrix which is zero except on the leftmost column and
a matrix which is zero except on the topmost row. Since dim(Vv) < 8k8, it follows
that the set {A ∈ V : PAP = 0} has dimension at most 16k8. Thus

dim(PVP)≥ dim(V)− 16k8
≥ 16k8(n− 1),
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and the induction hypothesis tells us that PVP has a quantum k-clique, so V does
as well.

Otherwise, for every nonzero vector v ∈ Cn we have dim(Vv)≥ 8k8, and then V
has a quantum k-clique by Lemma 3.6. �

Putting this together with Corollary 3.3 yields the promised bounds on T ↑(n, k).

Corollary 3.8. 2(k− 1)n− (k− 1)2+ 3≤ T ↑(n, k) < 16(k+ 1)8n.
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BCOV TORSION AND DEGENERATIONS OF
CALABI–YAU MANIFOLDS

WEI XIA

The Fang–Lu formula is an identity relating the Weil–Petersson metric, the
generalized Hodge metrics and the BCOV torsion on the moduli space of
polarized Calabi–Yau manifolds. In this note, we extend this formula to
the compactification of the moduli space of polarized Calabi–Yau manifolds
assuming the logarithm of BCOV torsion is locally L1-integrable. On the
other hand, we use this extended formula to study global numerical proper-
ties for polarized families of Calabi–Yau manifolds.

1. Introduction

Reidemeister torsion (R-torsion) is an invariant that can distinguish between closed
manifolds which are homotopy equivalent but not homeomorphic. Analytic torsion
(or Ray–Singer torsion) is an invariant of Riemannian manifolds defined by Ray
and Singer [1971; 1973] as an analytic analogue of Reidemeister torsion. These
two torsions naturally coincide, which is known as the Cheeger–Müller theorem
[Müller 1978; Cheeger 1979].

Bershadsky, Cecotti, Ooguri and Vafa [Bershadsky et al. 1993; 1994] conjectured
an equivalence between the physical quantity F1 of a Calabi–Yau threefold and
a linear combination of the holomorphic analytic torsion, which is now called
BCOV torsion. Motivated by their conjecture, Fang, Lu and Yoshikawa [Fang
et al. 2008] considered a modification of BCOV torsion, called the BCOV invariant,
and conducted a detailed study of the asymptotic behavior of that invariant for
Calabi–Yau threefold. See also [Yoshikawa 2015; 2017].

By using the curvature formula for Quillen metrics, Bershadsky, Cecotti, Ooguri
and Vafa [Bismut et al. 1988a; 1988b; 1988c] obtained a variational formula for the
BCOV torsion of Ricci-flat Calabi–Yau manifolds. (In our terminology, a compact
connected Kähler manifold X is called a Calabi–Yau manifold if Hq(X,OX )= 0
for 0< q < dim X and K X ∼=OX .) Fang and Lu [2005] expressed the variation of
the BCOV torsion T of Ricci-flat Calabi–Yau manifolds as a linear combination
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of the Weil–Petersson metric ωWP and the generalized Hodge metrics ωHi (see
Section 2 for precise definitions):

(1-1)
n∑

i=1

(−1)iωHi −

√
−1

2π
∂∂̄ log T =

χ

12
ωWP,

where χ is the Euler characteristic number. As has been pointed out in [Fang and
Lu 2005], it is an interesting problem to extend this formula to the compactified
moduli space. The main aim of this note is to establish this extension. In fact, let M
be a connected component of the moduli space of polarized Calabi–Yau manifolds.
Since M is quasiprojective, the smooth part Mreg of M admits a compactification
M, where M is a smooth projective manifold such that D =M−Mreg is a simple
normal crossing divisor. Suppose that D =M−Mreg =

∑
v Dv , where the sum is

locally finite and each Dv is a irreducible hypersurface of M. We will show that
the following holds:

Theorem 1.1. Assume log T is locally L1-integrable on M. For each component
Dv of the boundary divisor D, we set

(1-2) av := lim
p→Dv

log T
log| fv|2

,

where p ∈Mreg and fv is a local defining function of the hypersurface Dv. Then
the following equation of currents on M holds:

(1-3) ddc log T +
n∑

i=1

(−1)i−1TωHi +
χ

12
TωWP =

∑
v

av[Dv],

where the currents TωWP and TωHi are the trivial extensions of ωWP and ωHi from
Mreg to M, and for each v, [Dv] =

∫
Dv

is the current associated to the hypersur-
face Dv.

For polarized families of Calabi–Yau manifolds we have a similar result. In fact,
let X be a smooth projective variety of dimension n+m, let S be a smooth projective
variety of dimension m and let f :X→ S be a surjective, flat holomorphic map with
generic fiber Calabi–Yau n-fold. Let f 0

: X 0
→ S0 be the smooth part of f and as-

sume that the discriminant locus E := S\S0 of f is a simple normal crossing divisor.

Theorem 1.2. Assume log T is locally L1-integrable on S. Let E =
∑

v Ev be the
irreducible decomposition of E and set

(1-4) av := lim
p→Ev

log T
log| fv|2

,

where p ∈ S0 and fv is a local defining function of the hypersurface Ev. Then the
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following equation of currents on S holds:

(1-5) ddc log T +
n∑

i=1

(−1)i−1TωHi +
χ

12
TωWP =

∑
v

av[Ev],

where the currents TωWP and TωHi are the trivial extensions of ωWP and ωHi from
S0 to S, [Ev] =

∫
Ev

is the current associated to the hypersurface Ev and χ is the
topological Euler number of a general fiber of f .

At first glance, Theorem 1.2 is a direct consequence of Theorem 1.1. However,
this is not the case. First of all, unlike the space M, the compactification M itself
is not a moduli space, so we do not have an induced map S→M. Secondly, the
pull back of currents may not be well-defined in general [Demailly 2012, pp. 18].
This is why we state them as two separate theorems. Nevertheless, Theorem 1.2
can be proved in the same way as Theorem 1.1. Hence we will only give the proof
of Theorem 1.1 and leave the proof of Theorem 1.2 to the readers.

The current equation (1-5) in the case where n = 3, m = 1 was proved in [Fang
et al. 2008, Theorem 10.1]. The proof of these two theorems is a modification of
the arguments in [Fang et al. 2008, Section 7]. There are two crucial points here.
The first is the assumption that log T is locally L1-integrable.1 This assumption
is natural in the sense that it has been shown to be valid when n = 3 [Fang et al.
2008, Theorem 9.1]. Under this assumption, we will show that log T has at most
logarithmic growth (see (3-18)) when approaching the boundary divisor D (in
Theorem 1.1) and the discriminant locus E (in Theorem 1.2) so that the asymptotic
values av in these two theorems make sense. The second is that each term in the
Fang–Lu formula (1-1) is bounded by the Poincaré metric near the boundary of the
moduli space [Fang and Lu 2005, Theorem A.1].

Next, we use an observation in [Liu and Xia 2019] to get the following:

Corollary 1.3. We assume the same conditions as in Theorem 1.2. Suppose that the
local monodromies of the polarized family f 0

: X 0
→ S0 are all unipotent. Then

(1-6)
n∑

i=1

(−1)i−1
∑

0≤p≤i

p(deg PHp,i−p
e +deg PHp−1,i−p−1

e +· · · )+
χ

12
deg PHn,0

e

=

∑
v

av deg Ev,

where PHp,q
e → S denotes the canonical Deligne extensions of the Hodge bundles

PHp,q
= P Rq f 0

∗
�

p
X 0/S0→ S0. In particular, for polarized families of Calabi–Yau

1The recent work of Eriksson, Freixas and Mourougane has provided further evidence for this
assumption. See [Eriksson et al. 2018a, Theorem B].
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3-folds, we have

(1-7) (χ + 36) deg PH3,0
e + 12 deg PH2,1

e = 12
∑
v

av deg Ev,

and for polarized families of Calabi–Yau 4-folds, we have

(1-8) (χ − 48) deg PH4,0
e − 24 deg PH3,1

e + 12 deg PH2,1
e = 12

∑
v

av deg Ev.

The identity (1-7) for m = 1 was proved in [Liu and Xia 2019, Theorem 4.4].
These identities are closely related to the Grothendieck–Riemann–Roch theorem
and it is our belief that the asymptotic value av can be read out directly from the
data of the corresponding singular fiber, see [Liu and Xia 2019; Eriksson et al.
2018b; Green et al. 2009]. Moreover, combining (1-8) with the Arakelov inequality
in [Liu and Xia 2019, Theorem 5.1], we get:

Corollary 1.4. We assume the same conditions as in Theorem 1.2 and we let
n = 4,m = 1. If f : X → S is not isotrivial and the local monodromies of the
polarized family f 0

: X 0
→ S0 are all unipotent, then

(1-9) 1+
∑

vav − deg PH2,1
e

2 deg PH4,0
e

≤
χ

24

≤
2π(2g− 2+ s)(h3,1

+ 4)+
∑

vav − deg PH2,1
e

2 deg PH4,0
e

.

This article is structured as follows. In Section 2 we recall basic definitions and
fix our notations. In Section 3 we give the proofs of our main results. In Section 4
we apply our main results to polarized families of Calabi–Yau manifolds.

2. Preliminaries

2A. BCOV torsion. Let (M, g) be a compact Kähler manifold of dimension n
with Kähler form ω. Let �p,q = (∂̄+ ∂̄

∗)2 be the ∂̄-Laplacian acting on C∞ (p, q)-
forms on M or equivalently (0, q)-forms on M with values in �p

M , where �1
M

is the holomorphic cotangent bundle of M and �p
M := 3

p�1
M . Let {λ j } be the

eigenvalues of �p,q ; then it is well known that 0=λ0≤λ1≤λ2≤· · ·≤λ j −→+∞.
The spectral zeta function of �p,q is defined as

(2-1) ζp,q(s) :=
∑
λ j>0

λ−s
j ,
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where the multiplicities of the eigenvalues are taken into account.2 Then ζp,q(s)
converges on the half-plane {s ∈ C; <s > dim M}, extends to a meromorphic
function on C, and is holomorphic at s = 0. From [Ray and Singer 1973], the
(holomorphic) analytic torsion of (M, �p

M) is the real number defined as

(2-2) τ(M, �p
M) := exp

{
−

∑
q≥0

(−1)qq ζ ′p,q(0)
}
.

Note that τ(M, �p
M) depends not only on the complex structure of M but also on

the metric g.
Bershadsky, Cecotti, Ooguri and Vafa [Bershadsky et al. 1994] introduced the

following combination of analytic torsion:

Definition 2.1. The BCOV torsion of (M, g) is the real number defined as

(2-3) TBCOV(M, g) :=
∏
p≥0

τ(M, �p
M)

p(−1)p
= exp

{
−

∑
p,q≥0

(−1)p+q pq ζ ′p,q(0)
}
.

Recall that a compact connected Kähler manifold X is said to be Calabi–Yau if
Hq(X,OX )= 0 for 0< q < dim X and K X ∼=OX , where K X is the canonical line
bundle of X. In general, TBCOV(M, g) is only a spectrum invariant. But when M is
a Calabi–Yau threefold, it is possible to construct a holomorphic invariant of M
from TBCOV(M, g) by multiplying by a correction factor, see [Fang et al. 2008]. In
this note we will only consider BCOV torsion with respect to the unique Ricci-flat
metric [Yau 1978] on a polarized Calabi–Yau manifold.

2B. The moduli space of the polarized Calabi–Yau manifold. Let (X, [ω]) be a
polarized Calabi–Yau manifold of dimension n ≥ 3, that is, X is a Calabi–Yau
manifold and [ω]= c1(L)∈H 2(X,Z) is the first Chern class of an ample line bundle
L on X. Let M be the (coarse) moduli space of the polarized Calabi–Yau manifold
(X, [ω]). Locally, M is identified as a finite discrete quotient of the local versal
deformation space Def (Kuranishi space) of X. By the Bogomolov–Tian–Todorov
theorem [Tian 1987; Todorov 1989], the base space Def of the Kuranishi family

(2-4) π : (X, X)→ (Def, 0)

is smooth (a priori it is only a complex analytic space). Indeed, Def is an open
subset of the linear space H 1(X,2X ), where2X is the holomorphic tangent bundle
of X, so we may assume Def is contractible. Since H 0(X,2X )∼= H 0(X, �n−1

X )= 0,
the Kuranishi family π is universal. Define

(2-5) H 1(X,2X )ω := {θ ∈ H 1(X,2X ) | θyω = 0 ∈ H 2(X,OX )},

2By this we mean that if an eigenvalue λ j has multiplicity k, then it will appear k times in the
series

∑
λ j>0 λ

−s
j .
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and Defω :=Def∩H 1(X,2X )ω. Then each point θ ∈Defω stands for a fiber of the
Kuranishi family π : (X, X)→ (Def, 0) with a polarization

[ωθ ] = [ω] ∈ H 2(Xθ ,Z)= H 2(X,Z)

[Tian 1987]. In fact, since H 2(X,OX ) = 0, we have Defω = Def. We thus have
the associated period mapping Def→ D, where D is the period domain, i.e., the
classifying space of polarized (weight k) Hodge structure of (X, [ω]). Def→ D is
a holomorphic mapping, and is an immersion (local Torelli) for k = n, see [Griffiths
1968, Corollary 3.6]. We remark that M is a complex orbifold and is locally covered
by Def, so when we work with metrics, and curvatures of M, we can treat these
notions on Def instead.

We recall some natural metrics on M, see [Fang and Lu 2005] for more detail.

2C. Weil–Petersson metric. Let t ∈ Def. The Kodaira–Spencer map is now an
isomorphism

(2-6) ρ : Tt Def ∼=−→H 1(X t ,2t),

where 2t is the holomorphic tangent bundle of X t .
Let (t1, . . . , tm) be a local holomorphic coordinate system of M; we define a

Hermitian inner product on TtM by

(2-7)
(
∂

∂ti
,
∂

∂ t̄ j

)
WP
=

∫
X t

Aαi β̄ · A
γ

j δ̄
gδβ̄gαγ dVX t ,

where Ai = Aα
i β̄
(∂/∂tα)⊗ dt̄β (i = 1, . . . ,m) are the harmonic representations of

ρ(∂/∂ti ). This inner product on each TtU for t ∈M gives a Hermitian metric on
the moduli space M, which is called the Weil–Petersson metric. Equipped with the
Weil–Petersson metric, M is a Kähler orbifold.

Let � be a (nonzero) holomorphic (n, 0)-form on X t . Define �yρ(∂/∂ti ) to be
the contraction of � and ρ(∂/∂ti ). The Weil–Petersson metric can be rewritten (see
[Tian 1987] as

(2-8)
(
∂

∂ti
,
∂

∂ t̄ j

)
WP
=−

∫
X t
�yρ

(
∂
∂ti

)
∧�yρ

(
∂
∂t j

)∫
X t
�∧�

.

2D. Generalized Hodge metrics and Hodge bundles. Recall that, for all 0≤ k≤ n
and p+q=k there are natural holomorphic vector bundles PHp,q

:= P Rqπ∗�
p
X/Def,

called Hodge bundles, on Def (hence on M), whose fiber is

(2-9) (P Rqπ∗�
p
X/Def)t = P Hq(X t , �

p
X t
),
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where P Hq(X t , �
p
X t
) is the primitive cohomology of (X t , [ωt ]). By abuse of

notation, we will always use the same symbol PHp,q to denote the Hodge bundle
on Def and on M.

By differentiating harmonic representatives, we have a holomorphic bundle map

(2-10)
∂

∂ti
: PF p

→ PH/PF p,

where PF p
= PHp,k−p

⊕ PHp+1,k−p−1
⊕· · ·⊕ PHk,0 and PH := P Rkπ∗(C). In

this way, we get a natural holomorphic bundle map

(2-11) T (Def )→ ⊕
1≤p≤k

Hom (PF p, PH/PF p).

We remark that this bundle map is just the differential of the period mapping
Def→ D. There are natural metrics on the Hodge bundles PF p, and hence on
each Hom (PF p, PH/PF p), induced by the Riemann–Hodge bilinear relations.
Let h P H k be the pull back of the metric on

⊕
1≤p≤k

Hom (PF p, PH/PF p).

Then, by (2-11), we have that h P H k is semipositive. We use ωP H k to denote the
associated (1, 1)-form of the Hermitian symmetric bilinear form h P H k for all k ≤ n.
We let

(2-12) ωHk := ωP H k +ωP H k−2 + · · · .

We call both ωHk and ωP H k generalized Hodge metrics. We note that when k = n,
ωP Hn is a positive (1, 1)-form by local Torelli. It’s just the pull back of the usual
Hodge metric on D and we call ωH := ωP Hn the Hodge metric.

2E. Weil–Petersson form and generalized Hodge forms. Let f : X → S be a
smooth polarized family of Calabi–Yau manifolds with (X0 := f −1(0), [ω0]) ∼=

(X, [ω]), where 0 ∈ S and [ω0] is the polarization of X0 induced from that of X .
Since M is the moduli space of the polarized Calabi–Yau manifold (X, [ω]), we
have a natural commutative diagram:

S
φ
//

ψ

��

D/0

��

M
ϕ
// D/GZ

where 0 is the monodromy group of the family f , and GZ = Aut(HZ, Q), see
[Griffiths 1984] for more information. To keep our notation simple, we will just
use ωWP and ωHi to denote the pull back forms ψ∗ωWP and ψ∗ωHi , and call them
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the Weil–Petersson form and generalized Hodge forms on S, respectively. Similarly,
we will use PHp,q to denote the pull back bundle ψ∗PHp,q, which is isomorphic
to P Rq f∗�

p
X/S , and call them Hodge bundles on S.

3. Proof of Theorem 1.1 and Theorem 1.2

After some preparations in Section 3A and 3B, we will prove Theorem 1.1 and
Theorem 1.2 in Section 3C and 3D respectively.

3A. Extension of ddc-closed functions. In this subsection we show that ddc-
closed functions can be locally extended through a hypersurface when some suitable
growth conditions are satisfied.3 The proof is a slight modification to that of the
one variable case [Fang et al. 2008, Section 7.2]. We use ∆ to denote the unit
open disc in the complex plane, ∆∗ to denote the punctured unit disc and O to
denote the sheaf of holomorphic functions. Recall that dc

:= (
√
−1/4π)(∂̄ − ∂)

and ddc
= (
√
−1/2π)∂∂̄ . It is easy to see that the real or imaginary part of a

holomorphic function is ddc-closed and in the one dimensional case ddc-closed
functions are just harmonic functions.

Lemma 3.1. Let H(z) be a real-valued ddc-closed function on U ×∆∗, where U
is an open subset in Ck. Then we have that:

(1) There exist c ∈ R, F(z) ∈O(U ×∆∗) and a real-valued ddc-closed function g
on U with

H(z)= c log|t |2+ 2 Re F(z)+ g(u),

where z = (u, t)= (u1, . . . , uk, t) ∈U ×∆∗.

(2) If for any fixed u ∈U, there exist γ =γ (u)∈R such that |t |γ eH(z) is a locally L1-
integrable function on∆ , then for the function F in (1), we have F(z) ∈O(U×∆).

(3) If for any fixed u ∈ U, H(u, t) = O(log(−log|t |)) as t → 0, then for the
functions F, g in (1), we have H(z) = 2 Re F(z)+ g(u) and H(z) extends to a
ddc-closed function on U ×∆.

Proof. (1) Since H(z) is ddc-closed, we know that for all i, j, the derivatives
∂H/∂ui and f (z) := ∂H/∂t are holomorphic functions on U ×∆∗. Let f (z) =
f (u, t) =

∑
n∈Z an(u) tn be the Laurent expansion of f with respect to t and

define F(z) ∈ O(U × ∆∗) by F(z) :=
∑

n 6=−1an(u) tn+1/(n + 1). Noting that
f = a−1(u)/t + ∂F/∂t and using the fact that H(z) is real-valued, we have

(3-1) dt H(z)=
∂H
∂t

dt +
∂H
∂ t̄

d t̄ = f dt + f̄ d t̄ = a−1
dt
t
+ ā−1

dt̄
t̄
+ dt F + dt F,

3For more background material of Lemma 3.1, we refer the readers to [Axler 1986; Kodaira 2007].
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where dt means differential with respect to the t variable. Integrating both sides over
the circle |t | = 1/2, for all u ∈U we get a−1(u)∈R by the Stokes’ theorem, and we
conclude that a−1(u) is a real constant because we know that it is holomorphic. So
dt H(z)= a−1d log|t |2+ 2dt {Re F(z)} and H(z)= a−1 log|t |2+ 2Re F(z)+ g(u)
for some real-valued ddc-closed function g on U. This proves (1).

(2) First we fix u ∈U. Then eH(z)
= |t |2c

|eF(z)
|
2eg(u). By assumption, there exists

γ ∈ R such that

(3-2) eg(u)
∫
|t |<1/2

|t |γ+2c
|eF(z)

|
2
√
−1 dt ∧ dt̄ <+∞,

where F, g and c are as given in (1). Since eF(z) is holomorphic in t ∈ ∆∗, we
deduce from (3-2) that eF(z) is a meromorphic function in t ∈∆. Set Fu(t) := F(z).
There exist N ∈Z and a nowhere vanishing holomorphic function εu(t)∈O(∆) with
eF(z)
= t Nεu(t), where εu(t) is holomorphic in u. Then F ′u(t)= Nt−1

+ε′u(t)εu(t)−1.
Since eF(z), and thus Fu(t) is a meromorphic function in t ∈∆, the residue of F ′u(t)
must vanish, i.e., N = 0. Therefore F ′u(t)= ε

′
u(t)εu(t)−1. Since εu(t) ∈O(∆) and

is nowhere vanishing, from the Laurent series expansions of Fu(t) and F ′u(t) on ∆∗

we deduce that t = 0 is a removable singularity of the function Fu(t). Hence, for
any t ∈∆ we may set

Fu(t) :=
∫ t

0

ε′u(s)
εu(s)

ds+ Fu(0), where Fu(0) := lim
t→0

Fu(t).

It follows that F(z) ∈O(U ×∆).

(3) From the assumption, we easily see that for any fixed u ∈U, there exists γ ∈ R

such that |t |γ eH(u,t)
∈ L1

loc(∆). Indeed, it suffices to choose any positive γ ∈ R.
By (1) and (2), we have F(z)∈O(U×∆) and so H(z)−c log|t |2=2 Re F(z)+g(u)
is a ddc-closed function on U ×∆, where F, g and c are as given in (1). Since
H(u, t)= O(log(−log|t |)) as t→ 0 and lim t→0(log|t |2/ log(−log|t |))=∞, we
get c = 0. This completes the proof. �

Lemma 3.2. Let T (z) = T (u, t) be a positive function on U ×∆∗ such that for
any fixed u ∈U, T (u, t) is locally L1-integrable on ∆. Let P(z) be a real-valued
function on U ×∆∗ such that for any fixed u ∈U, P(z)= P(u, t) ≤ C(−log|t |),
where C =C(u) ∈R is a constant, and if log T (z)+ P(z) is ddc-closed on U ×∆∗,
then there exists a ∈ R such that for any fixed u ∈U,

(3-3) log T (u, t)= a log|t |2+ O(|P(u, t)|), t→ 0.

Proof. Set H(z) = log T (z)+ P(z). By Lemma 3.1 (1), there exist a ∈ R and
F(z) ∈ O(U ×∆∗) and a real-valued ddc-closed function g on U with H(z) =
a log|t |2+2 Re F(z)+g(u). Since for any fixed u ∈U, P(u, t)≤C(−log|t |), we
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have log T (z)= H(z)− P(z)≥ H(z)−C(−log|t |). By our assumption on T (z),
we have that for any fixed u ∈U,

(3-4)
∫
|t |<1/2

|t |C eH(u,t)
√
−1 dt ∧ dt̄ ≤

∫
|t |<1/2

T (u, t)
√
−1 dt ∧ dt̄ <+∞.

By Lemma 3.1 (2), we deduce that F(z) ∈ O(U ×∆), and hence log T (u, t) =
H(z)− P(z)= a log|t |2+ O(|P(u, t)|), t→ 0. �

Lemma 3.3. Let T (z) = T (u, t) be a positive function on U ×∆∗ such that for
any fixed u ∈U, T (u, t) is locally L1-integrable on ∆. Let P(z) be a real-valued
function on U ×∆∗ such that for any fixed u ∈ U, P(u, t) = O(log(−log|t |))
as t→ 0, and if log T (z)+ P(z)+ f (u) is ddc-closed on U ×∆∗ where f (u) is a
smooth function independent of t , then:

(1) There exists a ∈ R such that for any fixed u ∈U,

(3-5) log T (u, t)= a log|t |2+ O(log(−log|t |)), t→ 0.

(2) log T (z)+ P(z)+ f (u)−a log|t |2 extends to a ddc-closed function on U×∆.

Proof. First we fix u ∈U. By assumption, P(z)+ f (u)= O(log(−log|t |)) as t→ 0,
and so P(z)+ f (u)≤ C (−log|t |) for some constant C . Applying Lemma 3.2, we
get

(3-6) log T (u, t)=a log|t |2+O(|P(u, t)+ f (u)|)=a log|t |2+O(log(−log|t |)),

as t→0. This proves (1). For (2), we set H(z)= log T (z)+P(z)+ f (u)−a log|t |2.
Then H(z)= O(log(−log|t |)) as t→ 0. It follows from Lemma 3.1 (3) that H(z)
extends to a ddc-closed function on U ×∆. �

3B. The Poincaré metric and trivial current extensions of (1, 1)-forms. The
Poincaré metric on ∆k

×∆∗l is defined by

(3-7) ωP =
√
−1

k∑
j=1

dz j ∧ dz̄ j +
√
−1

k+l∑
j=k+1

dz j ∧ dz̄ j

|z j |
2 · log2

|z j |
2
.

Let M be a complex manifold of dimension n and u a (1, 1)-current on M.
Then u is positive if u(η∧ η̄)≥ 0 for all η ∈ An−1,0

c (M), where An−1,0
c (M) is the

vector space of smooth (n−1, 0)-forms on M with compact support. A real-valued
function f ∈ L1

loc(M) is plurisubharmonic if f is upper semicontinuous and ddc f
is positive as currents on M.

A C∞ real (1, 1)-form α on ∆k
×∆∗l has Poincaré growth if there exists C > 0

with

(3-8) −C ωP ≤ α ≤ C ωP.
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In this case, the coefficient of α lies in L1
loc(∆

k
×∆∗l). If α has Poincaré growth,

the (1, 1)-current Tα on ∆k+l defined by

(3-9) Tα(ψ) :=
∫
∆k+l

α∧ψ, ψ ∈ Ak+l−1,k+l−1
c (∆k+l),

is called the trivial extension of α from ∆k
×∆∗l to ∆k+l. By definition, if α is

semipositive, is d-closed and has Poincaré growth on ∆k
×∆∗l, then its trivial

extension Tα is a closed, positive (1, 1)-current on ∆k+l. Note also that

(3-10) ddc
{

2π
( k∑

j=1

|z j |
2
−

l∑
j=1

log(−log|zk+ j |
2)

)}
= TωP

as currents on ∆k+l.
We will follow the convention that ẑk+i means zk+i has been omitted.

Proposition 3.4. Let ωi , i = 1, . . . , N, be closed, semipositive (1, 1)-forms on
∆k
×∆∗l with ωi ≤ CωP for some positive constant C. Let T be a positive smooth

function on ∆k
×∆∗l such that log T is a locally L1-integrable function on ∆k+l

and ddc log T +
∑N

i=1 Aiωi = 0 on ∆k
×∆∗l. Then we have that:

(1) ωi extend trivially to closed positive (1, 1)-currents Tωi on ∆k+l.

(2) There exist constants ai ∈ R such that for any fixed (z1, . . . , ẑk+i , . . . , zk+l) ∈

∆k
×∆∗l−1, and for i = 1, . . . , l,

(3-11) log T = ai log|zk+i |
2
+ O(log(−log|zk+i |)), zk+i → 0.

(3) The following equation of currents on ∆k+l holds:

(3-12) ddc log T +
N∑

i=1

Ai Tωi =

l∑
i=1

ai ddc log|zk+i |
2.

Proof. The proof of (1) is obvious since all the ωi are semipositive, d-closed and
have Poincaré growth on ∆k

×∆∗l. For (2), by the ddc-Poincaré lemma [Griffiths
and Harris 1978, pp. 387], there exists a plurisubharmonic function ϕi ∈ Psh(∆k+l)

with ddcϕi = Tωi for each i = 1, . . . , N. From ωi ≤ CωP we infer that

(3-13) ddc
{

2πC
( k∑

j=1

|z j |
2
−

l∑
j=1

log(−log|zk+ j |
2)

)
−ϕi

}
= CTωP − Tωi ≥ 0,

where TωP is the trivial current extension of the Poincaré metric ωP from ∆k
×∆∗l

to ∆k+l. Therefore 2πC
(∑k

j=1|z j |
2
−
∑l

j=1 log(−log|zk+ j |
2)
)
−ϕi is a plurisub-

harmonic function on ∆k+l; combining this with the fact ϕi ∈ Psh(∆k+l), it follows
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that there exist constants C1,C2, such that

(3-14) 2πC
( k∑

j=1

|z j |
2
−

l∑
j=1

log(−log|zk+ j |
2)

)
−C1 ≤ ϕi ≤ C2 on ∆k+l( 1

2

)
,

where ∆k+l
( 1

2

)
:= {z = (z1, . . . , zk+l) ∈∆

k+l
: |z j | <

1
2 , j = 1, . . . , k + l}, and if

we set P =
∑N

i=1 Aiϕi , we easily see that for any fixed (z1, . . . , ẑk+i , . . . , zk+l) ∈

∆k+l−1
(1

2

)
, i ≥ 1,

(3-15) −C3 log(−log|zk+i |)≤ P ≤ C3 log(−log|zk+i |)

for small |zk+i | and some constant C3 = C3(z1, . . . , ẑk+i , . . . , zk+l). Now since
log T+P is ddc-closed and Pz1,...,ẑk+i ,...,zk+l (zk+i )=O(log(−log|zk+i |)), zk+i→ 0
for each i = 1, . . . , l, we get that (2) follows from Lemma 3.3 (1). By applying
Lemma 3.3 (2) with f = 0, it follows that log T + P − a1 log|zk+1|

2 extends to
a ddc-closed function on ∆k+1

×∆∗l−1. Next by applying Lemma 3.3 (2) with
f =a1 log|zk+1|

2, it follows that log T+P−a1 log|zk+1|
2
−a2 log|zk+2|

2 extends to
a ddc-closed function on ∆k+2

×∆∗l−2. Continuing this way, (3) follows easily. �

3C. Current equation on the compactification of the moduli space of polarized
Calabi–Yau manifolds. In this subsection we prove a current equation which ex-
tends the Fang–Lu formula to the compactification of the moduli space of polarized
Calabi–Yau manifolds. Let M be a connected component of the moduli space
of polarized Calabi–Yau manifolds. By [Viehweg 1995], M is quasiprojective.
The smooth part Mreg of M admits a compactification M, where M is a smooth
projective manifold such that D =M−Mreg is a simple normal crossing divisor.
On Mreg, there exists a Kähler metric ω that is locally equivalent to the Poincaré
metric ωp [Zucker 1979]. More precisely, we can choose a local coordinate chart
(W ; z1, . . . , zm) of M such that

(1) D is given by zk+1 · · · zm = 0;

(2) W ∼=∆m ;

(3) Mreg ∩W ∼=∆k
×∆∗m−k ;

(4) ω ∼ ωP =
√
−1

∑k
j=1 dz j ∧ dz̄ j +

√
−1

∑m
j=k+1

dz j ∧ dz̄ j

|z j |
2 log2

|z j |
2
.

It is known from [Fang and Lu 2005, Theorem A.1] that

(3-16) ωHi ≤ CωP, i = 0, . . . , n and ωWP ≤ CωP,

for some positive constant C depending on the lower bound of Ric(ω), the dimen-
sion m of M and the dimension n of Calabi–Yau manifolds. Next, recall that on M,
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we have the Fang–Lu formula [2005, Theorem 1.1]:

(3-17)
n∑

i=1

(−1)iωHi −

√
−1

2π
∂∂̄ log T =

χ

12
ωWP,

where ωHi are the generalized Hodge metrics defined in Section 2D, T is the BCOV
torsion with respect to the unique Ricci-flat metric in the integral cohomology class
that defines the polarization and χ is the Euler number. Note that T is a smooth
positive function on M.

Because of (3-16), we may let TωHi , T�WP be the trivial current extensions of
ωHi , ωWP from Mreg to M. M can be covered by coordinate charts {(W ∼=
∆m
; z1, . . . , zm)} such that either W ∩ D = ∅ or W ∩Mreg ∼= ∆k

× ∆∗m−k

and D is given by zk+1 · · · zm = 0. In the second case, by (3-16), (3-17) and
Proposition 3.4 (2), we know that if log T is locally L1-integrable on M then there
exist constants ai ∈ R such that for any fixed (z1, . . . , ẑi , . . . , zk+l) ∈∆

k
×∆∗ l,

(3-18) log T = ai log|zi |
2
+ O(log(−log|zi |)), zi → 0, for all i ≥ k+ 1.

It’s easy to see that

(3-19) ai = lim
zi→0

log T
log|zi |

2 .

Suppose now that D =M−Mreg =
∑

v Dv, where the sum is locally finite and
each Dv is an irreducible hypersurface of M. We may associate a real number av
with each component Dv of the divisor D by setting

(3-20) av := lim
p→Dv

log T
log| fv|2

,

where p ∈Mreg and fv is a local defining function of the hypersurface Dv . This is
well defined because of (3-18) and (3-19).

Theorem 3.5 (=Theorem 1.1). Assume log T is locally L1-integrable on M. Then
the following equation of currents on M holds:

(3-21) ddc log T +
n∑

i=1

(−1)i−1TωHi +
χ

12
TωWP =

∑
v

av[Dv],

where for each v, [Dv] =
∫

Dv
is the current associated to the hypersurface Dv.

Proof. The statement is local. On a coordinate chart W with W ∩ D = ∅, the
equality (3-21) reduces to (3-17) because supp

(∑
v av[Dv]

)
⊆ D. So it’s enough

to prove it on coordinate charts W with W ∩ D 6=∅. First, it follows immediately
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from (3-16), (3-17) and Proposition 3.4 (3) that

(3-22) ddc log T +
n∑

i=1

(−1)i−1TωHi +
χ

12
TωWP =

m∑
i=k+1

ai ddc log|zi |
2

holds on coordinate chart (W ; z1, . . . , zm) of M such that D is given by W ∼=∆m ,
zk+1 · · · zm = 0 and Mreg ∩W ∼= ∆k

×∆∗m−k. Now, (3-21) follows from (3-20),
(3-22) and the Poincaré–Lelong formula. �

Since M is projective, we may set ωFS to be the Kähler form of the Fubini–Study
metric restricted to M.

Corollary 3.6. Under the same conditions as in Theorem 3.5 we have

(3-23)
∫
M

( n∑
i=1

(−1)i−1TωHi +
χ

12
TωWP

)
∧ωm−1

FS =
∑
v

av deg Dv,

where deg Dv :=
∫
M c1(Dv)∧ω

m−1
FS and c1(Dv) is the first Chern class of the line

bundle associated to Dv.

Proof. We note that ddc log T ∧ωm−1
FS is d-exact on M. By integrating the identity

(3-21) over M, (3-23) follows immediately. �

3D. Current equation for polarized family of Calabi–Yau manifolds. In this sub-
section, we prove a similar current equation for a polarized family of Calabi–Yau
manifolds.

Let X be a smooth projective variety of dimension n +m, let S be a smooth
projective variety of dimension m and let f :X→ S be a surjective, flat holomorphic
map with generic fiber a Calabi–Yau n-fold. Let f 0

: X 0
→ S0 be the smooth

part of f , that is, each fiber f −1(s) is smooth for s ∈ S0 and singular for s /∈ S0,
X 0
= f −1(S0) and f 0 is the restriction of f to X 0. With the polarization induced

from the embedding of X into projective space, f 0
: X 0
→ S0 becomes a smooth

polarized family of Calabi–Yau manifolds. We further assume that the discriminant
locus E := S \ S0 of f is a simple normal crossing divisor.

We make the following two observations. First, by pulling back the Fang–Lu
formula via the induced holomorphic map ψ : S0

→M, we know that (3-17) still
holds on S0:

(3-24)
n∑

i=1

(−1)iωHi −

√
−1

2π
∂∂̄ log T =

χ

12
ωWP,

where, by our conventions (see Section 2E), we use the same symbols to denote
the forms after pulling back. In particular, T is the BCOV torsion of the fibers of
f 0
: X 0
→ S0. Second, from the proof of [Fang and Lu 2005, Theorem A.1], we
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easily see that (3-16) still holds near E . So we can proceed as in Theorem 3.5 and
get the following:

Theorem 3.7 (=Theorem 1.2). Assume log T is locally L1-integrable on S. Let
E =

∑
v Ev be the irreducible decomposition of E and set

(3-25) av := lim
p→Ev

log T
log| fv|2

,

where p ∈ S0 and fv is a local defining function of the hypersurface Ev. Then the
following equation of currents on S holds:

(3-26) ddc log T +
n∑

i=1

(−1)i−1TωHi +
χ

12
TωWP =

∑
v

av[Ev],

where the currents TωWP and TωHi are the trivial extensions of ωWP and ωHi from
S0 to S, [Ev] =

∫
Ev

is the current associated to the hypersurface Ev and χ is the
topological Euler number of a general fiber of f .

Proof. The proof is almost the same as Theorem 3.5 and is omitted. �

Remark 3.8. For n=3, the BCOV torsion T here differs from the BCOV invariant τ
in [Fang et al. 2008] by a positive constant depending only on the polarization
[Yoshikawa 2017, pp. 284]; it follows that the asymptotic value av is the same for T
and τ .

4. Applications to polarized families of Calabi–Yau manifolds

Now we want to integrate (3-26) over S to get global numerical results, but before
that we make the following useful observations as in [Liu and Xia 2019].

Firstly, if we assume the local monodromies of the polarized family f 0
:X 0
→ S0

(with the polarization induced from the projective embedding of X ) are all unipotent,
there is then the canonical Deligne extensions PHp,q

e of the Hodge bundles PHp,q

from S0 to S. Recall that the Hodge bundles are defined by PHp,q
:= P Rqπ∗�

p
X 0/S0

and (P Rqπ∗�
p
X 0/S0)t = P Hq(X t , �

p
X t
) for any t ∈ S, where P Hq(X t , �

p
X t
) is the

primitive cohomology of (X t , [ωt ]). The first Chern forms of PHp,q are related to
the Weil–Petersson form and generalized Hodge forms ([Tian 1987, Theorem 2;
Fang and Lu 2005, Proposition 2.8]):

(4-1)
ωWP = c1(PHn,0),

ωHi =

∑
0≤p≤i

p(c1(PHp,i−p)+ c1(PHp−1,i−p−1)+ · · · ).

Secondly, it follows from the work of Cattani, Kaplan and Schmid [Cattani et al.
1986, Corollary 5.23] that:
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(i) The forms c1(PHp,q) are integrable and they define closed, (1, 1)-currents
c1(PHp,q) (trivial extensions) on the completion S.

(ii) c1(PHp,q)= c1(PHp,q
e ) in H 2

DR(S).

Hence we have:

Lemma 4.1. As cohomology classes in H 2
DR(S), we have

(4-2) TωWP = c1(PHn,0)= c1(PHn,0
e ),

and

TωHi =

∑
0≤p≤i

p(c1(PHp,i−p)+ c1(PHp−1,i−p−1)+ · · ·)(4-3)

=

∑
0≤p≤i

p(c1(PHp,i−p
e )+ c1(PHp−1,i−p−1

e )+ · · ·).(4-4)

Proof. This follows from (4-1) and (ii) above. �

Now we can get the following:

Corollary 4.2. We assume the same conditions as in Theorem 3.7. Suppose that the
local monodromies of the polarized family f 0

: X 0
→ S0 are all unipotent. Then

(4-5)
n∑

i=1

(−1)i−1
∑

0≤p≤i

p(deg PHp,i−p
e +deg PHp−1,i−p−1

e +· · · )+
χ

12
deg PHn,0

e

=

∑
v

av deg Ev.

In particular, for polarized family of Calabi–Yau 3-folds, we have

(4-6) (χ + 36) deg PH3,0
e + 12 deg PH2,1

e = 12
∑
v

av deg Ev,

and for polarized family of Calabi–Yau 4-folds, we have

(4-7) (χ − 48) deg PH4,0
e − 24 deg PH3,1

e + 12 deg PH2,1
e = 12

∑
v

av deg Ev.

Proof. By Theorem 3.7 and Lemma 4.1, we have the following equality of coho-
mology classes in H 2

DR(S):

(4-8) ddc log T

+

n∑
i=1

(−1)i−1
∑

0≤p≤i

p(c1(PHp,i−p
e )+c1(PHp−1,i−p−1

e )+·· ·)+
χ

12
c1(PHn,0

e )

=

∑
v

av[Ev].
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Since S is projective, let ωFS be the restriction of the Kähler form of the Fubini–
Study metric to S, by integration on S, and noting that ddc log T ∧ωm−1

FS is d-exact,
(4-5) follows. �

Now assume m = 1, that is, S is a compact Riemann surface. In this case,
E = {sv} is a set of points and we have deg sv = 1, for all v. We see that for any n,
12
∑

v av is an integer which is not clear from the definition. In fact, for Calabi–Yau
3-folds, each individual av is known to be a rational number [Yoshikawa 2015,
Theorem 0.1]. On the other hand, by applying the Grothendieck–Riemann–Roch
formula to the family f : X → S (see [Green et al. 2009] for n = 3), the sum
12
∑

v av can be given a geometrical meaning. For example, if the family f has
only semistable singular fibers and is relatively minimal, then 12

∑
v av is equal to

an expression involving the Euler characteristic number and intersection data of
the singular fibers. In [Liu and Xia 2019], we conjectured that each individual av
should be determined only by the data of the corresponding singular fiber. This
statement is true for ordinary double point singularities. Indeed, Yoshikawa [2015,
Theorem 5.2] proved that av = 1

6 #Sing Xsv , where #Sing Xsv is the number of
ordinary double points on the singular fiber Xsv . In this direction, Eriksson, Freixas
and Mourougane [Eriksson et al. 2018b] obtained interesting results under the
assumption that the total space X has trivial canonical bundle which is equivalent
to f being relatively minimal because they work locally.

We now use the identity (4-7) to prove an Euler number bound for a polarized
family of Calabi–Yau 4-folds over a compact Riemann surface:

Corollary 4.3. We assume the same conditions as in Theorem 3.7 and we let
n = 4,m = 1. If f : X → S is not isotrivial and the local monodromies of the
polarized family f 0

: X 0
→ S0 are all unipotent, then

(4-9)

1+
∑

v av−deg PH2,1
e

2deg PH4,0
e

≤
χ

24

≤
2π(2g−2+s)(h3,1

+4)+
∑

v av−deg PH2,1
e

2deg PH4,0
e

.

Proof. We have the following inequality [Liu and Xia 2019, Theorem 5.1]:

(4-10) 0< deg PH4,0
e ≤ 2 deg PH4,0

e + deg PH3,1
e ≤ π(2g− 2+ s)(h3,1

+ 4).

Now (4-9) follows from (4-7) and (4-10). �
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CLASSIFICATION OF GRADIENT EXPANDING
AND STEADY RICCI SOLITONS

FEI YANG, SHOUWEN FANG AND LIANGDI ZHANG

In this paper, we prove some classification theorems for gradient expanding
and steady Ricci solitons. We show that a complete noncompact radially
Ricci flat (i.e., Ric(∇ f,∇ f )= 0) gradient expanding Ricci soliton with non-
negative Ricci curvature is a finite quotient of Rn. Moreover, we prove that
a complete noncompact gradient expanding Ricci soliton with Ric ≥ 0 and
div4Rm= 0 is a finite quotient of Rn. For a nontrivial complete noncompact
radially Ricci flat (i.e., Ric(∇ f,∇ f )= 0) gradient steady Ricci soliton with∫
|∇R|2eα f < +∞ for some α ∈ R, we show that it is Einstein with vanish-

ing Ricci curvature or a quotient of Rn or of the product Rk × Nn−k with
1≤ k ≤ n− 1, where N is Einstein with vanishing Ricci curvature.

1. Introduction

A complete Riemannian manifold (Mn, g) is called a gradient Ricci soliton if there
exists a smooth function f on Mn such that the Ricci tensor Ric of the metric g
satisfies the equation

(1-1) Ric+Hess f = λg

for some constant λ. For λ > 0 the Ricci soliton is shrinking, for λ= 0 it is steady
and for λ < 0 expanding.

An Einstein manifold with constant potential function is called a trivial gra-
dient Ricci soliton. When f = λ

2 |x |
2 on Rn, Hess f = λg and therefore yields

a gradient soliton where the background metric is flat. This example is called a
Gaussian soliton.

Taking a product N ×Rk with N being Einstein with Einstein constant λ and
f = λ

2 |x |
2 on Rk yields a mixed gradient soliton. A gradient soliton is rigid if it is

of the type N ×0 Rk, where 0 acts freely on N and by orthogonal transformations
on Rk (no translational components).

Yang is supported by Natural Science Foundation of China (No. 11601495) and Science Foundation
for the Excellent Young Scholars of Central Universities (No. CUGL170213). Fang is supported by
PRC grant NSFC 11771377 and Qing Lan Project.
MSC2010: 53C21, 53C25.
Keywords: gradient expanding Ricci soliton, gradient steady Ricci soliton.
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Throughout the paper, for gradient expanding Ricci solitons we normalize the
constant λ=− 1

2 so that (1-1) becomes

(1-2) Ric+Hess f =− 1
2 g.

In this paper, we shall focus our attention on gradient expanding and steady Ricci
solitons (Mn, g, f ). It turns out that a compact gradient steady or expanding Ricci
soliton is necessarily an Einstein metric (see [Hamilton 1995; Ivey 1994]).

Some properties of gradient expanding Ricci solitons have been proved in recent
years. G. Catino, P. Mastrolia and D. D. Monticelli [Catino et al. 2017] showed that
a gradient expanding Ricci soliton with nonnegative Ricci curvature and fourth order
divergence-free Weyl tensor has harmonic Weyl curvature. H. D. Cao et al. [2014]
estimated the potential function f of a complete noncompact gradient expanding
soliton with nonnegative Ricci curvature, that is − f is of quadratic growth. They
also showed that the condition of Ric ≥ 0 can be relaxed to Rc ≥ −

( 1
2 − ε

)
g for

any small ε > 0.
A 3-dimensional complete gradient expanding Ricci soliton with constant scalar

curvature is classified and indeed it is a finite quotient of R3, H2
×R, and H3 (see

[Petersen and Wylie 2010]). For a 3-dimensional complete gradient expanding
Ricci soliton with nonnegative Ricci curvature and the scalar curvature R ∈ L1(M3),
Catino, Mastrolia and Monticelli [Catino et al. 2016] showed that it is isometric
to a quotient of the Gaussian soliton R3. Moreover, Cao et al. [2014] proved that
a 3-dimensional complete expanding gradient Ricci solitons with divergence-free
Bach tensor and nonnegative Ricci curvature is rotationally symmetric. For the
n-dimensional case, they also proved that a complete Bach-flat gradient expanding
Ricci soliton with nonnegative Ricci curvature is rotationally symmetric.

Some properties of gradient steady Ricci solitons are as follows: P. Petersen
and W. Wylie [2009] proved that a gradient steady soliton whose scalar curvature
achieves its minimum is Ricci flat. Moreover, if f is not constant then it is a product
of a Ricci flat manifold with R. O. Munteanu and N. Sesum [2013] showed that
any gradient steady Ricci soliton has at least linear volume growth and at most
growth rate of e

√
r. Moreover, they proved that a gradient steady Ricci soliton has at

most one nonparabolic end. P. Wu [2013] proved that the infimum of the potential
function of a gradient steady Ricci soliton must decay linearly.

Cao et al. [2014] proved that a 3-dimensional gradient steady Ricci soliton with
divergence-free Bach tensor is either flat or isometric to the Bryant soliton up to a
scaling factor. Catino, Mastrolia and Monticelli [Catino et al. 2016] proved that a
3-dimensional complete gradient steady Ricci soliton with

lim inf
r→+∞

1
r

∫
Br (O)

R = 0

is isometric to a quotient of R3 or R×62, where 62 is the cigar soliton. Under
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the condition of κ-noncollapsed, S. Brendle [2013] proved that a 3-dimensional
complete nonflat gradient steady Ricci soliton is isometric to the Bryant soliton up
to scaling.

In higher dimensions, Cao and Q. Chen [2012] proved that an n-dimensional
complete noncompact locally conformally flat gradient steady Ricci soliton is either
flat or isometric to the Bryant soliton. Moreover, Cao et al. [2014] showed that a
Bach-flat gradient steady Ricci soliton with positive Ricci curvature such that the
scalar curvature R attains its maximum at some interior point is isometric to the
Bryant soliton up to a scaling factor. Brendle [2014] proved that a steady gradient
Ricci soliton of dimension n (n ≥ 4) is rotationally symmetric if it has positive
sectional curvature and is asymptotically cylindrical. In particular, it is isometric to
the Bryant soliton up to scaling.

The aim of this paper is to obtain some classification theorems of gradient
expanding and steady Ricci solitons. In order to state our results precisely, we
introduce the following definitions for the Riemannian curvature:

(div Rm)i jk := ∇l Ri jkl, (div2 Rm)ik := ∇ j∇l Ri jkl,

(div3 Rm)i := ∇k∇ j∇l Ri jkl, div4 Rm := ∇i∇k∇ j∇l Ri jkl .

The main results of this paper are the following theorems for gradient expanding
and steady Ricci solitons.

For a complete noncompact gradient expanding Ricci soliton with nonnegative
Ricci curvature, we have the following classification theorem.

Theorem 1.1. Let (Mn, g, f ) be a complete noncompact gradient expanding Ricci
soliton with nonnegative Ricci curvature. Then, under any of the additional condi-
tions

(i) (Mn, g, f ) is radially Ricci flat, or

(ii) div4 Rm= 0, or

(iii) tr div2 Rm= 0,

(Mn, g, f ) is a finite quotient of the Gaussian expanding soliton Rn.

For a nontrivial complete noncompact gradient steady Ricci soliton, we will
prove the following classification theorem.

Theorem 1.2. Let (Mn, g, f ) be a nontrivial complete noncompact gradient steady
Ricci soliton. Then, under any of the additional conditions

(i) (Mn, g, f ) is radially Ricci flat and
∫
|∇R|eα f <+∞ for some α ∈ R, or

(ii) div4 Rm= 0 and
∫
|Rm|eα f <+∞ for some α 6= 0, or

(iii) tr div2 Rm= 0 and
∫
|∇R|eα f <+∞ for some α 6= 0,
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(Mn, g, f ) is Einstein with vanishing Ricci curvature or a quotient of Rn or of the
product Rk

× N n−k with 1 ≤ k ≤ n− 1, where N is Einstein with vanishing Ricci
curvature.

Remark 1.3. As will be clear from the proof, the scalar assumptions on the van-
ishing of div4 Rm in Theorem 1.1 and Theorem 1.2 can be trivially relaxed to a
(suitable) inequality. The condition of div4 Rm= 0 in Theorem 1.1 can be relaxed
to
∫

div4 Rm e f
≤ 0. Moreover, the condition of div4 Rm= 0 in Theorem 1.2 can

be relaxed to
∫

div4 Rm eα f
≤ 0 for some α 6= 0.

The rest of this paper is organized as follows. In Section 2, we recall some
background material which will be needed in the proof of the main theorems. In
Section 3, we prove an integral identity for complete noncompact gradient expanding
Ricci solitons with nonnegative Ricci curvature. In Section 4, we finish the proof
of Theorem 1.1. In Section 5, we deal with Theorem 1.2. In the Appendix, we
show that a complete noncompact gradient expanding or steady Ricci soliton with
div3 Rm(∇ f )= 0 is rigid.

2. Preliminaries

We recall the following formulas for gradient Ricci solitons.

Proposition 2.1 [Yang and Zhang 2017]. Let (Mn, g, f ) be a gradient Ricci soliton.
We have the following identities:

(div2 Rm)ik = 2λRik +∇l Rik∇l f − 1
2∇i∇k R− R2

ik − Ri jkl R jl,(2-1)

(div3 Rm)i =−Ri jkl∇k R jl,(2-2)

(div3 Rm)(∇ f )=− 1
2 |div Rm|2.(2-3)

Next we list the results that will be needed in the proof of the main theorems.

Lemma 2.2 [Cao et al. 2014]. Let (Mn, gi j , f ) (n ≥ 3) be a complete noncompact
gradient expanding soliton with nonnegative Ricci curvature Rc ≥ 0. Then there
exist some constants c1 > 0 and c2 > 0 such that the potential function f satisfies
the estimates

(2-4) 1
4

(
r(x)− c1

)2
− c2 ≤− f (x)≤ 1

4

(
r(x)+ 2

√
− f (O)

)2
,

where r(x) is the distance function from any fixed base point in Mn. In particular,
f is a strictly concave exhaustion function achieving its maximum at some interior
point O , which we take as the base point, and the underlying manifold Mn is
diffeomorphic to Rn.

Lemma 2.3 [Petersen and Wylie 2009]. The following conditions for a gradient
expanding soliton Ric+Hess f = λg all imply that the metric is radially flat and
has constant scalar curvature.
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(1) The scalar curvature is constant and sec(E,∇ f )≤ 0.

(2) The scalar curvature is constant and λg ≤ Ric≤ 0.

(3) The curvature tensor is harmonic.

(4) Ric≤ 0 and sec(E,∇ f )= 0.

Lemma 2.4 [Petersen and Wylie 2009]. A gradient soliton is rigid if and only if it
has constant scalar curvature and is radially flat, that is, sec(E,∇ f )= 0.

3. An integral identity for gradient expanding Ricci solitons

We prove a useful integral identity (see Lemma 3.2 below), which will be needed
in the proof of Theorem 1.1. The first step is to obtain the following proposition.

Proposition 3.1. Let (Mn, g, f ) be a complete noncompact gradient expanding
Ricci soliton with Ric≥ 0; then

(3-1)
∣∣∣∣∫ ∇∇ f Re f

∣∣∣∣<+∞.
Proof. Since Ric≥ 0, |Ric| ≤ R and the Bishop comparison theorem implies that
the volume of a geodesic ball is at most Euclidean growth. By Lemma 2.2, − f
is of quadratic growth. Note that R+ |∇ f |2+ f = Const., |Ric||∇ f |2 of at most
polynomial growth. Therefore, we have∣∣∣∣∫ ∇∇ f Re f

∣∣∣∣= 2
∣∣∣∣∫ Ric(∇ f,∇ f )e f

∣∣∣∣≤ 2
∫
|Ric||∇ f |2e f <+∞. �

Lemma 3.2. Let (Mn, g, f ) be a complete noncompact gradient expanding Ricci
soliton with Ric≥ 0; then we have

(3-2)
∫
∇∇ f Re f

=−

∫
1Re f .

Proof. Let φ(t)= 1 on (0, s), φ(t)= 2s−t
s on (s, 2s) and φ ≡ 0 on [2s,+∞) for

any fixed s > 0. Since Ric≥ 0, Lemma 2.2 implies that − f is of quadratic growth.
Therefore, φ(− f ) has compact support for any fixed s > 0. Define the compact set
D(s) := {x ∈ Mn

| − f (x)≤ s}.
By direct computation, we have

(3-3)
∫
∇∇ f Rφ(− f )e f

=

∫
〈∇R,∇e f

〉φ(− f )

=−

∫
1Rφ(− f )e f

+

∫
〈∇R,∇ f 〉φ′(− f )e f

=−

∫
1Rφ(− f )e f

−
1
s

∫
D(2s)\D(s)

∇∇ f Re f .
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It follows from Proposition 3.1 that

lim
s→+∞

1
s

∫
D(2s)\D(s)

∇∇ f Re f
= 0.

Therefore, (3-2) follows by taking s→+∞ in (3-3). �

4. Proof of the main result for gradient expanding Ricci solitons

In this section, we prove Theorem 1.1.

Theorem 4.1. Let (Mn, g, f ) be a complete noncompact gradient expanding Ricci
soliton with Ric≥ 0 and Ric(∇ f,∇ f )= 0. Then (Mn, g, f ) is a finite quotient of
the Gaussian expanding soliton Rn.

Proof. Since ∇∇ f R = 2 Ric(∇ f,∇ f )= 0, Lemma 3.2 implies that

(4-1)
∫
1Re f

= 0.

Noting that 1 f R =−R− 2|Ric|2 and 1 f R =1R−∇∇ f R =1R, we have

(4-2) 1R =−R− 2|Ric|2.

Applying (4-2) to (4-1), we obtain

(4-3)
∫
|Ric|2e f

=−
1
2

∫
Re f .

Since Ric≥0, R≥0. From (4-3), we know that |Ric|=0 on Mn, i.e., (Mn, g, f )
has vanishing Ricci curvature.

Hence, condition (2) in Lemma 2.3 holds. It follows from Lemma 2.3 that
(Mn, g, f ) is radially flat and has constant scalar curvature. By Lemma 2.4, we
have (Mn, g, f ) is rigid. Since Ric= 0 on Mn, (Mn, g, f ) is a finite quotient of
the Gaussian expanding soliton Rn. �

Theorem 4.2. Let (Mn, g, f ) be a complete noncompact gradient expanding Ricci
soliton. If div4 Rm = 0 and Ric ≥ 0, then (Mn, g, f ) is a finite quotient of the
Gaussian expanding soliton Rn.

Proof. Let φ(t)= 1 on [0, s], φ(t)= 2s−t
s on (s, 2s) and φ ≡ 0 on [2s,+∞) for

any fixed s > 0. Since Ric≥ 0, Lemma 2.2 implies that − f is of quadratic growth.
Therefore, φ(− f ) has compact support for any fixed s > 0. Define the compact set
D(s) := {x ∈ Mn

| − f (x)≤ s}.
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Integrating by parts, we have

(4-4)
∫

div4 Rmφ(− f )e f

=−

∫
div3 Rm(∇ f )φ(− f )e f

+

∫
div3 Rm(∇ f )φ′(− f )e f

=
1
2

∫
|div Rm|2φ(− f )e f

+
1
2s

∫
D(2s)\D(s)

|div Rm|2e f ,

where we used (2-3) in the second equality.
Since div4 Rm= 0, φ(− f )≥ 0 on Mn, it follows from (4-4) that

(4-5)
∫
|div Rm|2φ(− f )e f

= 0.

Note that φ(− f )= 1 on the compact set D(s) := {x ∈ Mn
| − f (x)≤ s}. From

(4-5), we know that

(4-6)
∫

D(s)
|div Rm|2e f

= 0.

Taking s→+∞ in (4-6), we have∫
|div Rm|2e f

= 0,

that is, |div Rm| = 0 on Mn.
Note that

(4-7) 0=∇l Ri jkl =∇ j Rik −∇i R jk

=−∇ j∇i∇k f +∇i∇ j∇k f

= Ri jkl∇l f.

It follows that Mn is radially flat.
Tracing div Rm, we have

(4-8) 0= gik
∇l Ri jkl =∇l R jl =

1
2∇ j R,

that is, Mn has a constant scalar curvature.
By Lemma 2.4, we have (Mn, g, f ) is rigid. Since Ric ≥ 0, we conclude that

(Mn, g, f ) is a finite quotient of the Gaussian expanding soliton Rn. �

Theorem 4.3. Let (Mn, g, f ) be a complete noncompact gradient expanding Ricci
soliton with Ric ≥ 0 and tr div2 Rm= 0 then (Mn, g, f ) is a finite quotient of the
Gaussian expanding soliton Rn.
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Proof. Tracing (2-1), we have

(4-9) 0= gik(div2 Rm)ik =−R+∇∇ f R− 1
21R− 2|Ric|2

=−R+ 1
21R−1 f R− 2|Ric|2

=
1
21R,

where we used the fact that 1 f R =−R− 2|Ric|2.
It follows that

(4-10) 1R = 0.

Applying (4-10) to Lemma 3.2, we obtain that
∫
1Re f

=
∫
∇∇ f Re f

=0. Noting
that 1R−∇∇ f R =1 f R =−R− 2|Ric|2, we have

(4-11)
∫
|Ric|2e f

=−
1
2

∫
Re f
≤ 0.

It follows that |Ric| = 0 on Mn, i.e., (Mn, g, f ) has vanishing Ricci curvature.
Hence, condition (2) in Lemma 2.3 holds. It follows from Lemma 2.3 that

(Mn, g, f ) is radially flat and has constant scalar curvature. By Lemma 2.4, we
have that (Mn, g, f ) is rigid. Since Ric= 0 on Mn, (Mn, g, f ) is a finite quotient
of the Gaussian expanding soliton Rn. �

Theorem 1.1 follows directly from Theorems 4.1– 4.3.

5. Proof of the main result for gradient steady Ricci solitons

In this section, we prove Theorem 1.2.

Theorem 5.1. Let (Mn, g, f ) be a nontrivial complete noncompact radially Ricci
flat (i.e., Ric(∇ f,∇ f ) = 0) gradient steady Ricci soliton with

∫
|∇R|eα f < +∞

for some α ∈ R. Then (Mn, g, f ) is Einstein with vanishing Ricci curvature or a
quotient of Rn or of the product Rk

×N n−k with 1≤ k ≤ n− 1, where N is Einstein
with vanishing Ricci curvature.

Proof. Let Br be a geodesic ball with radius r and let ν be the unit outward normal
vector field to ∂Br . Integrating by parts, we obtain

(5-1) (α+ 1)
∫

Br

∇∇ f Reα f
=

∫
Br

〈∇R,∇eα f
〉+

∫
Br

∇∇ f Reα f

=

∫
∂Br

∇νReα f
−

∫
Br

1Reα f
+

∫
Br

∇∇ f Reα f

=

∫
∂Br

∇νReα f
−

∫
Br

1 f Reα f

=

∫
∂Br

∇νReα f
+ 2

∫
Br

|Ric|2eα f ,
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where we used the fact that 1 f R =−2|Ric|2.
Note that ∇∇ f R = 2 Ric(∇ f,∇ f )= 0. It follows from (5-1) that

(5-2)
∫

Br

|Ric|2eα f
=−

∫
∂Br

∇νReα f
≤

∫
∂Br

|∇R|eα f .

Since
∫
|∇R|eα f <+∞, we have

(5-3) lim
r→+∞

∫
∂Br

|∇R|eα f
= 0.

Taking r→+∞ in (5-2) and using (5-3), we obtain

(5-4)
∫
|Ric|2eα f

= 0,

that is, |Ric| = 0 on Mn. It follows that (Mn, g, f ) has vanishing scalar curvature.
Moreover, we have

(5-5) Ri jkl∇l f =∇i∇ j∇k f −∇ j∇i∇k f

=−∇i R jk +∇ j Rik = 0,

where we used (1-1) in the second equality and Ric = 0 on Mn. It follows that
sec(E,∇ f )= Ri jkl Ei Ek∇ j f∇l f = 0, i.e., (Mn, g, f ) is radially flat.

Since M has vanishing scalar curvature and is radially flat, Lemma 2.4 implies
(Mn, g, f ) is rigid. To conclude, (Mn, g, f ) is Einstein with vanishing Ricci
curvature or a quotient of Rn or of the product Rk

× N n−k with 1 ≤ k ≤ n− 1,
where N is Einstein with vanishing Ricci curvature. �

Theorem 5.2. Let (Mn, g, f ) be a nontrivial complete noncompact gradient steady
Ricci soliton with

∫
|Rm|eα f < +∞ for some α 6= 0. If in addition div4 Rm = 0,

then it is Einstein with vanishing Ricci curvature or a quotient of Rn or of the
product Rk

× N n−k with 1≤ k ≤ n− 1, where N is Einstein with vanishing Ricci
curvature.

Proof. Let Br be a geodesic ball with radius r and let ν be the outward unit normal
vector field to ∂Br . Integrating by parts, we obtain∫

Br

div4 Rm eα f
≡

∫
Br

∇i∇k∇ j∇l Ri jkleα f

=

∫
∂Br

∇k∇ j∇l Ri jklνi eα f
−α

∫
Br

∇k∇ j∇l Ri jkl∇i f eα f

=−

∫
∂Br

Ri jkl∇k R jlνi eα f
+
α

2

∫
Br

|div Rm|2eα f ,

where we used (2-2) and (2-3) in the last equality.
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Since div4 Rm= 0, we have

(5-6) α

2

∫
Br

|div Rm|2eα f
=

∫
∂Br

Ri jkl∇k R jlνi eα f .

Next, we prove

(5-7) lim
r→+∞

∫
∂Br

Ri jkl∇k R jlνi eα f
= 0.

By direct computation, we have

(5-8) ∇p Rlk j p =∇k Rl j −∇l Rk j

=−∇k∇l∇ j f +∇l∇k∇ j f

= Rlk j p∇p f,

where we used the second Bianchi identity in the first equality and (1-1) in the
second.

Noting that R ≥ 0 (cf. B. L. Chen [2009]) and R + |∇ f |2 = Const., we have
that |∇ f | is bounded. By direct computation, we obtain∣∣∣∣∫ Ri jkl∇k R jlνi eα f

∣∣∣∣= 1
2

∣∣∣∣∫ Ri jkl(∇k R jl −∇l R jk)νi eα f
∣∣∣∣

=
1
2

∣∣∣∣∫ Ri jkl∇p Rlk j pνi eα f
∣∣∣∣

=
1
2

∣∣∣∣∫ Ri jkl Rlk j p∇p f νi eα f
∣∣∣∣

≤
1
2

∫
|Rm|2|∇ f |eα f

≤ c
∫
|Rm|2eα f <+∞,

where we used (5-8) in the third equality and the assumption of∫
|Rm|2eα f <+∞

in the last. Then (5-7) follows.
Taking r→+∞ in (5-6), we have∫

|div Rm|2eα f
= 0,

that is, |div Rm| = 0 on M.
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By direct computation, we have

(5-9) Ri jkl∇l f =∇i∇ j∇k f −∇ j∇i∇k f

=−∇i R jk +∇ j Rik

=∇l Ri jkl

= 0,

where we used (1-1) in the second equality and Ric = 0 on Mn. It follows that
sec(E,∇ f )= Ri jkl Ei Ek∇ j f∇l f = 0, i.e., (Mn, g, f ) is radially flat.

Moreover, we have

(5-10) ∇l R = 2∇ j R jl = 2gik
∇l Ri jkl = 0,

that is, R is a constant on Mn.
Since Mn is radially flat and has a constant scalar curvature, Lemma 2.4 implies

that (Mn, g) is rigid. To conclude, (Mn, g, f ) is Einstein with vanishing Ricci
curvature or a quotient of Rn or of the product Rk

× N n−k with 1 ≤ k ≤ n− 1,
where N is Einstein with vanishing Ricci curvature. �

Theorem 5.3. Let (Mn, g, f ) be a nontrivial complete noncompact gradient steady
Ricci soliton with

∫
|∇R|eα f <+∞ for some α 6= 0. If in addition tr div2 Rm= 0,

then (Mn, g, f ) is a quotient of Rn or of the product Rk
×N n−k with 1≤ k ≤ n− 1,

where N is Einstein with vanishing Ricci curvature.

Proof. From the proof of Theorem 5.1, we only need to show that Mn has vanishing
Ricci curvature.

Let Br be a geodesic ball with radius r and let ν be the unit outward normal
vector field to ∂Br . Integrating by parts, we obtain

(5-11) α

∫
Br

∇∇ f Reα f
=

∫
Br

〈∇R,∇eα f
〉

=

∫
∂Br

∇νReα f
−

∫
Br

1Reα f .

Tracing (2-1), we have

(5-12) gik(div2 Rm)ik=∇∇ f R− 1
21R−2|Ric|2= 1

21R−1 f R−2|Ric|2= 1
21R,

where we used 1 f R =−2|Ric|2.
Since tr div2 Rm= 0, it follows from (5-12) that

(5-13) 1R = 0.
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On the other hand,

(5-14) gik(div2 Rm)ik =∇∇ f R− 1
21R− 2|Ric|2

=
1
2∇∇ f R− 1

21 f R− 2|Ric|2

=
1
2∇∇ f R− |Ric|2,

where we used the fact that 1 f R =−2|Ric|2.
It follows from tr div2 Rm= 0 and (5-14) that

(5-15) ∇∇ f R = 2|Ric|2.

Applying (5-13) and (5-15) to (5-11), and noting that α 6= 0, we obtain

(5-16)
∫

Br

|Ric|2eα f
=

1
2α

∫
∂Br

∇νReα f
≤

1
2|α|

∫
∂Br

|∇R|eα f .

Since
∫
|∇R|eα f <+∞, we have

lim
r→+∞

∫
∂Br

∇νReα f
= 0.

By taking r→+∞ in (5-16), we obtain

(5-17)
∫
|Ric|2eα f

= 0,

that is, |Ric| = 0 on Mn, i.e., (Mn, g, f ) has vanishing Ricci curvature.
This completes the proof of Theorem 5.3. �

Theorem 1.2 follows directly from Theorems 5.1– 5.3.

Appendix

We prove a rigid result for complete noncompact gradient steady and expanding
Ricci solitons in this section. It was implicitly proved by Yang and Zhang [2017].
For readers’ convenience, we include a proof here.

Theorem A.1. Let (Mn, g, f ) be a complete noncompact gradient steady or ex-
panding Ricci soliton with div3 Rm(∇ f )= 0; then (Mn, g, f ) is rigid.

Proof. Since div3 Rm(∇ f )= 0, it follows from (2-3) that

|div Rm|2 =−2 div3 Rm(∇ f )= 0.

Therefore, M is radially flat. Moreover, we have

∇i R = 2∇l Ril =−2g jk
∇l Ri jkl = 0,

that is, R is a constant on M.
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Since Mn is radially flat and has constant scalar curvature, Lemma 2.4 implies
that (Mn, g, f ) is rigid. �
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