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MULTIPLICITY UPON RESTRICTION TO
THE DERIVED SUBGROUP

JEFFREY D. ADLER AND DIPENDRA PRASAD

We present a conjecture on multiplicity of irreducible representations of a
subgroup H contained in the irreducible representations of a group G, with
G and H having the same derived groups. We point out some consequences
of the conjecture, and verification of some of the consequences. We give an
explicit example of multiplicity 2 upon restriction, as well as certain theo-
rems in the context of classical groups where the multiplicity is 1.

1. Introduction

Suppose k is a local field, G is a connected reductive k-group, G′ is a subgroup of G
containing the derived group, and π is a smooth, irreducible, complex representation
of G(k). In an earlier work [Adler and Prasad 2006], we showed that for many
choices of G, the restriction ResG(k)

G′(k) π decomposes without multiplicity.
A number of years ago, in the process of identifying situations where multiplicity

one did not hold, one of us discovered an example of a depth-zero supercuspidal
representation of GU(2d, 2d), a k-quasisplit group, whose restriction to SU(2d, 2d)
decomposes with multiplicity two, and the other formulated a conjecture in the
form of a reciprocity law involving enhanced Langlands parameters. In this paper,
we present both the example and the conjecture, together with some consequences
of the latter, and a verification of some of those consequences. Besides these, the
paper proves several results by elementary means involving classical groups where
multiplicity one holds.

A complete analysis of decomposition of the unitary principal series for U(n, n)
and its restriction to SU(n, n) was done by Keys [1987], who also phrased his
results in terms of “reciprocity” theorems for R-groups; in particular, he found
cases of multiplicity greater than one.

After presenting our conjecture (Section 2), we give some of the heuristics
behind it. In the formulation of the conjecture, we have considered a more general
situation than that of a subgroup. We consider G1 and G2 to be two connected
reductive groups over a local field k, and λ : G1→ G2 to be a k-homomorphism
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that is a central isogeny when restricted to their derived subgroups, allowing us to
“restrict” representations of G2(k) to G1(k). Since under such a homomorphism λ,
the image of G1(k) is a normal subgroup of G2(k) with abelian quotient, all the
irreducible representations of G1(k) which appear in this restriction problem for
a given irreducible representation of G2(k) appear with the same multiplicity. In
Section 3, we verify that for our conjectural multiplicity, this relationship does
indeed hold. We show (Section 4) that if the conjecture is true for tempered
representations, then via the Langlands classification it holds for all representations.

Our conjecture (for λ :G1→G2 a k-homomorphism) implies multiplicity one in
situations where Langlands parameters for G1 have abelian component groups. We
list a few such situations in Section 5, and prove multiplicity one for restriction from
GU(n) to U(n) (Section 6). Along the way, we prove multiplicity one in some other
cases where it follows from elementary considerations. In Section 7, we present
an example of a depth-zero supercuspidal representation of quasisplit GU(2d, 2d)
that decomposes with multiplicity two upon restriction to SU(2d, 2d). Finally
(Section 8), we give a general procedure for constructing higher multiplicities.

2. The conjecture on multiplicities

Let Gqs
1 and Gqs

2 be two connected quasisplit reductive groups over a local field k
and let λ : Gqs

1 → Gqs
2 be a k-homomorphism that is a central isogeny when

restricted to their derived subgroups. In what follows we will be twisting Gqs
1

by a cohomology class in H 1(Gal(k̄/k),Gqs
1 (k̄)) to construct a pure inner form

G1 of Gqs
1 . Simultaneously, by twisting Gqs

2 by the image of this class under the
map H 1(Gal(k̄/k),Gqs

1 (k̄))→ H 1(Gal(k̄/k),Gqs
2 (k̄)), we will have a pure inner

form G2 of Gqs
2 , together with a map of algebraic groups that we will still call

λ : G1 → G2, which will appear in considerations below, all coming from an
element of H 1(Gal(k̄/k),Gqs

1 (k̄)).
The map λ : G1→ G2 gives rise to a “restriction” map from representations of

G2(k) to those of G1(k), and from [Silberger 1979] one knows that the restriction of
an irreducible representation of G2(k) is a finite direct sum of irreducible represen-
tations of G1(k). In particular, we obtain a functor λ? :Rfin(G2(k))→Rfin(G1(k)),
where Rfin(H) denotes the category of smooth, finite-length representations of a
group H.

Let LG1 = Ĝ1 o W ′k and LG2 = Ĝ2 o W ′k be the L-groups associated to the
quasisplit reductive groups Gqs

1 and Gqs
2 respectively. The map λ : Gqs

1 → Gqs
2 also

gives rise to a homomorphism of L-groups,
Lλ : LG2→

LG1,

as well as a homomorphism of their centers,
Lλ : Z(Ĝ2)

Wk → Z(Ĝ1)
Wk .
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It follows, in particular, that a character χ1 of π0(Z(Ĝ1)
Wk ) gives rise to a char-

acter χ2 of π0(Z(Ĝ2)
Wk ) which, by the Kottwitz isomorphism (assuming k to be

nonarchimedean at this point),

H 1(Gal(k̄/k),Gqs
i (k̄))∼= Hom(π0(Z(Ĝi )

Wk ),Q/Z),

constructs pure inner forms G1 of Gqs
1 and G2 of Gqs

2 , together with a map λ :G1→G2

as before.
Let ϕ2 : W ′k →

LG2, and ϕ1 =
Lλ ◦ ϕ2 : W ′k →

LG1 be associated Langlands
parameters, where W ′k =Wk×SL2(C), with Wk the Weil group of k. Then Lλ gives
rise to a homomorphism of centralizers of the images of the parameters ϕ1 with
values in LG1 and ϕ2 with values in LG2, and also a homomorphism of the groups
of connected components of their centralizers:

π0(
Lλ) : π0(ZĜ2

(ϕ2))→ π0(ZĜ1
(ϕ1)).

This allows one to “restrict” representations of π0(ZĜ1
(ϕ1)) to representations of

π0(ZĜ2
(ϕ2)), giving rise to the restriction functor

λ? : K0(π0(ZĜ1
(ϕ1)))→ K0(π0(ZĜ2

(ϕ2))),

where K0(H) denotes the Grothendieck group of finite-length representations of a
group H.

The formulation of our conjecture below presumes that the local Langlands corre-
spondence involving enhanced Langlands parameters has been achieved, giving rise
to a bijection between enhanced Langlands parameters and the set of isomorphism
classes of irreducible admissible representations of all pure inner forms of quasisplit
groups. This will be needed for both of the groups G1 and G2; it is possible on the
other hand that one could reverse this role, and use the conjectural multiplicity for-
mula to construct an enhanced Langlands parametrization for G2, knowing it for G1.

Conjecture 1. (a) Let G1 and G2 be two connected reductive groups over a local
field k and let λ : G1→ G2 be a k-homomorphism that is a central isogeny when
restricted to their derived subgroups. For i=1, 2, let πi be an irreducible admissible
representation of Gi (k) with Langlands parameter ϕi . Let

m(π2, π1) := dim HomG1(k)[π1, λ
?π2] = dim HomG1(k)[λ

?π2, π1].

Then m(π2, π1)= 0 unless ϕ1 =
Lλ ◦ϕ2.

(b) Let Gqs
1 and Gqs

2 be two connected reductive quasisplit groups over a local field k
and let λ :Gqs

1 →Gqs
2 be a k-homomorphism that is a central isogeny when restricted

to their derived subgroups. Let ϕ1 and ϕ2 be Langlands parameters associated
to the groups Gqs

1 and Gqs
2 with ϕ1 =

Lλ ◦ ϕ2, and let χi be characters of their
component groups π0(ZĜi

(ϕi )). Then, if Homπ0(Z(ϕ2))[χ2, λ?χ1] is nonzero, the
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characters χi define pure inner forms Gi of Gqs
i together with a k-homomorphism,

λ : G1→ G2, as discussed earlier. Then if πi = π(ϕi , χi ) are the corresponding
irreducible admissible representations of Gi (k), we have

m(π2, π1)= dim Homπ0(Z(ϕ2))[χ2, λ?χ1].

The main heuristic for the conjectural multiplicity is the following.

(1) For any L-packet {π} on any reductive group G(k) defined by a parameter ϕ
(that is, {π} = {π(ϕ,χ)} where one takes those characters χ of the component group
which have a particular restriction to Z(Ĝ)Wk defining the group G(k) assumed to
be a pure inner form of a fixed quasisplit group Gqs),∑

χ

χ(1)2(π(ϕ,χ))

is a stable distribution on G(k). Here, for any admissible representation π we are
letting 2(π) denote its character, regarded as a distribution on G(k).

(2) For a homomorphism λ :G1→G2 of reductive groups over k which is an isogeny
when restricted to their derived subgroups, the pullback of a stable distribution on
G2(k) is a stable distribution on G1(k).

(3) The restriction to G1(k) of an irreducible representation π2 of G2(k) is a
finite-length (completely reducible) representation of G1(k), whose irreducible
components are all in the same L-packet. This L-packet for G1(k) depends only on
the L-packet for G2(k) containing π2. If the Langlands parameter of our L-packet
for G2(k) is ϕ2 : W ′k →

LG2, then the Langlands parameter of our L-packet for
G1(k) is ϕ1 :=

Lλ ◦ϕ2 :W ′k→
LG1. (This is part (a) of the conjecture.)

(4) If Conjecture 1 is true, then the pullback from G2(k) to G1(k) of the distribution∑
χ2

χ2(1)2(π(ϕ2,χ2)),

where the sum is taken over those characters χ2 of the component group which
have a particular restriction to Z(Ĝ2)

Wk defining the group G2(k) assumed to be a
pure inner form of a fixed quasisplit group Gqs

2 (k), is a stable distribution on G1(k)
as we check now.

By Conjecture 1, the pullback of the distribution 2π2 =2(π(ϕ2,χ2)) on G2(k) to
G1(k) is∑

π1

m(π2, π1)2(π1)=
∑
χ1

2(π(ϕ1,χ1)) dim Homπ0(Z(ϕ2))[χ2, λ?χ1].
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Therefore, the pullback to G1(k) of the distribution
∑

χ2
χ2(1)2(π(ϕ2,χ2)) on G2(k)

is (assuming Conjecture 1)∑
χ1,χ2

χ2(1)2(π(ϕ1,χ1)) dim Homπ0(Z(ϕ2))[χ2, λ?χ1],

which is the same as∑
χ1,χ2

2(π(ϕ1,χ1)) dim Homπ0(Z(ϕ2))[χ2(1)χ2, λ?χ1],

where the sum is taken over all pairs of characters χ1, χ2 with particular restrictions
to Z(Ĝ1)

Wk and Z(Ĝ2)
Wk. Observe that those characters χ2 whose restrictions to

Z(Ĝ2)
Wk are not compatible with the restriction of χ1 to Z(Ĝ1)

Wk contribute 0 to
the sum. Therefore, we can take the sum over all χ2. The sum then is the same as

(∗)
∑
χ1

2(π(ϕ1,χ1)) dim Homπ0(Z(ϕ2))[R, λ?χ1],

where R =
∑
χ2(1)χ2 is the regular representation of π0(Z(ϕ2)).

By Schur orthogonality,

dim Homπ0(Z(ϕ2))[χ2, λ?χ1] =
1

|π0(Z(ϕ2))|

∑
g∈π0(Z(ϕ2))

χ1(λ
?g)χ2(g),

where λ? denotes the map π0(
Lλ) : π0(Z(ϕ2))→ π0(Z(ϕ1)). So

dim Homπ0(Z(ϕ2))[R, λ?χ1] =
1

|π0(Z(ϕ2))|

∑
g∈π0(Z(ϕ2))

χ1(λ
?g)χR(g),

where R is the regular representation of π0(Z(ϕ2)) and χR its character, thus

χR(g)=
{

0 if g is not the identity,
|π0(Z(ϕ2))| if g is the identity.

Therefore,
dim Homπ0(Z(ϕ2))[R, λ?χ1] = χ1(1).

By (∗) it follows that the pullback of the distribution
∑

χ2
χ2(1)2(π(ϕ2,χ2)) on

G2(k) to G1(k) is equal to
∑

χ1
χ1(1)2(π(ϕ1,χ1)), where the sum is taken over

those χ1 with a given restriction to Z(Ĝ1)
Wk. Thus the pullback of the distribution∑

χ2
χ2(1)2(π(ϕ2,χ2)) on G2(k) to G1(k) is a stable distribution on G1(k) which is

what we set out to prove.

Remark 2. A weaker version of our conjecture says that the pullback to G1(k) of
the stable character

∑
χ χ(1)2χ on G2(k) is

∑
µ µ(1)2µ on G1(k), where both

of the sums are over the characters of component groups defining fixed pure inner
forms that are G2 and G1, respectively.
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3. Some remarks on the multiplicity formula

Conjecture 1 relating m(π2, π1) with dim Homπ0(Z(ϕ2))[λ?χ1, χ2] can be considered
as a set of assertions keeping π2 fixed and varying π1, or keeping π1 fixed and
varying π2, say, inside an L-packet for G2(k). It is easy to see that for G1 and G2

two reductive groups over a local field k, and λ :G1→G2, a k-homomorphism that
is a central isogeny when restricted to their derived subgroups, the image of G1(k)
inside G2(k) is a normal subgroup, and therefore every irreducible representation
of G1(k) that appears inside a given irreducible representation π2 of G2(k) does
so with the same multiplicity (depending, of course, on π2). This section aims to
prove this as a consequence of our Conjecture 1.

This section is meant to prove that dim Homπ0(Z(ϕ2))[λ?χ1, χ2] remains constant
when χ2 is a fixed character of π0(Z(ϕ2)) but χ1 varies among characters of
π0(Z(ϕ1)). This is achieved by combining Corollary 4 with Lemma 5. We begin
with the following lemma whose straightforward proof will be omitted.

Lemma 3. Let N be a normal subgroup of a finite group G with A = G/N an
abelian group. Let π be an irreducible representation of N. Then any two irreducible
representations π1 and π2 of G containing π on restriction to N are twists of each
other by characters of G/N, i.e.,

π2 ∼= π1⊗χ,

for χ : G/N → C×.

Corollary 4. If N is a normal subgroup of a group G with A=G/N a finite abelian
group, and π an irreducible representation of N, then all irreducible G-submodules
of IndG

N (π) appear in it with the same multiplicity.

Lemma 5. Let G1 and G2 be two connected reductive groups over a local field k
and let λ : G1→G2 be a k-homomorphism that is a central isogeny when restricted
to their derived subgroups, and giving rise to a homomorphism Lλ : LG2→

LG1

of the L-groups. Let ϕ2 :W ′k→
LG2, and ϕ1 =

Lλ ◦ϕ2 :W ′k→
LG1 be associated

Langlands parameters. Then for the associated homomorphism of finite groups
λ? : π0(ZĜ2

(ϕ2))→ π0(ZĜ1
(ϕ1)), the image is normal with abelian cokernel.

Proof. It suffices to prove the lemma separately in the two cases:

(1) λ : G1→ G2 is injective as a homomorphism of algebraic groups.

(2) λ : G1→ G2 is surjective as a homomorphism of algebraic groups.

We will address only the first case, the other being very similar.
Assume then that λ : G1→ G2 is injective, and thus λ̂ : Ĝ2→ Ĝ1 is surjective

with kernel, say, Ẑ . Use ϕ2 : W ′k→
LG2 and ϕ1 =

Lλ ◦ϕ2 :W ′k→
LG1 to give Ĝ2



MULTIPLICITY UPON RESTRICTION TO THE DERIVED SUBGROUP 7

and Ĝ1, a W ′k-group structure, such that we have an exact sequence of W ′k-groups,

1→ Ẑ→ Ĝ2→ Ĝ1→ 1.

This gives rise to a long exact sequence of W ′k-cohomology sets:

1→ Ẑ W ′k → Ĝ
W ′k
2 → Ĝ

W ′k
1 → H 1(W ′k, Ẑ)→ · · · .

Equivalently, we have the exact sequence of groups,

1→ ZĜ2
(ϕ2)/Ẑ W ′k → ZĜ1

(ϕ1)→ A→ 1,

where A is a subgroup of H 1(W ′k, Ẑ), a locally compact abelian group. Taking
π0 of the terms in the above exact sequence which all fit together in a long exact
sequence of πi ’s (higher homotopy groups), the assertion in the lemma follows on
noting that if E1→ E2 is a surjective map of locally compact and locally connected
topological groups, then the induced map π0(E1)→ π0(E2) is also surjective. �

4. Reduction of the conjecture to the case of tempered representations

As before, let G1 and G2 be two reductive groups over a local field k, and let
λ :G1→G2 be a k-homomorphism that is a central isogeny when restricted to their
derived subgroups, giving rise to the restriction functor

λ? :Rfin(G2(k))→Rfin(G1(k)).

Lemma 6. Let V be a finite-length representation of G2(k) with maximal semisim-
ple quotient Q. Then λ?Q is the maximal semisimple quotient of λ?V, a finite-length
representation of G1(k).

Proof. It suffices to observe that a finite-length representation of G2(k) is semisimple
if and only if its image under λ? is a finite-length, semisimple representation of G1(k).
If Z(G1)(k)·G1(k) is of finite index in G2(k), such as when k is of characteristic zero,
then this is easy to see. By a theorem of Silberger [1979], irreducible representations
of G2(k) remain finite-length semisimple representations when restricted to G1(k),
and the lemma follows in general. �

To set up the next result, let P2 = M2 N2 be a Levi factorization of a parabolic
subgroup in G2. If we let P1 = λ

−1(P2), M1 = λ
−1(M2), and N1 = λ

−1(N2), then
P1=M1 N1 is a Levi factorization of a parabolic subgroup in G1. Then λ : M1→M2

gives us a restriction functor Rfin(M2(k))→Rfin(M1(k)) that we will also denote
by λ?. Since λ gives an isomorphism G1(k)/P1(k)→ G2(k)/P2(k), we have the
following commutative diagram:
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Rfin(G2(k))
λ? // Rfin(G1(k))

Rfin(M2(k))
λ? //

Ind
G2(k)
P2(k)

OO

Rfin(M1(k))

Ind
G1(k)
P1(k)

OO

Lemma 7. Let σ2 be an irreducible, essentially tempered representation of M2(k)
with strictly positive exponents along the center Z(M2)(k) of M2(k). Write

λ?σ2 =
∑
α

mασ1,α,

a sum of irreducible, essentially tempered representations of M1(k) with (finite) mul-
tiplicities mα . Let π2 be the Langlands quotient of the standard module IndG2(k)

P2(k) σ2,
and π1,α the Langlands quotients of IndG1(k)

P1(k) σ1,α. Then

λ?π2 =
∑
α

mαπ1,α.

Proof. Clearly,

λ? IndG2(k)
P2(k) σ2 = IndG1(k)

P1(k) λ
?σ2 =

∑
α

mα IndG1(k)
P1(k) σ1,α.

Since “taking maximal semisimple quotient” commutes with direct sum, our result
follows from Lemma 6. �

Corollary 8. If Conjecture 1 is true for tempered representations, then it is true in
general.

Proof. Every representation π2 of G2(k) can be realized as a Langlands quotient of a
standard module IndG2(k)

P2(k) σ2 for an essentially tempered representation σ2 of M2(k).
The Langlands parameter ϕ2 : W ′F →

LG2 for π2 is the same as the Langlands
parameter ϕ2 for σ2 considered as a map W ′F

ϕ2
−→

L M2→
LG2. The component

groups of these parameters, and thus the representations of these component groups,
correspond as discussed in [Prasad 2019, §5]. Therefore, our result is a consequence
of Lemma 7. �

5. Consequences of the conjecture

If the group of connected components π0(ZĜ1
(ϕ1)) is known to be abelian, as is

the case when G1 is any of the groups SLn , Un , SOn , and Spn , then our conjecture
predicts that for any homomorphism λ : G1 → G2 of connected reductive alge-
braic groups that is an isomorphism up to center (i.e., λ̄ : G1/Z1→ G2/Z2 is an
isomorphism of algebraic groups, where Zi is the center of Gi ), any irreducible
representation of G2(k) when restricted via λ to G1(k) decomposes as a sum of
irreducible representations of G1(k) with multiplicity ≤ 1.
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We note that by our earlier work [Adler and Prasad 2006], we know that multi-
plicity is ≤ 1 whenever the pair (G1,G2) is (SLn,GLn), or (when the characteristic
of k is not two) either (On,GOn) or (Spn,GSpn). In the next section, we will see
that multiplicity ≤ 1 also holds for (Un,GUn). The paper [Gee and Taïbi 2018]
shows that multiplicity ≤ 1 holds for the pair (SOn,GSOn) if k has characteristic
zero.

6. Generalities on restriction to unitary and special unitary groups

Let E/k denote a separable quadratic extension of nonarchimedean local fields,
N = NE/k the norm map from E× to k×, and E1 the kernel of this map.

Let B denote a nondegenerate E/k-hermitian form on some E-vector space V
of some dimension r . Then we can form algebraic groups SU(V, B), U(V, B),
and GU(V, B) whose k-points consist respectively of the elements of SL(r, E) that
preserve B; the elements of GL(r, E) that preserve B; and the elements of GL(r, E)
that preserve B up to a scalar in k×. The group GU(V, B) comes equipped with
a map µ : GU(V, B)→ GL1 called the similitude character. We will write our
algebraic groups as SU(r), U(r), and GU(r) when V and B are understood.

If G is a group, H is a subgroup, and G/Z(G)H is cyclic, then every irreducible
representation of G restricts to H without multiplicity. How far can we exploit this
fact?

Theorem 9. Let p be the residual characteristic of k.

(a) All irreducible representations of GU(r)(k) decompose without multiplicity
upon restriction to U(r)(k). Such a restriction is irreducible when r is odd, and has
at most two components when r is even.

(b) All irreducible representations of U(r)(k) decompose without multiplicity upon
restriction to SU(r)(k) when r is coprime to p, or k =Qp (p odd).

(c) All irreducible representations of GU(r)(k) decompose without multiplicity
upon restriction to SU(r)(k) when r is odd and coprime to p.

Proof. (a) Let µ : GU(r)→ GL(1) denote the similitude character. Clearly the
group GU(r) contains the scalar matrices eIr for all e ∈ E×, and for such matrices
the similitude is NE/k(e). Therefore, the image under µ of the center of GU(r)(k)
is NE/k(E×), so µ thus gives an isomorphism

GU(r)
Z(GU(r))U(r)

−→∼
Im(µ)
N (E×)

.

A scalar a ∈ k× is a similitude for some linear transformation g of V if and only
if for all v,w ∈ V, we have that B(gv, gw) = a · B(v,w). That is, B and a · B
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are equivalent Hermitian forms. It is known that two Hermitian forms over a non-
archimedean local field k are equivalent if and only if their discriminants, which
are elements of k×/N (E×), are the same. Therefore, B and aB are equivalent if
and only if disc B = ar disc B in k×/N (E×) ∼= Z/2. Thus, if r is even, then B
and aB are equivalent for a an arbitrary element of k×, but if r is odd, then a must
lie in N (E×). Thus,

GU(r)
Z(GU(r))U(r)

∼= Z/2 or {1}.

(b) Let RE and PE denote the ring of integers and prime ideal for E . The determi-
nant character gives us an isomorphism,

det :
U(r)(k)

Z(U(r))(k)SU(r)(k)
−→∼

E1

(E1)r
.

As an abstract group, E1 inherits a direct product decomposition from R×E ∼=
k×E ×(1+PE). Thus, E1 is a direct product of a cyclic group (of order coprime to p)
and a pro-p-group A, implying that E1/Er

1 is cyclic if and only A/Ar is cyclic. But
this latter quotient is trivial if r is coprime to p, and is cyclic if k =Qp (p odd).

(c) This follows from the previous two parts of the theorem. �

7. An example of multiplicity upon restriction

Let $ be a uniformizer of k, E/k an unramified quadratic extension, Rk and RE

the rings of integers in k and E , and f and fE the residue fields. Let V be a 4d-
dimensional hermitian space over E , with hyperbolic basis {e1, f1, . . . , e2d , f2d}.
Thus, 〈ei , fi 〉 = 1 for all 1≤ i ≤ 2d , and all the other products being 0. Let U(V )
be the corresponding unitary group. Define the lattice L in E by

L= spanRE
{e1, f1, . . . , ed , fd ,$ed+1, fd+1, . . . ,$e2d , f2d}.

Clearly, L∨ := {v ∈ V |〈v, `〉 ∈ RE for all ` ∈ L} is given by

L∨ = spanRE
{e1, f1, . . . , ed , fd , ed+1,$

−1 fd+1, . . . , e2d ,$
−1 f2d}.

Observe that
$L∨ ⊆ L⊆ L∨,

and L∨/L and L/$L∨ are 2d-dimensional hermitian spaces over fE with natural
hermitian structures. For example, given two elements `1 and `2 in L∨ with images
`1 and `2 in L∨/L, the hermitian structure on L∨/L is defined by having 〈`1, `2〉

as the image of $ 〈`1, `2〉 (which belongs to RE ) in fE .
Define K = U(L) to be the stabilizer of the lattice L in U(V ), i.e., U(L) =
{g ∈U(V )|g` ∈ L for all ` ∈ L}. If an element of U(V ) preserves L, then it clearly
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preserves L∨ and $L, giving a map U(L)→ U(2d, f)×U(2d, f). Similarly, we
have a map SU(L)→ S(U(2d)×U(2d))(f).

Let g0 ∈ GU(V ) be defined (for i ≤ d) by

ei 7→ ed+i , fi 7→$−1 fd+i , ed+i 7→$−1ei , fd+i 7→ fi .

Clearly, g0 has similitude factor $−1, and g0L= L∨. Therefore, we have

g0 U(L)g−1
0 = U(L∨).

Thus conjugation by g0 induces an isomorphism of U(L) into U(L∨), making the
diagram

U(L)
g0 //

��

U(L∨)

��

U(2d, f)×U(2d, f)
j
// U(2d, f)×U(2d, f)

commute, where j (x, y)= (y, x).

Theorem 10. Let ρ be any irreducible cuspidal representation of U(2d)(f) such
that ρ 6∼=ρχ , where χ is a quadratic character of U(2d)(f) trivial on SU(2d)(f). Let
σ := infl(ρ⊗ρχ) denote the inflation of ρ⊗ρχ from (U(2d)×U(2d))(f) to U(L)
and let π = c-IndU(V )

U(L) σ . Then π ⊕π g0 extends to an irreducible representation π̃
of GU(V ) whose restriction to SU(V ) decomposes with multiplicity two.

Proof. From [Moy and Prasad 1996, Proposition 6.6], π is an irreducible, su-
percuspidal representation of U(V ). Let π also denote one of its extensions to
Z(GU(V ))U(V ). From the last sentence of [Moy and Prasad 1994, Theorem 5.2],
π g0 6∼=π , so the sum π⊕π g0 extends to an irreducible (also supercuspidal) represen-
tation π̃ of GU(V ). By the induction-restriction formula (observe that by the explicit
description of U(L), det :U(L)→ E1 is surjective, and hence U(L)SU(V )=U(V )),

π |SU(V ) = c-IndSU(V )
SU(L) (σ |SU(L)),

π g0 |SU(V ) = c-IndSU(V )
SU(L) (σ

g0 |SU(L)).

Since ρ⊗ ρχ ∼= ρχ ⊗ ρ as representations of S(U(2d)×U(2d))(f), we have that
σ ∼= σ g0 as representations of SU(L), so

π̃ |SU(V ) = (π ⊕π
g0)|SU(V ) = 2 · c-IndSU(V )

SU(L) (σ |SU(L)). �

In order to have an example of multiplicity at least two, it is thus sufficient to
find a representation ρ of U(2d)(f) such that ρ 6∼= ρχ , as in the theorem. In fact,
most irreducible Deligne–Lusztig cuspidal representations of U(2d)(f) will have
this property, as they restrict irreducibly to SU(2d)(f).
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Remark 11. In a future work, we will expand upon the example in Theorem 10,
whose essence is the following. Given a supercuspidal representation of G2(k)
whose restriction to G1(k) has regular components (in the sense of Kaletha [2016]),
then the components occur with multiplicity one. (Nevins [2015] already verified
this for many cases.) If the components are not regular, then higher multiplicities
can occur.

Our example begins with ρ, an irreducible cuspidal representation of U(2d)(f)
that arises via Deligne–Lusztig induction from a character θ of the group of f-
points of an anisotropic torus T⊂ U(2d). Suppose also that the restriction of θ to
T(f)∩ SU(2d)(f) remains regular so that the restriction of ρ to SU(2d)(f) remains
irreducible. The torus T× T ⊂ U(2d)×U(2d) lifts to give an unramified torus
T ⊂ GU(V ), and the character θ ⊗ θχ can be inflated and extended to give a
character 2 of T. The representation π̃ of GU(V ) that we have constructed in the
theorem is a regular supercuspidal representation in the sense of Kaletha [2016], but
the irreducible components of its restriction to SU(V ) are not since our character
2 of T, when restricted to T ∩SU(V ), is not regular because of the presence of the
element g0 ∈ GU(V ).

For depth-zero supercuspidal representations of quasisplit unitary groups, the
parahoric that we have used is the only one that can lead to higher multiplicities.

8. Generalities on constructing higher multiplicities

In this section, we discuss some generalities underlying the example of the previous
section, which will be useful for constructing higher multiplicities in general.

Let G be a group, and N a normal subgroup of G such that

G/N ∼= Z/2⊕Z/2.

A good example to keep in mind is G = Q8 = {±1,±i,± j,±k}, the quaternion
group of order 8, and N ={±1}. Let ω1 and ω2 be two distinct, nontrivial characters
of G that are trivial on N.

Suppose π is an irreducible representation of G such that

π ∼= π ⊗ω1 ∼= π ⊗ω2.

By [Gelbart and Knapp 1982, §2], π |N must be one of

(1) a sum of four inequivalent, irreducible representations, or

(2) a sum of two copies of an irreducible representation.

Deciding which of these two options we have is a subtle question, and this is what
we wish to do here.

Let N1 = ker{ω1 : G → Z/2}, so that G ⊃ N1 ⊃ N. Because π ∼= π ⊗ ω1,
π |N1 is equal to π1⊕π2, a sum of inequivalent, irreducible representations. Further,
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since π ∼= π ⊗ω2, we have

(π1⊕π2)∼= (π1⊕π2)⊗ω21,

where ω21 is equal to ω2|N1 , a nontrivial character of N1 of order 2. Therefore, we
have the following two possibilities:

(i) π1 ∼= π1⊗ω21.

(ii) π2 ∼= π1⊗ω21.

In case (i), π1, which is an irreducible representation of N1, decomposes when
restricted to N into two inequivalent irreducible representations, and therefore π
has at least two inequivalent irreducible subrepresentations when restricted to N;
hence, in case (i),

π |N = a sum of 4 inequivalent, irreducible representations.

In case (ii), clearly π |N is twice an irreducible representation.
How does one then construct an example of an irreducible representation π of G

for which π |N is twice an irreducible representation? We start with an irreducible
representation π1 of N1 such that the following equivalent conditions hold:

(i) π1 does not extend to a representation of G.

(ii) π g
1 6
∼= π1 for some g ∈ G.

Given such a representation π1 of N1, next we must ensure that

π
g
1
∼= π1⊗ω21 for g ∈ G \ N .

If we understand N1, together with the action of G on the representations of N1,
then the condition

π
g
1
∼= π1⊗ω21 6∼= π1

is checkable, constructing an irreducible representation π = IndG
N1
π1 of G such

that
π |N = 2π1|N .
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335The “quantum” Turán problem for operator systems
NIK WEAVER

351BCOV torsion and degenerations of Calabi–Yau manifolds
WEI XIA

371Classification of gradient expanding and steady Ricci solitons
FEI YANG, SHOUWEN FANG and LIANGDI ZHANG

0030-8730(201907)301:1;1-I

Pacific
JournalofM

athem
atics

2019
Vol.301,N

o.1


	1. Introduction
	2. The conjecture on multiplicities
	3. Some remarks on the multiplicity formula
	4. Reduction of the conjecture to the case of tempered representations
	5. Consequences of the conjecture
	6. Generalities on restriction to unitary and special unitary groups
	7. An example of multiplicity upon restriction
	8. Generalities on constructing higher multiplicities
	References
	
	

