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Let X be a Banach space and τ an infinite cardinal. We show that if τ
has uncountable cofinality, p ∈ [1,∞), and either the Lebesgue–Bochner
space L p([0, 1], X) or the injective tensor product L p[0, 1]⊗̂εX contains a
complemented copy of c0(τ), then so does X . We show also that if p∈ (1,∞)
and the projective tensor product L p[0, 1]⊗̂π X contains a complemented
copy of c0(τ), then so does X .

1. Introduction and preliminaries

We use standard set-theoretical and Banach space theory terminology as may be
found, e.g., in [Jech 2003] and [Johnson and Lindenstrauss 2001]. We denote by
BX the closed unit ball of the Banach space X . If X and Y are Banach spaces,
we denote by L(X, Y ) the space of all bounded linear operators from X to Y and
by K(X, Y ) the subspace of all compact linear operators. We say that Y contains
a copy (resp. a complemented copy) of X , and write X ↪→ Y (resp. X c

↪→ Y ), if
X is isomorphic to a subspace (resp. complemented subspace) of Y. The density
character of X , denoted by dens(X), is the smallest cardinality of a dense subset
of X .

A Banach space X has the bounded approximation property if there exists λ > 0
such that, for every compact subset K of X and every ε > 0, there exists a finite
rank operator T : X→ X such that ‖T ‖ ≤ λ and ‖x − T (x)‖< ε for every x ∈ K.

We shall denote the projective and injective tensor norms by ‖ · ‖π and ‖ · ‖ε,
respectively. The projective (resp. injective) tensor product of X and Y is the
completion of X ⊗ Y with respect to ‖ · ‖π (resp. ‖ · ‖ε) and will be denoted by
X⊗̂πY (resp. X⊗̂εY ).

For a nonempty set 0, c0(0) denotes the Banach space of all real-valued maps
f on 0 with the property that for each ε > 0, the set {γ ∈ 0 : | f (γ )| ≥ ε} is
finite, equipped with the supremum norm. We will refer to c0(0) as c0(τ ) when
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the cardinality of 0 (denoted by |0|) is equal to τ . This space will be denoted
by c0 when τ = ℵ0. By `∞(0) we will denote the Banach space of all bounded
real-valued maps on 0, with the supremum norm. This space will be denoted by
`∞ when 0 = N.

Given X a Banach space and p ∈ [1,∞), we denote by Lp([0, 1], X) the
Lebesgue–Bochner space of all (classes of equivalence of) measurable functions
f : [0, 1] → X such that the scalar function ‖ f ‖p is integrable, equipped with the
complete norm

‖ f ‖p =

[∫ 1

0
‖ f (t)‖p dt

] 1
p

.

These spaces will be denoted by Lp[0, 1] when X = R.
A measurable function f : [0, 1] → X is essentially bounded if there exists

ε > 0 such that the set {t ∈ [0, 1] : ‖ f (t)‖ ≥ ε} has Lebesgue measure zero, and we
denote by ‖ f ‖∞ the infimum of all such numbers ε > 0. By L∞([0, 1], X) we will
denote the space of all (classes of equivalence of) essentially bounded functions
f : [0, 1] → X , equipped with the complete norm ‖ · ‖∞.

Recall that if τ is an infinite cardinal then the cofinality of τ , denoted by cf(τ ), is
the least cardinal α such that there exists a family of ordinals {β j : j ∈ α} satisfying
β j < τ for all j ∈ α, and sup{β j : j ∈ α} = τ . A cardinal τ is said to be regular
when cf(τ )= τ ; otherwise, it is said to be singular.

Many papers in the history of the geometry of Banach spaces have been devoted to
establishing results about when certain Banach spaces contain complemented copies
of c0 or c0(τ ) for uncountable cardinals τ ; see, for example, [Amir and Lindenstrauss
1968; Argyros et al. 2002; Cembranos 1984; Cembranos and Mendoza 1997;
Emmanuele 1988; Sobczyk 1941; Zippin 1977]. The starting points of our research
are three of these results related to the space c0, i.e., Theorems 1, 2 and 3 below.

We begin by recalling the following immediate consequence of the classical
Cembranos–Freniche theorem [Cembranos 1984, Main theorem; Freniche 1984,
Corollary 2.5].

Theorem 1. For each p ∈ [1,∞),

c0
c
↪→ Lp[0, 1]⊗̂ε`∞.

However, c0
c
↪→/ `∞ (see, e.g., [Diestel and Uhl 1977, Corollary 11, p. 156]).

On the other hand, Oja proved the following stability property.

Theorem 2 [Oja 1991, Theorem 3b]. If X is a Banach space and p ∈ (1,∞), then

c0
c
↪→ Lp[0, 1]⊗̂π X =⇒ c0

c
↪→ X.

Observe that Theorem 2 does not hold for p= 1. Indeed, L1([0, 1], X) is linearly
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isometric to L1[0, 1]⊗̂π X [Ryan 2002, Example 2.19, p. 29] and Emmanuele
obtained the following result.

Theorem 3 [Emmanuele 1988, Main theorem]. If X is a Banach space and p∈[1,∞),
then

c0 ↪→ X =⇒ c0
c
↪→ Lp([0, 1], X).

So, in particular, Lp([0, 1], `∞) contains a complemented copy of c0, but once
again c0

c
↪→/ `∞.

We recall also that, denoting by ‖ · ‖1p the natural tensor norm induced on
Lp[0, 1]⊗X by Lp([0, 1], X) and by Lp[0, 1]⊗̂1p X the completion of Lp[0, 1]⊗X
with this norm, the space Lp([0, 1], X) is linearly isometric to Lp[0, 1]⊗̂1p X
[Defant and Floret 1993, Chapters 7.1 and 7.2].

Thus, we are naturally led to the following problem.

Problem 4. For X a Banach space, p ∈ [1,∞), and τ an infinite cardinal, we want
to know under which conditions

c0(τ )
c
↪→ Lp[0, 1]⊗̂αX =⇒ c0(τ )

c
↪→ X

holds, where α denotes either the projective, injective or natural norm.

This problem becomes more interesting if we keep in mind that, in general,
it is not so simple to determine whether the tensor products of E and X contain
complemented copies of a certain space F, even when E contains no complemented
copies of F. Indeed, there are a number of elementary questions about this topic
that remain unanswered. For instance, it is not known whether l∞⊗̂π l∞ contains a
complemented copy of c0 or not [Cabello Sánchez et al. 2006, Remark 3].

In the present paper, we will prove that for every Banach space X , p ∈ (1,∞)
and an infinite cardinal τ ,

c0(τ )
c
↪→ Lp[0, 1]⊗̂π X =⇒ c0(τ )

c
↪→ X.

Additionally, if τ has uncountable cofinality, then for every p ∈ [1,∞),

c0(τ )
c
↪→ Lp[0, 1]⊗̂εX =⇒ c0(τ )

c
↪→ X

and
c0(τ )

c
↪→ Lp([0, 1], X)=⇒ c0(τ )

c
↪→ X.

This paper is organized as follows. We study complemented copies of c0(τ )

in the injective (Section 2), projective (Section 3) and natural (Section 4) tensor
products with Lp[0, 1].
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2. Complemented copies of c0(τ) in X⊗̂εY spaces

The goal of this section is to prove Theorem 7. We recall that given Banach spaces
X and Y, the operator S : X⊗̂εY → K(X∗, Y ) satisfying

S(v)(x∗)=
j∑

i=1

x∗(ai )bi

for every x∗ ∈ X∗ and v=
∑ j

i=1 ai⊗bi ∈ X⊗Y, is a linear isometry onto its image.
We will need the following key lemma.

Lemma 5. Let X and Y be Banach spaces. Suppose that X has the bounded approx-
imation property. Then there exist sets A⊂ X and B⊂ X∗ such that max(|A|, |B|)≤
dens(X) and for every u ∈ X⊗̂εY and δ > 0 there exist x1, . . . , xm ∈ A and
ϕ1, . . . , ϕm ∈ B satisfying∥∥∥∥u−

m∑
n=1

xn ⊗ S(u)(ϕn)

∥∥∥∥
ε

< δ.

Proof. By hypothesis, there exists λ ≥ 1 such that for every finite-dimensional
subspace Z of X there exists a finite rank operator T on X such that ‖T ‖ ≤ λ and
T (x)= x for all x ∈ Z [Casazza 2001, Theorem 3.3.(3), p. 288].

Let D be a dense subset of X with |D| = dens(X) and let F be the family of all
finite, nonempty subsets of D. For each F ∈ F , fix a finite rank operator TF on
X such that ‖TF‖ ≤ λ and TF (d) = d for all d ∈ F. Let m F be the dimension of
TF (X), {x F

1 , . . . , x F
m F
} be a basis of TF (X) and ϕF

1 , . . . , ϕ
F
m F
∈ X∗ such that

TF (x)=
m F∑
n=1

ϕF
n (x)x

F
n ,

for every x ∈ X . Define

A =
⋃
F∈F

{x F
1 , . . . , x F

m F
} and B =

⋃
F∈F

{ϕF
1 , . . . , ϕ

F
m F
}.

We claim that A and B have the desired properties. Indeed, notice that

|A| ≤ |F | sup
F∈F
|{x F

1 , . . . , x F
m F
}| ≤max(|D|,ℵ0)= |D|

and similarly |B| ≤ |D|.
Next, let u ∈ X⊗̂εY and δ > 0 be given. There exists v=

∑k
j=1 d j⊗ y j ∈ X⊗Y

such that d1, . . . , dk ∈ D, di 6= d j if i 6= j , and

‖u− v‖ε <
δ

λ+ 1
.
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Writing G = {d1, . . . , dk}, we see that

mG∑
n=1

xG
n ⊗ S(v)(ϕG

n )=

k∑
j=1

( mG∑
n=1

ϕG
n (d j )xG

n

)
⊗ y j =

k∑
j=1

TG(d j )⊗ y j = v.

Furthermore, since∥∥∥∥ mG∑
n=1

xG
n ⊗ϕ

G
n

∥∥∥∥
ε

= sup
x∈BX

∥∥∥∥ mG∑
n=1

ϕG
n (x)x

G
n

∥∥∥∥= ‖TG‖ ≤ λ,

we obtain∥∥∥∥ mG∑
n=1

xG
n ⊗ S(u− v)(ϕG

n )

∥∥∥∥
ε

= sup
x∗∈BX∗

∥∥∥∥ mG∑
n=1

x∗(xG
n )S(u− v)(ϕ

G
n )

∥∥∥∥
≤ ‖u− v‖ε sup

x∗∈BX∗

∥∥∥∥ mG∑
n=1

x∗(xG
n )(ϕ

G
n )

∥∥∥∥
<

δ

λ+ 1

∥∥∥∥ mG∑
n=1

xG
n ⊗ϕ

G
n

∥∥∥∥
ε

≤
λδ

λ+ 1
.

Thus, ∥∥∥∥u−
mG∑
n=1

xG
n ⊗ S(u)(ϕG

n )

∥∥∥∥
ε

< δ

and we are done. �

The following result [Galego and Cortes 2017] will also be used frequently
throughout this work.

Theorem 6 [Galego and Cortes 2017, Theorem 2.4]. Let X be a Banach space and
τ be an infinite cardinal. The following are equivalent:

(1) X contains a complemented copy of c0(τ ).

(2) There exist a family (x j ) j∈τ equivalent to the unit-vector basis of c0(τ ) in X
and a weak∗-null family (x∗j ) j∈τ in X∗ such that, for each j, k ∈ τ ,

x∗j (xk)= δ jk .

(3) There exist a family (x j ) j∈τ equivalent to the unit-vector basis of c0(τ ) in X
and a weak∗-null family (x∗j ) j∈τ in X∗ such that

inf
j∈τ
|x∗j (x j )|> 0.



72 VINÍCIUS MORELLI CORTES, ELÓI MEDINA GALEGO AND CHRISTIAN SAMUEL

Theorem 7. Let X and Y be Banach spaces and τ be an infinite cardinal. If X has
the bounded approximation property and cf(τ ) > dens(X), then

c0(τ )
c
↪→ X⊗̂εY =⇒ c0(τ )

c
↪→ Y.

Proof. Let A ⊂ X and B ⊂ X∗ be the sets provided by Lemma 5. By Theorem 6,
there exist families (ui )i∈τ in X⊗̂εY and (ψi )i∈τ in (X⊗̂εY )∗ such that (ui )i∈τ

is equivalent to the usual unit-vector basis of c0(τ ), (ψi )i∈τ is weak∗-null and
ψi (u j )= δi j for each i, j ∈ τ . Let s = supi∈τ ‖ψi‖<∞.

For each i ∈ τ there exist x i
1, . . . , x i

mi
∈ A and ϕi

1, . . . , ϕ
i
mi
∈ B such that∥∥∥∥ui −

mi∑
n=1

x i
n ⊗ S(ui )(ϕ

i
n)

∥∥∥∥
ε

<
1
2s

and hence
1
2
<

mi∑
n=1

|ψi (x i
n ⊗ S(ui )(ϕ

i
n))|.

Put M = {mi : i ∈ τ } and for each m ∈M define αm = {i ∈ τ : mi = m}. Since
M is countable and τ has uncountable cofinality, there exists M ∈M such that
|αM | = τ . Setting τ1 = αM , we have

1
2
<

M∑
n=1

|ψi (x i
n ⊗ S(ui )(ϕ

i
n))| for all i ∈ τ1.

Next, for each i ∈ τ1 there exists 1≤ ni ≤ M satisfying

1
2M

< |ψi (x i
ni
⊗ S(ui )(ϕ

i
ni
))|.

Let N = {ni : i ∈ τ1} and for each n ∈N consider βn = {i ∈ τ1 : ni = n}. Since N
is finite, there exists N ∈N such that |βN | = τ . Setting τ2 = βN , we obtain

1
2M

< |ψi (x i
N ⊗ S(ui )(ϕ

i
N ))| for all i ∈ τ2.

Now let A = {x i
N : i ∈ τ2} and for each a ∈ A put γa = {i ∈ τ2 : x i

N = a}. Since
cf(τ ) > dens(X) ≥ |A|, there exists x0 ∈ A such that |γx0 | = τ . Setting τ3 = γx0 ,
we get

1
2M

< |ψi (x0⊗ S(ui )(ϕ
i
N ))| for all i ∈ τ3.

Finally, let B = {ϕi
N : i ∈ τ3}, and for each ϕ ∈ B put λϕ = {i ∈ τ3 : ϕ

i
N = ϕ}. Since

cf(τ ) > dens(X) ≥ |B|, there exists ϕ0 ∈ B such that |λϕ0 | = τ . Setting τ4 = λϕ0 ,
we obtain

(2-1) 1
2M

< |ψi (x0⊗ S(ui )(ϕ0))| for all i ∈ τ4.
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For each i ∈ τ4, write yi = S(ui )(ϕ0) ∈ Y and consider the linear functional
y∗i ∈ Y ∗ defined by y∗i (y)= ψi (x0⊗ y), for every y ∈ Y. By (2-1), we have

1
2M

< |y∗i (yi )| ≤ ‖ψi‖‖x0‖‖yi‖ ≤ s‖x0‖‖yi‖ for all i ∈ τ4,

and therefore

(2-2) 1
2Ms‖x0‖

< ‖yi‖ for all i ∈ τ4.

Denote by (ei )i∈τ the unit-vector basis of c0(τ ) and let T : c0(τ )→ X⊗̂εY be
an isomorphism from c0(τ ) onto its image such that T (ei ) = ui for each i ∈ τ .
Consider P : X⊗̂εY → Y the linear operator defined by P(u)= S(u)(ϕ0) for every
u ∈ X⊗̂εY. The inequality (2-2) then yields

‖(P ◦ T )(ei )‖ = ‖yi‖ ≥
1

2Ms‖x0‖
> 0 for all i ∈ τ4

and thus, by [Rosenthal 1970, remark following Theorem 3.4], there exists τ5 ⊂ τ4

such that |τ5| = τ and P ◦ T|c0(τ5) is an isomophism onto its image. This shows that
(yi )i∈τ5 = (P(T (ei ))i∈τ5 is equivalent to the unit-vector basis of c0(τ5) in Y. Notice
also that

(y∗i (y))i∈τ5 = (ψi (x0⊗ y))i∈τ5 ∈ c0(τ5) for all y ∈ Y,

since (ψi )i∈τ is weak∗-null by hypothesis. Thus, (y∗i )i∈τ5 is weak∗-null in Y ∗.
Combining these facts with (2-1), an appeal to Theorem 6 yields a complemented
copy of c0(τ ) in Y. �

Note that according to Theorem 1, the above result is optimal. Moreover,
Theorem 7 does not hold for cardinals with uncountable cofinality equal to the
density of X. Indeed, by [Galego and Hagler 2012, Theorem 4.5] it follows that
c0(τ )

c
↪→`1(τ )⊗̂ε`∞(τ ), however according to [Diestel and Uhl 1977, Corollary 11,

p. 156], c0(τ )
c
↪→/ `∞(τ ).

As a direct application of Theorem 7, we have:

Corollary 8. Let X be a Banach space, p ∈ [1,∞) and τ an infinite cardinal with
cf(τ ) > ℵ0. Then

c0(τ )
c
↪→ Lp[0, 1]⊗̂εX =⇒ c0(τ )

c
↪→ X.

3. Complemented copies of c0(τ) in Lp[0, 1]⊗̂π X spaces

We will use a convenient characterization of Lp[0, 1]⊗̂π X as a sequence space.
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3.1. The spaces Lweak
p (X) and L p〈X〉. We will denote by (χn)n≥1 the Haar sys-

tem, that is, the sequence of functions defined on [0, 1] by χ1(t) = 1, for every
t ∈ [0, 1], and

χ2k+ j (t)=


1 if t ∈

[
2 j−2
2k+1 ,

2 j−1
2k+1

)
,

−1 if t ∈
[

2 j−1
2k+1 ,

2 j
2k+1

)
,

0 otherwise,

for each k≥ 0 and 1≤ j ≤ 2k. It is well known (see [Lindenstrauss and Tzafriri 1977,
p. 19; 1979, p. 155]) that the Haar system is an unconditional basis of Lp[0, 1],
p ∈ (1,∞), and we will denote its unconditional basis constant by K p. Following
[Bu 2002; Dowling 2004], we renorm Lp[0, 1] by

‖ f ‖new
p = sup

{∥∥∥∥ ∞∑
n=1

θnαnχn

∥∥∥∥
p
: θn =±1, n ≥ 1

}
for each f =

∑
∞

n=1 αnχn ∈ Lp[0, 1]. Then

‖ · ‖p ≤ ‖ · ‖
new
p ≤ K p‖ · ‖p

and (χn)n≥1 is a monotone, unconditional basis with respect to ‖ · ‖new
p . We will

use Lnew
p [0, 1] to denote Lp[0, 1] equipped with the norm ‖ · ‖new

p .
Now, for each n ≥ 1 let

ep
n =

χn

‖χn‖
new
p
.

The sequence (ep
n )n≥1 is a normalized, unconditional basis of Lnew

p [0, 1] whose un-
conditional basis constant is 1. Further, by [Lindenstrauss and Tzafriri 1977, p. 19],
(ep

n )n≥1 is also a boundedly complete basis.
Given X a Banach space and p, q ∈ (1,∞) satisfying 1/p+1/q = 1, we denote

by Lweak
p (X) the space{
(xn)n≥1 ∈ XN

:

∞∑
n=1

x∗(xn)ep
n converges in Lnew

p [0, 1] for each x∗ ∈ X∗
}

equipped with the norm

‖x̄‖weak
p = sup

{∥∥∥∥ ∞∑
n=1

x∗(xn)ep
n

∥∥∥∥new

p
: x∗ ∈ BX∗

}
,

and by Lp〈X〉 the space{
(xn)n≥1 ∈ XN

:

∞∑
n=1

|x∗n (xn)|<∞ for each (x∗n )n≥1 ∈ Lweak
q (X∗)

}
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with the norm

‖x̄‖Lp〈X〉 = sup
{ ∞∑

n=1

|x∗n (xn)| : (x∗n )n≥1 ∈ BLweak
q (X∗)

}
,

where x̄ = (xn)n≥1. With their own respective norms, Lweak
p (X) and Lp〈X〉 are

Banach spaces [Bu 2002].
For each n ≥ 1, we will denote by

In : X→ XN

the natural inclusion

In(x)= (δmnx)m≥1 for all x ∈ X.

It is easy to see that ‖In(x)‖weak
p = ‖x‖ and furthermore, by [Lindenstrauss and

Tzafriri 1977, Proposition 1.c.7], we know ‖In(x)‖Lp〈X〉 ≤ 2‖x‖, for every x ∈ X.
We shall consider also the following closed subspace of Lweak

p (X):

Fp(X)=
{

x̄ = (xn)n≥1 ∈ Lweak
p (X) :

∥∥∥∥x̄ −
m∑

n=1

In(xn)

∥∥∥∥weak

p
→ 0

}
.

Next, we recall some results obtained in [Bu 2002].

Theorem 9 [Bu 2002, Theorem 2.4]. Given X a Banach space, p ∈ (1,∞) and
x̄ = (xn)n≥1 ∈ Lp〈X〉, the series

∑
∞

n=1 In(xn) converges to x̄ in Lp〈X〉.

The next result gives a sequential representation of Lp[0, 1]⊗̂π X.

Theorem 10 [Bu 2002, Theorem 3.4]. Let X be a Banach space and p ∈ (1,∞).
The function 9 : Lp〈X〉 → Lp[0, 1]⊗̂π X defined by

9(x̄)=
∞∑

n=1

ep
n ⊗ xn

for each x̄ = (xn)n≥1 ∈ Lp〈X〉 is an isomorphism onto Lp[0, 1]⊗̂π X.

Theorem 11. Let X be a Banach space and p, q ∈ (1,∞) such that 1/p+1/q = 1.
Then Lweak

q (X) is isomorphic to L(Lp[0, 1], X) and its subspace Fq(X) is isomor-
phic to K(Lp[0, 1], X).

Proof. Let (e∗n)n≥1 be the sequence of coordinate functionals in Lp[0, 1]∗ with
respect to the basis (ep

n )n≥1. It is easy to check that the usual isometry from
Lp[0, 1]∗ onto Lq [0, 1] associates the functional e∗n to eq

n .
Fix x̄ = (xn)n≥1 ∈ Lweak

q (X) and f =
∑
∞

n=1 αnep
n ∈ Lp[0, 1]. We claim that the
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series
∑
∞

n=1 αnxn converges in X. Indeed, given k ≥ j ≥ 1 we have∥∥∥∥ k∑
n= j

αnxn

∥∥∥∥= ∥∥∥∥ k∑
n= j

e∗n( f )xn

∥∥∥∥= sup
x∗∈BX∗

∣∣∣∣ k∑
n= j

e∗n( f )x∗(xn)

∣∣∣∣
= sup

x∗∈BX∗

∣∣∣∣( k∑
n= j

x∗(xn)e∗n

)( k∑
m= j

e∗m( f )ep
m

)∣∣∣∣
≤ sup

x∗∈BX∗

∥∥∥∥ k∑
n= j

x∗(xn)e∗n

∥∥∥∥∥∥∥∥ k∑
m= j

e∗m( f )ep
m

∥∥∥∥
= sup

x∗∈BX∗

∥∥∥∥ k∑
n= j

x∗(xn)eq
n

∥∥∥∥
q

∥∥∥∥ k∑
m= j

e∗m( f )ep
m

∥∥∥∥≤ ‖x̄‖weak
q

∥∥∥∥ k∑
m= j

e∗m( f )ep
m

∥∥∥∥
and therefore the partial sums of the series

∑
∞

n=1 αnxn form a Cauchy sequence
in X, which establishes our claim.

This proves that I : Lweak
q (X)→ L(Lp[0, 1], X) given by

I(x̄)( f )=
∞∑

n=1

αnxn

for each x̄ = (xn)n≥1 ∈ Lweak
q (X) and f =

∑
∞

n=1 αnep
n ∈ Lp[0, 1] is a well-defined

linear operator satisfying ‖I(x̄)‖ ≤ ‖x̄‖weak
q .

Let us show now that I is an isomorphism onto L(Lp[0, 1], X). Fix S ∈
L(Lp[0, 1], X) and consider ȳ = (S(ep

n ))n≥1. We claim that ȳ ∈ Lweak
q . Indeed, for

each m ≥ 1 and x∗ ∈ BX∗ we have∥∥∥∥ m∑
n=1

x∗(S(ep
n ))e

q
n

∥∥∥∥new

q

= sup
θn=±1

∥∥∥∥ m∑
n=1

θnx∗(S(ep
n ))e

q
n

∥∥∥∥
q
= sup
θn=±1

sup
g∈BLp [0,1]

∣∣∣∣x∗( m∑
n=1

θne∗n(g)S(e
p
n )

)∣∣∣∣
≤ sup
θn=±1

sup
g∈BLp [0,1]

∥∥∥∥S
( m∑

n=1

θne∗n(g)e
p
n

)∥∥∥∥≤ ‖S‖ sup
θn=±1

sup
g∈BLp [0,1]

∥∥∥∥ m∑
n=1

θne∗n(g)e
p
n

∥∥∥∥
p

= ‖S‖ sup
g∈BLp [0,1]

∥∥∥∥ m∑
n=1

e∗n(g)e
p
n

∥∥∥∥new

p
≤ ‖S‖ sup

g∈BLp [0,1]

∥∥∥∥ ∞∑
n=1

e∗n(g)e
p
n

∥∥∥∥new

p

≤ K p‖S‖ sup
g∈BLp [0,1]

∥∥∥∥ ∞∑
n=1

e∗n(g)e
p
n

∥∥∥∥
p
= K p‖S‖.
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Since (eq
n )n≥1 is a boundedly complete basis, the claim is established. This shows

that I ′ : L(Lp[0, 1], X)→ Lweak
q (X) defined by I ′(S)= (S(ep

n ))n≥1 is a bounded
linear operator with ‖I ′‖ ≤ K p. Furthermore, it is easy to see that I ′ is the inverse
of I. Thus, I is an isomorphism onto L(Lp[0, 1], X).

Next we will show that I maps Fq(X) onto K(Lp[0, 1], X). It is clear that
I(Fq(X)) is subset of K(Lp[0, 1], X). Next, fix T ∈ K(Lp[0, 1], X). Since I
is onto L(Lp[0, 1], X), there exists a unique ȳ = (yn)n≥1 ∈ Lweak

q (X) such that
I(ȳ) = T. We will show that ȳ ∈ Fq(X). Fix ε > 0 and denote by (Pn)n≥1 the
sequence of projections associated to the basis (ep

n )n . Since (e∗n)n≥1 is a Schauder
basis of Lp[0, 1]∗ and T is compact, the sequence (P∗n )n≥1 converges uniformly
to the identity operator on the compact set T ∗(BX∗). Hence, there exists N ≥ 1
such that ‖P∗m(T

∗(x∗))−T ∗(x∗)‖<ε/K p for every x∗ ∈ BX∗ and m ≥ N, and thus
‖T ◦ Pm − T ‖ ≤ ε/K p for every m ≥ N. It is easy to see that

I
( m∑

n=1

In(yn)

)
= T ◦ Pm

for every m ≥ 1. Therefore we have∥∥∥∥ȳ−
m∑

n=1

In(yn)

∥∥∥∥weak

q
≤ ‖I−1

‖‖T − T ◦ Pm‖< ε

for every m ≥ N, and thus ȳ ∈ Fq(X). The proof is complete. �

3.2. The duals of the spaces Lp〈X〉 and Fq(X). It is well known that Lp〈X〉∗ is
linearly isomorphic to L(Lp[0, 1], X∗) [Ryan 2002, Theorem 2.9] and that Fq(X)∗

is linearly isomorphic to Lp[0, 1]⊗̂π X∗ [Ryan 2002, Theorem 5.33].
This subsection will be devoted to obtaining convenient characterizations of the

duals of the spaces Fq(X) and Lp〈X〉.

Proposition 12. Given X a Banach space, p ∈ (1,∞), x̄ = (xn)n≥1 ∈ Lp〈X〉 and
ϕ ∈ Lp〈X〉∗, the series

∑
∞

n=1(ϕ ◦ In)(xn) converges absolutely.

Proof. For each n ≥ 1, let θn = sign(ϕ ◦ In)(xn). Then ȳ = (θnxn)n≥1 ∈ Lp〈X〉 and
by Theorem 9 we have

∞∑
n=1

|(ϕ ◦ In)(xn)| =

∞∑
n=1

(ϕ ◦ In)(θnxn)= ϕ(ȳ),

as desired. �

Similarly to the previous proposition, we have:

Proposition 13. Given X a Banach space, p ∈ (1,∞), x̄ = (xn)n≥1 ∈ Fp(X) and
ϕ ∈ Fp(X)∗, the series

∑
∞

n=1(ϕ ◦ In)(xn) converges absolutely.
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Proof. For each n ≥ 1, let θn = sign(ϕ ◦ In)(xn). Since (ep
n )n≥1 is an uncon-

ditional basis with unconditional constant equal to 1, it follows that the series∑
∞

n=1 θnx∗(xn)e
p
n converges in L new

p [0, 1] for every x∗ ∈ X∗. Moreover, for every
k ≥ 1 and x∗ ∈ X∗ we have∥∥∥∥ ∞∑

n=k

θnx∗(xn)ep
n

∥∥∥∥ new

p
=

∥∥∥∥ ∞∑
n=k

x∗(xn)ep
n

∥∥∥∥ new

p

and so (θnxn)n≥1 ∈ Fp(X). Thus,
∑
∞

n=1 θn(ϕ ◦ In)(xn) converges. �

Proposition 14. Let X be a Banach space and p,q∈(1,∞) such that 1/p+1/q=1.
A sequence x̄∗= (x∗n )n≥1 of elements of X∗ belongs to Lp〈X∗〉 if , and only if , the se-
ries

∑
∞

n=1 x∗n (xn) converges absolutely for each x̄= (xn)n≥1∈ Fq(X). Furthermore,
in this case one has

‖x̄∗‖Lp〈X〉 ≤ sup
{ ∞∑

n=1

|x∗n (xn)| : x̄ = (xn)n≥1 ∈ BFq (X)

}
<∞.

Proof. Let us show the nontrivial implication. Let x̄∗ = (x∗n )n≥1 be a sequence
of elements of X∗ such that the series

∑
∞

n=1 x∗n (xn) converges absolutely for each
x̄ = (xn)n≥1 ∈ Fq(X). We claim that

S(x̄∗)= sup
{ ∞∑

n=1

|x∗n (xn)| : x̄ = (xn)n≥1 ∈ BFq (X)

}
<∞.

Indeed, for each m ≥ 1, consider the set

Um =

{
x̄ = (xn)n≥1 ∈ BFq (X) :

∑
n≥1

|x∗n (xn)| ≤ m
}
.

It is easy to check that Um is a closed, absolutely convex subset of BFq (X). Since
BFq (X) =

⋃
m≥1 Um has nonempty interior, by Baire’s theorem there exists M ≥ 1

such that UM has nonempty interior. The absolute convexity of UM implies that 0
is an interior point of UM , that is, there exists r > 0 satisfying

{x̄ = (xn)n≥1 ∈ BFq (X) : ‖x̄‖
weak
q ≤ r} ⊂UM .

This proves that S(x̄∗)≤ M/r and our claim is established.
Next, let us show that x̄∗= (x∗n )n≥1 ∈ Lp〈X∗〉. Fix x̄∗∗= (x∗∗n )n≥1 ∈ Lweak

q (X∗∗),
m ≥ 1 and ε > 0. Put Y = span{x∗∗1 , . . . , x∗∗m }. By the principle of local reflexivity
[Martínez-Abejón 1999, Theorem 2], there exists a linear operator T : Y → X
satisfying ‖T ‖ ≤ 1 + ε and x∗n (T (x

∗∗
n )) = x∗∗n (x

∗
n ) for each 1 ≤ n ≤ m. Put

ȳ = (yn)n≥1 ∈ Fq(X), where yn = T (x∗∗n ), if 1≤ n ≤ m, and yn = 0 otherwise.
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Since (eq
n )n≥1 is an unconditional basis, by [Lindenstrauss and Tzafriri 1977,

p. 18] we have

‖ȳ‖weak
q = sup

x∗∈BX∗

∥∥∥∥ m∑
n=1

(x∗ ◦ T )(x∗∗n )e
q
n

∥∥∥∥new

q

≤ (1+ ε) sup
ϕ∈BX∗∗∗

∥∥∥∥ m∑
n=1

ϕ(x∗∗n )e
q
n

∥∥∥∥new

q

≤ (1+ ε) sup
ϕ∈BX∗∗∗

∥∥∥∥ ∞∑
n=1

ϕ(x∗∗n )e
q
n

∥∥∥∥new

q
= (1+ ε)‖x̄∗∗‖weak

q

and hence
m∑

n=1

|x∗∗n (x
∗

n )| ≤ S(x̄∗)‖ȳ‖weak
q ≤ (1+ ε)S(x̄∗)‖x̄∗∗‖weak

q .

Since ε > 0 was arbitrary, we obtain
m∑

n=1

|x∗∗n (x
∗

n )| ≤ S(x̄∗)‖x̄∗∗‖weak
q

for each m ≥ 1, which in turn implies
∞∑

n=1

|x∗∗n (x
∗

n )| ≤ S(x̄∗)‖x̄∗∗‖weak
q .

Thus, x̄∗ ∈ Lp〈X∗〉 and ‖x̄∗‖Lp〈X〉 ≤ S(x̄∗), as desired. �

Theorem 15. Let X be a Banach space and p, q ∈ (1,∞) such that 1/p+1/q = 1.
The function H : Fq(X)∗→ Lp〈X∗〉 defined by

H(ϕ)= (ϕ ◦ In)n≥1

for each ϕ ∈ Fq(X)∗ is a linear isometry onto Lp〈X∗〉.

Proof. Given ϕ ∈ Fq(X)∗, Propositions 13 and 14 imply that (ϕ ◦ In)n≥1 ∈ Lp〈X∗〉.
Thus, H is well defined. It is clear that H is linear.

By Proposition 13, we have

‖H(ϕ)‖Lp〈X∗〉 ≤ sup
{ ∞∑

n=1

|(ϕ ◦ In)(xn)| : x̄ = (xn)n≥1 ∈ BFq (X)

}

= sup
{∣∣∣∣ ∞∑

n=1

(ϕ ◦ In)(xn)

∣∣∣∣ : x̄ = (xn)n≥1 ∈ BFq (X)

}
= sup{|ϕ(x̄)| : x̄ = (xn)n≥1 ∈ BFq (X)} = ‖ϕ‖,
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where the first equality follows immediately from the proof of Proposition 13. On
the other hand,

‖H(ϕ)‖Lp〈X∗〉 = sup
{ ∞∑

n=1

|x∗∗n (ϕ ◦ In)| : x̄∗∗ = (x∗∗n )n≥1 ∈ BLweak
q (X∗∗)

}

≥ sup
{ ∞∑

n=1

|(ϕ ◦ In)(xn)| : x̄ = (xn)n≥1 ∈ BFq (X)

}
= ‖ϕ‖.

This shows that H is an isometry onto its image.
Finally, given x̄∗ = (x∗n )n≥1 ∈ Lp〈X∗〉, the function ψ : Fq(X)→ R defined by

ψ(x̄)=
∑
∞

n=1 x∗n (xn) for each x̄ = (xn)n≥1 ∈ Fq(X) is a linear functional on Fq(X)
and it is clear that H(ψ)= x̄∗. This completes the proof. �

Next, we establish an isomorphism from Lp〈X〉∗ onto Lweak
q (X∗).

Theorem 16. Let X be a Banach space and p, q ∈ (1,∞) such that 1/p+1/q = 1.
The function J : Lweak

q (X∗)→ Lp〈X〉∗ given by

J (x̄∗)(x̄)=
∞∑

n=1

x∗n (xn)

for each x̄∗ = (xn)n≥1 ∈ Lweak
q (X∗) and x̄ = (xn)n≥1 ∈ Lp〈X〉 is an isomorphism

onto Lp〈X〉∗.

Proof. Let 9 : Lp〈X〉→ Lp[0, 1]⊗̂π X be the isomorphism defined in Theorem 10,
I : Lweak

q (X∗)→ L(Lp[0, 1], X∗) be the isomorphism defined in Theorem 11, and
consider 8 : L(Lp[0, 1], X∗) → (Lp[0, 1]⊗̂π X)∗ the canonical linear isometry
[Ryan 2002, p. 24]. Given x̄∗ = (xn)n≥1 ∈ Lweak

q (X∗) and x̄ = (xn)n≥1 ∈ Lp〈X〉,
we have

(9∗ ◦8 ◦ I)(x̄∗)(x̄)= (8 ◦ I)(x̄∗)(9(x̄))=
∞∑

n=1

(8 ◦ I)(x̄∗)(ep
n ⊗ xn)

=

∞∑
n=1

I(x̄∗)(ep
n )(xn)= J (x̄∗)(x̄)=

∞∑
n=1

x∗n (xn)

and therefore J =9∗ ◦8 ◦ I. The proof is complete. �

3.3. Complemented copies of c0(τ) in L p〈X〉 spaces. The next lemma will play
a crucial role in the proof of Theorem 18.

Lemma 17. Let X be a Banach space, τ be an infinite cardinal and p, q ∈ (1,∞)
such that 1/p+1/q = 1. Suppose that (xi )i∈τ = ((x i

n)n≥1)i∈τ is a family equivalent
to the canonical basis of c0(τ ) in Lp〈X〉 and let (ϕi )i∈τ be a bounded family in
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Lp〈X〉∗. Then for each ε > 0 there exists M ≥ 0 such that∣∣∣∣ ∞∑
n=M+1

(ϕi ◦ In)(x i
n)

∣∣∣∣< ε, for all i ∈ τ.

Proof. We recall that the series
∑
∞

n=1(ϕi ◦ In)(x i
n) converges absolutely for each

i ∈ τ , by Proposition 12. Let s = supi∈τ ‖ψi‖<∞.
Suppose the thesis does not hold. Then there exists ε > 0 such that, for each

m ≥ 0, there exists i ∈ τ satisfying∣∣∣∣ ∞∑
n=m+1

(ϕi ◦ In)(x i
n)

∣∣∣∣≥ ε.
We proceed by induction. For M0 = 0, there exists i1 ∈ τ such that∣∣∣∣ ∞∑

n=1

(ϕi1 ◦ In)(x i1
n )

∣∣∣∣≥ ε.
The absolute convergence of

∑
∞

n=1(ϕi1 ◦ In)(x i1
n ) yields M1 ≥ 1 such that

∞∑
n=M1+1

|(ϕi1 ◦ In)(x i1
n )|<

ε

2
.

Thus we have ∣∣∣∣ M1∑
n=1

(ϕi1 ◦ In)(x i1
n )

∣∣∣∣> ε

2
.

Suppose we have obtained, for some k ≥ 1, strictly increasing natural numbers
0= M0 < M1 < · · ·< Mk and distinct i1, . . . , ik ∈ τ satisfying

(3-1)
∣∣∣∣ M j∑
n=N j

(ϕi j ◦ In)(x
i j
n )

∣∣∣∣> ε

2
>

∞∑
n=M j+1

|(ϕi j ◦ In)(x
i j
n )|,

where N j = M j−1 + 1, for each 1 ≤ j ≤ k. By hypothesis, there exists ik+1 ∈ τ

such that ∣∣∣∣ ∞∑
n=Mk+1

(ϕik+1 ◦ In)(x ik+1
n )

∣∣∣∣≥ ε.
The absolute convergence of

∑
∞

n=1(ϕik+1 ◦ In)(x
ik+1
n ) yields Mk+1 ≥ Mk + 1 such

that
∞∑

n=Mk+1

|(ϕik+1 ◦ In)(x ik+1
n )|<

ε

2
.
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Thus we have ∣∣∣∣ Mk+1∑
n=Mk+1

(ϕik+1 ◦ In)(x ik+1
n )

∣∣∣∣> ε

2
.

The above inequality and (3-1) imply that ik+1 /∈ {i1, . . . , ik}.
For each j ≥ 1, consider x̄∗j = (x

∗

j,n)n≥1 ∈ Fq(X∗), where

x∗j,n =

{
ϕi j ◦ In, if N j ≤ n ≤ M j ,

0, otherwise.

We claim that (x̄∗j ) j≥1 is weakly-null in Fq(X∗). Indeed, fix ψ ∈ Fq(X)∗ and δ > 0.
Let J be the isomorphism defined in Theorem 16. By Theorem 15, the sequence
(ψ ◦ Jn)n≥1 belongs to Lp〈X∗〉, where Jn : X∗→ (X∗)N is the usual inclusion. By
Theorem 9, there exists N ≥ 1 such that∥∥∥∥ ∞∑

n=m

Kn(ψ ◦ Jn)

∥∥∥∥
Lp〈X∗〉

<
δ

s‖J −1‖

for each m ≥ N, where Kn : X∗∗ → (X∗∗)N is the usual inclusion. Since the
sequence (N j ) j≥1 is strictly increasing, there exists J ≥ 1 such that N j ≥ N, for all
j ≥ J. Thus we have

|ψ(x̄∗j )| =
∣∣∣∣ M j∑
n=N j

(ψ ◦ Jn)(x∗j,n)
∣∣∣∣≤ ‖x̄∗j ‖weak

q

∥∥∥∥ M j∑
n=N j

Kn(ψ ◦ Jn)

∥∥∥∥
Lp〈X∗〉

≤ ‖(ϕi j ◦ In)n≥1‖
weak
q

δ

s‖J −1‖
= ‖J −1(ϕi j )‖

weak
q

δ

s‖J −1‖
≤ δ

for all j ≥ J. This establishes the claim.
Now, let θ j = J (x̄∗j ) ∈ Lp〈X〉∗ for each j ≥ 1. By our claim, (θ j ) j≥1 is weakly-

null. On the other hand, by (3-1) we have

|θ j (xi j )| =

∣∣∣∣ M j∑
n=N j

(ϕi j ◦ In)(x
i j
n )

∣∣∣∣> ε

2
for all j ≥ 1.

This contradicts the Dunford–Pettis property of c0 [Fabian et al. 2010, p. 596], and
we are done. �

Theorem 18. Given X a Banach space, p ∈ (1,∞) and τ an infinite cardinal,
we have

c0(τ )
c
↪→ Lp[0, 1]⊗̂π X =⇒ c0(τ )

c
↪→ X.

Proof. By Theorems 6 and 10, there exist families (xi )i∈τ = ((x i
n)n≥1)i∈τ in Lp〈X〉

and (ψi )i∈τ in Lp〈X〉∗ such that (xi )i∈τ is equivalent to the usual unit-vector basis
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of c0(τ ), (ψi )i∈τ is weak∗-null and ψi (x j ) = δi j for each i, j ∈ τ . Let s =
supi∈τ ‖ψi‖<∞.

An appeal to Lemma 17 yields M ≥ 0 such that∣∣∣∣ ∞∑
n=M+1

(ϕi ◦ In)(x i
n)

∣∣∣∣< 1
2

for all i ∈ τ.

Since 1= ψi (xi )=
∑
∞

n=1(ϕi ◦ In)(x i
n), we have M ≥ 1 and

1
2
<

M∑
n=1

|(ψi ◦ In)(x i
n)| for all i ∈ τ.

Next, for each i ∈ τ there exists 1≤ ni ≤ M satisfying

1
2M

< |(ψi ◦ Ini )(x
i
ni
)|.

Let N = {ni : i ∈ τ } and for each n ∈N consider αn = {i ∈ τ : ni = n}. Since N is
finite, there exists N ∈N such that |αN | = τ . Setting τ1 = αN , we obtain

(3-2) 1
2M

< |(ψi ◦ IN )(x i
N )| for all i ∈ τ1.

For each i ∈ τ1, define xi = x i
N ∈ X and x∗i = ψi ◦ IN ∈ X∗. By (3-2), we have

1
2M

< |x∗i (xi )| ≤ ‖ψi‖‖IN‖‖xi‖ ≤ s‖IN‖‖yi‖ for all i ∈ τ1,

and therefore

(3-3)
1

2Ms‖IN‖
< ‖xi‖ for all i ∈ τ1.

Next, let (ei )i∈τ denote the unit-vector basis of c0(τ ). By hypothesis, there exists
T : c0(τ )→ Lp〈X〉 an isomorphism from c0(τ ) onto its image such that T (ei )= xi

for each i ∈ τ . By (3-3), we have

‖(PN ◦ T )(ei )‖ = ‖xi‖ ≥
1

2Ms‖IN‖
> 0 for all i ∈ τ1.

Therefore, by [Rosenthal 1970, remark following Theorem 3.4], there exists τ2 ⊂ τ1

such that |τ2|= τ and PN ◦T|c0(τ2) is an isomophism onto its image; hence, (xi )i∈τ2=

(PN (T (ei ))i∈τ2 is equivalent to the unit-vector basis of c0(τ2).
Finally, given x ∈ X, observe that

(x∗i (x))i∈τ2 = (ψi (IN (x)))i∈τ2 ∈ c0(τ2),

since (ψi )i∈τ is weak∗-null by hypothesis. This shows that (x∗i )i∈τ2 is weak∗-null
in X∗.
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Combining these facts with (3-2), an appeal to Theorem 6 yields a complemented
copy of c0(τ ) in X. �

4. Complemented copies of c0(τ) in Lp([0, 1], X) spaces

Let ρ : Lp[0, 1]⊗̂1p X→ Lp([0, 1], X) be the unique linear extension of the natural
mapping g⊗x 7→ g( · )x , where g∈ Lp[0, 1] and x ∈ X. By [Defant and Floret 1993,
Chapters 7.1 and 7.2], ρ is a linear isometry from Lp[0, 1]⊗̂1p X onto Lp([0, 1], X).

For every integer m and u ∈ Lp[0, 1], we define

σm(u)=
m∑

n=1

cnχn(·)

∫ 1

0
χn(s)u(s) ds,

where c1 = 1 and c2k+ j = 2k for each k ≥ 0 and 1≤ j ≤ 2k .
We define also the function Hm on [0, 1]× [0, 1] by

Hm(t, s)=
m∑

n=1

cnχn(t)χn(s).

For every integer k ≥ 1 we denote

Ik,l =


[

l−1
2k ,

l
2k

)
if 1≤ l ≤ 2k

− 1,[
1− 1

2k , 1
]

if l = 2k .

We also write I0,1 = [0, 1] and Ck,l = Ik,l × Ik,l .
It is easy to check by induction that for each k ≥ 0, 1≤ l ≤ 2k and m = 2k

+ l
we have

Hm = 2k+1
2l∑

i=1

1Ck+1,i + 2k
2k∑

i=l+1

1Ck,i ,

[Novikov and Semenov 1997, p. 17], where 1A denotes the characteristic function
of A ⊂ [0, 1], and thus Hm is a positive function on [0, 1]× [0, 1]. Since one has

σm(g)=
∫ 1

0
Hm( · , s)g(s) ds

for each g ∈ Lp[0, 1], we conclude that σm is a positive operator on Lp[0, 1].
Furthermore, ‖σm‖ = 1 and

(4-1) lim
m→∞

‖σm(g)− g‖p = 0

for each f ∈ Lp[0, 1], by [Lindenstrauss and Tzafriri 1977, p. 3] or [Singer 1970,
Example 2.3, p. 13].
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Lemma 19. Given X a Banach space, p ∈ [1,∞) and f ∈ Lp([0, 1], X), the series

∞∑
n=1

cnχn( · )

∫ 1

0
χn(s) f (s) ds

converges to f in Lp([0, 1], X), where c1 = 1 and c2k+ j = 2k for each k ≥ 0 and
1≤ j ≤ 2k.

Proof. The natural tensor norm ‖ · ‖1p is not an uniform cross norm, nevertheless
the operator sm = σm ⊗ IX is bounded and ‖sm‖ = 1 by [Defant and Floret 1993,
Chapter 7.2]. By (4-1), we have

lim
m→∞

‖sm(g⊗ x)− g⊗ x‖1p = 0

and hence
lim

m→∞
‖sm(u)− u‖1p = 0

for every u ∈ Lp[0, 1]⊗̂1p X. The result then follows from the fact that ρ is a linear
isometry onto Lp([0, 1], X). �

We are now ready to prove the main result of this section.

Theorem 20. Let X be a Banach space, τ be an infinite cardinal and p ∈ [1,∞).
If cf(τ ) > ℵ0, then

c0(τ )
c
↪→ Lp([0, 1], X)=⇒ c0(τ )

c
↪→ X.

Proof. By Theorem 6, there exist families ( fi )i∈τ in Lp([0, 1], X) and (ψi )i∈τ in
Lp([0, 1], X)∗ such that ( fi )i∈τ is equivalent to the usual unit-vector basis of c0(τ ),
(ψi )i∈τ is weak∗-null and ψ( f j )= δi j , for each i, j ∈ τ . Let s = supi∈τ ‖ψi‖<∞.

By Lemma 19, for each i ∈ τ we have

1= |ψi ( fi )| ≤

∞∑
n=1

cn|ψi (χn( · )x i
n)|,

where x i
n =

∫ 1
0 χn(t) fi (t) dt , and thus there exists mi ≥ 1 such that

1
2
<

mi∑
n=1

cn|ψi (χn( · )x i
n)|.

Put M = {mi : i ∈ τ } and for each m ∈M define αm = {i ∈ τ : mi = m}. Since
M is countable and τ has uncountable cofinality, there exists M ∈M such that
|αM | = τ . Setting τ1 = αM , we have

1
2
<

M∑
n=1

cn|ψi (χn( · )x i
n)| for all i ∈ τ1.
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Next, for each i ∈ τ1 there exists 1≤ ni ≤ M satisfying

1
2M

< cni |ψi (χni ( · )x
i
ni
)|.

Let N = {ni : i ∈ τ1} and for each n ∈N consider βn = {i ∈ τ1 : ni = n}. Since N
is finite, there exists N ∈N such that |βN | = τ . Setting τ2 = βN , we obtain

(4-2)
1

2McN
< |ψi (χN ( · )x i

N )| for all i ∈ τ2.

For each i ∈ τ2, write xi = x i
N and consider the linear functional x∗i ∈ X∗

defined by
x∗i (x)= ψi (χN ( · )(x)) for all x ∈ X.

By (4-2), we obtain

1
2McN

< |x∗i (xi )| ≤ ‖ψi‖‖χN ( · )xi‖p ≤ δ‖χN‖p‖xi‖ for all i ∈ τ2,

and therefore

(4-3) 1< ‖xi‖ for all i ∈ τ2,

where 1= (2MscN‖χN‖p)
−1.

Next, let (ei )i∈τ be the unit-vector basis of c0(τ ) and T : c0(τ )→ Lp([0, 1], X)
be an isomorphism from c0(τ ) onto its image such that T (ei )= fi for each i ∈ τ .
Consider P : Lp([0, 1], X)→ X the linear operator defined by

P( f )=
∫ 1

0
χN (t) f (t) dt for all f ∈ Lp([0, 1], X).

By (4-3), we have

‖(P ◦ T )(ei )‖ = ‖xi‖ ≥1> 0 for all i ∈ τ2.

Therefore, by [Rosenthal 1970, remark following Theorem 3.4], there exists τ3⊂ τ2

such that |τ3| = τ and P ◦ T|c0(τ3) is an isomorphism onto its image; hence,

(xi )i∈τ3 = (P(T (ei ))i∈τ3

is equivalent to the unit-vector basis of c0(τ3).
Finally, given x ∈ X, observe that

(x∗i (x))i∈τ3 = (ψi (χN ( · )(x)))i∈τ3 ∈ c0(τ3),

since (ψi )i∈τ is weak∗-null by hypothesis. This proves that (x∗i )i∈τ3 is weak∗-null
in X∗.

Combining these facts with (2-1), an appeal to Theorem 6 yields a complemented
copy of c0(τ ) in X. �

We do not know if the statement of Theorem 20 remains true in the case p =∞.



COMPLEMENTED COPIES OF c0(τ ) IN TENSOR PRODUCTS OF L p[0, 1] 87

Acknowledgement

The authors would like to thank the referee for valuable comments and suggestions.

References

[Amir and Lindenstrauss 1968] D. Amir and J. Lindenstrauss, “The structure of weakly compact sets
in Banach spaces”, Ann. of Math. (2) 88:1 (1968), 35–46. MR Zbl

[Argyros et al. 2002] S. A. Argyros, J. F. Castillo, A. S. Granero, M. Jiménez, and J. P. Moreno,
“Complementation and embeddings of c0(I ) in Banach spaces”, Proc. London Math. Soc. (3) 85:3
(2002), 742–768. MR Zbl

[Bu 2002] Q. Bu, “Observations about the projective tensor product of Banach spaces, II: L p(0, 1)⊗
X, 1< p <∞”, Quaest. Math. 25:2 (2002), 209–227. MR Zbl

[Cabello Sánchez et al. 2006] F. Cabello Sánchez, D. Pérez-García, and I. Villanueva, “Unexpected
subspaces of tensor products”, J. London Math. Soc. (2) 74:2 (2006), 512–526. MR Zbl

[Casazza 2001] P. G. Casazza, “Approximation properties”, pp. 271–316 in Handbook of the geometry
of Banach spaces, I, edited by W. B. Johnson and J. Lindenstrauss, North-Holland, Amsterdam,
2001. MR Zbl

[Cembranos 1984] P. Cembranos, “C(K , E) contains a complemented copy of c0”, Proc. Amer. Math.
Soc. 91:4 (1984), 556–558. MR Zbl

[Cembranos and Mendoza 1997] P. Cembranos and J. Mendoza, Banach spaces of vector-valued
functions, Lecture Notes in Math. 1676, Springer, 1997. MR Zbl

[Defant and Floret 1993] A. Defant and K. Floret, Tensor norms and operator ideals, North-Holland
Math. Studies 176, North-Holland, Amsterdam, 1993. MR Zbl

[Diestel and Uhl 1977] J. Diestel and J. J. Uhl, Jr., Vector measures, Math. Surveys 15, Amer. Math.
Soc., Providence, RI, 1977. MR Zbl

[Dowling 2004] P. N. Dowling, “Stability of Banach space properties in the projective tensor product”,
Quaest. Math. 27:1 (2004), 1–7. MR Zbl

[Emmanuele 1988] G. Emmanuele, “On complemented copies of c0 in L p
X , 1≤ p<∞”, Proc. Amer.

Math. Soc. 104:3 (1988), 785–786. MR Zbl

[Fabian et al. 2010] M. Fabian, P. Habala, P. Hájek, V. Montesinos, and V. Zizler, Banach space
theory, Springer, 2010. MR Zbl

[Freniche 1984] F. J. Freniche, “Barrelledness of the space of vector valued and simple functions”,
Math. Ann. 267:4 (1984), 479–486. MR Zbl

[Galego and Cortes 2017] E. M. Galego and V. M. Cortes, “When does C(K , X) contain a comple-
mented copy of c0(0) iff X does?”, 2017. To appear in Bull. Sci. Math. arXiv

[Galego and Hagler 2012] E. M. Galego and J. N. Hagler, “Copies of c0(0) in C(K , X) spaces”,
Proc. Amer. Math. Soc. 140:11 (2012), 3843–3852. MR Zbl

[Jech 2003] T. Jech, Set theory, 3rd ed., Springer, 2003. MR Zbl

[Johnson and Lindenstrauss 2001] W. B. Johnson and J. Lindenstrauss, “Basic concepts in the
geometry of Banach spaces”, pp. 1–84 in Handbook of the geometry of Banach spaces, I, edited by
W. B. Johnson and J. Lindenstrauss, North-Holland, Amsterdam, 2001. MR Zbl

[Lindenstrauss and Tzafriri 1977] J. Lindenstrauss and L. Tzafriri, Classical Banach spaces, I:
Sequence spaces, Ergebnisse der Mathematik 92, Springer, 1977. MR Zbl

http://dx.doi.org/10.2307/1970554
http://dx.doi.org/10.2307/1970554
http://msp.org/idx/mr/0228983
http://msp.org/idx/zbl/0164.14903
http://dx.doi.org/10.1112/S0024611502013618
http://msp.org/idx/mr/1936819
http://msp.org/idx/zbl/1017.46011
http://dx.doi.org/10.2989/16073600209486010
http://dx.doi.org/10.2989/16073600209486010
http://msp.org/idx/mr/1916333
http://msp.org/idx/zbl/1038.46060
http://dx.doi.org/10.1112/S0024610706023118
http://dx.doi.org/10.1112/S0024610706023118
http://msp.org/idx/mr/2269592
http://msp.org/idx/zbl/1122.46008
http://dx.doi.org/10.1016/S1874-5849(01)80009-7
http://msp.org/idx/mr/1863695
http://msp.org/idx/zbl/1067.46025
http://dx.doi.org/10.2307/2044800
http://msp.org/idx/mr/746089
http://msp.org/idx/zbl/0604.46040
http://dx.doi.org/10.1007/BFb0096765
http://dx.doi.org/10.1007/BFb0096765
http://msp.org/idx/mr/1489231
http://msp.org/idx/zbl/0902.46017
http://msp.org/idx/mr/1209438
http://msp.org/idx/zbl/0774.46018
http://msp.org/idx/mr/0453964
http://msp.org/idx/zbl/0369.46039
http://dx.doi.org/10.2989/16073600409486078
http://msp.org/idx/mr/2060902
http://msp.org/idx/zbl/1068.46047
http://dx.doi.org/10.2307/2046792
http://msp.org/idx/mr/930250
http://msp.org/idx/zbl/0692.46016
http://dx.doi.org/10.1007/978-1-4419-7515-7
http://dx.doi.org/10.1007/978-1-4419-7515-7
http://msp.org/idx/mr/2766381
http://msp.org/idx/zbl/1229.46001
http://dx.doi.org/10.1007/BF01455966
http://msp.org/idx/mr/742894
http://msp.org/idx/zbl/0525.46022
http://msp.org/idx/arx/1709.01114
http://dx.doi.org/10.1090/S0002-9939-2012-11208-0
http://msp.org/idx/mr/2944725
http://msp.org/idx/zbl/1275.46005
http://dx.doi.org/10.1007/3-540-44761-X
http://msp.org/idx/mr/1940513
http://msp.org/idx/zbl/1007.03002
http://dx.doi.org/10.1016/S1874-5849(01)80003-6
http://dx.doi.org/10.1016/S1874-5849(01)80003-6
http://msp.org/idx/mr/1863689
http://msp.org/idx/zbl/1011.46009
http://msp.org/idx/mr/0500056
http://msp.org/idx/zbl/0362.46013


88 VINÍCIUS MORELLI CORTES, ELÓI MEDINA GALEGO AND CHRISTIAN SAMUEL

[Lindenstrauss and Tzafriri 1979] J. Lindenstrauss and L. Tzafriri, Classical Banach spaces, II:
Function spaces, Ergebnisse der Mathematik 97, Springer, 1979. MR Zbl

[Martínez-Abejón 1999] A. Martínez-Abejón, “An elementary proof of the principle of local reflexiv-
ity”, Proc. Amer. Math. Soc. 127:5 (1999), 1397–1398. MR Zbl

[Novikov and Semenov 1997] I. Novikov and E. Semenov, Haar series and linear operators, Math.
Appl. 367, Kluwer, Dordrecht, 1997. MR Zbl

[Oja 1991] E. Oja, “Sous-espaces complémentés isomorphes à c0 dans les produits tensoriels de
Saphar”, Math. Scand. 68:1 (1991), 46–52. MR Zbl

[Rosenthal 1970] H. P. Rosenthal, “On relatively disjoint families of measures, with some applications
to Banach space theory”, Studia Math. 37 (1970), 13–36. MR Zbl

[Ryan 2002] R. A. Ryan, Introduction to tensor products of Banach spaces, Springer, 2002. MR Zbl

[Singer 1970] I. Singer, Bases in Banach spaces, I, Grundlehren der Math. Wissenschaften 154,
Springer, 1970. MR Zbl

[Sobczyk 1941] A. Sobczyk, “Projection of the space (m) on its subspace (c0)”, Bull. Amer. Math.
Soc. 47 (1941), 938–947. MR Zbl

[Zippin 1977] M. Zippin, “The separable extension problem”, Israel J. Math. 26:3-4 (1977), 372–387.
MR Zbl

Received April 21, 2018. Revised October 8, 2018.

VINÍCIUS MORELLI CORTES

DEPARTMENT OF MATHEMATICS

UNIVERSITY OF SÃO PAULO

SÃO PAULO

BRAZIL

vinicius.cortes@usp.br

ELÓI MEDINA GALEGO

DEPARTMENT OF MATHEMATICS, IME
UNIVERSITY OF SÃO PAULO

SÃO PAULO

BRAZIL

eloi@ime.usp.br

CHRISTIAN SAMUEL

AIX MARSEILLE UNIVERSITÉ, CNRS
MARSEILLE

FRANCE

christian.samuel@univ-amu.fr

http://msp.org/idx/mr/540367
http://msp.org/idx/zbl/0403.46022
http://dx.doi.org/10.1090/S0002-9939-99-04687-0
http://dx.doi.org/10.1090/S0002-9939-99-04687-0
http://msp.org/idx/mr/1476378
http://msp.org/idx/zbl/0929.46020
http://dx.doi.org/10.1007/978-94-017-1726-7
http://msp.org/idx/mr/1438787
http://msp.org/idx/zbl/0865.42024
http://dx.doi.org/10.7146/math.scand.a-12344
http://dx.doi.org/10.7146/math.scand.a-12344
http://msp.org/idx/mr/1124818
http://msp.org/idx/zbl/0712.46038
http://dx.doi.org/10.4064/sm-37-1-13-36
http://dx.doi.org/10.4064/sm-37-1-13-36
http://msp.org/idx/mr/0270122
http://msp.org/idx/zbl/0227.46027
http://dx.doi.org/10.1007/978-1-4471-3903-4
http://msp.org/idx/mr/1888309
http://msp.org/idx/zbl/1090.46001
http://msp.org/idx/mr/0298399
http://msp.org/idx/zbl/0198.16601
http://dx.doi.org/10.1090/S0002-9904-1941-07593-2
http://msp.org/idx/mr/0005777
http://msp.org/idx/zbl/67.1045.01
http://dx.doi.org/10.1007/BF03007653
http://msp.org/idx/mr/0442649
http://msp.org/idx/zbl/0347.46076
mailto:vinicius.cortes@usp.br
mailto:eloi@ime.usp.br
mailto:christian.samuel@univ-amu.fr


PACIFIC JOURNAL OF MATHEMATICS
Founded in 1951 by E. F. Beckenbach (1906–1982) and F. Wolf (1904–1989)

msp.org/pjm

EDITORS

Don Blasius (Managing Editor)
Department of Mathematics

University of California
Los Angeles, CA 90095-1555

blasius@math.ucla.edu

Matthias Aschenbrenner
Department of Mathematics

University of California
Los Angeles, CA 90095-1555

matthias@math.ucla.edu

Daryl Cooper
Department of Mathematics

University of California
Santa Barbara, CA 93106-3080

cooper@math.ucsb.edu

Jiang-Hua Lu
Department of Mathematics

The University of Hong Kong
Pokfulam Rd., Hong Kong

jhlu@maths.hku.hk

Paul Balmer
Department of Mathematics

University of California
Los Angeles, CA 90095-1555

balmer@math.ucla.edu

Wee Teck Gan
Mathematics Department

National University of Singapore
Singapore 119076

matgwt@nus.edu.sg

Sorin Popa
Department of Mathematics

University of California
Los Angeles, CA 90095-1555

popa@math.ucla.edu

Paul Yang
Department of Mathematics

Princeton University
Princeton NJ 08544-1000
yang@math.princeton.edu

Vyjayanthi Chari
Department of Mathematics

University of California
Riverside, CA 92521-0135

chari@math.ucr.edu

Kefeng Liu
Department of Mathematics

University of California
Los Angeles, CA 90095-1555

liu@math.ucla.edu

Jie Qing
Department of Mathematics

University of California
Santa Cruz, CA 95064

qing@cats.ucsc.edu

PRODUCTION
Silvio Levy, Scientific Editor, production@msp.org

SUPPORTING INSTITUTIONS

ACADEMIA SINICA, TAIPEI

CALIFORNIA INST. OF TECHNOLOGY

INST. DE MATEMÁTICA PURA E APLICADA

KEIO UNIVERSITY

MATH. SCIENCES RESEARCH INSTITUTE

NEW MEXICO STATE UNIV.
OREGON STATE UNIV.

STANFORD UNIVERSITY

UNIV. OF BRITISH COLUMBIA

UNIV. OF CALIFORNIA, BERKELEY

UNIV. OF CALIFORNIA, DAVIS

UNIV. OF CALIFORNIA, LOS ANGELES

UNIV. OF CALIFORNIA, RIVERSIDE

UNIV. OF CALIFORNIA, SAN DIEGO

UNIV. OF CALIF., SANTA BARBARA

UNIV. OF CALIF., SANTA CRUZ

UNIV. OF MONTANA

UNIV. OF OREGON

UNIV. OF SOUTHERN CALIFORNIA

UNIV. OF UTAH

UNIV. OF WASHINGTON

WASHINGTON STATE UNIVERSITY

These supporting institutions contribute to the cost of publication of this Journal, but they are not owners or publishers and have no
responsibility for its contents or policies.

See inside back cover or msp.org/pjm for submission instructions.

The subscription price for 2019 is US $490/year for the electronic version, and $665/year for print and electronic.
Subscriptions, requests for back issues and changes of subscriber address should be sent to Pacific Journal of Mathematics, P.O. Box
4163, Berkeley, CA 94704-0163, U.S.A. The Pacific Journal of Mathematics is indexed by Mathematical Reviews, Zentralblatt MATH,
PASCAL CNRS Index, Referativnyi Zhurnal, Current Mathematical Publications and Web of Knowledge (Science Citation Index).

The Pacific Journal of Mathematics (ISSN 1945-5844 electronic, 0030-8730 printed) at the University of California, c/o Department
of Mathematics, 798 Evans Hall #3840, Berkeley, CA 94720-3840, is published twelve times a year. Periodical rate postage paid at
Berkeley, CA 94704, and additional mailing offices. POSTMASTER: send address changes to Pacific Journal of Mathematics, P.O.
Box 4163, Berkeley, CA 94704-0163.

PJM peer review and production are managed by EditFLOW® from Mathematical Sciences Publishers.

PUBLISHED BY

mathematical sciences publishers
nonprofit scientific publishing

http://msp.org/
© 2019 Mathematical Sciences Publishers

http://msp.org/pjm/
mailto:blasius@math.ucla.edu
mailto:matthias@math.ucla.edu
mailto:cooper@math.ucsb.edu
mailto:jhlu@maths.hku.hk
mailto:balmer@math.ucla.edu
mailto:matgwt@nus.edu.sg
mailto:popa@math.ucla.edu
mailto:yang@math.princeton.edu
mailto:chari@math.ucr.edu
mailto:liu@math.ucla.edu
mailto:qing@cats.ucsc.edu
mailto:production@msp.org
http://msp.org/pjm/
http://www.ams.org/mathscinet
http://www.emis.de/ZMATH/
http://www.viniti.ru/math_new.html
http://www.ams.org/bookstore-getitem/item=cmp
http://apps.isiknowledge.com
http://msp.org/
http://msp.org/


PACIFIC JOURNAL OF MATHEMATICS

Volume 301 No. 1 July 2019

1Multiplicity upon restriction to the derived subgroup
JEFFREY D. ADLER and DIPENDRA PRASAD

15Unknotting number and Khovanov homology
AKRAM ALISHAHI

31Light groups of isomorphisms of Banach spaces and invariant LUR renormings
LEANDRO ANTUNES, VALENTIN FERENCZI, SOPHIE GRIVAUX and
CHRISTIAN ROSENDAL

55Some uniform estimates for scalar curvature type equations
SAMY SKANDER BAHOURA

67Complemented copies of c0(τ ) in tensor products of L p[0, 1]

VINÍCIUS MORELLI CORTES, ELÓI MEDINA GALEGO and CHRISTIAN
SAMUEL

89On the volume bound in the Dvoretzky–Rogers lemma
FERENC FODOR, MÁRTON NASZÓDI and TAMÁS ZARNÓCZ

101Lifting of Elliptic curves
SANOLI GUN and V. KUMAR MURTY

107Loxodromics for the cyclic splitting complex and their centralizers
RADHIKA GUPTA and DERRICK WIGGLESWORTH

143Lie 2-algebroids and matched pairs of 2-representations: a geometric approach
MADELEINE JOTZ LEAN

189Algorithmic homeomorphism of 3-manifolds as a corollary of geometrization
GREG KUPERBERG

243Harish-Chandra modules for divergence zero vector fields on a torus
ZHIQIANG LI, SHAOBIN TAN and QING WANG

267Weighted estimates for rough singular integrals with applications to angular
integrability

FENG LIU and DASHAN FAN

297∞-tilting theory
LEONID POSITSELSKI and JAN ŠŤOVÍČEK
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