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LOXODROMICS FOR
THE CYCLIC SPLITTING COMPLEX

AND THEIR CENTRALIZERS

RADHIKA GUPTA AND DERRICK WIGGLESWORTH

We show that an outer automorphism acts loxodromically on the cyclic split-
ting complex if and only if it has a filling lamination and no generic leaf of
the lamination is carried by a vertex group of a cyclic splitting. This is
the analog for the cyclic splitting complex of Handel–Mosher’s theorem on
loxodromics for the free splitting complex. We also show that such outer
automorphisms have virtually cyclic centralizers.

1. Introduction

The study of the mapping class group of a closed orientable surface S has benefited
greatly from its action on the curve complex, C(S), which was shown to be hyper-
bolic in [Masur and Minsky 1999]. Curve complexes have been used for bounded
cohomology of subgroups of mapping class groups, rigidity results, and myriad
other applications.

The outer automorphism group of a finite rank free group F, denoted by Out(F),
is defined as the quotient of Aut(F) by the inner automorphisms, those which arise
from conjugation by a fixed element. Much of the study of Out(F) draws parallels
with the study of mapping class groups. This analogy, however, is far from perfect;
there are several Out(F)-complexes that act as analogs for the curve complex.
Among them are the free splitting complex FS, the cyclic splitting complex FZ ,
and the free factor complex FF , all of which have been shown to be hyperbolic
[Handel and Mosher 2013a; Mann 2014; Bestvina and Feighn 2014]. Just as curve
complexes have yielded useful information about mapping class groups, so too have
these complexes furthered our understanding of Out(F).

The three hyperbolic Out(F)-complexes mentioned above are related via coarse
Lipschitz maps, FS→ FZ→ FF . The loxodromics for FF have been identified
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with the set of fully irreducible outer automorphisms [Bestvina and Feighn 2014].
Handel and Mosher [2014] proved that an outer automorphism, φ, acts loxodromi-
cally on FS precisely when φ has a filling lamination, that is, some element of the
finite set of laminations associated to φ (see [Bestvina et al. 2000]) is not carried
by a vertex group of any free splitting. In this paper, we focus our attention on the
isometry type of outer automorphisms, considered as elements of Isom(FZ).

A Z-splitting of F is a splitting in which edge stabilizers are either trivial or cyclic.
The cyclic splitting complex FZ , introduced in [Mann 2014], is defined as follows
(see Section 2L): vertices are one-edge Z-splittings of F and k-simplices correspond
to collections of k+ 1 vertices which are compatible with a common k+ 1-edge
Z-splitting. In this paper, we determine precisely which outer automorphisms act
loxodromically on FZ. Closely related to Z-splittings are the maximally-cyclic
splittings, called Zmax-splittings, in which the edge groups are required to be trivial
or maximal cyclic (i.e., not contained in a larger cyclic subgroup). The results of
this paper also apply to the maximally-cyclic splitting complex FZmax which is
defined exactly as FZ except that splittings are required to be in the class Zmax.
We will use the notation FZ(max) to mean either FZ or FZmax.

In [Bestvina et al. 2000], the authors associate to each φ ∈ Out(F) a finite set
of attracting laminations, denoted by L(φ). We say that a lamination 3 ∈ L(φ) is
Z(max)-filling if no generic leaf (see Section 2N for definitions) of 3 is carried by
a vertex group of a one-edge Z(max)-splitting; we say that φ has a Z(max)-filling
lamination if some element of L(φ) is Z(max)-filling. We prove

Theorem 1.1. For a free group of rank at least 3, an outer automorphism φ acts
loxodromically on FZ(max) if and only if it has a Z(max)-filling lamination. Further-
more, if φ has a filling lamination which is not Z(max)-filling, then a power of φ
fixes a point in FZ(max).

Horbez and Wade [2015] showed that every isometry of FZ(max) is induced by
an outer automorphism. Combining their result with [Handel and Mosher 2014,
Theorem 1.1] and Theorem 1.1, this amounts to a classification of the isometries
of FZ(max).

Corollary 1.2 (classification of isometries). For all φ ∈ Isom(FZ(max)) we have
that:

(1) The action of φ on FZ(max) is loxodromic if and only if some element of L(φ)
is Z(max)-filling.

(2) If the action of φ on FZ(max) is not loxodromic, then it has bounded orbits
(there are no parabolic isometries).

The proof of Theorem 1.1 relies on the description of the boundary of FZ(max)

due to Horbez [2016]; points in the boundary of FZ(max) are equivalence classes of



LOXODROMICS FOR THE CYCLIC SPLITTING COMPLEX AND THEIR CENTRALIZERS 109

Z(max)-averse trees. The proof is carried out as follows. In Section 3, we extend the
theory of folding paths to the boundary of Culler and Vogtmann’s outer space, PO,
defining a folding path guided by φ which is entirely contained in ∂PO. In Section 4,
we show that the limit of the folding path thus constructed is Z(max)-averse. In
Section 5, we show that an outer automorphism with a filling but not a Z(max)-filling
lamination fixes (up to taking a power) a point in FZ(max) and conclude with a
proof of Theorem 1.1.

The remainder of the paper is devoted to a study of the centralizers of automor-
phisms with filling laminations. We prove the following result:

Theorem 1.3. If an outer automorphism φ has a Z-filling lamination, then its
centralizer in Out(F) is virtually cyclic. Conversely, if φ has a filling but not
a Z-filling lamination, then the centralizer of some power of φ in Out(F) is not
virtually cyclic.

The key tools used to prove Theorem 1.3 are the completely split train tracks
introduced in [Feighn and Handel 2011] and the disintegration theory for outer auto-
morphisms developed in [Feighn and Handel 2009]. We first show (Proposition 7.3)
that the disintegration of any outer automorphism φ, that has a Z-filling lamination,
is virtually cyclic. Then we show that Proposition 7.3 implies the centralizer of φ is
also virtually cyclic. Conversely, in Proposition 7.11, we show that if φ has a filling
lamination that is not Z-filling, then φ commutes with an appropriately chosen
partial conjugation.

The method used to prove Theorem 1.3 provides an alternate (and simple) proof
of the well-known fact, due to Bestvina, Feighn and Handel, that centralizers of
fully irreducible outer automorphisms are virtually cyclic. In [Bestvina et al. 2000],
the stretch factor homomorphism is used to show that the stabilizer of the lamination
of a fully irreducible outer automorphism is virtually cyclic, which implies that the
centralizer is also virtually cyclic. In general, little is known about the centralizers
of outer automorphisms. Rodenhausen and Wade [2015] described an algorithm to
find a presentation of the centralizer of a Dehn Twist automorphism. Feighn and
Handel [2009] showed that the disintegration of an outer automorphism D(φ) is
contained in the weak center of the centralizer of φ. Recently, Algom-Kfir and Pfaff
[2017] showed that centralizers of fully irreducible outer automorphisms with lone
axes are isomorphic to Z. We also mention a result of Kapovich and Lustig [2011]:
automorphisms whose limiting trees are free have virtually cyclic centralizers.

The main motivation for examining the centralizers of loxodromic elements of
FZ (and FS) is to understand which automorphisms have the potential to be WPD
elements for the action of Out(F) on these complexes.

Corollary 1.4. Any outer automorphism that is loxodromic for the action of Out(F)
on FS but elliptic for the action on FZ is not a WPD element for the action on FS.
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The result that centralizers of loxodromic elements of FZ are virtually cyclic is
a promising sign for the following conjecture:

Conjecture 1.5. The action of Out(F) on FZ is a WPD action. That is, every
loxodromic element for the action satisfies WPD.

2. Preliminaries

Before proceeding, we fix a free group F of rank ≥ 3.

2A. Isometries of metric spaces. Let X be a Gromov hyperbolic metric space. We
say that an infinite order isometry g of X is loxodromic if it acts with positive
translation length on X : limN→∞(d(x, gN (x))/N ) > 0 for some x ∈ X. Every
loxodromic element has exactly two limit points in the Gromov boundary of X.

Given a group G acting by isometries on the hyperbolic space X, we denote by
3X G the limit set of G in ∂∞X, which is defined as the intersection of ∂∞X with
the closure of the orbit of any point in X under the G-action. The following theorem,
essentially due to Gromov, and formulated here for the case that G is cyclic, gives
a classification of isometry groups of (possibly nonproper) Gromov hyperbolic
spaces. A sketch of a proof can be found in [Caprace et al. 2015, Proposition 3.1].

Theorem 2.1 [Gromov 1987, Section 8.2]. Let X be a hyperbolic geodesic metric
space, and let G be a cyclic group acting by isometries on X. Then G is either

• bounded, i.e., all G-orbits in X are bounded; in this case 3X G =∅, or

• horocyclic, i.e., G is not bounded and contains no loxodromic element; in this
case 3X G is reduced to one point, or

• lineal, i.e., G contains a loxodromic element, and any two loxodromic elements
have the same fixed points in ∂∞X ; in this case 3X G consists of these two
points.

2B. Outer space and its compactification. Culler–Vogtmann outer space, PO, is
defined in [Culler and Vogtmann 1986] as the space of simplicial, free, and minimal
isometric actions of F on simplicial metric trees up to F-equivariant homothety. We
denote by O the unprojectivized outer space, in which the trees are considered up
to isometry, rather than homothety. Each of these spaces is equipped with a natural
(right) action of Out(F).

An F-tree is an R-tree with an isometric action of F. An F-tree is called very
small if the action is minimal, arc stabilizers are either trivial or maximal cyclic,
and tripod stabilizers are trivial. Outer space can be mapped into RF by the map
T 7→ (‖g‖T )g∈F, where ‖g‖T denotes the translation length of g in T. This was
shown in [Culler and Morgan 1987] to be a continuous injection. The closure of the
image of PO under this embedding is compact and was identified in [Bestvina and
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Feighn 1992] and [Cohen and Lustig 1995] with the space of very small F-trees.
We denote by PO the closure of outer space in PRF and by ∂PO its boundary. We
will denote the preimage of PO in RF by O.

2C. Free factor system. A free factor system of F is a finite collection of conjugacy
classes of proper free factors of F of the form A= {[A1], . . . , [Ak]}, where k ≥ 0
and [·] denotes the conjugacy class of a subgroup, such that there exists a free
factorization F= A1 ∗ · · · ∗ Ak ∗ FN . We refer to the free factor FN as the cofactor
of A, keeping in mind that it is not unique, even up to conjugacy.

The main geometric example of a free factor system is as follows: suppose G is
a marked graph and K is a subgraph whose noncontractible connected components
are denoted C1, . . . ,Ck . Let [Ai ] be the conjugacy class of a free factor of F

determined by π1(Ci ). Then A= {[A1], . . . , [Ak]} is a free factor system. We say
A is realized by K and we denote it by F(K ).

2D. Marked graphs. We recall some basic definitions from [Bestvina and Handel
1992]. Identify F with π1(R, ∗) where R is a rose with n petals, n being the rank
of F. A marked graph G is a graph of rank n, all of whose vertices have valence at
least three, equipped with a homotopy equivalence m :R→ G called a marking.
The marking determines an identification of F with π1(G,m(∗)). A homotopy
equivalence f : G→ G induces an outer automorphism of π1(G) and hence an
element φ of Out(F). If f sends vertices to vertices and the restriction of f to edges
is an immersion then we say that f is a topological representative of φ.

2E. Paths, circuits, and tightening. Let 0 be either a marked graph or an F-tree.
A path in 0 is either an isometric immersion of a (possibly infinite) closed interval
σ : I → 0 or a constant map σ : I → 0. If σ is a constant map, the path will be
called trivial. If I is finite, then any map σ : I → 0 is homotopic rel endpoints to
a unique path [σ ]. We say that [σ ] is obtained by tightening σ . If f : 0→ 0 is
continuous and σ is a path in 0, we define f#(σ ) as [ f (σ )]. If the domain of σ
is finite and 0 is either a graph or a simplicial tree, then the image has a natural
decomposition into edges E1 E2 · · · Ek called the edge path associated to σ . If 0 is
a tree, we may use [x, x ′] to denote the unique geodesic path connecting x and x ′.

A circuit is an immersion σ : S1
→ 0. For any path or circuit, let σ be σ with its

orientation reversed. A decomposition of a path or circuit into subpaths is a splitting
for f : 0→ 0 and is denoted σ = · · · σ1 · σ2 · · · if f k

# (σ )= · · · f k
# (σ1) f k

# (σ2) · · ·

for all k ≥ 1.

2F. Turns, directions and train track structure. Let 0 be an F-tree. A direction d
based at p ∈ 0 is a component of 0−{p}. A turn is an unordered pair of directions
based at the same point. In the case that 0 is a simplicial tree, and p is a vertex,
we identify directions at p with edges emanating from p. An illegal turn structure
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on 0 is an equivalence relation on the set of directions at each point p ∈ 0. The
classes of this relation are called gates. A turn (d, d ′) is legal if d and d ′ do not
belong to the same gate. If in addition there are at least two gates at every vertex
of 0, then the illegal turn structure is called a train track structure. A path is legal
if it only crosses legal turns.

2G. Optimal morphism. Given two F-trees 0 and 0′, an F-equivariant map f :
0→ 0′ is called a morphism if every segment of 0 can be subdivided into finitely
many subintervals onto which f restricts to an isometric embedding. A morphism
between F-trees induces an illegal turn structure on the domain 0 as follows:
for every x ∈ 0, the map f determines a map D fx : Dx → D f (x), on the set of
directions Dx at x . For d, d ′ ∈ Dx , we then declare d∼d ′ if D( f k)(d)= D( f k)(d ′)
for some k ≥ 0. A morphism is called optimal if there are at least two gates at
each point of 0. A morphism f that induces a train track structure is an optimal
morphism.

The map f is called alignment preserving (or a collapse map) if the f -image of
every segment in 0 is a segment in 0′.

2H. Train track maps. An optimal morphism is called a train track map if f :
0 → 0′ is an embedding on each edge and maps legal turns to legal turns. In
particular, legal paths map to legal paths. Note that usually the term train track map
is used for self maps, but Bestvina and Feighn [2014] defined it for a map between
different F-trees, each equipped with its own abstract train track structure.

The terminology can also be extended to graphs by passing to their universal
covers. For more details on train track maps, the reader is referred to [Bestvina and
Feighn 2014; Bestvina and Handel 1992].

2I. Relative train track maps and CTs. A filtration for a topological representative
f :G→G of an outer automorphism φ, where G is a marked graph, is an increasing
sequence of f -invariant subgraphs ∅ = G0 ⊂ G1 ⊂ · · · ⊂ G M = G. We let
Hi = Gi \Gi−1 and call Hi the i -th stratum. A turn with one edge in Hi and the
other in Gi−1 is called mixed while a turn with both edges in Hi is called a turn in
Hi . If σ ⊂ Gi does not contain any illegal turns in Hi , then we say σ is i -legal.

We denote by Mi the submatrix of the transition matrix for f obtained by deleting
all rows and columns except those labeled by edges in Hi . For the topological
representatives that will be of interest to us, the transition matrices Mi will come
in three flavors: Mi may be a zero matrix, it may be the 1× 1 identity matrix,
or it may be an irreducible matrix with Perron–Frobenius eigenvalue λi > 1. We
will call Hi a zero (Z), nonexponentially growing (NEG), or exponentially growing
(EG) stratum, respectively. Any stratum which is not a zero stratum is called an
irreducible stratum.
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Definition 2.2 [Bestvina and Handel 1992]. We say that f :G→G is a relative train
track map representing φ ∈ Out(Fn) if for every exponentially growing stratum Hr ,
the following hold:

(RTT i) D f maps the set of oriented edges in Hr to itself; in particular all mixed
turns are legal.

(RTT ii) If σ ⊂ Gr−1 is a nontrivial path with endpoints in Hr ∩Gr−1, then so
is f#(σ ).

(RTT iii) If σ ⊂ Gr is r -legal, then f#(σ ) is r -legal.

Suppose that u < r , that Hu is irreducible, Hr is EG and each component of Gr

is noncontractible, and that for each u < i < r , Hi is a zero stratum which is a
component of Gr−1 and each vertex of Hi has valence at least two in Gr . Then we
say that Hi is enveloped by Hr and we define H z

r =
⋃r

k=u+1 Hk .
A path or circuit σ in a representative f : G→ G is called a periodic Nielsen

path if f k
# (σ )= σ for some k ≥ 1. If k= 1, then σ is a Nielsen path. A Nielsen path

is indivisible, denoted INP, if it cannot be written as a concatenation of nontrivial
Nielsen paths. If w is a closed root-free Nielsen path and Ei is an edge such that
f (Ei ) = Eiw

di, then we say Ei is a linear edge and we call w the axis of E . If
Ei , E j are distinct linear edges with the same axis such that di 6= d j and di , d j > 0,
then we call a path of the form Eiw

∗E j an exceptional path. We say that x and y
are Nielsen equivalent if there is a Nielsen path σ in G whose endpoints are x
and y. We say that a periodic point x ∈ G is principal if neither of the following
conditions hold:

• x is an endpoint of a nontrivial periodic Nielsen path and there are exactly two
periodic directions at x , both of which are contained in the same EG stratum.

• x is contained in a component C of periodic points that is topologically a circle
and each point in C has exactly two periodic directions.

A relative train track map f is called rotationless if each principal periodic vertex
is fixed and if each periodic direction based at a principal vertex is fixed.

For an EG stratum, Hr , we call a nontrivial path σ ⊂ Gr−1 with endpoints in
Hr ∩Gr−1 a connecting path for Hr . Let E be an edge in an irreducible stratum, Hr ,
and let σ be a maximal subpath of f k

# (E) in a zero stratum for some k ≥ 1. Then
we say that σ is taken. A nontrivial path or circuit σ is called completely split
if it has a splitting σ = τ1 · τ2 · · · τk where each of the τi ’s is a single edge in an
irreducible stratum, an indivisible Nielsen path, an exceptional path, or a connecting
path in a zero stratum which is both maximal and taken. We say that a relative
train track map is completely split if f (E) is completely split for every edge E in
an irreducible stratum and if for every taken connecting path σ in a zero stratum,
f#(σ ) is completely split.
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The following theorem/definition is the main existence result for CTs:

Theorem 2.3 [Feighn and Handel 2011, Theorem 4.28; 2009, Corollary 3.5]. There
exists k > 0 depending only on n, so that given any φ ∈ Out(F) and any nested
sequence of φk-invariant free factor systems, there is a completely split improved
relative train track map (CT for short) f : G→ G representing φk such that each
free factor system is realized by some filtration element. The map f satisfies the
following properties:

• (rotationless) f : G→ G is rotationless.

• (completely split) f : G→ G is completely split.

• (filtration) F is reduced. The core of each filtration element is a filtration element.

• (vertices) The endpoints of all indivisible periodic (necessarily fixed) Nielsen
paths are (necessarily principal) vertices. The terminal endpoint of each nonfixed
NEG edge is principal (and hence fixed).

• (periodic edges) Each periodic edge is fixed and each endpoint of a fixed edge is
principal. If the unique edge Er in a fixed stratum Hr is not a loop then Gr−1 is a
core graph and both ends of Er are contained in Gr−1.

• (zero strata) If Hi is a zero stratum, then Hi is enveloped by an EG stratum Hr ,
each edge in Hi is r-taken and each vertex in Hi is contained in Hr and has link
contained in Hi ∪ Hr .

• (linear edges) For each linear Ei there is a closed root-free Nielsen path wi such
that f (Ei )= Eiw

di
i for some di 6= 0. If Ei and E j are distinct linear edges with the

same axes then wi = w j and di 6= d j .

• (NEG Nielsen paths) If the highest edges in an indivisible Nielsen path σ belong
to an NEG stratum then there is a linear edge Ei with wi as in (linear edges) and
there exists k 6= 0 such that σ = Eiw

k
i E i . Moreover, if φ is rotationless in the sense

of [Feighn and Handel 2011], then we may take k = 1.

It follows directly from the definitions that, for completely split paths and circuits,
all cancellation under iteration of f# is confined to the individual terms of the
splitting. Moreover, f#(σ ) has a complete splitting which refines that of σ . Finally,
just as with improved relative train track maps introduced in [Bestvina et al. 2000],
every circuit or path with endpoints at vertices eventually is completely split [Feighn
and Handel 2011, Lemma 4.25]. The reader is directed to [Feighn and Handel
2011, §4] for many useful properties of CTs that we will use frequently in the
sequel, often without a specific reference.

2J. Bounded backtracking ( BBT ). Let f : T→ T ′ be a continuous map between
two R-trees T and T ′. We say that f has bounded backtracking if the f image of
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any path [p, q] is contained in a C-neighborhood of [ f (p), f (q)]. The smallest
such C is called the bounded backtracking constant of f , denoted BBT( f ).

2K. Folding paths. Given simplicial F-trees T and T ′ and an optimal morphism
f : T → T ′ Guirardel and Levitt [2007b, Section 3] construct a canonical optimal
folding path (Tt)t∈R+ guided by f . The tree Tt is constructed as follows. Given
a, b ∈ T with f (a)= f (b), the identification time of a and b is defined as τ(a, b)=
supx∈[a,b] dT ′( f (x), f (a)). Define L := 1

2 BBT( f ). For each t ∈ [0, L], one defines
an equivalence relation ∼t by a ∼t b if f (a)= f (b) and τ(a, b) < t . The tree Tt

is then a quotient of T by the equivalence relation ∼t . Guirardel and Levitt prove
that for each t ∈ [0, L], Tt is an R-tree. The collection of trees (Tt)t∈[0,L] comes
equipped with F-equivariant morphisms fs,t : Tt → Ts for all t < s and these maps
satisfy the semiflow property: for all r < s < t , we have ft,s ◦ fs,r = ft,r . Moreover
TL = T ′ and fL ,0 = f . The trees (Tt)t∈[0,L] and the maps ( fs,t : Tt → Ts)t<s∈[0,L]

are called the connection data for the folding path.

2L. The Z-splitting complex. Let Z be the collection of subgroups of F that are
either trivial or cyclic. We denote by Zmax the collection of elements of Z which are
either trivial or closed under taking roots. We use the notation Z(max) to mean either
Z or Zmax. A Z(max)-splitting is a minimal, simplicial F-tree whose edge stabilizers
belong to the set Z(max); it is a one-edge splitting if there is one F orbit of edges. A
cyclic splitting (resp. maximally-cyclic splitting) is a one-edge Z-splitting (resp.
Zmax-splitting) whose edge stabilizer is infinite cyclic. Two Z(max)-splittings are
equivalent if the corresponding Bass–Serre trees are F-equivariantly homeomorphic.
We will often blur the distinction between a splitting and its Bass–Serre tree.

If S is a one-edge free splitting (resp. Z(max)-splitting) and v is a vertex in the
Bass–Serre tree, then Stab(v) will be called a vertex group of S. Vertex groups of
free splittings are free factors.

Given two Z(max)-splittings T and T, we say that T is a refinement of T if there is
a collapse map from T to T. Two Z(max)-splittings T and T ′ are compatible if they
have a common refinement, i.e., if there exists a tree that collapses onto both T and T ′.
A tree T is Z(max)-incompatible if the set of Z(max)-splittings compatible with T is
empty. The (maximally-) cyclic splitting complex FZ(max) is the simplicial complex
whose vertices are equivalence classes of one-edge Z(max)-splittings and whose
k-simplices are collections of k+1 pairwise compatible one-edge Z(max)-splittings.
Mann [2014] showed that FZ is δ-hyperbolic. More recently, Horbez [2016] used
the same argument to prove that FZmax is δ-hyperbolic.

The results of Shenitzer [1955], Stallings [1991] and Swarup [1986] imply that
every one-edge cyclic splitting of F is obtained from a one-edge free splitting of F

by the “edge folding” process described as follows. Let T be a free splitting of F,
let v be a vertex of T and let Gv be its stabilizer. Consider w ∈ Gv and 〈w〉,
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the cyclic group generated by w. Construct a new F-tree T ′ by first choosing an
edge e incident at v, then, for every γ ∈ F, identifying γ e with its orbit under
〈γwγ−1

〉 ⊆Gγ v . The tree T ′ has an edge with stabilizer equal to 〈w〉. We say T ′ is
obtained from T by an equivariant edge fold, or to be more specific, we sometimes
say that T ′ is obtained from T by performing the edge fold corresponding to 〈w〉.

2M. Z-averse trees and boundary of FZ . A tree T in O is called Z(max)-averse
[Horbez 2016, Definition 4.2] if there is no finite chain of compatibility between T
and a Z(max)-splitting: i.e., if there is no finite set of trees (T = T0, T1, . . . , Tk = T ′)
in O such that T ′ is a Z(max)-splitting and for each i ∈ {0, . . . , k − 1}, the trees
Ti and Ti+1 are compatible. Two Z(max)-averse trees, T, T ′, are called equivalent
if there is a finite chain of compatible trees in O relating T to T ′ as above. The
reader will note that the notions of Z(max)-compatibility and Z(max)-aversity are
independent of the homothety class of T ; in particular, it makes sense to say that
a tree in PO is Z-averse, or that two trees in PO are equivalent. We denote by
X (max) (resp. PX (max)) the subspace of O (resp. PO) consisting of Z(max)-averse
trees.

There is a natural map from a subset of ∂PO to the Gromov boundary of FZ(max)

relating the geometries at infinity of these two spaces, which we now describe. There
is a map ψ (max)

: PO→ FZ(max), which extends to the set of simplicial trees in O
with trivial edge stabilizers, defined by choosing a one-edge collapse of every sim-
plicial tree in PO. This map is not quite Out(F)-equivariant because we must make
choices, however differing choices change distances by at most 2. The following
theorem due to Horbez describes the boundary of the free splitting complex.

Theorem 2.4 [Horbez 2016, Theorem 0.1]. There is a unique Out(F)-equivariant
homeomorphism

∂ψ (max)
: X (max)/∼ −→ ∂∞FZ(max)

so that for all T ∈X (max) and all sequences (Tn)∈ON converging to T, the sequence
(ψ (max)(Tn))n∈N converges to ψ(T ).

Given a tree T ∈O, a Z(max)-splitting S is called a reducing splitting for T, if S
is compatible with some T ′ ∈O, which is itself compatible with T.

2N. Lines and laminations. We briefly recall some definitions, but the reader is
directed to [Bestvina et al. 2000] for details. The space of abstract lines, B̃ =
(∂F× ∂F−1)/Z2, is the set of unordered distinct pairs of points in the boundary
of F and is equipped with the natural (subspace/product/quotient) topology. The
quotient of B̃ by the natural F action is the space of lines in R and is called B. It is
endowed with the quotient topology, which satisfies none of the separation axioms.
Points in B and B̃ will be called lines.
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A closed subset 3 of B is an attracting lamination for φ if it is the closure of a
single line β that is bireccurrent (every finite subpath σ of β occurs infinitely many
times as an unoriented subpath of each end of β), has an attracting neighborhood
(there is some open U 3 β so that φk(γ )→ β for all γ ∈U ), and is not carried by
a rank one φ-periodic free factor. The lines in 3 satisfying the above properties are
called the generic leaves of 3.

A subgroup A of F determines a subset of the boundary of F called ∂A⊂ ∂F. We
say that A carries a line β if there is some lift β̃ whose endpoints are in ∂A. We
then say that the A carries the lamination 3 if A carries some (any) generic leaf
of 3. A lamination 3 is said to be filling (resp. Z(max)-filling) if 3 is not carried
by any vertex group of any free splitting (resp. Z(max)-splitting).

Let πA :G A→R be the immersion from the core of the cover of R corresponding
to the subgroup A and let β be a line. Then clearly β is carried by A if and only if
there exist immersions ρA : R→ G A and ρ : R→ R such that ρ = πAρA. If we
further assume that A is finitely generated, it’s easy to see that β is carried by A if
and only if every finite subsegment of β can be immersed into G A.

3. Folding in the boundary of outer space

Throughout this section, φ will be an outer automorphism with a Z(max)-filling
lamination 3+φ . Our first goal is to extract from φ a folding path converging to a
tree in ∂PO which “witnesses” the lamination 3+φ . The automorphism φ is fully
irreducible relative to some maximal φ-invariant free factor system A. Since φ has
a filling lamination, A is not an exceptional free factor system, that is, it is not of
the form {A} or {A1, A2}, where F= A ∗Z or F= A1 ∗ A2. Let f : T → T be the
universal cover of a relative train track representative of φ realizing the invariant free
factor system A. Let G = T/F be the quotient graph, which comes with a filtration

∅= G0 ⊂ G1 ⊂ · · · ⊂ Gr = G

such that F(Gr−1)=A and Hr is an EG stratum with Perron–Frobenius eigenvalue
λφ . Let Tr (resp. Tr−1) denote the full preimage of Hr (resp. Gr−1) under the
quotient map T → G. We endow G (and hence T ) with a metric by declaring all
edges to have length 1. We will henceforth consider T as a point in unprojectivized
outer space O, whereby f may be thought of as an F-equivariant map T → T ·φ.

Let T ′0 be the tree obtained from T by equivariantly collapsing the A-minimal sub-
tree. Our present aim is to construct a folding path ending at T+φ := limn→∞ T ′0φ

n/λn
φ .

To accomplish this, we will construct simplicial trees T0, T1 and define an optimal
morphism f0 : T0 → T1. From this we will obtain a periodic canonical optimal
folding path ( ft)t∈[0,L] which will end at T+φ . It is worth noting that the natural
map f ′0 : T

′

0→ T ′0φ induced by f is neither optimal nor a morphism as there may
be nondegenerate intervals which are mapped to points.
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We remark that existence of an optimal morphism which is a train track map
representing a relative fully irreducible outer automorphism is a special case of the
results of [Francaviglia and Martino 2015] and [Meinert 2015], for free products
and deformation spaces, respectively. Francaviglia and Martino [2015] developed
metric theory for relative outer space for free products which is used to show the
existence of optimal maps. This requires a considerable amount of work due to
lack of applicability of the Arzela–Ascoli theorem in this setting. In what follows,
we provide a shorter proof of existence of a train track map representing φ in the
context of free groups.

Constructing T0. The following is based on the construction in the proof of [Bestv-
ina and Handel 1992, Lemma 5.10]. Define a measure µ on T with support
contained in the set {x ∈ Tr : f k(x) ∈ Tr for all k ≥ 0} as follows: choose a
Perron–Frobenius eigenvector Ev corresponding to the PF eigenvalue λφ . For an
edge e in Tr , let µ(e) = ve, where ve is the component of Ev corresponding to e.
Define µ(e) = 0 for all edges e ∈ Tr−1. Let V be the set of vertices of T and
let Vm := {x ∈ T : f m(x) ∈ V }. Subdividing T at Vm divides each edge into
segments that map to edge paths under f m. If a is such a segment then define
µ(a)= µ( f m(a))/λm

φ . The definition of µ together with the fact that relative train
track maps take r -legal paths to r -legal paths implies:

Lemma 3.1. If [x, y] is an r-legal path in T, then µ( f#([x, y]))= λφµ([x, y]). If
[x, y] contains an initial or terminal segment of some edge in Tr , then µ([x, y]) > 0.

The measure µ defines a pseudometric dµ on T. Collapsing the sets of µ-measure
zero to make dµ into a metric, we obtain a tree T0. Let p :T→T0 be the collapse map.

Lemma 3.2. T0 is simplicial.

Proof. We will show that the F-orbit of any point in T0 must be discrete. Let x ∈ T0

and choose a point x̃ ∈ p−1(x). The F-orbit of x̃ in T is discrete, and to understand
the orbit of x , we need only understand µ([x̃, gx̃]) for g ∈ F. If [x̃, gx̃] contains no
edges in Tr , then µ([x̃, gx̃])= 0, in which case g ∈Stab(x). Otherwise, the segment
contains an edge in Tr , and hence has positive µ-measure. Since there are only
finitely many F-orbits of edges in Tr , there is a lower bound on the µ-measure of
[x̃, gx̃]. Hence, there is a lower bound on dT0(x, gx). This concludes the proof. �

The trees T0 and T ′0 are F-equivariantly homeomorphic. The problem with T ′0
is that the “obvious” map f ′0 : T

′

0→ T ′0 φ sends nondegenerate segments to points
and, because of that, is not useful for making a folding path. The map f0 defined
in the sequel is an improvement because it can be used to construct a folding path.

Defining f0 : T0 → T1. Let T1 be the tree λ−1
φ T0 · φ: the leading coefficient indicates

that the metric has been scaled by λ−1
φ . The relative train track map f : T → T ·φ
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naturally induces a map f0 : T0→ T1. For each x ∈ T0, its pre-image p−1(x) is
a connected subtree of T with µ-measure zero. The definition of µ guarantees
that the f -image of this set is also connected and has µ-measure zero. Therefore
p ◦ f ◦ p−1(x) is a single point in T0 ·φ, which is identified with T1 and we define
f0 := p ◦ f ◦ p−1.

Lemma 3.3. The map f0 is an optimal morphism.

Proof. We first show that f0 is a morphism, which will follow from the definition
of µ and properties of relative train track maps. Given a nondegenerate segment
[x, x ′] in T0, choose x̃ ∈ p−1(x) and x̃ ′ ∈ p−1(x ′). The intersection of [x̃, x̃ ′] with
the vertices of T is a finite set {x̃1, . . . , x̃k−1}. Let x̃0 := x̃ and x̃k := x̃ ′. Taking
the p-image of x̃i for i ∈ {0, . . . , k} yields a subdivision of [x, x ′] into finitely
many subsegments [xi , xi+1], some of which may be degenerate. We will ignore
the degenerate subdivisions: they occur as the projections of edges in Tr−1 (all of
which have µ-measure zero).

We claim that f0 is an isometry in restriction to each of these subsegments. Indeed,
let e = [x̃i , x̃i+1] be an edge in T. Assume without loss of generality that xi 6= xi+1

so that µ(e) 6= 0 and e is therefore an edge in Tr . It is an immediate consequence
of Lemma 3.1 that for each y ∈ e, we have µ([ f (x̃i ), f (y)]) = λφµ([x̃i , y]) and
hence f0 is an isometry in restriction to [xi , xi+1].

We now address the optimality of f0. There are three types of points to consider:
points in the interior of an edge, vertices with trivial stabilizer, and vertices with
nontrivial stabilizer. We have already established that f0 is an isometry in restriction
to edges, so there are two gates at each x ∈ T0 contained in the interior of an edge.
If x ∈ T0 is a vertex with trivial stabilizer, then p−1(x) is a vertex (Lemma 3.1)
contained in Tr \Tr−1. As f is a relative train track map, there are at least two gates
at p−1(x) and each is necessarily contained in Tr . A short path in T containing
p−1(x) entering through the first gate and leaving through the second will be legal.
Lemma 3.1 gives that f0 is an isometry in restriction to such a path, so there are at
least two gates at x .

Now let x ∈ T0 be a vertex with nontrivial stabilizer. Then p−1(x) is a subtree
which is the inverse image of a component of Gr−1 under the quotient map T → G.
Let x̃, x̃ ′ ∈ p−1(x) be distinct vertices in Tr ∩Tr−1 and let d (resp. d ′) be a direction
based at x̃ (resp. x̃ ′) corresponding to an edge e (resp. e′) in Tr . Lemma 3.1 provides
that d and d ′ determine distinct directions at x . As mixed turns are legal, the path
e ∪ [x̃, x̃ ′] ∪ e′ in T is r-legal. A final application of Lemma 3.1 gives that the
restriction of f0 to the p-image of this path is an isometry, and hence that there are
at least two directions at x . �

The reader will note that we have proved the following:

Lemma 3.4. The map f0 is a train track map.
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As T0 and T ′0 are F-equivariantly homeomorphic, there is a bijection between (F-
orbits of) edges of each. It is easily verified that the transition matrix of f0 and that of
f are equal. In particular, we will speak of edges, transition matrices, PF eigenvalues,
and related notions for f0 : T0→ T1, without reference to this bijection.

Next, we use f0 to construct a folding path starting at S0 := T0. This folding
path will converge in ∂PO to a tree SL . We then prove that SL is in fact the tree T+φ
as defined above.

Folding T0. Applying the canonical folding path construction, we obtain a folding
path (St)t∈[0,L1] guided by f0 :T0→T1 which begins at T0= S0 and ends at T1= SL1 ,
where L1 =

1
2 BBT( f0). Adapting a construction of Handel and Mosher [2011,

Section 7.1], we now extend this to a periodic fold path guided by f0. For each i ∈N,
let Ti = λ

−i
φ T0 ·φ

i, whence we have optimal morphisms fi : Ti → Ti+1 satisfying
BBT( fi )= λ

−i
φ BBT( f0). For each i , inductively define L i := L i−1+

1
2 BBT( fi−1)

and extend the folding path (which has so far been defined on [0, L i−1]) using fi−1

to a folding path (St)t∈[0,L i ]. Define L := limi→∞ L i , which is finite as BBT( fi ) is
a geometric sequence. We have thus defined the trees (St)t∈[0,L).

The notation here is less than ideal. In the above, (Ti )i∈N is used for the trees
λ−i
φ T0 · φ

i, while (St)t∈[0,L) denotes a continuous folding path which is folded at
constant speed. The reason for the differing names (S and T ) is simply that the
parameterizations differ; in particular SL i = Ti .

We now describe the maps ft,s for s, t ∈ [0, L) with s < t . Indeed, given s, t ,
there is a natural choice of a map ft,s : Ss → St . Suppose s ∈ [L i , L i+1) and
t ∈ [L j , L j+1). Then

ft,s := ft,L j ◦ f j−1 ◦ f j−2 ◦ · · · ◦ fi+1 ◦ fL i+1, s .

The semiflow property for the connection data follows from the definitions. Though
our setting differs slightly from that of [Bestvina and Feighn 2014], Proposi-
tion 2.2 (5) therein can still be applied to give that each tree St has a well defined
train track structure.

Along with the connection data, the fold path (St)t∈[0,L) forms a directed system
in the category of F-equivariant metric spaces and distance nonincreasing maps. As
direct limits exist in this category, let SL := lim

−−→
St and let fL ,t be the direct limit

maps. The proof of the following proposition is contained in Section 7.3 of [Handel
and Mosher 2011], though it is not stated in this way. While Handel and Mosher
deal with trees in O rather than ∂PO, the reader will easily verify that their proof
goes through directly in our setting.

Proposition 3.5 [Handel and Mosher 2011]. SL is a non-trivial, minimal, R-tree.
Moreover St converges to SL in the length function topology.

We have described two trees in the boundary of outer space: T+φ = limn→∞ T ′0φ
n

and SL . We observe that both S0 and T ′0 are points in the relative outer space O(F,A),
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which inherits the subspace topology from PO. Moreover, φ is fully irreducible
relative to A, and as such, it acts with north-south dynamics on PO(F,A) [Gupta
2018]. Recall that for each i ∈ N, SL i = λ

−i
φ S0 ·φ

i, and that L i → L . As SL is the
limit of the fold path (St)t∈[0,L), we conclude:

Lemma 3.6. SL = T+φ .

We conclude this section with a lemma.

Lemma 3.7. For all t ∈ [0, L), the tree St is simplicial.

Proof. Let t ∈ [0, L). If t = 0, Lemma 3.2 provides that S0 is simplicial. Since
SL i =λ

−i
φ S0· φ

i, the lemma holds when t= L i for some i ∈N. The other possibility is
that t ∈ (L i , L i+1) for some i . Since both SL i and SL i+1 have trivial edge stabilizers,
Proposition 1.1 of [Horbez 2016] applies to the folding path guided by fi and allows
one to conclude that all trees St , t ∈ [L i , L i+1] are simplicial, as desired. �

4. The stable tree is Z(max)-averse

Our present aim is to understand T+φ ; we would like to show that it is Z(max)-averse.
In this section, we will use the leaves of the topmost lamination 3+φ to construct a
transverse covering of T+φ , and then use the transverse covering to achieve our goal.

Definition 4.1. Let G be a group and T be an R-tree equipped with an action
of G by isometries; and let K ⊆ T be a subtree. We say that the action G y T
is supported on K if for any finite arc J ⊆ T, there are g1, . . . , gr ∈ G such that
I ⊆ g1K ∪ · · · ∪ gr K.

Let I0 be a segment of a leaf of the lamination 3+φ in S0. Define the arc It in
St by It := ft,0(I0). We will denote IL simply by I and we will call any segment
in T+φ obtained in this way a segment of a leaf of 3+φ .

Lemma 4.2. The action F y T+φ is supported on I.

Proof. Let I = [x, y] and let J = [x ′, y′] be a nondegenerate arc in T+φ . The
construction in Section 3 provides an optimal folding path (St)t∈[0,L], and optimal
morphisms fs,t : St → Ss for all s, t ∈ [0, L] with s > t which satisfy the semiflow
property. It follows easily from the definitions that for a folding path (St) and
any z in SL = T+φ , the set f −1

L ,0(z) is a discrete set of points in S0. Let x ′0 ∈ f −1
L ,0(x

′)

and y′0 ∈ f −1
L ,0(y

′) be points in S0 chosen so that (x ′0, y′0) contains no points in
f −1
L ,0(x

′) ∪ f −1
L ,0(y

′) and define J0 = [x ′0, y′0]. Since I0 is legal, it is never folded
under the maps ft,0, so the corresponding property already holds for I0. Define
the arc Jt in Tt by Jt := [ ft,0(J0)]. The definitions of I0 and J0 guarantee that
[ fL ,0(I0)] = I and similarly for J0. The semiflow property of the maps fs,t gives
that for all s, t ∈ [0, L] with s > t , we have [ fs,t(It)] = Is (resp. [ fs,t(Jt)] = Js).
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Since I0 is a leaf segment and therefore legal with respect to the train track
structure on S0, it is never folded under the maps ft,0. In particular, the length of
It is constant in t . The maximum length of any edge in St tends to 0 as t → L
because edge lengths can only decrease along the fold path and the metric in SL i has
been scaled by λ−i

φ . Thus, for sufficiently large t , It crosses an entire edge of St .
Irreducibility of the transition matrix for f0 implies that by further enlarging t , we
may assume that It crosses an edge from every F-orbit of edges in St .

We are now ready to complete the proof. Indeed, write Jt as an edge path
Jt = e0e1 · · · ek in St (the first and last edges may be partial edges). Since It crosses
every F-orbit of edges in St , there exist g0, . . . , gk ∈ F so that for all j, g j It crosses
the edge e j . Now we simply use F-equivariance of the maps fL ,t to conclude that

fL ,t(Jt)⊆ g0 fL ,t(It)∪ g1 fL ,t(It)∪ · · · ∪ gk fL ,t(It)

As It is legal, fL ,t(It) = I. While Jt is not necessarily legal, it’s still true that
J = [ fL ,t(Jt)] ⊆ fL ,t(Jt), completing the proof. �

4A. Mixing and indecomposable trees. A tree T ∈ PO is mixing if for all finite
subarcs I, J ⊂ T, there exist g0, . . . , gk ∈ F such that J ⊆ g0 I ∪g1 I ∪· · ·∪gk I and
g j I ∩g j+1 I 6=∅ for all j ∈ {0, . . . , k−1}. A tree T ∈PO is called indecomposable
[Guirardel 2008] if it is mixing and the g j ’s can be chosen so that g j I ∩ g j+1 I is a
nondegenerate arc for each j ∈ {0, . . . , k− 1}.

Lemma 4.3. T+φ is mixing.

Proof. The proof is similar to that of Lemma 4.2, so we will retain our notation
from that proof. Indeed, it’s clearly enough to show that every arc J can be covered
by finitely many translates with nonempty overlap of the fixed arc I and conversely
that I can be covered similarly by translates of J. Recall the cover of J by translates
of I constructed in proof of Lemma 4.2. Since consecutive edges in the edge path
of Jt = e0 · · · ek intersect in a point, it follows that g j It ∩ g j+1 It 6= ∅ for all
j ∈ {0, . . . , k− 1}. Again, this behavior persists in the limit.

Conversely, to see that I can be covered by translates of J we use essentially the
same argument as before, only now there is a slight difficulty in producing an edge
in some Jt that isometrically embeds in the limit. Now Jt may have illegal turns,
so we write Jt as a concatenation of maximal legal subpaths, Jt = J 0

t J 1
t · · · J

k
t .

Now fL ,t(Jt) is a concatenation of the fL ,t -images of J i
t , which are themselves

segments in SL . Thus, the tightened image J = [ fL ,t(Jt)] is contained in the union
fL ,t(J 0

t )∪ · · · ∪ fL ,t(J k
t ). Now choose an i ∈ {0, . . . , k} so that J ∩ fL ,t(J i

t ) is a
nondegenerate subsegment of J and replace J by the subsegment J ′= J ∩ fL ,t(J i

t ).
The proof of Lemma 4.2 can now be applied to J ′, allowing us to conclude that I
can be covered by finitely many translates J ′ with nonempty overlaps. As J ′ is a
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subsegment of J, the same finite set of group elements witnesses the fact that I can
be covered by finitely many translates J with nonempty overlaps. �

4B. Transverse families and transverse coverings. A subtree Y of a tree T is
called closed [Guirardel 2004, Definition 2.4] if Y ∩ σ is either empty or a path
in T for all paths σ ⊂ T ; recall that paths are defined on closed intervals. A
transverse family [Guirardel 2004, Definition 4.6] of an R-tree T is a family Y of
nondegenerate closed subtrees of T such that any two distinct subtrees in Y intersect
in at most one point. If every path in T is covered by finitely many subtrees in Y ,
then the transverse family is called a transverse covering.

The idea of the following definition is to start with an interval and “fill it out”
into an entire subtree by translating it around, always requiring that overlaps are
nondegenerate.

Definition 4.4 (the transverse family generated by3+φ ). Let I =[x, y] be a segment
of a leaf of 3+φ in T+φ . Define YI as the union of all arcs J such that there exists
g0, . . . , gk ∈ F satisfying:

• J ⊆ g0 I ∪ · · · ∪ gk I.

• g j I ∩ g j+1 I is a nondegenerate segment for each i ∈ {0, . . . , k− 1}.

• g0 I ∩ I is a nondegenerate segment.

It’s immediate that the collection Y = {gYI }g∈F is a transverse family in T+φ since,
by definition, distinct F-translates of YI intersect in a point or not at all. This
construction is essentially due to Guirardel–Levitt.

Lemma 4.5. With notation as above, YI is indecomposable with respect to the
Stab(YI ) action. Moreover, Y = {gYI }g∈F is a transverse covering of T+φ .

Proof. We first show that YI is indecomposable. The proof is similar to that of
Lemmas 4.2 and 4.3, so we will retain our notation from those proofs. As before, it
is enough to show that every arc J ⊆ YI can be covered by finitely many translates
with nondegenerate overlap of the fixed arc I, and conversely that I can be covered
by finitely many translates of J with nondegenerate overlap. The definition of YI

guarantees that J can be covered by finitely many translates of I, so we are left to
show the converse.

First, replace J by an appropriately chosen subinterval exactly as in the proof of
Lemma 4.3. Now we run the proof of Lemma 4.2 with a minor modification. For
t ∈ [0, L), let Jt and It be as in that proof. This time, choose t large enough so that
It crosses every F-orbit of turns taken by a leaf of 3+φ . By further enlarging t if
necessary, we may arrange that Jt also crosses every turn taken by a leaf. Write It

as an edge path It = e0e1 · · · ek in St , where the first and last edges may be partial
edges. Since Jt crosses every F-orbit of turns taken by a leaf in St , there exist
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g0, . . . , gk ∈ F so that for all j ∈ {0, . . . , k−1}, g j Jt crosses the edge path e j e j+1.
Now we conclude exactly as before, using F-equivariance of the maps fL ,t to see
that

fL ,t(It)⊆ g0 fL ,t(Jt)∪ g1 fL ,t(Jt)∪ · · · ∪ gk fL ,t(Jt)

Since both It and Jt are legal, this set containment (and nondegeneracy of the
overlaps) is unaffected by tightening and the proof is complete.

To see that Y is a transverse covering we again reference the proof of Lemma 4.2,
which shows that every path in T+φ can be covered by finitely many trees in Y . �

Lemma 4.6. Let β be a generic leaf of 3+φ and let J be a finite subsegment of a
realization of β in T+φ . Then there exists g ∈ F which is contained in a conjugate of
Stab(YI ) and whose axis, Ag, in T+φ contains the segment J.

Proof. We retain our notation from above, so that Jt is a segment in St which maps
to J under fL ,t . We will denote the realization of β in St by βt . Choose t large
enough so that Jt crosses every turn taken by βt , then lengthen Jt by following the
leaf to arrange that both endpoints of Jt are vertices in the same F-orbit. Write Jt as
an edge path Jt = e0e1 · · · ek . If necessary, further lengthen Jt (again following βt )
to arrange that the turn {e0, ek} is taken by a leaf. Let xt (resp. yt ) be the initial
(resp. terminal) endpoint of Jt .

Now let g ∈ F be a group element taking xt to yt . After postcomposing with an
element of Stab(yt) if necessary, we may assume that the turn {ek, g(e0)} is taken
by a generic leaf of 3+φ . We claim that the axis of g in St crosses Jt . Indeed, to get
from xt to yt , one traverses the edge path e0e1 · · · ek . Thus, to get from yt = g · xt

to g · yt = g2
· xt , one traverses the same (up to F-orbit) edge path. As e0 6= ek and

St is a tree, we have that d(xt , g2
· xt)= 2d(xt , g · xt). It is an elementary exercise

to show that this is equivalent to x being on the axis of g. Both βt and the axis of g
are legal, so the restriction of fL ,t to each is an immersion. Thus, we can push this
picture forward to the limit using fL ,t to reach the desired conclusion.

We’ve seen that any realization of β in T+φ is contained in a single F-translate
of YI . As we have arranged that every turn taken by the axis of g in St is also taken
by a leaf, the argument given in the proof of Lemma 4.5 allows us to conclude that
Ag is contained in a single F-translate of YI . Thus g is contained in a conjugate of
Stab(YI ), as desired. �

For convenience of the reader, we recall two essential facts:

Proposition 4.7 [Horbez 2016, Propositions 4.27, 4.3]. If T ∈O is mixing, then T
is Z(max)-averse if and only if T is Z(max)-incompatible.

Lemma 4.8 [Guirardel 2008, Lemma 1.18]. Let T ∈O be compatible with a Z(max)-
splitting, S. Let H ⊆ F be a subgroup, such that the H-minimal subtree TH of T is
indecomposable. Then H is elliptic in S.
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Proposition 4.9. T+φ is Z(max)-averse.

Proof. We assume that T+φ is not Z(max)-averse and argue towards a contradiction.
Indeed, as T+φ is mixing, Proposition 4.7 implies that it is compatible with a Z(max)-
splitting S. Now let H = Stab(YI ). If YI = T+φ , then H = F and Lemma 4.8 gives
that F is elliptic in S, a contradiction as S is a nontrivial minimal splitting.

The other possibility is that YI is a proper subtree in T+φ , and in this situation we
argue that 3+φ is carried by a vertex group of S. As above, we apply Lemma 4.8 to
conclude that H = Stab(YI ) is carried by a vertex group A of the splitting S. We
have a tower of covers corresponding to subgroups as follows (we temporarily blur
the distinction between F and the universal cover of R):

F
πH,F
−−→ X H

πA,H
−−→ X A

πR,A
−−→R

We denote by G A and G H the core of the corresponding covers.
Let β be a generic leaf of 3+φ . Even though H may not be finitely generated,

we claim it is enough to show that every finite subsegment of β can be immersed
into G H . Indeed, by postcomposing these immersions with πA,H (also an immer-
sion), we see that every finite subpath of β can then be immersed into G A. Since A
is finitely generated, we conclude that β can be immersed into G A, and therefore
that 3+φ is carried by a vertex group of the cyclic splitting S.

Let h : F→ T+φ be an F-equivariant map which is linear on edges and Lipschitz
(it’s easy to see that such maps exist). Lemma 3.1 of [Bestvina et al. 1997] gives
that BBT(h) is finite. Color the line βL in T+φ red and let βF be the realization of β
in F. Pull back the coloring via h to βF as follows (keeping in mind the bounded
cancellation): if x ∈ βF is such that h(x) is red, then color x red, otherwise do not
color x . It’s clear that both ends of βF have red segments.

Let JF be a subsegment of βF. Extend JF along βF if necessary to ensure that both
endpoints of JF are red. Define J = h#(JF). The fact that the endpoints of JF are
red ensures that J is a subsegment of βL . Apply Lemma 4.6 to obtain an element
g ∈ H whose axis contains J. Color the axis of g in T+φ blue. Pull back this coloring
to the axis of g in F exactly as above. Equivariance of h, coupled with the fact that
g is not elliptic in F or T+φ , implies that every subray of the axis of g in F contains
blue points. In particular, there are blue points on either side of JF. Thus the axis
of g in F contains the prescribed segment JF. It’s now evident that JF is contained
in the H -minimal subtree of F. This implies that πH,F(JF) is contained in the core
G H of the cover, completing the proof. �

5. Filling but not Z(max)-filling laminations

In this section, we study filling laminations which are not Z(max)-filling. We then
use this understanding to establish the following proposition, which is a restatement
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of the second claim in Theorem 1.1. This section concludes with a proof of the first
statement in Theorem 1.1.

Proposition 5.1. Let φ be an automorphism with a filling lamination 3+φ that is
not Z(max)-filling, so that 3+φ is carried by a vertex group of a (maximally-) cyclic
splitting S. Then there is a (maximally-) cyclic splitting S′ that is fixed by a power
of φ.

The splitting S′ is canonical in the sense that the vertex group which carries 3+φ
is as small as possible. The proof of Proposition 5.1 will require an excursion into
the theory of JSJ-decompositions; the reader is referred to [Fujiwara and Papasoglu
2006] for details about JSJ theory.

We say a lamination is elliptic in an F-tree T if it is is carried by a vertex stabilizer
of T. Let S be the set of all one-edge Z(max)-splittings in which the lamination 3+φ
is elliptic. Since 3+φ is filling, the set S does not contain any free splittings.

Definition 5.2 (types of pairs of splittings [Rips and Sela 1997]). Let S = A ∗C B
(or A∗C ) and S′ = A′ ∗C ′ B ′ (or A′∗C ′) be one-edge cyclic splittings with corre-
sponding Bass–Serre trees T and T ′. We say S is hyperbolic with respect to S′ if
there is an element c ∈ C that acts hyperbolically on T ′. We say S is elliptic with
respect to S′ if C fixes a point of T ′. We say this pair is hyperbolic-hyperbolic if
each splitting is hyperbolic with respect to the other. We define elliptic-elliptic,
hyperbolic-elliptic and elliptic-hyperbolic splittings similarly.

Lemma 5.3. With notation as above, suppose that S, S′ ∈S, and assume without
loss that 3+φ is carried by the vertex groups A and A′. Then 3+φ is elliptic in the
minimal subtree of A in T ′, denoted T ′A, and in the minimal subtree of A′ in T,
denoted TA′ .

Proof. Since A and A′ both carry3+φ , their intersection A∩ A′ also carries3+φ . The
vertex stabilizers of TA′ are precisely the intersection of vertex stabilizers of T with
A′, namely the conjugates of A∩A′. Thus3+φ is carried by a vertex group of TA′ . �

Lemma 5.4. With notation as above, suppose that S, S′ are one-edge Z(max)-
splittings in S. Then S and S′ are either hyperbolic-hyperbolic or elliptic-elliptic.

Proof. The following is based on the proof of [Fujiwara and Papasoglu 2006,
Proposition 2.2]. We will address the case that both the splittings are free products
with amalgamations; when one or both are HNN extensions, the proof is similar.
Toward a contradiction, suppose some element of C acts hyperbolically in T ′ and
that C ′ is elliptic in T. Without loss of generality, we may assume that C ′ fixes the
vertex stabilized by A in T. Suppose first that both A′ and B ′ fix vertices in T. The
two subgroups cannot fix the same vertex because they generate F. On the other
hand, if the vertices are distinct, then C ′ fixes an edge in T. Hence C ′ must be a
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finite index subgroup of C , in contradiction to the assumption that C is hyperbolic
in T ′. Thus, one of A′ or B ′ does not fix a vertex in T.

Assume without loss that A′ does not fix a vertex of T. The minimal subtree of A′

in T, denoted TA′ , gives a minimal splitting of A′ over an infinite index subgroup of
C (i.e., a free splitting). Indeed, were A′ to split over a finite index subgroup C1 of
C , then C1 would be elliptic in T ′ contradicting our assumption that C is hyperbolic
in T ′. As C ′ is elliptic in T, it is also elliptic in TA′ . Now blow up the vertex
stabilized by A′ in T ′ to the free splitting of A′ just obtained, and then collapse
the edge stabilized by C ′ to get a free splitting T0 of F. Then B ′ is still elliptic in
T0. If 3+φ is carried by B ′, then 3+φ is elliptic in the free splitting T0, which is a
contradiction. If 3+φ is carried by A′, then Lemma 5.3 implies that 3+φ is elliptic
in TA′ . Thus 3+φ is also elliptic in the free splitting T0, again a contradiction. �

In [Fujiwara and Papasoglu 2006], the existence of JSJ decompositions for
splittings with slender edge groups ([loc. cit., Theorem 5.13]) is established via an
iterative process: one starts with a pair of splittings, and produces a new splitting
which is a common refinement (in the case of an elliptic-elliptic pair) [loc. cit.,
Proposition 5.10], or an enclosing subgroup [loc. cit., Definition 4.5] (in the case
of a hyperbolic-hyperbolic pair) [loc. cit., Proposition 5.8]. One then repeats this
process for all the splittings under consideration, and uses an accessibility result due
to Bestvina and Feighn [1991] to conclude that the process stops after finitely many
iterations. In order to use techniques of Fujiwara and Papasoglu, we need only ensure
that if two splittings belong to the set S, then the splittings created in this process
also belong to S. By examining the construction of an enclosing subgroup for a pair
of hyperbolic-hyperbolic splittings [Fujiwara and Papasoglu 2006, Proposition 4.7]
and using Lemma 5.3, we see that the enclosing graph decomposition of F for
this pair of splittings indeed belongs to S. Similarly, Lemma 5.3 implies that
the refinement of two elliptic-elliptic splittings that are contained in S is itself
contained in S. This discussion implies that JSJ decompositions exist for cyclic
splittings of F in which 3+φ is elliptic.

We conclude our foray into JSJ decompositions by using the theory of deforma-
tion spaces [Forester 2002; Guirardel and Levitt 2007a] to show that the set of JSJ
splittings of F in which 3+φ is elliptic is finite. By passing to a power, we will then
obtain a φ-invariant splitting in S.

Definition 5.5 (slide moves [Guirardel and Levitt 2007a, Section 7]). Let e = vw
and f = vu be adjacent edges in an F-tree T such that the edge stabilizer of f ,
denoted G f , is contained in Ge. Assume that e and f are not in the same orbit
as nonoriented edges. Define a new tree T ′ with the same vertex set as T and
replace f by an edge f ′ =wu equivariantly. Then we say f slides across e. Often,
a slide move is described on the quotient of T by F.
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Definition 5.6 [Guirardel and Levitt 2007a; Forester 2002]. The deformation
space D containing a tree T is the set of all trees T ′ such that there are equivariant
maps from T to T ′ and from T ′ to T, up to equivariant isometry.

Definition 5.7 [Forester 2002]. A tree T is reduced if no inclusion of an edge group
into either of its vertex groups is an isomorphism.

Theorem 5.8 [Guirardel and Levitt 2007a, Theorem 7.2]. If D is a nonascend-
ing deformation space, then any two reduced simplicial trees T, T ′ ∈ D may be
connected by a finite sequence of slides.

Deformation spaces consisting of trees such that no edge stabilizer properly
contains a conjugate of itself are examples of nonascending deformation spaces
[Guirardel and Levitt 2007a, Section 7]. We are only interested in such deformation
spaces here.

Lemma 5.9. Given a reduced cyclic splitting S, there are only finitely many slide
moves that can be performed on S. Moreover, any sequence of slide moves starting
at S has bounded length.

Proof. The first statement follows from the fact that S has finitely many orbits of
edges. For the second statement, first suppose that the splitting S/F does not have
any loops or circuits. Then it is clear that only finitely many slide moves can be per-
formed on S. If S has a loop, then we can slide an edge f along the loop e only once.
Indeed, we have G f ⊆ Ge and after sliding we have G f ′ ⊆ tGet−1, where t is the
stable letter corresponding to the loop. Since Ge∼=Z and Ge∩tGet−1

=1, G f ′ 6⊆Ge

which prevents sliding of f ′ over e. The proof in the case of a circuit is similar. �

Proof of Proposition 5.1. By assumption, there exists a one-edge cyclic splitting S
such that 3+φ is elliptic in S. The existence of JSJ decomposition for splittings in S

implies that the deformation space D for cyclic splittings in S is nonempty. Since
the edge stabilizer of the trees in D is Z, the space D is nonascending. Theorem 5.8
and Lemma 5.9 together imply that the set of reduced trees in D is finite. As
the set of reduced trees in D is φ-invariant, passing to a power yields a reduced
cyclic splitting S′ in D which is fixed by φk. The same argument works if S is a
maximally-cyclic splitting. �

Proof of Theorem 1.1 (loxodromic). Suppose that φ has a Z(max)-filling lamination,
whereby φ−1 does as well. Applying Proposition 4.9 we conclude that both T+φ
and T−φ are Z(max)-averse. We now argue that these trees determine distinct points
in X (max). We denote the dual lamination of a tree T by L(T ) [Coulbois et al. 2008].
Since the attracting lamination 3+φ and the repelling lamination 3−φ are different,
and 3∓φ ⊆ L(T±φ ) and 3±φ * L(T±φ ), we have that T+φ and T−φ are distinct points
in O. Both trees are mixing (Lemma 4.3), but [Horbez 2016, Proposition 4.3]
provides that if two mixing trees in O are equivalent (i.e., determine the same point
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in X (max)), then each must collapse onto the other. If there a collapse map from
T → T ′, then L(T ) ⊆ L(T ′). So if T+φ and T−φ were equivalent, then their dual
laminations would be equal, a contradiction.

We now argue that the limit set of 〈φ〉 acting on FZ(max) consists of two points.
There is a minor complication arising from the fact that the folding path con-
structed in Section 3 consisted entirely of trees in the boundary of outer space, but
Theorem 2.4 applies only to sequences in the interior. Indeed, recall from Section 3
that T denotes the universal cover of a relative train track map representing φ and
that T0 was obtained from T by first collapsing the F-translates of the A-minimal
subtree in T, then further collapsing according to a measure µ. Finally, recall
(Proposition 4.9) that the sequence Ti = λ

−i
φ T0φ

i where i ∈ N converges to T+φ ,
which is Z(max)-averse. Let Ri = Tφi and let R∞ = limi→∞ Ri . For all i ∈ N, Ri

collapses onto Ti , so Ri and Ti are compatible. That compatibility passes to the limit
follows from [Guirardel and Levitt 2017, Corollary A.12], so R∞ is compatible
with T+φ and is therefore Z-averse. Applying Theorem 2.4 to the sequence {Ri }i∈N,
we conclude that the image sequence ψ(Ri ) converges to [T+φ ] ∈ X

(max). Finally,
since the set of reducing splittings for a free simplicial F-tree is bounded, if S is
any Z(max)-splitting we have that Sφi converges to [T+φ ], with a similar statement
holding for iterates of φ−1. Thus, 3FZ〈φ〉 consists of exactly two points and φ
therefore acts loxodromically on FZ(max).

We now prove the converse: if φ acts loxodromically on FZ(max), then φ has
a Z(max)-filling lamination. Indeed, if φ acts loxodromically on FZ(max), then
φ necessarily acts loxodromically on FS, and thus has a filling lamination 3+φ .
If the lamination is not Z(max)-filling, then Proposition 5.1 implies that a power
of φ fixes a point in FZ(max), contradicting our assumption on φ. Thus, 3+φ is
Z(max)-filling. �

6. Examples

This section will provide several examples exhibiting the range of behaviors of
outer automorphisms acting on FZ. We begin with an automorphism that acts
loxodromically on FZ .

Example 6.1 (loxodromic element). Let φ be a rotationless automorphism with a
CT representative f : G→ G satisfying the following properties:

• f has exactly two strata, each of which is EG and nongeometric.

• The lamination corresponding to the top stratum of f is filling.

An explicit example satisfying these properties can be constructed using the sage-
train-tracks package written by T. Coulbois [2015]. The fact that the top lamination is
filling guarantees that φ acts loxodromically on FS. As both strata are nongeometric,
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H1

H2
ρ
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ρ
1
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ρ
3

Figure 1. A CT representative for the automorphism constructed
in Example 6.2, which acts with bounded orbits but no fixed point.

[Handel and Mosher 2013b, Fact 1.42(1a)] guarantees that φ does not fix the
conjugacy class of any element of F, and therefore cannot possibly fix a cyclic
splitting. Corollary 1.2 implies that φ acts loxodromically.

Example 6.2 (bounded orbit without fixed point). By building on Example 6.1 and
[Handel and Mosher 2014, Example 4.2], we can construct an automorphism ψ

which acts on FZ with bounded orbits but without a fixed point. Let ψ be a three
stratum automorphism obtained from f by creating a duplicate of H2. Explicitly, ψ
has a CT representative f ′ : G ′→ G ′ defined as follows. The graph G ′ is obtained
by taking two copies of G and identifying them along G1. Each edge E of G ′ is
naturally identified with an edge of G, and f ′(E) is defined via this identification.
Moreover, the marking of G naturally gives a marking of G ′ (by a larger free group).
That f ′ is a CT is evident from the fact that f is a CT.

There are three laminations in L(ψ), and it’s evident that none are filling. Since
the top lamination in L(φ) (where φ is as in Example 6.1) is filling, we know that
L(ψ) must fill. Thus, ψ acts on FS with bounded orbits. As before, [Handel and
Mosher 2013b, Fact 1.42 (1a)] implies that ψ doesn’t fix the conjugacy class of any
element of F: while each stratum may have an INP, ρi , none of these INPs can be
closed loops, nor can they be concatenated to form a closed loop. Thus, ψ does not
fix any one-edge cyclic splitting and therefore must act on FZ with bounded orbits,
but no fixed point. See Figure 1 for a pictorial representation of ψ . The INPs ρ2

and ρ3 must each have at least one endpoint which is not in H1.

Example 6.3 (loxodromic element). Consider the outer automorphism φ : F4→ F4

given by
φ(a)= ab, φ(b)= bcab, φ(c)= d, φ(d)= cd.
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In [Reynolds 2012], it is shown that the stable tree for φ is indecomposable and
hence Z-averse. Therefore φ acts loxodromically on FZ .

Example 6.4 (fixed point). Let 62,1 be the surface of genus two with one puncture.
Consider the free homotopy class of a simple separating curve which divides 62,1

into two subsurfaces: a once punctured torus and a twice punctured torus. Placing
a pseudo-Anosov on each of these subsurfaces and taking the outer automorphism
induced by this mapping class yields an element of Out(F) that acts loxodromically
on FS, but fixes a point in FZ. A similar example using nonseparating simple
curve can be found in the proof of [Mann 2014, Proposition 3].

7. Virtually cyclic centralizers

In this section, we investigate centralizers of automorphisms acting loxodromically
on FZ . To do this, we use the machinery of completely split train tracks, and the
“disintegration” procedure of [Feighn and Handel 2009], which takes a rotationless
outer automorphism and returns an abelian subgroup of Out(F). The main result is:

Theorem 1.3. An outer automorphism with a filling lamination has a virtually
cyclic centralizer in Out(F) if and only if the lamination is Z-filling.

We begin with a terse review of disintegration for outer automorphisms.

7A. Disintegration and rotationless abelian subgroups in Out(F). Given a map-
ping class f in Thurston normal form, there is a straightforward way of making
a subgroup of the mapping class group, called the disintegration of f , by “doing
one piece at a time.” The subgroup is easily seen to be abelian as each pair of
generators can be realized as homeomorphisms with disjoint supports. The process
of disintegration in Out(F) is analogous, but more difficult.

The reader is warned that we will only review those ingredients from [Feighn
and Handel 2009] that will be used directly; the reader is directed there, specifically
to Section 6, for complete details. Given a rotationless outer automorphism φ, one
can form an abelian subgroup called D(φ). The process of disintegrating φ begins
by creating a finite graph, B, which records the interactions between different strata
in a CT representing φ. As a first approximation, the components of B correspond
to generators of D(φ). However, there may be additional relations between strata
that are unseen by B, so the number of components of B only gives an upper bound
to the rank of D(φ).

Let f : G → G be a CT representing the rotationless outer automorphism φ.
While the construction of D(φ) does depend on f , using different representatives
will produce subgroups that are commensurable.

Let Ei , E j be distinct linear edges in G with the same axis w so that f (Ei )=

Eiw
di and f (E j )= E jw

d j for integers di 6= d j . Recall that if di , d j > 0, then any
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path of the form Eiw
∗E j called an exceptional path. In the same scenario, if di

and d j have different signs, we call such a path a quasi-exceptional path. It would
be instructive for the reader to compute the f -image of some exceptional and quasi-
exceptional paths. We will need to consider a weakening of the complete splitting
of paths and circuits in f . The quasi-exceptional splitting of a completely split path
or circuit σ is the coarsening of the complete splitting obtained by considering each
quasi-exceptional subpath to be a single element.

Definition 7.1. Define a finite directed graph B as follows. There is one vertex vB
i

for each nonfixed irreducible stratum Hi . If Hi is NEG, then a vB
i -path is defined

as the unique edge in Hi ; if Hi is EG, then a vB
i -path is either an edge in Hi or a

taken connecting path in a zero stratum contained in H z
i . There is a directed edge

from vB
i to vB

j if there exists a vB
i -path κi such that some term in the QE-splitting

of f#(κi ) is an edge in H j . The components of B are labeled B1, . . . , BK . For
each Bs , define Xs to be the minimal subgraph of G that contains Hi for each NEG
stratum with vB

i ∈ Bs and contains H z
i for each EG stratum with vB

i ∈ Bs . We say
that X1, . . . , X K are the almost invariant subgraphs associated to f : G→ G.

The reader should note that the number of components of B is left unchanged if
an iterate of f# is used in the definition, rather than f# itself. In the sequel, we will
frequently make statements about B using an iterate of f#.

For each K -tuple Ea = (a1, . . . , aK ) of nonnegative integers, define

fEa(E)=
{

f ai
# (E) if E ∈ X i ,

E if E is fixed by f.

It turns out that fEa is always a homotopy equivalence of G [Feighn and Handel
2009, Lemma 6.7], but in general 〈 fEa | Ea is a nonnegative tuple〉 is not abelian. To
obtain an abelian subgroup, one has to pass to a certain subset of tuples which take
into account interactions between the almost invariant subgraphs that are unseen
by B. The reader is referred to [loc. cit., Example 6.9] for an example.

Definition 7.2. A K -tuple (a1, . . . , aK ) is called admissible if, for all axes µ, if

• Xs contains a linear edge Ei with axis µ and exponent di ,

• X t contains a linear edge E j with axis µ and exponent d j ,

• there is a vertex vB of B and a vB-path κ ⊆ Xr such that some element in the
quasi-exceptional family Ei E j is a term in the QE-splitting of f#(κ),

then ar (di − d j )= asdi − at d j .

The disintegration of φ is then defined as

D(φ)= 〈 fEa | Ea is admissible〉,

which is abelian by [loc. cit., Corollary 6.16].
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We now recall some useful facts concerning abelian subgroups of Out(F), which
were studied in [Feighn and Handel 2009].

If an abelian subgroup H is generated by rotationless automorphisms, then all
elements of H are rotationless [loc. cit., Corollary 3.13]. In this case, H is said to be
rotationless. Rotationless abelian subgroups of Out(F) have finitely many attracting
laminations ([loc. cit., Lemma 4.4]), i.e., if H is abelian and L(H) :=

⋃
φ∈H L(φ),

then |L(H)|<∞.
Feighn and Handel [2009] associated to each rotationless abelian subgroup of

Out(F) a finite collection of (nontrivial) homomorphisms to Z. Combining these,
one obtains a homomorphism � : H → ZN that is injective [Feighn and Handel
2009, Lemma 4.6]. An element ψ ∈ H is said to be generic if all coordinates
of �(ψ) are nonzero. For the purposes of this section, we require only two facts
concerning �. First, some of the coordinates of � correspond to elements in the
finite set L(H) (there are other coordinates, which we will not need). Second is the
fact that the coordinate of �(ψ) corresponding to 3 ∈ L(H) is positive if and only
if 3 ∈ L(ψ).

7B. From disintegrations to centralizers. In this subsection, we explain how to
deduce Theorem 1.3 from the following proposition concerning the disintegration of
elements acting loxodromically on FZ . The proof of Proposition 7.3 is postponed
until the next subsection.

Proposition 7.3. If φ is rotationless and has a Z-filling lamination, then D(φ) is
virtually cyclic.

Proof of Theorem 1.3. Suppose ψ ∈ C(φ) has infinite order and assume that
〈φ,ψ〉 ' Z2. If no such element exists, then C(φ) is virtually cyclic, as there is a
bound on the order of a finite subgroup of Out(F) [Culler 1984]. Now let HR be
the finite index subgroup of 〈φ,ψ〉 consisting of rotationless elements [Feighn and
Handel 2009, Corollary 3.14] and let ψ ′ be a generic element of this subgroup. If
the coordinate of �(ψ ′) corresponding to the Z-filling lamination 3+φ is negative,
then replace ψ ′ by (ψ ′)−1, which is also generic. Since 3+φ ∈ L(ψ

′) is Z-filling,
Theorem 1.1 implies that ψ ′ acts loxodromically on FZ. Since ψ ′ is generic in
HR , [Feighn and Handel 2009, Theorem 7.2] says that D(ψ ′)∩ 〈φ,ψ〉 has finite
index in 〈φ,ψ〉. This contradicts Proposition 7.3, which says that the disintegration
of ψ ′ is virtually cyclic. �

7C. The proof of Proposition 7.3. The idea of the proof is as follows. We noted
above that the number of components in B only gives an upper bound to the rank
of D(φ); it may happen that there are interactions between the strata of f that are
unseen by B (Definition 7.2). We will obtain precise information about the structure
of B; it consists of one main component (B1), and several components consisting
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of a single point (B2, . . . , BK ). We will then show that the admissibility condition
provides sufficiently many constraints so that choosing a1 determines a2, . . . , aK .
Thus, the set of admissible tuples consists of a line in ZK.

Let f : G→ G be a CT representing φ with filtration ∅ = G0 ⊂ G1 ⊂ · · · ⊂

G M = G. Let 3+φ ∈ L(φ) be Z-filling and let ` ∈ 3+φ be a generic leaf. As 3+φ
is filling, the corresponding EG stratum is necessarily the top stratum, HM . We
will understand the graph B by studying the realization of ` in G. The results of
[Bestvina et al. 2000, §3.1], together with Lemma 4.25 of [Feighn and Handel
2011] give that the realization of ` in G is completely split, and this splitting is
unique. Thus, we may consider the QE-splitting of `.

We begin with a lemma that allows the structure of INPs and quasi-exceptional
paths to be understood inductively.

Lemma 7.4. Let Hr be a nonfixed irreducible stratum and let ρ be a path of height
s ≥ r which is either an INP or a quasi-exceptional path. Assume further that ρ
intersects Hr nontrivially. Then one of the following holds:
• Hr and Hs are NEG linear strata with the same axis, each consisting of a

single edge Er (resp. Es), and ρ = Esw
k Er , for some k ∈ Z, where w is a

closed, root-free Nielsen path of height < s.

• ρ can be written as a concatenation ρ = β0ρ1β1ρ2β2 · · · ρ jβ j , where each ρi

is an INP of height r and each βi is a path contained in G− int(Hr ) (some of
the βi ’s may be trivial).

Proof. The proof proceeds by strong induction on the height s of the path ρ. In the
base case, s = r , and ρ is either an INP of height r or a quasi-exceptional path of
the form described. The inductive step breaks into cases according whether Hs is
an EG stratum, or an NEG stratum.

If Hs is an EG stratum, then ρ must be an INP, as there are no exceptional paths
of EG height. In this case, [Feighn and Handel 2011, Lemma 4.24 (2)] provides a
decomposition of ρ into subpaths of height s and maximal subpaths of height < s,
and each of the subpaths of height < s is a Nielsen path. The inductive hypothesis
then guarantees that each of these Nielsen paths has the desired form. By breaking
apart and combining these terms appropriately, we conclude that ρ does as well.

Suppose now that Hs is an NEG stratum and let Es be the unique edge in Hs .
Using (NEG Nielsen paths), we see that Es must be a linear edge, and therefore
that ρ is either Esw

k Es or Esw
k E ′, where E ′ is another linear edge with the same

axis and w is a closed root free Nielsen path of height < s. If Hr is NEG linear, and
E ′ = Er , then the first conclusion holds. Otherwise, we may apply the inductive
hypothesis to w to obtain a decomposition as desired. This completes the proof. �

We now begin our study of the graph B. We call the component of B contain-
ing vB

M , the vertex corresponding to the topmost stratum of f , the main component.
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Lemma 7.5. All nonlinear NEG strata are in the main component of B.

Proof. Let Hr be a nonlinear NEG stratum, with single edge Er . It is enough to
show that the single edge Er occurs as a term in the QE-splitting of ` (henceforth,
we will say that Er is a QE-splitting unit in `), as this implies that there is an edge
in B connecting vB

M to vB
r . As ` is filling, we know that its realization in G must

cross Er . If the corresponding QE-splitting unit of ` is the single edge E , then we
are done. The only other possibility is that the QE-splitting unit is an INP or a
quasi-exceptional path of some height s ≥ r . An application of Lemma 7.4 shows
that this is impossible, as it would imply the existence of an INP of height r or a
quasi-exceptional path of the form Erw

∗E ′, contradicting (NEG Nielsen paths). �

Lemma 7.6. All EG strata are in the main component of B.

Proof. Let Hr be an EG stratum. As before, it is enough to show that some
(every) edge of Hr occurs as a QE-splitting unit of `. There are three types of
QE-splitting units that can cross Hr : a single edge in Hr , an INP of height ≥ r , or a
quasi-exceptional path. In the first case, we are done, so suppose that every time `
crosses Hr , the corresponding QE-splitting unit is an INP or a quasi-exceptional
path. We now argue that this situation leads to a contradiction.

We may write ` as a concatenation `= · · · γ1σ1γ2σ2 · · · , where each σi is a QE-
splitting unit of ` which intersects int(Hr ), and each γi is a maximal concatenation
of QE-splitting units of ` which do not intersect int(Hr ) (some γi ’s may be trivial).
By assumption, each σi is an INP or a QEP. Applying Lemma 7.4 to each of the σi ’s,
then combining and breaking apart the terms appropriately, we see that ` can be
written as a concatenation `= · · · γ1ρ1γ2ρ2 · · · where each ρi is the unique INP of
height r or its inverse. Call this INP ρ.

We will now use the information we have about ` to find a Z-splitting in which `
is carried by a vertex group. The existence of such a splitting will contradict our
assumption that ` is a generic leaf of the Z-filling lamination 3+φ .

We now modify G to produce a 2-complex, G ′′, whose fundamental group is
identified with F. First assume Hr is nongeometric, so that ρ has distinct endpoints,
v0 and v1. Let G ′ be the graph obtained from G by replacing each vertex vi for
i ∈ {0, 1} with two vertices, vu

i and vd
i (u and d stand for “up” and “down”),

which are to be connected by an edge Ei . For each edge E of G incident to vi ,
connect it in G ′ to the new vertices as follows: if E ∈ Hr , then E is connected to
vd

i , and if E /∈ Hr , then E is connected to vu
i . G ′ deformation retracts onto G by

collapsing the new edges, and this retraction identifies π1(G ′)with F via the marking
of G. Let R = [0, 1] × [0, 1] be a rectangle and define G ′′ by gluing {i} × [0, 1]
homeomorphically onto Ei for i ∈ {0, 1}, then gluing [0, 1]×{0} homeomorphically
to the INP ρ. As only three sides of the rectangle have been glued, G ′′ deformation
retracts onto G ′, and its fundamental group is again identified with F.
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vd
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1
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edges in H c
r

ρ
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Figure 2. G ′′ when Hr is a nongeometric EG stratum.

The construction of G ′′ differs only slightly if Hr is geometric. In this case, ρ is
a closed loop based at v0 and we blow up v0 to two vertices, vu

0 and vd
0 , that are

connected by an edge E0. Instead of gluing in a rectangle, we glue in a cylinder
R = S1

×[0, 1]; {p}× [0, 1] is glued homeomorphically to E0, where p is a point
in S1, and S1

×{0} is glued homeomorphically to ρ.
Recall that in G, the leaf ` can be written as a concatenation `= · · · γ1ρ1γ2ρ2 · · · ,

where each ρi is either ρ or ρ. Thus we can realize ` in G ′ as `= · · · γ1ρ
′

1γ2ρ
′

2 · · · ,
where each ρ ′i is either E0ρE1 or E1ρE0. In G ′′, each ρ ′i is homotopic rel endpoints
to a path that travels along the top of R, rather than down-across-and-up. Thus, after
performing a (proper!) homotopy to the image of `, we can arrange that it never
intersects the interior of R, nor the vertical sides of R. Cutting R along its centerline
yields a Z-splitting S of F, and ` is carried by a vertex group of this splitting. If
Hr is nongeometric, then S is a free splitting and if Hr is geometric, then S is a
cyclic splitting. In either case, so long as S is nontrivial, we have contradicted our
assumption that the lamination is Z-filling. �

Claim 7.7. The splitting S is nontrivial.

Proof of Claim 7.7. We first handle the case that Hr is geometric. We have
described a one-edge cyclic splitting S which was obtained as follows: cut G ′ along
the edge E0, that is, collapse G ′ − E0 to get a free splitting of F, then perform
the edge fold corresponding to 〈w〉 (see Section 2L for definition), where w is the
conjugacy class of the INP ρ. If G ′ − E0 is connected, then the free splitting is
an HNN extension, and there is no danger of S being trivial as rk(F)≥ 3. On the
other hand, if G ′− E0 is disconnected, then let Gd ′ and Gu ′ be the components of
G ′− E0 containing vd

0 and vu
0 respectively. The free splitting which is folded to

get S is precisely π1(Gd ′) ∗π1(Gu ′). In this case, Gd ′ is necessarily a component
of Gr and [Feighn and Handel 2011, Proposition 2.20 (2)] together with (filtration)
imply that this component is a core graph. As Hr is EG, the rank of π1(Gd ′) is at
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least two and the splitting S is therefore nontrivial. To see that rk(π1(Gu ′)) ≥ 1,
we need only recall that ` is not periodic and is carried by π1(Gc ′) ∗ 〈w〉.

In the case that Hr is nongeometric, the splitting obtained above is a free splitting.
If G ′ − {E0, E1} is connected, then the free splitting is an HNN extension, and
as before S is nontrivial. If G ′ − {E0, E1} is disconnected, then the component
containing vd

0 (and by necessity vd
1 ), denoted Gd ′, corresponds to a vertex group of S.

By the same reasoning as in the previous case, we get that π1(Gd ′) is nontrivial.
As before, the other vertex group of S carries the leaf ` and hence S is a nontrivial
free splitting. �

Remark 7.8. We would like the reader to note that the above proof actually gives
restrictions on the way two EG strata in a CT can interact. For example, suppose
that φ is represented by a CT, f : G→ G, with exactly two strata, both of which
are EG. Assume further that H1 is nongeometric and has an INP. A priori, there
are three ways that H2 can interact with H1: (1) there is some edge E in H2 such
that f#(E) contains an edge from H1 as a splitting unit, (2) the f# image of each
edge in H2 is entirely contained in H2, or (3) whenever E is an edge from H2

and f#(E) crosses H1, the corresponding splitting unit is the INP of height 1. In
the first case, 32 ⊃ 31. In the second case, we may think of the strata as being
side-by-side, rather than H2 being stacked on top of H1. The proof of Lemma 7.6
implies that the third possibility never happens. Indeed, the proof provides a free
splitting which is φ-invariant and the vertex groups of this splitting form a free
factor system which lies strictly between the free factor systems π1(G1) and π1(G2).
This contradicts (filtration) in the definition of a CT, which states that the filtration
∅= G0 ⊂ G1 ⊂ · · · ⊂ G M = G must be reduced.

Before we address the NEG linear strata and conclude the proof of Proposition 7.3,
we present a final lemma concerning the structure of B.

Lemma 7.9. Assume Hr is a linear NEG stratum consisting of an edge Er . If vB
r

is not in the main component of B, then the component of B containing vB
r is a

single point.

Proof. This follows directly from the definition of B, together with Lemmas 7.5
and 7.6. If Hr is a linear NEG stratum, then the definition of B implies that vB

r has
no outgoing edges. For any edge in B whose terminal vertex is vB

r , its initial vertex
necessarily corresponds to a nonlinear NEG stratum or an EG stratum, and hence
is in the main component of B. �

When dealing with an NEG linear stratum, we would like to carry out a similar
strategy to the EG case: blow up the terminal vertex, v0, to an edge and glue in a
cylinder, thereby producing a cyclic splitting in which ` is carried by a vertex group.
The main difficulty in implementing this comes from other linear edges with the
same axis; for each such edge, one has to decide whether to glue it in G ′ to vd

0 or vu
0 .
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Let µ be an axis with corresponding unoriented root-free conjugacy class w.
Let Eµ be the set of linear edges in G with axis µ. Define a relation on Eµ by
declaring E ∼R E ′ if the quasi-exceptional path Ew∗E ′ is a QE-splitting unit in `
or if both E and E ′ are QE-splitting units in `. Then let ∼ be the equivalence
relation generated by ∼R . Note that all edges in Eµ which occur as QE-splitting
units in ` are in the same equivalence class.

As mentioned above, the difficulty in adapting the strategy used for EG stratum to
the present situation lies in deciding where to glue edges (top or bottom) in G ′. The
existence of multiple classes in the equivalence relation ∼ will provide instructions
for how to glue edges from Eµ in G ′ so that the leaf never crosses the cylinder in G ′′.

Lemma 7.10. There is only one equivalence class of ∼. Moreover, at least one
edge in Eµ occurs as a term in the QE-splitting of `.

Proof. Suppose for a contradiction that there is more than one equivalence class
of ∼ and let [E] be an equivalence class for which no edge in [E] is a QE-splitting
unit in `. Now build G ′ as in the proof of Lemma 7.6. Let v0 be the terminal
vertex of the edges in Eµ (they all have the same terminal vertex), and define G ′ by
blowing up v0 into two vertices, vu

0 and vd
0 , which are connected by an edge E0.

The terminal vertex of each edge of [E] is to be glued in G ′ to vu
0 , while all other

edges in G that are incident to v0 are glued to vd
0 . Define G ′′ as before, gluing the

bottom of a cylinder R along the closed loop w, and gluing the vertical interval
above v0 homeomorphically to the edge E0.

The definition of ∼ guarantees that ` is carried by a vertex group of the cyclic
splitting determined by cutting along the centerline of R. Indeed, whenever ` crosses
an edge from [E], the corresponding QE-splitting unit is either an INP or a quasi-
exceptional path E ′w∗E ′′, where E ′, E ′′ ∈ [E]. Repeatedly applying Lemma 7.4 to
each of these terms, then rearranging and combining terms appropriately, we see
that ` can be written in G as a concatenation `= · · · γ1ρ1γ2ρ2 · · · where each ρi

is either E ′w∗E ′ or E ′w∗E ′′ with E ′, E ′′ ∈ [E]. Thus we can realize ` in G ′

as ` = · · · γ1ρ
′

1γ2ρ
′

2 · · · , where each ρ ′i is E ′E0w
∗E0 E ′ or E ′E0w

∗E0 E ′′. In G ′′,
each ρ ′i is homotopic rel endpoints to a path that travels along the top of R, rather
than down-across-and-up. Thus, we have again produced a cyclic splitting in which
` is carried by a vertex group.

We now argue that the splitting is nontrivial. There is a free splitting S which
comes from cutting the edge E0 in G ′, which cannot be a self loop. The cyclic
splitting of interest S′ is obtained from S by performing the edge fold corresponding
to w. If G ′− E0 is connected, then S′ is an HNN extension with edge group 〈[w]〉.
As rk(F) ≥ 3, the vertex group has rank at least two and we are done. Now
suppose E0 is separating so that G ′− E0 consists of two components. Let G ′u be
the component containing the vertex vu

0 and let G ′d be the other component. The
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vertex groups of the splitting S′ are π1(Gd) and π1(Gu) ∗ 〈[w]〉. The fact that v is
a principal vertex guarantees that π1(Gd) 6∼= Z, and the fact that G is a finite graph
without valence one vertices ensures that π1(Gu) is nontrivial.

The proof of the second statement is exactly the same as that of the first. �

Finally, we finish the proof of Proposition 7.3. As before, B1 is the main
component of B, with corresponding almost invariant subgraph X1. All other
components B2, . . . , BK are single points, and each almost invariant subgraph X i

consist of a single linear edge. Let (a1, . . . , aK ) be a K -tuple and suppose that a1

has been chosen. We claim that imposing the admissibility condition determines all
other ai ’s.

Suppose first that Ei , E j are linear edges with the same axis, µ, such that Ei ∈ X1,
E j ∈ Xk , and Ei ∼R E j . Let di and d j be the exponents of Ei and E j respectively.
Applying the definition of admissibility with s = r = 1, t = k, and κ a vB path
such that f#(κ) contains a quasi-exceptional path of the form Eiw

∗E j in its QE-
splitting (such a κ must exist as a quasi-exceptional path of this type occurs in the
QE-splitting of `), we obtain the relation a1(di − d j ) = a1di − akd j . Thus ak is
determined by a1.

Now suppose Ei and E j are as above, but rather than being related by ∼R , we
only have that Ei ∼ E j . There is a finite chain of ∼R-relations to get from Ei to E j .
At each stage in this chain, the definition of admissibility (applied with r = 1 and κ
chosen appropriately) will impose a relation that determines the next coordinate
from the previous ones. Ultimately, this determines ak .

We have thus shown that an admissible tuple is completely determined by
choosing a1, and therefore that the set of admissible tuples forms a line in ZK.
Therefore D(φ) is virtually cyclic.

7D. A converse to Proposition 7.3.

Proposition 7.11. If φ has a filling lamination which is not Z-filling, then the
centralizer of some power of φ in Out(F) is not virtually cyclic.

Proof. Since φ has a filling lamination which is not Z-filling, it follows by
Proposition 5.1 that for some k, φk fixes a one-edge cyclic splitting S.

Suppose S/F is a free product with amalgamation with vertex stabilizers 〈A, w〉
and B and edge group 〈w〉 ⊂ B. Consider the Dehn twist Dw given by S as
follows: Dw acts as identity on B and conjugation by w on A. The automorphism
Dw has infinite order. We claim that Dw and φk commute. Indeed, consider a
generating set {a1, . . . , ak, b1, . . . bm} for F such that the ai ’s generate A and the bi ’s
generate B. Choose a representative8 of φ such that8k(B)= B and8k(〈A, w〉)=
〈A, w〉b for some element b ∈ B. Since Dw is identity on B and 8k(B)= B, we
have 8k(Dw(bi )) = Dw(8

k(bi )) for all generators bi . Since Dw(ai ) = waiw,
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8k(w) = w and 8k(〈A, w〉) = 〈A, w〉b, we have Dw(8
k(ai )) = 8

k(Dw(ai )) for
all generators ai . Thus Dw and φk commute.

We now address the case that S/F is an HNN extension. Assume S/F has stable
letter t , edge group 〈w〉 and vertex group 〈A, t̄wt〉. Since the cyclic splitting S
is obtained from a free HNN extension, with vertex group A and stable letter t ,
by an edge fold, we have that a basis of F is given by {a1, a2, . . . , ak, t}, where
the ai ’s generate A. Consider the Dehn twist Dw determined by S such that Dw

is identity on A and sends t to wt . The automorphism Dw has infinite order.
Choose a representative 8 of φ such that 〈A, t̄wt〉 is 8k-invariant. Then for every
generator ai , 8k(ai ) is a word in the ai ’s and t̄wt . Since Dw is identity on A
and fixes t̄wt , we get 8k(Dw(ai )) = Dw(8

k(ai )). Again, since 〈A, t̄wt〉 is 8k-
invariant, 8k(t) is equal to wm tα, where α is some word in 〈A, t̄wt〉 and m ∈ Z.
On one hand, 8k(Dw(t)) = 8k(wt) = 8k(w)8k(t) = wwm tα and on the other
hand, Dw(8

k(t)) = Dw(w
m tα) = wm Dw(t)Dw(α) = w

mwtα. Thus Dw and φk

commute.
Thus when φk fixes a cyclic splitting, then an infinite order element other than a

power of φk exists in the centralizer of φk. �
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