
Pacific
Journal of
Mathematics

LIE 2-ALGEBROIDS AND
MATCHED PAIRS OF 2-REPRESENTATIONS:

A GEOMETRIC APPROACH

MADELEINE JOTZ LEAN

Volume 301 No. 1 July 2019



PACIFIC JOURNAL OF MATHEMATICS
Vol. 301, No. 1, 2019

dx.doi.org/10.2140/pjm.2019.301.143

LIE 2-ALGEBROIDS AND
MATCHED PAIRS OF 2-REPRESENTATIONS:

A GEOMETRIC APPROACH
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Li-Bland’s correspondence between linear Courant algebroids and Lie 2-
algebroids is explained at the level of linear and core sections versus graded
functions, and shown to be an equivalence of categories. More precisely, de-
composed VB-Courant algebroids are shown to be equivalent to split Lie 2-
algebroids in the same manner as decomposed VB-algebroids are equivalent
to 2-term representations up to homotopy (Gracia-Saz and Mehta). Several
special cases are discussed, yielding new examples of split Lie 2-algebroids.

We prove that the bicrossproduct of a matched pair of 2-representations
is a split Lie 2-algebroid and we explain this result geometrically, as a conse-
quence of the equivalence of VB-Courant algebroids and Lie 2-algebroids.
This explains in particular how the two notions of the “double” of a matched
pair of representations are geometrically related. In the same manner, we
explain the geometric link between the two notions of the double of a Lie
bialgebroid.
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1. Introduction

Lie bialgebroids and matched pairs of Lie algebroids. A matched pair of Lie
algebroids is a pair of Lie algebroids A and B over a smooth manifold M, together
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with a representation of A on B and a representation of B on A,1 satisfying some
compatibility conditions, which can be interpreted in two manners: first the direct
sum A˚B carries a Lie algebroid structure over M, such that A and B are Lie
subalgebroids and such that the representations give “mixed” brackets

Œ.a; 0/; .0; b/�D .�rba;rab/

for all a 2 �.A/ and b 2 �.B/. The direct sum A˚B with this Lie algebroid
structure is called here the bicrossproduct of the matched pair. Note that conversely,
any Lie algebroid with two transverse and complementary subalgebroids defines a
matched pair of Lie algebroids [Mokri 1997].

Alternatively, the fibre product A �M B, which has a double vector bundle
structure with sides A and B and with trivial core, is as follows a double Lie
algebroid: for a 2 �.A/, we write al W B ! A �M B, bm 7! .a.m/; bm/ for
the linear section of A�M B ! B, and similarly, a section b 2 �.B/ defines a
linear section bl 2 �A.A�M B/. The Lie algebroid structure on A�M B! B is
defined by

Œal
1; a

l
2�D Œa1; a2�

l and �.al/D bra 2 X
l.B/

for a; a1; a2 2 �.A/, where we denote by bD 2 X.B/ the linear vector field defined
by a derivation D on B. The Lie algebroid structure on A�M B!A is defined
accordingly by the Lie bracket on sections of B and the B-connection on A. The
double Lie algebroid A�M B is then called the double of the matched pair. Note
that conversely, any double Lie algebroid with trivial core is the fibre product of
two vector bundles and defines a matched pair of Lie algebroids [Mackenzie 2011].

These two constructions encoding the compatibility conditions for a matched
pair of representations seem at first sight only related by the fact that they both
encode matched pairs. A similar phenomenon can be observed with the notion
of Lie bialgebroid: A Lie bialgebroid is a pair of Lie algebroids A;A�!M in
duality, satisfying some compatibility conditions, which can be described in two
manners. First, the direct sum A˚A�!M inherits a Courant algebroid structure
with the two Lie algebroids A and A� as transverse Dirac structures, and mixed
brackets given by

ŒŒ.a; 0/; .0; ˛/��D .�i˛dA�a; £a˛/

for all a 2 �.A/ and ˛ 2 �.A�/. Alternatively, the cotangent bundle T �A, a
double vector bundle with sides A and A� and core T �M, which is isomorphic as
a double vector bundle to T �A�, carries two linear Lie algebroid structures. The
first, on T �A! A, is the cotangent Lie algebroid induced by the linear Poisson

1For the sake of simplicity, we write r W �.A/��.B/! �.B/ and r W �.B/��.A/! �.A/

for the two flat connections. It is clear from the indexes which connection is meant.
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structure defined on A by the Lie algebroid structure on A�. The second, on
T �A' T �A�!A�, is defined in the same manner by the Lie algebroid structure
on A. The compatibility conditions for A and A� to build a Lie bialgebroid are
equivalent to the double Lie algebroid condition for .T �A;A;A�;M / [Mackenzie
2011; Gracia-Saz et al. 2018]. Again, the cotangent double of the Lie algebroid
and the bicrossproduct Courant algebroid seem only related by the fact that they
are two elegant ways of encoding the Lie bialgebroid conditions.

One feature of this paper is the explanation of the deeper, more intrinsic relation
between the bicrossproduct of a matched pair of Lie algebroids and its double on
the one hand, and between the bicrossproduct of a Lie bialgebroid and its cotangent
double on the other hand. In both cases, the bicrossproduct can be understood as a
purely algebraic construction, which is geometrised by the corresponding double
Lie algebroid. More generally, we explain how the matched pair of two 2-term
representations up to homotopy [Gracia-Saz et al. 2018] defines a bicrossproduct
split Lie 2-algebroid, and we relate the latter to the decomposed double Lie al-
gebroid found in [Gracia-Saz et al. 2018] to be equivalent to the matched pair of
2-representations.

These three classes of examples of bicrossproduct constructions versus double Lie
algebroid constructions are described here as three special cases of the equivalence
between the category of VB-Courant algebroid, and the category of Lie 2-algebroids
[Li-Bland 2012].

The equivalence of VB-Courant algebroids with Lie 2-algebroids. Let us be a little
more precise. Supermanifolds were introduced in the 1970s by physicists, as a
formalism to describe supersymmetric field theories, and have been extensively
studied since then (see, e.g., [Sardanashvily 2009; Varadarajan 2004]). A super-
manifold is a smooth manifold the algebra of functions of which is enriched by
anticommuting coordinates. Supermanifolds with an additional Z-grading have
been used since the late 1990s among others in relation with Poisson geometry and
Lie and Courant algebroids [Ševera 2005; Roytenberg 2002; Voronov 2002].

An equivalence between Courant algebroids and N-manifolds of degree 2 en-
dowed with a symplectic structure and a compatible homological vector field
[Roytenberg 2002] is at the heart of the current interest in N-graded manifolds
in Poisson geometry, as this algebraic description of Courant algebroids leads
to possible paths to their integration [Ševera 2005; Li-Bland and Ševera 2012;
Mehta and Tang 2011]. In [Jotz Lean 2018b] we showed how the category of N-
manifolds of degree 2 is equivalent to a category of double vector bundles endowed
with a linear involution. The latter involutive double vector bundles are dual to
double vector bundles endowed with a linear metric. In this paper we extend this
correspondence to an equivalence between the category of N-manifolds of degree 2

endowed with a homological vector field and a category of VB-Courant algebroids,



146 MADELEINE JOTZ LEAN

i.e., metric double vector bundles endowed with a linear Courant algebroid structure.
We recover in this manner Li-Bland’s one-to-one correspondence between Lie
2-algebroids and VB-Courant algebroids [2012], which we better formulate as an
equivalence of categories.

Li-Bland’s construction of a VB-Courant algebroid from a given Lie 2-algebroid
relies on the equivalence of symplectic Lie 2-algebroids with Courant algebroids
[Roytenberg 2002]: given a Lie 2-algebroid, its cotangent space is a symplectic Lie
2-algebroid, which corresponds hence to a Courant algebroid. The linear property
of the cotangent space induces an additional vector bundle structure on the obtained
Courant algebroid, a linear structure which turns out to be compatible with the
pairing, the anchor and the bracket. While this method is nice and very simple, it is
not constructive in the sense that the sheaf of graded functions on the Lie 2-algebroid
are not described as a sheaf of special sections of the corresponding VB-Courant
algebroid. Further, the exact correspondences of the degree 2 structure with the
linear pairing (that we describe in [Jotz Lean 2018b]) and of the homological vector
field with the linear anchor and bracket cannot be read directly from Li-Bland’s
proof.

We remedy this and provide a new formulation of Li-Bland’s equivalence that
does not use Roytenberg’s description [2002] of Courant algebroids via symplectic
Lie 2-algebroids. Since we explain precisely how functions of degree 0, 1 and 2
on the Lie 2-algebroid side correspond to special functions and sections of the
corresponding VB-Courant algebroid, the result presented here is in our opinion
more convenient to work with when looking at concrete examples.

Original motivation. Let us explain in more detail our methodology and our original
motivation. A VB-Lie algebroid is a double vector bundle .DIA;BIM / with one
side D! B endowed with a Lie algebroid bracket and an anchor that are linear
over a Lie algebroid structure on A!M. Gracia-Saz and Mehta [2010] prove that
linear decompositions of VB-algebroids are equivalent to super-representations, or
in other words, to 2-representations.

The definition of a VB-Courant algebroid is very similar to the one of a VB-
algebroid. The Courant bracket, the anchor and the nondegenerate pairing all have
to be linear. In [Jotz Lean 2018a] we prove that the standard Courant algebroid over
a vector bundle can be decomposed into a connection, a Dorfman connection, a
curvature term and a vector bundle map, in a manner that resembles very much the
main result in [Gracia-Saz and Mehta 2010]. In other words, as linear splittings of
the tangent space TE of a vector bundle E are equivalent to linear connections on
the vector bundle, linear splittings of the Pontryagin bundle TE˚T �E over E are
equivalent to a certain class of Dorfman connections [Jotz Lean 2018a]. Further, as
the Lie algebroid structure on TE!E can be described in a splitting in terms of
the corresponding connection, the Courant algebroid structure on TE˚T �E!E



LIE 2-ALGEBROIDS AND MATCHED PAIRS OF 2-REPRESENTATIONS 147

is completely encoded in a splitting by the corresponding Dorfman connection
[Jotz Lean 2018a].

Our original goal in this project was to show that the work done in [Jotz Lean
2018a] is in fact a very special case of a general result on linear splittings of VB-
Courant algebroids, in the spirit of Gracia-Saz and Mehta’s work [2010]. Along the
way, we proved the equivalence of Œ2�-manifolds with metric double vector bundles
[Jotz Lean 2018b]. This paper builds upon that equivalence and proves that a
linear Lagrangian splitting of a VB-Courant algebroid decomposes the VB-Courant
algebroid structure in the components of a split Lie 2-algebroid.

Note that our correspondence of decomposed VB-Courant algebroids with split
Lie 2-algebroids is also described (with slightly different conventions) in the inde-
pendent work of del Carpio-Marek [2015].

While the methods used in [Jotz Lean 2018b; Li-Bland 2012] do not use splittings
of the Œ2�-manifolds and metric double vector bundles, it appears here more natural to
us to work with split objects. First, the equivalence of the underlying Œ2�-manifolds
with metric double vector bundles was already established and it is now much
more convenient to work in splittings versus Lagrangian double vector bundle
charts — the definition of the homological vector field that corresponds to a linear
Courant algebroid structure is easily done in splittings (see Section 3B), but we
did not find a good coordinate free definition of it using the techniques given by
[Jotz Lean 2018b]. Second, working with splittings is necessary in order to exhibit
the similarity with Gracia-Saz and Mehta’s techniques [2010], which is one of our
main goals. Finally, as explained below, the construction of the bicrossproduct of a
matched pair of 2-representations is an algebraic description of the construction
of a decomposed VB-Courant algebroid from a decomposed double Lie algebroid,
just as 2-representations are equivalent to decomposed VB-Lie algebroids.

Application: the bicrossproduct of a matched pair of 2-representations. The equiv-
alence of matched pairs of 2-representations with a certain class of split Lie
2-algebroids appears as a natural class of examples of our correspondence of
decomposed VB-Courant algebroids with split Lie 2-algebroids. A double vector
bundle .DIA;BIM /with core C and two linear Lie algebroid structures on D!A

and D! B is a double Lie algebroid if and only if the pair of duals .D�
A
ID�

B
/

is a VB-Lie bialgebroid over C �. Equivalently, D�
A
˚C� D�

B
is a VB-Courant

algebroid over C �, with side A˚B and core B�˚A�, and with two transverse
Dirac structures D�

A
and D�

B
. A decomposition of D defines on the one hand a

matched pair of 2-representations [Gracia-Saz et al. 2018], and on the other hand a
Lagrangian decomposition of D�

A
˚C� D�

B
, hence a split Lie 2-algebroid. Once

this geometric correspondence has been found, it is straightforward to construct
algebraically the split Lie 2-algebroid from the matched pair, and vice versa.
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Outline, main results and applications. This paper is organised as follows.
Section 2: We describe the main result in [Jotz Lean 2018b] — the equivalence

of Œ2�-manifolds with metric double vector bundles — and we recall the background
on double Lie algebroids and matched pairs of representations up to homotopy that
will be necessary for our main application on the bicrossproduct of a matched pair
of 2-representations.

Section 3: We start by recalling necessary background on Courant algebroids,
Dirac structures and Dorfman connections. Then we formulate in our own manner
Sheng and Zhu’s definition [2017] of split Lie 2-algebroids. We write in coordinates
the homological vector field corresponding to a split Lie 2-algebroid, showing
where the components of the split Lie 2-algebroid appear. In Section 3D, we give
several classes of examples of split Lie 2-algebroids, introducing in particular the
standard split Lie 2-algebroids defined by a vector bundle. Finally we describe
morphisms of split Lie 2-algebroids.

Section 4: We give the definition of VB-Courant algebroids [Li-Bland 2012] and
we relate split Lie 2-algebroids with Lagrangian splittings of VB-Courant algebroids,
in the spirit of Gracia-Saz and Mehta’s description of split VB-algebroids via 2-
term representations up to homotopy [2010]. Then we describe the VB-Courant
algebroids corresponding to the examples of split Lie 2-algebroids found in the
preceding section, and we prove that the equivalence of categories established in
[Jotz Lean 2018b] induces an equivalence of the category of VB-Courant algebroids
with the category of Lie 2-algebroids.

Section 5: We construct the bicrossproduct of a matched pair of 2-representations
and prove that it is a split Lie 2-algebroid. We then explain geometrically this result
by studying VB-bialgebroids and double Lie algebroids.

Appendix: We give the proof of our main theorem, describing decomposed
VB-Courant algebroids via split Lie 2-algebroids.

Prerequisites, notation and conventions. We write pM WTM!M, qE WE!M

for vector bundle maps. For a vector bundle Q!M we often identify without
further mention the vector bundle .Q�/� with Q via the canonical isomorphism.
We write h � ; � i for the canonical pairing of a vector bundle with its dual; i.e.,
ham; ˛mi D ˛m.am/ for am 2 A and ˛m 2 A�. We use several different pairings;
in general, which pairing is used is clear from its arguments. Given a section "
of E�, we always write `" WE! R for the linear function associated to it, i.e., the
function defined by em 7! h".m/; emi for all em 2E.

Let M be a smooth manifold. We denote by X.M / and �1.M / the sheaves
of local smooth sections of the tangent and the cotangent bundle, respectively.
For an arbitrary vector bundle E!M, the sheaf of local sections of E will be
written �.E/. Let f WM !N be a smooth map between two smooth manifolds M
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and N. Then two vector fields X 2 X.M / and Y 2 X.N / are said to be f -related
if Tf ıX D Y ıf on Dom.X /\f �1.Dom.Y //. We write then X �f Y . In the
same manner, if � WA! B is a vector bundle morphism over �0 WM !N, then
a section a 2 �M .A/ is �-related to b 2 �N .B/ if �.a.m// D b.�0.m// for all
m 2M. We write then a �� b. The dual of the morphism � is in general not a
morphism of vector bundles, but a relation R�� �A� �B� defined as

R�� D f.�
�
mˇ�0.m/; ˇ�0.m// jm 2M; ˇ�0.m/ 2 B��0.m/

g;

where �m WAm! B�0.m/ is the morphism of vector spaces.
We will say 2-representations for 2-term representations up to homotopy. We

write “Œn�-manifold” for “N-manifolds of degree n”. We refer the reader to [Jotz Lean
2018b; Bonavolontà and Poncin 2013] for a quick review of split N-manifolds, and
for our notation convention. Let E1 and E2 be smooth vector bundles of finite
ranks r1; r2 over M. The Œ2�-manifold E1Œ�1�˚E2Œ�2� has local basis sections
of Ei

� as local generators of degree i , for i D 1; 2, and so dimension .pI r1; r2/.
A Œ2�-manifold MDE1Œ�1�˚E2Œ�2� defined in this manner by a graded vector
bundle is called a split Œ2�-manifold. In other words, we have

C1.M/0DC1.M /; C1.M/1D�.E�1 / and C1.M/2D�.E�2˚^
2E�1 /:

Let N WDF1Œ�1�˚F2Œ�2� be a second Œ2�-manifold over a base N. A morphism � W

F1Œ�1�˚F2Œ�2�!E1Œ�1�˚E2Œ�2� of split Œ2�-manifolds over the bases N and M,
respectively, consists of a smooth map �0 WN !M, three vector bundle morphisms
�1 W F1 ! E1, �2 W F2 ! E2 and �12 W ^

2F1 ! E2 over �0. The morphism
�? W C1.M/! C1.N / sends a degree 1 function � 2 �.E�

1
/ to �1

?� 2 �.F�
1
/,

defined by h�?
1
�; fmi D h�.�0.m//; �1.fm/i for all fm 2 F1.m/. The morphism

�? sends a degree 2 function � 2 �.E�
2
/ to �2

?�C�?
12
� 2 �.F2

�
˚^2F1

�/.

2. Preliminaries

We refer to Section 2.2 of [Jotz Lean 2018b] for the definition of a double vector
bundle, and for the necessary background on their linear and core sections, and on
their linear splittings and dualisations. Sections 2.3–2.5 of [Jotz Lean 2018b] recall
the definition of a VB-algebroid, and also the equivalence of 2-term representations
up to homotopy (called here “2-representations” for short) with linear decompo-
sitions of VB-algebroids [Gracia-Saz and Mehta 2010]. The notation that we use
here is the same as in [Jotz Lean 2018b].

In this section we recall the correspondence of decompositions of double Lie
algebroids with matched pairs of 2-representations. Then we summarise the corre-
spondence found in [Jotz Lean 2018b] between double vector bundles endowed
with a linear metric, and N-manifolds of degree 2.
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2A. Double Lie algebroids and matched pairs of 2-representations. If .D;AI
B;M / is a VB-algebroid with Lie algebroid structures on D! B and A!M,
then the dual vector bundle D�

B
! B has a Lie–Poisson structure (a linear Poisson

structure), and the structure on D�
B

is also Lie–Poisson with respect to D�
B
! C �

[Mackenzie 2011, 3.4]. Dualising this bundle gives a Lie algebroid structure
on .D�

B
/�
C�
! C �. This equips the double vector bundle ..D�

B
/�
C�
IC �;AIM /

with a VB-algebroid structure. Using the isomorphism defined by �h � ; � i, (see
[Mackenzie 2005] and [Jotz Lean 2018b, §2.2.4] for a summary and our sign
convention), the double vector bundle .D�

A
!C �IA!M / is also a VB-algebroid.

In the same manner, if .D!A;B!M / is a VB-algebroid then we use h � ; � i to
get a VB-algebroid structure on .D�

B
! C �IB!M /.

Let † W A�M B!D be a linear splitting of D and denote by .rB;rC ;RA/

the induced 2-representation of the Lie algebroid A on @B W C ! B (see [Gracia-
Saz and Mehta 2010]; this is also recalled in Section 2.5 of [Jotz Lean 2018b]).
The linear splitting† induces a linear splitting†? WA�M C �!D�

A
of D�

A
. The 2-

representation of A that is associated to this splitting is then .rC �;rB�;�R�
A
/ on

the complex @�
B
W B�! C �. This is proved in the appendix of [Drummond et al.

2015].
A double Lie algebroid [Mackenzie 2011] is a double vector bundle .DIA;BIM /

with core C , and with Lie algebroid structures on each of A!M, B!M, D!A

and D! B such that each pair of parallel Lie algebroids gives D the structure of
a VB-algebroid, and such that the pair .D�

A
;D�

B
/ with the induced Lie algebroid

structures on base C � and the pairing h � ; � i, is a Lie bialgebroid.
Consider a double vector bundle .DIA;BIM / with core C and a VB-Lie alge-

broid structure on each of its sides. After a choice of splitting† WA�M B!D, the
Lie algebroid structures on the two sides of D are described by two 2-representations
[Gracia-Saz and Mehta 2010]. We prove in [Gracia-Saz et al. 2018] that .D�

A
;D�

B
/

is a Lie bialgebroid over C � if and only if, for any splitting of D, the two induced
2-representations form a matched pair as in the following definition [Gracia-Saz
et al. 2018].

Definition 2.1. Let .A!M; �A; Œ � ; � �/ and .B!M; �B; Œ � ; � �/ be two Lie alge-
broids and assume that A acts on @B W C ! B up to homotopy via .rB;rC ;RA/

and B acts on @A W C !A up to homotopy via .rA;rC ;RB/.2 Then we say that
the two representations up to homotopy form a matched pair if

(M1) r@Ac1
c2�r@Bc2

c1 D�.r@Ac2
c1�r@Bc1

c2/,

(M2) Œa; @Ac�D @A.rac/�r@Bca,

2For the sake of simplicity, we write in this definition r for all the four connections. It will always
be clear from the indexes which connection is meant. We write rA for the A-connection induced by
rAB and rAC on ^2B�˝C and rB for the B-connection induced on ^2A�˝C .
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(M3) Œb; @Bc�D @B.rbc/�r@Acb,

(M4) rbrac �rarbc �rrbacCrrabc DRB.b; @Bc/a�RA.a; @Ac/b,

.M5/ @A.RA.a1; a2/b/

D�rb Œa1; a2�C Œrba1; a2�C Œa1;rba2�Crra2
ba1�rra1

ba2;

.M6/ @B.RB.b1; b2/a/

D�raŒb1; b2�C Œrab1; b2�C Œb1;rab2�Crrb2
ab1�rrb1

ab2;

for all a; a1; a2 2 �.A/, b; b1; b2 2 �.B/ and c; c1; c2 2 �.C /, and

(M7) drARB D drB RA 2 �
2.A;^2B� ˝ C / D �2.B;^2A� ˝ C /, where

RB is seen as an element of �1.A;^2B� ˝ C / and RA as an element
of �1.B;^2A�˝C /.

2B. The equivalence of Œ2�-manifolds with metric double vector bundles. We
quickly recall in this section the main result in [Jotz Lean 2018b].

A metric double vector bundle is a double vector bundle .E;QIB;M / with
core Q�, equipped with a linear symmetric nondegenerate pairing E�B E!R, i.e.,
such that

(1) h�|
1
; �

|
2
i D 0 for �1; �2 2 �.Q

�/,

(2) h�; �|i D q�
B
hq; �i for � 2 � l

B
.E/ linear over q 2 �.Q/, and � 2 �.Q�/ and

(3) h�1; �2i is a linear function on B for �1; �2 2 �
l
B
.E/.

Note that the opposite .EIQIB;M / of a metric double vector bundle .EIBIQ;M /

is the metric double vector bundle with h � ; � iE D�h � ; � iE.
A linear splitting† WQ�M B!E is said to be Lagrangian if its image is maximal

isotropic in E! B. The corresponding horizontal lifts �Q W �.Q/! � l
B
.E/ and

�B W �.B/! � l
Q
.E/ are then also said to be Lagrangian. By definition, a horizontal

lift �Q W �.Q/! � l
B
.E/ is Lagrangian if and only if h�Q.q1/; �Q.q2/i D 0 for all

q1; q2 2 �.Q/. Showing the existence of a Lagrangian splitting of E is relatively
easy [Jotz Lean 2018b]. Further, if †1 and †2 W Q�M B ! E are Lagrangian,
then the change of splitting �12 2 �.Q

� ˝Q� ˝ B�/ defined by †2.q; b/ D

†1.q; b/CB�.q; b/ for all .q; b/ 2Q�M B, is a section of Q� ^Q�˝B�.

Example 2.2. Let E!M be a vector bundle endowed with a symmetric nonde-
generate pairing h � ; � i WE�M E! R (a metric vector bundle). Then E 'E� and
the tangent double is a metric double vector bundle .TE;EITM;M / with pairing
TE �TM TE ! R the tangent of the pairing E �M E ! R. In particular, we
have hTe1;Te2iTE D `d he1;e2i

, hTe1; e
|
2
iTE D p�

M
he1; e2i and he|

1
; e

|
2
iTE D 0

for e1; e2 2 �.E/.
Recall from [Jotz Lean 2018b, Example 3.11] that linear splittings of TE are

equivalent to linear connections r W X.M / � �.E/ ! �.E/. The Lagrangian
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splittings of TE are exactly the linear splittings that correspond to metric connec-
tions, i.e., linear connections r W X.M /��.E/! �.E/ that preserve the metric:
hr�e1; e2iC he1;r�e2i D dhe1; e2i for e1; e2 2 �.E/.

Let .E;BIQ;M / be a metric double vector bundle. Define C.E/ � � l
Q
.E/

as the C1.M /-submodule of linear sections with isotropic image in E. After
the choice of a Lagrangian splitting † W Q �M B ! E, C.E/ can be written
C.E/ WD �B.�.B//Cf Q! j ! 2 �.Q

� ^Q�/g. This shows that C.E/ together with
�c

Q
.E/' �.Q�/ span E as a vector bundle over Q.

An involutive double vector bundle is a double vector bundle .D;Q;Q;M / with
core B� equipped with a morphism I WD!D of double vector bundles satisfying
I2 D IdD and �1 ı I D �2, �2 ı I D �1, where �1; �2 WD!Q are the two side
projections, and with core morphism � IdB� WB

�!B�. A morphism� WD1!D2

of involutive double vector bundles is a morphism of double vector bundles such that
�ıI1D I2 ı�. [Jotz Lean 2018b, Proposition 3.15] proves a duality of involutive
double vector bundles with metric double vector bundles: the dual .D��1

IQ;BIM /

with core Q� carries an induced linear metric. Conversely, given a metric double
vector bundle .EIQ;BIM / with core Q�, the dual .E�

Q
IQ;QIM / with core B�

carries an induced involution as above. We define morphisms of metric double vector
bundles as the dual morphisms to morphisms of involutive double vector bundles. A
morphism � W F! E of metric double vector bundles is hence a relation �� F� E

that is the dual of a morphism of involutive double vector bundles ! W F�
P
! E�

Q
.

F�
P

!
//

&&

��

E�
Q

&&

��

P

��

!P
// Q

��

P��

''

// Q��

''
N

!0
// M

Note that the dual of � is compatible with the involutions if and only if � is an
isotropic subspace of F� E. Equivalently [Jotz Lean 2018b], one can define a mor-
phism� W F! E of metric double vector bundles as a pair of maps !? W C.E/! C.F/
and !?

P
W �.Q�/! �.P�/ together with a smooth map !0 WN !M such that

(1) !?.B�1 ^ �2/D
F!?

P
�1 ^!

?
P
�2,

(2) !?.q�
Q
f ��/D q�

P
.!�

0
f / �!?.�/ and

(3) !?
P
.f � �/D !�

0
f �!?

P
�

for all �; �1; �2 2 �.Q
�/, f 2 C1.M / and � 2 C.E/. We write MDVB for the

obtained category of metric double vector bundles. The following theorem is proved
in [Jotz Lean 2018b] and independently in [del Carpio-Marek 2015].
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Theorem 2.3 [Jotz Lean 2018b]. There is a (covariant) equivalence between the
category of Œ2�-manifolds and the category of involutive double vector bundles.

Combining the obtained equivalence with the (contravariant) dualisation equiv-
alence of IDVB with MDVB yields a (contravariant) equivalence between the
category of metric double vector bundles with the morphisms defined above and the
category of Œ2�-manifolds. This equivalence establishes in particular an equivalence
between split Œ2�-manifold M D QŒ�1� ˚ B�Œ�2� and the decomposed metric
double vector bundle .Q�M B �M Q�;B;Q;M / with the obvious linear metric
over B. More precisely, the obtained functor from Œ2�-manifolds to metric double
vector bundles sends by construction a split Œ2�-manifold to a decomposed metric
double vector bundle. Conversely, the functor from metric double vector bundles to
Œ2�-manifolds sends decomposed metric double vector bundles to split Œ2�-manifolds.

We quickly describe the functors between the two categories. To construct the
geometrisation functor G W Œ2��Man!MDVB, take a Œ2�-manifold and consider its
local trivialisations. Changes of local trivialisation define a set of cocycle conditions,
that correspond exactly to cocycle conditions for a double vector bundle atlas. The
local trivialisations can hence be collated to a double vector bundle, which naturally
inherits a linear pairing. See [Jotz Lean 2018b] for more details, and remark that
this construction is as simple as the construction of a vector bundle from a locally
free and finitely generated sheaf of C1.M /-modules.

Conversely, the algebraisation functor A sends a metric double vector bundle
E to the Œ2�-manifold defined as follows: the functions of degree 1 are the sec-
tions of �c

Q
.E/' �.Q�/, and the functions of degree 2 are the elements of C.E/.

The multiplication of two core sections �1; �2 2 �.Q
�/ is the core-linear section

B�1 ^ �2 2 C.E/.
Note that while that equivalence can be seen as the special case of trivial ho-

mological vector field versus trivial bracket and anchor of Li-Bland’s bijection of
Lie 2-algebroids with VB-Courant algebroids [Li-Bland 2012], this corollary is not
given there and only a very careful study of Li-Bland’s proof, which would amount
to the work done in [Jotz Lean 2018b] would yield it.

3. Split Lie 2-algebroids

In this section we recall the notions of Courant algebroids, Dirac structures, dull
algebroids, Dorfman connections and (split) Lie 2-algebroids.

3A. Courant algebroids and Dorfman connections. We introduce in this section
a generalisation of the notion of Courant algebroid, namely the one of degenerate
Courant algebroid with pairing in a vector bundle. Later we will see that the fat
bundle associated to a VB-Courant algebroid carries a natural Courant algebroid
structure with pairing in the dual of the base.
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An anchored vector bundle is a vector bundle Q!M endowed with a vector
bundle morphism �Q WQ! TM over the identity. Consider an anchored vector
bundle .E!M; �/ and a vector bundle V over the same base M together with
a morphism Q� W E ! Der.V /, such that the symbol of Q�.e/ is �.e/ 2 X.M /

for all e 2 �.E/. Assume that E is paired with itself via a nondegenerate pairing
h � ; � i WE�M E!V with values in V . Define D W�.V /!�.E/ by hDv; eiD Q�.e/.v/
for all v 2 �.V /. Then E!M is a Courant algebroid with pairing in V if E is in
addition equipped with an R-bilinear bracket ŒŒ � ; � �� on the smooth sections �.E/
such that

(CA1) ŒŒe1; ŒŒe2; e3����D ŒŒŒŒe1; e2��; e3��C ŒŒe2; ŒŒe1; e3����,

(CA2) Q�.e1/he2; e3i D hŒŒe1; e2��; e3iC he2; ŒŒe1; e3��i,

(CA3) ŒŒe1; e2��C ŒŒe2; e1��D Dhe1; e2i,

(CA4) Q�ŒŒe1; e2��D Œ Q�.e1/; Q�.e2/�

for all e1; e2; e3 2 �.E/ and f 2 C1.M /. Equation (CA2) implies ŒŒe1; fe2�� D

f ŒŒe1; e2��C.�.e1/f /e2 for all e1; e22�.E/ and f 2C1.M /. If V DR�M!M

is in addition the trivial bundle, then D D �� ı d W C1.M /! �.E/, where E is
identified with E� via the pairing. The quadruple .E!M; �; h � ; � i; ŒŒ � ; � ��/ is then
a Courant algebroid [Liu et al. 1997; Roytenberg 1999] and (CA4) follows then
from (CA1), (CA2) and (CA3) (see [Uchino 2002] and also [Jotz Lean 2018a] for
a quicker proof).

Note that Courant algebroids with a pairing in a vector bundle E were defined
in [Chen et al. 2010] and called E-Courant algebroids. It is easy to check that Li-
Bland’s AV -Courant algebroids [2011] yield a special class of degenerate Courant
algebroids with pairing in V . The examples of Courant algebroids with pairing in a
vector bundle that we will get in Theorem 4.2 are not AV -Courant algebroids, so
the two notions are distinct.

In our study of VB-Courant algebroids, we will need the following two lemmas.

Lemma 3.1 [Roytenberg 2002]. Let .E!M; �; h � ; � i; ŒŒ � ; � ��/ be a Courant alge-
broid. For all � 2�1.M / and e 2 �.E/, we have

ŒŒe; �����D ��.£�.e/�/; ŒŒ���; e��D���.i�.e/d�/

and so �.���/D 0, which implies � ıDD 0.

Lemma 3.2 [Li-Bland 2012]. Let E!M be a vector bundle, � W E! TM be
a bundle map, h �; � i be a nondegenerate pairing on E, and let S � �.E/ be a
subspace of sections which generates �.E/ as a C1.M /-module. Suppose that
ŒŒ � ; � �� W S �S! S is a bracket satisfying

(1) ŒŒs1; ŒŒs2; s3����D ŒŒŒŒs1; s2��; s3��C ŒŒs2; ŒŒs1; s3����,
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(2) �.s1/hs2; s3i D hŒŒs1; s2��; s3iC hs2; ŒŒs1; s3��i,

(3) ŒŒs1; s2��C ŒŒs2; s1��D �
�dhs1; s2i,

(4) �ŒŒs1; s2��D Œ�.s1/; �.s2/�

for any si 2 S, and that � ı �� D 0. Then there is a unique extension of ŒŒ � ; � �� to a
bracket on all of �.E/ such that .E; �; h � ; � i; ŒŒ � ; � ��/ is a Courant algebroid.

A Dirac structure with support [Alekseev and Xu 2001] in a Courant algebroid
E!M is a subbundle D ! S over a submanifold S of M, such that D.s/ is
maximal isotropic in E.s/ for all s 2 S and

e1jS 2 �S .D/; e2jS 2 �S .D/ ) ŒŒe1; e2��jS 2 �S .D/

for all e1; e2 2 �.E/. We leave to the reader the proof of the following lemma.

Lemma 3.3. Let E!M be a Courant algebroid and D! S a subbundle, with S

a submanifold of M. Assume that D! S is spanned by the restrictions to S of a
family S � �.E/ of sections of E. Then D is a Dirac structure with support S if and
only if

(1) �E.e/.s/ 2 TsS for all e 2 S and s 2 S ,

(2) Ds is Lagrangian in Es for all s 2 S and

(3) ŒŒe1; e2��jS 2 �S .D/ for all e1; e2 2 S.

Next we recall the notion of Dorfman connection [Jotz Lean 2018a]. Let
.Q!M; �Q/ be an anchored vector bundle and let B be a vector bundle over
M with a fibrewise pairing h � ; � i W Q �M B ! R and an R-linear map ı W

C1.M / ! �.B/ with ı.f � g/ D f � ıg C g � ıf for all f;g 2 C1.M /. A
Dorfman (Q-)connection on B is an R-linear map � W �.Q/! �.Der.B// such
that

(1) �q is a derivation over �Q.q/ 2 X.M /,

(2) �fqb D f�qbChq; bi � ıf and

(3) �qıf D ı.�Q.q/f /

for all f 2 C1.M /, q; q0 2 �.Q/, b 2 �.B/. The equality hq; ıf i D �Q.q/.f /

follows from (2) and (3) for q 2 �.Q/ and f 2 C1.M /.
For instance, if B DQ�, the pairing is the canonical one and ı D ��

Q
d , we get a

Q-Dorfman connection on Q�. The map ŒŒ � ; � ��� D �� W �.Q/��.Q/! �.Q/

that is dual to � in the sense of dual derivations, i.e.,

h��q1
q2; �i D �Q.q1/hq2; �i � hq2; �q1

�i

for all q1; q22�.Q/ and � 2�.Q�/, is then a dull bracket on �.Q/ in the following
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sense. A dull algebroid is an anchored vector bundle .Q!M; �Q/ with a bracket
ŒŒ � ; � �� on �.Q/ such that

(1) �QŒŒq1; q2��D Œ�Q.q1/; �Q.q2/�

and (the Leibniz identity)

ŒŒf1q1; f2q2��D f1f2ŒŒq1; q2��Cf1�Q.q1/.f2/q2�f2�Q.q2/.f1/q1

for all f1; f2 2 C1.M /, q1; q2 2 �.Q/. In other words, a dull algebroid is a
Lie algebroid if its bracket is in addition skew-symmetric and satisfies the Jacobi
identity. Note that a dull bracket can easily be skew-symmetrised.

If Q!M is endowed with a dull algebroid structure, the curvature of a Dorfman
connection� W�.Q/��.B/!�.B/ is the map R� W�.Q/��.Q/!�.End.B//
defined on q; q0 2 �.Q/ by R�.q; q

0/ WD �q�q0 ��q0�q ��ŒŒq;q0��. As always,
� is said to be flat if R� vanishes.

If the dull bracket on Q is skew-symmetric, B D Q� and � is the Dorfman
connection that is dual to the bracket, then R� 2�

2.Q;End.Q�//. The curvature
satisfies then also

(2) h�; JacŒŒ�;���.q1; q2; q3/i D hR�.q1; q2/�; q3i

for q1; q2; q3 2 �.Q/ and � 2 �.Q�/, where

JacŒŒ�;���.q1; q2; q3/D ŒŒŒŒq1; q2���; q3��C ŒŒq2; ŒŒq1; q3����� ŒŒq1; ŒŒq2; q3����

is the Jacobiator of ŒŒ � ; � ��. Hence, the Dorfman connection is flat if and only if the
corresponding dull bracket satisfies the Jacobi identity in Leibniz form.

3B. Split Lie 2-algebroids. A homological vector field � on an Œn�-manifold M is a
derivation of degree 1 of C1.M/ such that Q2D

1
2
ŒQ;Q� vanishes. A homological

vector field on a Œ1�-manifold MDEŒ�1� is the de Rham differential dE associated
to a Lie algebroid structure on E [Vaintrob 1997]. A Lie n-algebroid is an Œn�-
manifold endowed with a homological vector field (an NQ-manifold of degree n).

A split Lie n-algebroid is a split Œn�-manifold endowed with a homological vector
field. Split Lie n-algebroids were studied by Sheng and Zhu [2017] and described
as vector bundles endowed with a bracket that satisfies the Jacobi identity up to
some correction terms; see also [Bonavolontà and Poncin 2013]. Our definition of
a split Lie 2-algebroid turns out to be a Lie algebroid version of Baez and Crans’
definition of a Lie 2-algebra [2004].

Definition 3.4. A split Lie 2-algebroid B�!Q is the pair of an anchored vector
bundle3 .Q!M; �Q/ and a vector bundle B!M, together with a vector bundle

3The names that we choose for the vector bundles will become natural in a moment.
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map l W B�!Q, a skew-symmetric dull bracket4 ŒŒ � ; � �� W �.Q/��.Q/! �.Q/,
a linear connection r W �.Q/��.B/! �.B/ and a vector bundle valued 3-form
! 2�3.Q;B�/, such that

(i) r�
l.ˇ1/

ˇ2Cr
�
l.ˇ2/

ˇ1 D 0 for all ˇ1; ˇ2 2 �.B
�/,

(ii) ŒŒq; l.ˇ/��D l.r�qˇ/ for q 2 �.Q/ and ˇ 2 �.B�/,

(iii) JacŒŒ�;��� D l ı! 2�3.Q;Q/,

(iv) Rr.q1; q2/b D l�hiq2
iq1
!; bi for q1; q2 2 �.Q/ and b 2 �.B/, and

(v) dr�! D 0.

From (iii) follows the identity �QılD0. In the following, we will also work with
@B WD l� WQ�! B, with the Dorfman connection � W �.Q/��.Q�/! �.Q�/

that is dual to ŒŒ � ; � ��, and with R! 2 �
2.Q;Hom.B;Q�// which is defined by

R!.q1; q2/b D hiq2
iq1
!; bi. Then (ii) is equivalent to @B ı�q Drq ı @B , (iii) is

R!.q1; q2/ ı @B D R�.q1; q2/ for q; q1; q2 2 �.Q/, and (iv) is Rr.q1; q2/ D

@B ıR!.q1; q2/ for all q1; q2 2 �.Q/.

3C. Split Lie-2-algebroids as split Œ2�Q-manifolds. Before we go on with the
study of examples, we briefly describe how to construct from the objects in
Definition 3.4 the corresponding homological vector fields on split Œ2�-manifolds.
Note that local descriptions of homological vector fields are also given in [Sheng
and Zhu 2017] and [Bonavolontà and Poncin 2013].

Consider a split Œ2�-manifold MDQŒ�1�˚B�Œ�2�. Assume that Q is endowed
with an anchor �Q and a skew-symmetric dull bracket ŒŒ � ; � ��, that it acts on B via a
linear connection r W �.Q/��.B/! �.B/, that ! is an element of �3.Q;B�/

and that @B W Q
� ! B is a vector bundle morphism. Define a vector field Q of

degree 1 on M by the formulas

Q.f /D ��Qdf 2 �.Q�/

for f 2 C1.M /,

Q.�/D dQ� C @B� 2�
2.Q/˚�.B/

for � 2 �.Q�/ and

Q.b/D drb� h!; bi 2�1.Q;B/˚�3.Q/

for b 2 �.B/. Conversely, a relatively easy degree count and study of the graded
Leibniz identity for an arbitrary vector field of degree 1 on MDQŒ�1�˚B�Œ�2�

4To get the definition in [Sheng and Zhu 2017], set l1 WD �l , l3 WD ! and consider the
skew symmetric bracket l2 W �.Q˚B�/ � �.Q˚B�/! �.Q˚B�/, l2..q1; ˇ1/; .q2; ˇ2// D

.ŒŒq1; q2��;r
�
q1
ˇ2 �r

�
q2
ˇ1/ for q1; q2 2 �.Q/ and ˇ1; ˇ2 2 �.B

�/. Note that this bracket satisfies
a Leibniz identity with anchor �Q ı prQ WQ˚B�! TM and that the Jacobiator of this bracket is
given by Jacl2

..q1; ˇ1/; .q2; ˇ2/; .q3; ˇ3//D .�l.!.q1; q2; q3//; !.q1; q2; l.ˇ3//C c:p:
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shows that it must be given as above, defining therefore an anchor �Q, and the
structure objects ŒŒ � ; � ��, r, ! and @B .

We show that Q2 D 0 if and only if .@�
B
W B�!Q; ŒŒ � ; � ��;r; !/ is a split Lie

2-algebroid anchored by �Q. For f 2 C1.M / we have

Q2.f /D dQ.�
�
Qdf /C @B.�

�
Qdf / 2�2.Q/˚�.B/:

Hence Q2.f /D0 for all f 2C1.M / if and only if @Bı�
�
Q
D0 and �QŒŒq1; q2���D

Œ�Q.q1/; �Q.q2/� for all q1; q2 2 �.Q/. Now we assume that these two conditions
are satisfied. For � 2 �.Q�/ we have

Q2.�/D .d2
Q� � h!; @B�i/C .@BdQ� Cdr.@B�// 2�

3.Q/˚�1.Q;B/;

where @B W�
k.Q/!�k�1.Q;B/ is the vector bundle morphism defined by

@B.�1 ^ � � � ^ �k/D

kX
iD1

.�1/iC1�1 ^ � � � ^
Oi ^ � � � �k ^ @B�i

for all �1; �2 2 �.Q
�/. We find d2

Q
�.q1; q2; q3/D hJacŒŒ�;���.q1; q2; q3/; �i and

.@BdQ�/.q; ˇ/D�h@B�q�; ˇi, and so Q2.�/D 0 for all � 2 �.Q�/ if and only
if JacŒŒ�;���.q1; q2; q3/ D @

�
B
!.q1; q2; q3/ for all q1; q2; q3 2 �.Q/ and @B�q� D

rq.@B�/ for all q 2 �.Q/ and � 2 �.Q�/.
Finally, we find for b 2 �.B/:

Q2.b/DQ.drb/�dQh!; bi � @Bh!; bi:

The term @Bh!; bi is an element of �2.Q;B/ and the term dQh!; bi is an element
of �4.Q/. A computation yields that the �4.Q/-term of Q.drb/ is �h!;drbi,
which is defined by

h!;drbi.q1; q2; q3; q4/D
X
�2Z4

.�1/� h!.q�.1/; q�.2/; q�.3//;rq�.4/bi;

where Z4 is the group of cyclic permutations of f1; 2; 3; 4g. The �2.Q;B/-
term is Rr. � ; � /b and the �.S2B/-term is r@�

B
b defined by .r@�

B
b/.ˇ1; ˇ2/ D

hr@�
B
ˇ1

b; ˇ2iChr@�
B
ˇ2

b; ˇ1i for all ˇ1; ˇ2 2�.B
�/. Hence Q2.b/D 0 if and only

if dQh!; biC h!;drbi D 0, which is equivalent to dr�! D 0; r@�
B

b D 0, which
is equivalent to

r
�

@�
B
ˇ1
ˇ2Cr

�

@�
B
ˇ2
ˇ1 D 0

for all ˇ1; ˇ2 2 �.B
�/; and

Rr. � ; � /b D @Bh!; bi;

which is equivalent to Rr�.q1; q2/ˇ D !.q1; q2; @
�
B
ˇ/ for all q1; q2 2 �.Q/ and

ˇ 2 �.B�/.
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3D. Examples of split Lie 2-algebroids. We describe here four classes of examples
of split Lie 2-algebroids. Later we will discuss their geometric meanings. We do
not verify in detail the axioms of split Lie 2-algebroids. The computations in order
to do this for Examples 3D2 and 3D3 are long, but straightforward. Note that,
alternatively, the next section will provide a geometric proof of the fact that the
following objects are split Lie 2-algebroids, since we will find them to be equivalent
to special classes of VB-Courant algebroids. Note finally that a fifth important class
of examples is discussed in Section 5.

3D1. Lie algebroid representations. Let .Q ! M; �; Œ � ; � �/ be a Lie algebroid
and r W �.Q/ � �.B/ ! �.B/ a representation of Q on a vector bundle B.
Then .0 W B� ! Q; Œ � ; � �;r; 0/ is a split Lie 2-algebroid. It is a semidirect
extension of the Lie algebroid Q (and a special case of the bicrossproduct Lie
2-algebroids defined in Section 5A): the corresponding bracket l2 is given by
l2.q1Cˇ1; q2Cˇ2/D Œq1; q2�C.r

�
q1
ˇ2�r

�
q2
ˇ1/ for q1; q2 2�.Q/ and ˇ1; ˇ2 2

�.B�/. Hence .Q˚B�!M , �D �Q ı prQ; l2/ is simply a Lie algebroid.

3D2. Standard split Lie 2-algebroids. Let E!M be a vector bundle, set

@E D prE WE˚T �M !E;

consider a skew-symmetric dull bracket ŒŒ � ; � �� on �.TM ˚E�/, with TM ˚E�

anchored by prTM , and let

� W �.TM ˚E�/��.E˚T �M /! �.E˚T �M /

be the dual Dorfman connection. This defines as follows a split Lie 2-algebroid
structure on the vector bundles .TM ˚E�; prTM / and E�.

Let r W�.TM˚E�/��.E/!�.E/ be the ordinary linear connection5 defined
by r D prE ı� ı �E . The vector bundle map l D pr�

E
W E�! TM ˚E� is just

the canonical inclusion. Define ! by !.v1; v2; v3/D JacŒŒ�;���.v1; v2; v3/. Note that
since TM ˚E� is anchored by prTM , the tangent part of the dull bracket must
just be the Lie bracket of vector fields. The Jacobiator JacŒŒ�;��� can hence be seen as
an element of �3.TM ˚E�;E�/.

A straightforward verification of the axioms shows that l , ŒŒ � ; � ��, r�, ! define
a split Lie 2-algebroid. For reasons that will become clearer in Section 4D1, we
call standard this type of split Lie 2-algebroid.

3D3. Adjoint split Lie 2-algebroids. The adjoint split Lie 2-algebroids can be
described as follows. Let E ! M be a Courant algebroid with anchor �E and
bracket ŒŒ � ; � �� and choose a metric linear connection r W X.M /� �.E/! �.E/,

5To see that r D prE ı� ı �E is an ordinary connection, recall that since TM ˚E� is anchored
by prTM , the map dE˚T �M D pr�

TM
d W C1.M /! �.E˚T �M / sends f ! .0;df /.
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i.e., a linear connection that preserves the pairing. Set @TM D �E W E! TM and
identify E with its dual via the pairing. The map � W �.E/��.E/! �.E/,

�ee0 D ŒŒe; e0��Cr�.e0/e

is a Dorfman connection, which we call the basic Dorfman connection associated
to r. The dual skew-symmetric(!) dull bracket is given by

ŒŒe; e0��� D ŒŒe; e
0��� ��hr�e; e

0
i

for all e; e0 2 �.E/. The map

r
bas
W �.E/�X.M /! X.M /; rbas

e X D Œ�.e/;X �C �.rX e/

is a linear connection, the basic connection associated to r.
We now define the basic curvature Rbas

�
2�2.E;Hom.TM;E// by6

(3) Rbas
� .e1; e2/X D�rX ŒŒe1; e2��C ŒŒrX e1; e2��C ŒŒe1;rX e2��

Crrbas
e2

X e1�rrbas
e1

X e2�ˇ
�1
hrrbas

� X e1; e2i

for all e1; e2 2�.E/ and X 2X.M /. Note the similarity of these constructions with
the one of the adjoint representation up to homotopy (see [Gracia-Saz and Mehta
2010]). The meaning of this similarity will become clear in Section 4D3. The
map l is ��E WT

�M !E and the form ! 2�3.E;T �M / is given by !.e1; e2; e3/D

hRbas
�
.e1; e2/; e3i. Note that it corresponds to the tensor ‰ defined in [Li-Bland

2012, Definition 4.1.2] (the right-hand side of (3)). The adjoint split Lie 2-algebroids
are exactly the split symplectic Lie 2-algebroids, and correspond hence to splittings
of the tangent doubles of Courant algebroids [Jotz Lean 2018b].

3D4. Split Lie 2-algebroid defined by a 2-representation. Let .@B WC!B;r;r;R/

be a representation up to homotopy of a Lie algebroid A on B˚C . We anchor
A˚C � by �A ı prA and define � W �.A˚C �/��.C ˚A�/! �.C ˚A�/ by

�.a; /.c; ˛/D .rac; £a˛Chr
�
� ; ci/;

and r W �.A˚C �/��.B/! �.B/ by r.a; /b Drab. The vector bundle map l

is here l D �C� ı @
�
B

, where �C� W C �!A˚C � is the canonical inclusion, and the
dull bracket that is dual to � is given by

ŒŒ.a1; 1/; .a2; 2/��D .Œa1; a2�;r
�
a1
2�r

�
a2
1/

6 We have then Rbas
�
.e1; e2/X D�rX ŒŒe1; e2���C ŒŒrX e1; e2���C ŒŒe1;rX e2���Crrbas

e2
X e1�

r
rbas

e1
X e2 �ˇ

�1��hRr.X; �/e1; e2i. Using �R�
r
D Rr� D Rr (where we identify E with its

dual using h � ; � i), the identity Rbas
�
.e1; e2/D�Rbas

�
.e2; e1/ is then immediate.



LIE 2-ALGEBROIDS AND MATCHED PAIRS OF 2-REPRESENTATIONS 161

for a1; a2 2 �.A/, 1; 2 2 �.C
�/. The tensor ! is given by

!..a1; 1/; .a2; 2/; .a3; 3//D hR.a1; a2/; 3iC c.p.

Note that if we work with the dual A-representation up to homotopy .@�
B
W

B�! C �;r�;r�;�R�/, then we get the Lie 2-algebroid defined in [Sheng and
Zhu 2017, Proposition 3.5] as the semidirect product of a 2-representation and a
Lie algebroid. This is then also a special case of the bicrossproduct of a matched
pair of 2-representations (see Section 5A). Later we will explain why the choice
that we make here is more natural.

3E. Morphisms of (split) Lie 2-algebroids. In this section we quickly discuss
morphisms of split Lie 2-algebroids; see also [Bonavolontà and Poncin 2013].

A morphism � W .M1;Q1/ ! .M2;Q2/ of Lie 2-algebroids is a morphism
� WM1!M2 of the underlying Œ2�-manifolds, such that

(4) �? ıQ2 DQ1 ı�
?
W C1.M2/! C1.M1/:

Assume that the two Œ2�-manifolds M1 and M2 are split Œ2�-manifolds M1 D

Q1Œ�1�˚ B�
1
Œ�2� and M2 D Q2Œ�1�˚ B�

2
Œ�2�. Then the homological vector

fields Q1 and Q2 are defined as in Section 3C with two split Lie 2-algebroids;
.�1 W Q1 ! TM1; @1 W Q�

1
! B1; ŒŒ � ; � ��1;r

1; !1/ and .�2 W Q2 ! TM2; @2 W

Q�
2
! B2; ŒŒ � ; � ��2;r

2; !2/. Further, the morphism �? W C1.M2/! C1.M1/

over ��
0
W C1.M2/! C1.M1/ decomposes as �Q WQ1!Q2, �B W B

�
1
! B�

2

and �12 W ^
2Q1! B�

2
, all morphisms over �0 WM1!M2. We study (4) in these

decompositions.

(1) The condition�?.Q2.f //DQ1.�
?.f // for all f 2C1.M2/ is�?

Q
.��

2
df /D

��
1
d.��

0
f / for all f 2 C1.M2/, which is equivalent to

Tm�0.�1.qm//D �2.�Q.qm//

for all qm 2 Q1. In other words �Q W Q1 ! Q2 over �0 W M1 ! M2 is
compatible with the anchors �1 WQ1! TM1 and �2 WQ2! TM2.

(2) The condition �?.Q2.�//DQ1.�
?.�// for all � 2 �.Q�

2
/ reads

�?.d2� C @2�/D @1.�
?
Q�/Cd1.�

?
Q�/

for all � 2 �.Q�
2
/. The left-hand side is

�?Q.d2�/C�
?
12.@2�/„ ƒ‚ …

2�2.Q1/

C�?B.@2�/„ ƒ‚ …
2�.B1/

and the right-hand side is

@1.�
?
Q�/Cd1.�

?
Q�/ 2 �.B1/˚�

2.Q1/:
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Hence, �?ıQ2DQ1ı�
? on degree 1 functions if and only if�Qı@

�
1
D@�

2
ı�B

and �?
Q
.d2�/C�

?
12
.@2�/D d1.�

?
Q
�/ for all � 2 �.Q�

2
/.

(3) Finally we find that �?.Q2.b//DQ1.�
?.b// for all b 2 �.B2/ if and only if

�?.dr2b/D dr1.�?B.b//C @1.�
?
12.b// 2�

1.Q1;B1/

for all b 2 �.B2/ and

�?Q!2 D �B ı!1�d�?
0
r2�12 2�

3.Q1; �
�
0B�2 /:

In the equalities above we have used the following constructions. The form
�?.dr2b/ 2�1.Q1;B1/ is defined by

.�?.dr2b//.qm/D �B
�
m.r

2
�Q.qm/

b/ 2 B1.m/

for all qm 2Q1. Recall that �12 can be seen as an element of �2.Q1; �
�
0
B�

2
/. The

tensors �?
Q
!2 2�

2.Q1; �
�
0
B�

2
/ and �B ı!1 2�

2.Q1; �
�
0
B�

2
/ can be defined as

follows:

.�?Q!2/.q1.m/; q2.m/; q3.m//D !2.�Q.q1.m//; �Q.q2.m//; �Q.q3.m///

in B�
2
.�0.m//, and

.�B ı!1/.q1.m/; q2.m/; q3.m//D�B.!1/.q1.m/; q2.m/; q3.m///2B�2 .�0.m//

for all q1; q2; q3 2 �.Q1/. The linear connection

�?Qr
2
W �.Q1/��.�

�
0B�2 /! �.��0B�2 /

is defined by

.�?Qr
2/q.�

!
0ˇ/.m/Dr

2�

�Q.q.m//
ˇ 2 B�2 .�0.m//

for all q 2 �.Q1/ and ˇ 2 �.B�
2
/.

We call a triple .�Q; �B; �12/ over �0 as above a morphism of split Lie 2-
algebroids. In particular, if M1DM2, �0D IdM WM !M, �QD IdQ WQ!Q

and �B D IdB� W B
�! B�, then �12 2�

2.Q;B�/ is just a change of splitting.
The five conditions above simplify to the following:

(1) The dull brackets are related by ŒŒq; q0��2 D ŒŒq; q0��1C @�B�12.q; q
0/.

(2) The connections are related by r2
q b Dr1

q b� @Bh�12.q; � /; bi.

(3) The curvature terms are related by !1�!2 D d1;r2�12.

The operator d1;r2 W ��.Q;B�/! ��C1.Q;B�/ is defined by the dull bracket
ŒŒ � ; � ��1 and the connection r2�.
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4. VB-Courant algebroids and Lie 2-algebroids

In this section we describe and prove in detail the equivalence between VB-Courant
algebroids and Lie 2-algebroids. In short, a homological vector field on a Œ2�-
manifold defines an anchor and a Courant bracket on the corresponding metric
double vector bundle. This Courant bracket and this anchor are automatically
compatible with the metric and define so a linear Courant algebroid structure on
the double vector bundle. Note that a correspondence of Lie 2-algebroids and
VB-Courant algebroids has already been discussed by Li-Bland [2012]. Our goal is
to make this result constructive by deducing it from the results in [Jotz Lean 2018b]
and presenting it as the counterpart of the main result in [Gracia-Saz and Mehta
2010], and to illustrate it with several (partly new) examples.

4A. Definition and observations. We will work with the following definition of a
VB-Courant algebroid, which is due to Li-Bland [2012].

Definition 4.1. A VB-Courant algebroid is a metric double vector bundle

E�Q

�B
//

��

B

qB

��

QqQ
// M

with core Q� such that E! B is a Courant algebroid and the following conditions
are satisfied.

(1) The anchor map ‚ W E! TB is linear. That is,

(5)

E�Q

�B
//

��

B

qB

��

TBT qB

pB
//

��

B

qB

��

C

  

‚
// B

��

QqQ
// M TMpM

// M

is a morphism of double vector bundles.

(2) The Courant bracket is linear. That is,

ŒŒ� l
B.E/; �

l
B.E/��� �

l
B.E/; ŒŒ� l

B.E/; �
c
B.E/��� �

c
B.E/; ŒŒ�c

B.E/; �
c
B.E/��D 0:

We make the following observations. Let �Q W Q! TM be the side map of
the anchor, i.e., if �Q.�/ D q for � 2 E, then T qB.‚.�// D �Q.q/. In other
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words, if � 2 � l
B
.E/ is linear over q 2 �.Q/ then ‚.�/ is linear over �Q.q/. Let

@B WQ
�! B be the core map defined by the anchor ‚ as

(6) ‚.�|/D .@B�/
"

for all � 2 �.Q�/. (@B is a morphism of vector bundles.) In the following, we call
�Q the side-anchor and @B the core-anchor. The operator DD‚�d W C1.B/!
�B.E/ satisfies D.q�

B
f /D .��

Q
df /| for all f 2 C1.M / and Lemma 3.1 yields

immediately

(7) @B ı �
�
Q D 0; which is equivalent to �Q ı @

�
B D 0:

Recall that if � 2 � l
B
.E/ is linear over q 2 �.Q/, then h�; �|i D q�

B
hq; �i for all

� 2 �.Q�/.

4B. The fat Courant algebroid. Here we denote bybE!M the fat bundle, that is
the vector bundle whose sheaf of sections is the sheaf of C1.M /-modules � l

B
.E/,

the linear sections of E over B. Gracia-Saz and Mehta [2010] showed that if E

is endowed with a linear Lie algebroid structure over B, thenbE!M inherits a
Lie algebroid structure, which is called the “fat Lie algebroid”. For completeness,
we describe here quickly the counterpart of this in the case of a linear Courant
algebroid structure on E! B.

Note that the restriction of the pairing on E to linear sections of E defines a
nondegenerate pairing onbE with values in B�. Since the Courant bracket of linear
sections is again linear, we get the following theorem.

Theorem 4.2. Let .E;B;Q;M / be a VB-Courant algebroid. ThenbE is a Courant
algebroid with pairing in B�.

Note that in [Jotz Lean and Kirchhoff-Lukat 2018] we explain how the Courant
algebroid with pairing in E� that is obtained from the VB-Courant algebroid
TE˚T �E, for a vector bundle E, is equivalent to the omni-Lie algebroids described
in [Chen and Liu 2010; Chen et al. 2011].

We will come back in Corollary 4.8 to the structure found in Theorem 4.2.
Recall that for � 2 �.Hom.B;Q�//, the core-linear section e� of E!B is defined
by e�.bm/D 0bm

CB �.bm/. Note that bE is also naturally paired with Q� via
h�.m/; �.m/i D h�Q.�.m//; �.m/i for all � 2 � l

B
.E/D �.bE/ and � 2 �.Q�/.

This pairing is degenerate since it restricts to 0 on Hom.B;Q�/ �M Q�. The
following proposition can easily be proved.

Proposition 4.3. (1) The map � W �.bE/��.Q�/! �.Q�/ defined by .���/| D
ŒŒ�; �|�� is a flat Dorfman connection, where bE is endowed with the anchor
�Q ı�Q and paired with Q� as above. The map ı W C1.M /! �.Q�/ sends
f to ��df .
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(2) The map r W �.bE/��.B/! �.B/ defined by ‚.�/D br� 2 Xl.B/ is a flat
connection.

The maps � and r satisfy

@B ı�Dr ı @B and ŒŒ�;e���bE DH�� ı� �� ır�
for � 2 �.bE/ and � 2 �.Hom.B;Q�//.

Proof. (1) and (2) are easy to prove. For the first equation, choose � 2 � l
B
.E/ and

� 2 �.Q�/. Then

.@B ı���/
"
D‚.���

|/D‚.ŒŒ�; �|��/D Œ‚.�/; .@B�/
"�D .r�.@B�//

":

The second equation is easy to check by writing e�DPn
iD1 `ˇi

��
|
i with ˇi 2�.B

�/

and �i 2 �.Q
�/. �

Lemma 4.4. For �; 2 �.Hom.B;Q�// and � 2 �.Q�/, we have

(1) ŒŒ�|;e���D .�.@B�//
| D�ŒŒe�; �|�� and

(2) ŒŒe�; e ��DA ı@Bı���ı@Bı .

Remark 4.5. Note that (2) is the bracket of the induced Lie algebra bundle structure
induced on Hom.B;Q�/ by @B .

Proof of Lemma 4.4. We write � D
Pn

iD1 ˇi ˝ �i and  D
Pn

jD1 ˇ
0
j ˝ �j with

ˇ1; : : : ; ˇn; ˇ
0
1
; : : : ; ˇ0n 2 �.B

�/ and �1; : : : ; �n 2 �.Q
�/. Hence, we have e� DPn

iD1 `ˇi
�

|
i and e DPn

jD1 `ˇ0j
�

|
j . First we compute��

�|;

nX
iD1

`ˇi
�

|
i

��
D

nX
iD1

.@B�/
".`ˇi

/�
|
i D

nX
iD1

q�Bh@B�; ˇii�
|
i D

� nX
iD1

h@B�; ˇii�i

�|

and we get (1). Since h�|;e�i D 0, the second equality follows. Then we have�� nX
iD1

`ˇi
�

|
i ;

nX
jD1

`ˇ0
j
�

|
j

��
D

nX
iD1

nX
jD1

`ˇi
.@B�i/

".`ˇ0
j
/�

|
j � `ˇ0j

.@B�j /
".`ˇi

/�
|
i

D

� nX
iD1

nX
jD1

h@B�i ; ˇ
0
j i �ˇi � �j � h@B�j ; ˇii �ˇ

0
j � �i

�|

;

which leads to (2). �

4C. Lagrangian decompositions of VB-Courant algebroids. In this section, we
study in detail the structure of VB-Courant algebroids, using Lagrangian decompo-
sitions of the underlying metric double vector bundle. Our goal is the following
theorem. Note the similarity of this result with Gracia-Saz and Mehta’s theorem
[2010] in the VB-algebroid case.



166 MADELEINE JOTZ LEAN

Theorem 4.6. Let .EIQ;BIM / be a VB-Courant algebroid and choose a La-
grangian splitting † WQ�M B! E. Then there is a split Lie 2-algebroid structure
.�Q; l D @

�
B
; ŒŒ � ; � ��;r; !/ on Q˚B� such that

(8)
‚.�Q.q//D brq 2 X.B/; ŒŒ�Q.q/; �

|��D .�q�/
|

ŒŒ�Q.q1/; �Q.q2/��D �QŒŒq1; q2��� DR!.q1; q2/;

for all q; q1; q2 2 �.Q/ and � 2 �.Q�/, where� W �.Q/��.Q�/! �.Q�/ is the
Dorfman connection that is dual to the dull bracket.

Conversely, a Lagrangian splitting † WQ�B�! E of the metric double vector
bundle E together with a split Lie 2-algebroid on Q˚B� define by (8) a linear
Courant algebroid structure on E.

First we will construct the objects ŒŒ � ; � ���; �;r;R as in the theorem, and then
we will prove in the Appendix that they satisfy the axioms of a split Lie 2-algebroid.

4C1. Construction of the split Lie 2-algebroid. First recall that, by definition, the
Courant bracket of two linear sections of E! B is again linear. Hence, we can
denote by ŒŒq1; q2�� the section of Q such that

(9) �Q ı ŒŒ�Q.q1/; �Q.q2/��D ŒŒq1; q2�� ı qB:

Since for each q 2 �.Q/, the anchor ‚.�Q.q// is a linear vector field on B

over �Q.q/ 2 X.M /, there exists a derivation rq W �.B/! �.B/ over �Q.q/

such that ‚.�Q.q// D brq 2 Xl.B/. This defines a linear Q-connection r W
�.Q/� �.B/! �.B/. For q 2 �.Q/ and � 2 �.Q�/, the bracket ŒŒ�Q.q/; �

|��

is a core section. It is easy to check that the map � W �.Q/� �.Q�/! �.Q�/

defined by
ŒŒ�Q.q/; �

|��D .�q�/
|

is a Dorfman connection.7

The difference of the two linear sections ŒŒ�Q.q1/; �Q.q2/��� �Q.ŒŒq1; q2��� / is
again a linear section, which projects to 0 under �Q. Hence, there exists a vector bun-
dle morphism R.q1; q2/ WB!Q� such that �Q.ŒŒq1; q2��� /� ŒŒ�Q.q1/; �Q.q2/��DCR.q1; q2/. This defines a map R W �.Q/� �.Q/! �.Hom.B;Q�//. We show
in the Appendix that R defines a 3-form ! 2 �3.Q;B�/ by R D R! , that
.l D @�

B
; ŒŒ � ; � ��;r; !/ is a split Lie 2-algebroid, and that ŒŒ � ; � �� is dual to �.

Conversely, choose a Lagrangian splitting † WQ�M B of a metric double vector
bundle .E;QIB;M / with core Q� and let S � �B.E/ be the subset

f�|
j � 2 �.Q�/g[ f�Q.q/ j q 2 �.Q/g � �.E/:

7Note that condition .C 3/ then implies that ŒŒ�|; �Q.q/��D .��q� C �
�
Q

dh�; qi/|.
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Choose a split Lie 2-algebroid .l; ŒŒ � ; � ��;r; !/ on Q˚B� with an anchor �Q on Q.
Consider the Dorfman connection � that is dual to the dull bracket. Define then
a vector bundle map ‚ W E! TB over the identity on B by ‚.�Q.q//D brq and
‚.�|/D .l��/| and a bracket ŒŒ � ; � �� on S by

ŒŒ�Q.q1/; �Q.q2/��D �QŒŒq1; q2��� DR!.q1; q2/; ŒŒ�Q.q/; �
|��D .�q�/

|;

ŒŒ�|; �Q.q/��D .��q� C �
�
Qdh�; qi/|; ŒŒ�

|
1
; �

|
2
��D 0:

We show in the Appendix that this bracket, the pairing and the anchor satisfy the
conditions of Lemma 3.2, and so .E;BIQ;M / with this structure is a VB-Courant
algebroid.

4C2. Change of Lagrangian decomposition. Next we study how the split Lie 2-
algebroid .@�

B
W B�!Q;r; ŒŒ � ; � ��; !/ associated to a Lagrangian decomposition

of a VB-Courant algebroid changes when the Lagrangian decomposition changes.
The proof of the following proposition is straightforward and left to the reader.

Compare this result with the equations at the end of Section 3E, that describe a
change of splittings of a Lie 2-algebroid.

Proposition 4.7. Let †1; †2 W B �M Q! E be two Lagrangian splittings and let
� 2 �.Q�˝Q�˝B�/ be the change of lift.

(1) The Dorfman connections are related by �2
q� D�

1
q� ��.q/.@B�/.

(2) The dull brackets are consequently related by ŒŒq;q0��2D ŒŒq;q0��1C@�B�.q/
�.q0/.

(3) The connections are related by r2
q Dr

1
q � @B ı�.q/.

(4) The curvature terms are related by !1 � !2 D d
r2��, where the operator

d
r2� is defined with the dull bracket ŒŒ � ; � ��1 on �.Q/.

As an application, we get the following corollary of Theorems 4.2 and 4.6.
Given � W �.Q/� �.Q�/! �.Q�/ and r W �.Q/� �.B/! �.B/, we define
the derivations ˙ W �.Q/��.Hom.B;Q�//! �.Hom.B;Q�// by .˙q�/.b/D

�q.�.b//��.rqb/.

Corollary 4.8. Let .Q˚B�!M; �Q; @
�
B
; ŒŒ � ; � ��;r; !/ be a split Lie 2-algebroid.

Then the vector bundle E WDQ˚Hom.B;Q�/ is a Courant algebroid with pairing in
B� given by h.q1; �1/; .q2; �2/iD�

�
1
.q2/C�

�
2
.q1/, with the anchor Q� WE!2Der.B/,

Q�.q; �/� Dr�q C�
� ı @�

B
over �.q/ and the bracket given by

ŒŒ.q1; �1/; .q2; �2/��D
�
ŒŒq1; q2���C @B.�

�
1 .q2//;˙q1

�2�˙q2
�1Cr

�
� .�
�
1 .q2//

C�2 ı @B ı�1��1 ı @B ı�2CR!.q1; q2/
�
:

The map D W �.B�/! �.E/ sends q to .@�
B

q;r�� q/. The bracket does not depend
on the choice of splitting.
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4D. Examples of VB-Courant algebroids and of the corresponding split Lie 2-
algebroids. We give here some examples of VB-Courant algebroids, and we com-
pute the corresponding classes of split Lie 2-algebroids. We find the split Lie
2-algebroids described in Section 3D. In each of the examples below, it is easy
to check that the Courant algebroid structure is linear. Hence, it is easy to check
geometrically that the objects described in 3D are indeed split Lie 2-algebroids.

4D1. The standard Courant algebroid over a vector bundle. We have discussed
this example in great detail in [Jotz Lean 2018a], but not in the language of split
Lie 2-algebroids. Note further that, in [Jotz Lean 2018a], we worked with general,
not necessarily Lagrangian, linear splittings.

Let qE WE!M be a vector bundle and consider the VB-Courant algebroid

TE˚T �E�E

ˆE WD.qE�;rE/
//

��

TM ˚E�

��

EqE
// M

with base E and side TM ˚ E� ! M, and with core E ˚ T �M ! M, or
in other words the standard (VB-)Courant algebroid over a vector bundle qE W

E ! M. Recall that TE ˚ T �E has a natural linear metric (see [Jotz Lean
2018a]). Linear splittings of TE ˚ T �E are in bijection with dull brackets on
sections of TM ˚E� [Jotz Lean 2018a], and so also with Dorfman connections
� W �.TM ˚E�/��.E˚T �M /! �.E˚T �M /, and Lagrangian splittings
of TE˚T �E are in bijection with skew-symmetric dull brackets on sections of
TM ˚E� [Jotz Lean 2018b].

The anchor ‚ D prTE W TE ˚ T �E ! TE restricts to the map @E D prE W

E˚T �M !E on the cores, and defines an anchor

�TM˚E� D prTM W TM ˚E�! TM

on the side. In other words, the anchor of .e; �/| is e" 2Xc.E/ and if A.X; "/ is a lin-
ear section of TE˚T �E!E over .X; "/2�.TM˚E�/, the anchor‚.A.X; "//2
Xl.E/ is linear over X . Let �E W E! E˚T �M be the canonical inclusion. In
[Jotz Lean 2018a] we proved that for q; q1; q22�.TM˚E�/ and �; �1; �22�.E˚

T �M /, the Courant–Dorfman bracket on sections of TE˚T �E!E is given by

(1) ŒŒ�.q/; �|��D .�q�/
|,

(2) ŒŒ�.q1/; �.q2/��D �.ŒŒq1; q2���/�GR�.q1; q2/ ı �E ,

and that the anchor � is described by ‚.�.q//D br�q 2 X.E/, where

r W �.TM ˚E�/��.E/! �.E/

is defined by rq D prE ı�q ı �E for all q 2 �.TM ˚E�/.
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Hence, if we choose a Lagrangian splitting of TE˚T �E, we find the split Lie
2-algebroid of Section 3D2.

4D2. The VB-Courant algebroid defined by a VB-Lie algebroid. More generally, let

D�A

�B
//

��

B

qB
��

AqA
// M

(with core C ) be endowed with a VB-Lie algebroid structure .D! B;A!M /.
Then the pair .D;D�

B
/ of vector bundles over B is a Lie bialgebroid, with D�

B

endowed with the trivial Lie algebroid structure. We get a linear Courant algebroid
D˚B .D

�
B
/ over B with side A˚C �,

D˚B .D
�
B
/ //

��

B

��

A˚C � // M

and core C ˚A�. We check that the Courant algebroid structure is linear. Let
† W A �M B ! D be a linear splitting of D. Recall that we can define a lin-
ear splitting of D�

B
by †? W B �M C �!D�

B
, h†?.bm; m/; †.am; bm/i D 0 and

h†?.bm; m/; c
|.bm/iDhm; c.m/i for all bm2B, am2A, m2C � and c2�.C /.

The linear splitting z† W B �M .A ˚ C �/ ! D ˚B .D�
B
/, z†.bm; .am; m// D

.†.am; bm/; †
?.bm; m// is then a Lagrangian splitting. A computation shows

that the Courant bracket on �B.D˚B .D
�
B
// is given by

ŒŒ Q�A˚C�.a1;1/; Q�A˚C�.a2;2/��

D .Œ�A.a1/; �A.a2/�; £�A.a1/�
?
C�.2/� i�A.a2/d�

?
C�.1//

D
�
�AŒa1; a2�� CR.a1; a2/; �

?
C�.r

�
a1
2�r

�
a2
1/

�hE2;R.a1; � /iChE1;R.a2; � /i
�
;

ŒŒ Q�A˚C�.a;  /; .c; ˛/
|��D .rac|; .£a˛Chr

�
� ; ci/

|/;

ŒŒ.c1; ˛1/
|; .c2; ˛2/

|��D 0;

and the anchor of D˚B .D
�
B
/ is defined by

‚. Q�A˚C�.a;  //D‚.�A.a//D bra 2 X
l.B/; ‚..c; ˛/|/D .@Bc/" 2 Xc.B/;

where .@B W C ! B;r W �.A/� �.B/! �.B/;r W �.A/� �.C /! �.C /;R/

is the 2-representation of A associated to the splitting † W A�M B ! D of the
VB-algebroid .D! B;A!M /. Hence, we have found the split Lie 2-algebroid
described in Section 3D4.
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4D3. The tangent Courant algebroid. We consider here a Courant algebroid

.E; �E; ŒŒ � ; � ��; h � ; � i/:

In this example, E will always be anchored by the Courant algebroid anchor map
�E and paired with itself by h � ; � i and DD ˇ�1 ı ��E ıd W C1.M /! �.E/. Note
that ŒŒ � ; � �� is not a dull bracket.

We show that, after the choice of a metric connection on E and so of a Lagrangian
splitting †r W TM �M E! T E (see Example 2.2), the VB-Courant algebroid
structure on .T E! TM;E!M / is equivalent to the split Lie 2-algebroid defined
by r as in Section 3D3.

Theorem 4.9. Choose a linear connection r WX.M /��.E/!�.E/ that preserves
the pairing on E. The Courant algebroid structure on T E! TM can be described
as follows, for all e; e1; e2 2 �.E/:

(1) The pairing is given by

he
|
1
; e

|
2
i D 0; h�rE .e1/; e

|
2
i D p�M he1; e2i; and h�rE .e1/; �

r
E .e2/i D 0:

(2) The anchor is given by ‚.�rE .e//D brbas
e and ‚.e|/D .�E.e//

".

(3) The bracket is given by

ŒŒe
|
1
; e

|
2
��D 0; ŒŒ�rE .e1/; e

|
2
��D .�e1

e2/
|

and
ŒŒ�rE .e1/; �

r
E .e2/��D �

r
E .ŒŒe1; e2���/�

ERbas
�
.e1; e2/

Proof. We use the characterisation of the tangent Courant algebroid in [Boumaiza
and Zaalani 2009] (see also [Li-Bland 2012]): the pairing has already been discussed
in Example 2.2. It is given by hTe1;Te2i D `d he1;e2i

and hTe1; e
|
2
i D p�

M
he1; e2i.

The anchor is given by‚.Te/D1£�E.e/ 2X.TM / and‚.e|/D .�E.e//
" 2X.TM /.

The bracket is given by ŒŒTe1;Te2��D T ŒŒe1; e2�� and ŒŒTe1; e
|
2
��D ŒŒe1; e2��

| for all
e; e1; e2 2 �.E/.

(1) is easy to check (see Example 2.2 and [Jotz Lean 2018b]). We here check (2),
i.e., that the anchor satisfies ‚.�rE .e//D brbas

e : For � 2�1.M / and vm 2 TM , we
have ‚.�rE .e/.vm//.`� /D `£�E.e/�

.vm/� h�m; �E.rvm
e/i D `

rbas
e
�
�
.vm/ and for

f 2 C1.M /, we have

‚.�rE .e//.p
�
Mf /D p�M .�E.e/f /:

This proves the equality.
Then we compute the brackets of our linear and core sections. Choose sec-

tions �; �0 of Hom.TM;E/. Then ŒŒTe;e���De£e�, with £e� 2 �.Hom.TM;E//

defined by .£e�/.X /D ŒŒe; �.X /����.Œ�E.e/;X �/ for all X 2X.M /. The equality
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ŒŒe�;Te��D�e£e�CD`h�. � /;ei follows. For � 2�1.M /, we compute hD`� ; e|i D

‚.e|/.`� / D p�
M
h�E.e/; �i. Thus, D`� D T .ˇ�1��E�/C

e for a section  2
�.Hom.TM;E// to be determined. Since hD`� ;Tei D ‚.Te/.`� / D `£�E.e/�

,
the bracket hT .ˇ�1��E�/C

e ;Tei D `d h�;�E.e/iCh . � /;ei must equal `£�E.e/�
, and

we find h . � /; ei D i�E.e/d� . Because e 2 �.E/ was arbitrary we find  .X / D
�ˇ�1��EiX d� for X 2 X.M /. We get in particular

ŒŒe�;Te��D�e£e�CT .ˇ�1��Eh�. � /; ei/�
Aˇ�1��EiX dh�. � /; ei:

The formula ŒŒe�; e�0�� DC�0 ı �E ı� �� ı �E ı�0 can easily be checked, as well as
ŒŒe�; e|��D�ŒŒe|;e���D�.�.�E.e///|. Using this, we find now easily that

ŒŒ�rE .e1/; �
r
E .e2/��D ŒŒTe1�

Ar�e1;Te2�
Ar�e2��

D T ŒŒe1; e2���B£e1
r�e2C

B£e2
r�e1�T .ˇ�1��Ehr�e1; e2i/

C
eˇ�1��Edhr�e1; e2iC

Er�E.r�e1/e2�
Er�E.r�e2/e1

D T ŒŒe1; e2����B£e1
r�e2C

B£e2
r�e1C

eˇ�1��Edhr�e1; e2i

CEr�E.r�e1/e2�
Er�E.r�e2/e1:

Since for all X 2 X.M /, we have

�.£e1
r�e2/.X /C.£e2

r�e1/.X /Cˇ
�1��EiX dhr�e1;e2i

D�ŒŒe1;rX e2��CrŒ�E.e1/;X �e2CŒŒe2;rX e1���rŒ�E.e2/;X �e1Cˇ
�1��EiX dhr�e1;e2i

D�ŒŒe1;rX e2��CrŒ�E.e1/;X �e2�ŒŒrX e1;e2���rŒ�E.e2/;X �e1Cˇ
�1��E£X hr�e1;e2i;

we find that ŒŒ�rE .e1/; �
r
E .e2/��D T ŒŒe1; e2��� �

ERbas
�
.e1; e2/. Finally we compute

ŒŒ�rE .e1/; e
|
2
��D ŒŒTe1�

Ar�e1 ; e
|
2
��D ŒŒe1; e2��

|Cr�E.e2/e
|
1
D�e1

e
|
2
. �

4E. Categorical equivalence of Lie 2-algebroids and VB-Courant algebroids. In
this section we quickly describe morphisms of VB-Courant algebroids. Then we
find an equivalence between the category of VB-Courant algebroids and the category
of Lie 2-algebroids. Note that a bijection between VB-Courant algebroids and Lie
2-algebroids was already described in [Li-Bland 2012].

4E1. Morphisms of VB-Courant algebroids. Recall from Section 2B that a mor-
phism � W E1 ! E2 of metric double vector bundles is an isotropic relation
� � E1 � E2 that is the dual of a morphism .E1/

�
Q1
! .E2/

�
Q2

. Assume that
E1 and E2 have linear Courant algebroid structures. Then � is a morphism of
VB-Courant algebroids if it is a Dirac structure (with support) in E1 � E2.

Choose two Lagrangian splittings †1 WQ1 �B1! E1 and †2 WQ2 �B2! E2.
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Then there exist four structure maps

!0 WM1!M2; !Q WQ1!Q2; !B W B
�
1 ! B�2 ; !12 2�

2.Q1; !
�
0 B�2 /

that define completely�. More precisely,� is spanned over Graph.!Q WQ1!Q2/

by sections Qb W Graph.!Q/!�,

Qb.qm; !Q.qm//D .�B1
.!?Bb/.qm/CB!?

12
.b/.qm/; �B2

.b/.!Q.qm///

for all b 2 �M2
.B2/, and �� W Graph.!Q/!�,

��.qm; !Q.qm//D ..!
?
Q�/

|.qm/; �
|.!Q.qm///

for all � 2�M2
.Q�

2
/. Note that� projects under �B1

��B2
to R!�

B
�B1�B2. If q2

�.Q1/ then !!
Q

q 2 �M1
.!�

0
Q2/ can be written as

P
i fi!

!
0
qi with fi 2 C1.M1/

and qi 2 �M2
.Q2/. The pair

.�B1
.!?Bb/.qm/CB!?

12
.b/.qm/; �B2

.b/.!Q.qm///

can be written as�
.�Q1

.q/Ch!12.q; � /; b.!0.m//i
|/.!?Bb.m//;

X
i

fi.m/�Q2
.qi/.b.!0.m///

�
:

Hence, � is spanned by the restrictions to R!�
B

of sections

(10)
�
�Q1

.q/ıpr1Ch!12.q; � /; pr2i
|
ıpr1;

X
i

.fi ıqB1
ıpr1/ �.�Q2

.qi/ıpr2/

�
for all q 2 �M1

.Q1/ and

(11) ..!?Q�/
|
ı pr1; �

|
ı pr2/

for all � 2 �.Q�
2
/.

Checking all the conditions in Lemma 3.3 on the two types of sections (10) and
(11) yields that �!R!�

B
is a Dirac structure with support if and only if

(1) !Q W Q1 ! Q2 over !0 W M1 ! M2 is compatible with the anchors �1 W

Q1! TM1 and �2 WQ2! TM2:

Tm!0.�1.qm//D �2.!Q.qm//

for all qm 2Q1,

(2) @1 ı!
?
Q
D !?

B
ı @2 as maps from �.Q�

2
/ to �.B1/, or equivalently !Q ı@

�
1
D

@�
2
ı!B ,

(3) !Q preserves the dull brackets up to @�
2
!12: i.e., !?

Q
.d2�/C !

?
12
.@2�/ D

d1.!
?
Q
�/ for all � 2 �.Q�

2
/.



LIE 2-ALGEBROIDS AND MATCHED PAIRS OF 2-REPRESENTATIONS 173

(4) !B and !Q intertwine the connections r1 and r2 up to @1 ı!12:

!?B..!
?
Qr

2/qb/Dr1
q .!

?
B.b//� @1 ı h!12.q; � /; bi 2 �.B1/

for all qm 2Q1 and b 2 �.B2/, and

(5) !?
Q
!R2
�!B ı!R1

D�d.!?
Q
r2/!12 2�

3.Q1; !
�
0

B�
2
/.

We thus find that� is a morphism of VB-Courant algebroids if and only if it induces
a morphism of split Lie 2-algebroids after any choice of Lagrangian decompositions
of E1 and E2.

4E2. Equivalence of categories. The functors Section 2B between the category of
metric double vector bundles and the category of Œ2�-manifolds refine to functors be-
tween the category of VB-Courant algebroids and the category of Lie Œ2�-algebroids.

Theorem 4.10. The category of Lie 2-algebroids is equivalent to the category of
VB-Courant algebroids.

Proof. Let .M;Q/ be a Lie 2-algebroid and consider the double vector bundle EM
corresponding to M. Choose a splitting M'QŒ�1�˚B�Œ�2� of M and consider
the corresponding Lagrangian splitting † of EM.

By Theorem 4.6, the split Lie 2-algebroid .QŒ�1�˚B�Œ�2�;Q/ defines a VB-
Courant algebroid structure on the decomposition of EM and so by isomorphism
on EM. Further, by Proposition 4.7, the Courant algebroid structure on EM does
not depend on the choice of splitting of M, since a different choice of splitting will
induce a change of Lagrangian splitting of EM. This shows that the functor G lifts to
a functor GQ from the category of Lie 2-algebroids to the category of VB-Courant
algebroids.

Sections 3E and 4E1 show that morphisms of split Lie 2-algebroids are sent by G
to morphisms of decomposed VB-Courant algebroids.

The functor F lifts in a similar manner to a functor FVBC from the category of VB-
Courant algebroids to the category of Lie 2-algebroids. The natural transformations
found in the proof of Theorem 2.3 refine to natural transformations FVBCGQ ' Id
and GQFVBC ' Id. �
Remark 4.11. Note that we use splittings and decompositions in order to obtain
this equivalence of categories, which does not involve splittings and decompositions.

First, while the linear metric of the linear VB-Courant algebroid is at the heart of
the equivalence of the underlying (metric) double vector bundle .EIB;QIM / with
the underlying Œ2�-manifold of the corresponding Lie 2-algebroid, the linear Courant
bracket and the linear anchor do not translate to very elegant structures on the linear
isotropic sections of E!Q and on its core sections. Only in a decomposition, the
ingredients of the linear bracket and anchor are recognised in a straightforward
manner as the ingredients of a split Lie 2-algebroid.
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Since our main goal was to show that, as decomposed VB-algebroids are the
same as 2-representations [Gracia-Saz and Mehta 2010], decomposed VB-Courant
algebroids are the same as split Lie 2-algebroids, it is natural for us to establish here
our equivalence in decompositions and splittings. The main work for the “splitting
free” version of the equivalence was done in [Jotz Lean 2018b]. Another approach
can of course be found in [Li-Bland 2012], but the equivalence there is not really
constructive, in the sense that it is difficult to even recognise the graded functions on
the underlying Œ2�-manifold as sections of the metric double vector bundle. To our
understanding, the equivalence of Œ2�-manifolds with metric double vector bundles
is not easy to recognise in the proof of [Li-Bland 2012].

Further, our main application in Section 5 is a statement about a certain class of
decomposed VB-Courant algebroids versus split Lie 2-algebroids. Similarly, in a
sequel of this paper [Jotz Lean 2018c], we work exclusively with decomposed or
split objects to express Li-Bland’s definition of an LA-Courant algebroid [Li-Bland
2012] in a decomposition. This yields a new definition that involves the “matched
pair” of a split Lie 2-algebroid with a self-dual 2-representation. This new approach
is far more useful for concrete computations, since there is no need anymore to
consider the tangent triple vector bundle of E (see [Li-Bland 2012]).

5. VB-bialgebroids and bicrossproducts of
matched pairs of 2-representations

In this section we show that the bicrossproduct of a matched pair of 2-representations
is a split Lie 2-algebroid and we geometrically explain this result.

5A. The bicrossproduct of a matched pair of 2-representations. We construct a
split Lie 2-algebroid .A˚B/˚C induced by a matched pair of 2-representations as
in Definition 2.1. The vector bundle A˚B!M is anchored by �AıprAC�BıprB
and paired with A�˚B� as follows:

h.a; b/; .˛; ˇ/i D ˛.a/�ˇ.b/

for all a2�.A/, b 2�.B/, ˛ 2�.A�/ and ˇ 2�.B�/. The morphism A�˚B�!

C � is @�
A
ıprA� C@

�
B
ıprB� . The A˚B-Dorfman connection on A�˚B� is defined

by
�.a;b/.˛; ˇ/D .r

�
b˛C £a˛� hr�b; ˇi;r

�
aˇC £bˇ� hr�a; ˛i/:

The dual dull bracket on �.A˚B/ is

(12) ŒŒ.a; b/; .a0; b0/��D .Œa; a0�Crba0�rb0a; Œb; b
0�Crab0�ra0b/:

The A˚B-connection on C � is simply given by r�
.a;b/

 Dr�a Cr
�
b
 and the

dual connection is r W �.A˚B/��.C /! �.C /,

(13) r.a;b/c DracCrbc:
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Finally, the form ! 2�3.A˚B;C / is given by

(14) !..a1;b1/; .a2;b2/; .a3;b3//DR.a1;a2/b3CR.a2;a3/b1CR.a3;a1/b2

�R.b1;b2/a3�R.b2;b3/a1�R.b3;b1/a2:

The vector bundle .A ˚ B/ ˚ C ! M with the anchor �A ı prAC�B ı prB W
A˚B! TM , l D .�@AI @B/ W C ! A˚B, !R and the skew-symmetric dull
bracket (12) define a split Lie 2-algebroid. Moreover, we prove the following
theorem:

Theorem 5.1. The bicrossproduct of a matched pair of 2-representations is a split
Lie 2-algebroid with the structure given above. Conversely if .A˚B/˚C has a
split Lie 2-algebroid structure such that

(1) ŒŒ.a1; 0/; .a2; 0/��D .Œa1; a2�; 0/ with a section Œa1; a2� 2 �.A/ for all a1; a2 2

�.A/ and in the same manner ŒŒ.0; b1/; .0; b2/��D .0; Œb1; b2�/ with a section
Œb1; b2� 2 �.B/ for all b1; b2 2 �.B/, and

(2) !..a1; 0/; .a2; 0/; .a3; 0// D 0 and !..0; b1/; .0; b2/; .0; b3// D 0 for all a1,
a2 and a3 in �.A/ and b1, b2 and b3 in �.B/,

then A and B are Lie subalgebroids of .A˚ B/˚ C and .A˚ B/˚ C is the
bicrossproduct of a matched pair of 2-representations of A on B˚C and of B on
A˚C . The 2-representation of A is given by

(15)
@B.c/D prB.l.c//; rab D prB ŒŒ.a; 0/; .0; b/��;

rac Dr.a;0/c; RAB.a1; a2/b D !.a1; a2; b/

and the B-representation is given by

(16)
@A.c/D� prA.l.c//; rbaD prAŒŒ.0; b/; .a; 0/��;

rbc Dr.0;b/c; RBA.b1; b2/aD�!.b1; b2; a/:

Proof. Assume first that .A˚B/˚C is a split Lie 2-algebroid with (1) and (2). The
bracket Œ � ; � � W �.A/��.A/! �.A/ defined by ŒŒ.a1; 0/; .a2; 0/��D .Œa1; a2�; 0/ is
obviously skew-symmetric and R-bilinear. Define an anchor �A on A by �A.a/D

�A˚B.a; 0/. Then we get immediately

.Œa1; fa2�; 0/D ŒŒ.a1; 0/; f .a2; 0/��D f .Œa1; a2�; 0/C �A˚B.a1; 0/.f /.a2; 0/;

which shows that Œa1; fa2� D f Œa1; a2� C �A.a1/.f /a2 for all a1; a2 2 �.A/.
Further, we find

JacŒ�;��.a1; a2; a3/D prA.JacŒŒ�;���..a1; 0/; .a2; 0/; .a3; 0///

D�.prA ıl ı!/..a1; 0/; .a2; 0/; .a3; 0///D 0

since ! vanishes on sections of A. Hence A is a wide subalgebroid of the split Lie
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2-algebroid. In a similar manner, we find a Lie algebroid structure on B. Next we
prove that (15) defines a 2-representation of A. Using (ii) in Definition 3.4 we find
for a 2 �.A/ and c 2 �.C / that

@B.rac/D .prB ıl/.r.a;0/c/
.ii/
D prB ŒŒ.a; 0/; l.c/��D prB ŒŒ.a; 0/; .0; prB.l.c///��Dra.@Bc/:

In the third equation we have used condition (1) and in the last equation the
definitions of @B and ra W �.B/ ! �.B/. In the following, we will write for
simplicity a for .a; 0/ 2 �.A˚B/, etc. We easily get

RAB.a1; a2/@Bc D !.a1; a2; prB.l.c///D !.a1; a2; l.c//
.iv/
D Rr.a1; a2/c

and

@BRAB.a1; a2/b D .prB ıl ı!/.a1; a2; b/
.iii/
D � prB.JacŒŒ�;���.a1; a2; b//

for all a1; a2 2 �.A/, b 2 �.B/ and c 2 �.C /. By condition (1) and the definition
of ra W �.B/! �.B/, we find

Rr.a1; a2/b D prB ŒŒa1; ŒŒa2; b����� prB ŒŒa2ŒŒa1; b����� prB ŒŒŒŒa1; a2��; b��

D� prB.JacŒŒ�;���.a1; a2; b//:

Hence, @BRAB.a1; a2/b DRr.a1; a2/b. Finally, an easy computation along the
same lines shows that

(17) h.drHomRAB/.a1; a2; a3/; bi D .dr!/.a1; a2; a3; b/

for a1; a2; a3 2 �.A/ and b 2 �.B/. Since dr! D 0, we find drHomRAB D 0. In
a similar manner, we prove that (16) defines a 2-representation of B. Further, by
construction of the 2-representations, the split Lie 2-algebroid structure on .A˚
B/˚C /must be defined as in (12), (13) and (14), with the anchor �AıprAC�BıprB
and l D .�@A; @B/. Hence, to conclude the proof, it only remains to check that
the split Lie 2-algebroid conditions for these objects are equivalent to the seven
conditions in Definition 2.1 for the two 2-representations.

First, we find immediately that (M1) is equivalent to (i). Then we find by
construction

Œa; @Ac�Cr@BcaD�Œa; prA.l.c//�CrprB.l.c//aD prAŒŒl.c/; a��D� prAŒŒa; l.c/��:

Hence, we find that (M2) holds if and only if prAŒŒa; l.c/��D prA ıl.rac/. But since

ŒŒa; lc��D .prAŒŒa; l.c/��;ra prB l.c//D .prAŒŒa; l.c/��;ra@B.c//

D .prAŒŒa; l.c/��; @Brac/D .prAŒŒa; l.c/��; prB.l.rac///;

we have prAŒŒa; l.c/�� D prA ıl.rac/ if and only if ŒŒa; lc�� D l.rac/. Hence (M2)



LIE 2-ALGEBROIDS AND MATCHED PAIRS OF 2-REPRESENTATIONS 177

is satisfied if and only if ŒŒa; l.c/��D l.rac/ for all a 2 �.A/ and c 2 �.C /. In a
similar manner, we find that (M3) is equivalent to ŒŒb; lc��D l.rbc/ for all b 2�.B/

and c 2 �.C /. This shows that (M2) and (M3) together are equivalent to (ii).
Next, a simple computation shows that (M4) is equivalent to Rr.b; a/c D

!.b; a; l.c//. Since

Rr.a; a
0/c DRAB.a; a

0/@Bc D !.a; a0; prB.l.c///D !.a; a
0; l.c//

and Rr.b; b
0/c D !.b; b0; l.c//, we get that (M4) is equivalent to (iv).

Two straightforward computations show that (M5) is equivalent to

prA.JacŒŒ�;���.a1; a2; b//D� prA.l!.a1; a2; b//

and that (M6) is equivalent to

prB.JacŒŒ�;���.b1; b2; a//D� prB.l!.b1; b2; a//:

But since prB.JacŒŒ�;���.a1; a2; b//D�Rr.a1; a2/b by construction and

Rr.a1; a2/b D @BRAB.a1; a2/b D prB.l!.a1; a2; b//;

we find
prB.JacŒŒ�;���.a1; a2; b//D� prB.l!.a1; a2; b//;

and in a similar manner

prA.JacŒŒ�;���.b1; b2; a//D� prA.l!.b1; b2; a//:

Since JacŒŒ�;���.a1; a2; a3/D 0, JacŒŒ�;���.b1; b2; b3/D 0, and ! vanishes on sections
of A, and respectively on sections of B, we conclude that (M5) and (M6) together
are equivalent to (iii).

Finally, a slightly longer, but still straightforward computation shows that

.drB RAB/.b1; b2/.a1; a2/� .drARBA/.a1; a2/.b1; b2/D .dr!/.a1; a2; b1; b2/

for all a1; a2 2 �.A/ and b1; b2 2 �.B/. This, (17), the corresponding identity
for RBA, and the vanishing of ! on sections of A, and, respectively, on sections
of B, show that (M7) is equivalent to (v). �

If C D 0, then RAB D 0, RBA D 0, @A D 0 and @B D 0 and the matched pair
of 2-representations is just a matched pair of Lie algebroids. The double is then
concentrated in degree 0, with ! D 0, and l2 is the bicrossproduct Lie algebroid
structure on A ˚ B with anchor �A C �B [Lu 1997; Mokri 1997]. Hence, in
that case the split Lie 2-algebroid is just the bicrossproduct of a matched pair of
representations and the dual (flat) Dorfman connection is the corresponding Lie
derivative. The Lie 2-algebroid is in that case a genuine Lie 1-algebroid.
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In the case where B has a trivial Lie algebroid structure and acts trivially up to
homotopy on @AD 0 WC !A, the double is the semidirect product Lie 2-algebroid
found in [Sheng and Zhu 2017, Proposition 3.5] (see Section 3D4).

5B. VB-bialgebroids and double Lie algebroids. Consider a double vector bundle
.DIA;BIM / with core C and a VB-Lie algebroid structure on each of its sides.
Recall from Section 2A that .DIA;B;M / is a double Lie algebroid if and only
if, for any linear splitting of D, the two induced 2-representations (denoted as in
Section 2A) form a matched pair [Gracia-Saz et al. 2018]. By definition of a double
Lie algebroid, .D�

A
;D�

B
/ is then a Lie bialgebroid over C � [Mackenzie 2011], and

so the double vector bundle

D�
A
˚D�

B
//

��

C �

��

A˚B // M

with core B�˚A� has the structure of a VB-Courant algebroid with base C � and
side A˚B. Note that we call the pair .D�

A
;D�

B
/ a VB-bialgebroid over C �. Con-

versely, a VB-Courant algebroid .EIQ;BIM / with two transverse VB-Dirac struc-
tures .D1IQ1;BIM / and .D2IQ2;BIM / defines a VB-bialgebroid .D1;D2/

over B. It is not difficult to see that a VB-bialgebroid8 .DA ! X;A ! M /,
.DB!X;B!M / is equivalent to a double Lie algebroid structure on

..DA/
�
AIB;AIM /' ..DB/

�
BIB;AIM /

with core X �.
Consider again a double Lie algebroid .DIA;BIM /, together with a linear

splitting † WA�M B!D. Then the “dual splittings” �?
A
W �.A/! � l

C�
.D�

A
/ and

�?
B
W �.B/! � l

C�
.D�

B
/ are defined as in Section 2.2.3 in [Jotz Lean 2018b], and

satisfy the equations

(18) h�?A.a/;�
?
B.b/iD0; h�?A.a/;˛

|
iD�q�C�h˛;ai; hˇ|;�?B.b/iDq�C�hˇ;bi;

for all a 2 �.A/, b 2 �.B/, ˛ 2 �.A�/ and ˇ 2 �.B�/.
Then

Q† W .A˚B/�M C �!D�A˚D�B;

defined by Q†..a.m/; b.m//; m/D .�
?
A
.a/.m/; �

?
B
.b/.m//, is a linear Lagrangian

splitting of D�
A
˚D�

B
.

Recall from Section 2A that the splitting

†? WA�M C �!D�A

8DA has necessarily core B� and DB has core A�.
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of the VB-algebroid .D�
A
! C �;A! M / corresponds to the 2-representation

.rC �;rB�;�R�/ of A on the complex @�
B
WB�!C �. In the same manner, the split-

ting†? W B �M C �!D�
B

of the VB-algebroid .D�
B
! C �;B!M / corresponds

to the 2-representation .rC �;rA�;�R�/ of B on the complex @�
A
WA�! C �.

We check that the split Lie 2-algebroid corresponding to the linear splitting Q†
of D�

A
˚D�

B
is the bicrossproduct of the matched pair of 2-representations. The

equalities in (18) imply that we have to consider A˚B as paired with A�˚B� in
the nonstandard way:

h.a; b/; .˛; ˇ/i D ˛.a/�ˇ.b/

for all a 2 �.A/, b 2 �.B/, ˛ 2 �.A�/ and ˇ 2 �.B�/. The anchor of Q�.a; b/D
.�?.a/; �?.b// is br�a Cbr�b 2 Xl.C �/;

and the anchor of .˛; ˇ/| D .ˇ|; ˛|/ 2 �c
C�
.D�

A
˚D�

B
/ is

.@�BˇC @
�
A˛/
"
2 Xc.C �/:

The Courant bracket ŒŒ.�?
A
.a/; �?

B
.b//; .ˇ|; ˛|/�� is

.Œ�?A.a/; ˇ
|�C£�?

B
.b/ˇ

|
�i˛|dD�

B
�?A.a/; Œ�

?
B.b/; ˛

|�C£�?
A
.a/˛

|
�iˇ|dD�

A
�?B.b//;

where dD�
A
W �C�

�V�
D�

B

�
! �C�

�V�C1
D�

B

�
is defined as usual by the Lie alge-

broid D�
A

, and similarly for D�
B

(bear in mind that some nonstandard signs arise
from the signs in (18)). The derivation £ W�.D�

A
/��.D�

B
/!�.D�

B
/ is described by

£ˇ|˛|
D 0; £ˇ|�?B.b/D�hb;r

�
� ˇi

|;

£�?
A
.a/˛

|
D £a˛

|; £�?
A
.a/�

?
B.b/D �

?
B.rab/CCR.a; � /b

in [Gracia-Saz et al. 2018, Lemma 4.8]. Similar formulae hold for

£ W �.D�B/��.D
�
A/! �.D�A/:

We get

ŒŒ.�?A.a/; �
?
B.b//; .ˇ

|; ˛|/��D ..r�aˇC£bˇ�hr�a; ˛i/
|; .r�b˛C£a˛�hr�b; ˇi/

|/:

In the same manner, we get

ŒŒ.�?A.a1/;�
?
B.b1//; .�

?
A.a2/;�

?
B.b2//��

D .�?A.Œa; a
0�Crba0�rb0a/; �

?
B.Œb; b

0�Crab0�ra0b//

C
�
�CR.a1; a2/CDR.b1; �/a2�

DR.b2; �/a1;�CR.b1; b2/CDR.a1; �/b2�
DR.a2; �/b1

�
:



180 MADELEINE JOTZ LEAN

Hence we have the following result. Recall that we have found above that
double Lie algebroids are equivalent to VB-Courant algebroids with two transverse
VB-Dirac structures.

Theorem 5.2. The correspondence established in Theorem 4.6, between decom-
posed VB-Courant algebroids and split Lie 2-algebroids, restricts to a correspon-
dence between decomposed double Lie algebroids and split Lie 2-algebroids that
are the bicrossproducts of matched pairs of 2-representations.

In other words, decomposed VB-bialgebroids are equivalent to matched pairs of
2-representations.

Recall that if the vector bundle C is trivial, the matched pair of 2-representations
is just a matched pair of the Lie algebroids A and B. The corresponding double
Lie algebroid is the decomposed double Lie algebroid .A�M B;A;B;M / found
in [Mackenzie 2011]. The corresponding VB-Courant algebroid is

A�M B�˚A� �M B //

��

0�M

��

A˚B // M

with core B� ˚A�. In that case there is a natural Lagrangian splitting and the
corresponding Lie 2-algebroid is just the bicrossproduct Lie algebroid structure
defined on A˚B by the matched pair; see also the end of Section 5. This shows
that the two notions of the double of a matched pair of Lie algebroids — the
bicrossproduct Lie algebroid in [Mokri 1997] and the double Lie algebroid in
[Mackenzie 2011] are just the N-geometric and the classical descriptions of the
same object, and special cases of Theorem 5.2.

5C. ExampleW the two “doubles” of a Lie bialgebroid. Recall that a Lie bialge-
broid .A;A�/ is a pair of Lie algebroids .A!M;�; Œ � ; � �/ and .A�!M; �?; Œ � ; � �?/

in duality such that A˚A�!M with the anchor �C �?, the pairing

h.a1; ˛1/; .a2; ˛2/i D ˛1.a2/C˛2.a1/;

and the bracket

ŒŒ.a1; ˛1/; .a2; ˛2/��D .Œa1; a2�C£˛1
a2�i˛2

dA�a1; Œ˛1; ˛2�?C£a1
˛2�ia2

dA˛1/

is a Courant algebroid. Lie bialgebroids were originally defined in a different
manner [Mackenzie and Xu 1994], and the definition above is at the origin of the
abstract definition of Courant algebroids [Liu et al. 1997]. This Courant algebroid
is sometimes called the bicrossproduct of the Lie bialgebroid, or the double of the
Lie bialgebroid.
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Mackenzie [2011] came up with an alternative notion of the double of a Lie
bialgebroid. Given a Lie bialgebroid as above, the double vector bundle

T �A' T �A� //

��

A�

��

A // M

is a double Lie algebroid with the following structures. The Lie algebroid structure
on A defines a linear Poisson structure on A�, and so a linear Lie algebroid structure
on T �A�!A�. In the same manner, the Lie algebroid structure on A� defines a
linear Poisson structure on A, and so a linear Lie algebroid structure on T �A!A

(see [Gracia-Saz et al. 2018] for more details and for the matched pairs of 2-
representations associated to a choice of linear splitting). The VB-Courant algebroid
defined by this double Lie algebroid is .T �A/�

A
˚.T �A/�

A�
which is isomorphic to

TA˚TA� //

��

TM

��

A˚A� // M

Computations reveal that the Courant algebroid structure is just the tangent of the
Courant algebroid structure on A˚A�, and so that the two notions of the double of
a Lie bialgebroid can be understood as an algebraic and a geometric interpretation
of the same object.

Appendix: Proof of Theorem 4.6

Let .EIQ;BIM / be a VB-Courant algebroid and choose a Lagrangian splitting
† W Q �M B. We prove here that the obtained split linear Courant algebroid
is equivalent to a split Lie 2-algebroid. Recall the construction of the objects
@B; �;r; ŒŒ � ; � ��� ;R in Section 4C1, and recall that S � �B.E/ is the subset

f�|
j � 2 �.Q�/g[ f�Q.q/ j q 2 �.Q/g � �B.E/:

Recall also that the tangent double .TB!BITM !M / has a VB-Lie algebroid
structure, which is described in [Jotz Lean 2018b, Section 2.2.2]. We begin by
giving two useful lemmas.

Lemma A.1. For ˇ 2 �.B�/, we have

D.`ˇ/D �Q.@
�
Bˇ/C

Ar�� ˇ;
where r�� ˇ is seen as follows as a section of �.Hom.B;Q�//: .r�� ˇ/.b/ D
hr�� ˇ; bi 2 �.Q

�/ for all b 2 �.B/.
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Proof. For ˇ 2 �.B�/, the section d`ˇ is a linear section of T �B! B. Since the
anchor ‚ is linear, the section D`ˇ D‚�d`ˇ is linear. Since for any � 2 �.Q�/,

hD.`ˇ/; �|
i D‚.�|/.`ˇ/D q�Bh@B�; ˇi;

we find that D.`ˇ/� �Q.@
�
B
ˇ/ 2 �.ker�Q/. Hence, D.`ˇ/� �Q.@

�
B
ˇ/ is a core-

linear section of E! B and there exists a section � of Hom.B;Q�/ such that
D.`ˇ/� �Q.@

�
B
ˇ/D e�. We have

`h�;qi D he�; �Q.q/i D hD.`ˇ/� �Q.@
�
Bˇ/; �Q.q/i D‚.�Q.q//.`ˇ/D `r�q ˇ

and so �.b/D hr�� ˇ; bi 2 �.Q
�/ for all b 2 �.B/. �

For each q 2 �.Q/, rq , and �q define a derivation ˙q of �.Hom.B;Q�// as
follows: for � 2 �.Hom.B;Q�// and b 2 �.B/,

.˙q�/.b/D�q.�.b//��.rqb/:

Lemma A.2. For q 2�.Q/ and � 2�.Hom.B;Q�//, we have ŒŒ�Q.q/;e���DȦq�.

Proof. The proof is an easy computation as in the proof of Lemma 4.4. �
Now we can express all the conditions of Lemma 3.2 in terms of the objects

@B; �;r; ŒŒ � ; � ��� ;R found in Section 4C1.

Proposition A.3. The anchor satisfies ‚ ı‚� D 0 if and only if �Q ı @
�
B
D 0 and

r�
@�

B
ˇ1
ˇ2Cr

�

@�
B
ˇ2
ˇ1 D 0 for all ˇ1; ˇ2 2 �.B

�/.

Proof. The composition ‚ ı‚� vanishes if and only if .‚ ı‚�/dF D 0 for all
linear and pullback functions F 2 C1.B/. For f 2 C1.M /,

‚.‚�d.q�Bf //D ..@B ı �
�
Q/df /

":

For ˇ 2 �.B�/, we find, using Lemma A.1,

‚.‚�d`ˇ/D‚.D`ˇ/D‚.�Q.@
�
Bˇ/C

Ar�� ˇ/D br@�BˇCF@B ı hr
�
� ˇ; �i:

Here, @B ı hr
�
� ˇ; � i is as follows a morphism B! B; b 7! @B.hr

�
� ˇ; bi/. On a

linear function `ˇ0 , ˇ0 2 �.B�/, we have ‚.‚�d`ˇ/.`ˇ0/D `r�
@�

B
ˇ
ˇ0 C `r�

@�
B
ˇ0
ˇ.

On a pullback q�
B
f , f 2 C1.M /, this is q�

B
.£.�Qı@

�
B
/.ˇ/f /. �

Proposition A.4. The compatibility of ‚ with the Courant algebroid bracket ŒŒ � ; � ��
is equivalent to

(1) @B ıR.q1; q2/DRr.q1; q2/,

(2) �Q ı ŒŒ � ; � ��� D Œ � ; � � ı .�Q; �Q/, or �q.�
�
Q

df /D ��
Q

d.�Q.q/.f // for all
q 2 �.Q/ and f 2 C1.M /, and

(3) @B ı�Dr ı @B .
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Proof. We have ‚ŒŒ�Q.q1/; �Q.q2/��D Œ‚.�Q.q1//;‚.�Q.q2//�D Œbrq1
;brq2

� and

‚.�Q.ŒŒq1; q2��� /� CR.q1; q2//D brŒŒq1;q2��� �
G@B ıR.q1; q2/:

Applying both derivations to a pullback function q�
B
f for f 2 C1.M / yields

Œbrq1
;brq2

�.q�Bf /D q�B.Œ�Q.q1/; �Q.q2/�f /:

and
.brŒŒq1;q2��� �

G@B ıR.q1; q2//.q
�
Bf /D q�B.�QŒŒq1; q2��� .f //:

Applying both vector fields to a linear function `ˇ 2 C1.B/, ˇ 2 �.B�/, we get

Œbrq1
;brq2

�.`ˇ/D `r�q1
r�q2

ˇ�r�q2
r�q1

ˇ

and
.brŒŒq1;q2��� �

G@B ıR.q1; q2//.`ˇ/D `r�
ŒŒq1;q2���

ˇ�R.q1;q2/�@
�
B
ˇ:

Since Rr�.q1; q2/D�.Rr.q1; q2//
�, we find that

‚ŒŒ�Q.q1/; �Q.q2/��D Œ‚.�Q.q1//;‚.�Q.q2//�

for all q1; q2 2 �.Q/ if and only if (1) and (2) are satisfied.
In the same manner, for q 2 �.Q/ and � 2 �.Q�/, we compute

‚.ŒŒ�Q.q/; �
|��/D .@B�q�/

"

and
Œ‚.�Q.q//;‚.�

|/�D Œbrq; .@B�/
"�D .rq.@B�//

":

Thus,‚.ŒŒ�Q.q/; �
|��/D Œ‚.�Q.q//;‚.�

|/� if and only if @B.�q�/Drq.@B�/. �

Proposition A.5. The condition (3) of Lemma 3.2 is equivalent to R.q1; q2/ D

�R.q2; q1/ and ŒŒq1; q2��� C ŒŒq2; q1��� D 0 for q1; q2 2 �.Q/.

Proof. Choose q1; q2 in �.Q/. Then we have

ŒŒ�Q.q1/; �Q.q2/��C ŒŒ�Q.q2/; �Q.q1/��

D �Q.ŒŒq1; q2��� C ŒŒq2; q1��� /� CR.q1; q2/� CR.q2; q1/:

By the choice of the splitting, we have Dh�Q.q1/; �Q.q2/i DD.0/D 0. Hence, (3)
of Lemma 3.2 is true on horizontal lifts of sections of Q if and only if R.q1; q2/D

�R.q2; q1/ and ŒŒq1; q2��� C ŒŒq2; q1��� D 0 for all q1; q2 2 �.Q/. Further, we have
ŒŒ�Q.q/; �

|��D .�q�/
| and ŒŒ�|; �Q.q/��D .��q�C�

�
Q

dh�; qi/| by definition. On
core sections (3) is trivially satisfied since both the pairing and the bracket of two
core sections vanish. �
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Proposition A.6. The derivation formula (2) in Lemma 3.2 is equivalent to the
following:

(1) � is dual to ŒŒ � ; � ��� , that is ŒŒ � ; � ��� D ŒŒ � ; � ���,

(2) ŒŒq1; q2��� C ŒŒq2; q1��� D 0 for all q1; q2 2 �.Q/, and

(3) R.q1; q2/
�q3 D�R.q1; q3/

�q2 for all q1; q2; q3 2 �.Q/.

Proof. We compute (CA2) for linear and core sections. First of all, the equations

‚.�
|
1
/h�

|
2
; �

|
3
i D hŒŒ�

|
1
; �

|
2
��; �

|
3
iC h�

|
2
; ŒŒ�

|
1
; �

|
3
��i;

‚.�
|
1
/h�

|
2
; �Q.q/i D hŒŒ�

|
1
; �

|
2
��; �Q.q/iC h�

|
2
; ŒŒ�

|
1
; �Q.q/��i

and
‚.�Q.q//h�

|
1
; �

|
2
i D hŒŒ�Q.q/; �

|
1
��; �

|
2
iC h�

|
1
; ŒŒ�Q.q/; �

|
2
��i

are trivially satisfied for all �1; �2; �3 2 �.Q
�/ and q 2 �.Q/. Next, for q1; q2 2

�.Q/ and � 2 �.Q�/, we have:

‚.�Q.q1//h�Q.q2/; �
|
i � hŒŒ�Q.q1/; �Q.q2/��; �

|
i � h�Q.q2/; ŒŒ�Q.q1/; �

|��i

D brq1
.q�Bhq2; �i/� q�BhŒŒq1; q2��� ; �i � q�Bhq2; �q1

�i

D q�B
�
�Q.q1/hq2; �i � hŒŒq1; q2��� ; �i � hq2; �q1

�i
�

Thus ‚.�Q.q1//h�Q.q2/; �
|i D hŒŒ�Q.q1/; �Q.q2/��; �

|iCh�Q.q2/; ŒŒ�Q.q1/; �
|��i

for all q1; q2 2 �.Q/ and � 2 �.Q�/ if and only if � and ŒŒ � ; � ��� are dual to each
other. Using this, we compute

‚.�|/h�Q.q1/;�Q.q2/i�hŒŒ�
|;�Q.q1/��;�Q.q2/i�h�Q.q1/; ŒŒ�

|;�Q.q2/��i

D 0�h�.�q1
�/|C.��Qdhq1;�i/

|; �Q.q2/i�h�Q.q1/;�.�q2
�/|C .��Qdhq2; �i/

|
i

D �q�BhŒŒq1; q2��� C ŒŒq2; q1��� ; �i:

Finally we have ‚.�Q.q1//h�Q.q2/; �Q.q3/i D 0 for all q1; q2; q3 2�.Q/, and
hŒŒ�Q.q1/; �Q.q2/��; �Q.q3/i D `�R.q1;q2/�q3

. This shows that

‚.�Q.q1//h�Q.q2/; �Q.q3/i

D hŒŒ�Q.q1/; �Q.q2/��; �Q.q3/iC h�Q.q2/; ŒŒ�Q.q1/; �Q.q3/��i

if and only if 0D�R.q1; q2/
�q3�R.q1; q3/

�q2. �

Proposition A.7. Assume that � and ŒŒ � ; � ��� are dual to each other. The Jacobi
identity in Leibniz form for sections in S is equivalent to

.1/ R.q1; q2/ ı @B DR�.q1; q2/;
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.2/ R.q1; ŒŒq2; q3���/�R.q2; ŒŒq1; q3���/�R.ŒŒq1; q2���/; q3/

C˙q1
.R.q2; q3//�˙q2

.R.q1; q3//C˙q3
.R.q1; q2//

Dr
�
� .R.q1; q2/

�q3/

for all q1; q2; q3 2 �.Q/.

If R is skew-symmetric as in (1) of Proposition A.5, then the second equation is
dr�! D 0 for ! 2�3.Q;B�/ defined by !.q1; q2; q3/DR.q1; q2/

�q3.

Proof. The Jacobi identity is trivially satisfied on core sections since the bracket
of two core sections is 0. Similarly, for �1; �2 2 �.Q

�/ and q 2 �.Q/, we find
ŒŒ�Q.q/; ŒŒ�

|
1
; �

|
2
����D 0 and ŒŒŒŒ�Q.q/; �

|
1
��; �

|
2
��C ŒŒ�

|
1
; ŒŒ�Q.q/; �

|
2
����D 0. We have

ŒŒ�Q.q1/; ŒŒ�Q.q2/; �
|����� ŒŒ�Q.q2/; ŒŒ�Q.q1/; �

|����

D ŒŒ�Q.q1/; .�q2
�/|��� ŒŒ�Q.q2/; .�q1

�/|��

D .�q1
�q2

�/|� .�q2
�q1

�/|;

and
ŒŒŒŒ�Q.q1/; �Q.q2/��; �

|��D ŒŒ�Q.ŒŒq1; q2���/� CR.q1; q2/; �
|��

D .�ŒŒq1;q2����/
|
C .R.q1; q2/.@B�//

|

by Lemma 4.4. We now choose q1; q2; q3 2 �.Q/ and compute

ŒŒŒŒ�Q.q1/; �Q.q2/��; �Q.q3/��

D ŒŒ�Q.ŒŒq1; q2���/� CR.q1; q2/; �Q.q3/��

D �Q.ŒŒŒŒq1; q2���; q3���/�HR.ŒŒq1; q2���; q3/�D`hR.q1;q2/�;q3i
CF˙q3

R.q1; q2/

D �Q.ŒŒŒŒq1; q2���; q3���/�HR.ŒŒq1; q2���; q3/

� �Q.@
�
BhR.q1; q2/�; q3i/�er�� hR.q1; q2/�; q3iC

F˙q3
R.q1; q2/

and

ŒŒ�Q.q2/; ŒŒ�Q.q1/; �Q.q3/����

D ŒŒ�Q.q2/; �Q.ŒŒq1; q3���/� CR.q1; q3/��

D �Q.ŒŒq2; ŒŒq1; q3������/�HR.q2; ŒŒq1; q3���/�F˙q2
R.q1; q3/:

We hence find that

ŒŒŒŒ�Q.q1/; �Q.q2/��; �Q.q3/��C ŒŒ�Q.q2/; ŒŒ�Q.q1/; �Q.q3/����

D ŒŒ�Q.q1/; ŒŒ�Q.q2/; �Q.q3/����

if and only if

ŒŒŒŒq1; q2���; q3���C ŒŒq2; ŒŒq1; q3������ D ŒŒq1; ŒŒq2; q3������C @
�
BhR.q1; q2/�; q3i
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and

R.ŒŒq1; q2���; q3/Cr
�
� hR.q1; q2/�; q3i �˙q3

R.q1; q2/

CR.q2; ŒŒq1; q3���/C˙q2
R.q1; q3/

DR.q1; ŒŒq2; q3���/C˙q1
R.q2; q3/:

We conclude using (2) on page 156. �
A combination of Propositions A.3, A.4, A.5, A.6, A.7 and Lemma 3.2 proves

Theorem 4.6.
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