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DIVERGENCE ZERO VECTOR FIELDS ON A TORUS

ZHIQIANG LI, SHAOBIN TAN AND QING WANG

The Lie algebra of divergence zero vector fields on a torus is an infinite-
dimensional Lie algebra of skew derivations over the ring of Laurent polyno-
mials. We consider the semidirect product of the Lie algebra of divergence
zero vector fields on a torus with the algebra of Laurent polynomials. In
this paper, we prove that a Harish-Chandra module of the universal central
extension of the derived Lie subalgebra of this semidirect product is either
a uniformly bounded module or a generalized highest weight module. We
also classify all the generalized highest weight Harish-Chandra modules.

1. Introduction

Harish-Chandra modules, i.e., irreducible weight modules with finite-dimensional
weight spaces, are no doubt one of the most important families in the study of the
representation theory of infinite-dimensional Lie algebras. The classifications of
Harish-Chandra modules over the Virasoro algebra ([Kaplansky and Santharoubane
1985; Mathieu 1992]), higher rank Virasoro algebras ([Su 2003; Lu and Zhao 2006]),
and many other Lie algebras related to the Virasoro algebra have been achieved in
[Guo et al. 2011; 2012; Lu and Zhao 2010; Liu and Jiang 2008; Mazorchuk 2000;
Su 2004a; 2004b; Su et al. 2012; 2013; Wang and Tan 2007]. Let A = C[t±1

1 , t±1
2 ]

be the algebra of Laurent polynomials in commuting variables and B be the set of
skew derivations of A. Let L be the universal central extension of the derived Lie
subalgebra of the Lie algebra A o B. Set L̃ = L ⊕Cd1⊕Cd2, where d1, d2 are
two degree derivations. In this paper, we study Harish-Chandra modules over the
Lie algebra L̃ = L ⊕Cd1⊕Cd2, this Lie algebra is a generalization of the twisted
Heisenberg–Virasoro algebra from rank one to rank two (see [Xue et al. 2006; Tan
et al. 2015] for details). The structure of the Lie algebra L has been studied in [Xue
et al. 2006]. Recently, the connection of the Lie algebra L with the vertex algebra
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has been established in [Guo and Wang 2016] and the representation theory of the
Lie algebra L has been studied in [Tan et al. 2015; Guo and Liu 2019; Billig and
Talboom 2018]. However, the classification of the Harish-Chandra modules over
the Lie algebra L̃ is unknown. We prove that a Harish-Chandra module of L̃ is
either a uniformly bounded module or a generalized highest weight module, and
we classify the nonzero level Harish-Chandra modules of the Lie algebra L̃ . Based
on these results, the classification of Harish-Chandra modules of L̃ reduces to the
classification of uniformly bounded modules of L̃ . In [Guo and Liu 2019], the
uniformly bounded modules satisfying the condition that the torus subalgebra acting
nonzero were classified. Another reason to study the Harish-Chandra modules of
the Lie algebra L̃ comes from the representation theory of the nullity 2 toroidal
extended affine Lie algebras (see [Chen et al. 2018]). It was proved therein that the
classification of irreducible integrable modules with finite-dimensional spaces of
the nullity 2 toroidal extended affine Lie algebras of type A1 can be reduced to the
classification of Harish-Chandra modules of L̃ . This phenomenon is similar to the
fact that the classification of irreducible integrable modules of the full toroidal Lie
algebra can be reduced to the classification of irreducible (Der(An)n An)-modules
(see [Eswara Rao and Jiang 2005]), where

An = C[t±1
1 , . . . , t±1

n ].

The techniques in this paper follow from [Lin and Tan 2006; Lin and Su 2013;
Lu and Zhao 2006; Su 2003]. However, we want to point out that in [Lin and Tan
2006], the construction of the generalized highest weight modules of the Virasoro-
like algebra is induced from the Z-graded irreducible modules of a Heisenberg
subalgebra, while in this paper, the construction of the generalized highest weight
module of the Lie algebra L̃ comes from the Z-graded irreducible module of the
subalgebra Hb1 (see the definition in Section 2), which is the twist of three Heisen-
berg subalgebras. So we first need to classify the Z-graded irreducible Hb1-modules
with finite-dimensional graded spaces, which we do in Propositions 2.6 and 2.8. For
the classification of generalized highest weight Harish-Chandra modules of L̃ , we
achieve this by considering the tensor product of the highest weight modules of the
Lie algebra L with a torus. Moreover, we prove that these tensor modules of L̃ are
completely reducible, and every generalized highest weight Harish-Chandra module
of L̃ is isomorphic to one of the irreducible components of these tensor modules.

The paper is organized as follows. In Section 2, we prove that a Harish-Chandra
module of L̃ is either a uniformly bounded module or a generalized highest weight
module. In Section 3, we prove that a nonzero level Harish-Chandra module of L̃ is
a generalized highest weight module. Then we characterize the generalized highest
weight Harish-Chandra modules with nonzero level. In Section 4, we classify the
generalized highest weight Harish-Chandra modules of L̃ .
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Throughout this paper we use C, Z, Z+, N to denote the sets of complex numbers,
integers, nonnegative integers and positive integers respectively. All the vector
spaces mentioned in this paper are over C. As usual, if u1, u2, . . . , uk are elements of
a certain vector space, we denote by 〈u1, u2, . . . , uk〉 the linear span of the elements
u1, u2, . . . , uk over C. The universal enveloping algebra for a Lie algebra g is
denoted by U(g) and GLn×n(Z) denotes the set of n× n invertible matrices with
entries from Z.

2. Harish-Chandra modules of L̃

In this section, we first recall some basic definitions about Harish-Chandra modules
of L̃ and some results for Heisenberg algebras. Then we prove that a Harish-Chandra
module of L̃ is either a uniformly bounded module or a generalized highest weight
module.

Let e1 = (1, 0), e2 = (0, 1), 0 = Ze1+Ze2. Letting (x1, x2), (y1, y2) ∈ 0, we
define (x1, x2)> (y1, y2) if and only if x1> y1 and x2> y2, and (x1, x2)≥ (y1, y2) if
and only if x1≥ y1 and x2≥ y2. For any b1= b11e1+b12e2, b2= b21e1+b22e2 ∈0,
we set

det
(

b1

b2

)
= b11b22− b12b21.

Now we recall the definition of the Lie algebra arising from the two-dimensional
torus (also called the Heisenberg–Virasoro algebra of rank two). See [Xue et al.
2006] (cf. [Tan et al. 2015]) for details.

Definition 2.1. The Heisenberg–Virasoro algebra of rank two is the Lie algebra
spanned by

{t m, E(m), Ki | m ∈ 0 \ {0}, i = 1, 2, 3, 4}

with Lie bracket defined by

[t m, tn
] = 0, [Ki , L] = 0, i = 1, 2, 3, 4,

[t m, E(n)] = det
( n

m

)
t m+n
+ δm+n,0 h(m),

[E(m), E(n)] = det
( n

m

)
E(m+ n)+ δm+n,0 f (m),

where m = m1e1+m2e2, h(m)= m1K1+m2K2, f (m)= m1K3+m2K4.

We denote this Lie algebra by L . Set E(0)= t0
=0 for convenience. Obviously L

is a Z2-graded Lie algebra and the subalgebra 〈E(m), K3, K4 | m ∈ 0 \ {0}〉 of L
is a Virasoro-like algebra. Let L̃ = L ⊕Cd1⊕Cd2, where d1, d2 are two degree
derivations defined by

[di , E(m)] = mi E(m), [di , t m
] = mi t m, [di , K j ] = 0, [d1, d2] = 0,

for m=m1e1+m2e2 ∈ 0, i = 1, 2 and j = 1, 2, 3, 4. Lemma 2.2 is easy to check.
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Lemma 2.2. Let 0 6= b1 = b11e1+ b12e2 ∈ 0 and b2 = b21e1+ b22e2 ∈ 0.

(1) Then 〈E(±kb1), f (b1) | k ∈ N〉 and 〈E(kb1), t−kb1, h(b1) | k ∈ N〉 and
〈E(−kb1), tkb1, h(b1) | k ∈ N〉 are three Heisenberg subalgebras of L̃ , and

(2) {b1, b2} is a Z-basis of 0 if and only if det
( b1

b2

)
=±1.

Now we recall some definitions related to the Harish-Chandra modules for L̃ . A
weight module of L̃ is a module V with weight space decomposition

V =
⊕
λ∈C6

Vλ,

where Vλ = {v ∈ V | div = λiv, K jv = λ j+2v, i = 1, 2, j = 1, 2, 3, 4} and
λ= (λ1, . . . , λ6) ∈ C6. For a weight module V, we define the weight set of V by
P(V )= {λ ∈ C6

| Vλ 6= 0}. A weight module is said to be quasifinite if all weight
spaces Vλ are finite-dimensional. Furthermore, if there exists a positive integer N
such that dim Vλ ≤ N for all λ ∈ C6, we call V a uniformly bounded module. An
irreducible quasifinite weight module is called a Harish-Chandra module. Note
that the centers K1, K2, K3, K4 of L̃ act on an irreducible weight module V as
scalars, i.e., Ki .v = civ for certain ci ∈ C, i = 1, 2, 3, 4, for all v ∈ V. And we
call (c1, c2, c3, c4) the level of the module V. For simplicity of notation, we write
V(λ1,λ2) instead of V(λ1,...,λ6) if the module V is irreducible, i.e., the level (c1, . . . , c4)

is fixed. One can easily see that there exist λ1, λ2 ∈C such that P(V )⊆ (λ1, λ2)+0

for an irreducible weight module V of L̃ . If there exists a Z-basis B = {b1, b2}

of 0 and 0 6= vλ ∈ Vλ such that V = U(L̃)vλ and E(m)vλ = t mvλ = 0, for all
m ∈ Z+b1+Z+b2, we call V a generalized highest weight module with generalized
highest weight λ corresponding to the Z-basis B. The nonzero vector vλ is called
a generalized highest weight vector corresponding to the Z-basis B, or simply
generalized highest weight vector.

Let {b1, b2} be a Z-basis of 0 and let

Hb1 = 〈E(kb1), tkb1, Ki | k ∈ Z \ {0}, i = 1, 2, 3, 4〉.

Denote
L̃0 =Hb1 ⊕Cd1⊕Cd2,

L̃ i = 〈E(mb1+ i b2), tmb1+i b2 | m ∈ Z〉, i 6= 0,

L̃+ =⊕i>0 L̃ i , L̃− =⊕i<0 L̃ i .

Then L̃ = L̃+⊕ L̃0⊕ L̃−. Let V be an irreducible weight L̃0-module. We extend V
to be a (L̃+ ⊕ L̃0)-module by defining L̃+.V = 0. Then we obtain the induced
L̃-module

M̃(V )= M̃(b1, b2, V )= IndL̃
L̃+⊕L̃0

V = U(L̃)⊗U(L̃+⊕L̃0)
V .
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It is clear that, as vector spaces,

M̃(b1, b2, V )' U(L̃−)⊗C V.

The L̃-module M̃(b1, b2, V ) has a unique maximal submodule J (b1, b2, V ) trivially
intersecting with V. Then we obtain the unique irreducible quotient module

M(V )= M(b1, b2, V )= M̃(b1, b2, V )/J (b1, b2, V ).

It is clear that M(V ) is uniquely determined by the Z-basis {b1, b2} of 0 and the
L̃0-module V.

Remark 2.3. The irreducible L̃-module M(b1, b2, V ) constructed above is a gener-
alized highest weight module corresponding to the Z-basis {b1+ b2, b1+2b2} of 0.

We recall some results about the Z-graded module for Heisenberg Lie algebras.
For any 0 6= b1 ∈ 0, denote the subalgebra 〈E(±kb1), f (b1) | k ∈ N〉 of L̃

by Eb1 . For any Eb1-module V, if the eigenvalue of f (b1) is a scalar then we call it
the level of V. Let

E±b1
= 〈E(kb1) | ±k ∈ N〉.

For 0 6= a ∈ C, let Cva be a one-dimensional (Eεb1
⊕C f (b1))-module such that

Eεb1
.va = 0, f (b1).va = ava , ε ∈ {+,−}. Consider the induced Eb1-module

Mε(a)= U(Eb1)⊗U(Eεb1
⊕C f (b1)) Cva

associated with a and ε (a is the level of Mε(a)). Then the Eb1-module Mε(a) is
irreducible.

The following result is due to Propositions 4.3(i) and 4.5 in [Futorny 1997].

Theorem 2.4. If V =
⊕

i∈Z Vi is a Z-graded Eb1-module of level 0 6= a ∈ C and
dim Vi <∞ for at least one i ∈ Z then

(1) if V is an irreducible module then V ' Mε(a) for some ε ∈ {+,−};

(2) V is completely reducible.

Let {b1, b2} be a Z-basis of 0. For a Hb1-module V, if f (b1), h(b1), f (b2), h(b2)

act as scalars c1, c2, c3, c4 ∈ C, then we call (c1, c2, c3, c4) the level of the Hb1-
module V. Furthermore if (c1, c2, c3, c4) = (0, 0, c3, c4), we say that V is a Hb1-
module of level zero. Otherwise, V is nonzero level. In the following, we will
discuss the irreducible Hb1-modules. First we recall the classification of Z-graded
irreducible Hb1-modules of level zero. Then we classify the Z-graded Hb1-modules
of nonzero level with finite-dimensional graded subspaces.
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Set T = C[t±1
]. Let ρ : Hb1 → C be a linear function with ρ( f (b1)) =

ρ(h(b1))= 0. We can define a Hb1-module structure on T by

f (b1).tn
= 0, E(kb1).tn

= ρ(E(kb1))tk+n,(2-1)

h(b1).tn
= 0, tkb1 .tn

= ρ(tkb1)tk+n,(2-2)

f (b2).tn
= ρ( f (b2))tn, h(b2).tn

= ρ(h(b2))tn,(2-3)

where n ∈ Z, k ∈ Z \ {0}. We denote

Tρ,i (Hb1)= U(Hb1).t
i

the Hb1-submodule of T generated by t i for i ∈ Z. And we write Tρ,0(Hb1) as
Tρ(Hb1) for short. From the definition, we see that

(2-4) Tρ,i (Hb1)' Tρ, j (Hb1)

for i, j ∈ Z as Hb1-modules.

Remark 2.5. For linear function ρ : Eb1 → C with ρ( f (b1))= 0, we can define a
Eb1-module structure on the Laurent polynomial ring T with the action given by
(2-1). Similarly, let Tρ,i (Eb1) := U(Eb1).t

i be the Eb1-submodule of T generated
by t i for i ∈ Z. And we also write Tρ,0(Eb1) as Tρ(Eb1) for short.

Then we have the following results from Lemma 3.6 and Proposition 3.8 in
[Chari 1986].

Proposition 2.6. (1) The Hb1-module Tρ(Hb1) (resp. Eb1-module Tρ(Eb1)) is irre-
ducible if and only if Tρ(Hb1) = Tr (resp. Tρ(Eb1) = Tr ) for some r ∈ Z+, where
T0 = C1 and Tr = C[tr , t−r

] if r ∈ N.

(2) If V is a Z-graded irreducible Hb1-module (resp. Eb1-module) of level zero, then
V ' Tρ(Hb1) for some linear function ρ :Hb1 → C with ρ( f (b1))= ρ(h(b1))= 0
(resp. V ' Tρ(Eb1) for some linear function ρ : Eb1 → C with ρ( f (b1))= 0), and
Tρ(Hb1)= Tr (resp. Tρ(Eb1)= Tr ) for some r ∈ Z+.

Remark 2.7. Since 〈tkb1,E(−kb1),h(b1) |k∈N〉 and 〈t−kb1,E(kb1),h(b1) |k∈N〉

are two Heisenberg Lie subalgebras of L̃ , Theorem 2.4 and Proposition 2.6 also
hold for their corresponding Z-graded irreducible modules.

For convenience, we let Eb1 denote the set of all linear functions ρ :Hb1 → C

with ρ( f (b1)) = ρ(h(b1)) = 0 such that the Hb1-module Tρ(Hb1) is irreducible.
Let tb1 = 〈t

±kb1 | k ∈ N〉. Note that tb1 is a centerless Heisenberg subalgebra of L̃ .
Let Tρ(tb1) be the submodule of T generated by 1, where ρ is a linear function
ρ : tb1 → C. The structure of the tb1-module T is defined in a way similar to
that of Eb1 . In the following proposition we classify the Z-graded irreducible
Hb1-modules with nonzero level.
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Proposition 2.8. Let V =
⊕

i∈Z Vi be a Z-graded irreducible Hb1-module with
dim Vi <∞ for all i ∈ Z. Suppose f (b1).v = c1v, h(b1).v = c2v, f (b2).v = c3v

and h(b2).v = c4v for v ∈ V, where c1, c2, c3, c4 ∈ C and (c1, c2) 6= 0.

(1) If c1 6= 0 and c2 6= 0, then

V ' U(Hb1)⊗U(〈E(kb1), tkb1 , f (bi ), h(bi )|k∈N, i=1,2〉) C1,

where 〈E(kb1), tkb1 | k ∈N〉.1= 0, f (b1).1= c11, h(b1).1= c21, f (b2).1= c31
and h(b2).1= c41 or

V ' U(Hb1)⊗U(〈E(−kb1), t−kb1 , f (bi ), h(bi )|k∈N, i=1,2〉) C1,

where 〈E(−kb1), t−kb1 | k ∈N〉.1= 0, f (b1).1= c11, h(b1).1= c21, f (b2).1=
c31 and h(b2).1= c41.

(2) If c1 6= 0 and c2 = 0, then

V ' Tρ(tb1)⊗Mε(c1),

for some linear function ρ : tb1 → C such that Tρ(tb1) = Tr for some r ∈ Z+,
where Mε(c1) is the irreducible Eb1-module of level c1, ε ∈ {+,−}.

(3) If c1 = 0 and c2 6= 0, then

V ' U(Hb1)⊗U(〈E(kb1), tkb1 , f (bi ), h(bi )|k∈N, i=1,2〉) C1,

where 〈E(kb1), tkb1 | k ∈ N〉.1 = 0, f (b1).1 = 0, h(b1).1 = c21, f (b2).1 = c31
and h(b2).1= c41 or

V ' U(Hb1)⊗U(〈E(−kb1), t−kb1 , f (bi ), h(bi )|k∈N, i=1,2〉) C1,

where 〈E(−kb1), t−kb1 | k ∈N〉.1= 0, f (b1).1= 0, h(b1).1= c21, f (b2).1= c31
and h(b2).1= c41.

Proof. (1) If c1 6= 0 and c2 6= 0, by Theorem 2.4 we know that there exists some
0 6= v0 ∈ Vi0 for some i0 ∈ Z such that E(kb1).v0 = 0 for any k ∈ N or −k ∈ N.
Without loss of generality, we assume k ∈ N; then U(〈E(−kb1) | k ∈ N〉)v0 is an
irreducible Eb1-module. Let

W := U(〈tkb1, E(lb1), f (b1), h(b1) | k ∈ N, l ∈ Z \ {0}〉)v0 ⊆ V .

Note that W as a Z-graded 〈tkb1, E(−kb1), h(b1) | k ∈ N〉-module is completely
reducible. Then we have that

W =
(⊕

i∈I

(⊕
mi∈X i

V+i,mi

))
⊕

(⊕
j∈J

(⊕
n j∈Y j

V−j,n j

))
,

where
V+i,mi
= U(〈tkb1, E(−kb1), h(b1) | k ∈ N〉)vi,mi ' M+(c2),
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for some 0 6= vi,mi ∈ Vi ∩W with tkb1 .vi,mi = 0 for all k ∈ N, i ∈ I, mi ∈ X i , and

V−j,n j
= U(〈tkb1, E(−kb1), h(b1) | k ∈ N〉)u j,n j ' M−(c2),

where 0 6= u j,n j ∈ V j ∩W with E(−kb1).u j,n j = 0 for all k ∈ N, j ∈ J, n j ∈ Y j ,
I, J, X i , Y j ⊆ Z. Note that I has an upper bound, J has a lower bound and all
X i , Y j are finite sets since dim Vn <∞ for all n ∈ Z. Assume J 6=∅; then there
exists some nonzero vector w0 ∈W ∩ Vi such that E(−kb1).w0 = 0 for all k ∈ N

and some i ∈ Z. Consider W0 = U(Eb1)w0 ⊆W, then

W0 = U(〈E(lb1) | l ∈ N〉).w0

and W0 is a free U(〈E(lb1) | l ∈N〉)-module. On the other hand, sincew0 ∈W, there
exists k ∈N such that E(kb1).w0 = 0, which is a contradiction. Thus J =∅ and
W =

⊕
i∈I

(⊕
mi∈X i

V+i,mi

)
. Since I has an upper bound, there exists 0 6=u0∈W∩Vi1

for some i1 ∈ Z such that E(kb1).u0 = tkb1 .u0 = 0 for all k ∈ N. This shows that

V ' U(Hb1)⊗U(〈E(kb1), tkb1 , f (bi ), h(bi )|k∈N, i=1,2〉) Cu0.

Another case is similar.

(2) If c1 6= 0 and c2 = 0, we can write

Hb1 = tb1 ⊕ Eb1 ⊕C f (b2)⊕Ch(b1)⊕Ch(b2).

From Theorem 2.4, Proposition 2.6 and [Li 2004, Lemma 2.7], this result follows.

(3) If c1 = 0 and c2 6= 0, by Theorem 2.4, V is completely reducible when we
view V as a module of the two subalgebras 〈t−kb1, E(kb1), h(b1) | k ∈ N〉 and
〈tkb1, E(−kb1), h(b1) | k ∈ N〉. We write

V =
(⊕

i∈I

(⊕
mi∈X i

V+i,mi

))
⊕

(⊕
j∈J

(⊕
n j∈Y j

V−j,n j

))
when it is viewed as the module of the Lie algebra 〈t−kb1, E(kb1), h(b1) | k ∈N〉,
where I, J, X i , Y j ⊆ Z,

V+i,mi
= U(〈t−kb1, E(kb1), h(b1) | k ∈ N〉)vi,mi ' M+(c2)

with E(kb1).vi,mi = 0 for all k ∈ N, i ∈ I, mi ∈ X i , 0 6= vi,mi ∈ Vi and

V−j,n j
= U(〈t−kb1, E(kb1), h(b1) | k ∈ N〉)u j,n j ' M−(c2)

with t−kb1 .u j,n j = 0 for all k ∈N, j ∈ J, n j ∈ Y j and 0 6= u j,n j ∈ V j . Similarly, we
write

V =
(⊕

i∈I ′

(⊕
pi∈X ′i

W+i,pi

))
⊕

(⊕
j∈J ′

(⊕
q j∈Y ′j

W−j,q j

))
when it is viewed as the module of the Lie algebra 〈tkb1, E(−kb1), h(b1) | k ∈N〉.
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Note that both I and I ′ have upper bounds, J and J ′ have lower bounds and all
X i , Y j , X ′i , Y ′j are finite sets as dim Vn <∞ for all n ∈ Z. If I =∅, similar to the
proof in (1), we get

V ' U(Hb1)⊗U(〈E(kb1), tkb1 , f (bi ), h(bi )|k∈N, i=1,2〉) C1,

where 〈E(kb1), tkb1 | k ∈ N〉.1= 0, f (b1).1= 0, h(b1).1= c21, f (b2).1= c31
and h(b2).1= c41. Now suppose I 6=∅. We can choose 0 6= v0 ∈ V+i0,mi0

for some
i0 ∈ I, mi0 ∈ X i0 such that E(kb1).v0= 0 for all k ∈N. Then we have v0=w1+w2,
where

w1 ∈

(⊕
i∈I ′

(⊕
pi∈X ′i

W+i,pi

))
∩ Vi0 and w2 ∈

(⊕
j∈J ′

(⊕
q j∈Y ′j

W−j,q j

))
∩ Vi0 .

If w1 6= 0, we can choose large enough k0 ∈ N such that E(−k0b1).w2 = 0 since
J ′ has a lower bound. Since

⊕
i∈I ′
(⊕

pi∈X ′i
W+i,pi

)
is a free 〈E(−kb1) | k ∈ N〉-

module, we have 0 6= E(−k0b1).w1 = E(−k0b1).v0 ∈
⊕

i∈I ′
(⊕

pi∈X ′i
W+i,pi

)
and

E(kb1).E(−k0b1).v0 = E(−k0b1).E(kb1).v0 = 0 for all k ∈ N. Now we claim
that there exists 0 6= v ∈ Vi for some i ∈ Z such that tkb1 .v = E(kb1).v = 0 for
all k ∈ N. In fact, if tkb1 .(E(−k0b1).v0) = 0 for all k ∈ N, this is done by setting
v = E(−k0b1).v0. If there exists k1 ∈ N such that tk1b1 .(E(−k0b1).v0) 6= 0, set
v1 = tk1b1 .(E(−k0b1).v0). We can repeat this process, and, since I ′ has an upper
bound, we know that it will terminate after finitely many steps. This implies that

V ' U(Hb1)⊗U(〈E(kb1), tkb1 , f (bi ), h(bi )|k∈N, i=1,2〉) C1,

where 〈E(kb1), tkb1 | k ∈N〉.1=0, f (b1).1=0, h(b1).1= c21, f (b2).1= c31 and
h(b2).1= c41. If w1 = 0, i.e., v0 =w2, we know that there exists some 0 6= u ∈ V j0
for some j0 ∈Z such that E(kb1).u= 0 for k ∈Z\{0}. In fact, if there exists n1 ∈N

such that E(−n1b1)v0 6= 0, set u1 = E(−n1b1)v0. We also have E(kb1).u1 = 0 for
all k ∈ N since f (b1).V = 0. We can repeat this process, and, since J ′ has a lower
bound, we know that it will terminate after finitely many steps. Then,

V ' U(Hb1)⊗U(〈E(mb1), f (bi ), h(bi )|m∈Z\{0}, i=1,2〉) C1,

where E(mb1).1= 0 for all m ∈Z\{0}, f (b1).1= 0, h(b1).1= c21, f (b2).1= c31
and h(b2).1 = c41. This contradicts the condition that dim Vi <∞ for all i ∈ Z.
Then the conclusion follows. �

Fix a Z-basis {b1, b2} of 0, b1 = b11e1+ b12e2, and λ1, λ2 ∈ C. Any Z-graded
Hb1-module V =⊕i∈ZVi with fixed level can be extended to a weight module of L̃0

by defining
d1v j = (λ1+ jb11)v j , d2v j = (λ2+ jb12)v j ,

for v j ∈ V j , j ∈Z. One can easily see that the vector space V is a weight L̃0-module
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and P(V ) ⊆ (λ1, λ2)+Zb1. For the Z-graded irreducible Hb1-modules given in
Propositions 2.6 and 2.8, we let

V+(c)= U(Hb1)⊗U(〈E(kb1), tkb1 , Ki |k∈N, i=1,2,3,4〉) C1,

V−(c)= U(Hb1)⊗U(〈E(−kb1), t−kb1 , Ki |k∈N, i=1,2,3,4〉) C1,

Mε
ρ(c)=Tρ(tb1)⊗Mε(c1) and Tρ(Hb1)(c)=Tρ(Hb1). We can extend these modules

to weight L̃0-modules by the above method, and then we denote the corresponding
L̃0-module by V+(c,λ), V−(c,λ), Mε

ρ(c,λ) and Tρ(Hb1)(c,λ) respectively, where
c = (c1, c2, c3, c4), λ = (λ1, λ2), and f (b1), h(b1), f (b2) and h(b2) act as the
scalars c1, c2, c3, c4 ∈ C, respectively.

With this notation, the following results can be obtained from Propositions 2.6
and 2.8.

Corollary 2.9. Let V =
⊕

i∈Z Vi be any irreducible weight module of L̃0 with
dim Vi <∞ for all i ∈ Z, and f (b1).v = c1v, h(b1).v = c2v, f (b2).v = c3v and
h(b2).v = c4v for v ∈ V, where Vi := V(λ1,λ2)+i b1 for some fixed λ= (λ1, λ2) ∈ C2.

(1) If (c1, c2) 6= 0, then V ' V ε(c,λ) or V ' Mε
ρ(c,λ) for some linear function

ρ : tb1 → C with Tρ(tb1)= Tr for some r ∈ Z+ and ε ∈ {+,−}.

(2) If (c1, c2)= 0, then V ' Tρ(Hb1)(c,λ) for some ρ ∈ Eb1 .

The following lemma give the characterization of the irreducible weight modules
of L̃ with finite-dimensional weight spaces.

Lemma 2.10. Let {b1, b2} be a Z-basis of 0. V is an irreducible weight module
of L̃ with finite-dimensional weight spaces and f (b1), h(b1), f (b2), h(b2) act on V
as scalars c1, c2, c3, c4 respectively. If there exist λ1, λ2 ∈ C such that V(λ1,λ2) 6= 0
and P(V )∩ ((λ1, λ2)+Zb1+Nb2)=∅, we have:

(1) If c1 = c2 = 0, V ' M(b1, b2, Tρ(Hb1)(c,λ)) for some ρ ∈ Eb1 .

(2) If c1 6=0, c2=0, V 'M(b1, b2,Mε
ρ(c,λ)) for some linear function ρ : tb1→C

satisfying Tρ(tb1)= Tr for some r ∈ Z+.

(3) If c2 6= 0, V ' M(b1, b2, V ε(c,λ)), where ε ∈ {+,−}, λ = (λ1, λ2), c =
(c1, c2, c3, c4).

Proof. Let W = ⊕i∈ZV(λ1,λ2)+i b1 . Since P(V ) ∩ ((λ1, λ2) + Zb1 + Nb2) = ∅,
we see that W is an irreducible L̃0 weight module and L̃+W = 0. Thus by the
construction of M̃(b1, b2,W ) and the PBW theorem, there exists an epimorphism ϕ

from M̃(b1, b2,W ) to V such that ϕ |W= idW . Therefore, the lemma follows from
Corollary 2.9 and the irreducibility of V. �

Using the same notation as in Lemma 2.10, the following lemma shows that the
cases (2) and (3) of Lemma 2.10 don’t occur.
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Lemma 2.11. For any Z-basis {b1, b2} of 0, neither M( b1, b2,Mε
ρ(c,λ)) nor

M(b1, b2, V ε(c,λ)) is a Harish-Chandra module.

Proof. Using the notation in Lemma 2.10, for the case that f (b1) acts as the scalar
c1 6= 0, the lemma follows from Lemma 2.6 in [Lin and Tan 2006]. So we only need
to consider the case where c1=0, c2 6=0. Without loss of generality, we may assume
that there exists a weight vector 0 6= v0 ∈ V ε(c,λ) such that E(kb1)v0 = tkb1v0 = 0
and E(−kb1)v0 6= 0 and t−kb1v0 6= 0 for all k ∈N (see Proposition 2.8(3)). For any
n ∈ N, we can choose k j ∈ Z, 1 ≤ j ≤ n with 0 < k1 < k2 < · · · < kn such that
h(−k j b1+ b2)v0 6= 0 for 1≤ j ≤ n. We claim that

{E(k j b1− b2)t−k j b1v0 | 1≤ j ≤ n} ⊆ M(b1, b2, V ε(c,λ))(λ1,λ2)−b2

is a set of linear independent vectors, therefore the conclusion follows. In fact, if∑n
j=1 a j E(k j b1− b2)t−k j b1v0 = 0, then

0= t−k1b1+b2

n∑
j=1

a j E(k j b1− b2)t−k j b1v0

= a1h(−k1b1+ b2)t−k1b1v0+

n∑
j=2

a j det
(

k j b1− b2

−k1b1+ b2

)
t (k j−k1)b1 t−k j b1v0.

Since h(−k1b1+ b2) 6= 0, this implies a1 = 0. Similarly, we can prove a2 = a3 =

· · · = an = 0. Therefore the conclusion follows. �

From Lemmas 2.10 and 2.11, we have:

Proposition 2.12. Let {b1, b2} be a Z-basis of 0 and let V be a Harish-Chandra
module of L̃. If there exist λ1, λ2 ∈C such that P(V )∩ ((λ1, λ2)+Zb1+Nb2)=∅
and V(λ1,λ2) 6= 0, then V ' M(b1, b2, Tρ(Hb1)(c,λ)) for some ρ ∈ Eb1 .

Remark 2.13. If V is a Harish-Chandra module V of L̃ satisfying the conditions
in Proposition 2.12, then c= (0, 0, c3, c4), i.e., f (b1), h(b1) act trivially.

As one of the main results in this paper, we prove that a Harish-Chandra module
of L̃ is either a generalized highest weight module or a uniformly bounded module.
First, we need the following lemma.

Lemma 2.14. An irreducible weight L̃-module V is a generalized highest weight
module if there is a Z-basis {b1, b2} of 0 and a weight vector v 6= 0 such that
E(b1)v = E(b2)v = t b1v = 0.

Proof. Since there is a weight vector v 6= 0, such that E(b1)v = E(b2)v = t b1v = 0,
by induction, we have

E(m)v = t mv = 0

for m ∈ Nb1+Nb2. Therefore, we have

E(m)v = t mv = 0
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for m ∈ Z+b′1 + Z+b′2, where b′1 = 2b1 + b2, b′2 = 3b1 + b2 ∈ 0. It is obvious
that {b′1, b′2} is a Z-basis of 0. Now we get that V is a generalized highest weight
module since V is irreducible. �

Proposition 2.15. A Harish-Chandra module V of L̃ is either a generalized highest
weight module or a uniformly bounded module.

Proof. Let (λ1, λ2) ∈ P(V ) and let Vb := V(λ1,λ2)+b for b ∈ 0. Then V =
⊕

b∈0 Vb.
If V is not a generalized highest weight module, for m = (m1,m2) ∈ 0, consider
the linear maps E(−m1e1 + e2) : V(m1,m2) → V(0,m2+1), E((1 − m1)e1 + e2) :

V(m1,m2)→V(1,m2+1) and t−m1e1+e2 :V(m1,m2)→V(0,m2+1). By Lemma 2.14, we have

ker E(−m1e1+ e2)∩ ker E((1−m1)e1+ e2)∩ ker t−m1e1+e2 = 0.

This shows that

dim V(m1,m2) ≤ 2 dim V(0,m2+1)+ dim V(1,m2+1).

Now we consider the linear maps E(−e1 + (1 − m2)e2) : V(0,m2+1) → V(−1,2),
E(−e1−m2e2) : V(0,m2+1)→ V(−1,1) and t−e1−m2e2 : V(0,m2+1)→ V(−1,1). By the
same reasoning, we get

dim V(0,m2+1) ≤ 2 dim V(−1,1)+ dim V(−1,2).

Similarly, we have

dim V(1,m2+1) ≤ 2 dim V(0,1)+ dim V(0,2).

Thus, V is a uniformly bounded module. �

3. Nonzero level Harish-Chandra modules of L̃

In this section, we study the nonzero level Harish-Chandra module V of L̃ , which
satisfies Ki .v = civ for v ∈ V, 0 6= (c1, c2, c3, c4) ∈ C4.

We denote
[p, q] = {x | x ∈ Z, p ≤ x ≤ q}

and similarly for (−∞, p], [q,∞) and (−∞,+∞). First, we have:

Theorem 3.1. If V is a nonzero level Harish-Chandra module of L̃ , then V is a
generalized highest weight module.

Proof. Without loss of generality, we may assume the center element K1 acts
as 0 6= c1 ∈ C. Let (λ1, λ2) ∈ P(V ). Set W0 := ⊕i∈ZV(λ1,λ2)+ie1 6= 0. From
Theorem 2.4, we see that W0 as a 〈E(ke1), t−ke1, K1 | k ∈N〉-module is completely
reducible. Also from Theorem 2.4, we know that V is not a uniformly bounded
module. Thus V is a generalized highest weight module. �
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Corollary 3.2. If V is a uniformly bounded Harish-Chandra module of L̃ , then
Ki .v = 0 for v ∈ V, i = 1, 2, 3, 4.

We assume that V =
⊕

n∈0 Vλ+n is a nontrivial generalized highest weight Harish-
Chandra L̃-module with generalized highest weight λ= (λ1, λ2) corresponding to
a Z-basis B = {b1, b2} of 0. Without loss of generality, we assume λ= 0.

Lemma 3.3. (1) For any v ∈ V, there exists p > 0 such that E(i b1 + j b2)v =

t i b1+ j b2v = 0 for all (i, j)≥ (p, p).

(2) For any 0 6= v ∈ V, (m1,m2) > 0, we have E(−m1b1−m2b2)v 6= 0.

(3) If b := i1b1+ i2b2 ∈ P(V ), then for any (m1,m2) > 0, there exists m ≥ 0 such
that {x ∈ Z | b+ xa ∈ P(V )} = (−∞,m], where a = m1b1+m2b2.

Proof. Let v0 be the generalized highest weight vector of V corresponding to the
Z-basis B.

(1) Since v = uv0 for some u ∈ U(L̃), u can be written as a linear combination of
elements of the form um,n= t i1b1+ j1b2 · · · t im b1+ jm b2 E(k1b1+l1b2) · · · E(kn b1+ln b2).
Without loss of generality, we may assume u = um,n . Take

p1 =−6is<0is −6kt<0kt + 1, p2 =−6 js<0 js −6lt<0lt + 1.

Fix m ∈ Z+. By induction on n, one gets E(i b1 + j b2)v = t i b1+ j b2v = 0 for all
(i, j)≥ (p1, p2). Take p =max{p1, p2}. Then the result follows.

(2) Suppose E(−m1b1−m2b2)v = 0 for some 0 6= v ∈ V and some (m1,m2) > 0.
Let p be as in the proof of (1). Then one gets

E(−m1b1−m2b2)v= E(b1+ p(m1b1+m2b2))v= E(b2+ p(m1b1+m2b2))v= 0

t b1+p(m1b1+m2b2)v = t b2+p(m1b1+m2b2)v = 0.

Note that the Lie algebra L is generated by these elements, so we have Lv = 0,
which contradicts V being a nontrivial irreducible module.

(3) See Lemma 3.2 in [Lin and Tan 2006]. �

The following lemma follows from Lemma 3.3 and the proof is given in [Lin
and Tan 2006].

Lemma 3.4. There exists a Z-basis B ′ = {b′1, b′2} of 0 such that:

(1) V is a generalized highest weight module with generalized highest weight 0
corresponding to the Z-basis B ′.

(2) {Z+b′1+Z+b′2} ∩P(V )= 0.

(3) {−Z+b′1−Z+b′2} ⊆ P(V ).

(4) If i1b′1+ i2b′2 /∈ P(V ), then k1b′1+ k2b′2 /∈ P(V ) for (k1, k2)≥ (i1, i2).
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(5) If i1b′1+ i2b′2 ∈ P(V ), then k1b′1+ k2b′2 ∈ P(V ) for (k1, k2)≤ (i1, i2).

(6) For any 0 6= (k1, k2)≥ 0, (i1, i2) ∈ 0, we have

{x ∈ Z | i1b′1+ i2b′2+ x(k1b′1+ k2b′2) ∈ P(V )} = (−∞,m]

for some m ∈ Z.

From now on, we assume that V is a nontrivial generalized highest weight
Harish-Chandra module with generalized highest weight 0 corresponding to the
Z-basis B = {b1, b2} and B satisfies the properties in Lemma 3.4. To characterize
the nontrivial generalized highest weight Harish-Chandra module V of L̃ , we need
the following lemmas due to [Lin and Tan 2006] (cf. [Lu and Zhao 2006; Su 2003]).

Lemma 3.5. If there exist an integer s > 0 and (i1, i2), (k1, k2) ∈ 0 such that k1,
k2 are coprime, and

{i1b1+ i2b2+ x1sb1+ x2sb2 | (x1, x2) ∈ 0, k1x1+ k2x2 = 0} ∩P(V )=∅,

then V ' M(b′1, b′2, Tρ(Hb′1)(c,λ)) for some Z-basis {b′1, b′2} of 0 and some
ρ ∈ Eb′1 , where f (b′1), h(b′1), f (b′2), h(b′2) act as scalars c1 = 0, c2 = 0, c3, c4

respectively and c= (c1, c2, c3, c4).

Lemma 3.6. If there exist (i1, i2), (0, 0) 6= (k1, k2) ∈ 0 such that

{i1b1+ i2b2+ x(k1b1+ k2b2) | x ∈ Z} ∩P(V )=∅,

then V ' M(b′1, b′2, Tρ(Hb′1)(c,λ)) for some Z-basis {b′1, b′2} of 0 and some
ρ ∈ Eb′1 .

Lemma 3.7. If there exist (0, 0) 6= (m, n) ∈ 0, (i, j) ∈ 0, p, q ∈ Z such that

{x ∈ Z | i b1+ j b2+ x(mb1+ nb2) ∈ P(V )} ⊇ (−∞, p] ∪ [q,∞),

then V ' M(b′1, b′2, Tρ(Hb′1)(c,λ)) for some Z-basis {b′1, b′2} of 0 and some
ρ ∈ Eb′1 .

Lemma 3.8. If there exist (i, j), (k, l) ∈ 0 and x1, x2, x3 ∈ Z with x1 < x2 < x3

such that

i b1+ j b2+ x1(kb1+ lb2) /∈ P(V ),(3-1)

i b1+ j b2+ x2(kb1+ lb2) ∈ P(V ),(3-2)

i b1+ j b2+ x3(kb1+ lb2) /∈ P(V ),(3-3)

then V ' M(b′1, b′2, Tρ(Hb′1)(c,λ)) for some Z-basis {b′1, b′2} of 0 and some
ρ ∈ Eb′1 .
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Proof. Without loss of generality, we may assume k, l are coprime. Thus we
can choose (m, n) ∈ 0 with kn − lm = 1. Let b′1 = kb1 + lb2 and let b′2 =
mb1 + nb2; then {b′1, b′2} is a Z-basis of 0. Replacing x2 by the largest x < x3

with i b1+ j b2+ x(kb1+ lb2) ∈ P(V ), then replacing x3 by x2+ 1 and (i, j) by
(i, j)+ x2(k, l), we can assume

(3-4) x1 < x2 = 0< x3 = 1.

We may assume that there exists s ∈ Z with

i b1+ j b2+ b′2+ sb′1 = (i +m)b1+ ( j + n)b2+ s(kb1+ lb2) /∈ P(V ).(3-5)

Otherwise, by Lemma 3.7, we are done. Thus by (3-1)–(3-5), we have

E(x1b′1)vi b1+ j b2 = E(x1(kb1+ lb2))vi b1+ j b2 = 0,

t x1b′1vi b1+ j b2 = t x1(kb1+lb2)vi b1+ j b2 = 0,

E(b′1)vi b1+ j b2 = E(kb1+ lb2)vi b1+ j b2 = 0,

t b′1vi b1+ j b2 = tkb1+lb2vi b1+ j b2 = 0,

E(b′2+ sb′1)vi b1+ j b2 = 0,

t b′2+sb′1vi b1+ j b2 = 0,

where 0 6= vi b1+ j b2 ∈ Vi b1+ j b2 . Note that since x1 < 0, we have that

{E(pb′1+ qb′2), t pb′1+qb′2 | p ∈ Z, q ∈ N}

belongs to the subalgebra generated by

{E(x1b′1), E(b′1), E(b′2+ sb′1), t x1b′1, t b′1, t b′2+sb′1}.

We obtain E(pb′1+qb′2)vi b1+ j b2 = t pb′1+qb′2vi b1+ j b2 = 0 for p ∈ Z, q ∈N. Since
{b′1, b′2} is a Z-basis of 0 and V is irreducible, from the PBW theorem, we have
V = U(L̃)vi b1+ j b2 and

{i b1+ j b2+Zb′1+Nb′2} ∩P(V )=∅.

Thus the result follows from Proposition 2.12. �

Lemma 3.9. If there exist i>0, j <0 and 0 6=va ∈Va, a∈C2, b=mb1+nb2 6=0,
such that E(i b)va = 0, E( j b)va = 0, then V ' M(b′1, b′2, Tρ(Hb′1)(c,λ)) for
some Z-basis {b′1, b′2} of 0 and some ρ ∈ Eb′1 .

Proof. Write (m, n)= s(m′, n′) with m′, n′ coprime and s ≥ 1. Then we can choose
(m2, n2) ∈ 0 with n′m2 −m′n2 = 1. Let b′1 = m′b1 + n′b2, b′2 = m2b1 + n2b2;
then {b′1, b′2} is a Z-basis of 0. Fix any 0 6= q ∈ Z.

Case 1: If {a+qb′2+ x b′1 | x ∈ Z}∩P(V )=∅, then, by Lemma 3.7, we are done.
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Case 2: If there exist integers x1 < x2 < x3 with a + qb′2 + x2b′1 ∈ P(V ) and
a+ qb′2+ xi b′1 /∈ P(V ), i = 1, 3, then, by Lemma 3.9, we are done.

Case 3: If there exist m, n ∈ Z with

(−∞,m] ∪ [n,∞)⊆ {x ∈ Z | a+ qb′2+ x b′1 ∈ P(V )},

then, by Lemma 3.8, we are done.
Now if the above three cases don’t occur, we know that there exists some

integer pq such that Aq := {x ∈ Z | a + qb′2 + x b′1 ∈ P(V )} = (−∞, pq ] or
[pq ,∞). We first assume Aq = (−∞, pq ]. Thus

E(qb′2− j xsb′1± b′1)va = tqb′2− j xsb′1±b′1va = 0

for a sufficiently large integer x > 0. Since E( j b)va = E( jsb′1)va = 0, we can
obtain

E(qb′2± b′1)va = tqb′2±b′1va = 0.

If Aq = [pq ,∞), by a similar argument, we can also obtain

E(qb′2± b′1)va = tqb′2±b′1va = 0.

This implies

E(±(b′1+ b′2))va = E(±(b′1+2b′2))va = 0, t±(b
′
1+b′2)va = t±(b

′
1+2b′2)va = 0.

Since {b′1+ b′2, b′1+ 2b′2} is a Z-basis of 0, L is generated by

{E(±(b′1+ b′2)), E(±(b′1+ 2b′2)), t±(b
′
1+b′2), t±(b

′
1+2b′2)}.

Thus V = U(L̃)va is a trivial module, which is a contradiction. �

The following proposition gives the characterization of the nontrivial generalized
highest weight Harish-Chandra module.

Proposition 3.10. If V is a nontrivial generalized highest weight Harish-Chandra
L̃-module with generalized highest weight λ= (λ1, λ2) corresponding to a Z-basis
B = {b1, b2} of 0, then V ' M(b′1, b′2, Tρ(Hb′1)(c, λ)) for some Z-basis {b′1, b′2}
of 0 and some ρ ∈ Eb′1 .

Proof. From Lemma 3.9 and the proof of Proposition 3.9 in [Lin and Tan 2006],
we can obtain our result. �

Together with Theorem 3.1 and Proposition 3.10, we have:

Theorem 3.11. If V is a nonzero level Harish-Chandra L̃-module, then

V ' M(b′1, b′2, Tρ(Hb′1)(c,λ))

for some Z-basis {b′1, b′2} of 0 and some ρ ∈ Eb′1 , λ ∈ C2.
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4. Classification of generalized highest weight Harish-Chandra L̃-modules

In this section, we will provide the classification of generalized highest weight
Harish-Chandra modules of L̃ by using the highest weight modules of L . From
Proposition 3.10, we only need to find in which case the irreducible generalized
highest weight L̃-module M(b1, b2, Tρ(Hb1)(c,λ)) is a Harish-Chandra module.

First we give a triangular decomposition of L and construct a class of Z-graded
irreducible highest weight modules of L . Recall that

L̃ i = 〈E(mb1+ i b2), tmb1+i b2 | m ∈ Z〉, i ∈ Z \ {0},

and
L̃+ =

⊕
i>0

L̃ i , L̃− =
⊕
i<0

L̃ i .

Then L = L̃+⊕Hb1 ⊕ L̃−.

Remark 4.1. In this section, we call a L-module V a highest weight module
(corresponding to the Z-basis {b1, b2}) if there exists a nonzero v ∈ V such that
V = U(L)v and L̃+.v = 0.

For any linear function ρ :Hb1→C with ρ( f (b1))= ρ(h(b1))= 0, we define a
one-dimensional (Hb1 ⊕ L̃+)-module Cv0 as follows:

L̃+.v0 = 0, x .v0 = ρ(x)v0, x ∈Hb1 .(4-1)

Then we have an induced L-module

V (ρ)= IndL
Hb1⊕L̃+

Cv0 = U(L)⊗U(Hb1⊕L̃+) Cv0.(4-2)

We see that V (ρ) is a Z-graded module. It is clear that V (ρ) has a unique maximal
Z-graded submodule J (ρ). Then we obtain a Z-graded irreducible highest weight
L-module

V (ρ)= V (ρ)/J (ρ)=⊕i∈ZV (ρ)i ,

where, for i ∈ Z,

V (ρ)i =

SpanC

{
E(i1b1+ j1b2)E(i2b1+ j2b2) · · · E(im b1+ jm b2)t s1b1+k1b2 · · · t sn b1+kn b2v0

|m, n ∈ Z+,

m∑
p=1

jp +

n∑
p=1

kp = i
}
.

We call V (ρ)i for i ∈Z the weight space of the L-module V (ρ). If dim V (ρ)i <∞,
we say that the weight space V (ρ)i is finite-dimensional.
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For later use, we need a conception of an exp-polynomial function. Recall from
[Billig and Zhao 2004] that a function f : Z→ C is said to be exp-polynomial if it
can be written as a finite sum

f (n)=
∑

cm,anman,

for some cm,a ∈ C, m ∈ Z+ and 0 6= a ∈ C.
The following lemma is due to [Wilson 2008].

Lemma 4.2. A function f : Z→ C is an exp-polynomial function if and only if
there exist a0, . . . , an ∈ C with a0an 6= 0, such that

n∑
i=0

ai f (m+ i)= 0,

for all m ∈ Z.

Remark 4.3. In general, for fixed a0, . . . , an ∈C with a0an 6=0, the exp-polynomial
function f satisfying

∑n
i=0 ai f (m+ i)= 0, for all m ∈ Z, is not unique.

Then we have the following result.

Proposition 4.4. Suppose the linear function ρ : Hb1 → C such that ρ( f (b1)) =

ρ(h(b1)) = 0. Then the Z-graded L-module V (ρ) has finite-dimensional weight
spaces if and only if there exist two exp-polynomials g j : Z → C satisfying∑n

i=0 ai g j (k+ i)= 0 for j = 1, 2, k ∈ Z, ai ∈ C, a0an 6= 0 and

g1(0)= det
(

b1

b2

)
ρ( f (b2)), g2(0)= det

(
b1

b2

)
ρ(h(b2)),

g1(m)= ρ(m E(mb1)), g2(m)= ρ(mtmb1), m ∈ Z \ {0}.

Proof. First, we define two linear maps φ1, φ2 : C[t±1
1 , t±1

2 ] → L by

φi (t
m1
1 tm2

2 )=

{
E(m1b1+m2b2) if i = 1,
tm1b1+m2b2 if i = 2.

If V (ρ) has finite-dimensional weight spaces, since dim V (ρ)−1 <∞ and

φ1(t i
1t−1

2 )v0 ∈ V (ρ)−1

for all i ∈Z, there exists k ∈Z and a nonzero polynomial P(t1)=
∑n

i=0 ai t i
1 ∈C[t1]

with a0an 6= 0 such that
φ1(t−1

2 tk
1 P(t1))v0 = 0.

Applying φi (t s
1 t2) for any s ∈ Z, i = 1, 2 to the above equation respectively, we get( n∑

i=0

ai (k+ s+ i)E((k+ s+ i)b1)+ det
(

b1

b2

)
a−k−s f (b2)

)
.v0 = 0,(4-3)
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and ( n∑
i=0

ai (k+ s+ i)t (k+s+i)b1 + det
(

b1

b2

)
a−k−sh(b2)

)
.v0 = 0,(4-4)

where a−k−s = 0 if −k − s /∈ {0, 1, . . . , n}. Set g1 : Z→ C such that g1(0) =
det
( b1

b2

)
ρ( f (b2)) and g1(m)= ρ(m E(mb1)) for m ∈ Z \ {0}. Then (4-3) becomes

n∑
i=0

ai g1(m+ i)= 0, for all m ∈ Z.

Set g2 : Z → C such that g2(0) = det
( b1

b2

)
ρ(h(b2)) and g2(m) = ρ(mtmb1) for

m ∈ Z \ {0}. Then (4-4) becomes
n∑

i=0

ai g2(m+ i)= 0, for all m ∈ Z.

From Lemma 4.2, we have that g1, g2 are exp-polynomial functions.
Conversely, we use Theorem 1.7 in [Billig and Zhao 2004] to prove that the Z-

graded L-module V (ρ) has finite-dimensional weight spaces, i.e., dim V (ρ)i <∞
for all i ∈ Z. Since Cv0 is a one-dimensional Hb1-module with exp-polynomial
action, i.e., Hb1 acts on Cv0 through two exp-polynomials g1, g2, and L̃+.v0 = 0,
from Theorem 1.7 in [Billig and Zhao 2004], we just need to prove that L is
Z-extragraded (see Definition 1.4 of the same work). Set the index sets X i =

{(1, i), (2, i)} for i ∈ Z \ {0} and X0 = {(i, 0) | i = 1, 2, . . . , 6}. For i ∈ Z \ {0}, let

Li
k( j)=

{
E(ib2+ jb1), k = (1, i), j ∈ Z,

t ib2+ jb1, k = (2, i), j ∈ Z,

and

L0
k( j)=


j E( jb1), k = (1, 0), j 6= 0,
j t jb1, k = (2, 0), j 6= 0,
Ki , k = (i + 2, 0), i = 1, 2, 3, 4, j = 0.

Claim 1: L is a Z-graded exp-polynomial Lie algebra (see Definition 1.2 in [Billig
and Zhao 2004]).

In fact, let L=
⊕

j∈Z L( j), where L( j)=〈Li
k( j)|i∈Z, k∈X i 〉. [L( j1), L( j2)]⊆

L( j1+ j2) for j1, j2 ∈ Z. Thus L is Z-graded, and it is straightforward to check
that L is an exp-polynomial Lie algebra with the distinguished spanning set
{Li

k( j) | k ∈ X i , i, j ∈ Z}.

Claim 2: The Z-graded exp-polynomial Lie algebra L is Z-extragraded.
In fact, let L =

⊕
i∈Z L(i), where L(i)=〈Li

k( j) | j ∈Z, k∈ X i 〉. [L(i1), L(i2)] ⊆

L(i1+i2) for i1, i2 ∈ Z, i.e., L has another Z-gradation. �
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For linear function ρ :Hb1 → C with ρ( f (b1))= ρ(h(b1))= 0, we say that ρ
is an exp-polynomial function over Hb1 if there exist a0, . . . , an ∈ C, a0an 6= 0 and
two exp-polynomials g0, g1 given by

g1(0)= det
(

b1

b2

)
ρ( f (b2)), g2(0)= det

(
b1

b2

)
ρ(h(b2)),

and
g1(m)= ρ(m E(mb1)), g2(m)= ρ(mtmb1)

for all m ∈ Z \ {0} such that
∑n

i=0 ai g j (k+ i)= 0 for j = 1, 2, k ∈ Z.
Let (

b1

b2

)−1

=

(
p1 q1

p2 q2

)
∈ GL2×2(Z).

Set d̃1 = p1d1+ p2d2, d̃2 = q1d1+ q2d2. Then we have

[d̃i , E(m1b1+m2b2)] = mi E(mb1+ nb2), [d̃i , tm1b1+m2b2] = mi tm1b1+m2b2

for i = 1, 2, m1,m2 ∈ Z.
Now we construct a class of Z2-graded irreducible generalized highest weight

L̃-modules by using the above Z-graded highest weight L-module V (ρ). For any
linear function ρ :Hb1 → C with ρ( f (b1))= ρ(h(b1))= 0, we set

V̂ (ρ)= V (ρ)⊗C[t±1
]

and define the actions of L̃ on V̂ (ρ) as

E(mb1+ nb2).(v⊗ tk)= (E(mb1+ nb2).v)⊗ tm+k,

tmb1+nb2 .(v⊗ tk)= (tmb1+nb2 .v)⊗ tm+k,

d̃1.(v⊗ tk)= k(v⊗ tk),

d̃2.(v⊗ tk)= j (v⊗ tk),

Ki .(v⊗ tk)= (Ki .v)⊗ tk

for (m, n) ∈ Z2
\ {0}, v ∈ V (ρ) j , j ∈ Z, i = 1, 2, 3, 4. It is clear that V̂ (ρ) is a

Z2-graded L̃-module, and

V̂ (ρ)=
⊕

m,n∈Z

V̂ (ρ)(m,n),

where V̂ (ρ)(m,n) = V (ρ)m ⊗ tn. We call V̂ (ρ)(m,n), m, n ∈ Z weight spaces of the
module V̂ (ρ) with respect to d̃1, d̃2.

Let W (i) be the L̃-submodule of V̂ (ρ) generated by v0⊗ t i, i ∈ Z, where v0 is
defined in (4-1).
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Lemma 4.5. Let ρ ∈ Eb1 and W (i) be a Z2-graded irreducible L̃-submodule
of V̂ (ρ).

(1) If Tρ(Hb1)= T0, then V̂ (ρ)=
⊕

i∈Z W (i).

(2) If Tρ(Hb1)= Tr for some r ∈ N, then V̂ (ρ)=
⊕r−1

i=0 W (i).

Proof. We need to notice the following two facts. First, any nonzero L̃-submodule of
V̂ (ρ) contains v0⊗t i for some i ∈Z. Second, the two L̃-submodules W (m)=W (n)
if and only if tm−n

∈ Tr , where Tr = Tρ(Hb1), r ∈ Z+. For (1), that W (i) is an
Z2-graded irreducible L̃-module follows from V (ρ) being an irreducible L-module.
For (2), let M be a nonzero submodule of the L̃-module W (i); then v0⊗ tn

∈M for
some n ∈ Z. Since U(Hb1)(v0⊗ t i )= v0⊗ (Tr · t i ) and v0⊗ tn

∈ U(Hb1)(v0⊗ t i ),
we have tn

∈ Tr · t i . This implies that v0⊗ t i
∈ W (n)⊆ M, i.e., W (i)⊆ M. Thus

M =W (i), which shows that W (i) is irreducible. �

For ρ ∈ Eb1 , we know that there exists a unique maximal Z2-graded submodule
J (i) of V̂ (ρ)which insects W (i) trivially by Lemma 4.5. Then we get the Z2-graded
irreducible L̃-module

V̂ (ρ, i)= V̂ (ρ)/J (i)'W (i).

Remark 4.6. (1) From Lemma 3.3 in [Wilson 2008], we see ρ ∈ Eb1 if ρ is an
exp-polynomial function over Hb1 .

(2) For ρ ∈ Eb1 , W (i) ' W ( j) as an L̃-module up to a shift of the action of d̃1,
i, j ∈ Z from (2-4) and Lemma 4.5.

Lemma 4.7. (1) For any linear function ρ :Hb1→C with ρ( f (b1))=ρ(h(b1))=0,
the L̃-module V̂ (ρ) has finite-dimensional weight spaces if and only if L-module
V (ρ) has finite weight spaces.

(2) For ρ ∈ Eb1 , M(b1, b2, Tρ(Hb1)(c,λ))' V̂ (ρ, 0) as an L̃-module up to scalar
shifts of the actions of d1, d2.

Proof. (1) Since V̂ (ρ)(m,n) = V (ρ)m ⊗ tn , m, n ∈ Z, the first assertion is obvious.

(2) For any L̃-module W, it is clear that we can modify the actions of d1 and d2. In
fact, let σ be the corresponding representation of this L̃-module W. Set π(x)=σ(x)
for x ∈ L , and π(di )= σ(di )+ ai IdW for some fixed ai ∈ C, i = 1, 2. Obviously,
π : L̃→gl(W ) is a representation of L̃ , i.e., one can define a new L̃-module structure
on W through shifting the actions of d1, d2. Note that U(Hb1).(v0⊗ 1)' Tρ(Hb1)

for ρ ∈ Eb1 and L̃+.(U(Hb1).(v0 ⊗ 1)) = 0. Then the result follows from the
irreducibility of V̂ (ρ, 0). �

By Lemma 4.7, together with Proposition 4.4, we obtain the main result in this
section.
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Theorem 4.8. For ρ ∈ Eb1 , the irreducible generalized highest weight L̃-module
M(b1, b2, Tρ(Hb1)(c,λ)) is a Harish-Chandra module if and only if ρ is an exp-
polynomial function over Hb1 .

Remark 4.9. If ρ is an exp-polynomial function over Hb1 , then the generalized
highest weight Harish-Chandra M(b1, b2, Tρ(Hb1)(c,λ)) is a one-dimensional triv-
ial module if and only if ρ = 0, i.e., Tρ(Hb1)= T0, c= 0.
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