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WEIGHTED ESTIMATES FOR
ROUGH SINGULAR INTEGRALS WITH

APPLICATIONS TO ANGULAR INTEGRABILITY

FENG LIU AND DASHAN FAN

We study certain singular integral operators, as well as their corresponding
truncated maximal operators, along polynomial curves. Assuming that the
kernels of operators are rough not only on the unit sphere but also on the
radial direction, we establish certain weighted estimates for these operators.
As applications, we obtain that these operators are bounded on the mixed
radial-angular spaces L p

|x|
L p̃
θ (R

n) and on the vector-valued mixed radial-
angular spaces L p

|x|
L p̃
θ (R

n, ` p̃). The bounds are independent of the coeffi-
cients of the polynomials in the definition of the operators. Our results we
obtained improve theorems of Antonio Córdoba (2016) and Piero D’Ancona
and Renato Lucà (2016).

1. Introduction

Let Rn be the Euclidean space of dimension n and Sn−1 denote the unit sphere in
Rn (n ≥ 2) equipped with the normalized Lebesgue measure dσ . The mixed radial-
angular spaces L p

|x |L
p̃
θ (R

n), 1 ≤ p, p̃ ≤ ∞, consist of all functions u satisfying
‖u‖L p

|x |L
p̃
θ (R

n)
<∞, where

‖u‖L p
|x |L

p̃
θ (R

n)
:=

(∫
∞

0
‖u(ρ · )‖p

L p̃(Sn−1)
ρn−1 dρ

)1/p

,

‖u‖L∞
|x |L

P̃
θ (R

n)
:= sup

ρ>0
‖u(ρ · )‖L p̃(Sn−1).

The spaces L p
|x |L

p̃
θ (R

n) have the following easy properties:

(i) If p = p̃ and 1≤ p ≤∞, then

(1-1) ‖u‖L p
|x |L

p̃
θ (R

n)
= ‖u‖L p(Rn).
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(ii) If u is a radial function on Rn and 1≤ p ≤∞, 1≤ p̃ ≤∞, then

‖u‖L p
|x |L

p̃
θ (R

n)
' ‖u‖L p(Rn).

(iii) If 1≤ p̃1 ≤ p̃2 ≤∞ and 1≤ p ≤∞, then

‖u‖
L p
|x |L

p̃1
θ (R

n)
≤ Cn,p, p̃1, p̃2‖u‖L p

|x |L
p̃2
θ (R

n)
.

Here the notation A ' B means that there are positive constants C , C ′ such that
A ≤ C B and B ≤ C ′A.

One might think that the mixed radial-angular space L p
|x |L

p̃
θ (R

n) is merely a
formal extension of the Lebesgue space L p, but recently it has been successfully
used in studying Strichartz estimates and dispersive equations (see [Cho and Ozawa
2009; Cacciafesta and D’Ancona 2013; Fang and Wang 2011; Lucà 2014; Machihara
et al. 2005; Ozawa and Rogers 2013; Sterbenz 2005; Tao 2000]). Also, it plays
active roles in the theory of singular integral operator. Córdoba [2016] proved that
the singular integral

(1-2) T� f (x)= p.v.
∫

Rn
f (x − y)

�(y)
|y|n

dy,

where � is a homogeneous function of degree zero, is bounded on L p
|x |L

2
θ (R

n) for
all 1< p <∞, provided that � ∈ C1(Sn−1) and satisfies

(1-3)
∫

Sn−1
�(y) dσ(y)= 0.

D’Ancona and Lucà [2016] then used the argument in Córdoba’s Theorem 2.1 to
extend the above result:

Theorem A. Let � ∈ C1(Sn−1) satisfy (1-3) and 1< p <∞, 1< p̃ <∞. Then

‖T� f ‖L p
|x |L

p̃
θ (R

n)
≤ C�,p, p̃‖ f ‖L p

|x |L
p̃
θ (R

n)
.

Recently, Cacciafesta and Lucà [2016, Theorem 1.1] extended Theorem A to the
weighted setting.

On the other hand, it is a long-time interesting topic to study the rough singular
integral operators. Precisely, by assuming that � ∈ L log L(Sn−1), Calderón and
Zygmund [1956] proved that T� is bounded on L p(Rn) for 1< p<∞. Their proof
is based on the rotation method to reduce the operator T� to the directional Hilbert
transform so that the well-known Riesz theorem can be applied. Fefferman [1979]
considered another singular integral

(1-4) Th,� f (x)= p.v.
∫

Rn
f (x − y)

h(|y|)�(y)
|y|n

dy,
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where � is given as in (1-2) and h( · ) ∈ L∞(R+) with R+ := (0,∞). Clearly,
the operator T� corresponds to the special case of Th,� for h(t) ≡ 1. Fefferman
discovered that the Calderón–Zygmund rotation method is no longer available if the
operator Th,� is also rough in the radial direction, for instance h ∈ L∞, so that new
methods must be addressed. In his fundamental work on Th,�, Fefferman [1979]
proved that Th,� is bounded on L p(Rn) for all 1< p <∞ if � ∈ Lipα(S

n−1) for
some α > 0 and h ∈ L∞(R+). Afterwards, Namazi [1986] improved Fefferman’s
result by assuming�∈ Lq(Sn−1) for q>1 instead of�∈Lipα(S

n−1). Subsequently,
Duoandikoetxea and Rubio de Francia [1986] used the Littlewood–Paley theory to
improve the above results to the case � ∈ Lq(Sn−1) for any q > 1 and h ∈12(R+).
Here 1γ (R+), γ > 0, is the set of all measurable functions h defined on R+

satisfying

‖h‖1γ (R+) := sup
R>0

(
1
R

∫ R

0
|h(t)|γ dt

)1/γ

<∞.

In the same article, they also studied the L p(Rn) boundedness for the maximal
operator

T ∗h,� f (x)= sup
ε>0

∣∣∣∣∫
|y|>ε

f (x − y)
h(|y|)�(y)
|y|n

dy
∣∣∣∣.

These results were improved and extended by many authors (see [Al-Salman and
Pan 2002; Fan and Pan 1997; Liu 2014; Liu et al. 2016; Sato 2009]). It is worth
remarking the following inclusion relations:

C1(Sn−1)( Lipα(S
n−1)( Lq(Sn−1),(1-5)

L∞(R+)=1∞(R+)(1γ2(R+)(1γ1(R+) for 1≤ γ1 < γ2 <∞.(1-6)

In light of the above background and observation, a question that arises naturally
is the following:

Question B. Are Th,� and T ∗h,� bounded on L p
|x |L

p̃
θ (R

n) (p 6= p̃) if � ∈ Lq(Sn−1)

and h ∈1γ (R+) for some 1< q, γ ≤∞?

In this paper we will give an affirmative answer to the above question by treating
a family of operators that are even broader than Th,� and T ∗h,�. To be more precise,
let h, � be given as in (1-4) and PN (t) be a real polynomial on R of degree N
satisfying P(0) = 0. The corresponding singular integral operator TPN and the
related maximal singular integral operator T ∗PN

along the “polynomial curve” PN

on Rn are defined by

TPN f (x)= p.v.
∫

Rn
f (x − PN (|y|)y′)

h(|y|)�(y)
|y|n

dy,

T ∗PN
f (x)= sup

ε>0

∣∣∣∣∫
|y|>ε

f (x − PN (|y|)y′)
h(|y|)�(y)
|y|n

dy
∣∣∣∣,
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where y′ = y/|y| for y 6= 0. Clearly, TPN = Th,� and T ∗PN
= T ∗h,� if PN (t)= t .

In order to obtain the L p
|x |L

p̃
θ (R

n) boundedness of Th,� and T ∗h,�, we will establish
some weighted inequalities. Our main results can be stated as follows.

Theorem 1.1. Let PN (t) be a real polynomial on R of degree N and satisfy
PN (0) = 0. Suppose that � ∈ Lq(Sn−1) satisfies (1-3) and h ∈1γ (R+) for some
1< q, γ ≤∞:

(i) Let 2≤ p <∞. Then for any nonnegative measurable function u on Rn , the
following inequality holds:

(1-7) ‖TPN f ‖L p(u) ≤ Ch,�,q,γ,p,s,N‖ f ‖L p(3N ,su) ∀s > 1.

(ii) Let 1< p<2 and {tk}k∈N be a sequence of positive numbers satisfying t1=2/p
and

1
tk+1
=

1
tk
+

p
2

(
1− 1

tk

)
.

Then for any nonnegative measurable function u on Rn and any fixed k ∈ N,
the following inequality holds:

(1-8) ‖TPN f ‖L p(u) ≤ Ch,�,q,γ,p,s,N ,tk‖ f ‖L p(3N ,su) ∀s > tk .

Here and throughout the paper we use Ch,�,α,β,γ,... to denote positive constants that
depend on the functions �, h and parameters α, β, γ, . . . appearing either in the
definitions of the operators or in the statements of the theorems. In particular, they
are independent of the coefficients of the polynomial PN in the definition of TPN .
In (1-8) we also used the notation

3N ,su =
{

MN
s u+M2

s M̃N
s u+ HN ,su if 1< p < 2,

L N ,su if 2≤ p <∞,

Lλ,su =
λ∑

i=0

Mλ+1−i
s M σ̃

i,sMsu, Hλu =
λ∑

i=1

M2 M σ̃
i Mλ+1−i u ∀1≤ λ≤ N

and M σ̃
λ,su = (M σ̃

λ (u
s))1/s , Mk

s u = (Mkus)1/s for any k ∈ N, Hλ,su = (Hλus)1/s .
Here Mk denotes the Hardy–Littlewood maximal operator M iterated k times for all
k ∈ N and M σ̃

λ is a maximal operator given as in the proof of Theorem 1.1.

Theorem 1.2. Let PN (t) be a real polynomial on R of degree N and satisfy
PN (0) = 0. Suppose that � ∈ Lq(Sn−1) satisfies (1-3) and h ∈1γ (R+) for some
1< q, γ ≤∞:

(i) Let 2≤ p <∞. Then for any nonnegative measurable function u on Rn , the
following inequality holds:

(1-9) ‖T ∗PN
f ‖L p(u) ≤ Ch,�,q,γ,p,s‖ f ‖L p(2N ,sMsu+2N ,sM2

s u) ∀s > 1.
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(ii) Let 1< p<2 and {tk}k∈N be given as in Theorem 1.1. Then for any nonnegative
measurable function u on Rn and any fixed k ∈ N, the following inequality
holds:

(1-10) ‖T ∗PN
f ‖L p(u) ≤ Ch,�,q,γ,p,s,N ,tk‖ f ‖L p(2N ,sMsu+2N ,sM2

s u) ∀s > tk .

Here

2N ,su =
{

MN
s u+M2

s M̃N
s u+ HN ,su if 1< p < 2,

MN
s u+ L N ,su+ IN ,su+ JN ,su if 2≤ p <∞,

where L N ,s is given as in Theorem 1.1 and

Iλ,su =
λ∑

i=1

Ms M σ̃
i,sMλ−i

s u, Jλ,su =
λ∑

i=1

M2
s M σ̃

i−1,sMλ−i
s u ∀1≤ λ≤ N .

As applications of Theorems 1.1 and 1.2, we obtain the L p
|x |L

p̃
θ (R

n) boundedness
of the operators TPN and T ∗PN

in following results.

Corollary 1.3. Let PN (t) be a real polynomial on R of degree N and satisfy
PN (0) = 0. Suppose that � ∈ Lq(Sn−1) satisfies (1-3) and h ∈1γ (R+) for some
1 < q, γ ≤∞. Then for 1 < p <∞ and 1 < p̃ <∞, the following inequalities
hold:

‖TPN f ‖L p
|x |L

p̃
θ (R

n)
≤ Ch,�,q,γ,p, p̃,N‖ f ‖L p

|x |L
p̃
θ (R

n)
,(1-11) ∥∥∥∥(∑

j∈Z

|TPN f j |
p̃
)1/ p̃∥∥∥∥

L p
|x |L

p̃
θ (R

n)

(1-12)

≤ Ch,�,q,γ,p, p̃,N

∥∥∥∥(∑
j∈Z

| f j |
p̃
)1/ p̃∥∥∥∥

L p
|x |L

p̃
θ (R

n)

,

where the constants Ch,�,q,γ,p, p̃,N > 0 are independent of the coefficients of PN .

Corollary 1.4. Let PN (t) be a real polynomial on R of degree N and satisfy
PN (0) = 0. Suppose that � ∈ Lq(Sn−1) satisfies (1-3) and h ∈1γ (R+) for some
1< q, γ ≤∞. Then for 1< p̃ ≤ p <∞, the following inequalities hold:

‖T ∗PN
f ‖L p

|x |L
p̃
θ (R

n)
≤ Ch,�,q,γ,p, p̃,N‖ f ‖L p

|x |L
p̃
θ (R

n)
,(1-13) ∥∥∥∥(∑

j∈Z

|T ∗PN
f j |

p̃
)1/ p̃∥∥∥∥

L p
|x |L

p̃
θ (R

n)

(1-14)

≤ Ch,�,q,γ,p, p̃,N

∥∥∥∥(∑
j∈Z

| f j |
p̃
)1/ p̃∥∥∥∥

L p
|x |L

p̃
θ (R

n)

,

where the constants Ch,�,q,γ,p, p̃,N > 0 are independent of the coefficients of PN .
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Corollary 1.5. Let PN (t) be a real polynomial on R of degree N and satisfy
PN (0) = 0. Suppose that � ∈ Lq(Sn−1) satisfies (1-3) and h ∈1γ (R+) for some
1< q, γ ≤∞:

(i) If 1< p <∞ and 1< p̃ <∞, then

(1-15)
∥∥∥∥(∑

j∈Z

|TPN f j |
p̃
)1/ p̃∥∥∥∥

L p(Rn)

≤ Ch,�,q,γ,p, p̃,N

∥∥∥∥(∑
j∈Z

| f j |
p̃
)1/ p̃∥∥∥∥

L p(Rn)

.

(ii) If 1< p̃ ≤ p <∞, then

(1-16)
∥∥∥∥(∑

j∈Z

|T ∗PN
f j |

p̃
)1/ p̃∥∥∥∥

L p(Rn)

≤ Ch,�,q,γ,p, p̃,N

∥∥∥∥(∑
j∈Z

| f j |
p̃
)1/ p̃∥∥∥∥

L p(Rn)

.

The above constants Ch,�,q,γ,p, p̃,N > 0 are independent of the coefficients of PN .

Remark 1.6. Corollary 1.3 improves and generalizes Theorem A by (1-5) and
(1-6).

The rest of this paper is organized as follows. Section 2 contains a key criterion,
which says that certain weighted norm inequalities for an operator will automatically
imply its boundedness on the mixed radial-angular spaces, vector-valued mixed
radial-angular spaces, and vector-valued inequalities. The main results of this
paper will be proved in Section 3, where the proofs of Corollaries 1.3–1.5 are
based on Theorems 1.1 and 1.2 and the criterion established in Section 2 (see
Proposition 2.1). Finally, we will discuss several corresponding results concerning
the Hardy–Littlewood maximal operator, Calderón–Zygmund operators, and the
singular integral operators with Grafakos–Stefanov kernels. We would like to remark
that the main idea in the proofs of our results is a combination of ideas and arguments
from [Córdoba 2016; D’Ancona and Lucà 2016; Hofmann 1993; Liu 2014].

Throughout this note, for any p ∈ (1,∞), we let p′ denote the dual exponent
to p defined as 1/p+ 1/p′ = 1. In what follows, for any function f , we define f̃
by f̃ (x)= f (−x). We denote by Mk the Hardy–Littlewood maximal operator M
iterated k times for all k = 1, 2, . . . Specifically, Mk

=M when k = 1. For s > 1,
we denote Msu = (Mus)1/s . For f ∈ L p(u), we set

‖ f ‖L p(u) =

(∫
Rn
| f (x)|pu(x) dx

)1/p

.

2. A criterion

To prove our main results, we need the following proposition, which is of interest
in its own right.
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Proposition 2.1. Let 1< p <∞ and {tk}k∈N be a strictly decreasing sequence of
positive numbers satisfying limk→∞ tk = 1. Assume that T is a linear or sublinear
operator such that

(2-1) ‖T f ‖L p(u) ≤ C p,s,tk‖ f ‖L p(Gs(u)) ∀s > tk

for any fixed positive integer k and any nonnegative measurable function u on Rn ,
where Gs is a bounded operator from Lq(Rn) to itself for any q ∈ (s,∞) with s > tk .
Then for any p < q <∞, the following inequalities hold:

‖T f ‖Lq
|x |L

p
θ (R

n) ≤ C p,q‖ f ‖Lq
|x |L

p
θ (R

n),(2-2) ∥∥∥∥(∑
j∈Z

|T f j |
p
)1/p∥∥∥∥

Lq
|x |L

p
θ (R

n)

≤ C p,q

∥∥∥∥(∑
j∈Z

| f j |
p
)1/p∥∥∥∥

Lq
|x |L

p
θ (R

n)

,(2-3)

∥∥∥∥(∑
j∈Z

|T f j |
p
)1/p∥∥∥∥

Lq (Rn)

≤ C p,q

∥∥∥∥(∑
j∈Z

| f j |
p
)1/p∥∥∥∥

Lq (Rn)

.(2-4)

Proof. We only prove (2-2) since (2-3) and (2-4) can be proved similarly. The
argument in the proof of (2-2) is essentially the same as in the proof of [D’Ancona
and Lucà 2016, Theorem 2.6]. Let 1< p < q <∞ and write r = q/(q− p). Fix a
number s in the interval (1, r) and choose k0 as the smallest integer for which we
have tk0 < s. We denote by X the set of all g ∈ S(R) with

∫
∞

0 gr (ρ)ρn−1 dρ ≤ 1.
By polar coordinates, we write

(2-5) ‖T f ‖p
Lq
|x |L

p
θ (R

n)
=

(∫
∞

0

(∫
Sn−1
|T f (ρθ)|pdσ(θ)

)q/p

ρn−1 dρ
)p/q

= sup
g∈X

∫
∞

0

∫
Sn−1
|T f (ρθ)|pg(ρ)ρn−1 dσ(θ) dρ

= sup
g∈X

∫
Rn
|T f (x)|pg(|x |) dx .

Fix g ∈ X . Let I (g) :=
∫

Rn |T f (x)|pg(|x |) dx and h(x) = g(|x |). Changing
variables, we obtain from (2-1) and Hölder’s inequality that

I (g)≤ C p,s,tk0

∫
Rn
| f (x)|pGs(h)(x) dx

≤ C p,s,tk0

∫
∞

0

∫
Sn−1
| f (ρθ)|p dσ(θ)Gs(g)(ρ)ρn−1 dρ

≤ C p,s,tk0

(∫
∞

0

(∫
Sn−1
| f (ρθ)|pdσ(θ)

)q/p

ρn−1dρ
)p/q

×

(∫
∞

0
(Gs(g)(ρ))rρn−1 dρ

)1/r
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≤ C p,q‖ f ‖p
Lq
|x |L

p
θ (R

n)
‖Gs(h)‖Lr (Rn)

≤ C p,q‖ f ‖p
Lq
|x |L

p
θ (R

n)
,

which, together with (2-5), yields (2-2). �

3. Proofs of main results

In this section we shall present the proofs of Theorems 1.1 and 1.2 and Corollaries
1.3–1.5. In what follows, we may assume, without loss of generality, that PN (t)=∑N

i=1 ai t i with ai 6= 0. We also let Pλ(t) =
∑λ

i=1 ai t i for λ = 1, 2, . . . , N and
P0(t)= 0.

Proof of Theorem 1.1. For λ ∈ {1, 2, . . . , N }, we define two families of measures
{σk,λ}k∈Z and {|σk,λ|}k∈Z respectively by∫

Rn
f (x) dσk,λ(x)=

∫
2k<|x |≤2k+1

f (Pλ(|x |)x ′)
h(|x |)�(x)
|x |n

dx

and ∫
Rn

f (x) d|σk,λ|(x)=
∫

2k<|x |≤2k+1
f (Pλ(|x |)x ′)

|h(|x |)�(x)|
|x |n

dx .

We also define the maximal operators Mσ
λ and M σ̃

λ respectively by

Mσ
λ f (x)= sup

k∈Z

||σk,λ| ∗ f (x)|

and
M σ̃
λ f (x)= sup

k∈Z

||σ̃k,λ| ∗ f (x)|,

where ∫
Rn

f (x) d|σ̃k,λ|(x)=
∫

Rn
f (−x) d|σk,λ|(x).

One can easily verify that

Mσ
0 f (x)≤ Ch,�,q,γ | f (x)|,(3-1)

M σ̃
λ f (x)= Mσ

λ f̃ (x),(3-2)

TPN f (x)=
∑
k∈Z

σk,N ∗ f (x).(3-3)

Also, from [Liu 2014, Lemma 2.2] and a direct computation, one has

max
{
|σ̂k,λ(ξ)− σ̂k,λ−1(ξ)|, ||̂σk,λ|(ξ)− ̂|σk,λ−1|(ξ)|

}
≤ Ch,�,q,γ min{1, |2kλaλξ |},

(3-4)

max
{
|σ̂k,λ(ξ)|, ||̂σk,λ|(ξ)|

}
≤ Ch,�,q,γ (min{1, |2kλaλξ |−1

})1/(4λq ′γ ′).(3-5)

We shall prove Theorem 1.1 by considering the following three steps:
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Step 1: The bounds for Mσ
λ . We want to show that

(3-6) ‖Mσ
λ f ‖L p(Rn) ≤ Ch,�,q,γ ‖ f ‖L p(Rn)

for all 0 ≤ λ ≤ N and 1 < p <∞. It is obvious that (3-6) holds for λ = 0 by
(3-1). Choose a nonnegative function φ ∈ S(Rn) supported in {|t | ≤ 1} satisfying
φ(t) = 1 when |t | < 1

2 . For λ ∈ {1, 2, . . . , N }, we define the family of functions
{ψk,λ}k∈Z via the Fourier transform ψ̂k,λ(ξ) = φ(2kλ

|aλξ |). Define the family of
Borel measures {ωk,λ}k∈Z on Rn by

(3-7) ω̂k,λ(ξ)= |̂σk,λ|(ξ)−ψk,λ(ξ) ̂|σk,λ−1|(ξ).

One easily checks that (or see [Liu 2014])

|ω̂k,λ(x)| ≤ Ch,�,q,γ (min{1, |2kλaλx |, |2kλaλx |−1
})1/(4λq ′γ ′),(3-8)

Mω
λ f (x)≤ Mσ

λ | f |(x)+MMσ
λ−1| f |(x),(3-9)

Mσ
λ f (x)≤MMσ

λ−1| f |(x)+Gω
λ f (x),(3-10)

where Mω
λ f (x)= supk∈Z ||ωk,λ| ∗ f (x)| and Gω

λ f (x)=
(∑

k∈Z |ωk,λ ∗ f (x)|2
)1/2.

By (3-1), (3-8)–(3-10) and a standard iteration argument from [Duoandikoetxea
and Rubio de Francia 1986], we can obtain (3-6) for all 1≤ λ≤ N . The details are
omitted.

Step 2: The proof of (i) of Theorem 1.1. For 1 ≤ λ ≤ N and s > 1, let 3λ,s be
given as in Theorem 1.1. Let φ be given as above. We define the family of functions
{8λ}

N
λ=1 by

8λ(ξ)=

N∏
j=λ

φ(|2k j a jξ |).

For 1≤ λ≤ N , define the Borel measures {µk,λ}k∈Z on Rn by

µ̂k,λ(ξ)= σ̂k,λ(ξ)8λ+1(ξ)− σ̂k,λ−1(ξ)8λ(ξ).

Here we use the convention
∏

j∈∅ a j = 1. One can easily check that (or see [Liu
2014])

σk,N =

N∑
λ=1

µk,λ,(3-11)

Mµ
λ f (x)≤MN−λMσ

λ | f |(x)+MN−λ+1 Mσ
λ−1| f |(x),(3-12)

|µ̂k,λ(x)| ≤ Ch,�,q,γ (min{1, |2kλaλx |, |2kλaλx |−1
})1/(4λq ′γ ′).(3-13)

Equation (3-3) and (3-11) clearly yield that

(3-14) TPN f (x)=
∑
k∈Z

N∑
λ=1

µk,λ ∗ f (x)=
N∑
λ=1

∑
k∈Z

µk,λ ∗ f (x)=:
N∑
λ=1

Tλ f (x).
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Notice that u ≤Msu, Msu ∈ A1 (see [Coifman and Rochberg 1980]), and
N∑
λ=1

Ms M µ̃
λ,sMsu ≤

N∑
λ=1

(MN+1−λ
s M σ̃

λ,sMsu+MN+2−λ
s M σ̃

λ−1,sMsu)≤ L N ,su

by (3-12). Therefore, (1-7) reduces to the following inequality:

(3-15) ‖Tλ f ‖L p(u) ≤ Ch,�,q,γ,p,λ,s‖ f ‖L p(3N ,su)

for all 1≤ λ≤ N , 2≤ p <∞, s > 1 and any nonnegative measurable function u
on Rn .

We now prove (3-15). For 1≤λ≤ N , let9λ(t)∈C∞c
((1

4 , 1
))

such that 0≤9λ≤1
and

∑
k∈Z(9λ(2

kλ
|aλξ |))3= 1. Define the Fourier multiplier operators {Sk,λ}k∈Z by

Sk,λ f (x)=2k,λ∗ f (x), where 2̂k,λ(ξ)=9λ(2kλ
|aλξ |). It was shown in [Hofmann

1993] that

(3-16)
∥∥∥∥(∑

k∈Z

|Sk,λ f |2
)1/2∥∥∥∥

L p(w)

≤ C p,w,λ‖ f ‖L p(w)

and

(3-17)
∥∥∥∥∑

k∈Z

Sk,λ fk

∥∥∥∥
L p(w)

≤ C p,w,λ

∥∥∥∥(∑
k∈Z

| fk |
2
)1/2∥∥∥∥

L p(w)

for all 1< p <∞ and w ∈ Ap.
Write

(3-18) Tλ f (x)=
∑
k∈Z

∑
j∈Z

S3
j+k,λ(µk,λ ∗ f )(x)

=

∑
j∈Z

∑
k∈Z

S3
j+k,λ(µk,λ ∗ f )(x)=:

∑
j∈Z

Tλ, j f (x).

By (3-13) and Plancherel’s theorem, it holds that

(3-19)
∫

Rn
|µk,λ ∗ S j+k,λw(x)|2 dx ≤ Ch,�,q,γ 2−| j |/(2q ′γ ′)

∫
Rn
|w(x)|2 dx

for an arbitrary function w on Rn . Fix a nonnegative measurable function u on Rn .
It is easy to see that

(3-20)
∫

Rn
|µk,λ ∗ S j+k,λw(x)|2us(x) dx

≤ ‖µk,λ‖‖2 j+k,λ‖L1(Rn)

∫
Rn
|µk,λ| ∗ |2 j+k,λ| ∗ |w|

2(x)us(x) dx

≤ Ch,�,q,γ

∫
Rn
|w(x)|2MM µ̃

λ us(x) dx
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for any s > 1. By (3-19) and (3-20) and the interpolation of L2-spaces with a
change of measure [Bergh and Löfström 1976, Theorem 5.4.1], we obtain

(3-21)
∫

Rn
|µk,λ ∗ S j+k,λw(x)|2u(x) dx

≤ Ch,�,q,γ,s2−(1−1/s)/(2q ′γ ′)| j |
∫

Rn
|w(x)|2Ms M µ̃

λ,su(x) dx

for any s > 1. By (3-21) with w = S j+k,λ f and (3-16), it follows that

‖Tλ, j f ‖2L2(u)=

∥∥∥∥∑
k∈Z

S3
j+k,λµk,λ ∗ f

∥∥∥∥2

L2(u)

≤Cλ
∑
k∈Z

∫
Rn
|µk,λ ∗ S2

j+k,λ f (x)|2u(x) dx

≤Ch,�,q,γ,λ,s2−(1−1/s)/(2q ′γ ′)| j |
∑
k∈Z

∫
Rn
|S j+k,λ f (x)|2Ms M µ̃

λ,su(x) dx

≤Ch,�,q,γ,λ,s2−(1−1/s)/(2q ′γ ′)| j |
‖ f ‖2

L2(Ms M µ̃
λ,su)

.

Hence we obtain

(3-22) ‖Tλ, j f ‖L2(u) ≤ Ch,�,q,γ,λ,s2−(1−1/s)/(4q ′γ ′)| j |
‖ f ‖L2(Ms M µ̃

λ,su).

Next, we shall only prove

(3-23) ‖Tλ, j f ‖L p(u) ≤ Ch,�,q,γ,p,λ,s‖ f ‖L p(Ms M µ̃
λ,su)

for all 2 < p <∞. Actually, by (3-22), (3-23), and an interpolation (see [Bergh
and Löfström 1976, Corollary 5.5.4]), one has

(3-24) ‖Tλ, j f ‖L p(u) ≤ Ch,�,q,γ,p,λ,s2−α(p,q,γ,s)| j |‖ f ‖L p(Ms M µ̃
λ,su)

for 2≤ p <∞ and s > 1. Here α(p, q, γ, s) > 0 depends only on p, q, γ , and s.
Equation (3-24) together with (3-18) yields (3-15).

To prove (3-23), it suffices to show that

(3-25)
∥∥∥∥(∑

k∈Z

|µk,λ ∗ gk |
2
)1/2∥∥∥∥

L p(u)
≤ Ch,�,q,γ,p,s

∥∥∥∥(∑
k∈Z

|gk |
2
)1/2∥∥∥∥

L p(M µ̃
λ,su)

for all 2 < p <∞ and any s > 1. In fact, by (3-16), (3-17), (3-25), and the fact
M µ̃
λ,su ≤Ms M µ̃

λ,su, it holds that

‖Tλ, j f ‖L p(u) =

∥∥∥∥∑
k∈Z

S3
j+k,λµk,λ ∗ f

∥∥∥∥
L p(u)
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≤ C p,λ

∥∥∥∥(∑
k∈Z

|µk,λ ∗ S2
j+k,λ f |2

)1/2∥∥∥∥
L p(u)

≤ Ch,�,q,γ,p,λ,s

∥∥∥∥(∑
k∈Z

|S2
j+k,λ f |2

)1/2∥∥∥∥
L p(M µ̃

λ,su)

≤ Ch,�,q,γ,p,λ,s‖ f ‖L p(Ms M µ̃
λ,su)

for all 2< p <∞ and any s > 1. This yields (3-23).
Below we prove (3-25). Fix 2< p <∞. By duality we can choose a function

v ∈ L(p/2)
′

(u) with unit norm such that∥∥∥∥(∑
k∈Z

|µk,λ ∗ gk |
2
)1/2∥∥∥∥2

L p(u)
=

∫
Rn

∑
k∈Z

|µk,λ ∗ gk(x)|2 · v(x)u(x) dx .

This together with the fact that ‖µk,λ‖ ≤ Ch,�,q,γ yields that

(3-26)
∥∥∥∥(∑

k∈Z

|µk,λ ∗ gk |
2
)1/2∥∥∥∥2

L p(u)

≤ Ch,�,q,γ

∫
Rn

∑
k∈Z

|gk(x)|2||µ̃k,λ| ∗ (vu)(x)| dx .

Fix s > 1 and let r = 1
2 ps. Hölder’s inequality yields

(3-27) ||µ̃k,λ| ∗ (vu)| ≤ (|µ̃k,λ| ∗ us)1/r (|µ̃k,λ| ∗ (ur ′/(p/2)′vr ′))1/r ′ .

By Hölder’s inequality with exponents 1
2 p and

( 1
2 p
)′ again and (3-26), (3-27), it

holds that∥∥∥∥(∑
k∈Z

|µk,λ ∗ gk |
2
)1/2∥∥∥∥2

L p(u)
(3-28)

≤ Ch,�,q,γ

∫
Rn

∑
k∈Z

|gk(x)|2(M
µ̃
λ us)1/r M µ̃

λ (u
r ′/(p/2)′vr ′))1/r ′(x) dx

≤ Ch,�,q,γ

∥∥∥∥(∑
k∈Z

|gk |
2
)1/2∥∥∥∥2

L p(M µ̃
λ,su)
‖M µ̃

λ (u
r ′/(p/2)′vr ′)‖

1/r ′

L(p/2)′/r ′ (Rn)
.

By (3-1), (3-6), and (3-12), one has

(3-29) ‖M µ̃
λ f ‖L t (Rn) ≤ Ch,�,q,γ,t‖ f ‖L t (Rn) ∀1< t <∞.
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Since 1
2 p = r/s < r , then

( 1
2 p
)′
> r ′. Equation (3-29) leads to

‖M µ̃
λ (u

r ′/(p/2)′vr ′)‖
1/r ′

L(p/2)′/r ′ (Rn)

≤ Ch,�,q,γ,p,s‖ur ′/(p/2)′vr ′
‖

1/r ′

L(p/2)′/r ′ (Rn)
≤ Ch,�,q,γ,p,s .

This together with (3-28) yields (3-25) and completes the proof of (i) of Theorem 1.1.

Step 3: The proof of (ii) of Theorem 1.1. For 1≤ λ≤ N and s > 1, let 3λ,s , Hλ,s ,
and {tk}k∈N be given as in Theorem 1.1. To prove (1-8), it suffices to show that

(3-30) ‖Tλ f ‖L p(u) ≤ Ch,�,q,γ,p,λ,s,tk‖ f ‖L p(3N ,su) ∀s > tk

for all 1≤ λ≤ N , 1< p < 2, all k ∈N, and any nonnegative measurable function
u on Rn . Actually, (3-30) reduces to the following

(3-31)
∫

Rn
|Tλ f (x)|pu1/s(x) dx

≤ Ch,�,q,γ,p,λ,s,tk

∫
Rn
| f (x)|p(MN u+M2M̃N u+ HN u)1/s(x) dx ∀s > tk

for all 1≤ λ≤ N , 1< p < 2, all k ∈N, and any nonnegative measurable function
u on Rn . To this end, we substitute us for u in (3-31). With this substitution,
the weight on the left becomes u and the weight on the right is not more than
MN

s u+M2
s M̃N

s u+ HN ,su.
We now prove (3-31). Fix s > 1 and a nonnegative measurable function u on Rn .

It follows from (3-10) that

(3-32)
∫

Rn
(Mσ

λ f (x))pu1/s(x) dx

≤

∫
Rn
(MMσ

λ−1| f |(x))
pu1/s(x) dx +

∫
Rn
(Gω

λ f (x))pu1/s(x) dx

for all 1< p < 2. Hence by the well-known Fefferman–Stein inequality for M (see
(3-102) below) we have

(3-33)
∫

Rn
(MMσ

λ−1| f |)(x))
pu1/s(x) dx

≤ C p‖Mσ
λ−1| f |‖

p
L p(Mu1/s)

≤ C p‖Mσ
λ−1| f |‖

p
L p((Mu)1/s)

for 1< p <∞. Next, we consider Gω
λ f . By Minkowski’s inequality, we obtain

Gw
λ f (x)=

(∑
k∈Z

∣∣∣∣ωk,λ ∗
∑
j∈Z

S3
j+k,λ f (x)

∣∣∣∣2)1/2

≤

∑
j∈Z

(∑
k∈Z

|ωk,λ ∗ S3
j+k,λ f (x)|2

)1/2
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=:

∑
j∈Z

Gλ, j f (x).

It follows that

(3-34) ‖Gω
λ f ‖L p(u1/s) ≤

∑
j∈Z

‖Gλ, j f ‖L p(u1/s)

for all 1< p <∞. It is obvious to see that

‖ωk,λ ∗ f ‖L∞(Rn) ≤ Ch,�,q,γ ‖ f ‖L∞(Rn),(3-35)

‖ωk,λ ∗ f ‖L1(u) ≤ C‖ f ‖L1(M σ̃
λ u+M σ̃

λ−1Mu) ≤ C‖ f ‖L1(MM σ̃
λ u+MM σ̃

λ−1Mu).(3-36)

Thus, by interpolating between (3-35) and (3-36), we obtain

(3-37) ‖ωk,λ ∗ f ‖L p(u) ≤ Ch,�,q,γ,p‖ f ‖L p(MM σ̃
λ u+MM σ̃

λ−1Mu)

for all 1< p < 2. It follows from (3-37) that

(3-38)
∫

Rn

∑
k∈Z

|ωk,λ ∗ fk(x)|pu(x) dx

≤ Ch,�,q,γ,p

∫
Rn

∑
k∈Z

| fk(x)|p(MM σ̃
λ u+MM σ̃

λ−1Mu)(x) dx

for all 1< p < 2. On the other hand, we get from (3-6) and (3-9) that

(3-39)
∫

Rn
(sup

k∈Z

|ωk,λ ∗ fk(x)|)p dx ≤ Ch,�,q,γ,p

∫
Rn
(sup

k∈Z

| fk(x)|)p dx

for all 1< p < 2. An interpolation between (3-38) and (3-39) now yields

(3-40)
∫

Rn

(∑
k∈Z

|ωk,λ ∗ fk(x)|2
)p/2

u1/t1(x) dx

≤ Ch,�,q,γ,p,t1

∫
Rn

(∑
k∈Z

| fk(x)|2
)p/2

(MM σ̃
λ u+MM σ̃

λ−1Mu)1/t1(x) dx

for all 1< p < 2, where t1 = 2/p. Substitute ut1 for u in (3-40), we obtain that

(3-41)
∫

Rn

(∑
k∈Z

|ωk,λ ∗ fk(x)|2
)p/2

u(x) dx

≤Ch,�,q,γ,p,t1

∫
Rn

(∑
k∈Z

| fk(x)|2
)p/2

(MM σ̃
λ ut1 +MM σ̃

λ−1Mut1)1/t1(x) dx

≤Ch,�,q,γ,p,t1

∫
Rn

(∑
k∈Z

| fk(x)|2
)p/2

(Mt1 M σ̃
λ,t1u+Mt1 M σ̃

λ−1,t1Mt1u)(x) dx .
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Since Mt1 M σ̃
λ,t1u+Mt1 M σ̃

λ−1,t1Mt1u ∈ A1, by the weighted Littlewood–Paley theory,
(3-41) yields that

(3-42) ‖Gλ, j f ‖L p(u)

=

∥∥∥∥(∑
k∈Z

|ωk,λ ∗ S3
j+k,λ f |2

)1/2∥∥∥∥
L p(u)

≤ Ch,�,q,γ,p,t1

∥∥∥∥(∑
k∈Z

|S3
j+k,λ f |2

)1/2∥∥∥∥
L p(Mt1 M σ̃

λ,t1
u+Mt1 M σ̃

λ−1,t1
Mt1 u)

≤ Ch,�,q,γ,p,λ,t1‖ f ‖L p(Mt1 M σ̃
λ,t1

u+Mt1 M σ̃
λ−1,t1

Mt1 u)

for all 1< p < 2. Substituting u1/t1 for u in (3-42), one finds

(3-43) ‖Gλ, j f ‖L p(u1/t1 ) ≤ Ch,�,q,γ,p,λ,t1‖ f ‖L p((MM σ̃
λ u+MM σ̃

λ−1Mu)1/t1 )

for all 1< p < 2. On the other hand, by (3-8) and the arguments similar to those
used in deriving (3-21),

(3-44)
∫

Rn
|ωk,λ ∗ S j+k,λw(x)|2u(x) dx

≤ Ch,�,q,γ,s2−(1−1/s)/(2q ′γ ′)| j |
∫

Rn
|w(x)|2Ms M ω̃

λ,su(x) dx

for any function w and any s > 1. By (3-44) with w = S2
j+k,λ f and (3-17), we

obtain that

‖Gλ, j f ‖2L2(u)(3-45)

=

∫
Rn

∑
k∈Z

|ωk,λ ∗ S3
j+k,λ f (x)|2u(x) dx

≤

∑
k∈Z

∫
Rn
|ωk,λ ∗ S3

j+k,λ f (x)|2u(x) dx

≤ Ch,�,q,γ,s2−(1−1/s)/(2q ′γ ′)| j |
∫

Rn

∑
k∈Z

|S2
j+k,λ f (x)|2Ms M ω̃

λ,su(x) dx

≤ Ch,�,q,γ,s2−(1−1/s)/(2q ′γ ′)| j |
∫

Rn
| f (x)|2Ms M ω̃

λ,su(x) dx .

Take s = t1. Substituting u1/t1 for u in (3-45), we get

(3-46) ‖Gλ, j f ‖L2(u1/t1 ) ≤ Ch,�,q,γ,λ,t12−(1−1/t1)/(4q ′γ ′)| j |
‖ f ‖L2((MM ω̃

λ u)1/t1 ).

It follows from (3-9) that

(3-47) MM ω̃
λ u ≤MM σ̃

λ |u| +M2 M σ̃
λ−1|u| ≤MM σ̃

λ Mu+M2 M σ̃
λ−1Mu.
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Formula (3-47) together with (3-46) implies that

(3-48) ‖Gλ, j f ‖L2(u1/t1 )

≤ Ch,�,q,γ,λ,t12−(1−1/t1)/(4q ′γ ′)| j |
‖ f ‖L2((MM σ̃

λ Mu+M2 M σ̃
λ−1Mu)1/t1 ).

By an interpolation between (3-43) and (3-48), we obtain

(3-49) ‖Gλ, j f ‖L p(u1/t1 )

≤ Ch,�,q,γ,p,λ,t12−β(p,q,γ,t1)| j |‖ f ‖L p((MM σ̃
λ Mu+M2 M σ̃

λ−1Mu)1/t1 )

for all 1< p < 2, where β(p, q, γ, t1) > 0. We get from (3-49) and (3-34) that

(3-50) ‖Gω
λ f ‖L p(u1/t1 ) ≤ Ch,�,q,γ,p,λ,t1‖ f ‖L p((MM σ̃

λ Mu+M2 M σ̃
λ−1Mu)1/t1 )

for all 1< p < 2. Combining (3-50) with (3-32), (3-33), we now have

(3-51)
∫

Rn
(Mσ

λ f (x))pu1/t1(x) dx

≤ Ch,�,q,γ,p,λ,t1

(∫
Rn
(Mσ

λ−1| f |(x))
p(Mu)1/t1(x) dx

+

∫
Rn
| f (x)|p(MM σ̃

λ Mu+M2 M σ̃
λ−1Mu)1/t1(x) dx

)
for all 1< p < 2. We want to show that

(3-52)
∫

Rn
(Mσ

λ f (x))pu1/t1(x) dx

≤ Ch,�,q,γ,p,λ,t1

∫
Rn
| f (x)|p(Mλu+M2M̃λu+ Hλu)1/t1(x) dx

for all 1≤ λ≤ N and 1< p < 2. When λ= 1, (3-1) and (3-51) imply∫
Rn
(Mσ

1 f (x))pu1/t1(x) dx

≤ Ch,�,q,γ,p,t1

(∫
Rn
(Mσ

0 | f |(x))
p(Mu)1/t1(x) dx

+

∫
Rn
| f (x)|p(MM σ̃

1 Mu+M2 M σ̃
0 Mu)1/t1(x) dx

)
≤ Ch,�,q,γ,p,t1

∫
Rn
| f (x)|p(Mu+M2M̃u+MM σ̃

1 Mu)1/t1(x) dx

≤ Ch,�,q,γ,p,t1

∫
Rn
| f (x)|p(Mu+M2M̃u+ H1u)1/t1(x) dx
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for any 1 < p < 2. This yields (3-52) for λ = 1. Assume that (3-52) holds for
λ= ι− 1 with ι ∈ {2, . . . , N }. We obtain, from (3-51) and our assumption,∫

Rn
(Mσ

ι f (x))pu1/t1(x) dx

≤ Ch,�,q,γ,p,ι,t1

(∫
Rn
(Mσ

ι−1| f |(x))
p(Mu)1/t1(x) dx

+

∫
Rn
| f (x)|p(MM σ̃

ι Mu+M2 M σ̃
ι−1Mu)1/t1(x) dx

)
≤ Ch,�,q,γ,p,ι,t1

(∫
Rn
| f (x)|p(MιMu+M2M̃ι−1Mu+ Hι−1Mu)1/t1(x) dx

+

∫
Rn
| f (x)|p(MM σ̃

ι Mu+M2 M σ̃
ι−1Mu)1/t1(x) dx

)
≤ Ch,�,q,γ,p,ι,t1

∫
Rn
| f (x)|p(Mιu+M2M̃ιu+ HιMu)1/t1(x) dx

for all 1< p < 2. This yields (3-52) for λ= ι. Thus, (3-52) is proved. Inequality
(3-52) together with (3-9) and (3-33) yields that

(3-53)
∫

Rn
(sup

k∈Z

|ωk,λ ∗ f (x)|)pu1/t1(x) dx

≤

∫
Rn
(Mω

λ | f |(x))
pu1/t1(x) dx

≤

∫
Rn
(Mσ

λ | f |(x))
pu1/t1(x) dx +

∫
Rn
(MMσ

λ−1| f |(x))
pu1/t1(x) dx

≤ Ch,�,q,γ,p,λ,t1

∫
Rn
| f (x)|p(Mλ+1u+M2M̃λu+ HλMu)1/t1(x) dx

for all 1 < p < 2. Since MM σ̃
λ u +MM σ̃

λ−1Mu ≤ Hλu, an interpolation between
(3-38) and (3-53) yields

(3-54)
∫

Rn

(∑
k∈Z

|ωk,λ ∗ fk(x)|2
)p/2

u1/t2(x) dx

≤ Ch,�,q,γ,p,λ,t2

∫
Rn

(∑
k∈Z

| fk(x)|2
)p/2

(Mλu+M2M̃λu+ Hλu)1/t2(x) dx

for all 1< p < 2, where 1/t2 = 1/t1+ 1
2 p(1− 1/t1). Using (3-54) and arguments

similar to those used in deriving (3-52), we obtain

(3-55)
∫

Rn
(Mσ

λ f (x))pu1/t2(x) dx

≤ Ch,�,q,γ,p,λ,t2

∫
Rn
| f (x)|p(Mλu+M2M̃λu+ Hλu)1/t2(x) dx
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for all 1 ≤ λ ≤ N and 1 < p < 2. As the same reason as above, we can obtain a
strictly decreasing sequence {tk}k∈N by the recursion formula

t1 =
2
p
,

1
tk+1
=

1
tk
+

p
2

(
1− 1

tk

)
, k = 2, 3, . . .

such that

(3-56)
∫

Rn
(Mσ

λ f (x))pu1/tk (x) dx

≤ Ch,�,q,γ,p,λ,tk

∫
Rn
| f (x)|p(Mλu+M2M̃λu+ Hλu)1/tk (x) dx

for all 1≤λ≤ N , 1< p<2, and all k ∈N. Using (3-12), (3-56), and the well-known
Fefferman–Stein inequality for M (see (3-102) below), we have

(3-57)
∫

Rn
(Mµ

λ f (x))pu1/tk (x) dx

≤

∫
Rn
(MN−λMσ

λ | f |(x))
pu1/tk (x) dx

+

∫
Rn
(MN−λ+1 Mσ

λ−1| f |(x))
pu1/tk (x) dx

≤ C p

(∫
Rn
(Mσ

λ | f |(x))
p(MN−λu)1/tk (x) dx

+

∫
Rn
(Mσ

λ−1| f |(x))
p(MN−λ+1u)1/tk (x) dx

)
≤ Ch,�,q,γ,p,λ,tk

(∫
Rn
| f (x)|p

(
Mλ(MN−λu)

+M2 ˜Mλ(MN−λu)+ Hλ(MN−λu)
)1/tk

(x) dx

+

∫
Rn
| f (x)|p

(
Mλ−1(MN−λ+1u)

+M2 ˜Mλ−1(MN−λ+1u)+ Hλ−1(MN−λ+1u)
)1/tk

(x) dx
)

≤ Ch,�,q,γ,p,λ,tk

∫
Rn
| f (x)|p(MN u+M2M̃N u+ HN u)1/tk (x) dx .

By (3-57) and the lemma in [Zhang 2008, p.1574] we can get (3-31). �

Proof of Theorem 1.2. For 1 ≤ λ ≤ N , let 2λ,s be given as in Theorem 1.2. We
shall prove Theorem 1.2 by combining the method used in the proof of [Zhang
2008, Theorem 1.2] with ideas from [Duoandikoetxea and Rubio de Francia 1986;
Fan et al. 1999]. For any ε > 0, there exists an integer k such that 2k−1

≤ ε < 2k .
We now write

(3-58) T ∗PN
f (x)≤ Mσ

N f (x)+ sup
k∈Z

∣∣∣∣ ∞∑
j=k

σ j,N ∗ f (x)
∣∣∣∣.
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We shall prove Theorem 1.2 by considering the following two steps:

Step 1: The proof of (i) of Theorem 1.2. By (3-58), to prove (1-9), it suffices to
show that

(3-59) ‖Mσ
N f ‖L p(u) ≤ Ch,�,q,γ,p,N ,s‖ f ‖L p(2N ,sMsu)

and

(3-60)
∥∥∥∥sup

k∈Z

∣∣∣∣ ∞∑
j=k

σ j,N ∗ f
∣∣∣∣∥∥∥∥

L p(u)
≤ Ch,�,q,γ,p,N ,s‖ f ‖L p(2N ,sMsu+2N ,sM2

s u)

for all 2≤ p <∞, s > 1, and any nonnegative measurable function u on Rn .
Let us first prove (3-59). Fix u ∈ A1 and 1 ≤ λ ≤ N . By arguments similar to

those used in deriving (3-25),

(3-61)
∥∥∥∥(∑

k∈Z

|ωk,λ ∗ gk |
2
)1/2∥∥∥∥

L p(u)
≤ Ch,�,q,γ,p,s

∥∥∥∥(∑
k∈Z

|gk |
2
)1/2∥∥∥∥

L p(M ω̃
λ,su)

for all 2< p <∞ and any s > 1. It follows from (3-61) that

(3-62) ‖Gλ, j f ‖L p(u) =

∥∥∥∥(∑
k∈Z

|ωk,λ ∗ S3
j+k f |2

)1/2∥∥∥∥
L p(u)

≤ Ch,�,q,γ,p,s

∥∥∥∥(∑
k∈Z

|S3
j+k f |2

)1/2∥∥∥∥
L p(Ms M ω̃

λ,su)

≤ Ch,�,q,γ,p,λ,s‖ f ‖L p(Ms M ω̃
λ,su)

for all 2 < p <∞ and any s > 1. In the last inequality of (3-62), we used the
weighted Littlewood–Paley theory and the fact that Ms M ω̃

λ,su ∈ A1. On the other
hand, it follows from (3-45) that

(3-63) ‖Gλ, j f ‖L2(u) ≤ Ch,�,q,γ,λ,s2−(1−1/s)/(4q ′γ ′)| j |
‖ f ‖L2(Ms M ω̃

λ,su).

By (3-62), (3-63), and an interpolation (see [Bergh and Löfström 1976, Corollary
5.5.4]), we have

(3-64) ‖Gλ, j f ‖L p(u) ≤ Ch,�,q,γ,p,λ,s2−ϑ(p,q,γ,s)| j |‖ f ‖L p(Ms M ω̃
λ,su)

for all 2 ≤ p <∞ and s > 1, where ϑ(p, q, γ, s) > 0 depends on p, q, γ and s.
Combining (3-64) with (3-34) yields that

(3-65) ‖Gω
λ f ‖L p(u) ≤ Ch,�,q,γ,p,λ,s‖ f ‖L p(Ms M ω̃

s u)

for all 2≤ p <∞ and s > 1. We get from (3-9) that

(3-66) Ms M ω̃
λ,su ≤ C(Ms M σ̃

λ,s |u| +M2
s M σ̃

λ−1,s |u|).



286 FENG LIU AND DASHAN FAN

Inequality (3-66) together with (3-65) yields

(3-67) ‖Gω
λ f ‖L p(u) ≤ Ch,�,q,γ,p,λ,s‖ f ‖L p(Ms M σ̃

λ,s |u|+M2
s M σ̃

λ−1,s |u|)

for all 2 ≤ p <∞ and s > 1. On the other hand, from (3-10), (3-67), and the
well-known Fefferman–Stein inequality for M (see (3-102) below) we have

(3-68) ‖Mσ
λ f ‖L p(u)

≤ ‖MMσ
λ−1| f |‖L p(u)+‖Gω

λ f ‖L p(u)

≤ C p‖Mσ
λ−1| f |‖L p(Mu)+Ch,�,q,γ,p,λ,s‖ f ‖L p(Ms M σ̃

λ,s |u|+M2
s M σ̃

λ−1,s |u|)

for all 2≤ p <∞ and any s > 1. Formula (3-68) together with (3-1), (3-2), and an
induction argument implies that

(3-69) ‖Mσ
λ f ‖L p(u) ≤ Ch,�,q,γ,p,λ,s‖ f ‖L p(Mλu+Iλ,su+Jλ,su) ∀1≤ λ≤ N .

Since u ≤Msu and Msu ≤ A1, (3-69) leads to

(3-70) ‖Mσ
λ f ‖L p(u) ≤ Ch,�,q,γ,p,λ,s‖ f ‖L p(Mλ+1

s u+Iλ,sMsu+Jλ,sMsu)

for all 2≤ p <∞, s > 1, and any nonnegative function u on Rn . Inequality (3-70)
yields that (3-59) holds for all 2≤ p <∞.

We now prove (3-60). It follows from (3-11) that

(3-71) sup
k∈Z

∣∣∣∣ ∞∑
j=k

σ j,N ∗ f (x)
∣∣∣∣≤ N∑

λ=1

sup
k∈Z

∣∣∣∣ ∞∑
j=k

µ j,λ ∗ f (x)
∣∣∣∣=: N∑

λ=1

T ∗λ f (x).

Fix 1≤ λ≤ N , let ψk,λ be given as in (3-7). We write

∞∑
j=k

µ j,λ∗ f (x)=ψk,λ∗Tλ f (x)−ψk,λ∗

k−1∑
j=−∞

µ j,λ∗ f (x)+(δ−ψk,λ)∗

∞∑
j=k

µ j,λ∗ f (x).

Here, δ is the Dirac-delta and Tλ is given as in (3-14). It follows that

(3-72) T ∗λ f (x)≤ sup
k∈Z

|ψk,λ ∗ Tλ f (x)| + sup
k∈Z

∣∣∣∣ψk,λ ∗

k−1∑
j=−∞

µ j,λ ∗ f (x)
∣∣∣∣

+ sup
k∈Z

∣∣∣∣(δ−ψk,λ) ∗

∞∑
j=k

µ j,λ ∗ f (x)
∣∣∣∣

=: A1,λ f (x)+ A2,λ f (x)+ A3,λ f (x).
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For A1,λ f , by the well-known Fefferman–Stein inequality for M (see (3-102)
below) and (3-15), we obtain

(3-73) ‖A1,λ f ‖L p(u) ≤ ‖M(Tλ f )‖L p(u) ≤ C p‖Tλ f ‖L p(Mu)

≤ Ch,�,q,γ,p,λ,s‖ f ‖L p(3N ,sMu)

≤ Ch,�,q,γ,p,λ,s‖ f ‖L p(2N ,sMu)

for all 2≤ p <∞, s > 1, and any nonnegative measurable function u on Rn .
For A2,λ f , it is clear that

A2,λ f (x)= sup
k∈Z

∣∣∣∣ ∞∑
j=1

ψk,λ ∗µk− j,λ ∗ f (x)
∣∣∣∣

≤

∞∑
j=1

sup
k∈Z

|ψk,λ ∗µk− j,λ ∗ f (x)| =:
∞∑
j=1

I j f (x).

Consequently,

(3-74) ‖A2,λ f ‖L p(u) ≤

∞∑
j=1

‖I j f ‖L p(u)

for all 1 < p <∞ and any nonnegative measurable function u on Rn . We shall
show that

(3-75) ‖I j f ‖L p(u) ≤ Ch,�,q,γ,p,λ,s‖ f ‖L p(2N ,sM2
s u)

for all 2≤ p <∞, any s > 1, and any nonnegative measurable function u on Rn .
We get by the well-known Fefferman–Stein inequality for M (see (3-102) below),
(3-12), and (3-70), that

‖I j f ‖L p(u)

≤ ‖MMµ
λ | f |‖L p(u) ≤ C p‖M

µ
λ | f |‖L p(Mu)

≤ C p(‖Mσ
λ | f |‖L p(MN−λ+1u)+‖M

σ
λ−1| f |‖L p(MN−λ+2u))

≤ Ch,�,q,γ,p,λ,s‖ f ‖L p(MN+2
s u+Iλ,sMN−λ+2

s u+Iλ,sMN−λ+3
s u+Jλ,sMN−λ+2

s u+Jλ−1,sMN−λ+3
s u)

≤ Ch,�,q,γ,p,λ,s‖ f ‖L p(MN+2
s u+IN ,sM2

s u+JN ,sM2
s u)

for all 2≤ p <∞, any s > 1, and any nonnegative measurable function u on Rn .
This proves (3-75).
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On the other hand, by (3-13) and Plancherel’s theorem, we get

‖I j f ‖2L2(Rn)
≤

∥∥∥∥(∑
k∈Z

|ψk,λ ∗µk− j,λ ∗ f |2
)1/2∥∥∥∥2

L2(Rn)

≤

∑
k∈Z

∫
{|aλξ |≤2−kλ}

|µ̂k− j,λ(ξ)|
2
| f̂ (ξ)|2 dξ

≤ C
∫

Rn

∑
k∈Z

|µ̂k− j,λ(ξ)|
2χ{|aλξ |≤2−kλ}| f̂ (ξ)|

2 dξ

≤ Ch,�,q,γ sup
ξ∈Rn

∑
k∈Z

|aλ2λ(k− j)ξ |1/(2λq ′γ ′)χ{|aλξ |≤2−kλ}‖ f ‖2L2(Rn)

≤ C− j/(2q ′γ ′)
h,�,q,γ sup

ξ∈Rn

∑
k∈Z

|2kλaλξ |1/(2λq ′γ ′)χ{|aλξ |≤2−kλ}‖ f ‖2L2(Rn)

≤ Ch,�,q,γ 2− j/(2q ′γ ′)
‖ f ‖2L2(Rn)

,

where the last inequality is obtained by the properties of the lacunary sequence. It
follows that

(3-76) ‖I j f ‖L2(Rn) ≤ Ch,�,q,γ 2− j/(4q ′γ ′)
‖ f ‖L2(Rn).

On the other hand, by (3-75) with p = 2 and u replacing us , we get

(3-77) ‖I j f ‖L2(us) ≤ Ch,�,q,γ,λ,s‖ f ‖L2(2N ,sM2
s us).

An interpolation between (3-76) and (3-77) yields

(3-78) ‖I j f ‖L2(u) ≤ Ch,�,q,γ,λ,s2−(1−1/s)/(4q ′γ ′) j
‖ f ‖L2((2N ,sM2

s us)1/s)

≤ Ch,�,q,γ,λ,s2−(1−1/s)/(4q ′γ ′) j
‖ f ‖L2(2N ,s2 M2

s2 u).

Take s2 replacing s. Formula (3-78) leads to

(3-79) ‖I j f ‖L2(u) ≤ Ch,�,q,γ,λ,s2−(1−1/
√

s)/(4q ′γ ′)
‖ f ‖L2(2N ,sM2

s u).

Interpolating between (3-79) and (3-75) (see [Bergh and Löfström 1976, Corollary
5.5.4]) yields

(3-80) ‖I j f ‖L p(u) ≤ Ch,�,q,γ,p,λ,s2−ς(p,q,γ,s) j
‖ f ‖L p(2N ,sM2

s u),

for all 2≤ p <∞, where ς(p, q, γ, s) > 0. Thus, we get from (3-80) and (3-74),

(3-81) ‖A2,λ f ‖L p(u) ≤ Ch,�,q,γ,p,λ,s‖ f ‖L p(2N ,sM2
s u)

for all 2≤ p <∞, s > 1, and any nonnegative measurable function u on Rn .
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Finally we estimate A3,λ f . Obviously,

A3,λ f (x)= sup
k∈Z

∣∣∣∣ ∞∑
j=0

(δ−ψk,λ) ∗µk+ j,λ ∗ f (x)
∣∣∣∣

≤

∞∑
j=0

sup
k∈Z

|(δ−ψk,λ) ∗µk+ j,λ ∗ f (x)|

=:

∞∑
j=0

J j f (x).

It follows that

(3-82) ‖A3,λ f ‖L p(u) ≤

∞∑
j=0

‖J j f ‖L p(u)

for all 1 < p < ∞ and any nonnegative measurable function u on Rn . By the
argument similar to those used to derive (3-75),

(3-83) ‖J j f ‖L p(u) ≤ Ch,�,q,γ,p,λ,s‖ f ‖L p(2N ,sM2
s u)

for all 2≤ p <∞, any s > 1, and any nonnegative measurable function u on Rn .
On the other hand, using (3-13) and the Plancherel theorem, we can obtain

‖J j f ‖2L2(Rn)
≤

∥∥∥∥(∑
k∈Z

|(δ−ψk,λ) ∗µ j+k,λ ∗ f |2
)1/2∥∥∥∥2

L2(Rn)

≤

∑
k∈Z

∫
{2kλaλξ |≥1}

|µ̂ j+k,λ(ξ)|
2
| f̂ (ξ)|2 dξ

≤

∑
k∈Z

k∑
i=−∞

∫
{2−λi≤|aλξ |<2−λ(i−1)}

|µ̂ j+k,λ(ξ)|
2
| f̂ (ξ)|2 dξ

≤ Ch,�,q,γ

∑
k∈Z

k∑
i=−∞

2−( j+k−i)/(2q ′γ ′)
∫
{2−λi≤|aλξ |<2−λ(i−1)}

| f̂ (ξ)|2 dξ

≤ Ch,�,q,γ 2− j/(2q ′γ ′)
∞∑

i=0

2−i/(2q ′γ ′)
‖ f ‖2L2(Rn)

≤ Ch,�,q,γ 2− j/(2q ′γ ′)
‖ f ‖2L2(Rn)

.

It follows that

(3-84) ‖J j f ‖L2(Rn) ≤ Ch,�,q,γ 2− j/(4q ′γ ′)
‖ f ‖L2(Rn).
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By (3-83), (3-84), and arguments similar to those used in deriving (3-80),

(3-85) ‖J j f ‖L p(u) ≤ Ch,�,q,γ,p,λ,s2−τ(p,q,γ,s) j
‖ f ‖L p(2N ,sM2

s u)

for all 2 ≤ p <∞ and s > 1, where τ(p, q, γ, s) > 0. Equation (3-85) together
with (3-82) yields

(3-86) ‖A3,λ f ‖L p(u) ≤ Ch,�,q,λ,γ ‖ f ‖L p(2N ,sM2
s u)

for all 2≤ p <∞ and s > 1. Then (3-60) follows from (3-71)–(3-73), (3-81), and
(3-86). �

Step 2: The proof of (ii) of Theorem 1.2. Let 1 < p < 2 and {tk}k∈N be given as
in Theorem 1.2. Fix a nonnegative measurable function u on Rn . By (3-58), to
prove (1-10), it suffices to show that

(3-87) ‖Mσ
N f ‖L p(u) ≤ Ch,�,q,γ,p,N ,s,tk‖ f ‖L p(2N ,sMsu) ∀s > tk

and

(3-88)
∥∥∥∥sup

k∈Z

∣∣∣∣ ∞∑
j=k

σ j,N ∗ f
∣∣∣∣∥∥∥∥

L p(u)

≤ Ch,�,q,γ,p,N ,s,tk‖ f ‖L p(2N ,sMsu+2N ,sM2
s u) ∀s > tk

for all k ∈ N.
We first prove (3-87). Fix k ∈ N. Substitute utk for u in (3-56), one has

(3-89)
∫

Rn
(Mσ

λ f (x))pu(x) dx

≤ Ch,�,q,γ,p,λ,tk

∫
Rn
| f (x)|p(Mλutk +M2M̃λutk + Hλutk )1/tk (x) dx

for all 1≤ λ≤ N . Notice that

(Mλutk +M2M̃λutk + Hλutk )1/tk (x)≤ Cs,tk (M
λus
+M2M̃λus + Hλus)1/s(x)

for any s > tk by Hölder’s inequality. Then (3-89) yields that

(3-90)
∫

Rn
(Mσ

λ f (x))pu(x) dx

≤ Ch,�,q,γ,p,λ,tk

∫
Rn
| f (x)|p(Mλ

s u+M2
s M̃λ

s u+ Hλ,su)(x) dx ∀s > tk

holds for all 1≤ λ≤ N and any fixed positive integer k, which gives (3-87).
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Below we prove (3-88). For A1,λ f , by the well-known Fefferman–Stein inequal-
ity for M (see (3-102) below) and (3-30), we obtain

(3-91) ‖A1,λ f ‖L p(u) ≤ C‖M(Tλ f )‖L p(u) ≤ C p‖Tλ f ‖L p(Mu)

≤ Ch,�,q,γ,p,λ,s,tk‖ f ‖L p(3N ,sMu)

≤ Ch,�,q,γ,p,λ,s,tk‖ f ‖L p(2N ,sMu) ∀s > tk

for any fixed positive integer k.
For A2,λ f , it follows from the well-known Fefferman–Stein inequality for M

(see (3-102) below), (3-12), and (3-91) that

(3-92) ‖I j f ‖L p(u)

≤ C‖MMµ
λ f ‖L p(u) ≤ C p‖M

µ
λ f ‖L p(Mu)

≤ C p(‖Mσ
λ | f |‖L p(MN−λ+1u)+‖M

σ
λ−1| f |‖L p(MN−λ+2u))

≤ Ch,�,q,γ,p,λ,s,tk‖ f ‖
L p(MN

s Mu+M2
s M̃N

s Mu+Hλ,sMN−λ+1u+Hλ−1,sMN−λ+2u)

≤ Ch,�,q,γ,p,λ,s,tk‖ f ‖
L p(MN

s Mu+M2
s M̃N

s Mu+HN ,sMu)

≤ Ch,�,q,γ,p,λ,s,tk‖ f ‖L p(2N ,sM2
s u) ∀s > tk

for any fixed positive integer k. Interpolating between (3-79) and (3-92) (see [Bergh
and Löfström 1976, Corollary 5.5.4]) yields

(3-93) ‖I j f ‖L p(u) ≤ Ch,�,q,γ,p,λ,s,tk 2−δ(p,q,γ,s) j
‖ f ‖L p(2N ,sM2

s u) ∀s > tk,

where δ(p, q, γ, s) > 0. Thus, we get from (3-93) and (3-74) that

(3-94) ‖A2,λ f ‖L p(u) ≤ Ch,�,q,γ,p,λ,s,tk‖ f ‖L p(2N ,sM2
s u) ∀s > tk

for any fixed positive integer k.
For A3,λ f , by the argument similar to those used to derive (3-92),

(3-95) ‖J j f ‖L p(u) ≤ Ch,�,q,γ,p,λ,s,tk‖ f ‖L p(2N ,sM2
s u) ∀s > tk

for any fixed positive integer k. By (3-95), (3-84), and arguments similar to those
used in deriving (3-85),

(3-96) ‖J j f ‖L p(u) ≤ Ch,�,q,γ,p,λ,s,tk 2−o(p,q,γ,s) j
‖ f ‖L p(2N ,sM2

s u) ∀s > tk

for any fixed positive integer k, where o(p, q, γ, s) > 0. Inequality (3-96) together
with (3-82) yields

(3-97) ‖A3,λ f ‖L p(u) ≤ Ch,�,q,γ,p,λ,s,tk‖ f ‖L p(2N ,sM2
s u) ∀s > tk

for any fixed positive integer k. Then (3-88) follows from (3-71), (3-72), (3-92),
(3-94), and (3-97).
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We now turn to proving Corollaries 1.3–1.5.

Proof of Corollary 1.3. By (3-6), one finds that

(3-98) ‖3N ,s f ‖Lr (Rn) ≤ Ch,�,q,γ ‖ f ‖Lr (Rn)

for any 1< s <∞ and r > s. We let {tk} be the sequence as in (ii) of Theorem 1.1
when 1< p < 2, and, for the sake of convenience, we set {tk} = {1+ 1/k} when
2 ≤ p <∞. It is clear that {tk}k∈N is strictly decreasing and limk→∞ tk = 1. It
follows from (1-7) and (1-8) that for 1< p <∞, it holds that

(3-99) ‖TPN f ‖L p(u) ≤ Ch,�,q,γ,p,s,N ,tk‖ f ‖L p(3N ,su) ∀s > tk

for any fixed positive integer k and any nonnegative measurable function u on Rn .
By (3-98), (3-99), and Proposition 2.1, we have (1-11) and (1-12) for the case of
1< p̃ < p <∞. On the other hand, by duality, we can obtain (1-11) and (1-12) for
the case of 1 < p < p̃ <∞. Taking u = 1, we obtain 3N ,su ≤ C . This together
with (3-99) yields that TPN is bounded on L p(Rn) for all 1 < p <∞. It leads to
(1-11) for the case p= p̃ by (1-1). The inequality (1-12) for the case p= p̃ follows
from (1-1) and (1-15). This completes the proof of Corollary 1.3. �

Proof of Corollary 1.4. By (3-6), one finds that

(3-100) ‖2N ,sMsu+2N ,sM2
s u‖Lr (Rn) ≤ Ch,�,q,γ ‖u‖Lr (Rn)

for any 1< s <∞ and r > s. We let {tk} be the sequence as in (ii) of Theorem 1.1
when 1< p < 2, and, for the sake of convenience, we set {tk} = {1+ 1/k} when
2≤ p <∞. Then Theorem 1.2 yields

(3-101) ‖T ∗PN
f ‖L p(u) ≤ Ch,�,q,γ,p,s,N ,tk‖ f ‖L p(2N ,sMsu+2N ,sM2

s u) ∀s > tk

for any fixed positive integer k and any nonnegative measurable function u on Rn .
By (3-100), (3-101), and Proposition 2.1, we obtain (1-13) and (1-14) for the case
1 < p̃ < p <∞. It was known that T ∗PN

is bounded on L p(Rn) for 1 < p <∞.
This together with (1-1) yields (1-13) for the case of p = p̃. The inequality (1-14)
for the case of p = p̃ follows from (1-1) and (1-16). This finishes the proof of
Corollary 1.4. �

Proof of Corollary 1.5. By (3-98), (3-99), and Proposition 2.1, we obtain (1-15) for
the case of 1< p̃ < p <∞. On the other hand, a duality argument yields (1-15)
for the case of 1< p < p̃ <∞. Inequality (1-15) for the case p = p̃ follows from
(3-98), (3-99), and the L p bounds for TPN . Similarly, we can obtain (1-16) for the
case of 1< p̃ ≤ p <∞ by (3-100), (3-101), and the L p boundedness of T ∗PN

. This
completes the proof of Corollary 1.5. �
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We want to make a few remarks before ending the paper. Since Proposition 2.1
plays a crucial rule to show the boundedness of an operator T on the mixed radial-
angular space L p

|x |L
p̃
θ (R

n), we expect to establish a suitable weighted L p inequality
for T . To this end, for the operator Th,�, we need to treat some technical difficulties
for different assumptions on �. This is a key step, but is definitely not trivial. For
instance, we have no idea how to establish a suitable weighted L p inequality for
Th,�, although the L p(Rn) boundedness of Th,� is well known, if � is a function
in the function class L log L(Sn−1). For the singular integral T�, another roughness
assumption on � is that � lies in the Grafakos–Stefanov class Fα(Sn−1), where

Fα(Sn−1)

:=

{
� ∈ L1(Sn−1) : sup

ξ∈Sn−1

∫
Sn−1
|�(y′)|

(
log

1
|ξ · y′|

)α
dσ(y′) <∞

}
for α > 0,

and this class was originally introduced by Grafakos and Stefanov [1998] in the
study of L p boundedness of T�. With the help of the established weighted L p

inequality for T� (see [Zhang 2008, Lemma 2]) applying [Zhang 2008, Theorems 1
and 2], and Proposition 2.1, we can show that both T� and its maximal operator
T ∗� are bounded on L p

|x |L
p̃
θ (R

n) for any 1 < p < ∞ and 1 < p̃ < ∞ provided
� ∈ Fα(Sn−1) for all α > 1.

Not only for rough singular integrals, Proposition 2.1 also works for all linear
or sublinear operators. The Hardy–Littlewood maximal function M is bounded on
L p
|x |L

p̃
θ (R

n), based on Proposition 2.1 and the well-known Fefferman–Stein [1971]
weighted norm inequality

(3-102) ‖M f ‖L p(u) ≤ C p‖ f ‖L p(Mu).

Also, any Calderón–Zygmund operator T is bounded on L p
|x |L

p̃
θ (R

n) for any
1< p<∞ and 1< p̃<∞ because of Proposition 2.1 and the well-known inequality

‖T f ‖L p(u) ≤ C p‖ f ‖L p(Msu), s > 1.
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