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REGULARITY AND UPPER SEMICONTINUITY OF
PULLBACK ATTRACTORS FOR A CLASS OF

NONAUTONOMOUS THERMOELASTIC PLATE SYSTEMS

FLANK D. M. BEZERRA, VERA L. CARBONE,
MARCELO J. D. NASCIMENTO AND KARINA SCHIABEL

We study the long-time dynamics, in the sense of pullback attractors, of
solutions for semilinear nonautonomous thermoelastic plate systems in a
bounded smooth domain in RN , N > 2. Using the theory of uniform secto-
rial operators, in the sense of P. Sobolevskiı̆ (1961), we will prove existence,
uniform boundedness, regularity and upper semicontinuity of pullback at-
tractors for the evolution system{

ut t +1
2u+ a1θ = f (u), t > τ, x ∈�,

θt − κ(t)1θ − a1ut = 0, t > τ, x ∈�,

subject to boundary conditions

u =1u = θ = 0, t > τ, x ∈ ∂�,

with respect to the functional parameter κ .

1. Introduction

In this paper we study a model that describes the small vibrations of a homogeneous,
elastic and thermal isotropic Euler–Bernoulli plate. In fact we consider the initial-
boundary value problem

(1-1)
{

ut t +1
2u+ a1θ = f (u), t > τ, x ∈�,

θt − κ(t)1θ − a1ut = 0, t > τ, x ∈�,

subject to boundary conditions

(1-2)
{

u =1u = 0, t > τ, x ∈ ∂�,
θ = 0, t > τ, x ∈ ∂�,
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and initial conditions

(1-3) u(τ, x)= u0(x), ut(τ, x)= v0(x) and θ(τ, x)= θ0(x), x ∈�, τ ∈ R,

where� is a bounded domain in RN with N >2, where the boundary ∂� is assumed
to be regular enough and a > 0.

Next we exhibit conditions under which the nonautonomous problem (1-1)–(1-3)
is locally and globally well posed in some appropriate space that we will specify
later.

We assume that κ is continuously differentiable in R and satisfies

(1-4) 0< κ0 6 κ(t), κ ′(t)6 κ1 for all t ∈ R,

for some positive constants κ0 and κ1.
Suppose that f : R→ R is locally Lipschitz satisfying

(1-5) lim sup
|s|→∞

f (s)
s

< λ1

uniformly in t ∈R, where λ1>0 is the first eigenvalue of negative Laplacian operator
with homogeneous Dirichlet boundary condition. Furthermore, the function f
satisfies the subcritical growth condition; that is,

(1-6) | f ′(s)|6 C(1+ |s|ρ−1) for all s ∈ R,

where 16 ρ < N
N−4 , with N > 5, and C > 0 independent of t ∈ R. In this case,

the embedding H 2(�)∩H 1
0 (�) ↪→ L2N/(N−4)(�) is compact and this will be used

in analysis of the energy functionals. We will justify these restrictions later in the
paper. If N = 2, 3, 4, we suppose the growth condition (1-6) with ρ > 1.

Using the theory of uniform sectorial operators, in the sense of [Sobolevskiı̆
1961], the authors proved in [Bezerra et al. 2018] the local and global well-posedness
of the nonautonomous problem (1-1)–(1-3) (under conditions (1-5) and (1-6)), the
existence of pullback attractors and uniform bounds for these pullback attractors
when κ(t)≡ κ .

The main goal of this paper is to prove the regularity of the pullback attractors
and their upper semicontinuity with respect to the functional parameter κ . For
completeness, under the additional condition (1-4) we prove the local and global
posedness for (1-1)–(1-3) as well the existence and uniform boundedness of pullback
attractors for this problem.

We emphasize that no additional damping in first evolution equation in (1-1) is
required in the present work.

To formulate the nonautonomous problem (1-1)–(1-3) in the nonlinear evolution
process setting, we introduce some notation. Here, we denote X = L2(�) and
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3 : D(3)⊂ X→ X to be the biharmonic operator defined by

D(3)= {u ∈ H 4(�); u =1u = 0 on ∂�}
and
(1-7) 3u = (−1)2u for all u ∈ D(3).

Then 3 is a positive self-adjoint operator in X with compact resolvent and
therefore −3 generates a compact analytic semigroup on X (that is, 3 is a sectorial
operator, in the sense of [Henry 1981]). Denote by Xα, α > 0, the fractional power
spaces associated with the operator 3; that is, Xα

= D(3α) endowed with the
graph norm. With this notation, we have X−α = (Xα)′ for all α > 0, (see [Amann
1995]). Of special interest is the case α = 1

2 , since −3
1
2 is the Laplacian operator

with homogeneous Dirichlet boundary conditions.
If we denote v= ut , then we can rewrite the nonautonomous problem (1-1)–(1-3)

in the abstract form

(1-8)
{
wt = A(κ)(t)w+ F(w), t > τ,
w(τ)= w0, τ ∈ R,

where w = w(t) for all t ∈ R, and w0 = w(τ) are given by

(1-9) w =

[
u
v
θ

]
, and w0 =

u0
v0
θ0

,
and, for each t ∈ R, the unbounded linear operator A(κ)(t) : D(A(κ)(t))⊂ Y → Y
is defined by

(1-10) A(κ)(t)

[
u
v
θ

]
=

 0 I 0
−3 0 −a3

1
2

0 a3
1
2 κ(t)3

1
2

[u
v
θ

]
=

 v

−3u− a3
1
2 θ

a3
1
2 v+ κ(t)3

1
2 θ

,
where

Y = (H 2(�)∩ H 1
0 (�))× L2(�)× L2(�)

is the phase space of the problem (1-1)–(1-3) and the domain of the operator A(κ)(t)
is defined by the space

(1-11) D(A(κ)(t))= X1
× X

1
2 × X

1
2 ,

with X1
= {u ∈ H 4(�); u =1u = 0 on ∂�} and X

1
2 = H 2(�)∩ H 1

0 (�).
The nonlinearity F is given by

(1-12) F(w)=

 0
f e(u)

0

 ,
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where f e(u) is the Nemytskii operator associated with f (u); that is,

f e(u)(x) := f (u(x)) for all x ∈�.

This paper is organized as follows: in Section 2 we recall concepts and results
about singularly nonautonomous problems. Section 3 is devoted to studying the
existence of local and global solutions in some appropriate space, as well as the
existence of pullback attractors for (1-1)–(1-3). In Section 4 we present results on
regularity of the pullback attractors, following Carvalho, Langa, Robinson [Carvalho
et al. 2013]. Finally, in Section 5 we prove that the family of pullback attractors
behave upper semicontinuously with respect to the functional parameter κ .

2. Abstract linear problem

Throughout the paper, L(Z) will denote the space of linear and bounded operators
defined in a Banach space Z. Let B(t), t ∈ R, be a family of unbounded closed
linear operators defined on a fixed dense subspace D of Z .

2A. Nonautonomous abstract linear problem. Consider the singularly nonau-
tonomous abstract linear parabolic problem of the form

du
dt
=−B(t)u, t > τ,

u(τ )= u0 ∈ D.

We assume that:

(a) The family of operators B(t) : D ⊂Z→Z is uniformly sectorial, that is, B(t)
is closed densely defined (the domain D is fixed) and there is a constant C > 0
(independent of t ∈ R) such that

‖(B(t)+ λI )−1
‖L(Z) 6

C
|λ| + 1

for all λ ∈ C with Re λ> 0.

(b) The map R 3 t 7→ B(t) is uniformly Hölder continuous, that is, there are
constants C > 0 and ε0 > 0 such that, for any t, τ, s ∈ R,

‖[B(t)−B(τ )]B−1(s)‖L(Z) 6 C(t − τ)ε0, ε0 ∈ (0, 1].

Denote by B0 the operator B(t0) for some t0 ∈R fixed. If Zα denotes the domain
of Bα0 , α > 0, with the graph norm and Z0

:= Z, denote by {Zα
;α > 0} the

fractional power scale associated with B0.
From (a), −B(t) is the generator of an analytic semigroup {e−τB(t) ∈ L(Z) :

τ > 0}. Using this and the fact that 0 ∈ ρ(B(t)), it follows that

‖e−τB(t)‖L(Z) 6 C, τ > 0, t ∈ R,
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and
‖B(t)e−τB(t)‖L(Z) 6 Cτ−1, τ > 0, t ∈ R.

It follows from (b) that ‖B(t)B−1(τ )‖L(Z)6C , for all (t, τ )∈ I, for some I ⊂R2

bounded. Also, the semigroup e−τB(t) generated by −B(t) satisfies the estimate

(2-1) ‖e−τB(t)‖L(Zβ ,Zα) 6 Mτβ−α,

where 06 β 6 α < 1+ ε0.
Next we recall the definition of a linear evolution process associated with a

family of operators {B(t) : t ∈ R}.

Definition 2.1. A family {L(t, τ ) : t > τ ∈ R} ⊂ L(Z) satisfying

(1) L(τ, τ )= I,

(2) L(t, σ )L(σ, τ )= L(t, τ ) for any t > σ > τ ,

(3) P×Z 3 ((t, τ ), u0) 7→ L(t, τ )v0 ∈Z is continuous, where P = {(t, τ ) ∈R2
:

t > τ }

is called a linear evolution process (process for short) or family of evolution opera-
tors.

If the operator B(t) is uniformly sectorial and uniformly Hölder continuous, then
there exists a linear evolution process {L(t, τ ) : t > τ ∈ R} associated with B(t),
which is given by

L(t, τ )= e−(t−τ)B(τ )+
∫ t

τ

L(t, s)[B(τ )−B(s)]e−(s−τ)B(τ ) ds.

The evolution process {L(t, τ ) : t > τ ∈ R} satisfies the condition

(2-2) ‖L(t, τ )‖L(Zβ ,Zα) 6 C(α, β)(t − τ)β−α,

where 06 β 6 α < 1+ ε0. For more details see [Carvalho and Nascimento 2009]
and [Sobolevskiı̆ 1961].

2B. Abstract results on pullback attractors. In this subsection we will present
basic definitions and results of the theory of pullback attractors for nonlinear
evolution processes. For more details, we refer to [Caraballo et al. 2010], [Carvalho
et al. 2013] and [Chepyzhov and Vishik 2002].

We consider the singularly nonautonomous abstract parabolic problem

(2-3)


du
dt
=−B(t)u+ g(u), t > τ,

u(τ )= u0 ∈ D,

where the operator B(t) is uniformly sectorial and uniformly Hölder continuous and
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the nonlinearity g satisfies conditions which will be specified later. The nonlinear
evolution process {S(t, τ ) : t > τ ∈ R} associated with B(t) is given by

S(t, τ )u0 = L(t, τ )u0+

∫ t

τ

L(t, s)g(S(s, τ )) ds for all t > τ.

Definition 2.2. Let g : R× Xα
→ Xβ, α ∈ [β, β + 1), be a continuous function.

We say that a continuous function u : [τ, τ + t0]→ Xα is a (local) solution of (2-3)
starting in u0 ∈ Xα if u ∈ C([τ, τ + t0], Xα) ∩ C1((τ, τ + t0], Xα), u(τ ) = u0,
u(t) ∈ D(B(t)) for all t ∈ (τ, τ + t0] and (2-3) is satisfied for all t ∈ (τ, τ + t0).

We can now state the following result, from [Caraballo et al. 2011]. We also
refer to [Carvalho and Nascimento 2009] for a more general version that includes
the critical growth case.

Theorem 2.3. Suppose that the family of operators B(t) is uniformly sectorial and
uniformly Hölder continuous in Xβ. If g : Xα

→ Xβ, α ∈ [β, β + 1), is a Lipschitz
continuous map in bounded subsets of Xα, then, given r > 0, there is a time t0 > 0
such that for all u0 ∈ BXα (0; r) (open ball of radius r centered at the origin of Xα)
there exists a unique solution of the problem (2-3) starting in u0 and defined in
[τ, τ + t0]. Moreover, such solutions are continuous with respect the initial data in
BXα (0; r).

Next we present several definitions from the theory of pullback attractors, which
can be found in [Caraballo et al. 2010; 2013; Chepyzhov and Vishik 2002].

We begin by recalling the definition of Hausdorff semidistance between two
subsets A and B of a metric space (X, d):

distH (A, B)= sup
a∈A

inf
b∈B

d(a, b).

Definition 2.4. Let {S(t, τ ) : t > τ ∈R} be an evolution process in a metric space X.
Given A and B subsets of X, we say that A pullback attracts B at time t if

lim
τ→−∞

distH (S(t, τ )B, A)= 0,

where S(t, τ )B := {S(t, τ )x ∈ X : x ∈ B}.

Definition 2.5. The pullback orbit of a subset B ⊂ X relative to the evolution pro-
cess {S(t, τ ) : t > τ ∈R} in the time t ∈R is defined by γp(B, t) :=

⋃
τ6t S(t, τ )B.

Definition 2.6. An evolution process {S(t, τ ) : t > τ ∈R} in X is pullback strongly
bounded if, for each t ∈ R and each bounded subset B of X,

⋃
τ6t γp(B, τ ) is

bounded.

Definition 2.7. An evolution process {S(t, τ ) : t > τ ∈ R} in X is pullback asymp-
totically compact if, for each t ∈ R, each sequence {τn} in (−∞, t] with τn→−∞
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as n →∞ and each bounded sequence {xn} in X such that {S(t, τn)xn} ⊂ X is
bounded, the sequence {S(t, τn)xn} is relatively compact in X.

Definition 2.8. We say that a family of bounded subsets {B(t) : t ∈ R} of X is
pullback absorbing for the evolution process {S(t, τ ) : t > τ ∈ R} if, for each t ∈ R

and for any bounded subset B of X, there exists τ0(t, B)6 t such that

S(t, τ )B ⊂ B(t) for all τ 6 τ0(t, B).

Definition 2.9. A family of subsets {A(t) : t ∈R} of X is called a pullback attractor
for the evolution process {S(t, τ ) : t > τ ∈R} if it is invariant (that is, S(t, τ )A(τ )=
A(t), for any t > τ ), A(t) is compact for all t ∈ R, and pullback attracts bounded
subsets of X at time t , for each t ∈ R.

In applications, to prove a process has a pullback attractor, we use Theorem 2.11,
proved in [Caraballo et al. 2010], which gives a sufficient condition for existence
of a compact pullback attractor. For this, we will need the concept of pullback
strongly bounded dissipativeness.

Definition 2.10. An evolution process {S(t, τ ) : t > τ ∈R} in X is pullback strongly
bounded dissipative if, for each t ∈ R, there is a bounded subset B(t) of X which
pullback absorbs bounded subsets of X at time s for each s 6 t ; that is, given a
bounded subset B of X and s 6 t , there exists τ0(s, B) such that S(s, τ )B ⊂ B(t)
for all τ 6 τ0(s, B).

Now we can present the result which guarantees the existence of pullback attrac-
tors for nonautonomous problems; see [Caraballo et al. 2010].

Theorem 2.11. If an evolution process {S(t, τ ) : t > τ ∈ R} in the metric space X
is pullback strongly bounded dissipative and pullback asymptotically compact, then
{S(t, τ ) : t > τ ∈ R} has a pullback attractor {A(t) : t ∈ R} with the property that⋃
τ6t A(τ ) is bounded for each t ∈ R.

The next result gives sufficient conditions for pullback asymptotic compactness,
and its proof can be found in [Caraballo et al. 2010].

Theorem 2.12. Let {S(t, s) : t > s ∈ R} be a pullback strongly bounded evolution
process such that S(t, s) = L(t, s)+U (t, s), where there exists a nonincreasing
function k : [0,+∞)×[0,+∞)→ R, with k(σ, r)→ 0 when σ →∞, and for all
s 6 t and x ∈ X with ‖x‖6 r ,

‖L(t, s)x‖6 k(t − s, r),

and U (t, s) is compact. Then, the family of evolution process {S(t, s) : t > s ∈ R}

is pullback asymptotically compact.
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3. Existence results

In this section we study the existence of global solutions for (1-8). For this, we
consider the linear problem associated with (1-1)–(1-3),{

wt = A(κ)(t)w, t > τ,
w(τ)= w0, τ ∈ R,

where w and w0 are defined in (1-9) and the linear unbounded operator A(κ) is
defined by (1-10) and (1-11).

We use the term singularly nonautonomous to express the fact that the unbounded
operator A(κ)(t) is time-dependent and generates a semigroup that satisfies an
estimate as in (2-1).

It is not difficult to see that 0 ∈ ρ(A(κ)(t)) for any t ∈ R. Moreover, the operator
A−1
(κ)(t) : D(A

−1
(κ)(t))⊂ Y → Y is defined by

D(A−1
(κ)(t))= L2(�)× H−2(�)× H−2(�),

where H−2(�) denotes the dual X−
1
2 of X

1
2 and

A−1
(κ)(t)

[
u
v
θ

]
=


a2

κ(t)3
−

1
2 −3−1

−
a
κ(t)3

−1

I 0 0
−

a
κ(t) I 0 1

κ(t)3
−

1
2


[

u
v
θ

]

=


a2

κ(t)3
−

1
2 u−3−1v− a

κ(t)3
−1θ

u
−

1
κ(t)au+ 1

κ(t)3
−

1
2 θ

.
Proposition 3.1. Denote by Y−1 the extrapolation space of Y = X

1
2 × X × X

generated by operator A−1
(κ)(t). The following equality holds:

Y−1 = X × X−
1
2 × X−

1
2 .

Proof. This proof follows the same ideas of the proof in [Bezerra et al. 2018,
Proposition 3.1]. �

Remark. Following the same ideas from [Baroun et al. 2009] and [Lasiecka and
Triggiani 1998], we conclude that for all t , there exists a positive constant M
(independent of t), such that

‖(λI + A(κ)(t))−1
‖L(Y ) 6

M
1+ |λ|

for all λ ∈ C with Re λ> 0.

From this we can conclude that A(κ)(t) is uniformly sectorial (in Y ).
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Note that the operator A(κ)(t) can be extended to its closed Y−1-realization (see
[Amann 1995, p. 262]), which we will still denote by the same symbol so that
A(κ)(t) considered in Y−1 is then the sectorial positive operator (see [Carvalho and
Cholewa 2002]). Our next concern will be to obtain embedding of the spaces from
the fractional powers scale Yα−1, α > 0, generated by (A(κ)(t), Y−1).

Theorem 3.2. The operators A(κ)(t) are uniformly sectorial and the map R 3 t 7→
A(κ)(t) ∈ L(Y, Y−1) is uniformly Hölder continuous. Then, there exists a process

{L(t, τ ) : t > τ ∈ R}

(or simply L(t, τ )) associated with the operator A(κ)(t), that is given by

L(t,τ )=e−(t−τ)A(κ)(τ )+
∫ t

τ

L(t,s)[A(κ)(τ )−A(κ)(s)]e−(s−τ)A(κ)(τ ) ds for all t>τ.

The linear evolution operator {L(t, τ ) : t > τ ∈ R} satisfies the condition (2-2).

Proof. Following the same ideas from [Carvalho and Cholewa 2002] and [Lasiecka
and Triggiani 1998], we can conclude that the operator A(κ)(t) is a sectorial positive
operator in Y−1. It is not difficult to see that it is also closed and densely defined.
Note that for [u v θ]T ∈ X

1
2 × X × X, and t, s ∈ R, we can estimate the norm

‖[(A(κ)(t)− A(κ)(s))[u v θ ]T ‖
X×X−

1
2×X−

1
2

using (1-4). In fact,∥∥∥∥∥(A(κ)(t)−A(κ)(s))

[
u
v
θ

]∥∥∥∥∥
Y−1

=|κ(t)−κ(s)|‖(−1)θ‖
X−

1
2
6c|t−s|β

∥∥∥∥∥
[

u
v
θ

]∥∥∥∥∥
X

1
2×X×X

for any t, s ∈R; hence the application R 3 t 7→ A(κ)(t) ∈ L(Y ) is uniformly Hölder
continuous, and this argument shows that

‖A(κ)(t)− A(κ)(s)‖L(Y,Y−1) 6 c|t − s|β .

Therefore, there exists a linear evolution process {L(t, τ ) : t > τ ∈ R} associated
with the operator A(a)(t), that is given by

L(t,τ )=e−(t−τ)A(κ)(τ )+
∫ t

τ

L(t,s)[A(κ)(τ )−A(κ)(s)]e−(s−τ)A(κ)(τ ) ds for all t>τ.

Furthermore, the process {L(t, τ ) : t > τ ∈ R} satisfies the condition (2-2). �

The following result is a direct consequence of (1-6), see [Carbone et al. 2011,
Lemma 2.4].

Lemma 3.3. Let f ∈C1(R) be a function such that the condition (1-6) holds. Then

| f (s1)− f (s2)|6 2ρ−1c|s1− s2|(1+ |s1|
ρ−1
+ |s2|

ρ−1) for all s1, s2 ∈ R.
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Lemma 3.4 [Carbone et al. 2011]. Assume that 1 < ρ < N+4
N−4 and let f ∈ C1(R)

be a function such that

| f ′(s)|6 C(1+ |s|ρ−1) for all s ∈ R.

Then there exists s ∈ (0, 1) such that the Nemytskii operator f e
: X

1
2 → X−

s
2 is

Lipschitz continuous in bounded subsets of X
1
2 uniformly in t ∈ R.

Remark. Since L2N/(N−4)(�) ↪→ L2(�), it follows from the proof of [Carbone
et al. 2011, Lemma 2.5] that f e

: X
1
2 → L2(�) is Lipschitz continuous in bounded

subsets; that is,

‖ f e(u)− f e(v)‖L2(�) 6 c̃ ‖ f e(u)− f e(v)‖
L

2N
(N−4)ρ (�)

6 ˜̃c‖u− v‖X1/2,

with ˜̃c = ˜̃c(‖u‖X1/2, ‖v‖X1/2). The scheme below describes this situation:

X
1
2 ↪→ H 2(�) ↪→ L

2N
N−4 (�)

f (u)≈uρ
7−−−−→ L

2N
(N−4)ρ (�) ↪→ L2(�),

where in the last inclusion we use that ρ < N
N−4 .

Proposition 3.5. The operator A(κ)(t) given in (1-10) is maximal accretive.

Proof. This proof is analogous to the proof [Bezerra et al. 2018, Proposition 4.3],
and so we omit it. �

Remark. Below we have a partial description of the fractional power spaces scale
for A(κ)(t). For convenience we denote Y by Y0, then

Y0 ↪→ Yα−1 ↪→ Y−1 for all 0< α < 1,

where
Yα−1 = [Y−1, Y0]α = X

α
2 × X

α−1
2 × X

α−1
2 ,

where [ · , · ]α denotes the complex interpolation functor (see [Triebel 1978]). The
first equality follows from Proposition 3.5 (since 0∈ ρ(A(κ)(t))) (see [Amann 1995,
Example 4.7.3(b)]) and the second equality follows from [Carvalho and Cholewa
2002, Proposition 2].

Corollary 3.6. If f is as in Lemma 3.4, then the function F :Y→Yα−1 (α ∈ (0, 1)),
given by (1-12), is Lipschitz continuous in bounded subsets of Y.

Now, Theorem 2.3 guarantees local well posedness for the problem (1-8) in the
energy space Y.

Corollary 3.7. If f and F are as in Corollary 3.6, then given r > 0, there is a
time τ = τ(r) > 0, such that for all w0 ∈ BY (0; r) there exists a unique solution
w : [t0, t0+ τ ] → Y of the problem (1-8) starting in w0. Moreover, such solutions
are continuous with respect the initial data in BY (0; r).
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Since τ can be chosen uniformly in bounded subsets of Y, the solutions which
do not blow up in Y must exist globally. Alternatively, we obtain a uniform in
time estimate of ‖(u(t), ∂t u(t), θ(t))‖Y ; such an estimate is needed to justify global
solvability of the problem (1-8) in Y.

The total energy of the system E(t) associated with the solution (u(t),∂t u(t),θ(t))
of (1-1)–(1-3) in Y is defined by

(3-1) E(t)= 1
2‖u(t)‖

2
X1/2 +

1
2‖ut(t)‖2X +

1
2‖θ(t)‖

2
X −

∫
�

∫ u

0
f (s) ds dx .

It is not difficult to see that the function t 7→ E(t) is monotone decreasing along
solutions. In fact, using (1-1), we can show that there exists a positive constant c
such that

E ′(t)6 0.

We obtain (from (1-5)) that for each ε > 0, there exists Cε > 0 such that if

(3-2)
∫
�

∫ u( · ,t)

0
f (s) ds dx 6 ε‖u( · , t)‖2X +Cε,

the property E(t)6E(τ ) offers an a priori estimate of the solution (u(t), ∂t u(t), θ(t))
in Y. In fact,

1
2

∥∥∥∥∥
[

u
v
θ

]∥∥∥∥∥
2

Y

6 cE(τ )+ cε0‖u( · , t)‖2X +Cε0 6 cE(τ )+ cε0

∥∥∥∥∥
[

u
v
θ

]∥∥∥∥∥
2

Y

+Cε0,

and, if we choose 0< ε0 <
1
2c , we get boundedness as desired; that is,

lim sup
t→+∞

∥∥∥∥∥
[

u
v
θ

]∥∥∥∥∥
Y

<+∞.

With this, we ensure that there exists a global solution w(t) for Cauchy problem
(1-8) in Y and it defines an evolution process {S(t, τ ) : t > τ ∈ R}, that is,

S(t, τ )w0 = w(t) for all t > τ ∈ R.

According to [Carvalho and Nascimento 2009],

(3-3) S(t, τ )w0 = L(t, τ )w0+

∫ t

τ

L(t, s)F(s, S(s, τ )w0) ds for all t > τ ∈ R,

where {L(t, τ ) : t > τ ∈ R} is the linear evolution process associated with the
homogeneous problem (1-8).

In order to prove the existence of pullback attractors for (1-1)–(1-3) we use the
modified energy method.
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Theorem 3.8. Let L be the energy functional associated to (1-1)–(1-3) given by

L(t)= ME(t)+ δ1

∫
�

uut dx − δ2

∫
�

ut1
−1θ dx,

where E is defined in (3-1), and 0 < δ1 < δ2 < 1 and M > 0 are appropriate
constants.

(a) There exist constants M1,M2 > 0 such that

(3-4) L′(t)6−M1E(t)+M2

for any t > 0.

(b) For M > 0 sufficiently large, there exist constants β1, β2, β3 > 0 and β4 > 0
such that

(3-5) β3E(t)−β4 6 L(t)6 β1E(t)+β2

for any t > 0.

Proof. See [Bezerra et al. 2018, Theorems 5.1 and 5.2]. �

Remark. For every t ∈ R, from (3-2) we have

E(t)= 1
2‖u(t)‖

2
X1/2 +

1
2‖ut(t)‖2X +

1
2‖θ(t)‖

2
X −

∫
�

∫ u

0
f (t, s) ds dx

>
( 1

2 −
1
2εC0

)
‖u(t)‖2X1/2 +

1
2‖ut(t)‖2X +

1
2‖θ(t)‖

2
X −Cε,

where ε is such that ε < 1/C0; that is

‖1u(t)‖2X +‖ut(t)‖2X +‖θ(t)‖
2
X 6 C1E(t)+C ′ε,

where C−1
1 =min

{( 1
2 −

1
2εC0

)
, 1

2

}
.

Corollary 3.9. Under the same conditions as in Theorem 3.8, if B⊂Y is a bounded
set, and (u, v, θ) : [τ, τ + T ] → Y, T > 0, is the solution of (1-1)–(1-3) starting in
(u0, v0, θ0) ∈ B, there exist positive constants ω̄, γ1 = γ1(B) and γ2, such that

(3-6) ‖1u(t)‖2X +‖ut(t)‖2X +‖θ(t)‖
2
X 6 γ1e−ω̄(t−τ)+ γ2

for any t ∈ [τ, τ + T ].

Proof. From (3-4) and (3-5), we obtain

L′(t)6−σ1L(t)+ σ2,

where σ1 = M1/β1 and σ2 = M1β2/β1+M2, and thus

L(t)6 L(τ )e−σ1(t−τ)+ σ2e−σ1t
∫ t

τ

eσ1s ds 6 L(τ )e−σ1(t−τ)+
σ2

σ1
.
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Again, by (3-5) together with the remark on page 406, we conclude that

‖1u(t)‖2X +‖ut(t)‖2X +‖θ(t)‖
2
X 6 γ1e−σ1(t−τ)+ γ2,

where γ1 = γ1(L(τ )) > 0 and γ2 > 0. �

Theorem 3.10. Under the same conditions as in Theorem 3.8, the problem (1-1)–
(1-3) has a pullback attractor {A(t) : t ∈ R} in Y and⋃

t∈R

A(t)⊂ Y.

Proof. From estimate (3-6), it is easy to check that the evolution process {S(t, τ ) :
t > τ ∈ R} associated with (1-1)–(1-3) is pullback strongly bounded dissipative
in Y.

Hence, applying the same ideas of the proofs of [Bezerra et al. 2018, Theorems 5.1
and 5.2], we conclude that the family of evolution process {S(t, τ ) : t > τ ∈ R} is
pullback asymptotically compact (see Theorem 2.12). In fact, from (3-3) we write

S(t, τ )w0 = L(t, τ )w0+U (t, τ )w0,

where

(3-7) U (t, τ )w0 :=

∫ t

τ

L(t, s)F(S(t, s)w0) ds

for any initial condition w0 ∈ Y.
With the same arguments used in [Bezerra et al. 2018, Theorem 5.1] with f ≡ 0

in (1-1) and with the functionals

E(t)= 1
2‖u(t)‖

2
X1/2 +

1
2‖ut(t)‖2X +

1
2‖θ(t)‖

2
X

and
L(t)= ME(t)+ δ1〈u, ut 〉X − δ2〈ut , (1

−1θ)〉X ,

we get from (3-4) that there exists c1 > 0 such that

L′(t)6−c1E(t).

From arguments used in the proof of [Bezerra et al. 2018, Theorem 5.2] with f ≡ 0
in (1-1), by (3-5) we get c2, c3 > 0 such that

(3-8) c2E(t)6 L(t)6 c3E(t)

and hence
L′(t)6−c0L(t)

for some c0 > 0. From this, we obtain

L(t)6 L(τ )e−c0(t−τ),
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and thanks to (3-8) we get

E(t)6
c3

c2
E(τ )e−c0(t−τ),

for some c0 > 0. This ensures that there exist constants K , α > 0 such that

(3-9) ‖L(t, τ )‖L(Y ) 6 K e−α(t−τ) for all t > τ.

The family of evolution processes {U (t, τ ) : t > τ ∈R} is compact from Y into Y.
In fact, the compactness of U (t, τ ) follows easily from

X1/2 f e
−→ X−s/2 ↪→ X−1/2,

being the last inclusion compact (since s < 1; see Lemma 3.4). Thanks to the
assumptions on the nonlinearity of f , it follows that f e is compact from X

1
2

into X−
1
2. Taking into account that F is given by (1-12), compactness of f e implies

that F is also compact from Y into Y−1, and since L(t, τ ) is a bounded linear
operator from Y−1 to Y , the operator U (t, τ ) is compact from Y into Y (see [Hale
1988, Theorem 4.6.1]).

Now, applying Theorem 2.11, we get that the problem (1-1)–(1-3) has a pullback
attractor {A(t) : t ∈ R} in Y and that

⋃
t∈R A(t)⊂ Y is bounded. �

4. Regularity of the pullback attractors

In this section we investigate the regularity of the pullback attractors; in fact, we
prove that

⋃
t∈R A(t) is a bounded subset of Y 1.

Theorem 4.1. The pullback attractor {A(t) : t ∈ R} for the problem (1-1)–(1-3),
obtained in Theorem 3.8, lies in a more regular space than Y; in fact,⋃

t∈R

A(t)

is a bounded subset of Y 1.

Proof. The main idea is to use the argument of progressive increases of regularity,
following Babin and Vishik [1992] (see also [Carvalho et al. 2013, Chapter 15]).

Let ξ : R→ Y be a global bounded solution of (1-1). Then, the set {ξ(t); t ∈ R}

is a bounded subset of Y. First, observe that we already know that⋃
t∈R

A(t) is bounded in Y.

Hence, if ξ(·)= (u(·), ut(·), θ(·)) : R→ Y is such that ξ(t) ∈A(t) for all t ∈ R,
then

ξ(t)= L(t, s)ξ(s)+
∫ t

s
L(t, θ)F(ξ(θ)) dθ,
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and, using the decay of L(t, s) in (3-9) and letting s→−∞ it follows that

(4-1) ξ(t)=
∫ t

−∞

L(t, θ)F(ξ(θ)) dθ.

Now fix s ∈ R, set (µ0, µ1, ϑ0)= ξ(s), and considerµ(t)µt(t)
ϑ(t)

=U (t, s)

µ0

µ1

ϑ0

= ∫ t

s
L(t, θ)F

S(θ, s)

µ0

µ1

ϑ0

 dθ,

where U ( · , · ) is defined in (3-7). Note that (µ(·), ϑ(·)) solves the system

(4-2)
{
µt t +1

2µ+ a1ϑ = f (µ(t, s;µ0)), t > s, x ∈�,
ϑt − κ(t)1ϑ − a1µt = 0, t > s, x ∈�,

with

(4-3) µ(s, x)= µt(s, x)= 0 and ϑ(s, x)= 0, x ∈�.

This happens inside the pullback attractor A(·).
To estimate the solution of (4-2)–(4-3) for (µ0, µ1, ϑ0) in a bounded subset B

of Y, we again consider the energy functional

Lδ(t)= 1
2 M‖µ(t)‖2X1/2 +

1
2 M‖µt(t)‖2X +

1
2 M‖ϑ(t)‖2X
+〈µ(t), µt(t)〉X − δ2〈µt(t),1−1ϑ(t)〉X ,

to obtain (we omitted t on the right side in order to simplify the notation)

L′δ(t)= M〈µ,µt 〉X +M〈µt , µt t 〉X +M〈ϑ, ϑt 〉X +‖µt‖
2
X

+〈µ,µt t 〉X − δ2〈µt t ,1
−1ϑ〉X − δ2〈µt ,1

−1ϑt 〉X ,

and by (4-2) we get

L′δ(t)= M〈µ,µt 〉X −M〈µt ,1
2µ〉X +M〈µt , f (µ)〉X − κ(t)M‖ϑ‖2H1

0 (�)

+ (1− aδ2)‖µt‖
2
X −‖µ‖

2
X1/2 +〈µ, f (µ)〉X + (δ2− a)〈1µ,ϑ〉X

+ aδ2‖ϑ‖
2
X − δ2〈 f (µ),1−1ϑ〉X − δ2κ(t)〈µt , ϑ〉X .

From Poincaré and Young inequalities

L′δ(t)6
( 1

2ν0 M + 1
2ν1Ca

)
‖µ‖2X1/2 +

(
M

2ν0
+Ca +

1
2ν2δ2κ1+

1
2 M

)
‖µt‖

2
X

+

(
+

Ca

2ν1
+ aδ2

)
‖ϑ‖2X − κ0λ1 M‖ϑ‖2H1

0 (�)
+

1
2δ2

∫
�

|1−1ϑ |2 dx

+
( 1

2 M + 1
2δ2
) ∫

�

| f (µ)|2 dx +
∫
�

f (µ)µ dx,

where Ca = 1− aδ2 and Ca = δ2− a.
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To deal with the integral terms, just notice that from dissipativeness condi-
tion (1-5), for each ν > 0 there exists Cν > 0 such that∫

�

f (µ)µ dx 6 ν‖µ‖2X +Cν 6 m0ν‖µ‖
2
X1/2 +Cν,

where m0 > 0 is the embedding constant for ‖ · ‖X 6 m0‖ · ‖X1/2 .
From (1-6), there exists C > 0 such that∫

�

| f (µ)|2 dx 6 C‖µ‖2X +C‖µ‖2ρL2ρ(�)
.

Since the condition 16 ρ < N
N−4 implies X

1
2 ↪→ L2ρ(�), we get∫

�

| f (µ)|2 dx 6 C‖µ‖2X +C 6 C1‖µ‖
2
X1/2 +C2,

whenever ‖µ‖X1/2 6 r (see [Carbone et al. 2011] and [Carvalho et al. 2009]).
From this it follows that

(4-4)
⋃

s6τ6t

U (τ, s)B is a bounded subset of Y.

Hence ($, ζ )= (µt , ϑt) solves the system

(4-5)
{
$t t +1

2$ + a1ζ = f ′(µ(t, s;µ0))$(t, s;µ0), t > s, x ∈�,
ζt − κ(t)1ζ − κ ′(t)1ϑ − a1$t = 0, t > s, x ∈�,

with $(s)= 0, $t(s)= f (µ0), and ζ(s)= 0.
Finally, now we would like to estimate ($,$t , ζ ) in Y, but solutions are not

regular enough to allow this directly. Instead we work “towards” Y by progressive
increases of regularity. For α>0, we define the fractional power spaces Xα

=D(3α)
with the graph norm, and let X−α = (Xα)′; see (1-7).

For
($,$t , ζ ) ∈ X

1−α
2 × X−

α
2 × X−

α
2 ,

we define

(4-6) Lα(t)= 1
2 M

(
‖$(t)‖2

X
1−α

2
+‖$t(t)‖2

X−
α
2
+‖ζ(t)‖2

X−
α
2

)
+ δ1〈$,$t 〉X−

α
2
− δ2〈$t ,1

−1ζ 〉
X−

α
2
.

L′α(t)=M〈$t ,$ 〉X
1−α

2
+M〈$t t ,$t 〉X−

α
2
+M〈ζt , ζ 〉X−

α
2
+δ1〈$t ,$t 〉X−

α
2

+ δ1〈$,$t t 〉X−
α
2
− δ2〈$t t ,1

−1ζ 〉
X−

α
2

− δ2〈$t ,1
−1ζt 〉X−

α
2
.
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Note that from (1-2)–(1-7) (that is, 3
1
2 =−1), (4-5) and (4-6) we have

L′α(t)= M〈$t ,$ 〉X
1−α

2
−M〈$t ,$ 〉X

1−α
2
−Ma〈$t ,1ζ 〉X−

α
2

+M〈$t , f ′(µ)$ 〉
X−

α
2
+Mκ ′(t)〈ζ,1ϑ〉

X−
α
2
+Mκ(t)〈ζ,1ζ 〉

X−
α
2

+Ma〈ζ,1$t 〉X−
α
2
+ δ1‖$t‖

2
X−

α
2
− δ1‖$‖

2

X
1−α

2
− aδ1〈$,1ζ 〉X−

α
2

+ δ1〈$, f ′(µ)$ 〉
X−

α
2
+ δ2〈ζ,3

1
2$ 〉

X−
α
2
+ aδ2‖ζ‖

2
X−

α
2

− δ2〈3
−

1
2 ζ, f ′(µ)$ 〉

X−
α
2
− δ2κ(t)〈$t , ζ 〉X−

α
2

− δ2κ
′(t)〈$t , ϑ〉X−

α
2
− aδ2‖$t‖

2
X−

α
2
;

in other words,

(4-7) L′α(t)=M〈$t , f ′(µ)$ 〉
X−

α
2
+Mκ ′(t)〈ζ,1ϑ〉

X−
α
2
+Mκ(t)〈ζ,1ζ 〉

X−
α
2

+(δ1−aδ2)‖$t‖
2
X−

α
2
−δ1‖$‖

2

X
1−α

2
−aδ1〈$,1ζ 〉X−

α
2

+δ1〈$, f ′(µ)$ 〉
X−

α
2
+δ2〈ζ,3

1
2$ 〉

X−
α
2

+aδ2‖ζ‖
2
X−

α
2
−δ2〈3

−
1
2 ζ, f ′(µ)$ 〉

X−
α
2

−δ2κ(t)〈$t ,ζ 〉X−
α
2
−δ2κ

′(t)〈$t ,ϑ〉X−
α
2
.

Next, we collect estimates of the terms that appear on the right side of (4-7).
First, we deal with the three terms in which the nonlinearity of f ′ appears explicitly.

Let

α1 :=
(ρ− 1)(N − 4)

4
.

Note that since ρ < N
N−4 , we obtain α1 < 1. We observe that

〈$t , f ′(µ)$ 〉
X−

α
2
6 ‖$t‖X−

α
2
‖ f ′(µ)$‖

X−
α
2
,

and using the embedding X
α
2 = H 2α(�) ↪→ L p(�) (or equivalently L

p
p−1 (�) ↪→

X−
α
2 ) for any 1< p 6 2N

N−4α (0< α 6 α1) and (1-6), we have for some c4 > 0,

(4-8) ‖ f ′(µ)$‖
X−

α
2
6 c4‖ f ′(µ)$‖

L
2N

N+4α (�)

6 c4C‖$(1+ |µ|ρ−1)‖
L

2N
N+4α (�)

6 c4C‖$‖X‖1+ |µ|ρ−1
‖

L
N
2α (�)

and so
‖ f ′(µ)$‖2

X−
α
2
6 c2

4C2
‖$‖2X‖1+ |µ|

ρ−1
‖

2

L
N
2α (�)

and from (4-4) µ remains in a bounded subset of X
1
2 and X

1
2 ↪→ L

(ρ−1)N
2α (�) for
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any 1< ρ < N−4+4α
N−4 . This implies∫

�

(1+ |µ|ρ−1)
N
2α dx 6 |�| + ‖µ‖

(ρ−1)N−2α
N (ρ−1)

L
(ρ−1)N

2α (�)

6 |�| + c5‖µ‖
(ρ−1)N−2α

N (ρ−1)

X1/2

6 c5,

for some c5 > 0. From this, there exists a positive constant C f,1 > 0 such that

(4-9) ‖ f ′(µ)$‖2
X−

α
2
6 C f,1.

With this we have

(4-10) M〈$t , f ′(µ)$ 〉
X−

α
2
6 ε0

2
‖$t‖

2
X−

α
2
+

M2

2ε0
‖ f ′(µ)$‖2

X−
α
2

6 ε0

2
‖$t‖

2
X−

α
2
+

C f,1 M2

2ε0

for some ε0 > 0.
Again, from (4-9) we obtain

(4-11) δ1〈$, f ′(µ)$ 〉
X−

α
2
6 1

2

(
‖$‖2

X−
α
2
+ δ2

1‖ f ′(µ)$‖2
X−

α
2

)
6 ε1

2
‖$‖2

X
1−α

2
+

C f,1δ
2
1

2ε1

for all ε1 > 0.
We have the embedding Xα

= H 4α(�) ↪→ L p(�) (or equivalently L
p

p−1 (�) ↪→

X−α) for any 1< p 6 2N
N−4(1+α) . From this and using (1-6), it follows that

(4-12) ‖ f ′(µ)$‖
X−

1+α
2
6 c6‖ f ′(µ)$‖

L
2N

N+4(1+α) (�)

6 Cc6‖$(1+ |µ|ρ−1)‖
L

2N
N+4(1+α) (�)

6 Cc6‖$‖X‖1+ |µ|ρ−1
‖

L
N

2(1+α) (�)
,

and so
‖ f ′(µ)$‖2

X−
1+α

2
6 C2c2

6‖$‖
2
X‖1+ |µ|

ρ−1
‖

2

L
N

2(1+α) (�)
,

where

(4-13)
∫
�

(1+ |µ|ρ−1)
N

2(1+α) dx 6 |�| + ‖µ‖
2(1+α)
N (ρ−1)

L
(ρ−1)N
2(1+α) (�)

6 |�| + c7‖µ‖
2(1+α)
N (ρ−1)

X1/2 .

In the last estimate we used the embedding

X
1
2 ↪→ L

(ρ−1)N
2(1+α) (�), 1< ρ <

N + 4α
N − 4

.
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From this, there exists a positive constant c8 such that

‖1+ |µ|ρ−1
‖

2

L
N

2(1+α) (�)
6 c8.

From (4-12) and (4-13), we have

(4-14) −δ2〈3
−

1
2 ζ, f ′(µ)$ 〉

X−
α
2
=−δ2〈3

−
1
2−

α
2 ζ,3−

α
2 f ′(µ)$ 〉X

6 δ2‖ζ‖X−
α
2
‖ f ′(µ)$‖

X−
1+α

2

6 1
2‖ζ‖

2
X−

α
2
+

1
2δ

2
2C f,2

for some C f,2 > 0.
Finally, we consider the last term:

−δ2κ(t)〈$t , ζ 〉X−
α
2
6 δ2κ1‖$t‖X−

α
2
‖ζ‖

X−
α
2
6
δ2κ1

2

(
‖$t‖

2
X−

α
2
+‖ζ‖2

X−
α
2

)
.

Since ϑ remains in a bounded subset of X (see (4-4)), for 1
2 6 α < 1 we have

the embedding L2
= X0 ↪→ X

1
4−

α
2
( 1

4 −
α
2 6 0

)
and

Mκ ′(t)〈ζ,1ϑ〉
X−

α
2
=−Mκ ′(t)〈ζ,3

1
2ϑ〉

X−
α
2

=−Mκ ′(t)〈3
1
4−

α
2 ζ,3

1
4−

α
2 ϑ〉X

6 Mκ1‖3
1
4−

α
2 ζ‖X‖3

1
4−

α
2 ϑ‖X

= Mκ1‖ζ‖X
1
4−

α
2
‖ϑ‖

X
1
4−

α
2

6 1
2 Mκ1c(‖ζ‖2X +‖ϑ‖

2
X )6 C3

for some c > 0 and C3 > 0.
It is not difficult to see that

〈ζ,1ζ 〉
X−

α
2
=−‖ζ‖2

X
1−2α

4
.

From this we conclude that

Mκ(t)〈ζ,1ζ 〉
X−

α
2
6−Mκ0‖ζ‖

2

X
1−2α

4
6−Mc2κ0‖ζ‖

2
X−

α
2
.

Using Cauchy and Young inequalities we obtain

−aδ1〈$,1ζ 〉X−
α
2
= aδ1〈$,3

1
2 ζ 〉

X−
α
2
= aδ1〈3

1
2$, ζ 〉

X−
α
2

6 aδ1‖$‖X
1−α

2
‖ζ‖

X−
α
2
6 1

2aδ1ε2‖$‖
2

X
1−α

2
+

aδ1

2ε2
‖ζ‖2

X−
α
2

for all ε2 > 0, and

δ2〈ζ,3
1
2$ 〉

X−
α
2
6 δ2‖$‖X

1−α
2
‖ζ‖

X−
α
2
6 1

2δ2ε3‖$‖
2

X
1−α

2
+

δ2

2ε3
‖ζ‖2

X−
α
2

for all ε3 > 0.
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Finally, from X ↪→ X−
α
2 we obtain

(4-15)

−δ2κ
′(t)〈$t , ϑ〉X−

α
2
6 δ2κ0‖$t‖X−

α
2
‖ϑ‖

X−
α
2

6 1
2δ2κ0

(
‖$t‖

2
X−

α
2
+‖ϑ‖2

X−
α
2

)
6 1

2δ2κ0
(
‖$t‖

2
X−

α
2
+ c‖ϑ‖2X

)
6 1

2δ2κ0‖$t‖
2
X−

α
2
+ c

for some c > 0.
Now combining (4-7) with (4-10), (4-11) and (4-14)–(4-15) we conclude that

L′α(t)6−
1
2δ1‖$‖

2

X
1−α

2
−
( 1

2δ1−
1
2ε1−

1
2aδ1ε2−

1
2δ2ε3

)
‖$‖2

X
1−α

2

−
(
aδ2−

1
2ε0− δ1−

1
2δ2κ1−

1
2δ2κ0

)
‖$t‖

2
X−

α
2

−

(
Mc2κ0−

1
2 −

aδ1

2ε2
− aδ2−

δ2

2ε3
−

1
2δ2κ1

)
‖ζ‖2

X−
α
2

+
C f,1 M2

2ε0
+

C f,1δ
2
1

2ε1
+

1
2δ

2
2C f,2+C3+ c.

In other words,

L′α(t)6−
1
2δ1‖$‖

2

X
1−α

2
−
( 1

2δ1−
1
2ε1−

1
2aδ1ε2−

1
2δ2ε3

)
‖$‖2

X
1−α

2

−
(
aδ2−

1
2ε0− δ1− δ2κ1

)
‖$t‖

2
X−

α
2

−

(
Mc2κ0−

1
2 −

aδ1

2ε2
− aδ2−

δ2

2ε3
−

1
2δ2κ1

)
‖ζ‖2

X−
α
2

+
C f,1 M2

2ε0
+

C f,1δ
2
1

2ε1
+

1
2δ

2
2C f,2+C3+ c.

Now, it is enough to choose ε1 > 0, ε2 > 0 and ε3 > 0, respectively, such that

ε1 =
δ1

3
, ε2 =

1
3a
, and ε3 =

δ1

3δ2
,

and so

L′α(t)6−
1
2δ1‖$‖

2

X
1−α

2
−
(
aδ2−

1
2ε0− δ1− δ2κ1

)
‖$t‖

2
X−

α
2

−

(
Mc2κ0−

1
2 −

aδ1

2ε2
− aδ2−

δ2

2ε3
−

1
2δ2κ1

)
‖ζ‖2

X−
α
2

+
C f,1 M2

2ε0
+

C f,1δ
2
1

2ε1
+

1
2δ

2
2C f,2+C3+ c.

Since δ1 < δ2, if we assume that a < 1+ κ1, then choosing ε0 > 0 such that

ε0 < 2(a− κ1)δ2− 2δ1 < 2(δ2− δ1),

we conclude that
aδ2−

1
2ε0− δ1− δ2κ1 > 0.
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Now, it is enough to choose M > 0 sufficiently large such that

Mc2κ0−
1
2 −

aδ1

2ε2
− aδ2−

δ2

2ε3
−

1
2δ2κ1 > 0,

and so there exist `1 > 0 and `2 > 0 such that

L′α(t)6−`1(‖$‖
2

X
1−α

2
+‖$t‖

2
X−

α
2
+‖ζ‖2

X−
α
2
)+ `2.

From this, (4-1), and the fact A(t) = {ξ(t); ξ(t) is a global bounded solution}
we obtain

(4-16)
⋃
t∈R

A(t) is bounded in X
2−α1

2 × X
1−α1

2 × X
1−α1

2 .

Using (4-16) and restarting from (4-8) and (4-12) with α2 = (1+ ρ)α1 − ρ it
follows that ⋃

t∈R

A(t) is bounded in X
2−α2

2 × X
1−α2

2 × X
1−α2

2 .

Iterating this procedure a finite number of times, we can now show that⋃
t∈R

A(t) is bounded in X1
× X

1
2 × X

1
2 ,

which implies
sup
ξ∈A

sup
t∈R

{‖ξ(t)‖Y , ‖ξ(t)‖Y 1, ‖ξt(t)‖Y }<∞,

where A is the set of global bounded solutions for (1-8). �

5. Upper semicontinuity of the pullback attractors

From the results obtained in the previous section, we can prove a result on upper
semicontinuity of the pullback attractors with respect to the functional parameter
κ . Let {κε : ε ∈ [0, 1]} be the family of real valued functions of one real variable
satisfying (1-4), and denote by S(κε)( · , · ) and {A(κε)(t) : t ∈ R}, respectively, the
evolution process and its pullback attractor associated with problem (1-1)–(1-3).

Moreover, we will assume that

‖κε − κ0‖L∞(R)→ 0 as ε→ 0+.

Now we are able to present the main result of this section.

Theorem 5.1. For each a > 0 and ε ∈ [0, 1], let w(ε)(·) = S(κε)( · , τ )w0 be the
solution of (1-8) in Y. Then, for each T > 0, w(ε) converges to w(0) in C([0, T ]; Y )
as ε→ 0+. Moreover, the family of pullback attractors {A(κε)(t) : t ∈ R} is upper
semicontinuous in ε = 0.
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Proof. For each w0 ∈ Y , consider w(ε) = S(κε)(t, τ )w0 and w(0) = S(κ0)(t, τ )w0.
Let w = w(ε) − w(0), with w(ε) = (u(ε), u(ε)t , θ (ε)) and w(0) = (u(0), u(0)t , θ (0))
(u = u(ε)− u(0) and θ = θ (ε)− θ (0)). Then, for all t > τ and x ∈�,{

ut t +1
2u+ a1θ = f (u(ε))− f (u(0)),

θt − κε(t)1θ (ε)+ κ0(t)1θ (0)− a1ut = 0.

Multiplying the first equation by ut and multiplying the second equation by θ ,
we get

1
2

d
dt

∫
�

|ut |
2 dx+1

2
d
dt

∫
�

|1u|2 dx+a
∫
�

1θut dx =
∫
�

[ f (u(ε))− f (u(0))]ut dx,

1
2

d
dt

∫
�

|θ |2 dx+κε(t)
∫
�

|∇θ |2 dx−(κε−κ0)(t)
∫
�

1θ (0)θ dx−a
∫
�

1utθ dx = 0.

Since ∫
�

1θut dx =
∫
�

1utθ dx,

it follows that

(5-1)
d
dt

(
1
2

∫
�

|ut |
2 dx + 1

2

∫
�

|1u|2 dx + 1
2

∫
�

|θ |2 dx
)

=−κε(t)
∫
�

|∇θ |2 dx

+(κε − κ0)(t)
∫
�

1θ (0)θ dx +
∫
�

[ f (u(ε))− f (u(0))]ut dx

6 (κε − κ0)(t)
∫
�

1θ (0)θ dx +
∫
�

[ f (u(ε))− f (u(0))]ut dx .

Using Young’s inequality∫
�

∇θ (0)∇θ dx 6 1
2

∫
�

|∇θ (0)|2 dx + 1
2

∫
�

|∇θ |2 dx,

by (5-1) we conclude that

(5-2)
d
dt

(
‖ut‖

2
X +‖u‖

2
X1/2 +‖θ‖

2
X
)

6 ‖θ (0)‖2H1
0 (�)
‖κε − κ0‖L∞(R)+‖θ‖

2
H1

0 (�)
‖κε

−κ0‖L∞(R)+ 2
∫
�

[ f (u(ε))− f (u(0))]ut dx,

and from Section 4 we havew=w(ε)−w(0), withw(ε)= (u(ε), u(ε)t , θ (ε)) andw(0)=
(u(0), u(0)t , θ (0)) (u = u(ε)− u(0) and θ = θ (ε)− θ (0)) bounded in X1

× X
1
2 × X

1
2.
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Hence there exists C > 0 independent of ε > 0 such that

(5-3) ‖θ‖H1
0 (�)
6 C (and ‖θ (0)‖H1

0 (�)
6 C)

for any ε ∈ [0, 1).
Combining (5-2) and (5-3) we conclude that

(5-4) d
dt
(‖ut‖

2
X+‖u‖

2
X1/2+‖θ‖

2
X )6C‖κε−κ0‖L∞(R)+2

∫
�

[ f (u(ε))− f (u(0))]ut dx,

where C > 0 is independent of ε.
From the mean value theorem, assumption (1-6) and (ρ−1)

2ρ +
1

2ρ +
1
2 = 1, we

obtain∫
�

[ f (u(ε))− f (u(0))]ut dx

6 ‖ f ′(ξu(ε)+ (1− ξ)u(0))‖
L

2ρ
ρ−1 (�)

‖u(ε)− u(0)‖L2ρ(�)‖ut‖L2(�)

6 C0, f ‖u(ε)− u(0)‖L2ρ(�)‖ut‖X ,

and so∫
�

[ f (u(ε))− f (u(0))]ut dx 6 C0, f ‖u‖L2ρ(�)‖ut‖X 6 C0, f ‖u‖X1/2‖ut‖X

for some ξ ∈ [0, 1] and such that C0, f > 0 is a constant depending on the initial data.
Hence, from Young’s inequality,

(5-5)
∫
�

[ f (u(ε))− f (u(0))]ut dx 6 C ′(‖u‖2X1/2 +‖ut‖
2
X +‖θ‖

2
X )

for some C ′ > 0 independent of ε.
Therefore, by (5-4) and (5-5)

d
dt
(‖u‖X1/2 +‖ut‖X +‖θ‖X )6 C‖κε−κ0‖L∞(R)+C ′′(‖u‖2X1/2 +‖ut‖

2
X +‖θ‖

2
X ),

and consequently

(5-6) ‖ut‖
2
X +‖u‖

2
X1/2 +‖θ‖

2
X 6 C‖κε − κ0‖L∞(R)(t − τ)eC ′′(t−τ), t > τ,

that is, w(ε)(= S(κε)(t, τ )w0) goes to w(0) (= S(κ0)(t, τ )w0) as ε→ 0+ in compact
subsets of R uniformly for w0 in bounded subsets of Y.

For δ > 0 given, let τ ∈ R be such that dist(S(κ0)(t, τ )B,A(κ0)(t)) <
δ
2 for all

t ∈ R, B ⊃
⋃

s6t A(κε)(s), is a bounded set in Y whose existence is guaranteed by
Theorem 2.11.

Using (5-6), there exists ε0 > 0 such that

sup
uε∈A(κε)(τ )

‖S(κε)(t, τ )uε − S(κ0)(t, τ )uε‖Y <
δ

2
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for all ε < ε0. Finally,

distH (A(κε)(t),A(κ0)(t))

6 distH (S(κε)(t, τ )A(κε)(τ ), S(κ0)(t, τ )A(κε)(τ ))
+ distH (S(κ0)(t, τ )A(κε)(τ ), S(κ0)(t, τ )A(κ0)(τ ))

6 sup
uε∈A(κε)(τ )

distH (S(κε)(t, τ )uε, S(κ0)(t, τ )uε)

+ distH (S(κ0)(t, τ )A(κε)(τ ),A(κ0)(t))

<
δ

2
+
δ

2
= δ,

which proves the upper semicontinuity of the family of attractors. �

Remark. Observe that, if we assume that a is continuously differentiable in R, and
there exist positive constants a0 and a1 such that

0< a0 6 a(t), a′(t)6 a1 for all t ∈ R,

then all the calculations in this paper remain valid for a(t) instead of a.
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