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LOWER SEMICONTINUITY OF THE ADM MASS IN
DIMENSIONS TWO THROUGH SEVEN

JEFFREY L. JAUREGUI

The semicontinuity phenomenon of the ADM mass under pointed (i.e., local)
convergence of asymptotically flat metrics is of interest because of its con-
nections to nonnegative scalar curvature, the positive mass theorem, and
Bartnik’s mass-minimization problem in general relativity. We extend a
previously known semicontinuity result in dimension three for C2 pointed
convergence to higher dimensions, up through seven, using recent work of
S. McCormick and P. Miao (which itself builds on the Riemannian Penrose
inequality of H. Bray and D. Lee). For a technical reason, we restrict to
the case in which the limit space is asymptotically Schwarzschild. In a
separate result, we show that semicontinuity holds under weighted, rather
than pointed, C2 convergence, in all dimensions n ≥ 3, with a simpler proof
independent of the positive mass theorem. Finally, we also address the two-
dimensional case for pointed convergence, in which the asymptotic cone
angle assumes the role of the ADM mass.

1. Introduction

Motivated by the Bartnik minimal mass extension conjecture in general relativity
[1989; 1997; 2002], as well as the study of Ricci flow on asymptotically flat
manifolds [Dai and Ma 2007; Oliynyk and Woolgar 2007], in [Jauregui 2018]
the author established the following result regarding how the ADM mass behaves
under pointed convergence of a sequence of asymptotically flat 3-manifolds of
nonnegative scalar curvature. Briefly, the ADM mass cannot increase in a local C2

limit:

Theorem 1 [Jauregui 2018]. Let (Mi , gi , pi ) be a sequence of pointed asymptoti-
cally flat 3-manifolds without boundary, such that each (Mi , gi ) has nonnegative
scalar curvature and contains no compact minimal surfaces. If (Mi , gi , pi ) con-
verges in the pointed C2 Cheeger–Gromov sense to a pointed asymptotically flat
3-manifold (N , h, q), then

(1) mADM(N , h)≤ lim inf
i→∞

mADM(Mi , gi ).
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We recall the relevant definitions in Section 3; for now we note that pointed
Ck Cheeger–Gromov convergence essentially means Ck convergence of the metric
tensors on compact subsets, modulo diffeomorphisms. Examples are given in
[Jauregui 2018] in which strictness holds in (1).

Theorem 1 is intimately connected to scalar curvature and to the positive mass
theorem (PMT) [Schoen and Yau 1979a; Witten 1981]. In [Jauregui 2018] it was
shown that (1) can fail without assuming nonnegative scalar curvature (and the
absence of compact minimal surfaces). Somewhat surprisingly, a simple blow-
up example in [Jauregui 2018] shows that Theorem 1 actually implies the PMT.
However, to prove Theorem 1, either the PMT itself, or a stronger result, is required.
The key estimate in the proof of Theorem 1 was the lower bound

(2) mADM ≥ m H (6)

of the ADM mass in terms of the Hawking mass of an outward-minimizing surface6,
established by G. Huisken and T. Ilmanen [2001]. Note that it is well known that (2)
implies the PMT.

Two major questions were left unsettled in [Jauregui 2018]. First, to what
extent does this lower semicontinuity property of the ADM mass hold for weaker
convergence than C2? Subsequently the author and D. Lee proved in [Jauregui and
Lee 2017] that the theorem continues to hold if only pointed C0 convergence is
assumed. Second, does Theorem 1 generalize to higher dimensions? The primary
concern of the present paper is to address the latter question.

Unfortunately, a bound directly analogous to (2) is unknown beyond dimension
three: Huisken–Ilmanen’s proof in n = 3 uses “Geroch monotonicity” of the Hawk-
ing mass, which crucially relies on the Gauss–Bonnet theorem in one dimension
lower. Generally, the missing link in establishing Theorem 1 in higher dimensions
has been a useful quantitative lower bound for the ADM mass in terms of the
geometry of an outward-minimizing surface. Fortunately, a recent result of S. Mc-
Cormick and P. Miao [2017] provides such an estimate (see Theorem 7 below) that
is sufficient for our purposes. Their work uses the Riemannian Penrose inequality
in higher dimensions, due to Bray and Lee [2009] (which itself was a generalization
of Bray’s original proof in dimension three [2001]). Our main result is:

Theorem 2. Theorem 1 is true with “3” replaced by “n”, where 3≤n≤7, provided
the limit (N , h) is asymptotically Schwarzschild.

The Riemannian manifolds (Mi , gi ) need not be asymptotically Schwarzschild
even if their limit (N , h) is.

The restriction in Theorem 2 of n ≤ 7 is primarily due to the fact that it is the
highest dimension in which the Riemannian Penrose inequality is currently known.
It was pointed out in [Bray and Lee 2009] that even the positive mass theorem
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for n ≥ 8 is insufficient to automatically extend the Riemannian Penrose inequality
to n ≥ 8. We strongly conjecture that the n ≤ 7 restriction is unnecessary, and
that the asymptotically Schwarzschild hypothesis can be replaced with asymptotic
flatness; see Remark D.

Remark A. It is reasonable to attempt to extend Theorem 1 to spin manifolds in
higher dimensions using Witten’s spinor technique in his proof of the PMT [1981].
However, as pointed out to the author by Bray, it is not clear how to make effective
use of the hypothesis of no compact minimal surfaces in the spinor argument, and
it was shown in [Jauregui 2018] that (1) can fail without this hypothesis.

For the purpose of telling a more complete story, we also include two other
related results. First, assuming weighted (rather than pointed) C2 convergence, we
prove lower semicontinuity of the ADM mass in all dimensions n ≥ 3 (Theorem 13
below). Weighted convergence assumes global control on the asymptotics of the
metrics, in contrast to pointed convergence. In this case, with a stronger hypothesis
than in Theorems 1 and 2, the absence of compact minimal surfaces is unnecessary
and the proof is easier. However, the weighted result does not recover nor rely on
the positive mass theorem. Prior results for weighted convergence were known; see
Section 6 (in particular Remark E) for details.

Second, it was suggested by E. Woolgar that the author investigate the lower
semicontinuity of “mass” in dimension two. This is carried out in Section 7 for
pointed C2 convergence, where the asymptotic cone angle replaces the ADM mass;
see Theorem 14.

2. Motivation and examples

In this section we describe several examples to motivate the lower semicontinuity
phenomenon for the ADM mass.

2.1. Lower semicontinuity of mass in Newtonian gravity. We begin here with a
general discussion of why lower semicontinuity of the total mass is plausible from
the point of view of Newtonian gravity. Consider a matter distribution on Rn

described by a continuous, integrable mass density function ρ ≥ 0. The total
Newtonian mass is simply given by the integral

m(ρ)=
∫

Rn
ρ dx1

· · · dxn.

Now, if {ρi }
∞

i=1 is a sequence of such matter distributions that converges pointwise
to ρ, then by Fatou’s lemma,

lim inf
i→∞

m(ρi )≥ m(ρ).

Any drop in the total Newtonian mass can be viewed as mass escaping out to infinity
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in the limit. Such an argument does not apply to the context of general relativity,
because the ADM mass is not known (or expected) to be given as the integral of a
locally defined, nonnegative, geometric/physical quantity.

Convergence of ρi to ρ in Newtonian gravity is analogous to C2 convergence
of the Riemannian metrics in general relativity, as the scalar curvature represents
energy density and is given by two derivatives of the metric. The C0 convergence
in [Jauregui and Lee 2017] can then be viewed as a general relativistic analog of
convergence of the Newtonian gravitational potentials ui → u, where 1ui = 4πρi

and 1u = 4πρ.

2.2. Blow-up example. In [Jauregui 2018], the author gave the example of a fixed
asymptotically flat n-manifold (M, g) of nonnegative scalar curvature and con-
sidered the sequence of homothetic rescalings {(M, i2g, p)} for p ∈ M fixed and
i = 1, 2, . . . . This sequence converges in the pointed C2 Cheeger–Gromov sense
to Euclidean Rn (which has zero ADM mass), and indeed the statement of lower
semicontinuity of mass implies that the ADM mass of (M, g) is nonnegative. In
other words, the positive mass theorem is recovered.

The example in Section 2.1 suggests that from a Newtonian point of view, the
mass-drop phenomenon can be completely accounted for by matter escaping off to
infinity. But by choosing (M, g) here to be scalar-flat (i.e., vacuum) with positive
ADM mass, the example of {(M, i2g, p)} converging to Euclidean space shows that
the mass can drop by an infinite amount in the limit with no matter fields present.
This can be interpreted as the energy of the gravitational field escaping to infinity.

2.3. Escaping point example. Similar to the previous example, begin with a fixed
asymptotically flat n-manifold (M, g). Now consider a sequence of points {pi } in M
escaping to infinity. By asymptotic flatness, the sequence {(M, g, pi )} converges
in the pointed C2 Cheeger–Gromov sense to Euclidean Rn. Again the statement
of lower semicontinuity of ADM mass here recovers the positive mass theorem;
and again by choosing (M, g) to be scalar-flat with positive ADM mass we can
interpret the mass drop as gravitational energy escaping to infinity.

2.4. Lower semicontinuity of mass and Ricci flow. To the author’s knowledge,
the ADM mass drop phenomenon under pointed convergence was first observed
by T. Oliynyk and Woolgar in their study of Ricci flow on rotationally symmetric,
asymptotically flat spaces [2007]; see also the work of X. Dai and L. Ma, who
first showed that the ADM mass is constant along Ricci flow, thereby arguing an
asymptotically flat Ricci flow cannot converge uniformly to Euclidean space [Dai
and Ma 2007]. Under natural hypotheses, Oliynyk and Woolgar proved the long-
time existence of Ricci flow on asymptotically flat, rotationally symmetric spaces,
with pointed Ck Cheeger–Gromov convergence to Euclidean space as t → ∞.
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Moreover, the ADM mass is not only monotone but is in fact constant along the
Ricci flow. In particular, if the initial space has positive ADM mass, then the ADM
mass must drop to zero in the limit.

In light of this discussion, the author suggested in [Jauregui 2018] that using
Theorem 1 (or its higher-dimensional analog) would be necessary in any proof of
the PMT that involved convergence of the Ricci flow to Euclidean space. Since
Theorem 1 already subsumes the PMT, this seemed to suggest that an independent
Ricci flow proof of the PMT was unlikely. Nevertheless, such a proof has very
recently been given by Y. Li in [2018]. His argument circumvents this apparent
circular logic by establishing lower semicontinuity of the ADM mass directly for the
case of a convergent Ricci flow (i.e., the technique does not apply to general pointed
C2 Cheeger–Gromov convergence). We generalize Li’s argument to weighted C2

convergence in Section 6.

3. Background

We begin with the definition of an asymptotically flat manifold (with one end).
Many slight variants appear in the literature; the version below is commonly used.

Definition 3. A smooth, connected Riemannian n-manifold (M, g), with n ≥ 3,
possibly with compact boundary, is asymptotically flat (AF) if there exists a compact
set K ⊂ M and a diffeomorphism 8 : M \ K → Rn

\ B, for a closed ball B, such
that in the “asymptotically flat” coordinates x = (x1, . . . , xn) given by 8, we have

(3) gi j = δi j + O(|x |−τ ), ∂k gi j = O(|x |−τ−1), ∂k∂`gi j = O(|x |−τ−2),

for some constant τ > n−2
2 (the order), and the scalar curvature of g is integrable.

(Indices i, j, k, ` above run from 1 to n, and ∂ denotes partial differentiation in the
coordinate chart.)

For example, for a real number m > 0, the Schwarzschild metric

gi j =

(
1+

m
2|x |n−2

) 4
n−2

δi j

on Rn minus a ball about the origin is asymptotically flat of order n− 2.
We will also need two classes of asymptotically flat manifolds with more restricted

asymptotics at infinity:

Definition 4. An asymptotically flat Riemannian n-manifold (M, g) is asymptot-
ically Schwarzschild if there exists an “asymptotically Schwarzschild coordinate
system” (x1, . . . , xn) on M \ K, i.e.,

(4) gi j =

(
1+

m
2|x |n−2

) 4
n−2

δi j + hi j ,



446 JEFFREY L. JAUREGUI

for some real constant m, where

(5) hi j = O(|x |1−n), ∂khi j = O(|x |−n), ∂k∂`hi j = O(|x |−n−1).

Note that an asymptotically Schwarzschild Riemannian n-manifold is AF of
order n− 2.

Definition 5. An asymptotically flat Riemannian n-manifold (M, g) is harmon-
ically flat at infinity (HF) if there exists a “harmonically flat coordinate system”
(x1, . . . , xn) on M \ K, i.e.,

gi j =U
4

n−2 δi j ,

on M \ K for some function U, where 1U = 0 and U (x)→ 1 as |x | →∞. (Here
1 is the Euclidean Laplacian on Rn.)

It is well known that the harmonic function U appearing in Definition 5 admits
an expansion at infinity of the form

(6) U (x)= 1+
a
|x |n−2 + O∞(|x |−n+1),

where the notation Ok(|x |`) denotes an expression that is O(|x |`) for |x | large
and for which the γ th partial derivative (γ being a multi-index with |γ | ≤ k) is
O(|x |`−|γ |). The fact that 1U = 0 implies that g as above has zero scalar curvature
outside of K. Note that HF manifolds are necessarily asymptotically Schwarzschild,
and that the Schwarzschild metric itself is HF.

Next, we recall the definition of ADM mass.

Definition 6. The ADM mass [Arnowitt et al. 1961] (cf. [Bartnik 1986; Chruściel
1986]) of an asymptotically flat manifold (M, g) of dimension n is the real number

mADM(M, g)=
1

2(n− 1)ωn−1
lim

r→∞

∫
Sr

n∑
i, j=1

(∂i gi j − ∂ j gi i )
x j

r
d A,

where d A is the induced volume form on the coordinate sphere

Sr = {|x | = r}

with respect to the Riemannian metric δi j , all in an AF coordinate chart.

It is straightforward to verify that for an HF manifold, the ADM mass is given
by the value 2a, where a is the constant appearing in (6), and for an asymptotically
Schwarzschild manifold, the ADM mass is given by the constant m appearing in (5).

Recall that if (M, g) is asymptotically flat with boundary ∂M, then we say ∂M
is outward-minimizing if

|S| ≥ |∂M |
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for all surfaces S enclosing ∂M, where | · | denotes the hypersurface area (with
respect to g). The following theorem was recently proved by McCormick and Miao
[2017].

Theorem 7 [McCormick and Miao 2017]. Let (M, g) be an AF manifold of dimen-
sion 3≤ n ≤ 7, with compact, connected boundary 6 that is outward-minimizing.
Assume that the scalar curvature of (M, g) is nonnegative. Let H ≥ 0 be the mean
curvature of 6 (in the direction pointing into M), let ρ be the scalar curvature of 6
with respect to the induced Riemannian metric, and suppose that

min
6
ρ >

n−2
n−1

max
6

H 2.

Then

(7) mADM(M, g)≥ 1
2

(
|6|

ωn−1

)n−2
n−1

(
1− n−2

n−1
max6 H 2

min6 ρ

)
.

To simplify notation later, we make the following definition.

Definition 8. Let S be a smooth, compact hypersurface in a Riemannian manifold
(M, g) of dimension n ≥ 3. Define

Fg(S)=
1
2

(
|S|
ωn−1

)n−2
n−1

(
1− n−2

n−1
·

maxS H 2

minS ρ

)
,

where |S|, H, and ρ are the area, mean curvature, and scalar curvature of 6 with
respect to the Riemannian metric induced by g.

We conclude this section with the definition of convergence used in Theorems 1
and 2.

Definition 9. Fix a nonnegative integer `. A sequence of complete, connected,
pointed Riemannian n-manifolds (Mi , gi , pi ) converges in the pointed C` Cheeger–
Gromov sense to a complete, connected, pointed Riemannian n-manifold (N , h, q)
if for every r > 0 there exists a domain � containing the metric ball Bh(q, r)
in (N , h), and there exist (for all i sufficiently large) smooth embeddings

8i :�→ Mi

such that 8i (�) contains the metric ball Bgi (pi , r), and the Riemannian metrics
8∗i gi converge in C` norm to h as tensors on �.

Note that no Mi need be diffeomorphic to N in the above definition, and that the
asymptotics of Mi can be wildly different from those of N in the noncompact case.
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4. The mass of asymptotically Schwarzschild metrics

In this section we prove that the ADM mass of an asymptotically Schwarzschild
manifold can be recovered from the r→∞ limit of the expression Fg(Sr ), a key
ingredient in the proof of Theorem 2. Before doing so (in Lemma 11), we first
verify this for HF metrics in Lemma 10.

Remark B. For an asymptotically flat manifold (M, g) of dimension 3 ≤ n ≤ 7,
the inequality

mADM(M, g)≥ lim sup
r→∞

Fg(Sr )

follows from Theorem 7. However, equality need not hold. Such an example,
pointed out to the author by McCormick, can be found by considering an AF
manifold (M, g) of nonnegative scalar curvature and strictly positive ADM mass
that contains an isometric copy of half of a Euclidean space. Such spaces were
constructed by Carlotto and Schoen [2016]. For r sufficiently large, Sr intersects
the Euclidean region in M, which gives Fg(Sr )≤ 0.

Lemma 10. If (M, g) is an HF manifold, then

(8) mADM(M, g)= lim
r→∞

Fg(Sr ),

where Fg is given in Definition 8, and Sr is the coordinate sphere {|x | = r} in a
harmonically flat coordinate system.

Except for the calculations (9) at the end of the following proof, the proof of
Lemma 11 will be independent of Lemma 10.

Proof. The proof involves straightforward computations of the asymptotic behavior,
for large r , of the area, mean curvature, and scalar curvature of Sr . Let U be the
harmonic function as in Definition 5, with expansion (6).

First we compute the area of Sr :

|Sr |g =

∫
Sr

U
2(n−1)

n−2 d A

=

∫
Sr

(
1+ 2a(n−1)

(n−2)rn−2 + O(r1−n)

)
d A

= ωn−1rn−1
(

1+ 2a(n−1)
(n−2)rn−2

)
+ O(1),

where d A is the area form on Sr induced by δ. In particular,

1
2

(
|Sr |g

ωn−1

)n−2
n−1
=

1
2

rn−2
(

1+ 2a
rn−2

)
+ O(r−1).
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Second we compute the mean curvature. Recall that the mean curvature of Sr

with respect to δi j is n−1
r . From a well-known formula relating the mean curvatures

of conformally related Riemannian metrics, letting Hr represent the mean curvature
of Sr with respect to g, we have

Hr =U−
2

n−2 ·
n−1

r
+

2(n−1)
n−2

·U−
n

n−2 · ν(U )

=

(
1+ a

rn−2 + O(r1−n)

)− 2
n−2
·

n−1
r

+
2(n−1)

n−2

(
1+ a

rn−2 + O(r1−n)

)− n
n−2

(
−

a(n−2)
rn−1 + O(r−n)

)
=

(
1− 2a

(n−2)rn−2 + O(r1−n)

)
·

n−1
r

+
2(n−1)

n−2

(
1− an

(n−2)rn−2 + O(r1−n)

)(
−

a(n−2)
rn−1 + O(r−n)

)
=

n−1
r
−

2a(n−1)2

(n−2)rn−1 + O(r−n),

where we used the fact that the δ-unit normal ν to Sr equals ∂
∂r . Thus,

H 2
r =

(n− 1)2

r2 −
4a(n− 1)3

(n− 2)rn + O(r−n−1).

Third, we compute the scalar curvature of Sr with respect to g|T Sr . Recall that if
g2= e2ψg1 are conformally related Riemannian metrics on a manifold of dimension
n− 1, then their scalar curvatures are related by

Rg2 = e−2ψ(Rg1 − 2(n− 2)1g1ψ − (n− 3)(n− 2)|dψ |2g1
).

In particular, with g2 = g|T Sr , g1 = δ|T Sr , and U
4

n−2 = e2ψ on Sr , we have

ρ =U−
4

n−2

(
(n−1)(n−2)

r2 −
41rU

U
+

4|∇rU |2

(n−2)U 2

)
,

where 1r and ∇r are the Laplacian and (tangential) gradient on Sr with the Rie-
mannian metric induced from δ, and | · |2 is taken with respect to δ. Now, we
address the Laplacian term. A well known formula for smooth functions f on Rn is

1 f =16 f +Hess( f )(ν, ν)+ H∂ν( f ),

where 6 is a smooth hypersurface with unit normal ν, mean curvature H in the
direction of ν, and induced Laplacian 16 . Applying this to f = U and 6 = Sr ,
we have

0=1rU +Hess(U )(∂r , ∂r )+
n−1

r
·
∂U
∂r
.
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By explicit calculation, the leading (i.e., O(r−n)) terms of Hess(U )(∂r , ∂r ) and
n−1

r ·
∂U
∂r cancel, implying that

1rU = O(r−n−1).

Next, for the term |∇rU |, since 1+ a/(rn−2) is constant on Sr , we see from the
expansion of U that

|∇rU |2 = O(r−2n).

Using these expansions, along with the expansion for U, we arrive at

ρ =

(
1+ a

rn−2 + O(r1−n)

)− 4
n−2

(
(n−1)(n−2)

r2 + O(r−n−1)

)
=
(n−1)(n−2)

r2 −
4a(n− 1)

rn + O(r−n−1).

Putting it all together, we have

(9) Fg(Sr )=

(
1
2

rn−2
(

1+ 2a
rn−2

)
+ O(r−1)

)
×

(
1− n−2

n−1
·

(n−1)2

r2 −
4a(n−1)3
(n−2)rn + O(r−n−1)

(n−1)(n−2)
r2 −

4a(n−1)
rn + O(r−n−1)

)

=

(
1
2

rn−2
+ a+ O(r−1)

)(
1−

1− 4a(n−1)
(n−2)rn−2 + O(r−n+1)

1− 4a
(n−2)rn−2 + O(r−n+1)

)

=

(
1
2

rn−2
+ a+ O(r−1)

)(
4a

rn−2
+ O(r−n+1)

)
= 2a+ O(r−1).

Since the ADM mass of g equals 2a, the proof is complete. �

The next lemma is a generalization of the previous one:

Lemma 11. If (M, g) is an asymptotically Schwarzschild manifold, then

mADM(M, g)= lim
r→∞

Fg(Sr ),

where Sr is the coordinate sphere {|x | = r} in an asymptotically Schwarzschild
coordinate system.

Proof. This follows from Lemma 15 in the Appendix and (9). �

5. Proof of Theorem 2

The method of proof of Theorem 2 is similar to the proof of Theorem 1 in [Jauregui
2018].
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Let mi = mADM(Mi , gi ), and note that mi ≥ 0 by the positive mass theorem in
dimension 3 ≤ n ≤ 7 ([Schoen and Yau 1979a; 1979b], cf. Section 4 of [Schoen
1989]). If mADM(N , h)= 0, the claim (1) follows trivially, so we may assume it is
strictly positive.

Let ε > 0. Fix an asymptotically Schwarzschild coordinate system (x1, . . . , xn)

on (N , h), and let Sr denote the coordinate sphere {|x | = r}, a smooth, compact
hypersurface in N for r sufficiently large. Let Br denote the bounded open region
in N that Sr encloses.

By Lemma 11 and the hypothesis that (N , h) is asymptotically Schwarzschild
of positive ADM mass, we may choose a number r1 > 0 sufficiently large so that

mADM(N , h) < Fh(Sr1)+
ε

2
, and(10)

Fh(Sr1) > 0.(11)

By asymptotic flatness of h, we may increase r1 if necessary, preserving (10)
and (11), to arrange that the mean curvature of Sr with respect to h is strictly
positive for all r ≥ r1, and that hypersurface areas measured with respect to h and
the Euclidean metric δ differ by at most a factor of 2 on N \ Br1 (i.e., the respective
Hausdorff (n−1)-measures are uniformly equivalent by factors of 2).

We apply the definition of pointed C2 Cheeger–Gromov convergence. First, take
a number r2 > 0 so that the metric ball Bh(q, r2) contains B33r1 . (The value 33r1

is chosen because later we will need a point in B33r1 \ Br1 that is distance 16r1

from both the inner and outer boundary.) Then there exists a domain U ⊂ N, with
U ⊃ Bh(q, r2) ⊃ B33r1 , and smooth embeddings 8i : U → Mi , for i ≥ some i0,
with 8i (U )⊃ Bgi (pi , r2), such that

(12) hi :=8
∗

i gi → h in C2 on U.

(Below, we will repeatedly use the fact that 8i : (U, hi )→ (8i (U ), gi ) is trivially
an isometry.) Taking i to be at least some i1 ≥ i0, we can be sure that hypersurface
areas measured with respect to hi and h differ by at most a factor of 2 on U, by C0

convergence. Taking i to be at least some i2 ≥ i1, we can arrange that the mean
curvatures of Sr with respect to hi are strictly positive for all r ∈ [r1, 33r1], using
C1 convergence of hi to h on U.

Next, let Si = 8i (Sr1), a smooth compact hypersurface in Mi . We want to
apply Theorem 7 to the AF manifold-with-boundary obtained by removing 8i (Br1)

from Mi (whose boundary is Si ). To do so, we must verify that Si is outward-
minimizing in (Mi , gi ). (This is not at all obvious, since Si need not even lie in the
asymptotically flat end of (Mi , gi ).) This issue was handled in [Jauregui 2018] via
a monotonicity formula for minimal surfaces in a Riemannian manifold. However,
we will instead use the more robust argument in [Jauregui and Lee 2017], using the
notion of almost-minimizing currents.
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Lemma 12. For i ≥ i2, Si is (strictly) outward-minimizing in (Mi , gi ).

Proof of Lemma 12. It is well known from standard results in geometric measure
theory (see [Huisken and Ilmanen 2001] for instance) that there exists a compact
hypersurface S̃i enclosing Si that has the least hypersurface area (with respect to gi )
among all compact hypersurfaces in Mi enclosing Si . Moreover, S̃i has at least
C1,1 regularity, and S̃i \ Si , if nonempty, is a smooth minimal hypersurface. (This
uses n ≤ 7.) We complete the proof of the lemma by arguing that S̃i = Si , assuming
henceforth that i ≥ i2.

If S̃i were to possess a connected component disjoint from Si , then that component
would be a compact minimal hypersurface in (Mi , gi ), contrary to the hypothesis
of Theorem 2. Thus, every connected component of S̃i intersects Si .

Next, if S̃i happens to be contained in the compact region 8i (B33r1) and hence
in 8i (B33r1 \ Br1), there exists some point p ∈ S̃i at which the function

r ◦8−1
|S̃i

achieves its maximum on S̃i . Say this maximum value is r∗ ∈ [r1, 33r1]. If r∗ > r1,
then S̃i is smooth and minimal (with respect to gi ) near p and is tangent to 8i (Sr∗).
However, this contradicts the standard comparison principle for mean curvature,
as 8i (Sr∗) has strictly positive mean curvature with respect to gi (because Sr∗ has
strictly positive mean curvature with respect to hi ). Thus, r∗ = r1, and so S̃i = Si ,
as claimed.

The only remaining case is that S̃i possesses a connected component, say S̃′i , that
is not contained in 8i (B33r1 \ Br1), but that intersects Si =8i (Sr1). Let

Ti =8
−1
i (S̃′i ∩8i (B33r1 \ B̄r1)) ⊂ B33r1 \ B̄r1 ⊂ N .

Note that Ti is a smooth hypersurface in the AF end of N, so that we may regard
Ti ⊂ Rn with ∂Ti ⊂ Sr1 ∪ S33r1 . By the connectedness of S̃′i and the continuity of r ,
there exists some point qi ∈ Ti ∩ S17r1 , and the Euclidean distance from qi to ∂Ti

is 16r1. Viewing Ti naturally as an (n−1)-dimensional integral current in Rn, we
claim that Ti is γ -almost-minimizing for γ = 16 (and will verify this later). Recall
this means that given any ball B in Rn that does not intersect ∂Ti , and any integral
current T with the same boundary as the restriction TixB, we have

|TixB|δ ≤ γ |T |δ

for some constant γ ≥ 1. (Here we are using | · |δ to denote both the Euclidean
hypersurface area and the more general current mass.) The following fact is a
natural generalization of the classical monotonicity formula for minimal surfaces to
the class of γ -almost-minimizing currents (see [Bray and Lee 2009] for instance):
for 0≤ s < dist(qi , ∂Ti )= 16r1,

|TixB(qi , s)|δ ≥ γ 2−nωn−1sn−1.
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Taking the limit s↗ 16r1, we have

|TixB(qi , 16r1)|δ ≥ γ
2−nωn−1(16r1)

n−1
= 16ωn−1(r1)

n−1,

taking γ = 16. Using the factor-of-two area comparisons between δ and h and
between h and hi on U \ Br1 for i ≥ i2, we then have

|TixB(qi , 16r1)|hi ≥
1
4 · 16ωn−1(r1)

n−1.

Applying 8i , it follows that |S̃′i ∩8i (B33r1)|gi ≥ 4ωn−1(r1)
n−1. Since S̃i leaves

8i (B33r1), we obtain a strict inequality below:

(13) |S̃i |gi ≥ |S̃
′

i |gi > 4ωn−1(r1)
n−1.

On the other hand, since S̃i by definition has at most as much gi -area as Si ,

|S̃i |gi ≤ |Si |gi = |Sr1 |hi ≤ 4|Sr1 |δ = 4ωn−1(r1)
n−1,

producing a contradiction with (13).
We now prove that Ti is γ -almost-minimizing in Rn with γ = 16, which will

complete the proof of Lemma 12. Since Ti is area-minimizing with respect to hi in
B33r1 \ Br1 , we know that

|TixB|hi ≤ |T |hi

for any integral current T supported in B33r1 \ Br1 , with ∂T = ∂(TixB), where B is
a Euclidean ball in B33r1 \ Br1 . For i ≥ i2, since the Hausdorff (n−1)-measures of
h and hi are uniformly equivalent by factors of two on U, this implies

|TixB|h ≤ 4|T |h

for such B and T. Since Ti is contained outside Sr1 , we can use the comparison of
areas between δ and h to see that

|TixB|δ ≤ 16|T |δ

for such B and T. However, in the definition of γ -almost-minimizing, one may with-
out loss of generality consider competitors T supported in B̄, since B̄ is convex. It
follows that Ti is 16-almost-minimizing, and the proof of Lemma 12 is complete. �

We continue with the proof of Theorem 2. Observe that Fg(S) varies continuously
with respect to C2 perturbations of g on any neighborhood of S, since the area,
mean curvature, and scalar curvature depend continuously on g and its first and
second derivatives. Then by the C2 convergence in (12), we may restrict to i at
least as large as some i3 ≥ i2 so that

(14) Fh(Sr1)≤ Fhi (Sr1)+
ε

2
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and that

(15) Fhi (Sr1) > 0

(since Fh(Sr1) > 0 by (11)). Lemma 12 and (15) show that Theorem 7 may be
applied to Mi minus the open region 8i (Br1), which has (connected) boundary Si .
Thus:

(16) Fhi (Sr1)= Fgi (Si )≤ mi .

Then for all i ≥ i3, we may combine (10), (14), and (16) to arrive at

mADM(N , h) < mi + ε.

Now, taking lim infi→∞ proves Theorem 2, since ε > 0 was arbitrary.

Remark C. The above proof generalizes the C2 lower semicontinuity result from
n = 3 in [Jauregui 2018] to 3 ≤ n ≤ 7. By contrast, extending the C0 lower
semicontinuity result in [Jauregui and Lee 2017] to higher dimensions would be
much more difficult. In the C0 case, the dimension three hypothesis is relied on
to a greater extent. First, the Hawking mass estimate (2) of Huisken and Ilmanen,
valid only in dimension three, is used to ensure monotonicity under mean curvature
flow of a certain quantity (whose details we omit here) defined by Huisken. The
author is not aware of such a monotone quantity in higher dimensions. Second,
in [Jauregui and Lee 2017], use is made of B. White’s regularity theory for the
weak (level set) version of mean curvature flow that is especially nice in ambient
dimension three [2000].

Remark D. As mentioned in the introduction, we strongly conjecture that the
hypothesis that the limit (N , h) is asymptotically Schwarzschild in Theorem 2 (as
opposed to asymptotically flat) is unnecessary. We note this generalization would
follow by establishing a density result of the following form: Given ε > 0 and a
sequence (Mi , gi , pi ) of AF manifolds of nonnegative scalar curvature converging
in the pointed C2 Cheeger–Gromov sense to an AF manifold (N , h, q), construct an
HF perturbation h̄ of h (with |mADM(N , h̄)−mADM(N , h)|< ε) and AF metrics ḡi

on Mi of nonnegative scalar curvature, with |mADM(Mi , ḡi )−mADM(Mi , gi )|< ε,
such that (Mi , ḡi , pi )→ (N , h̄, q) in the pointed C2 Cheeger–Gromov sense. Such
a result would immediately generalize Theorem 2 to remove the restriction that
(N , h) is asymptotically Schwarzschild, since HF manifolds are such.

6. Lower semicontinuity for weighted C2 convergence in all dimensions

In this section we study the behavior of the ADM mass under weighted C2 conver-
gence. This corresponds to a finer topology than that of pointed C2 Cheeger–Gromov
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convergence. In particular it is easier here to establish semicontinuity of the ADM
mass and to obtain a stronger result: Theorem 13 is valid in all dimensions n ≥ 3,
requires no hypothesis on minimal surfaces, and does not rely on (nor recover) the
positive mass theorem.

To describe the setup, let M be a smooth n-manifold that admits an AF metric.
Fix a compact set K ⊂ M and an AF coordinate system on M \ K (for some AF
metric). For an integer k ≥ 0 and a real number τ > 0, let Ck

−τ (M \ K ) denote the
class of Ck functions f : M \ K → R for which the quantity

‖ f ‖Ck
−τ (M\K )

=

∑
0≤|γ |≤k

sup
x∈M\K

|x ||γ |+τ |∂γ f (x)|

is finite, where the partial derivatives are taken with respect to the coordinate chart,
and γ represents multi-indices. Thus, functions in Ck

−τ (M \K ) decay as O(r−τ ) or
faster as r→∞, with successively faster decay up through k-th-order derivatives.
Define Ck

−τ (M) to be the set of Ck functions f : M→R with f |M\K ∈Ck(M \K ),
equipped with the norm given as the sum of ‖ f ‖Ck

−τ (M\K )
and the Ck norm of f |K .

Note that if g is an AF metric on g of order τ obeying the decay conditions (3)
in the fixed coordinate chart, then

(17) gi j − δi j ∈ C2
−τ (M \ K ).

For k ≥ 2 and τ > 0, we let Metk
−τ (M) denote the set of Ck Riemannian met-

rics g on M satisfying (17) in the fixed coordinate chart. (The ADM mass of
g ∈Metk

−τ (M) is well defined if τ > n−2
2 and the scalar curvature of g is integrable

[Bartnik 1986; Chruściel 1986].) We say a sequence of Riemannian metrics {g`}∞`=1
in Metk

−τ (M) converges to g ∈Metk
−τ (M) as `→∞ if ‖g`i j − gi j‖Ck

−τ (M\K )
→ 0

for all i and j and the tensors g`|K converge in Ck to g|K as `→∞.

Theorem 13. Suppose {g`}∞`=1 converges to g as asymptotically flat Riemannian
metrics in Met2

−τ (M), where τ > n−2
2 . Then

(18) lim
`→∞

(
mADM(M, g`)− 1

2(n−1)ωn−1

∫
M

R(g`) dVg`

)
= mADM(M, g)− 1

2(n−1)ωn−1

∫
M

R(g) dVg,

where dVg` and dVg are the volume measures of g` and g. Moreover, if there exists
a compact set K ⊂ M such that R(g`)≥ 0 on M \ K for all `, then

(19) lim inf
`→∞

mADM(M, g`)≥ mADM(M, g).

Remark E. Our (18) is well known to experts as the statement of the continuity of
the Regge–Teitelboim Hamiltonian [1974]. This is related to Lemma 9.4 in [Lee and
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Parker 1987], which gives continuity of the ADM under weighted C1,α convergence
if the scalar curvatures converge in L1. After posting this paper we became aware
of Theorem 14 of [McFeron and Székelyhidi 2012], which implies Theorem 13;
this result of D. McFeron and G. Székelyhidi requires local C2 convergence and a
uniform weighted C1,α bound. Our proof below is a generalization of that of Y. Li
[2018] (see the proof of Theorem 1.2 therein), who studied the behavior of the
ADM mass and integral of scalar curvature in the case of a convergent Ricci flow.

Proof. Let g0 be a background Riemannian metric on M whose expression in M \K
in the given AF coordinate chart is δi j . Let div0 be the divergence operator on
tensors and 10 the Laplacian on functions with respect to g0. Define the continuous
operator D :Met2

−τ (M)→ C0
−τ−2(M) by

D(g)= div0(div0 g)−10(trg0(g)).

The significance of D is the formula for the ADM mass of g ∈Met2
−τ (M) (provided

τ > n−2
2 and the scalar curvature of g is integrable):

(20) mADM(g)=
1

2(n−1)ωn−1

∫
M
D(g) dV0,

which follows immediately from the divergence theorem. Here, dV0 is the volume
measure of g0.

By the Met2
−τ (M) convergence of g` to g, we have D(g`)→D(g) in C0

−τ−2(M).
However, since τ + 2 is generally less than the O(r−n) threshold for integrability,
we cannot immediately apply the dominated convergence theorem. (And since we
have no control on the sign of D(g`), we cannot apply Fatou’s lemma.)

We proceed instead by considering the difference between D(·) and R(·) (a well-
known trick), where R :Met2

−τ (M)→ C0
−τ−2(M) is the scalar curvature operator.

Working in the fixed chart on M \ K, for any Riemannian metric h ∈Met2
−τ (M)

with Christoffel symbols 0k
i j , we have

D(h)= ∂i∂ j hi j − ∂ j∂ j hi i ,

R(h)= h jk(∂i0
i
jk − ∂k0

i
i j +0

m
jk0

i
im −0

m
i j0

i
km).

By direct computation, D(g`)− R(g`) is O(r−2−2τ ), where O(r−2−2τ ) here is
uniform in ` and moreover goes to zero in C0

−2−2τ (M) as `→∞. Since 2+2τ > n,
this O(r−2−2τ ) error term is uniformly bounded by an integrable function on M.
Then by the dominated convergence theorem and the pointwise convergence of
D(g`)− R(g`) to D(g)− R(g),

lim
`→∞

∫
M
(D(g`)− R(g`)) dVg` =

∫
M
(D(g)− R(g)) dV .

Together with (20), this proves (18).
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For the last claim, assume R(g`)≥ 0 for all ` on M \ K, and let

µ= lim inf
`→∞

mADM(M, g`).

If µ=+∞, the claim follows trivially. Suppose µ is finite. Pass to a subsequence
{(M, g`(k))}k for which

lim
k→∞

mADM(M, g`(k))= µ.

By the first part of the theorem, the sequence∫
M

R(g`(k)) dVg`(k)

then converges, and moreover

(21) µ=mADM(M,g)+
1

2(n−1)ωn−1

(
lim

k→∞

∫
M

R(g`(k))dVg`(k)−

∫
M

R(g)dVg

)
.

By the (weighted) C2 convergence of g`(k) to g as k →∞, we have pointwise
convergence of the scalar curvatures and volume forms. In particular,∫

K
R(g`(k)) dVg`(k)→

∫
K

R(g) dVg

as k→∞. Then, by Fatou’s lemma and the hypothesis R(g`(k))≥ 0 on M \ K, the
expression in parentheses in (21) is nonnegative. This completes the proof if µ is
finite.

Finally, suppose µ = −∞. Then by (18), a subsequence {(M, g`(k))}k has its
integral of scalar curvature converging to −∞. Since the scalar curvatures are
nonnegative outside the compact set K, the integrals of the scalar curvatures on
K also converge to −∞. This contradicts the fact that these integrals converge to∫

K R(g) dVg. �

Remark F. Interestingly, Theorem 13 implies that for the case of weighted C2

convergence, the mass drop is accounted for completely by the total matter (i.e.,
the integral of scalar curvature) escaping off to infinity, much like in the example
in Section 2.1 from Newtonian gravity. This contrasts with the case of pointed C2

Cheeger–Gromov convergence, in which the ADM mass can drop within the class
of scalar-flat metrics (e.g., the examples in Sections 2.2 or 2.3, choosing (M, g) to
be scalar-flat with positive ADM mass).

Remark G. Note that the lower semicontinuity of the ADM mass with respect
to weighted C2 convergence does not imply the positive mass theorem as in the
blow-up example or escaping point example with pointed convergence in Section 2.
In those cases, the metrics do not converge to Euclidean space in a weighted sense.
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6.1. Example: mass drop with weighted convergence. We conclude this section
by describing an example of AF metrics gi , with nonnegative scalar curvature,
converging in Met2

−τ (M) with τ > n−2
2 for which the ADM mass drops. Physically,

the construction involves considering a sequence of shells of matter, of fixed total
mass, at progressively larger radii. For n ≥ 3, let ρ : Rn

→ R be a smooth, radially
symmetric, nonnegative function supported in the annulus between radii 1

2 and 1,
with

∫
Rn ρ = 1. For i = 1, 2, . . ., define a sequence of smooth functions

ρi (x)= i−nρ(x/ i),

which also satisfy
∫

Rn ρi = 1 and are supported in the annulus between radii i
2 and i .

By elliptic PDE theory (or ODE theory), there exists a unique smooth solution
(for each i) to the linear elliptic problem:{

−1vi = ρi on Rn

vi → 0 at infinity.

Recognizing vi (x)= i2−nv1(x/ i), it is easy to see that vi → 0 in C2
−τ (M) for any

τ < n− 2 as i→∞. Fix τ ∈
( n−2

2 , n− 2
)
.

For i sufficiently large, ui := 1 + vi is positive, and the Riemannian metric
gi := u4/(n−2)

i δ is asymptotically flat. Note that the scalar curvature of gi

Ri =−
4(n−1)

n−2
u
−

n+2
n−2

i 1ui =
4(n−1)

n−2
u
−

n+2
n−2

i ρi ,

is integrable because it has compact support.
Now, gi converges to the Euclidean metric in Met2

−τ (M) as i →∞, and each
gi has nonnegative scalar curvature. We show now (using the divergence theorem)
that the ADM mass of gi is a positive constant, independent of i :

mADM(gi )=−
2

(n−2)ωn−1
lim

r→∞

∫
Sr

ν(ui ) d A =− 2
(n−2)ωn−1

∫
Rn
1ui dV

=
2

(n−2)ωn−1

∫
Rn
ρi dV = 2

(n−2)ωn−1
,

where d A and dV are the hypersurface area and the volume forms with respect to
the Euclidean metric. However, the ADM mass of the limit, Euclidean Rn, vanishes.

7. Two-dimensional case of semicontinuity of mass

In two dimensions, a natural replacement for asymptotically flat manifolds is the
class of asymptotically conical surfaces, with the asymptotic cone angle playing
the role of mass. The author thanks Woolgar for his suggestion to investigate the
semicontinuity of mass in this setting.
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Following [Isenberg et al. 2013], for α > 0, let

gα = dr2
+α2r2dθ2,

a smooth Riemannian metric on R2
\ {0} describing a cone. Note that gα has van-

ishing Gauss curvature. Define a connected two-dimensional Riemannian manifold
(M, g) to be asymptotically conical with cone angle 2πα > 0 if there exists a
compact set C ⊂M such that M \C is diffeomorphic to the complement of a closed
ball in R2, on which g− gα = O2(r−τ ) for some constant τ > 0. In particular, the
Gauss curvature of g is O(r−2−τ ) and hence integrable.

We recall here that the integral of the Gauss curvature captures the cone angle.
To see this, let Br be the compact region bounded by the coordinate circle 0r in
(M, g) for r large. By the Gauss–Bonnet formula,

(22)
∫

Br

K d A = 2πχ(Br )−

∫
0r

κg ds,

where κg is the geodesic curvature of 0r with respect to g. By the O2(r−τ ) decay
of g to gα, we have

lim
r→∞

∫
0r

κg ds = lim
r→∞

∫
0r

κgα ds = 2πα,

the latter equality given by direct calculation, where κgα is the geodesic curvature
of 0r with respect to gα . Taking the limit r→∞ in (22) (and noting that χ(Br ) is
eventually a constant, χ(M)), we have

(23)
∫

M
K d A = 2π(χ(M)− 1)+ 2π(1−α).

Note that if K ≥0, it follows that χ(M)>0, and using the fact that M is topologically
the connect sum of R2 and a compact, connected surface, it follows that χ(M)= 1
and that M itself is topologically R2.

We define the mass of an asymptotically conical surface to be

mcone(M, g)= 1−α,

which we note is a dimensionless quantity. The positive mass theorem is then
immediate: K ≥ 0 implies mcone ≥ 0, and equality holds if and only if K ≡ 0
and M is homeomorphic to R2, which holds if and only if (M, g) is isometric to
the Euclidean plane.

Below is the statement of C2 pointed lower semicontinuity of the mass in two
dimensions (i.e., upper semicontinuity of the cone angle). Note that no hypothesis
on closed geodesics (the analogs of compact minimal hypersurfaces) is necessary.
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Theorem 14. Suppose (Mi , gi , pi ) converges in the pointed C2 Cheeger–Gromov
sense to (N , h, q) as pointed asymptotically conical Riemannian 2-manifolds. Sup-
pose each (Mi , gi ) has nonnegative Gauss curvature. Then

(24) mcone(N , h)≤ lim inf
i→∞

mcone(Mi , gi ).

An example for which strict inequality holds in (24) can be found using the
blow-up or escaping point examples in Sections 2.2 and 2.3, beginning with an
asymptotically conical surface with nonnegative Gauss curvature and α < 1.

Proof. Let ε > 0. By the C2 convergence, h itself has nonnegative Gauss curva-
ture Kh , so in particular χ(N )= 1. Then by (23),

mcone(N , h)= 1
2π

∫
N

Kh d Ah .

Since Kh is integrable, we may choose r > 0 sufficiently large so that the coordinate
ball Br ⊂ N satisfies

mcone(N , h) < 1
2π

∫
Br

Kh d Ah +
ε

2
.

Choosing U ⊃ Br and obtaining appropriate embeddings 8i :U → Mi such that
hi :=8

∗

i gi converges in C2 to h, we may take i sufficiently large so that

(25) 1
2π

∫
Br

Kh d Ah −
ε

2
<

1
2π

∫
Br

Khi d Ahi =
1

2π

∫
8i (Br )

Kgi d Agi .

Since (Mi , gi ) has nonnegative Gauss curvature, the right-hand side in (25) is an
underestimate for mcone(Mi , gi ). Thus,

mcone(N , h) < mcone(Mi , gi )+ ε

for i sufficiently large. From this, the result follows. �

We leave it as an open problem to study the behavior of the cone angle un-
der weaker forms of convergence, such as pointed C0 Cheeger–Gromov, pointed
Gromov–Hausdorff, or pointed Sormani–Wenger intrinsic flat convergence [Sormani
and Wenger 2011].

Appendix: Geometry of asymptotically Schwarzschild metrics

The purpose of this appendix is to prove the following asymptotic estimates for
large coordinate spheres in an asymptotically Schwarzschild manifold. These were
used in the proof of Lemma 11.

Lemma 15. Let (M, g̃) be an asymptotically Schwarzschild manifold of dimension
n ≥ 3 and ADM mass m. Let Sr be the coordinate sphere of large radius r in M. Let
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ρ̃ be the scalar curvature of Sr with respect to the metric induced from g̃, and let H̃
be the mean curvature of Sr with respect to g̃. Then:

ρ̃ =
(n− 1)(n− 2)

r2 −
2(n− 1)m

rn + O(r−n−1).(26)

H̃ =
n− 1

r
−
(n− 1)2m
(n− 2)rn−1 + O(r−n).(27)

Proof. Let g be the Schwarzschild metric of mass m, and let h be as in (5), i.e.,

g =
(

1+
m

2rn−2

) 4
n−2

δ, g̃ = g+ h,

in the end of M.
We first address the scalar curvature of Sr . Let γ and γ̃ be the Riemannian metrics

on Sr induced by g and g̃, respectively. The coordinate sphere Sr has constant
scalar curvature with respect to the metric induced by δ equal to (n−1)(n−2)/(r2).
Since the conformal factor relating g to δ is constant on Sr , the scalar curvature of
(Sr , γ ) can be found by rescaling:

(28) ρ=
(

1+ m
2rn−2

)− 4
n−2
·
(n−1)(n−2)

r2
=
(n−1)(n−2)

r2
−

2(n−1)m
rn

+O(r−2(n−1)).

We proceed to estimate the scalar curvature of (Sr , γ̃ ) as follows. Introduce spherical
coordinates (r, φ1, . . . , φn−1) on the asymptotically flat end of M :

x1
= r cos(φ1),

x2
= r sin(φ1) cos(φ2),
...

xn−1
= r sin(φ1) sin(φ2) · · · cos(φn−1),

xn
= r sin(φ1) sin(φ2) · · · sin(φn−1).

We use Greek indices for the directions tangent to Sr , i.e., φα for α = 1, . . . , n− 1
for the coordinates on Sr and ∂α = ∂

∂φα
for their derivatives. Note that δ(∂α, ∂β)

is O(r2).
First, express γ and γ̃ in spherical coordinates on Sr :

(29) γαβ = g(∂α, ∂β), γ̃αβ = g̃(∂α, ∂β)= γαβ + hαβ,

where hαβ = h(∂α, ∂β) is O(r3−n) by (5). Both γαβ and γ̃αβ are O(r2). Also, we
have the inverse metrics

γ αβ = O(r−2),(30)

γ̃ αβ = γ αβ + O(r−n−1).(31)
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Note that the derivatives tangent to Sr satisfy

∂µγαβ = O(r2),(32)

∂µhαβ = O(r3−n),

∂µγ̃αβ = O(r2),(33)

with the same orders for second derivatives. Similarly,

∂µγ
αβ
= O(r−2),(34)

∂µγ̃
αβ
= O(r−2).(35)

Next, let 0 and 0̃ denote the Christoffel symbols of (Sr , γ ) and (Sr , γ̃ ), respec-
tively, and define

9
µ
αβ = 0̃

µ
αβ −0

µ
αβ .

By (30) and (32), we have

(36) 0
µ
αβ = O(1).

Using (34) as well,

(37) ∂ν0
µ
αβ = O(1).

Next, we need decay on 9 and ∂9. Using (29)–(31),

9
µ
αβ = γ̃

µν(∂β γ̃αν + ∂αγ̃βν − ∂ν γ̃αβ)− γ
µν(∂βγαν + ∂αγβν − ∂νγαβ)

= O(r−2)(∂βhαν + ∂αhβν − ∂νhαβ)+ O(r−n−1)(∂β γ̃αν + ∂αγ̃βν − ∂ν γ̃αβ).

Since hαβ and ∂µhαβ are O(r3−n), and also by (33), we have

9
µ
αβ = O(r1−n),

and a similar calculation, using (35), shows

∂ν9
µ
αβ = O(r1−n).

Finally:

ρ̃ = γ̃ βµ
(
∂α0̃

α
βµ− ∂µ0̃

α
αβ + 0̃

ν
βµ0̃

α
αν − 0̃

ν
αβ 0̃

α
µν

)
= (γ βµ+ O(r−n−1))

×
[
∂α(0

α
βµ+9

α
βµ)− ∂µ(0

α
αβ +9

α
αβ)

+ (0νβµ+9
ν
βµ)(0

α
αν +9

α
αν)− (0

ν
αβ +9

ν
αβ)(0

α
µν +9

α
µν)
]

= ρ+ O(r−n−1),

having used (30), (31), (36), and (37). Combining this with (28), (26) follows.
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For the second part of the proof, we must compute the mean curvature of large
coordinate spheres Sr with respect to g̃. We approach this through the first variation
of area. Let ω0, ω, and ω̃ be the area forms of Sr induced by δ, g and g̃, respectively.
The respective mean curvature vectors H0, H, H̃ of Sr with respect to these metrics
are characterized by the first variation of area formulas as follows:

DXω0 = δ(X,−H0)ω0 = δ
(

X, n−1
r
· ∂r

)
ω0,(38)

DXω = g(X,−H)ω,(39)

DX ω̃ = g̃(X,−H̃)ω̃,(40)

where DX denotes an infinitesimal deformation of Sr in the direction of X, where X
is a tangent vector field to M along Sr .

We again use spherical coordinates as in the first part of the proof. Note that
(φα) give coordinates on Sr that are orthogonal with respect to δ, and hence with
respect to the conformal metric g. In addition to the estimates of γαβ, hαβ and their
tangential derivatives used in the first part of the proof, we also need estimates on
the radial derivatives. By the decay of g and h, as well as by (30), we obtain

∂rγαβ = O(r1), ∂rγ
αβ
= O(r−3), ∂r hαβ = O(r2−n).

We begin by computing the mean curvature H of Sr with respect to g; this is
well known, but we include it for completeness. The area forms ω0 and ω on Sr

are related by

ω =
(

1+ m
2rn−2

)2(n−1)
n−2

ω0.

Then, using (38), elementary calculations show

(41) Drω=
2(n−1)

n−2

(
1+ m

2rn−2

) 2(n−1)
n−2 −1

·

(
(2−n)m

2rn−1

)
ω0+

(
1+ m

2rn−2

)2(n−1)
n−2 Drω0

=

(
1+ m

2rn−2

)2(n−1)
n−2
·

[
n−1

r
−

m(n−1)
rn−1

(
1+ m

2rn−2

)−1
]
ω0,

where Dr = D∂r . Now, using (39), we have

(42) Drω = g(∂r ,−H)ω

=

(
1+ m

2rn−2

) 2n
n−2 Hω0,

where H = |H|g. Now, combining (41) and (42), elementary calculations show

(43) H = n−1
r
−
(n−1)2m
(n−2)rn−1 + O(r−n).
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Now, we proceed to estimate the mean curvature with respect to g̃. Define a
function 8> 0 on the asymptotically flat end of M so that

(44) ω̃ =
√
8ω on Sr ,

that is,

8=
det(γ̃αβ)
det(γαβ)

.

Using Jacobi’s formula for the derivative of the determinant, along with the known
decay of γαβ , and γ̃αβ and their derivatives, we have the following asymptotics of8:

8= 1+ O(r1−n),(45)

∂µ8= O(r1−n),(46)

∂r8= O(r−n).(47)

In order to compute H̃ , we compute tangential and radial variations of ω̃ begin-
ning with (44):

(48) Dµω̃ =
1
2(∂µ8)8

−1/2ω+
√
8Dµω

=
1
2(∂µ8)8

−1/2ω+
√
8g(∂µ,−H)ω

= O(r1−n)ω,

where we have used the fact that H is g-orthogonal to Sr , as well as (39) and
(45)–(46). Next, for the radial directions:

(49) Dr ω̃ =
1
2(∂r8)8

−1/2ω+
√
8g(∂r ,−H)ω

= g(∂r ,−H)ω+ O(r−n)ω,

having used (45), (47), and H = O(r−1). The goal is to combine the last two
statements with (40). Specifically, we estimate (40) as follows:

DX ω̃ = (g+ h)(X,−H̃)
√
8ω

= g(X,−H̃)ω+ O(r−n)|X |gω,

having used the decay of h, (45), and |H̃|g = O(r−1). Define Y = H̃ − H . Then
applying (49) and the last equation (with X = ∂r ) and applying (48) and the last
equation (with X = ∂µ) produces

g(∂r ,Y)= O(r−n),(50)

g(∂µ,Y)= O(r1−n).(51)
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By expanding |Y |2g in the g-orthogonal basis (∂r , ∂µ) of T M along Sr , and using
(50)–(51), we obtain

(52) |Y |2g = O(r−2n).

Finally, letting H̃ = |H̃|g̃, we use the triangle inequality to show

|H̃ − H | ≤
∣∣|H̃|g̃ − |H|g̃∣∣+ ∣∣|H|g̃ − |H|g∣∣
≤ |Y |g̃ +

∣∣|H|g̃ − |H|g∣∣
= (g(Y ,Y)+ h(Y ,Y))

1
2 + |(g(H, H)+ h(H, H))

1
2 − g(H, H)

1
2 |

= |Y |g + |Y |g O(r1−n)+ H · O(r1−n)

= O(r−n),

by (52). Combining this with (43), (27) follows. �
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