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INTEGRATION OF MODULES I: STABILITY

DMITRIY RUMYNIN AND MATTHEW WESTAWAY

We explore the integration of representations from a Lie algebra to its alge-
braic group in positive characteristic. An integrable module is stable under
the twists by group elements. Our aim is to investigate cohomological ob-
structions for passing from stability to an algebraic group action. As an ap-
plication, we prove integrability of bricks for a semisimple algebraic group.

Over a field of positive characteristic, an algebraic group G acts on its Lie
algebra g and the restricted enveloping algebra U1(g) by automorphisms. This yields
twists: an element x ∈ G twists a g-module (V, θ) into (V, θ)x := (V, θ ◦Ad(x)).
A g-module is G-stable if it is isomorphic to all its twists. A g-module coming
from a G-module is necessarily G-stable but the converse is not true. An important
question in the modular representation theory of Lie algebras and algebraic groups
is to determine for which modules the converse is true. We investigate this question
in this paper.

Our method is subtly different from the known approach. Not only Cline [1972]
and Donkin [1982] but also Parshall and Scott in their modern exposition [2013]
pursue a certain unipotent extension G∗ of the group G that acts on a G-stable
g-module (V, θ). We, instead, contemplate projective actions of G on (V, θ). In
particular, we completely avoid the theory of Schreier systems.

Our approach instead has similarities to the work of Dade [1981] and Théve-
naz [1983] on a related question for abstract groups. They study whether a G-
stable representation (V, θ) of a normal subgroup L of an abstract group G can
be extended to a representation of the entire group G. They show that when
the automorphism group AutL(V ) of V is abelian the extension is controlled by
H 2(G/L ,AutL(V )). Furthermore, the uniqueness of such extensions is controlled
by H 1(G/L ,AutL(V )).

By introducing the terminology of (L , H)-morphs — a type of function which is
partway to being a homomorphism — we are able to reinterpret the results of Dade
and Thévenaz in a more general context (Theorem 5). When we apply these results
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to the question of module extensions we repeat Corollary 1.8 and Proposition 2.1
in [Thévenaz 1983], however our formalism allows us to generalise this to the
case where AutL(V ) is only soluble rather than abelian via an inductive process
(Theorem 7).

The other key difference between our results and those of Dade and Théve-
naz is that we work with a slightly different relative cochain complex, denoted
(C •(G, L; A),d), while they work with the more standard complex (C •(G/L; A),d).
Whilst the cohomology of these complexes differs from the second cohomology
group on, Theorem 5 in fact works in either case. However, in order to apply
similar methods to the case of algebraic groups, the study of this new cochain
complex becomes necessary. These considerations are explained in more detail in
Sections 1.5 and 2.5.

Now we reveal the detailed content of the present paper, emphasising the main
results. In Section 1, we devise all the machinery to discuss G-stable modules in
the setting of abstract groups: a group G, its normal subgroup L and a G-stable
L-module (V, θ). We introduce weak (L , H)-morphs and the relative cochain
complex C •(G, L; A) in Section 1.2, where A is an abelian group with a G-action.
They feature in a key exact sequence (see Theorem 5) that controls both uniqueness
and existence of G-actions for a large class of G-stable L-modules.

The main result of this chapter is Theorem 7, a somewhat algorithmic result
pinpointing completely uniqueness and existence of a G-module structure on a
G-stable L-module. Notice that it has been established by Xanthopoulos [1992]
that H 1(G/L; A) controls uniqueness. Since H 1(G/L; A) = H 1(G, L; A), our
results about uniqueness are known. However, H 2(G/L; A) 6= H 2(G, L; A) (and
the latter controls existence), hence our results on existence are new, even in the
setting of abstract groups. Our approach is useful because it fuses uniqueness and
existence into a single process controlled by the relative cohomology.

In Section 2 we extend our Section 1 results from abstract groups to algebraic
groups. We face some technical challenges. An important case for applications
is when L is a Frobenius kernel of G. Hence, we must assume that L is a closed
subgroup scheme, not just a closed algebraic subgroup. The second challenge is
poles: we need to distinguish rational and algebraic cohomology, since we encounter
rational cocycles µ : Gn

→ A that are not necessarily algebraic. We deal with
technicalities in Sections 2.1 and 2.2.

We exhibit a key exact sequence for rational cohomology (Theorem 27 — an
analogue of Theorem 5) in Section 2.3. Again, this sequence controls both unique-
ness and existence of G-actions. Immediately we put it to good use: a G-stable
g-brick (a module with trivial endomorphisms) is a G-module (Theorem 28).

A greater generality than g-bricks is g-modules with a soluble group of auto-
morphisms. These are our assumptions in Section 2.4. Our main result in this
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section is Theorem 29, an analogue of Theorem 7 for algebraic groups. Again, this
theorem pinpoints completely uniqueness and existence of a G-module structure
on a G-stable g-module.

It is interesting to see whether our results could be applied to two old conjectures
in the area: Humphreys–Verma Conjecture [Donkin 1982; Parshall and Scott 2013;
Jantzen 1987, Chapter 11] and Verma Conjecture [Donkin 1980; Xanthopoulos
1992]

1. G-stable modules for abstract groups

In this chapter we study AG-modules, where G is a group, A is an associative ring.

1.1. Automorphisms of indecomposable modules. Let B be a finite-dimensional
algebra over a field K (of any characteristic), M a finite-dimensional B-module,
E=End(M) its endomorphism ring, J = J (E) its Jacobson radical, and H=Aut(M)
its automorphism group. We start with the following useful observation:

Proposition 1. (1) The quotient algebra E/J is a division algebra if and only if
M is indecomposable.

(2) If M is indecomposable and E/J is separable, then H ∼= GL1(D)nU , where
D= E/J is a division algebra and U = 1+ J is a connected unipotent group.

(3) Further to the conditions of (2), if D= K, then H = GL1(K)×U.

Proof. (1) It is a standard fact that a finite length module is indecomposable if
and only if its endomorphism ring is local. Since E is finite-dimensional, this is
equivalent to E/J being a division ring.

(2) By (1), D = E/J. Since D is separable, we can use the Malcev–Wedderburn
theorem to split off the radical, i.e., to realize D as a subalgebra of E such that
E= D⊕ J.

Clearly, H = GL1(E). Consider an element x = d + j, d ∈ D, j ∈ J. Since
xn
=dn
+ j ′ for some j ′∈ J, x is nilpotent if and only if d=0. By the fitting lemma,

x ∈ H if and only if d 6= 0. The key isomorphism is given by the multiplication map:

GL1(D)nU ∼=−→ H = GL1(E), (d, 1+ j) 7→ d + d j,

H = GL1(E)
∼=−→GL1(D)nU, d + j 7→ (d, 1+ d−1 j).

It remains to observe that U = 1+ J is a connected unipotent algebraic group.
It is connected because it is isomorphic to J as a variety. It is unipotent because
each of its elements is unipotent in GL(M).

(3) The Malcev–Wedderburn decomposition turns J into a D-D-bimodule. Our
condition forces D⊗K Dop

= K⊗K Kop
= K so that the bimodule structure is just

the K-vector space structure. Hence, GL1(D)= GL1(K) and U commute. �
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1.2. (L, H)-morphs. Let G ≥ L , K ≥ H be two group-subgroup pairs. Let
N = NK (H) and CK (H) be the normaliser and the centraliser of H in K. By an
(L , H)-morph from G to K we understand a function f : G→ K satisfying the
following four conditions:

(1) f |L is a group homomorphism.

(2) f (G)⊂ NK (H).

(3) f (x) f (y) ∈ f (xy)H for all x, y ∈ G.

(4) f (L)⊂ CK (H).

By a weak (L , H)-morph from G to K we understand a function f : G → K
satisfying only the first three conditions.

One can observe that a weak (L , H)-morph is just a homomorphism G→ N/H
with a choice of lifting to N satisfying an additional condition. For instance, weak
(G, 1)-morphs are the same as homomorphisms G→ K and weak (1, K )-morphs
are just functions G→ K which preserve the identity. Furthermore, the same state-
ments also hold if we replace weak morphs with morphs in the previous sentence.

Commonly (L , H)-morphs originate from K -G-sets X = K XG , i.e., G acts on
the right, K on the left and the actions commute. Let θ ∈ X such that its G-orbit is
inside its K -orbit. Let H be the stabiliser of θ in K. Choose a section K/H → K
which sends the coset H to 1K . The composition of the section with the G-orbit
map of θ is a function

f : G→ K characterised by f (x)θ = θ x for all x ∈ G.

Lemma 2. The map f defined above is a (1, H)-morph.

Proof. By definition, f (xy)θ = θ xy. On the other hand, θ xy
= (θ x)y

= ( f (x)θ)y
=

f (x) f (y)θ . Hence, θ = f (xy)−1 f (xy)θ = f (xy)−1 f (x) f (y)θ and f (xy)−1 f (x) f (y)∈ H.
Now pick h ∈ H. Then f (x)−1h f (x)θ = f (x)−1hθ x

=
f (x)−1

θ x
=

f (x)−1 f (x)θ = θ

so that f (x)−1h f (x) ∈ H. �

We would like to identify weak (L , H)-morphs that define the same homomor-
phisms G→ N/H. More precisely, we say that two weak (L , H)-morphs f and f ′

are equivalent if f ′(x) ∈ f (x)H for all x ∈ G. We denote the set of equivalence
classes of weak (L , H)-morphs by [L H ]mo(G, K ). Furthermore, given a fixed
homomorphism θ : L→ K we denote by [L H ]θmo(G, K ) the set of equivalence
classes of those weak (L , H)-morphs that restrict to θ on L .

Let A be an additive abelian group with a G-action (a ZG-module). We consider
a subcomplex (C̃ •(G, L; A), d) of the standard complex (C •(G; A), d) that consists
of such cochains µn that are trivial on Ln , i.e., µn |L×...×L≡ 0A.

We see that this cochain complex fits into an exact sequence of cochain complexes

0→ C̃ •(G, L; A)→ C •(G; A)→ C •(L; A)→ 0.
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This then allows us to form a long exact sequence of cohomology

. . .→H n−1(G; A)→H n−1(L; A)→ H̃ n(G, L; A)→H n(G; A)→H n(L; A)→. . .

For our purposes, we have to modify this subcomplex slightly. We consider
a subcomplex (C •(G, L; A), d) of the standard complex (C •(G; A), d) which is
obtained from (C̃ •(G, L; A), d) in the following way: for n > 0, Cn(G, L; A)=
C̃n(G, L; A), whilst C0(G, L; A) = AL. We can furthermore replace the com-
plex C •(L; A) with the complex C̃ •(L; A), which is defined by C̃n(L; A) =
Coker(Cn(G, L; A)→ Cn(G; A)) for all n ≥ 0. In particular, we observe that
C̃n(L; A) = Cn(L; A) for all n ≥ 1. This then recovers an exact sequence of
cochain complexes:

0→ C •(G, L; A)→ C •(G; A)→ C̃ •(L; A)→ 0.

In particular, noting that for the cochain complex C̃ •(L; A)we have H̃ 0(L; A)=0
and H̃ n(L; A) = H n(L; A) for n ≥ 1, we can form the long exact sequence of
cohomology

0→ H 1(G, L; A)→ . . .→ H n−1(L; A)

→ H n(G, L; A)→ H n(G; A)→ H n(L; A)→ . . .

What can we say about the natural map fn : H n(G, L; A)→ H n(G; A)? From
this long exact sequence, the following proposition is clear.

Proposition 3. (1) For n > 0, H n(L; A) = 0 if and only if fn is surjective and
fn+1 is injective.

(2) For n > 1, fn is injective if and only if the restriction map Zn−1(G; A)→
Zn−1(L; A) is surjective.

Proof. (1) This follows from the exact sequence.

(2) Suppose Zn−1(G; A)→ Zn−1(L; A) is surjective. Pick µ ∈ Zn(G, L; A) such
that [µ] ∈ ker( fn). Then µ ∈ Bn(G; A) and µ = dη for some η ∈ Cn−1(G; A).
Moreover, d(η|L) = µ|L ≡ 0 so that η|L ∈ Zn−1(L; A). Our assumption gives
ζ ∈ Zn−1(G; A) such that ζ |L = η|L . Hence, η − ζ ∈ Cn−1(G, L; A) and µ =
d(η− ζ ) ∈ Bn(G, L; A).

Now suppose that fn is injective. Pick µ ∈ Zn−1(L; A), and extend it to
χ ∈ Cn−1(G; A). Hence dχ ∈ Zn(G, L; A) and [dχ ] ∈ ker( fn). So dχ = dζ
for some ζ ∈ Cn−1(G, L; A). Now χ − ζ ∈ Zn−1(G; A) and (χ − ζ )|L = µ. �

Corollary 4. For n>1, H n(G, L; A)=0 if and only if H n−1(G; A)→H n−1(L; A)
is surjective and H n(G; A)→H n(L; A) is injective. Furthermore, H 1(G, L; A)=0
if and only if H 1(G; A)→ H 1(L; A) is injective.
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The next theorem clarifies the origin of this new complex. Let us fix a homomor-
phism θ = f |L : L→ N and choose a subgroup H̃ ≤ H, normal in N = NK (H) such
that A := H/H̃ is abelian. Notice that the conjugation gH h H̃ := ghg−1 H̃ defines a
structure of an N/H -module (and a G-module via any weak (L , H)-morph) on A.
Informally, we should think of the next theorem as “an exact sequence”

(1) H 1(G, L; A) 99K [L H̃ ]θmo(G, N )→ [L H ]θmo(G, N )→ H 2(G, L; A)

keeping in mind that the second and the third terms are sets (not even pointed sets)
and the first arrow is an “action” rather than a map. Let us make it more precise: a
weak (L , H)-morph defines a G-module structure ρ on A. For each particular ρ
(not just its isomorphism class) we define

[L H̃ ]θmo(G, N )ρ ⊆ [L H̃ ]θmo(G, N ), [L H ]θmo(G, N )ρ ⊆ [L H ]θmo(G, N )

as subsets of those weak (L , H)-morphs that define this particular G-action ρ.
These subsets could be empty, in which case we consider the following theorem
true for trivial reasons. The reader should consider this theorem and its proof as a
generalisation of the results in Sections 1 and 2 in [Thévenaz 1983] to the situation
of weak (L , H)-morphs.

Theorem 5. We retain the notation preceding this theorem. For each G-action ρ
on A the following statements hold:

(1) There is a restriction map

Res : [L H̃ ]θmo(G, N )ρ→ [L H ]θmo(G, N )ρ, Res(〈 f 〉)= [ f ],

where 〈 f 〉 and [ f ] are the equivalence classes in [L H̃ ]θmo(G, N )ρ and
[L H ]θmo(G, N )ρ .

(2) The abelian group Z1(G, L; (A, ρ)) acts freely on the set [L H̃ ]θ mo(G, N )ρ
by

γ · 〈 f 〉 := 〈γ̇ f 〉, where γ̇ f (x)= γ̇ (x) f (x) for all x ∈ G

and γ̇ : G γ
−→ A→ H is a lift of γ to a map G→ H with γ̇ (1)= 1.

(3) The corestricted restriction map Res : [L H̃ ]θmo(G, N )ρ → Im(Res) is a
quotient map by the Z1(G, L; (A, ρ))-action.

(4) Two classes 〈 f 〉, 〈g〉 ∈ [L H̃ ]θmo(G, N )ρ lie in the same B1(G, L; (A, ρ))-
orbit if and only if there exist h ∈ H, f ′ ∈ 〈 f 〉, g′ ∈ 〈g〉 such that [ f (L), h]⊂ H̃
and f ′(x)= hg′(x)h−1 for all x ∈ G.

(5) There is an obstruction map

Obs : [L H ]θmo(G, N )ρ→ H 2(G, L; (A, ρ)), Obs([ f ])= [ f ]]

where the cocycle f ] is defined by f ](x, y)= f (x) f (y) f (xy)−1 H̃ .

(6) The sequence (1) is exact, i.e., the image of Res is equal to Obs−1([0]).
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Proof. Suppose 〈 f 〉 = 〈g〉. This gives a function α : G→ H̃ such that α|L ≡ 1 and
f (x)= α(x)g(x) for all x ∈ G. Since H ⊇ H̃ , we conclude that [ f ] = [g] and the
map Res is well-defined. This proves (1).

Suppose Res(〈 f 〉) = Res(〈g〉). Then [ f ] = [g] gives a function α : G → H
such that α|L ≡ 1 and f (x)= α(x)g(x) for all x ∈ G. We can also obtain such a
function from a cochain γ ∈ C1(G, L; (A, ρ)) by lifting α = γ̇ . Let us compute
in the group N/H̃ denoting aH̃ by a. The weak (L , H)-morph condition for f is
equivalent to the following equality:

α(xy) g(xy)= f (xy)= f (x) f (y)= α(x)g(x) α(y)g(y)

= α(x)g(x)α(y)g(x)−1 g(x)g(y).

Now notice that
g(xy)= g(x)g(y)= g(x) g(y)

is the weak (L , H)-morph condition for g, while

α(xy)= α(x)g(x)α(y)g(x)−1 = α(x) g(x)α(y)g(x)−1 = α(x) [ρ(x)(α)](y)

is the cocycle condition for α = α H̃ . Any two of these three conditions imply the
third one, which proves both (2) and (3), except the action freeness.

Suppose 〈 f 〉 = γ · 〈 f 〉 = 〈γ̇ f 〉. This gives a function α : G → H̃ such that
α|L ≡ 1 and γ̇ (x) f (x) = α(x) f (x) for all x ∈ G. Hence, γ̇ = α and γ = α ≡ 1.
Thus, the action is free.

Let us examine da · 〈 f 〉 = 〈 ˙da f 〉 for some a ∈ AL . Since da(x)=−a+ρ(x)(a)
and ρ(x) can be computed by conjugating with f (x), we immediately conclude that

[ ˙da f ](x)= ȧ−1 f (x)ȧ f (x)−1 f (x)= ȧ−1 f (x)ȧ.

It is easy to see that [ f (L), ȧ] ⊂ H̃ . The argument we have just given is reversible,
i.e., if f (x)= hg(x)h−1 then 〈g〉 = dh̄ · 〈 f 〉 and h̄ ∈ AL . This proves (4).

Suppose [ f ] = [g]. This gives a function α : G → H such that α|L ≡ 1 and
f (x)= α(x)g(x) for all x ∈ G. Let us compute the cocycles in N/H̃ , keeping in
mind that H/H̃ is abelian:

f ](x, y)= f (x) f (y) f (xy)−1 = α(x) g(x) α(y) g(y) g(xy)
−1
α(xy)

−1

=
(
α(xy)

−1
α(x) g(x)α(y) g(x)−1

)
g(x)g(y) g(xy)−1

= d α(x, y)+ g](x, y).

Thus [ f ]] = [g]], proving (5).
It is clear that f ] ≡ 1 for f ∈ [L H̃ ]θmo(G, N )ρ . Hence, Obs(Res(〈 f 〉))= [0].

Suppose now that Obs([ f ])=[0]. This gives a function α :G→H such that α|L ≡1
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and dα= f ]. Consider g :G→N defined by g(x)=α(x)−1 f (x) for all x ∈G. Then
[g]= [ f ] and we can verify that g ∈ [L H̃ ]θmo(G, N )ρ by checking g]≡ 1 in N/H̃ :

g](x, y)= α(x)
−1

f (x) α(y)
−1

f (y) f (xy)
−1
α(xy)

∼ α(xy) α(x)
−1(

f (x) α(y) f (x)
−1)−1 f ](x, y)

= (d α(x, y))−1 f ](x, y)≡ 1.

This proves (6). �

Let us quickly reexamine how the last section works for (L , H)-morphs. All
of its results including Theorem 5 clearly work, although the objects that appear
have additional properties. Most crucially, since f (L) ⊆ CK (H), the L-action
on the abelian group A is trivial. If L is normal in G, this just means that A is a
ZG/L-module.

An important feature is that Z1(L; A) consists of homomorphisms L→ A in
this case. This means that Proposition 3 yields the following corollary:

Corollary 6. If the group L is perfect, then f1 : H 1(G, L; A) → H 1(G; A) is
surjective and f2 : H 2(G, L; A)→ H 2(G; A) is injective.

1.3. Module extensions. We now assume that L is a normal subgroup of G. Let A

be an associative ring, (V, θ) an AL-module, K = AutAV and H = AutAL V its
automorphism groups. We can think of θ as an element of the set of AL-structures
X = hom(L , K ). Then H is the centraliser in K of θ(L). By N, as before, we
denote the normaliser of H in K.

Naturally, X is a K -G-set: G acts by conjugation on L twisting the AL-module
structure, K acts by conjugations on the target, while H =StabK (θ). The module V
is called G-stable if (V, θ)∼= (V, θ g) for all g ∈ G. This is equivalent to the orbit
inclusion θG

⊆
K θ . By Lemma 2 this gives a (1, H)-morph f : G→ K.

If g ∈ L , the isomorphism f (g) : (V, θ)→ (V, θ g) can be chosen to be θ(g).
Indeed,

θ(g)(θ(h)v)= θ(gh)(v)= θ(ghg−1)(θ(g)(v))= θ g(h)(θ(g)(v))

for all g, h ∈ L . Then, without loss of generality f |L = θ , and f is an (L , H)-morph
in [L H ]θmo(G, N ).

Suppose that the group H =AutAL V is soluble. We can always find a subnormal
series H = H0BH1B. . .BHk ={1}with abelian quotients A j = H j−1/H j such that
each H j is normal in N. For instance, we can use the commutator series H j = H ( j).
In this case, every abelian group A j becomes an N -module.

If A is finite-dimensional over the field K and V is a finite-dimensional indecom-
posable AL-module, we can use Proposition 1 to derive useful information about
its automorphisms. In particular, if D= EndAL(V )/J is a separable field extension
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of K, then H = GL1(D)n (1+ J ) is soluble. It admits another standard N -stable
subnormal series:

Hm = 1+ J m, m ≥ 1, Am = (1+ J m)/(1+ J m+1).

As groups, we have Am= ((1+J m)/(1+J m+1), ·)∼= (J m/J m+1,+). The following
theorem is the direct application of Theorem 5. It determines the uniqueness and
existence of a G-module structure on a G-stable L-module. The proof is obvious.

Theorem 7. Let V = (V, θ) be a G-stable AL-module with a soluble automorphism
group H, where A is an associative ring. Let H = H0B H1B . . .B Hk = {1} be a
subnormal N-stable series with abelian factors A j = H j−1/H j .

Any AG-module structure 2 on (V, θ) compatible with its AL-structure (i.e.,
2|AL = θ) can be discovered by the following recursive process in k steps. One
initialises the process with an (L , H0)-morph f0 = f coming from the G-stability.
The step m is the following.

(1) The (L , Hm−1)-morph fm−1 : G → N such that fm−1|L = θ determines a
G-module structure ρm on Am .

(2) If Obs([ fm−1]) 6= 0 ∈ H 2(G, L; (Am, ρm)), then this branch of the process
terminates.

(3) If Obs([ fm−1])= 0∈ H 2(G, L; (Am, ρm)), then we choose an (L , Hm)-morph
fm : G→ N such that Res([ fm])= [ fm−1].

(4) For each element of H 1(G, L; (Am, ρm)) we choose a different fm branching
the process. (The choices different by an element of B1(G, L; (Am, ρm)) are
equivalent, not requiring the branching.)

(5) We change m to m+ 1 and go to step (1).

An AG-module structure2 on (V, θ) compatible with its AL-structure is equivalent
to fk for one of the nonterminated branches. Distinct nonterminated branches
produce (as fk) nonequivalent compatible AG-module structures.

This process is subtle as ρm is revealed only when fm−1 is computed. It would
be useful to have stability, i.e., the fact the G-modules (Am, ρm) are the same
(isomorphic) for different branches. The actions ρm on Am = Hm−1/Hm on different
branches differ by conjugation via a function G → Hm−2. Thus, one needs all
two-step quotients Hm−1/Hm+1 to be abelian to ensure stability. Having said that,
we can still have some easy criteria for existence, uniqueness and nonuniqueness.

Corollary 8 (existence test). Suppose H 2(G, L; (Am, ρm)) = 0 for all m for one
of the branches. Then this branch does not terminate and an AG-module structure
exists.
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Corollary 9 (uniqueness test). Suppose H 1(G, L; (Am, ρm))= 0 for all m for one
of the nonterminating branches. Then this branch is the only branch. Moreover, if
an AG-module structure exists, it is unique up to an isomorphism.

Corollary 10 (nonuniqueness test). Suppose H 1(G, L; (Ak, ρk)) 6= 0 for one of the
nonterminating branches. Then there exist nonequivalent AG-module structures.

1.4. Extension from not necessarily normal subgroups. In Section 1.3 we restrict
our attention to the case of L being a normal subgroup of G. Let us take a moment
to examine how Section 1.3 works if L is not normal.

Set P :=
⋂

g∈G Lg, where Lg := g−1Lg. Let A be an associative ring, (V, θ) an
AL-module. Note that (V, θ) is also an AP-module under restriction, so we can
view θ as an element of the set X = hom(P, K ). Let K =AutAV and H =AutAP V
be its automorphism groups, so H is the centraliser in K of θ(P). By N, as before,
we denote the normaliser of H in K.

As in Section 1.3, X is a K -G-set. The AL-module V is called G-stable-by-
conjugation if (V, θ)∼= (V, θ g) as A[L ∩ Lg

]-modules for all g ∈ G. Note that this
condition guarantees that V is G-stable as an AP-module. This is equivalent to the
orbit inclusion θG

⊆
K θ . By Lemma 2 this gives a (1, H)-morph f : G→ K.

If g ∈ L , the A[L ∩ Lg
]-isomorphism f (g) : (V, θ)→ (V, θ g) can be chosen to

be θ(g). Indeed, θ(g)(θ(h)v)= θ(gh)(v)= θ(ghg−1)(θ(g)(v))= θ g(h)(θ(g)(v))
for g ∈ L , h ∈ L ∩ Lg. Then, without loss of generality f |L = θ , and f is an
(L , H)-morph in [L H ]θmo(G, N ).

This then allows us to proceed with the inductive process of Theorem 7 as before,
when H = AutAP V is soluble.

1.5. Comparison with C•(G/L; A). When studying the question of extending
representations from a normal subgroup, Dade and Thévenaz use the cohomol-
ogy of the cochain complex (C •(G/L; A), d) to control existence and uniqueness
of such extensions. In this paper, however, we use the cohomology complex
(C •(G, L; A), d) instead. It is worth taking a moment to compare the cohomology
of these two complexes, and see where the difference in approaches arises. We use
the notation of Section 1.2, assuming that cochains are normalised since this does
not affect the cohomology groups.

In order for the action of G/L on A to make sense, we need to make the
assumption that L acts on A trivially. The reader can observe that this assumption
holds in the case considered in Section 1.3, and, in fact, holds whenever one obtains
the G-action on A from an (L , H)-morph as opposed to a weak (L , H)-morph.
With this assumption, we have the following proposition.

Proposition 11. Under the aforementioned conditions we have isomorphisms of
groups H 0(G, L; A)∼= H 0(G/L; A) and H 1(G, L; A)∼= H 1(G/L; A).
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Proof. It is easy to see that H 0(G, L; A)= AG
= H 0(G/L; A). The natural map

from the group of normalised cochains

inf : Ĉ1(G/L; A)→ C1(G, L; A), inf(µ)(g)= µ(gL),

defines a map Inf := [inf] : H 1(G/L; A)→ H 1(G, L; A) of cohomology groups.
It is injective because Inf([µ])= 0 means that inf(µ)= da for some a ∈ A. Then
µ= da and [µ] = 0.

It is surjective because for η ∈ Z1(G, L; A) we have dη = 0 that translates as

η(gh)= g(η(h))+ η(g) for all g, h ∈ G.

If one chooses h ∈ L , then it tells us that η(gh)= η(g), i.e., that η is constant on
L-cosets. Thus, the cocycle

µ ∈ Ẑ1(G/L; A), µ(gL) := η(g)

is well-defined. By definition inf(µ)= η. �

Considering the second cohomology of these complexes, it is still possible to
construct the inflation map Inf : H 2(G/L; A)→ H 2(G, L; A) in the natural way,
but this map is no longer an isomorphism in general. We can still view H 2(G/L; A)
as a subgroup of H 2(G, L; A):

Proposition 12. The map Inf : H 2(G/L; A)→ H 2(G, L; A) is injective.

Proof. If Inf([η])= 0 ∈ H 2(G, L; A) then there exists µ ∈ C1(G, L; A) such that
dµ = inf(η). Note that inf(η) is constant on L × L-cosets by construction. In
particular, for g ∈ G and h ∈ L , we have

µ(g)−µ(gh)= g(µ(h))+µ(g)−µ(gh)= inf(η)(g, h)

= inf(η)(g, 1)= inf(η)(1, 1)= 0,

using the cocycle condition in the penultimate equality. Hence, µ is constant on
cosets of L in G. In particular, if we define µ̃ ∈ Ĉ1(G/L; A) by µ̃(gL) = µ(g)
then we obtain that η = dµ̃ and so [η] = 0 ∈ H 2(G/L; A). �

In the context of Theorem 5, we can see that H 2(G/L; A) and H 2(G, L; A) can
be made to play the same role in certain key cases. To that end, we say that an
(L , H)-morph f is normalised if f (gh)= f (g) f (h) whenever g ∈ G and h ∈ L .
Note that this definition is independent of the subgroup H.

Lemma 13. In the context of Theorem 7, the (L , Hi )-morphs fi can be assumed
to be normalised for each i . Furthermore, with this assumption, the cocycles
f ]i ∈ Z2(G, L; Ai+1) are constant on cosets of L × L in G×G.

Proof. These results follow from Lemmas 9.2 and 9.4(i) in [Karpilovsky 1989]. �



586 DMITRIY RUMYNIN AND MATTHEW WESTAWAY

For the rest of this section we assume all morphs are normalised. The second state-
ment of Lemma 13 immediately yields that, given an (L , H)-morph f , Obs([ f ])
lies in the image of the natural homomorphism Inf : H 2(G/L; A)→ H 2(G, L; A).
The discussion in this section yields the following result:

Corollary 14. Let f be a normalised (L , H)-morph. There exists η ∈ Z2(G/L; A)
with Inf([η])= Obs([ f ]). Furthermore, Obs([ f ])= 0 ∈ H 2(G, L; A) if and only
if [η] = 0 ∈ H 2(G/L; A).

Combining Proposition 11 and Corollary 14, we observe that Sections 1.2 and 1.3
could be interpreted using the cochain complex C •(G/L; A) at all points instead of
the complex C •(G, L; A) (although doing so would force us to work exclusively
with normalised morphs instead of not-necessarily-normalised weak morphs). In-
deed, this is the approach taken by Dade and Thévenaz in the contexts they consider.
Our reasons for not taking this approach are threefold. Firstly, our new complex fits
nicely into an exact sequence as described in Section 1.2. Secondly, this complex
is more natural to work with — Dade and Thévenaz essentially move from the
complex C •(G/L; A) to the complex C •(G, L; A) as described in this section, and
then proceed as we do. Finally, our main motivation in studying the case for abstract
groups is to gain insight into the question for algebraic groups, where the procedures
described in this section do not work smoothly (cf. Section 2.5).

In particular, note that if H is abelian then the corollaries at the end of Section 1.3
give precisely Corollary 1.8 and Proposition 2.1 in [Thévenaz 1983].

2. G-stable modules for algebraic groups

In this chapter we consider algebraic groups over an algebraically closed field K of
positive characteristic p. Algebraic groups are affine and reduced, groups schemes
are affine and not necessarily reduced.

2.1. Rational and algebraic G-modules. We distinguish algebraic and rational
maps of algebraic varieties. In particular, we can talk about algebraic and rational
homomorphisms of algebraic groups f : G → H. The latter are defined on an
open dense subset U = dom( f ) of G containing 1 and satisfy f (x) f (y)= f (xy)
whenever x, y, xy ∈U.

A rational automorphic G-action on a commutative algebraic group H is a
rational map G× H → H, defined on an open set U × H containing 1× H, with
the usual action conditions and also such that for each g ∈U the map x 7→ gx is a
group automorphism of H. An algebraic G-action on H is the same, but where the
map G× H → H is algebraic.

In an important case, the distinction between rational and algebraic maps can be
essentially forgotten, as observed by Rosenlicht [1956].
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Lemma 15 [Rosenlicht 1956, Theorem 3]. Let G and H be algebraic groups
with G connected. Suppose f : G → H is a rational homomorphism. Then f
extends uniquely to an algebraic group homomorphism G→ H.

When H is commutative, this lemma is a special case of the next lemma. Indeed,
if one takes the G-action on H to be trivial, then the condition in the following
lemma is precisely the condition for a map to be a homomorphism.

Lemma 16. Suppose that G is a connected algebraic group and (H,+) is a commu-
tative algebraic group with an algebraic automorphic G-action ρ. Let f : G→ H
be a rational map such that f (xy) = f (x) + x f (y) for all x, y, xy ∈ dom( f )
(where x f (y) := ρ(x)( f (y))). Then f extends to an algebraic map satisfying
f (xy)= f (x)+ x f (y) for all x, y ∈ G.

Proof. Since f is rational and G is connected, dom( f )=U ⊂ G is a dense open
subset. Set V =U ∩U−1.

Fix x ∈ V. Consider the rational map

fx : G→ H, fx(y) := f (yx)+ yx f (x−1).

This map is rational since it is defined on the dense open set V x−1. Observe that
on V ∩ V x−1 we have that fx = f by the assumption on f . Now, let x, z ∈ V and
define the rational map

fx,z : G→ H, fx,z(y) := fx(y)− fz(y).

Then fx,z is defined on V x−1
∩ V z−1. If the set f −1

x,z (H \ {0}) is nonempty, it is
open dense. Hence, it has nonempty intersection with V ∩ V x−1

∩ V z−1. However,
since on V ∩V x−1

∩V z−1 we have f = fx = fz , this is impossible. Thus, we must
have fx,z≡0 on V x−1

∩V z−1. In particular, if y ∈V x−1
∩V z−1 then fx(y)= fz(y).

Therefore, the following map is a well-defined locally-algebraic, and hence
algebraic, map:

f̂ : G→ H, f̂ (y) := fw(y), where w ∈ y−1V .

This map clearly restricts to f on V. Furthermore, it satisfies the condition from
the lemma:

Let a, b ∈ G. Choose w ∈ b−1a−1V ∩ b−1V — this exists since both these sets
are open dense in G. We then have abw ∈ V and bw ∈ V. The condition on f tells
us that 0= f (1)= f (bw)+ bw f (w−1b−1). Hence, we have the equations

f̂ (ab)= fw(ab)= f (abw)+ abw f (w−1),

f̂ (a)= fbw(a)= f (abw)+ abw f (w−1b−1),

a f̂ (b)= a fw(b)= a f (bw)+ abw f (w−1).

This then gives us that f̂ (ab)= f̂ (a)+ a f̂ (b), as required. �
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Recall that a rational1 representation of an algebraic group G is a vector space V,
equipped with an algebraic homomorphism θ : G → GL(V ). An immediate
consequence of Lemma 15 is that if G is connected, then θ is uniquely determined
by any of its restrictions to an open subset and any rational homomorphism of
algebraic groups G→ GL(V ) determines a representation.

Similar to the case of abstract groups, we have the following proposition:

Proposition 17 [Xanthopoulos 1992, Section 4.3]. (cf. Proposition 1) Suppose
that V is a finite-dimensional indecomposable g-module, where g is the Lie algebra
of the algebraic group G over K. Then as algebraic groups we have

Autg(V )= K×× (1+ J ),

where J is the Jacobson radical of Endg(V ). Furthermore, 1+ J is a connected
unipotent algebraic subgroup of Autg(V ).

2.2. Rational and algebraic cohomologies. Let H be an affine group scheme act-
ing on an additive algebraic group (A,+) algebraically by automorphisms. The
following easy lemma shall be useful in what follows.

Lemma 18. Let H be an irreducible affine group scheme. Then H is primary, i.e.,
every zero-divisor in K[H ] lies inside the nilradical.

Proof. The affinity of H tells us that K[H ] = K[y1, . . . , yn]/I for some n ≥ 1 and
some Hopf ideal I. In particular, I has a primary decomposition I = Q0∩ · · ·∩ Qr

(which we assume to be normal) with associated primes P0 =
√

I , P1, . . . , Pr .
From the perspective of group schemes, this uniquely endows H with a finite
collection p0, p1, . . . , pr of embedded points of H, where pi is a generic point of
the irreducible closed subscheme given by Qi . Furthermore, for i > 0 each pi is of
codimension at least one. If x is a closed point in H, then the set xp0, xp1, . . . , xpr

corresponds to the associated primes of another primary decomposition of I. Hence,
by uniqueness, x acts on the set p0, p1, . . . , pr by permutation. Thus,

Hred =

r⋃
i=1

( ⋃
x closed point

xpi

)
red
=

r⋃
i=1

(pi )red.

However, over an algebraically closed field, Hred cannot be a finite union of proper
subvarieties. Hence, r = 0 and the result follows. �

Define the cochain complex (Cn
Rat(H ; A), d) to consist of the rational maps

H n
→ A defined at (1,1, . . . ,1) with the standard differentials of group cohomology.

A rational function f on H n is defined on an open dense subset U ⊆ H n, thus, U
has a nonempty intersection Uα = U ∩ H n

α with each irreducible component H n
α

1It is a standard terminology, which slightly disagrees with our usage of the adjective rational.
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of H n. Since H n is a group scheme, its irreducible components are connected
components that yields the direct sum decomposition of functions:

K[H n
] = ⊕αK[H n

α ].

Note that each Hα is isomorphic to an irreducible affine group scheme, so we can
apply Lemma 18. Thus, Uα is of the form U (sα) for a non-zero-divisor sα ∈K[H n

α ]

and f = hs−1 for some h ∈K[H n
] and a non-zero-divisor s := (sα)∈K[H n

]. Thus,
f ∈K[H n

]S , the localised ring of functions obtained by inverting the set S of all
non-zero-divisors.

Writing functions on the algebraic group A as K[A] = K[x1, . . . xm]/I, a ra-
tional n-cochain µ is uniquely determined by an m-tuple of rational functions
(µi ) ∈K[H n

]
m
S satisfying the relations of I. In particular, if each component of H

is infinitesimal,

K[H n
]S = K[H n

] and Cn
Rat(H ; A)= Cn

Alg(H ; A),

where, in general, (Cn
Alg(H ; A), d) is the cochain subcomplex of (Cn

Rat(H ; A), d)
that consists of those rational maps H n

→ A which are, in fact, algebraic.
Let us now concentrate on a connected algebraic group G and its connected

subgroup scheme L . There is another subcomplex of (Cn
Rat(G; A), d) which we

are interested in: we define (C̃ •Rat(G, L; A), d) to consist of rational maps Gn
→ A

that are trivial on Ln (i.e., everywhere 0 on Ln). As in the case of abstract groups,
we define (C •Rat(G, L; A), d) by

Cn
Rat(G, L; A)=

{
C̃n

Rat(G, L; A), if n > 0,
AL , if n = 0.

There is a natural inclusion of cochain complexes C •Rat(G, L; A)→ C •Rat(G; A).
We can hence define the cochain complex C̃ •Rat(L; A) such that C̃n

Rat(L; A) :=
Coker(Cn

Rat(G, L; A)→ Cn
Rat(G; A)) for all n ≥ 0.

In particular, this gives us the short exact sequence of cochain complexes

0→ C •Rat(G, L; A)→ C •Rat(G; A)→ C̃ •Rat(L; A)→ 0.

We define the algebraic complexes C •Alg(G, L; A) and C̃ •Alg(L; A) in the expected
way, and once again get a short exact sequence of cochain complexes. In either case,
this allows us to construct the long exact sequence in cohomology (suppressing the
“Rat” and “Alg”):

(2) 0→ H 1(G, L; A)→ . . .→ H̃ n−1(L; A)

→ H n(G, L; A)→ H n(G; A)→ H̃ n(L; A)→ . . .

Note that H̃ 0
Rat(L; A) = H̃ 0

Alg(L; A) = 0, hence this exact sequence starts in
degree one.
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These long exact sequences can be connected, using the maps induced by the
inclusions Cn

Alg(G, L; A) ↪→ Cn
Rat(G, L; A) and Cn

Alg(G; A) ↪→ Cn
Rat(G; A):

. . . −→ H n
Alg(G, L; A) −→ H n

Alg(G; A) −→ H̃ n
Alg(L; A) −→ H n+1

Alg (G, L; A) −→ . . .y y y y
. . . −→ H n

Rat(G, L; A) −→ H n
Rat(G; A) −→ H̃ n

Rat(L; A) −→ H n+1
Rat (G, L; A) −→ . . .

Since we identify C0
Alg(G; A) with algebraic maps from the trivial algebraic

group to A (and similarly in the other complexes), there is no distinction between
rational and algebraic maps. Hence,

H 0
Rat(G; A)= H 0

Alg(G; A)= H 0
Rat(G, L; A)= H 0

Alg(G, L; A)= AG.

The cocycle condition on f ∈ C1
Rat(G; A) is precisely the condition considered

in Lemma 16 for a rational map f : G→ A. Since G is connected, Lemma 16 tells
us the map extends to an algebraic map. Hence, in this case

H 1
Rat(G; A)= H 1

Alg(G; A) and H 1
Rat(G, L; A)= H 1

Alg(G, L; A).

This leads to the following proposition. The first part of it follows from the exact
sequence. The second part has a similar proof to Proposition 3.

Proposition 19 (cf. Proposition 3). (1) If H̃ 1
Rat(L; A)= 0, then H 1

Rat(G, L; A)=
H 1

Rat(G; A).

(2) For n > 0, if the natural map Zn−1
Rat (G; A)→ Z̃n−1

Rat (L; A) is surjective, then
the natural map H n

Rat(G, L; A)→ H n
Rat(G; A) is injective.

The appropriate long exact sequence yields the following.

Corollary 20. H 2
Rat(G, L; A) = 0 if and only if H 1

Rat(G; A)→ H̃ 1
Rat(L; A) is sur-

jective and H 2
Rat(G; A)→ H̃ 2

Rat(L; A) is injective.

When the action is trivial, we can learn more about what these cohomology
groups are.

Lemma 21. If G acts trivially on A and Hom(L , A)= 0, then Z̃1
Rat(L; A)= 0.

Proof. Let µ+C1
Rat(G, L; A) ∈ Z̃1

Rat(L; A), so dµ ∈ C2
Rat(G, L; A). In particular,

dµ|L2 = 0. However, since the action is trivial, dµ|L2 = 0 if and only if µ|L is a
rational homomorphism L → A if and only if µ|L is a homomorphism L → A
(since L is connected, by assumption). Since Hom(L , A) = 0, we conclude that
µ+C1

Rat(G, L; A)= 0+C1
Rat(G, L; A). Hence, Z̃1

Rat(L; A)= 0. �

Lemma 22. Let G be a connected algebraic group which acts trivially on a commu-
tative algebraic group A. Let L ≤ G be a closed connected subgroup scheme. Then
H 1

Rat(G; A)= Hom(G, A) and H 1
Rat(G, L; A)= {µ ∈ Hom(G, A) | µ|L ≡ 0}.
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Proof. Since the G-action on A is trivial, the coboundary map C0
Rat(G; A) →

C1
Rat(G; A) is just the trivial map. Hence, we get that H 1

Rat(G; A) = Z1
Rat(G; A),

the rational 1-cocycles of G. However, as the action is trivial, rational 1-cocycles
of G on A are the same as homomorphisms of algebraic groups G→ A. Hence,
H 1

Rat(G; A)= Hom(G, A).
A similar argument gives H 1

Rat(G, L; A)= {µ ∈ Hom(G, A) | µ|L ≡ 0}. �

Combining Lemmas 21, 22 and Proposition 19 (2), we get the following corollary:

Corollary 23. Let G be a connected algebraic group acting algebraically (not
necessarily trivially) by automorphisms on a commutative algebraic group A.
Let L ≤ G be a connected closed subgroup scheme of G such that the action
of L on A is trivial, and Hom(L , A)= 0. Then H 1

Rat(G, L; A)= H 1
Alg(G; A) and

H 2
Rat(G, L; A)→ H 2

Rat(G; A) is injective.

The following lemma by van der Kallen [1973, Proposition 2.2] will be useful:

Lemma 24. Let G be a semisimple, simply-connected algebraic group. Suppose
further that, if p = 2, the Lie algebra g of G does not contain A1, B2 or Cl (l ≥ 3)
as a direct summand. Then g is perfect, i.e., g= [g, g].

Proof. It is enough to prove this result for G simple and simply-connected, with
irreducible root system 8. It is well known that g is simple and nonabelian (and so
g= [g, g]) in the following cases: p - l + 1 in type Al , p 6= 2 in types Bl,Cl, Dl ,
p 6= 2, 3 in types E6, E7, F4,G2, and p 6= 2, 3, 5 in type E8. It is further known
[Capdeboscq et al. 2017] that g is simple and nonabelian in the following cases:
p = 2 in types E6,G2, p = 3 in types E7, F4, and p = 2, 3, 5 in type E8.

Furthermore, it is known from Table 1 in [Hogeweij 1982] that g= [g, g] in all
the remaining cases except for p = 2 in types A1, B2,Cl (l ≥ 3). �

Lemma 25. Let G be a semisimple, simply-connected algebraic group over an al-
gebraically closed field K of characteristic p which acts trivially on a commutative
algebraic group A. Suppose further that, if p = 2, the Lie algebra g of G does not
contain A1, B2 or Cl (l ≥ 3) as a direct summand. Let G1 be the first Frobenius
kernel of G. Then H 2

Rat(G,G1; A)= 0.

Proof. Let us first show that H 2
Rat(G; A) = 0. Let µ : G ×G→ A be a rational

cocycle defined on the open set U ×U with U−1
=U. We can define a local group

structure on the set A×G by setting

(a, g)(b, h)= (a+ b+µ(g, h), gh) and (a, g)−1
= (−a−µ(g, g−1), g−1).

In the language of Weil [1955], A×U is a group-chunk in the pre-group A×G.
By Weil’s theorem [1955], there exists an algebraic group H birationally equivalent
to A×U with 8 : A×U→8(A×U ) an isomorphism of algebraic group-chunks
and 8(A×U ) a dense open set in H.
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Since H is connected it is generated by8(A×U ). Let f : A→ H be the natural
algebraic group homomorphism coming from A→ A×U. This is clearly injective
and, since A commutes with each element of A×U, we have that f (A)⊂ Z(H).
Furthermore, the natural projection A × U → G extends to a rational (and so
algebraic) homomorphism π : H→ G, which is surjective as U generates G (since
G connected). Finally, it is clear that f (A)= kerπ∩8(A×U ). Hence, π descends
to a homomorphism π̄ : H/ f (A)→ G, whose kernel is discrete (since 8(A×U )
is dense in H ) and, hence, central (as G connected).

In other words, we have a central extension 1→ A→ H→ G→ 1 of algebraic
groups, which corresponds to an algebraic cocycle µ̃ : G×G→ A. It is straightfor-
ward to see that µ̃|U×U =µ|U×U , and hence [µ] lies in the image of the natural map
H 2

Alg(G; A)→ H 2
Rat(G; A). Thus the map H 2

Alg(G; A)→ H 2
Rat(G; A) is surjective.

It suffices to prove that H 2
Alg(G; A)= 0 when A is Ga or Gm or a finite group: the

long exact sequence in cohomology reduces the case of arbitrary A to one of these
cases. It is known that H 2

Alg(G;Ga)= H 2(G;Ktriv)= 0 [Jantzen 1987, II.4.11].
Consider a nontrivial cohomology class in H 2

Alg(G; A) when A is Gm or a
nontrivial finite group. It yields a nonsplit central extension 1→ A→ G̃→G→ 1.
Pick a nontrivial character χ : A→ Gm . There exists an irreducible representation
of G̃ with a central character χ . It is an irreducible projective representation of G.
By the original version of Steinberg’s tensor product theorem [1963] it is linear.
Hence, χ is trivial. This contradiction proves that H 2

Alg(G; A)= 0 for these two
particular A. We have finished the proof that H 2

Rat(G; A)= 0 for an arbitrary A.
Since G1 is a height 1 group scheme, rational homomorphisms of schemes

G1→ A are fully controlled by the corresponding restricted homomorphisms of
Lie algebras g→ Lie(A). By Lemma 24, g = [g, g] and thus all such homomor-
phism of Lie algebras are trivial. Hence, we can apply Corollary 23 to get that
H 2

Rat(G,G1; A)→ H 2
Rat(G; A) is injective, and so

H 2
Rat(G,G1; A)= 0. �

2.3. G-stable bricks. In Section 1, we have introduced the notions of weak (L , H)-
morphs and (L , H)-morphs for abstract groups. In this section, we discuss how
these notions apply to algebraic groups and see how they can be used to shed some
light on the lifting of g-modules to G-modules.

Suppose that G, K are algebraic groups over K, where G is connected, and that
L , H are closed subgroup schemes of G, K respectively. We say that a rational
map f : G→ K is a (weak) (L , H)-morph of algebraic groups if it satisfies the
conditions for a (weak) (L , H)-morph of abstract groups, where condition (3) is
interpreted for only those x, y, xy ∈ dom( f ).

In analogy with the case of abstract groups, a weak (L , H)-morph of algebraic
groups is a homomorphism G→ N/H with a rational lifting N/H → N which
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satisfies an additional condition. It is clear that if H is normal in K then con-
dition (2) is trivially satisfied. We again have that weak (L , 1)-morphs are just
homomorphisms G→ K, and that weak (1, K )-morphs are rational maps G→ K
which preserve the identity.

We say that two weak (L , H)-morphs of algebraic groups, f and g, are equivalent
if f (x)g(x)−1

∈ H for all x ∈ dom( f ) ∩ dom(g). Given a homomorphism of
algebraic groups θ : L→ K, we denote by [L H ]θmo(G, K ) the quotient by this
equivalence relation of the set of weak (L , H)-morphs of algebraic groups from G
to K which restrict to θ on L .

Suppose that X is a separated algebraic scheme on which G acts rationally on
the right (i.e., the action X ×G→ X is a rational map), K acts algebraically on
the left, and the actions commute. Suppose further that θ ∈ X (K) is such that
θG
⊂

K θ , and that there exists a rational section K/H→ K where H = StabK (θ)

is the scheme-theoretic stabiliser of θ .
As in the case for abstract groups, this gives us a rational map

f : G→ K characterised by f (x)θ = θ x for all x ∈U
open
⊂ G.

Lemma 26. The map f defined above is a (1, H)-morph of algebraic groups.

Proof. We can think of f as the composition of the rational maps

G ↪→ {θ}×G→ K θ→ K/H → K .

Note that K θ → K/H is an algebraic map by [Demazure and Gabriel 1970,
Proposition 3.2.1]. We then have that the composition is rational since each domain
of definition intersects the previous map’s image.

The proof that f (x) f (y) ∈ f (xy)H for x, y ∈ G with f (x), f (y) and f (xy)
defined is the same as in the abstract case, as is the proof that f (G)⊂ NK (H). �

Now we fix algebraic (group, subgroup scheme) pairs (G, L) and (K , H) with H
soluble and G connected. Denote by mG,mK the corresponding multiplication
maps, 1G,1K the diagonal embeddings, and invG, invK the inverse maps. Let
θ : L→ K be a homomorphism of algebraic group schemes. Furthermore, choose H̃
to be an algebraic subgroup of H, characteristic in N = NK (H) such that A := H/H̃
is commutative. We denote the quotient map H → A by π .

We can define an N -action on H by conjugation. Note that since H̃ is char-
acteristic in N, so preserved by conjugation, this passes to an algebraic N -action
on A. Hence, we have an algebraic action of N on A which is trivial on H (since A
is commutative). This gives us an algebraic N/H -action on A. For an element
f ∈ [L H ]θmo(G, K ), we get a rational homomorphism G→ N/H which is, in
fact, algebraic by Lemma 15. Thus, every element of [L H ]θmo(G, K ) induces an
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algebraic G-action on A. This G-action respects the multiplication operation of A,
i.e., it is an algebraic automorphic G-action.

As in the case for abstract groups, we can form something resembling an exact
sequence. Let ρ be a rational G-action on A, and define

[L H̃ ]θmo(G, N )ρ ⊂ [L H̃ ]θmo(G, N ), [L H ]θmo(G, N )ρ ⊂ [L H ]θmo(G, N )

as the subsets of weak morphs which induce the action ρ.
We get the following theorem:

Theorem 27 (cf. Theorem 5). For a rational G-action ρ on A the following state-
ments hold:

(1) There is a restriction map

Res : [L H̃ ]θmo(G, N )ρ→ [L H ]θmo(G, N )ρ, Res(〈 f 〉)= [ f ],

where 〈 f 〉 and [ f ] are the equivalence classes in [L H̃ ]θmo(G, N )ρ and
[L H ]θmo(G, N )ρ .

(2) The abelian group Z1
Rat(G, L; (A, ρ)) acts freely on the set [L H̃ ]θmo(G, N )ρ

by
γ · 〈 f 〉 := 〈γ̇ f 〉, where γ̇ f = mK ◦ (γ̇ × f ) ◦1G

and γ̇ : G γ
−→ A→ H comes from a rational Rosenlicht section A→ H (cf.

[Rosenlicht 1956, Theorem 10]) with γ̇ (1)= 1.

(3) The corestricted restriction map Res : [L H̃ ]θmo(G, N )ρ → Im(Res) is a
quotient map by the Z1

Rat(G, L; (A, ρ))-action.

(4) If H, H̃ and A are reduced, two classes 〈 f 〉, 〈g〉 ∈ [L H̃ ]θmo(G, N )ρ lie in
the same B1

Rat(G, L; (A, ρ))-orbit if and only if there exist h ∈ H, f ′ ∈ 〈 f 〉,
g′ ∈ 〈g〉 such that [ f (L), h] ⊂ H̃ and f ′(x)= hg′(x)h−1 for all x ∈ G.

(5) There is an obstruction map

Obs : [L H ]θmo(G, N )ρ→ H 2
Rat(G, L; (A, ρ)), Obs([ f ])= [ f ]],

where the cocycle f ] is defined by

G×G (p1,p2,mK )
−−−−−−→G×G×G ( f, f, invK f )

−−−−−−→ K × K × K mK
−→ H π

−→ A.

Here, p1 and p2 denote projection to the first and second coordinate respec-
tively.

(6) The sequence (cf. sequence (1))

[L H̃ ]θmo(G, N )ρ→ [L H ]θmo(G, N )ρ→ H 2
Rat(G, L; (A, ρ))

is exact, i.e., the image of Res is equal to Obs−1([0]).
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Proof. If 〈 f 〉 = 〈g〉 then the map

α : G ( f, invK g)
−−−−−−→ K × K m

−→ K

has image in H̃ and is trivial on L . It is rational as it is a composition of rational
maps, and the identity is in the domain of definition and image of each map.

We also observe that given an analogous α : G → H (i.e., corresponding to
[ f ]= [g]) we get πα :G→ A. Denoting the Rosenlicht section [1956, Theorem 10]
A→ H by τ , we see that τπα = α and thus ˙(πα)= α. Note that we may assume
the Rosenlicht section is defined at 0A by composing with a translation if necessary.
All the maps here are rational. In particular, πα ∈ C1

Rat(G, L; (A, ρ)).
With these observations in mind, the remainder of the proof follows in the

same way as in the proof of Theorem 5 does for abstract groups, doing everything
diagrammatically. �

Before going any further, let’s consider the following case where we can use
this exact sequence directly. A restricted g-module (V, θ) satisfying the condition
that Autg(V ) = K× is called a brick. A brick is necessarily an indecomposable
g-module.

Theorem 28. Suppose G is a semisimple, simply-connected algebraic group over
an algebraically closed field K of characteristic p > 0, with Lie algebra g. Suppose
further that, if p = 2, g does not contain A1, B2 or Cl (l ≥ 3) as a direct summand.
Let (V, θ) be a finite-dimensional G-stable brick. Then there exists a unique G-
module structure 2 on V with 2|G1 = θ .

Proof. We use Theorem 27 in the following situation:

• L = G1, the first Frobenius kernel of G,

• K = GL(V ),

• H = Autg(V )= K×,

• N = NK (H),

• X = HomK(g, gl(V )), a separated algebraic scheme with θ ∈ X (K).

Observe that G acts on X on the right via the adjoint map on the domain and
GL(V ) acts on X on the left via conjugation on the image. Furthermore, the actions
commute, and the G-stability of V gives us that θG

⊂
GL(V)θ .

Hence, Lemma 26 gives a (1, H)-morph of algebraic groups, say f :G→GL(V ).
In particular, it gives a homomorphism of algebraic groups f : G → PGL(V ),
together with a rational lifting η : PGL(V )→ GL(V ). This rational lifting can be
defined as follows: fix a basis of V and let U be the open subset of PGL(V ) consist-
ing of all cosets which can be represented by a (unique) matrix A= (ai j )∈GL(V )
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with a11 = 1. Then define the map η :U → GL(V ) by assigning to each coset this
representative.

Currently f and θ give the same maps from G1 to N/H , since

θ(x)θ(a)(v)= θ(x)θ(a)θ(x−1)(v)= θ(xax−1)(v)= θ x(a)(v)

for x, a ∈ G1(S), v ∈ V (S) for any commutative K-algebra S. Note, however, that
the maps G1→ K do not necessarily agree.

To fix this potential disagreement, we define a rational map R :G1→ H =K× by
R(g)= f (g)−1θ(g) for g ∈ G1(S). There exists a rational map R̃ : G→ H =K×

which restricts to R on G1. Indeed, we have R ∈K[G1] (as G1 is infinitesimal), so
we can lift it to R̃ ∈K[G] (since K[L] is a quotient of K[G]). Let U = G \ f̃ −1(0).
This is open in G, and on U we have that the image of R̃ lies inside K×, so R̃ is a
rational map G→K×. If now we define f̃ :G→GL(V ) by f̃ (g)= f (g)R̃(g), we
get that f̃ is a (G1, H)-morph which restricts to θ on G1, fixing the disagreement.

Observe that with H̃ := 1, we get (in the notation of the Theorem 27) A = H
and G acting on A trivially. Hence, the “exact sequence” from Theorem 27 is

H 1
Rat(G,G1;K

×)99K[G11]θmo(G,N )1→[G1 H ]θmo(G,N )1→H 2
Rat(G,G1;K

×).

By Lemma 25, H 2
Rat(G,G1;K

×) = 0. Hence [ f̃ ] ∈ [G1 H ]θmo(G, N )1 can
be lifted to f̂ ∈ [G11]θmo(G, N )1. This means that 2 := f̂ : G → GL(V ) is a
homomorphism of algebraic groups which restricts to θ on G1. Furthermore, this
representation is unique (up to equivalence) if H 1

Rat(G,G1;K
×)= 0.

By Lemma 22,

H 1
Rat(G,G1;K

×)= {µ ∈ Hom(G;K×) | µ|G1 ≡ 1}.

Since G is perfect, H 1
Rat(G,G1;K

×)= 0 and the extension is unique. �

2.4. G-stable modules with soluble automorphisms. We return to the general sit-
uation, where (G, L), (K , H) are algebraic (group, subgroup scheme) pairs with H
soluble, G connected, and H reduced. However, from now on we suppose that L
is a normal subgroup scheme of G. We also fix a homomorphism of algebraic
groups θ : L → K, where the image commutes with H, so we are now dealing
with (L , H)-morphs. Everything in the previous section can be reformulated in
terms of (L , H)-morphs without difficulty — the key difference is that the G-action
on A is now trivial on L . Since H is soluble, we can find a subnormal series
H = H0B H1B . . .B Hk = {1} with commutative quotients A j = H j−1/H j and
each H j characteristic in N = NK (H) and reduced.

Suppose that f is an (L , H)-morph of algebraic groups such that f |L = θ . As
in the case of abstract groups, we get the following theorem — it generalises the
procedure which we have used for bricks in the previous section.
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Theorem 29 (cf. Theorem 7). Given an (L , H)-morph of algebraic groups f = f0

with f |L = θ , we obtain any (L , 1)-morph extending θ by applying the following
procedure. Step m is the following:

(1) The (L , Hm−1)-morph fm−1 : G → N such that fm−1|L = θ determines a
rational G-action ρm on Am .

(2) If Obs([ fm−1]) 6= 0 ∈ H 2
Rat(G, L; (Am, ρm)), then this branch of the process

terminates.

(3) If Obs([ fm−1]) = 0 ∈ H 2
Rat(G, L; (Am, ρm)), then we choose an (L , Hm)-

morph fm : G→ N such that Res([ fm])= [ fm−1].

(4) For each element of H 1
Rat(G, L; (Am, ρm)) we choose a different fm branching

the process. (The choices different by an element of B1
Rat(G, L; (Am, ρm)) are

conjugate by an element of H.)

(5) We change m to m+ 1 and go to step (1).

An (L , 1)-morph which restricts to θ on L is equivalent to fk for one of the
nonterminated branches. Two (L , 1)-morphs f, g come from different branches if
and only if there is no h ∈ H such that f (x)= hg(x)h−1 for all x ∈ G.

We get the following corollaries, similarly to Section 1.3:

Corollary 30. Suppose H 2
Rat(G, L; (Am, ρm))=0 for all m for one of the branches.

Then this branch does not terminate and there is a homomorphism f : G → K
which restricts to θ on L.

Corollary 31. Suppose H 1
Rat(G, L; (Am, ρm))=0 for all m for one of the nontermi-

nating branches. Then this branch is the only branch. Moreover, if a homomorphism
of algebraic groups f : G → K restricting to θ exists, then it is unique up to
conjugation by an element of H.

Corollary 32. Suppose H 1
Rat(G, L; (Ak, ρk)) 6= 0 for one of the nonterminating

branches. Then there exist algebraic homomorphisms G → K which are not
conjugate by an element of H.

We apply this theorem (and these corollaries) in the following case — a generali-
sation of the case from the previous section:

• G is a connected algebraic group over K with Lie algebra g,

• L = G1,

• K = GL(V ), where (V, θ) is a finite-dimensional G-stable indecomposable
g-module,

• H = Autg(V ),

• X = HomK(g, gl(V )), a separated algebraic scheme with θ ∈ X (K).
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Applying exactly the same argument as in Theorem 28, we only start to encounter
problems when trying to extend the rational map R : G1→ H to a rational map on
the whole of G. This can be fixed without much difficulty.

As a variety, we have that

H = K××Kn
⊂ Kn+1

for some n (Proposition 17). Hence, we get R=(R0, R1, . . . , Rn), where Ri ∈K[G1]

for i = 0, 1, . . . , n. We can then lift each of these to elements of K[G], so we obtain
R̃ = (R̃0, R̃1 . . . , R̃n) : G→ Kn+1. We would like the image to lie in H. Thus, we
define U = G \ R−1

0 (0). This is an open set in G, so we can view R̃ as a rational
map from G to K××Kn

= H which is defined on U, and restricts to R on G1.
Now we can define f̃ : G→ GL(V ) as f̃ (g) = f (g)R̃(g). This is a (G1, H)-

morph of algebraic groups, which restricts to θ on G1. Hence, we are in the situation
of Theorem 29. Observe that θ : G1 → GL(V ) extends to a homomorphism of
algebraic groups 2 : G→ GL(V ) if and only if there exists a (G1, 1)-morph of
algebraic groups extending θ . In particular, the corollaries to Theorem 29 can be
used to determine the existence and uniqueness of a G-module structure on V.

Corollary 33 (existence test). Suppose G is a connected algebraic group over K

with Lie algebra g, and suppose V is an indecomposable G-stable finite-dimensional
g-module. Then there exists a G-action on V which respects the g-module structure
if and only if there is a branch (in the terminology of Theorem 29) which does
not terminate; for instance, a branch such that H 2

Rat(G,G1; (Am, ρm))= 0 for all
(Am, ρm) on that branch.

Corollary 34 (uniqueness test). Suppose that G is a connected algebraic group
over K with Lie algebra g, and that V is an indecomposable G-stable finite-
dimensional g-module. Suppose further that there exists a G-action on V which
extends the g-module structure. This G-action is unique (up to isomorphism)
if and only if there is a branch (in the terminology of Theorem 29) such that
H 1

Rat(G,G1; (Am, ρm))= 0 for all (Am, ρm) on that branch.

Observe that combining Corollary 34 with Corollary 23 for the N -stable sub-
normal series Hm = 1+ J m, m ≥ 1, we get a similar result to Proposition 4.3.1 in
[Xanthopoulos 1992].

2.5. Comparison with C•Rat(G/L; A). Let us now mimic the approach we took
in Section 1.5 and examine how our cochain complex (C •Rat(G, L; A), d) compares
with the complex (C •Rat(G/L; A), d) on the level of cohomology. We use the
notation of Section 2.3. As with our discussion in Section 1.5 we have to assume
that L acts trivially on A for this discussion to be meaningful — a condition which
holds in the examples considered.

Similar to the case for abstract groups, we have the following proposition:
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Proposition 35. Under the aforementioned conditions we have isomorphisms of
groups H 0

Alg(G, L; A)∼= H 0
Alg(G/L; A) and H 1

Alg(G, L; A)∼= H 1
Alg(G/L; A).

Proof. Making use of the universal property of the quotient for algebraic groups,
the proof follows word-for-word as in Proposition 11. �

Recalling the observation that there is no distinction between H i
Alg and H i

Rat
for i = 0, 1, this tells us that H 0

Rat(G, L; A)∼= H 0
Alg(G/L; A) and H 1

Rat(G, L; A)∼=
H 1

Alg(G/L; A) in these circumstances.
The universal property of the quotient for algebraic groups further yields an

analogue of Proposition 12.

Proposition 36. The maps InfAlg : H 2
Alg(G/L; A)→ H 2

Alg(G, L; A) and InfRat :

H 2
Rat(G/L; A)→ H 2

Rat(G, L; A) are injective.

Proof. The proof follows as in Proposition 12. �

In the case of abstract groups, Section 1.5 shows that by making careful choices
of (L , H)-morphs in Theorem 7 the image of the obstruction maps

Obs : [L H ]θmo(G, N )ρi → H 2(G, L; (Ai , ρi ))

always lies inside H 2(G/L; (Ai , ρi )) ↪→ H 2(G, L; (Ai , ρi )). As such, it is pos-
sible to reinterpret Theorem 7 using the complex (C •(G/L; A), d) instead of
(C •(G, L; A), d) at all points. This conclusion for abstract groups, however, relies
on the observation that it is always possible to assume that the (L , H)-morphs being
considered are normalised. When translating the results to the case of algebraic
groups it is far from clear that the analogues of Lemma 13 and Corollary 14 hold.

Question. Can the (L , H)-morphs considered in Sections 2.3 and 2.4 be chosen
to be normalised?
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