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UNIFORM BOUNDS OF THE PILTZ DIVISOR PROBLEM
OVER NUMBER FIELDS

WATARU TAKEDA

We consider the upper bound of the Piltz divisor problem over number
fields. The Piltz divisor problem is known as a generalization of the Dirich-
let divisor problem. We deal with this problem over number fields and
improve the error term of this function for many cases. Our proof uses
the estimate of exponential sums. We also show uniform results for the
ideal counting function and relatively r-prime lattice points as one of its
applications.

1. Introduction

The behavior of arithmetic functions has long been studied, and it is one of the most
important areas of research in analytic number theory. But many arithmetic functions
f(n) fluctuate as n increases, and it becomes difficult to deal with them. Thus, many
authors study partial sums ) _.. f(n) to obtain some information about arithmetic
functions f(n). In this paper we consider the Piltz divisor function / £ (x) over
a number field. Let K be a number field with extension degree [K : Q] = n, and
let Og be its ring of integers. Let Dg be the absolute value of the discriminant
of K. Then the Piltz divisor function /¢ (x) counts the number of m-tuples of

ideals (ay, az, ..., az) such that the product of their ideal norms 9ay - - - Na,, < x.
It is known that

xS
(1-1) 20 ~ Ry (2o

We denote by A% (x) the error term of /g (x), thatis, I (x) —Resg=1 (§K(s)m);—s).

In the case m = 1, this function is the ordinary ideal counting function over K.
For simplicity we substitute /x (x) and Ag (x) for / 11< (x) and A}( (x), respectively.
There are many results about /g (x) from the 1900s. In the case K = Q, integer
ideals of Z and positive integers are in one-to-one correspondence, so Ig(x) = [x],
where [ -] is the Gauss symbol. For the general case, the best estimate of Ag (x)
hitherto is the following theorem.
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Theorem 1-2. The following estimates hold for all & > O:

n=[K:Q] Ag(x)
2 O(x 16 (log x) 8520 ) [Huxley 2002]
3 O (xte) [Miiller 1988]
4 O(x72te) [Bordelles 2015]
5<n<10 O(x'~zerte) [Bordelles 2015]
ll<n  O(x'"mste) [Lao 2010]

There are also many results about /g’ from the 1800s. In 1849 Dirichlet showed
that

i\)\'—'

13(x) = xlogx + 2y — )x + O(x

where y is the Euler constant, defined by

(]
y = ”lggo(,; T —1ogn).
The O-term has been improved by many researchers many times; the best estimate
hitherto is x%"‘e [Bourgain and Watt 2017].
As we have mentioned above, there exist many results about other divisor prob-
lems, but it seems that there are not many results about the Piltz divisor problem
over number fields.

Theorem 1-3 [Nowak 1993]. When n = [K : Q] > 2, then we get

0(m—2)
OK( mzn+mn(5mn+2) (log X)m - W) fOl’ 3<mn< 6’

2(m— 2))

A%(x) = 2
OK (xl_m” +2n12n2 (log x)m 1- mn

formn >1.

For the estimate of the lower bound, Girstmair, Kiihleitner, Miiller, and Nowak
obtain the following €2-results:

Theorem 1-4 [Girstmair et al. 2005]. For any fixed number field K with n =
[K:Q] =2,

(1-5) AR (x) =Q(x 3=z (log x) 2~ 27 (log log x)* (log log log )7,

where k and A are constants depending on K. To be more precise, let K& be the Ga-
lois closure of K/Q, G = Gal(K#'/Q) its Galois group, and H = Gal(K#'/K)
the subgroup of G corresponding to K. Then

1 mn 1 —1
mn~|— (ngnfnﬂ_l) and /,\:mn+ R+mn ’

2mn dmn 2mn
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where
|{r eG ! HoeG|treoHo 1} = v|H|}|
G

8]):

and R is the number of 1 <v <n with §, > 0.

We know the following conditional result. If we assume the Lindel6f hypothesis
for the Dedekind zeta function, it holds that for all € > 0, for all K, and for all m,

(1-6) m(x) = Og(x21DE).

In this paper we estimate the error term of AZ(x) by using exponential sums.
In [Nowak 1993; Girstmair et al. 2005], they use other approaches, so we expect
new development for the Piltz divisor problem over number fields. As a results, we
improve the estimate of upper bound of A% (x) for many K and many m.

In Section 2, we show some auxiliary theorems to consider the upper bound
of the error term A%Z(x). First we give a review of the convexity bound for
the Dedekind zeta function and generalized Atkinson lemma [1941]. Next we
show Proposition 2-6, which reduces an ideal counting problem to a problem of
exponential sums. This proposition plays a crucial role in our computing A% (x).

In Section 3, we prove the following theorem about the error term A% (x) by
using estimates of exponential sums.

Theorem 1-7. For every ¢ > 0 the following estimate holds. When mn > 4, then

AT (x) = Op o (x 35T +e pZHFTTE)

This theorem gives improvement of the upper bound of A% (x) for mn > 4.

In Section 4, we give some applications. First we give a uniform estimate for the
ideal counting function over number fields. Second we show a good uniform upper
bound of the distribution of relatively r-prime lattice points over number fields as a
corollary of the first application.

In Section 5, we consider a conjecture about estimates for the Piltz divisor
functions over number fields. It is proposed that for all number fields K and for all

m the best upper bound of the error term is better than that on the assumption of
the Lindelof hypothesis (1-6).

2. Auxiliary theorem

In this section, we show some important lemmas for our argument. Let s = o +i¢
and n = [K : Q]. We use the convexity bound of the Dedekind zeta function to
obtain an upper bound of the error term of the Piltz divisor function A% (x).
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It is well known that the Dedekind zeta function satisfies the functional equation

1 ri+r r
2-1) ¢x(1—s)= D;( 2gn(1=8) p=ns o (g)n (cos %s) e (sin %S) 2ZK(S),
where r; is the number of real embeddings of K and r; is the number of pairs of
complex embeddings.
The Phragmen-Lindeldf principle and (2-1) give the well known convexity bound

of the Dedekind zeta function [Rademacher 1959]: for any ¢ > 0 and n = [K : @],
. 1_
On ()27 D277F) it <0,
. n(l—o 1—o
(2—2) ZK(U—FH‘): On,s(|t| (12 >+8DK2 +8) ifo<o <1,

On.(|t|*D%) ifl<o

as |t|" Dg — oo, where K runs through number fields with [K : Q] = n. In the
previous papers, we also use this convexity bound (2-2) to estimate the distribution
of ideals. In the following sections, we show some estimates for A% (x) in the
similar way to our previous papers.

Lemma 2-3 states the growth of the product of the Gamma function and trigono-
metric functions in the functional equation (2-1) of the Dedekind zeta function.

Lemma 2-3. Let T € {cos, sin} and n be a positive integer. Then

F(S)n( ns)’l""Z( : ns)’Z

0 cos —
—
= Cn_"sF(ns - n+1)‘[(@) + On(|t|_2+”a_%),

2
2 2
where C is a constant and s = o + it.

Proof. This lemma is shown from the Stirling formula and estimate for trigonometric
functions. O

Next we introduce the generalized Atkinson lemma. This lemma is quite useful
for calculating integrals of the Dedekind zeta function.

Lemma 2-4 [Atkinson 1941]. Let y >0, 1 < A < B, and t € {cos, sin}, and define
1 A+iB s
I=5- ree(5)y=ds.
27i Jaip (s)r( 5 )y ds
If y < B, then
—1
I =T()’)+0(y_% min((log g) ’B%)_i_y—ABA—% +y_%).

If y > B, then

I = O(y_A (BA_% min((log %)_1, B%) + AA_%».



UNIFORM BOUNDS OF THE PILTZ DIVISOR PROBLEM OVER NUMBER FIELDS 605

Finally we introduce the following lemma to reduce the ideal counting problem
to an exponential sum problem.
Lemma 2-5 [Bordelles 2015]. Let 1 < L < R be a real number and f be an
arithmetical function satisfying f(m) = O(m?), and let e(x) = exp(2mwix) and
F = f % u, where % is the Dirichlet product symbol. Fora € R— {1} and b, x € R
and for every & > 0 the following estimate holds:

E JSm) trxmb) = Op ¢ (Ll_a + R® max S7¢
ma L<S<R
m=<R

X max max max Z F(m) Z e(x(mn)b)
S<S1<2S M,N<S| M <M <2M
MN=S N=<N<2N M<m=M, N<n<N,

The next proposition plays a crucial role in our computing /¢’ (x). We consider
the distribution of ideals of Og, where K runs through extensions with [K : Q] =n

and some conditions. The detail of the conditions will be determined later, but they
state the relation of the principal term and the error term.

Proposition 2-6. Let Fx = I¢' * j. For every & > 0 the following estimate holds:

_ mn—1 L _mn+l1
(X)) = Onme L7 4 x 2mn D" R® max S~ 2mn
L<S<R
1
xlk\mn
X max max max Z Fg(m) Z el mn|{ —
S§S<S1<2S M,N<S| M<M<2M Dk
MN=S N<N;<2N M<I<M, N<k<N;

mn—2

2 1 —1 1 1
+xW2”i1nn +8DI%+8R 2mn 1€ +xmn}:ltn +8D1'é+eR_mn+8)’

where K runs through number fields with [K : Q] = n and some conditions.

Proof. Let dg' (1) be the number of m-tuples of ideals (a;, az, ..., an) such that
the product of their ideal norms 9iay ---9ay,, = [. Then one can easily check that
X dm(l
(2-7) {k ()" = Z Ijs( ) for fRs > 1
=1
and

Ig(x) =Y dg).

I<x

Thus, Perron’s formula plays a crucial role in this proof.
We consider the integral

1 S
— / Ck ()" ds,
2ri Jco s

where C is the contour C1 U C2 U C3 U C4 shown below:
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()
A
iT LG
Y
—¢l O I+e¢ ° 9%N(s)
C3 C;
—iT C,

In a way similar to the well known proof of Perron’s formula, we estimate

1+¢
(2-8) —/ §K(s)m—ds—1 (x)—l—Og(xT )

We can select the large T, so that the O-term in the right-hand side is sufficiently
small. For estimating the left-hand side by using estimate (2-2), we divide it into
the integrals over C,, C3, and Cy.

First we consider the integrals over C, and Cy as

1 S
—.f ()" ds
271 C>UCy S
14¢ x° 14+¢ X0
< — i TY)|™ — d — —iT)|"—do.
=2 ). ISk (o +iT)| T o+ o B [lx (0 —iT)| 7 4o

It holds by the convexity bound of the Dedekind zeta function (2-2) that their sum

1s estimated as
1+e
— On,m,s([ (Tman) +s_ dJ)
e T

1 x5
i s
21i CrUCy S
1+8D8 m
m_ 5+e _
=0n,m’g(W+T 1+8DI§ 8x 5).

(2-9)

By the Cauchy residue theorem, (2-8), and (2-9) we obtain

X1+8D8 mn m

Thus, it suffices to consider the integral over C3 as

—e+iT K

/ (s ds = o (5" ds.

2 2wl J_eiT
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Changing the variable s to 1 —s, we have

1 1+e+iT 1—s

P fK(S)m— ds = ~— tk(1—9)"
27i Jey 270 J1e—iT

From functional equation (2-1), it holds that
1+e+iT

-1 r1+r;
27 JigemiT 2

X (sin %)rzé‘jg(s))m)lcl__: ds.

By Lemma 2-3 the integral over C3 can be expressed as

1
o [ ™ as
i C3

Cx (1T _m (2n)™ g™ X\ mn+1\_(mnms
=0 DK2(T) F(mns— 5 ) ( )é‘ (s)ds
Tl J1+e—iT K

+ On’m’a(DE'FETmJ—I-FEJ —8)

mn+1

Changing the variable mns — to s, we have

mn—1

-1 L . 1
x5 CX%HIDIZ(" =L+ mne+mniT x \ma\~S
{K(s)—ds——, 2mnw D
2i mi=l 4 mne—mniT K

xI‘(s)r( 5 +—(mn * I)H)EK(i 4 + 1) ds

2711

4 mn 2mn
Bte mn_j4i. _,
+ Onme(Dg T2 x7°).

From (2-7) the function {g (s)™ can be expressed as a Dirichlet series. It is absolutely
and uniformly convergent on compact subsets on Nf(s) > 1. Therefore, we can
interchange the order of summation and integral. Thus, we obtain

x \ma\" (mn+1)m s mn+1
[(2mnn(D—%) ) I‘(s)t(2 +T)§K(ﬂ+ S )ds

- Z d;::(-il) (Zmnﬂ(%)mn)_sr(s)r( 5 w) ds,

l 2mn K

where the integration is on the vertical line from m"2_1 +mne—mniT to

mne +mniT. Properties of trigonometric functions lead to

r(J%S_i_(mn—i—l)n)=i%r(%) if mn is odd,

4 %(‘E(%) + tl(%)) if mn is even,

mn—1
2 T
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Cx5nn 1)2" > dml)
mn+l

2mn

1

608

where {7, 71} = {sin, cos}. Hence, it holds that
mn —S

) ) F(s)r( ) ds

)

1 x5
— [ k()" —ds=
2wi Jcy S

mi= 1+mn<9-i-man Ix
x/ (2mnn(—m
mi=l 4 mne—mniT DK
+ On,m,s(DlgﬂTi_lH )
e
Applying Lemma 2-4 to this 1ntegral with y = 2mn7r(lé)f,, ), A= M +mne,
B=mnT,and T = 271( )mn this becomes *
Cx ST D2’1 dg(l l mn
/ CK(S)'”— ds = mn(Jrl) (2mn7r(—xm) )
2mi l<Rl S D¥
1
N —L ) R\™' [ Rx\2mn
+ Onme (x S Dl’é mng-z) min{ (log —) (—fn) })
I<R l 2mn Z DK
mn—2
mn dm(l) 2mn
+0nme( 2 DKZ o (( ) 1))
l<R 2mn
1
mn—2 __+ mn—2 dm(l) . / -1 Rx \2mn
=+ On,m S(X 2mn DlréR 2mn +e ll+8 mln% (log E) s (W) })
I>R K
+ O e (x 3o +6 D F R ot +),
We evaluate three O-terms as follows. First we consider the first O-term. One can
estimate (log 7') ' 0 (&), so we obtain
mn— 1 diP(l R -1 R 2mn
onne(x85 0} T B i () " (53
I<R l 2mn Z DK
mn—2 1 arn(l) R\!
= Ouns(x87Df 3 K (10e7)
lS[R]—l 2mn
mn—2 % dlf(n(l)
—+ x 2mn DK Z “mn¥2 (Dm) )
[R]<I<R | 2" K
mn—2 1 d;(n(l) R mn—1 L d;("(l)
= On,m,s (X zmn DK Z mn+2 ﬁ 2mn K R 2 Z mn+2
l<[R] 1[ 2mn [R]SISRZ 2mn
_Onms(xnéﬁmzl) R 2mn +8+x 2mn Dan 2'1;141_11)_
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Next we calculate the second O-term

i dm(l) (( R
On m,e X 2mn DK mn+2 l + 1
ZSR l 2mn

L diP(l
= Onms(x 2mn DHRT”2 ZKT())

I<R
Since it is well known that d¢* () = O(/*), we get

mn—2
mn=2 1 dZ (1) R\ 2mn
On,m,s(x 2mm D § :%((7) + 1))
ZERZ 2mn
L n— [6
_Onms(x 2mnD R2mn / ?dt)
1
= mn—2

= 011 m g(x 2mn D R 2mn +8)

Finally we estimate the third O-term in a similar way to calculate the first O-term
. -1 .
One can estimate (log %) =0 (%), SO we obtain

1
mn 2 dm(l) . [ -1 Rx \2mn
On m S(X 2mn D'l R 2mn +e Z ZII(T mll’l{ (log ) s (—) %)

%) m
[>R R DK

1
mn—2 L mn2 dm(l) Rx \2m»n
— Saoe DN + K
= On’m’g(x 2mn DKR 2mn 8( Z ]1+€ (W)
R<I<[R]+1 K
de () I\
ey P (eez) )
[R]+2<I
mn—1 L mn—1 dm(l)
= On’m,'s (x 2mn Dlz(nR 2mn T€ Z lll(-‘ra

R<I<[R]+1

mn n mnmn2+ dIr{n(l) R
xS DR Y e T_R

[R]+2<l

mn—1 ﬁ _mn+1
= On’mgs(x 2mn DK R 2mn

2
+8+x 2;1" D Rmn +8)

2mn

From above results, we obtain

1 s C 2mn DZ" dm JJ / mln
@-11) —f Lk ()" ds = — 40 ( (—’fn) )
2mi Cs3 N l<Rl 2mn DK

1
’g’;n_nl 2n p— 2mn +€ 2mn ” n;’rlnnz te
+ On,m,e(X K +x
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From estimates (2-10) and (2-11), it is obtained that

mn—1 L 1
C 2mn D2n dm l l mn
AR(x) = > LS E fnil) r(2mn7r( al ) )

; m
2mi i=x 1w Dy

mn—1

— 1 . N 1
+0nme(x%+8Dl’é+eR%+s+x e +8DI”(+8 _W"‘S).

Next we consider the above sum. Let Fx = dg' * i, where * is the Dirichlet product
symbol. From Lemma 2-5 this becomes

_ mn—1 L _mn+1
K(x) = O,,,mjg(L1 *+x2mn D" R® max S 2mn

L<S<R
xlk mn
X max max max Z Fx (1) Z elmn|{ —.
S<S81<28 M,N<S; M<M;<2M D¥

MN=S N=<N;<2N M<I<M, N<k=<N;

mn—2 m

_2 1 —1 1 1
xS e DT RS e 4 +8D;;+8R—rm+8). O

Let $x(x, S) be the sum in the O-term, that is,
2mn max max max

1
xlk\mn
Fk(l — .
§<S81<28 M,N<S; M<M;<2M Z k(D) Z e(mn(Dz) )'

MNX=S N<N;<2N M<I<M, N<k=<N;

mn—+1 ‘

This proposition reduces the initial problem to an exponential sums problem. There
are many results to estimate an exponential sums. In the next section, we estimate
the Piltz divisor function by using some results for exponential sums established by
many authors.

3. Estimate of counting function

In the last section, we showed that the error term of the Piltz divisor function
A% (x) can be expressed as an exponential sum. Let X > 1 be a real number,
1<M<M; <2M and 1 <N < N; <2N be integers, and (a,), (by) C C be
sequences of complex numbers, and let o, 8 € R. Then we define

m o n /3
(3-1) g = Z am Z bne(X(M) (ﬁ) )
M<m<M,; N<n<N;

Lemma 3-2 [Wu 1998]. Let o, 8 € R such that af(a—1)(B—1) #0, and |ay,| <1
and |by| <1 and L =1og(XM N + 2). Then

P29 = O((XM3N*)5 + (X*M'ON)T6 + (XMTN'0)Tr
L MNZ+ (X_1M14N23)i +X_%MN),
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Next Bordelles also shows this lemma by using estimates for triple exponential
sums by Robert and Sargos.

Lemma 3-3 [Bordelles 2015]. Let «, B € R such that af(oe —1)(8 —1) # 0, and
lam| <1 and |by| < 1. If X = O(M), then

(MN)™*F
= O((XM3NT)S + N(X2M ") 4 (X 3M> N?3)25 4+ M3N + X 4 MN).
The following Srinivasan result is important for our estimating A% (x).

Lemma 3-4 [Srinivasan 1962]. Let N and P be positive integers and u, > 0,
vp > 0, Ay, and By denote constants for 1 <n < N and 1 < p < P. Then there
exists q with properties

01<9=<0>

and
N P
ZAnqun + Zqu—vp
n=1 p=
—O(ZZ BCTIRS WEES PR
n=1p=1

The constant involved in the O-symbol is less than N + P.

Srinivasan [1962] remarks that the inequality in Lemma 3-4 corresponds to the
“best possible” choice of g in the range Q1 < g < Q,. We apply Lemma 3-4 to
improve the error term A (x).

Theorem 3-5. For every € > 0 the following estimate holds. When mn > 4, then
m +e 2mn+1 te
K(x) = On,m,z:‘(xzm""'1 D )

as x tends to infinity.

Proof. We note that

R )

'M<I§M1 N<k<N;

SRR G SNONON

M<l<M; N<k<N;
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We use the above lemmas with X = mn(xglljv ) mn >0.Let0<a =< ; we consider
four cases:

case 1, S* < N« S%,

case 2, ST KNS,

case 3, SI=* « N,

case 4, N <« S%.

When S K N K« S %, we apply Lemma 3-2 and this gives

mn— L
(3-6) S™*x3mn D2 Ik (x,S)

Smn—3 3 2mn—3 -8 limn—9 =9~  6mn—9
= On m E(X 10mn DK " R 10mn 4 x 4mn D4" R 32mn —+ x 22mn DIZ(ZH R 22mn
b bl

11mn—12 15mn—24 mn— 1 mn—2

mn—1 L mn—1 2
+x 2mn DI%"R 2mn 2 +x 22mn D“"R 44mn 4 x 2mn Dl’éR 2mn )

When S 2 &« N <« S17% we use Lemma 3-2 again reversing 1the role of M and N.
We obtain the same estimate for the case that S* < N <« S2. For case 3, we use
Lemma 3-3:

mn— L
3-7) S™x%mm DX Ik (x,S)

mn

2
3mn—4 = _5S5mn—8 _, 1
_Onms(x Smn DS"R 8mn+ a—|-x 6mn D3”R Zmn T12%

4mn—5 n—5__ 2mn—3

3mn=5_ 1 mn—1 L mn—2 1
+ x 8mn D8nR 8mn  12% + x 2mn DI2<”R amn T3¢ +x 4mn D4nR 4mn )

If xWD T < S, the condition of Lemma 3- 3 X = O(N), is
satisfied. Therefore it suffices to choose L = xm Dy mnti—o0—T . For case 4,
we use Lemma 3-3 again reversing the role of M and N . We obtain the same
estimate for the case that N < S%. Combining (3-6) and (3-7) with Proposition 2-6,
we obtain

2m mn— 8+8

3 omne
(3-8) AT(x) = Onma(x wmeI'{O"RWJFHxWD“"R o

9
mn—9 mn—1 = _mn—1
4+ x 22mn D22” R 22mn 2 +e + x 2mn DZ" R 2mn _7a+8

15mn—24 - mn—=2
—|—x 22mn D””R admn T€ + x Zmn D R 2mn te

4mn—3 3mn—4

-+ x 8mn DIS?R”ZE%_I{ +Za+s + x 6mn D3” R 12mn 12mn S+ 12(¥+6‘

5
4mn—5 = . 3mn—5 1 2mn—3 2mn—3
-+ x 8mn D 8n R 8mn tzate + x 4mn D4" R 4mn te

_ m(l—a)

+x mn +8Dn R mn+8+x7mn(l—a) 1D mn(l—a)—l)
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the error term of estimate (3-8) is much less than

1 —df .
By Lemma 3-4 with x mn(-a)=1 D "=~ < R < xD there exists R such that

S5mn+3 &
x2mn+7+8D2m”+7+ +x5mn+24+8D5m”+24+ +x6mn+l’§+sD6m”+l3+

— _ (d—a 1
d—a)ymn+a—1 e 15mn—17 & —2 -
I e R +sD Tamnrrt Ty 15$Z+20+8D Snnrat 1T +eDIn(+8

Qa+1m a+5)m
Qa+1)ymn—2« e D)Mo (@+5)mn—a—7 7—{—3
Sarmnts T€ n Qe+Dmn+5 “arsymara T&n «@+5mnta
2, 1 5 5 4
4+ x Coa+Dmn+ D + x @F5mn+ DK

Qa+9)m o
Qat9)ymn—2a—12 +¢& 2mn—3 5,7 TE
+& n CaF9)mn+9 +& ~2mn+1
Qa+9)ymn+9 2mn+1
+x Catoymn Dy + x 2mn Dy
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When mn >4 and o = 7’;’”"n+35, then we have

2mn—3

+
AI((x) - On m 8(x2m”+1+8D2m”+1 6‘)‘ -

For mn > 4 this theorem gives new results for the Piltz divisor problem over
number fields. In particular, if we fix K with [K : Q] = 4, then we improve the
estimate for Ag (x) as follows:

Corollary 3-9. For any number field K with [K : Q] = 4,
Ak (x) = Ok o (x57%).
This result is better than Bordelles’ result.

4. Application

In this section we introduce some applications of our theorems. First we obtain
a uniform estimate for the ideal counting function /x(x). From the proof of
Theorem 3-5, we obtain the following theorem.
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Theorem 4-1. For all ¢ > 0 for any fixed 0 < B < 5."= +5 —¢eand C > 0 the following
holds. If K runs through number fields with [K : Q] <n and Dg < CxP, then

Ak (x) = Ocpne(x HE o).

The condition Dg < CxP is caused by the relation between the principal
term and the error term. It is well known that /g (x) is very important to esti-
mate the distribution of relatively r-prime lattice points. We regard an £-tuple of
ideals (ay, an,...,ay) of Og as a lattice point in K £ We say that a lattice point
(ay,az,...,ay) is relatively r-prime for a positive integer r if there exists no prime
ideal p such that a, az, ..., ap Cp". Let V/ (x, K) denote the number of relatively
r-prime lattice points (ay, a, ..., ag) such that their ideal norm Da; < x.

B. D. Sittinger [2010] shows that

¢
Pk ¢

k(0
where pg is the residue of (g at s = 1. It is well known that
2" (2w)2hg R
wg/Dx
where h is the class number of K, R is the regulator of K, and wg is the number

of roots of unity in O%.
After that we show some results for the error term:

V] (x, K) ~

(4-2) pK =

E{( K) = V{ (. K) = p(% Xt

In [Takeda 2017; Takeda and Koyama 2018] we consider the relation between the
relatively r-prime problem and other mathematical problems. If we assume the
Lindelof hypothesis for (g (s), then it holds that for all £ > 0
Os(x7GT9) ifre =2,
O, (xe_%"'g ) otherwise.

4-3) Ef(x.K) = {

From easy calculation, we obtain the following corollary.

Corollary 4-4. For all ¢ > 0 and for any fixed 0 < f < 2n+5 —eand C > 0 the
following holds. If K runs through number fields with [K : Q] < n and Dg < CxP,
then

OC,n,e(X rér;z_-&-zn"i‘znﬁ-lﬂ-%-s) ifri=2,

2n+5—(2n+1)€ﬂ+8)

E;(x,K)=
¢ Ocn €(x€_2n4+1+ 22n+D)

otherwise.

For the proof of this corollary, please see the proof of Theorem 4.1 of [Takeda
and Koyama 2018].
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5. Conjecture

Theorem 4-1 states good uniform upper bounds. It is proposed that for all number
fields K the best uniform upper bound of the error term is better than that on the
assumption of the Lindelof hypothesis (1-6).

Conjecture 5-1. If K runs through number fields with Dg < x, then

% (x) =o(x%).

From estimate (1-5), this conjecture may give the best estimate for uniform upper
bound of AR(x). As we remarked above (Theorem 1-2) this conjecture is very
difficult even when X is fixed and m = 1.
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