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K-THEORY OF AFFINE ACTIONS

JAMES WALDRON

For a Lie group G and a vector bundle E we study those actions of the Lie
group T G on E for which the action map T G × E→ E is a morphism of
vector bundles, and call those affine actions. We prove that the category
Vect aff

T G(X) of such actions over a fixed G-manifold X is equivalent to a cer-
tain slice category gX\VectG(X). We show that there is a monadic adjunc-
tion relating Vect aff

T G(X) to VectG(X), and the right adjoint of this adjunc-
tion induces an isomorphism of Grothendieck groups K aff

T G(X) ∼= K OG(X).
Complexification produces analogous results involving TCG and KG(X).

1. Introduction

1A. Let G be a Lie group. The tangent bundle T G carries two structures: it is a
vector bundle over G, and a Lie group, with multiplication given by the derivative
of the multiplication of G. These structures are compatible, in the sense that the
multiplication T G× T G→ T G is a morphism of vector bundles, so that T G is a
group object in the category of vector bundles. It is therefore natural to study actions
of T G on vector bundles, such that the action map T G× E→ E is a morphism
of vector bundles (see Definition 3.1 below). We refer to such actions as affine
actions, as each element of T G necessarily acts by an affine linear transformation
between fibres of E (see Remark 3.3 below). A basic example of an affine action is
the following:

Example 1.1 (tangent bundles). For any action t :G× X→ X of a Lie group G on
a smooth manifold X, the derivative defines an affine action t∗ : T G× T X→ T X
of T G on T X. Note that restricting the action t∗ to G defines the natural action
G×T X→ T X of G on T X, whilst restricting t∗ to the Lie algebra g= TeG allows
one to define a map g→0(T X) which is exactly the infinitesimal action associated
to t . These maps are compatible in the sense that g→ 0(T X) is G-equivariant.

Example 1.1 suggests the question of whether the action t∗ : T G× T X→ T X,
or more generally any affine action µ : T G× E→ E , can be reconstructed from
its restrictions to G and g.
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One motivation for studying equivariant vector bundles is their use in defining the
(real) equivariant K-theory K OG(X) of a G-manifold X (see [Segal 1968]). Recall
that (at least if G and X are compact) K OG(X) is the Grothendieck group of the
commutative monoid of isomorphism classes of G-equivariant real vector bundles
over X. A natural question to ask is whether one can emulate this construction in
the case of affine actions to define an abelian group K aff

T G(X). If so, how is this
group related to K OG(X)?

A different motivation for studying affine actions comes from the theory of Lie
algebroids. Recall that a Lie algebroid A→ X is a vector bundle over X equipped
with an R-linear Lie bracket on 0(A) and a map A→ T X, such that a certain
Leibniz rule is satisfied. (See [Mackenzie 2005] for more details.) There exists
a notion of equivariant Lie algebroid (called a Harish-Chandra Lie algebroid in
[Beilinson and Bernstein 1993]) which involves both a G-action G× A→ A and
a linear map g→ 0(A) satisfying certain conditions. Variants of this notion have
appeared in [Alekseev and Meinrenken 2009; Bruzzo et al. 2009; Marrero et al.
2012; Ginzburg 1999]. It was shown in [Marrero et al. 2012] that equivariant Lie
algebroids give rise to examples of affine actions (see Example 4.5 below). One
motivation for our results is therefore to generalise the notion of affine action and
study this concept at the level of vector bundles.

1B. Main results. Throughout the paper G is a real Lie group and X is a G-
manifold. See Section 2 for our notation and conventions and Section 3A for the
definition of affine actions and their morphisms. We use Vectaff

T G(X) (respectively
VectG(X)) to denote the category of affine actions (respectively the category of
real G-equivariant vector bundles) over X. We use gX to denote the G-equivariant
vector bundle associated to the adjoint representation of G. See Section 3C for the
definition of the slice category gX\VectG(X).

Theorem A. The following three categories are isomorphic:

(1) The category Vectaff
T G(X) of affine actions of T G over X.

(2) The category of pairs (E, ρg), defined as follows:

• The objects are pairs (E, ρg), where E is a G-equivariant vector bundle over X
and ρg : g→ 0(E) is a G-equivariant linear map.

• The morphisms (E, ρg)→(E ′, ρg) are morphismsψ :E→E ′ of G-equivariant
vector bundles over X such that 0(ψ) ◦ ρg = ρ ′g.

• Composition is given by composition of morphisms of vector bundles over X.

(3) The slice category gX\VectG(X).
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Our second main result compares affine actions to equivariant vector bundles.
There is a canonical forgetful functor

U : Vectaff
T G(X)→ VectG(X).

Via the isomorphism Vectaff
T G(X) ∼= gX\VectG(X) of Theorem A, the functor U

is equal to the canonical forgetful functor gX\VectG(X)→VectG(X)which maps an
object gX

φ
−→E to E . We also define a pair of functors F,σ :VectG(X)→Vectaff

T G(X).
In terms of g\VectG(X), they are defined on objects by σ : E 7→ (E, 0) and
F : E 7→ (gX ⊕ E, igX ). See Section 5A for the precise definitions.

Theorem B. The following statements hold:

(1) F is left adjoint to U.

(2) The adjunction F a U is monadic.

(3) σ is the unique section of U.

Our third main result concerns the Grothendieck group of Vectaff
T G(X). We

denote by

K OG(−) : G-Man→ Ab

the functor from the category G-Man of G-manifolds to the category Ab of abelian
groups, which maps a G-manifold X to the Grothendieck group of G-equivariant real
vector bundles over X. (This agrees with real G-equivariant topological K-theory
as defined in [Segal 1968] if both G and X are compact.) Although the category
Vectaff

T G(X) is not additive we show in Section 6B that it does have finite products.
This allows us to define the Grothendieck group K aff

T G(X) (see Section 2C and
Definition 6.13). This construction extends to a contravariant functor

K aff
T G(−) : G-Man→ Ab.

Our third main result shows that K aff
T G(−) agrees with K OG(−):

Theorem C. For X a G-manifold the functor U induces a group isomorphism

K (U) : K aff
T G(X)→ K OG(X).

Its inverse is

K (σ ) : K OG(X)→ K aff
T G(X).

These isomorphisms are natural in X, and thus define an isomorphism of functors

K aff
T G(−)

∼=
−→ K OG(−).
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1C. The complex case. It is possible to reformulate the notion of affine action in
the complex setting by replacing T G by the complexified tangent bundle TCG and
considering actions TCG× E→ E on complex vector bundles E . The analogues
of Theorems A, B and C hold with essentially the same proofs. See Section 7 for
the precise statements.

1D. The proofs. Theorem A is proved using the facts that T G ∼=G×g as a vector
bundle, and T G ∼= goG as a Lie group, where the semidirect product is defined
via the adjoint representation of G. This allows one to decompose an action µ
of T G into an action µG of G and a linear map ρg with domain g. Parts of the
proof are similar to that of Theorem 3.5 in [Marrero et al. 2012], which deals with
the particular case where E is a Lie algebroid, and constructs, at the level of objects,
one direction of the isomorphism of Theorem A.

Using the isomorphism Vectaff
T G(X)∼= gX\VectG(X) of Theorem A, Theorems B

and C are proved using the following two category-theoretic lemmas regarding over
slice categories:

Lemma D. Let C be a category, m an object in C , and U :m\C → C the standard
forgetful functor. If the coproduct mq a exists in C for all objects a in C then the
functor F : a 7→ (mq a, im) is left adjoint to U , and this adjunction is monadic.

Lemma E. Let C be an additive category and m an object in C . Let U :m\C → C

be the standard forgetful functor and S : C → m\C the section a 7→ (a, 0). Then
the group homomorphism

K (U) : K (m\C )→ K (C )

is an isomorphism. Its inverse is

K (S) : K (C )→ K (m\C ).

Here, K (U) denotes the homomorphism of Grothendieck groups associated to
the product preserving functor U , and similarly for K (S), see Section 2C. We expect
that Lemma D is well known to experts (in particular it is stated without proof in
[nLab 2009–]), but we are unaware of a complete reference and so have provided a
proof.

1E. Outline. In Section 2 we fix notation and conventions. In Section 3 we define
affine actions and morphisms between them. The main result of Section 3 is
Theorem A, the proof of which is broken into Lemma 3.7 and Propositions 3.8,
3.10 and 3.11. In Section 4 we describe a number of examples of affine actions, and
describe the category VectT G(X) for certain classes of groups G and G-manifolds X.
In Section 5 we define several functors between VectT G(X) and VectG(X). We
then prove Lemma D, which is used to prove Theorem B. In Section 6 we define
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pullback functors for affine actions. We then prove that the category Vectaff
T G(X)

has finite products and use this to define the abelian group K aff
T G(X) and the functor

K aff
T G(−) :G-Man→Ab. We then prove Lemma E from which we prove Theorem C.

2. Preliminaries

2A. Notation and conventions. By “manifold” we shall always mean smooth
finite-dimensional real manifold. Maps between manifolds are assumed to be
smooth. Unless stated otherwise, by “vector bundle” we mean finite-dimensional
real vector bundle. We will usually denote manifolds by X or Y, vector bundles
by E or F, vector fields by v or w, and sections of vector bundles by ξ or ν. For a
vector bundle E over X we use πE : E→ X to denote the bundle projection, and
0E : X → E to denote the zero section. We allow morphisms of vector bundles
over different bases. If E and F are vector bundles over X, then by “morphism
of vector bundles over X” we mean a vector bundle morphism φ : E→ F which
satisfies πF ◦ φ = πE . If φ is a morphism of this type, then 0(φ) : 0(E)→ (F)
denotes the associated linear map.

For E→ X a vector bundle, x ∈ X and ξ ∈0(E), we use ξx to denote ξ evaluated
at x . We use ex to denote an element of Ex and vx to denote an element of Tx X. We
denote the zero element of Ex by 0x . For a morphism of vector bundles φ : E→ F
over X and x ∈ X we denote by φx : Ex → Fx the restriction of φ.

If E → X and F → Y are vector bundles then E × F is a vector bundle over
X × Y in a natural way, with fibre over (x, y) canonically isomorphic to Ex ⊕ Fy .

We denote hom-sets in a category C by HomC (−,−). We reserve the unadorned
Hom for morphisms of real vector spaces (i.e., linear maps). If G is a Lie group
then we use HomG for morphisms of representations of G (i.e., G-equivariant linear
maps). We denote identity morphisms by 1a or ida . If C is an additive category then
we denote any zero-morphism by 0. If a× b is a product in a category C then we
denote the associated projections by pra : a×b→ a and prb : a×b→ b. Similarly,
if aqb is a coproduct then we denote the associated inclusions by ia : a→ aqb and
ib : b→ aq b. If aq b is a coproduct and f : a→ c and g : b→ c are morphisms,
then we denote by ( f, g) : aq b→ c the associated morphism. We use a similar
notation for morphisms into products.

If G is a Lie group then by a “G-manifold” we shall mean a smooth manifold X
equipped with a smooth left action t :G×X→ X. We denote by tg= t (g,−) : X→ X
the diffeomorphism associated to g ∈ G, which we also denote by x 7→ g · x . If X
and Y are G-manifolds then by a G-map f : X → Y we mean a G-equivariant
smooth map.

For a G-manifold X, by “G-equivariant vector bundle”, or just “G-vector bundle”,
we mean a vector bundle E → X equipped with a left action µG : G × E → E
which covers t :G× X→ X and which is fibrewise linear. A morphism φ : E→ F
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of G-equivariant vector bundles is a morphism of vector bundles over X which is
also G-equivariant. We denote by VectG(X) (respectively VectCG(X)) the category
of real (respectively complex) G-equivariant vector bundles over X. (See [Segal
1968] for generalities on equivariant vector bundles.) VectG(X) and VectCG(X) are
both additive categories. In particular, for E and F G-vector bundles the G-vector
bundle E ⊕ F is both the product and the coproduct of E and F.

We denote the category of finite-dimensional real (respectively complex) repre-
sentations of G by Rep(G) (respectively RepC(G)). If V is such a representation
then we denote by VX the associated G-vector bundle, i.e., the trivial bundle X×V
with G-action g ·(x, v)= (g ·x, g ·v). If E is a G-equivariant vector bundle then we
consider 0(E) as a G-representation with G-action (g ·ξ)x = g ·ξg−1·x . If V and W
are representations of G, and E is a G-vector bundle, then there exist bijections

HomVectG(X)(VX ,WX )
∼=
−→C∞(X,Hom(V,W ))G(1)

φ 7→ (x 7→ φx),

HomVectG(X)(VX , E) ∼=−→HomG(V, 0(E))(2)

φ 7→ (v 7→ (x 7→ φ(x, v))).

2B. Tangent groups. Let G be a Lie group and g= TeG its Lie algebra. We will
usually denote elements of G by g or h, and elements of g by α or β. The tangent
bundle T G of G carries a natural Lie group structure with multiplication defined by
the composite map T G× T G ∼=

−→ T (G×G) m∗
−→ T G, where m : G×G→ G is

the multiplication of G. We will denote the multiplication in T G by •. If vg ∈ TgG
and wh ∈ ThG then it follows from the chain rule that

vg •wh = (Lg)∗wh + (Rh)∗vg.

In particular, 0g • (−) = (Lg)∗, (−) • 0h = (Rh)∗, 0g • 0h = 0gh , and if α, β ∈ g
then α •β = α+β. If one considers g as an abelian Lie group upon which G acts
via the adjoint representation then the associated semidirect product go G has
multiplication

(α, g) • (β, h)= (α+Adgβ, gh).

There is a Lie group isomorphism goG ∼=
−→T G given by (α, g) 7→ (Rg)∗α. Under

this isomorphism, the inclusion g ↪→ goG corresponds to g= TeG ↪→ T G, the
inclusion G ↪→ goG corresponds to 0T G :G→ T G, and the projection goG→G
corresponds to πT G : T G→ G.

2C. Grothendieck groups. Let C be an essentially small category (one where the
collection of isomorphism classes of objects in C is a set) with finite products. The
set C / ∼= of isomorphism classes of objects in C forms a commutative monoid
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under the operation [E] + [E ′] ≡ [E × E ′]. We denote by K (C ) the associated
abelian group defined by the Grothendieck construction. If C is an additive category
then this agrees with the standard notion of the “split” Grothendieck group of C ,
i.e., the abelian group generated by isomorphism classes of objects and relations
[A] + [B] = [A⊕ B].

If F : C → C ′ is a product preserving functor between categories satisfying the
above assumptions then there is a group homomorphism K (F) : K (C )→ K (C ′)
defined by [E] − [E ′] 7→ [F(E)] − [F(E ′)]. The group homomorphism K (F)
depends functorially on F. If F,F ′ : C → C ′ are naturally isomorphic functors
then K (F)= K (F ′).

We write K OG(X) for K (VectG(X)) and KG(X) for K (VectCG(X)). This agrees
with G-equivariant topological K-theory as defined by Segal [1968] if both G and X
are compact.

3. Affine actions

Throughout the paper, G denotes a Lie group and X denotes a G-manifold with
action t : G× X→ X.

3A. Affine actions.

Definition 3.1. An affine action of T G on a real vector bundle E → X is a left
action µ : T G× E→ E of the Lie group T G on the total space of E such that µ
is a vector bundle morphism covering t : G× X→ X.

Example 3.2. The derivative of t defines an affine action t∗ : T G × T X → T X
of T G on T X.

Remark 3.3. The condition that µ is a morphism of vector bundles covering t is
equivalent to requiring that:

(i) The following diagram commutes:

(3)

T G× E

��

µ
// E

��

G× X
t
// X

(ii) For all (g, x) ∈ G× X the restriction of µ to the fibre TgG⊕ Ex over (g, x)
is a linear map TgG⊕ Ex → Eg·x .

The second of these conditions implies that vg ∈ TgG acts on ex ∈ Ex by the
composite map ex 7→ (vg, ex) 7→ µ(vg, ex). This is an affine linear map from Ex

to Eg·x , which justifies the name affine action.
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Definition 3.4. A morphism from an affine action µ : T G × E→ E to an affine
action µ′ : T G × E ′→ E ′ is a morphism ψ : E → E ′ of vector bundles over X
which is T G equivariant, i.e., the following diagrams commute:

E

πE
��

ψ
// E ′

πE ′

��

T G× E

id×ψ
��

µ
// E

ψ

��

X T G× E ′
µ′
// E ′

Definition 3.5. Affine actions of T G over X form a category Vectaff
T G(X).

Remark 3.6. If one considers T G as a group object in the category of vector
bundles, then affine actions coincide with the notion of actions of group objects —
see, for example [MacLane 1971].

3B. The structure of affine actions. Lemma 3.7 and Propositions 3.8, 3.10 and
3.11 below describe how an affine action T G× E→ E can be decomposed into a
G-action G× E→ E and a linear map g→ 0(E), and how morphisms between
affine actions can be described in terms of this decomposition. These propositions
will be used in Section 3C to prove our first main result, Theorem A. The first
proposition shows that an affine action can be recovered from its restriction to G
and g, as motivated by Example 1.1 in the introduction.

Lemma 3.7. If µ : T G×E→ E is an affine action on a vector bundle E→ X then

µ(vg, ex)= µ(0g, ex)+µ((Rg−1)∗vg, 0g·x).

Proof. Using the fact that µ is fibrewise linear we have

µ(vg, ex)= µ(vg+0g, ex +0x)= µ((0g, ex)+ (vg, 0x))= µ(0g, ex)+µ(vg, 0x).

Using the fact that µ is a left action of T G we have

µ(vg, 0x)= µ(vg • 0g−1 • 0g, 0x)= µ((Rg−1)∗vg, µ(0g, 0x))

= µ((Rg−1)∗vg, 0g·x). �

Proposition 3.8. Let E→ X be a vector bundle. There is a bijection

(4) {affine actions µ : T G× E→ E} ∼=−→{ pairs (µG, ρg) satisfying (?), (??)},

where:

(?) µG : G × E → E is a left action of G on E making E into a G-equivariant
vector bundle over X.

(??) ρg : g→ 0(E) is a G-equivariant linear map, where the G-action on 0(E) is
induced from µG .
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The bijection (4) maps an affine action µ to the pair (µG, ρg) defined by

µG(g, ex)= µ(0g, ex),(5)

ρg(α)= (x 7→ µ(α, 0x)).(6)

The inverse of (4) maps a pair (µG, ρg) satisfying (?), (??) to the affine action µ
defined by

(7) µ(vg, ex)= µG(g, ex)+ ρg((Rg−1)∗vg)g·x

for vg ∈ TgG and ex ∈ Ex .

Note that the addition on the right-hand side of (7) is defined as the assumptions
on µG and ρg imply that both terms are elements of Eg·x .

Proof. We first show that if µ : T G × E → E is an affine action then the pair
(µG, ρg) defined by (5) and (6) satisfies (?) and (??), which shows that the map (4)
is well defined. That µG is a left action of G follows from the facts that µ is equal
to the composite map

G× E 0T G×idE
−−−−→ T G× E µ

−→ E

and that 0T G : G → T G is a Lie group homomorphism. The fact that µ is a
vector bundle morphism covering t : G× X→ X implies that for fixed g ∈ G the
map µG(g,−) : E → E is a vector bundle morphism covering t (g,−) : X → X.
This shows that µG satisfies (?). We will sometimes denote this G action by
g · ex = µG(g, ex).

If α ∈ g= TeG then the commutativity of (3) and the fact that (α, 0x)∈ TeG⊕Ex

implies that µ(α, 0x) ∈ Ex , so that the map ρg(α)= (x 7→ µ(α, 0x)) is a smooth
section of E . The fibrewise linearity of µ implies that the map α 7→ ρg(α) ∈ 0(E)
is linear. If g ∈ G, α ∈ g and x ∈ X then

(ρg(Adgα))x = µ(0g •α • 0g−1, 0x)

= 0g ·µ(α, 0g−1 · 0x)

= 0g ·µ(α, 0g−1·x)

= g · ρg(α)g−1·x

= (g · ρg(α))x .

This shows that ρg satisfies (??).
Now let (µG, ρg) be a pair satisfying (?) and (??), and let us show that µ as

defined in (7) defines a fibrewise linear left action of T G. That µ is fibrewise linear
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follows from the fibrewise linearity ofµG and the linearity of ρg. Transporting the ac-
tion from T G to goG via the Lie group isomorphism vg 7→ ((Rg−1)∗vg, g), we have

(α, g) · ex = g · ex + ρg(α)g·x .

If (α, g), (β, h) ∈ Gn g then using (?) and (??) we have

(α, g) · ((β, h) · ex)= (α, g) · (h · ex + ρg(β)h·x)

= g · (h · ex)+ g · ρg(β)h·x + ρg(α)gh·x

= gh · ex + ρg(Adgβ)gh·x + ρg(α)gh·x

= gh · (ex)+ ρg(α+Adgβ)gh·x

= (α+Adgβ, gh) · ex

= ((α, g) • (β, h)) · ex .

This shows that µ defines a left action of T G.
It remains to show that (4) is a bijection with inverse defined by (7). It follows

from Lemma 3.7 that for an affine action µ mapped to (µG, ρg) by (4) we have

µG(g, ex)+ ρg((Rg−1)∗vg)g·x = µ(0g, ex)+µ((Rg−1)∗vg, 0g·x)

= µ(vg, ex).

Conversely, if (µG, ρg) is a pair satisfying (?), (??), and µ is the affine action
defined by (7), then

µ(0g, ex)= µG(g, ex)+ ρg((Rg−1)∗0g)g·x

= µG(g, ex)+ 0g·x

= µG(g, ex),

and

µ(α, 0x)= µG(e, 0x)+ ρg((Re)∗α)e·x

= 0x + ρg(α)x

= ρg(α)x . �

Remark 3.9. It follows from Lemma 3.7 and the proof of Proposition 3.8 that if
one transports an affine action µ : T G × E → E from T G to goG via the Lie
group isomorphism vg 7→ (g, (Rg−1)∗vg) then

(α, g) · ex = g · ex + ρg(α)g·x(8)

= µ(0g, ex)+µ(α, 0g·x).(9)

In particular, g ·ex =µ(0g, ex) and α ·ex = ex +µ(α, 0x), so that elements of g act
as fibrewise affine linear transformations. This motivates the name affine action.
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Proposition 3.10. Let E → X be a G-equivariant vector bundle with G-action
µG : G× E→ E. There is a bijection

(10) {ρg : g→ 0(E) | ρg is a G-equivariant linear map}
∼=
−→{φ : gX → E | φ is a morphism of G-equivariant vector bundles}.

The bijection (10) maps ρg : g→ 0(E) to the morphism φ : gX → E defined by

φ(x, α)= ρg(α)x .

Proof. This follows from the bijection (2) applied to the G-representation g and the
G-equivariant vector bundle E . �

Proposition 3.11. Let µ : T G× E→ E and µ′ : T G× E ′→ E ′ be affine actions
corresponding to pairs (µG, ρg), (µG, φ) and (µ′G, ρ

′
g), (µ

′

G, φ
′) under the bijec-

tions of Propositions 3.8 and 3.10. Let ψ : E→ E ′ be a morphism of vector bundles
over X. The following are equivalent:

(1) ψ is T G-equivariant.

(2) ψ is G-equivariant and 0(ψ) ◦ ρg = ρ ′g.

(3) ψ is G-equivariant and ψ ◦φ = φ′.

Proof. (1 ⇔ 2) Via the isomorphism T G ∼= g o G, a map ψ : E → E ′ is
T G-equivariant if and only if it is goG-equivariant for the action (8). If (α, g) ∈
goG then

ψ((α, g) · ex)= ψ(g · ex + ρg(α)g·x)

= ψ(g · ex)+ψ(ρg(α)g·x)

and

(α, g) ·ψ(ex)= g ·ψ(ex)+ ρ
′

g(α)g·x .

Therefore, ψ is T G-equivariant if and only if

ψ(g · ex)+ψ(ρg(α)g·x)= g ·ψ(ex)+ ρ
′

g(α)g·x .(11)

Setting first α = 0, and then g = e and ex = 0, one sees that (11) is equivalent to
the two equations

ψ(g · ex)= g ·ψ(ex),(12)

ψ(ρg(α))= ρ
′

g(α).(13)

Equation (12) is the condition that ψ is G-equivariant, and (13) is the condition
that 0(ψ) ◦ ρg = ρ ′g.
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(2⇔ 3) If α ∈ g and x ∈ X then

(0(ψ) ◦ ρg(α))x = ψ(ρg(α)x)= ψ(φ(x, α))

and
ρ ′g(α)x = φ

′(x, α).

Therefore, 0(ψ) ◦ ρg = ρ ′g if and only if ψ ◦φ = φ′. �

3C. The category of affine actions. Recall that for a fixed object m in a category C ,
the over-slice category m\C is defined as follows:

• The objects are pairs (a, φ), where a is an object in C and φ : m → a is a
morphism in C .

• The morphisms (a, f )→ (a′, f ′) are morphisms χ : a→ a′ in C such that
χ ◦ f = f ′:

m
f
//

f ′   

a
χ

��

a′

• The composition of morphisms is induced from that of C .

There is a canonical faithful forgetful functor m\C → C defined by (a, f ) 7→ a
and (χ : (a, f )→ (a′, f ′)) 7→ (χ : a→ a′).

Theorem A. The following three categories are isomorphic:

(1) The category Vectaff
T G(X) of affine actions of T G over X.

(2) The category of pairs (E, ρg), defined as follows:

• The objects are pairs (E, ρg), where E is a G-equivariant vector bundle over X
and ρg : g→ 0(E) is a G-equivariant linear map.

• The morphisms (E, ρg)→(E ′, ρg) are morphismsψ :E→E ′ of G-equivariant
vector bundles over X such that 0(ψ) ◦ ρg = ρ ′g.

• Composition is given by composition of morphisms of vector bundles over X.

(3) The slice category gX\VectG(X).

Proof. The bijections of Propositions 3.8 and 3.10 provide bijections between the
classes of objects of each of these three categories. The bijections of Proposition 3.11
provide bijections between hom-sets. These bijections are functorial because the
composition of morphisms in all three categories is given by the composition of
morphisms of vector bundles over X. �
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Remark 3.12. For the remainder of the paper we shall use the isomorphisms of
Theorem A implicitly. We reserve the notation (E, ρg) and (E, φ) for objects in the
second and third categories in Theorem A respectively, and refer to either as a pair.
In particular, Theorem A shows that associated to every affine action T G× E→ E
is an “underlying” G-vector bundle E , equal to the E in either of the associated
pairs. Explicitly, the underlying G-action µG is defined by the formula (5) and is
equal to the restriction of µ along the Lie group homomorphism 0T G : G→ T G.

In Section 4 we give a number of examples, some phrased in terms of affine
actions and some in terms of pairs. In Sections 5 and 6 we work mostly with
the category gX\VectG(X), but where it is easy to do so describe the correspond-
ing statements in terms of affine actions — see Remarks 5.5, 5.7 and 6.2, and
Corollaries 6.7 and 6.9.

4. Examples and special cases

4A. Examples.

Example 4.1 (the tangent bundle). The composite map

T G× T X ∼=
−→ T (G× X) t∗

−→ T X

is an affine action on T X. The corresponding pair (µG, ig) is given by g ·w =
(tg)∗(w) and ig(α)= α#, where α] ∈ 0(T X) is the induced vector field associated
to α, defined by

α]x = t∗(α, 0x)=
d
dt |t=0(exp(tα) · x).

In terms of goG we have

(α, g) ·wx = (tg)∗wx +α
#
g·x .

Example 4.2 (equivariant vector bundles). If E is a G-equivariant vector bundle
with G-action µG : G× E→ E then the composite map

T G× E πG×id
−−−−→G× E µG

−→ E

is an affine action. The corresponding pair is (µG, 0). In terms of goG we have

(α, g) · ex = g · ex .

Example 4.3 (the G-bundle gX ). The G-vector bundle gX defines a canonical
object (gX , id) in the category gX\VectG(X). The corresponding affine action is
given by

vg · (x, β)= (g · x,Adgβ + (Rg−1)∗vg).

In terms of goG we have

(α, g) · (x, β)= (g · x,Adgβ +α).
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Example 4.4 (G-modules). As a generalization of Example 4.3, suppose that M
is a finite-dimensional real G-representation and φ̄ : g→ M is a G-map. Then φ̄
extends to a constant morphism of G-vector bundles φ : gX → MX and (MX , φ) is
an object in gX\VectG(X). The corresponding affine action is given by

vg · (x,m)= (g · x, g ·m+ φ̄((Rg−1)∗vg)).

In terms of goG we have

(α, g) · (x,m)= (g · x, g ·m+ φ̄(α)).

This construction extends to a functor

g\Rep(G)→ gX\VectG(X)∼= Vectaff
T G(X)

which coincides with the pullback functor Vectaff
T G(∗)→ Vectaff

T G(X) associated to
the G-map X→∗ (see Definition 6.1 in Section 6A below).

Example 4.5 (equivariant Lie algebroids). Recall that a Lie algebroid is a vector
bundle A→ X equipped with an R-linear Lie bracket on 0(A) and a vector bundle
morphism ρ : A→ T X, such that the Leibniz rule [ξ, f ξ ′]=ρ(ξ)( f )ξ ′+ f [ξ, ξ ′] is
satisfied for all ξ, ξ ′∈0(A) and f ∈C∞(X). See [Mackenzie 2005] for more details.

A G-equivariant Lie algebroid (called a Harish-Chandra Lie algebroid in [Beilin-
son and Bernstein 1993]) is a Lie algebroid A → X equipped with an action
G× A→ A of G on A by Lie algebroid automorphisms and a G-equivariant Lie
algebra morphism ig : g→ 0(A) such that α · ξ = [ig(α), ξ ] for all α ∈ g and
ξ ∈ 0(A), where ξ 7→ α · ξ is the action of g on 0(A) given by the derivative of the
action of G. Variants of this notion have appeared in [Alekseev and Meinrenken
2009; Bruzzo et al. 2009; Marrero et al. 2012; Ginzburg 1999].

By forgetting the Lie brackets, every G-equivariant Lie algebroid gives rise to
a pair (A, ig) and therefore to an affine action of T G. Affine actions of this type
were considered in [Marrero et al. 2012].

Example 4.6 (affine actions on RX ). Let RX be the G-vector bundle associated
to the trivial representation of G. There is a bijection between affine actions with
underlying G-vector bundle RX , and the space C∞(X, g∗)G. This follows from the
bijection (2) and the isomorphism Hom(g,R)∼= g∗ of G-representations:

HomVectG(X)(gX ,RX )∼= C∞(X,Hom(g,R))G ∼= C∞(X, g∗)G.

Given a function f ∈ C∞(X, g∗)G, the corresponding affine action is given by

vg · (x, λ)= (g · x, λ+ fx((Rg−1)∗vg)).

In terms of goG we have

(α, g) · (x, λ)= (g · x, λ+ fx(α)).
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Example 4.7 (products). If (E, φ) and (E ′, φ′) are objects in gX\VectG(X) then
so is (E ⊕ E ′, (φ, φ′)). In fact,

(E ⊕ E ′, (φ, φ′))= (E, φ)× (E ′, φ′),

where the right-hand side is the product of (E, φ) and (E ′, φ′) in the category
gX\VectG(X) (see Section 6B). The corresponding affine action is the diagonal
action

vg · (ex , e′x)= (vg · ex , vg · e′x).

In terms of goG we have

vg · (ex , e′x)= (g · ex + ρg(α)x , g · e′x + ρ
′

g(α)x).

4B. Special cases.

Example 4.8 (discrete groups). If G is a discrete group then T G ∼= G, and affine
actions are the same as equivariant vector bundles.

Example 4.9 (tori). Suppose that G is one-dimensional and abelian. In this case
the adjoint representation is one-dimensional and trivial. This implies that for every
G-equivariant vector bundle E there is an isomorphism HomG(g, 0(E))∼= 0(E)G.
Affine actions are therefore equivalent to pairs (E, ξ), where E is a G-equivariant
vector bundle and ξ is a G-invariant section of E .

Example 4.10 (points). If X = ∗ is a point then gX\VectG(X)= g\Rep(G).

Assuming that G is simple and compact, one can use the description of products
of Example 4.7 to describe the objects in g\Rep(G) explicitly:

Proposition 4.11. If G is a simple compact Lie group and (V, φ) is an object in
g\Rep(G) then either

(1) (V, φ)= (V, 0), or

(2) (V, φ)∼= (g, id)n × (W, 0),

where n ∈ N and W is a finite-dimensional G-representation with no summand
isomorphic to g.

Remark 4.12. Note that in the setting of Proposition 4.11, if (V, φ) = (V, 0)
then (V, φ) ∼= (g, 0)n × (W, 0) for some n ∈ Z≥0 and W a finite-dimensional
G-representation with no summand isomorphic to g.

Proof. The proof is an application of complete reducibility (G is compact) and
Schur’s Lemma (g is irreducible as a G-representation because G is simple). Note
that as G is simple and compact the adjoint representation g of G is absolutely
irreducible ([Onishchik 2004]). In particular, EndG(g)∼= R.
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Let (V, φ) be an object in g\Rep(G). As a G-representation V ∼= g⊕n
⊕W for

some nonnegative integer n and G-representation W with no summand isomorphic
to g. It follows from Schur’s Lemma that there is an isomorphism

Rn ∼=
−→HomG(g, g

⊕n
⊕W ), λ 7→ (α 7→ (λ1α, . . . , λnα, 0)).(14)

Suppose that (V ′, φ′)∼= g⊕n′
⊕W ′ is a second object in g\Rep(G) and that under

the bijection (14) (V, φ) (respectively (V ′, φ′)) corresponds to (g⊕n
⊕W, λ) (re-

spectively (g⊕n′
⊕W ′, λ′)). If (V, φ) ∼= (V ′, φ′) then we necessarily have n′ = n

and W ′ ∼=W. Using Schur’s Lemma again, we have a bijection

AutG(g
⊕n
⊕W )∼= GLn(R)×AutG(W ),

from which it follows that isomorphisms in g\Rep(G) from (V, φ) to (V ′, φ′)
correspond to diagrams

g
λ
//

λ′ ##

g⊕n
⊕W

(A,ψ)
��

g⊕n
⊕W

in which (A, ψ) ∈ GLn(R)×AutG(W ) and Aλ= λ′. The proposition now follows
from the fact that there are exactly two GLn(R) orbits in Rn: the zero orbit {0}, and
its complement Rn

\{0}. Under the bijection (14) the zero vector 0 corresponds to the
zero morphism g→ g⊕n

⊕W and therefore to the object (g, 0)n× (W, 0)∼= (V, 0),
and the vector (1, . . . , 1)∈Rn

\{0} corresponds to the map (diag, 0) : g→ g⊕n
⊕W

and therefore to the object (g, id)n × (W, 0). �

Remark 4.13. In the Grothendieck group K aff
T G(∗) (see Definition 6.13) the objects

[(g, id)] and [(g, 0)] are, surprisingly, in fact equal. See Remark 6.16 below for a
further discussion of this point.

Example 4.14 (trivial G-spaces). As a generalization of Example 4.10 consider
the case where X is a trivial G-space. In this case an affine action T G× E→ E
over X is equivalent to a smoothly varying family T G× Ex→ Ex of affine actions
parametrised by x ∈ X. In particular, associated to each point x ∈ X there is an
object (Ex , φx) in g\Rep(G).

Proposition 4.15 (homogeneous G-spaces). Let G/H be a homogeneous G-space.
Then there is an equivalence of categories

(15) Vectaff
T G(G/H)' g\Rep(H),

where g is considered as an H-module by restriction of the adjoint representation
of G.
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Proof. Under the equivalence VectG(G/H)→ Rep(H) the G-vector bundle gX is
mapped to the H -representation g. Therefore

Vectaff
T G(G/H)' gX\VectG(X)' g\Rep(H). �

Example 4.16 (the tangent bundle of G/H ). Under the equivalence (15) the tangent
bundle T (G/H) corresponds to the quotient map g→ g/h, considered as an object
in the category g\Rep(H).

Proposition 4.17 (free G-spaces). Suppose that P is a free, proper G-space so that
P/G is a manifold and P→ P/G is a principal G-bundle. Then

Vectaff
T G(P)' ad(P)\Vect(P/G),

where ad(P)= P ×G g is the adjoint bundle of P.

Proof. The quotient construction E 7→ E/G yields an equivalence of categories
VectG(P)→ Vect(P/G) under which the G-vector bundle gP is mapped to the
adjoint bundle ad(P)= P ×G g. Therefore

(16) Vectaff
T G(P)' gP\VectG(P)' ad(P)\Vect(P/G). �

Example 4.18 (Atiyah algebroids). If π : P→ X is a principal G-bundle then the
Atiyah algebroid of P is the Lie algebroid (see Example 4.5) T P/G over X (see
[Mackenzie 2005]). The Atiyah algebroid fits into a short exact sequence

0→ ad(P)→ T P/G→ T X→ 0

which arises from an application of the quotient construction to the short exact
sequence

0→ Kerπ∗→ T P π∗
−→π∗T X→ 0

and the isomorphism of G-equivariant vector bundles Kerπ∗ ∼= gP . Under (16),
the tangent bundle T P corresponds to the object (T P/G, ad(P)→ T P/G) in
ad(P)\Vect(X).

5. Vectaff
T G(X) and VectG(X)

In this section we relate affine actions to equivariant vector bundles and in Section 5C
prove our second main result Theorem B. We mostly describe the statements in
terms of the category gX\VectG(X), but will indicate the corresponding results for
Vectaff

T G(X)— see Remarks 5.5 and 5.7.

5A. The functors U,F and σ . We will define several functors between the cat-
egories gX\VectG(X) and VectG(X). In Remark 5.5 we explain what are the
corresponding functors between Vectaff

T G(X) and VectG(X).
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Definition 5.1. We denote by U the forgetful functor

U : gX\VectG(X)→ VectG(X)

which maps a pair (E, φ) to the G-vector bundle E and maps a morphism ψ :

(E, φ)→ (E ′, φ′) to the morphism ψ : E→ E ′.

Definition 5.2. We denote by σ the functor

σ : VectG(X)→ gX\VectG(X)

defined on objects by σ(E) = (E, 0) and on morphisms by σ(ψ : E → E ′) =
(ψ : (E, 0)→ (E ′, 0)).

Definition 5.3. We denote by F the functor

F : VectG(X)→ gX\VectG(X)

which maps a G-vector bundle E to the object (gX⊕E, igX ), where igX :gX→gX⊕E
is the natural inclusion (x, α) 7→ ((x, α), 0x), and maps a morphism ψ : E→ E ′

to the morphism idg⊕ψ : (gX ⊕ E, igX )→ (gX ⊕ E ′, igX ).

Remark 5.4. Note that F can be written in terms of coproducts in VectG(X) or
products in gX\VectG(X) (see Example 4.7 and Proposition 6.8 ):

F= (gX ⊕−, igX )= ((gX , id)×−) ◦ σ.

Remark 5.5. Via the isomorphism of Theorem A, the functors U, σ and F corre-
spond to functors between Vectaff

T G(X) and VectG(X), which we denote by the same
symbols. The functor

U : Vectaff
T G(X)→ VectG(X)

is given by the restriction of actions along the Lie group morphism 0T G : G→ T G.
It maps an affine action µ : T G × E → E to the G-vector bundle E with action
g · ex = 0g · ex . The functor

σ : VectG(X)→ Vectaff
T G(X)

is given by the restriction of actions along πT G : T G→ G. It maps a G-vector bun-
dle E to the affine action defined by vg ·ex =g·ex . See also Example 4.2. The functor

F : VectG(X)→ Vectaff
T G(X)

maps a G-equivariant vector bundle E to the affine action T G×(gX⊕E)→ gX⊕E
given by

vg · ((x, α), ex)= ((g · x,Adgα+ (Rg−1)∗vg), g · ex).
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5B. Lemma on slice categories. This subsection contains the proof of the follow-
ing category-theoretic result. Lemma D will only be used to prove Theorem C and
will not be referred to elsewhere, so the reader uninterested in category-theoretic
abstractions may wish to skip to Section 5C.

Recall that if U : D � C : F are a pair of adjoint functors, with F left adjoint
to U , then there is an associated monad acting on the category C . This monad
consists of the endofunctor T = UF : C → C , together with a certain pair χ, η
of natural transformations which are constructed from the unit and counit of the
adjunction. There is a canonical comparison functor K : D → C 〈T,χ,η〉, from D

to the category of 〈T, χ, η〉-algebras, and the adjunction is called monadic if K is
an isomorphism. One can therefore understand the statement that an adjunction
is monadic as saying that the category D can be reconstructed from C and the
monad 〈T, χ, η〉 in a canonical way, which shows the importance of the notion.
See [MacLane 1971] for further details.

Lemma D. Let C be a category, m an object in C , and U :m\C → C the standard
forgetful functor. If the coproduct mq a exists in C for all objects a in C then the
functor F : a 7→ (mq a, im) is left adjoint to U , and this adjunction is monadic.

Proof. Let (a′, φ′) be an object in m\C . Via the universal property of the coproduct
mq a the natural bijection

HomC (m, a′)×HomC (a, a′)
∼=
−→
6

HomC (mq a, a′)

restricts to a natural bijection

HomC (a, a′) ∼=−→Homm\C ((mq a, im), (a′, φ′))(17)

f 7→6((φ′, f )).

The bijection (17) can be rewritten as

(18) HomC (a,U((a′, φ′)))
∼=
−→Homm\C (F(a), (a′, φ′)).

This shows that F is left adjoint to U .
It remains to show that the adjunction F a U defined by (18) is monadic. We

must show that the canonical comparison functor K :m\C →C 〈T,χ,η〉 from m\C to
the category of 〈T, χ, η〉-algebras is an isomorphism, where 〈T, χ, η〉 is the monad
associated to the adjunction, and T, χ, η and K are defined below (see [MacLane
1971] for the general case).

Straightforward calculations show that the unit η : 1C ⇒ UF and the counit
ε : F U ⇒ 1m\C of the adjunction have components

ηa = ia : a→ mq a,

ε(a′,φ′) = (φ
′, 1a′) : (mq a′, im)→ (a′, φ′).
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We denote the associated monad by 〈T, χ, η〉, where T= UF : C → C , χ = UεF :
T2
⇒ T, and η : 1C ⇒ T. The functor T is the functor a 7→ m q a. A further

calculation shows that χ has components

χa = (im, 1mqa) : mq (mq a)→ mq a.

We can now describe the category C 〈T,χ,η〉 of 〈T, χ, η〉-algebras, or T-algebras
for short. Let 〈a, h〉 be a T-algebra. Then h is a morphism h : Ta = m q a→ a
in C such that h ◦ηa = 1a as morphisms a→ a, and h ◦Th = h ◦χa as morphisms
T2a→ a. Under the natural bijection

HomC (mq a, a) ∼=−→HomC (m, a)×HomC (a, a),

the first condition on h is equivalent to the condition that h is of the form (h̄, 1a).
A calculation then shows that the second condition on h holds automatically. It
follows that T-algebras can be identified with objects of m\C .

Let f : 〈a, h〉 → 〈a′, h′〉 be a morphism of T-algebras. Then f : a→ a′ is a
morphism in C such that h′ ◦ T f = f ◦ h as morphisms Ta → a′. Identifying
h = (h̄, 1a) and h′ = (h̄′, 1a′) as above, the condition on f is

(h̄′, 1a) ◦ (1m q f )= f ◦ (h̄, 1a)

which is equivalent to
(h̄′, f )= ( f h̄, f )

and therefore to h̄′ = f h̄. It follows that morphisms between T-algebras can be
identified with morphisms in m\C . The discussion above shows that there is an
isomorphism of categories m\C ∼=

−→C 〈T,χ,η〉 defined on objects by

(a, h̄) 7→ 〈a, (h̄, 1a)〉 = 〈U(a, h̄),U(ε(a,h̄))〉

and on morphisms by

( f : (a, h̄)→ (a′, h̄′)) 7→ ( f : 〈a, (h̄, 1a)〉 → 〈a′, (h̄′, 1a′)〉)

=
(
U f : 〈U(a, h̄),U(ε(a,h̄))〉 → 〈U(a

′, h̄′),U(ε(a′,h̄′))〉
)

This functor is exactly the comparison functor K : m\C → C 〈T,χ,η〉 (see [MacLane
1971]), which implies that the adjunction F a U is monadic. �

5C. Theorem B.

Theorem B. The following statements hold:

(1) F is left adjoint to U.

(2) The adjunction F a U is monadic.

(3) σ is the unique section of U.
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Proof. The category VectG(X) is additive and so, in particular, has finite coproducts.
If E is an object in VectG(X) then the coproduct gX q E is given by the G-
vector bundle gX ⊕ E together with the natural inclusions igX : gX → gX ⊕ E and
iE : E→ gX ⊕ E . It follows that F corresponds to the functor F : a 7→ (cq a, ic)

in the statement of Lemma D, and U to the functor U . Therefore (1) and (2) follow
from Lemma D.

We now prove (3). If E is an object in VectG(X) then U(σ (E))= U(E, 0)= E ,
and if ψ : E→ E ′ is a morphism then U(σ (ψ))= U(ψ : (E, 0)→ (E ′, 0))= ψ :
E → E ′, so that σ is a section of U. It remains to show that it is unique. Let σ ′

be a section of U. If E is an object in VectG(X) then σ ′(E) = (E, φ) for some
morphism φ : gX → E . Applying σ to the zero-morphism 0 : E→ E produces a
morphism 0 : (E, φ)→ (E, φ) in gX\VectG(X) which implies that φ = 0 ◦φ = 0.
Therefore σ ′(E) = (E, 0) = σ(E). If ψ : E → E ′ is a morphism in VectG(X)
then the fact that σ ′ is a section of U implies that σ ′(ψ) = ψ : (E, 0)→ (E ′, 0).
Therefore σ ′ = σ . �

Remark 5.6. It follows from the details of the proof of Lemma D, and in partic-
ular (18), that the adjunction F a U of Theorem B is given in terms of hom-sets by:

HomVectG(X)(E,U((E ′, φ′))) ∼=−→HomgX\VectG(X)(F(E), (E
′, φ′))

E

f
��

� // gX

φ′
##

igX
// gX ⊕ E

(φ′, f )
��

E ′ E ′

Remark 5.7. It follows from the isomorphism Vectaff
T G(X) ∼= gX\VectG(X) of

Theorem A, that the analogue of Theorem B involving the functors

U : Vectaff
T G(X)→ VectG(X) and F, σ : VectG(X)→ Vectaff

T G(X)

defined in Remark 5.5 also holds.

6. Pullbacks, products and K-theory

In this section we first show that a G-map f : X → Y determines a pullback
functor Vectaff

T G(Y )→ Vectaff
T G(X). Unlike VectG(X), Vectaff

T G(X) does not carry
any obvious additive structure. Nonetheless, Vectaff

T G(X) does have initial and
terminal objects, and finite products. This will allow us to define the Grothendieck
group K aff

T G(X), and to show that that the above-mentioned pullback functors
determine group homomorphisms between these groups. Our third main result,
Theorem C, shows that the functors U and σ defined in Section 5 determine a
natural isomorphism between K aff

T G(X) and the equivariant K-theory K OG(X).
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6A. Pullback functors. If f1 : X1→ X2 is a G-equivariant smooth map then the
pullback of G-vector bundles determines a functor f ∗1 :VectG(X2)→VectG(X1). If
f2 : X2→ X3 is a composable G-equivariant smooth map then there is a natural iso-
morphism of functors ( f2 f1)

∗ ∼= f ∗1 f ∗2 . Note that there is a canonical isomorphism
of G-vector bundles f ∗1 gX2

∼= gX1 given by (x, ( f1(x), ξ)) 7→ (x, ξ).

Definition 6.1. If f : X → Y is a G-equivariant smooth map then we define the
functor

f̃ ∗ : gY \VectG(Y )→ gX\VectG(X)

to be the composition

(19) gX\VectG(Y )→ ( f ∗gY )\VectG(X)
∼=
−→ gX\VectG(X),

where the first functor in (19) is the functor between slice categories determined by
the pullback of G-vector bundles, and the second is determined by the canonical
isomorphism f ∗gY ∼= gX .

Remark 6.2. In terms of affine actions the action of T G on f ∗E is given by
vg · (x, e)= (g · x, vg · e).

The following proposition follows immediately from the corresponding result
for G-vector bundles:

Proposition 6.3. If f1, f2 are composable G-equivariant maps and f̃ ∗1 , f̃ ∗2 are the
pullback functors defined in Definition 6.1, then there is a natural isomorphism
(̃ f2 f1)

∗
∼= f̃ ∗1 f̃ ∗2 .

Remark 6.4. The categories Vectaff
T G(X) for varying X, functors of Definition 6.1,

and natural isomorphisms of Proposition 6.3 in fact constitute a pseudo-functor
G-Man→ Cat from the category of G-manifolds to the 2-category of (essentially
small) categories, but we shall not make use of this fact.

The pullback functors defined above are compatible with the functors U, σ
and F defined in Section 5A in the following sense. Let us temporarilly record the
dependence on X by UX , σX and FX . The following proposition then follows from
the definitions of these functors:

Proposition 6.5. Let f : X→ Y be a G-map. Then there are natural isomorphisms

UX f̃ ∗ ∼= f ∗UY , σX f ∗ ∼= f̃ ∗σY , FX f ∗ ∼= f̃ ∗FY .

6B. Products.

Proposition 6.6. gX\VectG(X) has a terminal object, which is given by (X×{0}, 0),
and an initial object, given by (gX , id).

Proof. This follows from the definition of the slice category gX\VectG(X) and the
fact that X ×{0} is a terminal object in VectG(X). �
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Corollary 6.7. The category Vectaff
T G(X) has a terminal object given by the zero-

vector bundle X ×{0} with action vg · (x, 0)= (g · x, 0), and an initial object given
by the vector bundle gX with action vg · (x, α)= (g · x,Adgα+ (Rg−1)∗vg).

Proof. This follows from the isomorphism of Theorem A. �

Proposition 6.8. The category gX\VectG(X) has finite products. The product of
(E, φ) and (E ′, φ′) is given by the object (E ⊕ E ′, (φ, φ′)) and the canonical
projections to (E, φ) and (E ′, φ′).

Proof. The result follows from general facts about limits in slice categories. Ex-
plicitly, let (F, ψ) be an object in gX\VectG(X) and f : (F, ψ)→ (E, φ) and
f ′ : (F, ψ)→ (E ′, φ′) be morphisms. In particular, fψ=φ and f ′ψ=φ′. As E⊕E ′

is a product in VectG(X) there is a unique morphism ( f, f ′) : F→ E⊕E ′ satisfying
prE ◦( f, f ′)= f and prE ′◦( f, f ′)= f ′. We have ( f, f ′)◦ψ = ( fψ, f ′ψ)= (φ, φ′)
and therefore ( f, f ′) defines a morphism ( f, f ′) : (F, ψ)→ (E ⊕ E ′, (φ, φ′)) in
gX\VectG(X). Finally, the identities above involving prE and prE ′ imply that
the same identities hold when these morphisms are considered as morphisms in
Vectaff

T G(X). This shows that (E ⊕ E ′, (φ, φ′)) and the canonical projections to
(E, φ) and (E ′, φ′) satisfy the required universal property. �

Corollary 6.9. The category Vectaff
T G(X) has finite products. If E and E ′ are vector

bundles equipped with affine actions then their product is the vector bundle E ⊕ E ′

with affine action vg · (e, e′)= (vg · e, vg · e′).

Proof. This follows from the isomorphism of Theorem A. �

Proposition 6.10. The functors U and σ preserve products.

Proof. This follows immediately from the definitions of the functors U and σ and
the description of products in gX\VectG(X) given in Proposition 6.8. �

Remark 6.11. Note that if G is not discrete then the left adjoint functor F of
Definition 5.3 does not preserve products:

F(E)×F(E ′)= ((gX ⊕ E)⊕ (gX ⊕ E ′), (igX , igX ))

� (gX ⊕ (E ⊕ E ′), igX )

= F(E × E ′).

Proposition 6.12. If f : X→ Y is a G-map then the functor

f̃ ∗ : gY \VectG(Y )→ gX\VectG(X)

of Definition 6.1 preserves products.

Proof. This follows from the definition of the functor f̃ ∗ and the fact that the functor
f ∗ : VectG(Y )→ VectG(X) preserves products. �
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6C. K-theory.

Definition 6.13. Let K aff
T G(X) be the Grothendieck group of the category Vectaff

T G(X).

It follows from Proposition 6.12 and the functoriality of the construction of the
Grothendieck group (see Section 2C) that the functor

f̃ ∗ : gY \VectG(Y )→ gX\VectG(X)

associated to a G-map f : X → Y induces a group homomorphism K ( f̃ ∗) :
K aff

T G(Y )→ K aff
T G(X).

Definition 6.14. We denote by

K aff
T G(−) : G-Man→ Ab

the functor which maps a G-manifold X to the abelian group K aff
T G(X) and maps a

G-map f : X→ Y to the group homomorphism K ( f̃ ∗).

Our last main result is that the functor K aff
T G(−) is isomorphic to K OG(−) (recall

from Section 2C that K OG(X) denotes the Grothendieck group of VectG(X)). The
proof is based on the following Lemma, which states the category-theoretic reasons
for this result.

Lemma E. Let C be an additive category and m an object in C . Let U :m\C → C

be the standard forgetful functor and S : C → m\C the section a 7→ (a, 0). Then
the group homomorphism

K (U) : K (m\C )→ K (C )

is an isomorphism. Its inverse is

K (S) : K (C )→ K (m\C ).

Proof. As U ◦S = 1C , the functoriality of the Grothendieck group implies that the
homomorphism K (U) is surjective, K (S) is injective, and K (U) ◦ K (S)= 1K (C ).
The lemma will therefore follow from the fact that K (S) is surjective, which we
will prove.

Let (a, f ) be an object in m\C . Consider the diagram

(20)
m

( f, f )
//

( f,0) ""

a⊕ a

h
��

a⊕ a

where h = (pr1, pr2− pr1), or in terms of elements h(e1, e2)= (e1, e2− e1). It is
clear that (20) commutes, and h is an isomorphism with inverse (pr1, pr2+ pr1).
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Therefore, h determines an isomorphism

(a, f )× (a, f ) ∼=−→ (a, f )× (a, 0)

in m\C . It follows that in the Grothendieck group K (m\C ) we have

[(a, f )] = [(a, 0)] = K (S)([a]).

Therefore, if (a1, f1) and (a2, f2) are objects in m\C , then

[(a1, f1)] − [(a2, f2)] = K (S)([a1] − [a2]),

which shows that K (S) is surjective. �

Remark 6.15. There exist similar results describing the Grothendieck groups of
various categories associated to an additive category C . For example, the Main
Theorem in [Almkvist 1974] describes the group K (end P(A)), where end P(A)
is the additive category of endomorphisms of finitely generated projected modules
over a commutative ring A.

Theorem C. If X is a G-manifold then the functor U induces a group isomorphism

K (U) : K aff
T G(X)→ K OG(X).

Its inverse is
K (σ ) : K OG(X)→ K aff

T G(X).

These isomorphisms are natural in X, and thus define an isomorphism of functors

K aff
T G(−)

∼=
−→ K OG(−).

Proof. For fixed X, the fact that K (U) and K (σ ) are mutually inverse isomorphisms
follows from Lemma E. The fact that these isomorphisms are natural in X follows
from the first two natural isomorphisms in Proposition 6.5 and the functoriality of
the Grothendieck group. �

Remark 6.16. Note that Theorem C does not hold at the level of monoids. The
functor U induces a morphism of commutative monoids

(gX\VectG(X))/∼=→ (VectG(X))/∼=

which is an isomorphism if and only if G is discrete. In particular, [(gX , 0)]
and [(gX , id)] are both mapped to [gX ]. This can be seen most explicitly in the
situation of Proposition 4.11 (see also Remark 4.12). In this case the equality
[(g, id)] = [(g, 0)] in K aff

T G(∗) implies the equality

[(g, id)n × (W, 0)] = [(g, 0)n × (W, 0)]

in K aff
T G(∗) between the two classes of elements appearing in the classification of

objects in g\Rep(G) given in Proposition 4.11.
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7. The complex case

It is possible to reformulate the notion of affine actions in the complex setting.
The complexified tangent bundle TCG is both a complex vector bundle and a real
Lie group. We define an affine action of TCG on a complex vector bundle E to
be an action for which the action map TCG × E→ E is a morphism of complex
vector bundles. For example, if X is a G-manifold with action G× X→ X then
the derivative defines a complex affine action TCG× TC X→ TC X of TCG on the
complexified tangent bundle TC X of X.

We use Vectaff,C
TCG (X) (respectively VectCG(X)) to denote the category of complex

affine actions (respectively G-equivariant complex vector bundles) over X, and
K aff,C

TCG (X) (respectively KG(X)) to denote the Grothendieck group of Vectaff,C
TCG (X)

(respectively VectCG(X)). As standard, gC denotes the complexified Lie algebra of
G equipped with the complexified adjoint representation.

The functors U, σ and F defined in Section 5A have analogues in the complex
case, which we denote by

UC
: Vectaff,C

TCG (X)→ VectCG(X)

and
FC, σC

: VectCG(X)→ Vectaff,C
TCG (X).

7A. Complex theorems. The following analogues of Theorems A, B and C hold
with essentially the same proofs.

Theorem A′. The following three categories are isomorphic:

(1) The category Vectaff,C
TCG (X) of complex affine actions of TCG over X.

(2) The category of pairs (E, ρg), defined as follows:
• The objects are pairs (E, ρg), where E is a G-equivariant complex vector

bundle over X and ρgC
: gC→ 0(E) is a G-equivariant complex linear

map.
• The morphisms (E, ρg) → (E ′, ρg) are morphisms ψ : E → E ′ of G-

equivariant complex vector bundles over X such that 0(ψ) ◦ ρgC
= ρ ′gC

.
• Composition is given by composition of morphisms of complex vector

bundles over X.

(3) The slice category (gC)X\VectCG(X).

Theorem B′. The following statements hold:

(1) FC is left adjoint to UC.

(2) The adjunction FC
a UC is monadic.

(3) σC is the unique section of UC.
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Theorem C′. If X is a G-manifold then the functor UC induces a group isomor-
phism

K (UC) : K aff,C
TCG (X)→ KG(X).

Its inverse is
K (σC) : KG(X)→ K aff,C

TCG (X).

These isomorphisms are natural in X, and thus define an isomorphism of functors

K aff,C
TCG (−)

∼=
−→ KG(−).
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