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For a triangulated category C with a cluster tilting subcategory T which
contains infinitely many indecomposable objects, the notion of weak T [1]-
cluster tilting subcategories of C is introduced. We use them to study the
τ -tilting theory in the module category over T . Inspired by the work of
Iyama, Jørgensen and Yang (2014), we introduce the notion of τ -tilting sub-
categories of mod T , and show that there exists a bijection between weak
T [1]-cluster tilting subcategories of C and support τ -tilting subcategories
of mod T . Moreover, we describe the subcategories of mod T which corre-
spond to cluster tilting subcategories of C . This generalizes and improves
results by Adachi, Iyama and Reiten (2014), Beligiannis (2013), and Yang
and Zhu (2019).
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1. Introduction

The links between cluster tilting objects in a (2-Calabi–Yau) triangulated category
and tilting modules over the cluster-tilted algebras have been studied for a relatively
long time. They stemmed from the categorification of cluster algebras, see for
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examples: [Smith 2008; Fu and Liu 2009; Beaudet et al. 2014; Lasnier 2011;
Beligiannis 2013]. Adachi, Iyama and Reiten [Adachi et al. 2014] established a
bijection between cluster tilting objects in a 2-Calabi–Yau triangulated category and
support τ -tilting modules over a cluster-tilted algebra (see also [Chang et al. 2015;
Yang et al. 2017; Yang and Zhu 2019] for various versions of this bijection). They
introduced the τ -tilting theory for finite-dimensional algebras. As a generalization
of classical tilting theory, it completes tilting theory from the viewpoint of mutation.
Nowadays the relationships between τ -tilting theory and the various aspects of the
representation theory of finite-dimensional algebras have been studied.

In order to generalize the bijection in [Adachi et al. 2014] mentioned above to
arbitrary triangulated categories with cluster tilting objects, two of us [Yang and
Zhu 2019] introduced the notion of relative cluster tilting objects. An object M
in a triangulated category C with a cluster tilting object T is called a T [1]-cluster
tilting object provided that |M | = |T | and [T [1]](M,M[1])= 0, where |X | denotes
the number of the isomorphism classes of indecomposable direct summands of
X and [T [1]](X, X [1])) denotes the subgroup of HomC (X, X [1]) consisting of
morphisms factoring through an object in add(T [1]). It was proved that there is a
bijection between the set of basic T [1]-cluster tilting objects and the set of basic
support τ -tilting modules over the cluster tilted algebra EndC (T )op, see [Yang and
Zhu 2019], which is the bijection in [Adachi et al. 2014] when C is 2-Calabi–Yau.

Although the (2-Calabi–Yau) triangulated categories with cluster tilting objects
are the main sources for categorifying cluster algebras, the more general triangulated
categories (not necessarily 2-Calabi–Yau) with cluster tilting subcategories (the
number of nonisomorphic indecomposable objects in it is not finite) appear naturally,
see for examples, [Jørgensen and Palu 2013; Ng 2010; Igusa and Todorov 2015a;
2015b; Holm and Jørgensen 2012; Liu and Paquette 2017; Chang et al. 2018; Gratz
et al. 2019; Stovicek and van Roosmalen 2016; Jørgensen and Yakimov 2017]. It is
natural to ask which classes of subcategories of C correspond bijectively to support
τ -tilting subcategories of mod T for 2-Calabi–Yau triangulated categories, higher
Calabi–Yau triangulated categories or arbitrary triangulated categories, where T is
a cluster tilting subcategory of C . Iyama, Jørgensen and Yang [Iyama et al. 2014]
gave a functor version of τ -tilting theory. They considered modules over a category
and showed that for a triangulated category C with a silting subcategory S, there
exists a bijection between the set of silting subcategories of C which are in S ∗S[1]
and the set of support τ -tilting pairs of mod S.

Motivated by this question and the bijection given by Yang and Zhu [2019],
we introduce the notions of T [1]-cluster tilting subcategories (also called ghost
cluster tilting subcategories) and weak T [1]-cluster tilting subcategories of C (the
precise definitions of these subcategories are given in Definition 3.1), which are
generalizations of cluster tilting subcategories. When C has a cluster tilting object T,
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then weak add(T [1])-cluster tilting subcategories coincide with add(T [1])-cluster
tilting subcategories, and are also the same as T [1]-cluster tilting objects introduced
in [Yang and Zhu 2019].

The first part of our work is to develop a basic theory of ghost cluster tilting
subcategories of C . Some intrinsic properties and results on ghost cluster tilting
subcategories will be presented. Some of our results can be summarized as follows.

cluster tilting

Proposition 3.3
��

ghost cluster tilting

F-stable
Theorem 3.6

OO

Proposition 3.7
��

Corollary 3.11
// weak ghost cluster tilting

contravariantly finite
Definition 3.1

oo

maximal ghost rigid

contravariantly finite
Theorem 3.10

OO

The second part of our paper is devoted to answering the question above. We have
the following main result.

Theorem 1.1 (see Proposition 4.2 and Theorem 4.3). Let C be a triangulated
category with a cluster-tilting subcategory T . The functor H : C →Mod T induces
a bijection

8 :X 7−→ (H(X ), T ∩X [−1])

from the first of the following sets to the second:

(I) T [1]-rigid subcategories of C .

(II) τ -rigid pairs of mod T .

It restricts to a bijection from the first to the second of the following sets:

(I) Weak T [1]-tilting subcategories of C .

(II) Support τ -tilting subcategories of mod T .

Consequently, we also describe the subcategories of mod T which correspond to
cluster tilting subcategories of C (see Theorem 4.4). This generalizes and improves
several results in the literature.

Inspired by Adachi, Iyama and Reiten [Adachi et al. 2014] and by Iyama,
Jørgensen and Yang [Iyama et al. 2014], we introduce the notions of τ -tilting
subcategories and tilting subcategories of mod T . In the third part of our paper, we
give some close relationships between certain ghost cluster tilting subcategories
of C and some important subcategories of mod T (see Theorems 4.8 and 4.11).

The paper is organized as follows. In Section 2, we recall some elementary
definitions and facts about cluster tilting subcategories and support τ -tilting sub-
categories. In Section 3, we will study the basic properties of ghost cluster tilting
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subcategories of C . For a triangulated category with cluster tilting object, we will
show that the definition of ghost cluster tilting objects in C is equivalent to the
definition of relative cluster tilting objects in [Yang and Zhu 2019]. In Section 4,
we explore the connections between ghost cluster tilting theory and τ -tilting theory.

We conclude this section with some conventions.
Throughout this article, k is an algebraically closed field. All modules we

consider in this paper are left modules. Let C be an additive category. When we
say that D is a subcategory of C , we always assume that D is a full subcategory
which is closed under isomorphisms, direct sums and direct summands. We denote
by [D] the ideal of C consisting of morphisms which factor through objects in D .
Thus we get a new category C /[D] whose objects are objects of C and whose
morphisms are elements of C (X, Y )/[D](X, Y ) for X, Y ∈ C /[D]. For any object
M, we denote by addM the full subcategory of C consisting of direct summands of
direct sum of finitely many copies of M and simply denote C /[addM] by C /[M].
Let X and Y be subcategories of C . We denote by X ∨Y the smallest subcategory
of C containing X and Y . For two morphisms f : M→ N and g : N → L , the
composition of f and g is denoted by g f : M→ L .

Let X be an object in C . A morphism f : D0 → X is called a right D-
approximation of X if D0 ∈ D and HomC (−, f )|D is surjective. If any object
in C has a right D-approximation, we call D contravariantly finite in C . Dually,
a left D-approximation and a covariantly finite subcategory are defined. We say
that D is functorially finite if it is both covariantly finite and contravariantly finite.
For more details, we refer to [Auslander and Reiten 1991].

For any triangulated category C , we assume that it is k-linear, Hom-finite, and
satisfies the Krull–Remak–Schmidt property [Happel 1988]. For any object M
in C , we can write M ' M1 ⊕ · · · ⊕ Mn , where the endomorphism ring of Mi

is local, for any i = 1, 2, . . . , n. Then M is called basic if Mi 6' M j for all
i 6= j. In C , we denote the shift functor by [1] and for objects X and Y, define
ExtiC (X, Y ) = HomC (X, Y [i]). For two subcategories X ,Y of C , we denote
by Ext1(X ,Y ) = 0 when Ext1(X, Y ) = 0 for any X ∈ X and Y ∈ Y . For a
subcategory X , we use |X | to denote the number of nonisomorphic indecomposable
objects in X . It is easy to see that |X | <∞ if and only if X = add X for an
object X. In this case, |X | is denoted simply by |X |.

2. Background and preliminary results

In this section, we give some background material and recall some results that will
be used in this paper.

Cluster tilting subcategories and relative cluster tilting objects. Let C be a trian-
gulated category. An important class of subcategories of C are the cluster tilting
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subcategories, which have many nice properties. We recall the definition of cluster
tilting subcategories from [Buan et al. 2006; Keller and Reiten 2007; Koenig and
Zhu 2008; Iyama and Yoshino 2008].

Definition 2.1. (1) A subcategory T of C is called rigid if HomC (T , T [1])= 0.

(2) A subcategory T of C is maximal rigid if it is rigid and maximal with respect
to this property, that is, T = {M ∈C |HomC (T ∨addM, (T ∨addM)[1])= 0}.

(3) A functorially finite subcategory T of C is called cluster tilting if

T = {M ∈ C | HomC (T ,M[1])= 0} = {M ∈ C | HomC (M, T [1])= 0}.

(4) An object T in C is cluster tilting if addT is a cluster tilting subcategory of C .

Remark 2.2. It is easy to see that a subcategory T of C is cluster tilting if and
only if it is contravariantly finite in C and T = {M ∈ C | HomC (T ,M[1]) = 0},
see for example [Koenig and Zhu 2008].

For two subcategories X and Y of C , we denote by X ∗Y the collection of
objects in C consisting of all such M ∈ C with triangles

X −→ M −→ Y −→ X [1],

where X ∈X and Y ∈ Y .
Recall from [Bondal and Kapranov 1989] that C has a Serre functor S provided

S : C → C is an equivalence and there exists a functorial isomorphism

HomC (A, B)' D HomC (B,SA)

for any A, B ∈ C , where D is the duality over k. Thus C has the Auslander–
Reiten translation τ ' S[−1], see [Reiten and Van den Bergh 2002]. Define an
equivalence F = τ−1

◦ [1]. An object M in C is called F-stable if F(M) ' M
and a subcategory M of C is called F-stable if F(M) =M. We say that C is
2-Calabi–Yau if S' [2]. Note that for a 2-Calabi–Yau category C , F = idC .

We have the following result [Keller and Reiten 2007; Koenig and Zhu 2008;
Iyama and Yoshino 2008], which will be used frequently in this paper.

Proposition 2.3. Let T be a cluster-tilting subcategory of C and C be an arbitrary
object in C . Then:

(a) C = T ∗ T [1].

(b) FT = T if C has a Serre functor.

(c) Let C→ T0 be a left addT -approximation of C. Let C→ T0→ Y → C[1] be
a completed triangle. Then Y is in addT.
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When C is a 2-Calabi–Yau triangulated category, cluster tilting objects have a
very important property: if we remove some direct summand Ti from a cluster tilting
object T = T1⊕T2⊕· · ·⊕Tn to get T/Ti =⊕ j 6=i T j (which is called an almost com-
plete cluster tilting object), then there is exactly one indecomposable object T ∗i such
that T ∗i � Ti and T/Ti⊕T ∗i is a cluster-tilting object, which is called the mutation of
T at Ti , see [Buan et al. 2006; Iyama and Yoshino 2008]. But the mutation of cluster
tilting objects in triangulated categories which are not 2-Calabi–Yau is not always
possible, see for example Section II1 in [Buan et al. 2009]. In order to generalize it
in a more general triangulated category, Yang and Zhu [2019] introduced the notion
of relative cluster tilting objects in triangulated categories as follows.

Definition 2.4 [Yang and Zhu 2019, Definition 3.1]. Let C be a triangulated cate-
gory with a cluster tilting object.

• An object X in C is called relative rigid if there exists a cluster tilting object
T such that [T [1]](X, X [1])= 0. In this case, X is also called T [1]-rigid.

• An object X in C is called relative cluster tilting if there exists a cluster tilting
object T such that X is T [1]-rigid and |X | = |T |. In this case, X is also called
T [1]-cluster tilting.

Throughout this paper, we denote by T [1]-rigid C (respectively, T [1]-tilt C )
the set of isomorphism classes of basic T [1]-rigid (respectively, basic T [1]-cluster
tilting) objects in C .

Support τ -tilting modules and support τ -tilting subcategories. Let 3 be a finite-
dimensional k-algebra and τ the Auslander–Reiten translation. We denote by proj3

the subcategory of mod3 consisting of projective 3-modules. Support τ -tilting
modules were introduced by Adachi, Iyama and Reiten [Adachi et al. 2014], they
can be regarded as a generalization of tilting modules.

Definition 2.5. Let (X, P) be a pair with X ∈mod3 and P ∈ proj3.

1. X is called τ -rigid if Hom3(X, τ X)= 0.

2. X is called τ -tilting if X is τ -rigid and |X | = |3|.

3. (X, P) is called a τ -rigid pair if X is τ -rigid and Hom3(P, X)= 0.

4. (X, P) is a support τ -tilting pair if it is a τ -rigid pair and |X | + |P| = |3|. In
this case, X is called a support τ -tilting module.

Throughout this paper, we denote by τ -rigid 3 the set of isomorphism classes
of basic τ -rigid pairs of 3, and by sτ -tilt3 the set of isomorphism classes of basic
support τ -tilting 3-modules.

The following proposition gives a criterion for a τ -rigid3-module to be a support
τ -tilting 3-module.
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Proposition 2.6 [Jasso 2015, Proposition 2.14]. Let 3 be a finite-dimensional
algebra and M a τ -rigid 3-module. Then M is a support τ -tilting 3-module if and
only if there exists an exact sequence

3
f
−→M ′ g

−→M ′′→ 0,

with M ′,M ′′ ∈ addM and f a left (addM)-approximation of 3.

Iyama, Jørgensen and Yang [Iyama et al. 2014, Definition 1.3] defined a functor
version of τ−tilting modules, and they extended the notion of support τ -tilting
modules for finite dimensional algebras to that for essentially small additive cate-
gories. Let T be an additive category. We write Mod T for the abelian category of
contravariant additive functors from T to the category of abelian groups and mod T
for the full subcategory of finitely presented functors, see [Auslander 1974].

Definition 2.7 [Iyama et al. 2014, Definition 1.3]. Let T be an essentially small
additive category.

(i) Let M be a subcategory of mod T . A class { P1
πM
−→ P0→ M→ 0 | M ∈M }

of projective presentations in mod T is said to have Property (S) if

Hommod T (π
M ,M ′) : Hommod T (P0,M ′)→ Hommod T (P1,M ′)

is surjective for any M,M ′ ∈M.

(ii) A subcategory M of mod T is said to be τ -rigid if there is a class of projective
presentations {P1→ P0→ M→ 0 | M ∈M} which has Property (S).

(iii) A τ -rigid pair of mod T is a pair (M, E), where M is a τ -rigid subcategory
of mod T and E ⊆ T is a subcategory with M(E)= 0, that is, M(E)= 0 for
each M ∈M and E ∈ E .

(iv) A τ -rigid pair (M, E) is support τ -tilting if E = Ker (M) and for each T ∈ T
there exists an exact sequence T (−, T ) f

−→M0
→M1

→ 0 with M0,M1
∈M

such that f is a left M-approximation. In this case, M is called a support
τ -tilting subcategory of mod T .

From triangulated categories to abelian categories. In this subsection, we assume
that T is a cluster tilting subcategory of a triangulated category C . A T -module is
a contravariant k-linear functor F : T →Mod k. Then T -modules form an abelian
category Mod T . We denote by mod T the subcategory of Mod T consisting of
finitely presented T -modules. It is easy to see that mod T is an abelian category.
Moreover the restricted Yoneda functor

H : C →Mod T , M 7→ HomC (−,M) |T
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is homological and induces an equivalence

T ∼
−→ proj(mod T ).

The following results are crucial in this paper.

Theorem 2.8. (i) H(C ) is a subcategory of mod T .

(ii) [Auslander 1974] For N ∈Mod T and T ∈ T , there exists a natural isomor-
phism

HomMod T (H(T ), N ) ∼−→ N (T ).

More explicitly, if we have a map f : T → T ′, where T ′ ∈ T , then we have the
commutative diagram

Hommod T (H(T ′), N )

'

��

◦H( f )
// Hommod T (H(T ), N )

'

��

N (T ′)
N ( f )

// N (T ).

(iii) [Keller and Reiten 2007; Koenig and Zhu 2008; Iyama and Yoshino 2008] The
functor H from (i) induces an equivalence

C /[T [1]] ∼−→mod T ,

and mod T is Gorenstein of dimension at most one.

Proof of (i). Since T is cluster tilting, for any object C ∈ C , there exists a triangle

T0
f
// T1

g
// C h

// T0[1],

where T0, T1 ∈ T . Applying the functor H to the above triangle, we get an exact
sequence

H(T0)
f ◦
// H(T1)

g◦
// H(C) // 0.

This shows that H(C) ∈mod T . �

If there exists an object T ∈ C such that T = addT, we obtain the following.

Corollary 2.9. Let T be a cluster tilting object in C and 3= Endop
C (T ). Then the

functor

(2-1) HomC (T,−) : C →mod3

induces an equivalence

(2-2) (−) : C /[T [1]] ∼−→mod3.

This equivalence gives a close relationship between the relative cluster tilting
objects in C and support τ -tilting 3-modules.
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Theorem 2.10 [Yang and Zhu 2019, Theorem 3.6]. Let C be a triangulated cate-
gory with a Serre functor S and a cluster tilting object T, and let 3 = Endop

C (T ).
Then the functor (2-1) induces the bijections

T [1]-rigid C
(a)
←→ τ -rigid3, T [1]-tilt C (b)

←→ sτ -tilt3.

3. Ghost cluster tilting subcategories

In this section, our aim is to define and study ghost cluster tilting subcategories in a
triangulated category with cluster tilting subcategories, in particular, to compare
them to the existing notions: cluster tilting subcategories [Keller and Reiten 2007;
Koenig and Zhu 2008; Iyama and Yoshino 2008] and relative cluster tilting objects
[Yang and Zhu 2019].

Ghost cluster tilting subcategories. We first give the definitions and then discuss
connections between them.

Definition 3.1. Let C be a triangulated category with a cluster tilting subcategory.

(i) A subcategory X in C is called ghost rigid if there exists a cluster tilting
subcategory T such that [T [1]](X ,X [1])= 0. In this case, X is also called
T [1]-rigid.

(ii) A subcategory X in C is called maximal ghost rigid if there exists a cluster
tilting subcategory T such that X is T [1]-rigid and

[T [1]](X ∨ addM, (X ∨ addM)[1])= 0 implies M ∈X .

In this case, X is also called maximal T [1]-rigid.

(iii) A subcategory X in C is called weak ghost cluster tilting if there exists a
cluster tilting subcategory T with T ⊆X [−1] ∗X and

X = {M ∈ C | [T [1]](M,X [1])= 0 and [T [1]](X ,M[1])= 0}.

In this case, X is also called weak T [1]-cluster tilting.
(iv) A subcategory X in C is called ghost cluster tilting if X is contravariantly

finite in C and there exists a cluster tilting subcategory T such that

X = {M ∈ C | [T [1]](M,X [1])= 0 and [T [1]](X ,M[1])= 0}.

In this case, X is also called T [1]-cluster tilting.

(v) An object X is called T [1]-rigid, maximal T [1]-rigid, weak T [1]-cluster
tilting, or T [1]-cluster tilting if addX is T [1]-rigid, maximal T [1]-rigid, weak
T [1]-cluster tilting, or T [1]-cluster tilting respectively.

Remark 3.2. Since ghost cluster tilting subcategories are introduced in order to
generalize the notion of relative cluster tilting objects, it is natural to compare the
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definition of relative cluster tilting objects of Definition 2.4 (originally given in
[Yang and Zhu 2019]) to the definition of ghost cluster tilting subcategories of
Definition 3.1(iv). When C has a cluster tilting object, we will show that ghost
cluster tilting objects are exactly the relative cluster tilting objects in Theorem 3.16.
Therefore when |T | =∞, we replace the condition “|X | = |T |” by the equation

“X = {M ∈ C | [T [1]](M,X [1])= 0 and [T [1]](X ,M[1])= 0}.”

From here until the end of the section, we prove some properties of ghost cluster
tilting subcategories. We first prove a cluster tilting subcategory is a ghost cluster
tilting subcategory with respect to any cluster tilting subcategory.

Proposition 3.3. Cluster tilting subcategories are ghost cluster tilting. More pre-
cisely, let X be a cluster tilting subcategory. Then X is T [1]-cluster tilting
subcategory for any cluster tilting subcategory T .

Proof. Let X be an arbitrary cluster tilting subcategory in C . Clearly, X is
contravariantly finite and

X ⊆ {M ∈ C | [T [1]](X ,M[1])= 0= [T [1]](M,X [1])}.

For any object M ∈ {M ∈ C | [T [1]](X ,M[1])= 0= [T [1]](M,X [1])}, we need
to prove that M ∈X . Since T is cluster tilting, there exists a triangle

T1
f
−→ T0

g
−→M h

−→ T1[1],

where T0, T1 ∈ T . Take a left X -approximation of T0 and complete it to a triangle

T0
u
−→ X1

v
−→ X2

w
−→ T0[1],

where X1 ∈ X . Since X is cluster tilting, by Proposition 2.3(c), we have that
X2 ∈X . By the octahedral axiom, we have a commutative diagram

T1
f
// T0

g
//

u
��

M h
//

a
��

T1[1]

T1
x=u f
// X1

y
//

v
��

N
z
//

b
��

T1[1]

X2

w
��

X2

c
��

T0[1]
g[1]
// M[1]

of triangles. We claim that x is a left X -approximation of T1. Indeed, for any
morphism α : T1→ X ′, where X ′ ∈X , since α◦h[−1] ∈ [T ](M[−1],X )= 0, there
exists a morphism β : T0→ X ′ such that α= β f . Since u is a left X -approximation
of T0 and X ′ ∈X , there exists a morphism γ : X1→ X ′ such that β = γ u and then
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α=γ (u f )=γ x . This shows that x is a left X -approximation of T1. Note that X is
cluster tilting. Thus N ∈X . Since c= g[1]w ∈ [T [1]](X ,M[1])= 0, the triangle

M a
−→ N b

−→ X2
c
−→M[1]

splits. It follows that M is a direct summand of N and therefore M ∈X . Thus

X = {M ∈ C | [T [1]](X ,M[1])= 0= [T [1]](M,X [1])}

and hence X is T [1]-cluster tilting. �

The following example shows that ghost cluster tilting subcategories need not be
cluster tilting.

Example 3.4. Let A = k Q/I be a self-injective algebra given by the quiver

Q : 1
α
// 2

β
oo

and I = 〈αβαβ, βαβα〉. Let C be the stable module category mod A of A. This is
a triangulated category whose Auslander–Reiten quiver is the following (note that
projective-injective modules should be deleted):

1
2
1
2 ��

2
1
2
1 ��2

1
2

??

��

1
2
1

oo

??

��

2
1
2

oo

2
1

��

??

1
2

��

??

oo

1

??

2oo

??

1oo

where the leftmost and rightmost columns are identified. It is easy to see that

T := add
(

2⊕
2
1
2

)
is a cluster tilting subcategory of C . Note that X := add

(
2 ⊕ 1

2

)
is a T [1]-

cluster tilting subcategory of C , but not a cluster tilting subcategory of C , since
Hom

( 1
2 ,

1
2 [1]

)
= Hom

( 1
2 ,

1
2

)
6= 0.

As we have seen in Example 3.4, ghost cluster tilting categories need not be
cluster tilting categories, however the situation is much better when we assume that
the triangulated category C has a Serre functor S as we will show in Theorem 3.6.

We need the following lemma in order to prove Theorem 3.6:

Lemma 3.5. Let C be a triangulated category with a Serre functor S and a cluster
tilting subcategory T . For two objects M and N in C , [T [1]](M, N [1])= 0 and
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[T [1]](N , τM) = 0 if and only if HomC (M, N [1]) = 0. In particular, if C is
2-Calabi–Yau, then M is T [1]-rigid if and only if M is rigid.

Proof. Our argument is similar to the proof of Proposition 3.4 in [Yang and Zhu
2019]. We give the proof for the convenience of the reader.

We show the “if” part. If HomC (M, N [1])= 0, then [T [1]](M, N [1])= 0. By
the Serre duality, we have

HomC (N , τM)' HomC (N [1],SM)' D HomC (M, N [1])= 0.

Thus we obtain [T [1]](N , τM)= 0.
We now show the “only if” part. Since T is a cluster tilting subcategory, by

Proposition 2.3(a), we have a triangle

T0
g
−→ N f

−→ T1[1]
h
−→ T0[1]

with T0, T1 ∈ T . Thus we have a commutative diagram of exact sequences:

HomC (T1[1], τM)

· f
��

∼
oo

HomC (N , τM)

��

∼
oo

HomC (T0, τM)

��

∼
oo

HomC (T1, τM) ∼
oo

D HomC (M, T1[2])

D( f [1]·)
��

D HomC (M, N [1])

D(g[1]·)
��

D HomC (M, T0[1])

D(h·)
��

D HomC (M, T1[1])

Since Im(· f )= {a f | a ∈ HomC (T1[1], τM)} ⊆ [T [1]](N , τM)= 0, we deduce

(3-1) KerD(g[1]·)= ImD( f [1]·)' Im(· f )= 0.

N
f
//

��

T1[1]
h
//

~~

T0[1]
g[1]

// N [1]

τM M

b

OO

∃c

``

Take any b ∈ HomC (M, T0[1]). Since [T [1]](M, N [1]) = 0, we have g[1]b = 0.
Thus there exists c : M→ T1[1] such that b = hc, which implies that

(h·) : HomC (M, T1[1])−→ HomC (M, T0[1]), c 7−→ hc = b
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is surjective. Therefore, D(h·) is injective and

Im D(g[1]·)= Ker D(h·)= 0.

Combining this with (3-1), we deduce D HomC (M, N [1])=0 and HomC (M, N [1])
vanishes.

If C is 2-Calabi–Yau, then τ ' [1]. The assertion is clear. �

The following result gives a characterization of cluster tilting subcategories in
terms of ghost cluster tilting subcategories, which implies that in a 2-Calabi–Yau
triangulated category, ghost cluster tilting subcategories coincide with cluster tilting
subcategories.

Theorem 3.6. Let C be a triangulated category with a Serre functor S and a
cluster tilting subcategory. Then F-stable ghost cluster tilting subcategories of C

are precisely cluster tilting subcategories, where F = τ−1
[1] = S−1

[2].

Proof. By Proposition 2.3, we have that cluster tilting subcategories are F-stable.
By Proposition 3.3, we have that cluster tilting subcategories are ghost cluster tilting.
Now we prove the other direction. Let X be a T [1]-cluster tilting subcategory
satisfying FX = X , where T is a cluster tilting subcategory. It follows that
τX =X [1].

(1) We show that X is a rigid subcategory of C . For any two objects M, N ∈X ,
since X is T [1]-tilting, we have

(3-2) [T [1]](M, N [1])= 0.

Similarly, since τX =X [1], we have τM =M ′[1], where M ′ ∈X . It follows that

(3-3) [T [1]](N , τM)= [T [1]](N ,M ′[1])= 0.

By Lemma 3.5, equalities (3-2) and (3-3) imply that HomC (M, N [1])= 0.
(2) We show that X = {M ∈ C | Ext1C (X ,M) = 0}. The “⊆” part is clear.

Assume that an object M ∈ C satisfies Ext1C (X ,M)= 0. Then

HomC (M,X [1])' D HomC (X [1],SM)

' D HomC (τX , FSM)

' D HomC (X ,M[1])= 0.

This implies that [T [1]](M,X [1]) = 0. Since [T [1]](X ,M[1]) = 0 and X is
T [1]-cluster tilting, we obtain that M ∈X .

Note that X is contravariantly finite. It follows from Remark 2.2 that X is a
cluster tilting subcategory of C . �

Proposition 3.7. Any ghost cluster tilting subcategory is a contravariantly finite
maximal ghost rigid subcategory.
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Proof. Assume that X is a T [1]-cluster tilting subcategory. If there exists an object
M ∈ C such that

[T [1]](X ∨ addM, (X ∨ addM)[1])= 0,

then
[T [1]](X ,M[1])= 0 and [T [1]](M,X [1])= 0.

Since X is T [1]-cluster tilting, we obtain M ∈X . �

The converse result to Proposition 3.7 will be given in Theorem 3.10. We need
the following lemma to prove this theorem.

Lemma 3.8. (a) Let T be a cluster tilting subcategory and X a maximal T [1]-
rigid subcategory in C . Let T0 ∈ T , let T0

g
−→ X0 be a left X -approximation

of T0 and consider the associated triangle:

M[−1] f
−→ T0

g
−→ X0

h
−→M.

Then M ∈X .

(b) Let T be a cluster tilting subcategory and X a maximal T [1]-rigid subcategory
in C . Let T0 ∈ T , let X0[−1] f

−→T0 be a left X [−1]-approximation of T0 and
consider the associated triangle:

X0[−1] f
−→ T0

g
−→M h

−→ X0.

Then M ∈X .

Proof. We only prove (a), the proof of (b) is similar. For any x ∈ [T ](M[−1],X ),
there are two morphisms x1 : M[−1] → T1 and x2 : T1→ X1 such that x = x2x1,
where T1 ∈ T and X1 ∈X .

X0[−1]
h[−1]

// M[−1]
f
//

x1

��

T0
g

//

a

��

X0
h

//

b

||

M
− f [1]

// T0[1]

T1

x2

��

T2

y2

OO

c

bb

X1 X2[−1]

y1

OO

Since X is T [1]-rigid, we have xh[−1] = x2(x1h[−1])= 0. Thus, there exists
a :T0→ X1 such that x=a f . Because g is a left X -approximation of T0, we deduce
that there exists b : X0→ X1 such that a= bg. Therefore, x = a f = b(g f )= 0 and

(3-4) [T [1]](M,X [1])= 0.
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For y ∈ [T ](X [−1],M), there are two morphisms y1 : X2[−1] → T2 and y2 :

T2 → M such that y = y2 y1, where T2 ∈ T and X2 ∈ X . Since f [1]y2 = 0,
there exists c : T2 → X0 such that y2 = hc. Because X is T [1]-rigid, we have
y = y2 y1 = h(cy1)= 0. Therefore,

(3-5) [T [1]](X ,M[1])= 0.

For any z ∈ [T ](M[−1],M), there are two morphisms z1 : M[−1] → T3 and z2 :

T3→M such that z= z2z1, where T3∈T . Since f [1]z2=0, there exists d :T3→ X0

such that z2 = hd . By equality (3-4), we have z = z2z1 = h(dz1)= 0. Thus,

(3-6) [T [1]](M,M[1])= 0.

T0
g
// X0

h
// M
− f [1]

// T0[1]

T3

z2

OO

d

ee

M[−1]

z1

OO

Using (3-4), (3-5) and (3-6), we get [T [1]](X ∨addM, (X ∨addM)[1])= 0. Note
that X is maximal T [1]-rigid. Hence M ∈X . �

This lemma immediately yields the following important conclusion:

Corollary 3.9. Let T be a cluster tilting subcategory in a triangulated category C

and X be a covariantly (or contravariantly) finite maximal T [1]-rigid subcategory.
Then

T ⊆X [−1] ∗X .

Now we prove that the converse of Proposition 3.7 also holds, which generalizes
a result of Zhou and Zhu [2011, Theorem 2.6].

Theorem 3.10. Let C be a triangulated category with a cluster tilting subcat-
egory T . Then any contravariantly finite maximal T [1]-rigid subcategory is a
T [1]-cluster tilting subcategory.

Proof. Assume that X is a contravariantly finite maximal T [1]-rigid subcategory
in C . Clearly,

X ⊆ {M ∈ C | [T [1]](X ,M[1])= 0= [T [1]](M,X [1])}.

For any object M ∈ {M ∈ C | [T [1]](X ,M[1])= 0= [T [1]](M,X [1])}, since T
is cluster tilting, there exists a triangle

T1
f
−→ T0

g
−→M h

−→ T1[1],

where T0, T1 ∈ T . By Corollary 3.9, there exists a triangle

T0
u
−→ X1

v
−→ X2

w
−→ T0[1],
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where X1, X2∈X . Since X is T [1]-rigid, we have that u is a left X -approximation
of T0. By the octahedral axiom, we have a commutative diagram

T1
f
// T0

g
//

u
��

M h
//

a
��

T1[1]

T1
x=u f

// X1
y
//

v
��

N
z
//

b
��

T1[1]

X2

w
��

X2

c
��

T0[1]
g[1]
// M[1]

of triangles. Using similar arguments as in the proof of Proposition 3.3, we conclude
that x is a left X -approximation of T1. By Lemma 3.8, we have N ∈X . Since

c = g[1]w ∈ [T [1]](X ,M[1])= 0.

This shows that the triangle

M a
−→ N b

−→ X2
c
−→M[1].

splits. It follows that M is a direct summand of N and thus M ∈X . Hence X is
T [1]-cluster tilting. �

Corollary 3.11. Let C be a triangulated category with a cluster tilting subcat-
egory T . Then T [1]-cluster tilting subcategories are weak T [1]-cluster tilting
subcategories.

Proof. This follows from Theorem 3.10 and Corollary 3.9. �

The following example shows the converse is not true. More precisely, weak
T [1]-cluster tilting subcategories are not usually T [1]-cluster tilting subcategories.

Example 3.12. The cluster category of type A∞ was introduced in [Holm and Jør-
gensen 2012; Ng 2010]. This definition is completely analogous to the definition of
the cluster category of type An . Namely, it is the orbit category D f (mod0)/S[−2].
Here 0 is a quiver of type A∞ with zigzag orientation and S and [1] are the Serre
and shift functors of the finite derived category D f (mod0). Let C be a cluster
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category of type A∞. The Auslander–Reiten quiver of C is as follows:

��

...
��

...

��

...

��

...

��

...

��

...

��

...
��

•

??

��

♣

??

��

◦

??

��

◦

??

��

◦

??

��

◦

??

��

◦

??

��

♣

??

��
· · ·

??

��

•

??

��

♣

??

��

◦

??

��

◦

??

��

◦

??

��

◦

??

��

♣

??

��

· · ·

◦

??

��

•

??

��

♣

??

��

◦

??

��

◦

??

��

◦

??

��

♣

??

��

•

??

��
· · ·

??

��

◦

??

��

•

??

��

♣

??

��

◦

??

��

◦

??

��

♣

??

��

•

??

��

· · ·

◦

??

◦

??

•

??

♣

??

•

??

♣

??

•

??

◦

??

Set X to be the subcategory whose indecomposable objects are marked by bullets
here, and T to be the subcategory whose indecomposable objects are marked by
clubsuits here. It is easy to see that T is a cluster tilting subcategory of C and
T ⊆X [−1] ∗X . By [Holm and Jørgensen 2012, Theorem 4.3], we have that X

is a weak cluster tilting subcategory of C since the corresponding set of arcs is a
maximal set of noncrossing arcs. By [Holm and Jørgensen 2012, Theorem 4.4], we
obtain that X is not contravariantly finite in C since the corresponding maximal
set of noncrossing arcs has no right-fountain. That is to say, X is a weak ghost
cluster tilting subcategory in the sense of Definition 3.1, but it is not ghost cluster
tilting (=cluster tilting).

As an application of Theorem 3.10, we have the following:

Corollary 3.13 [Zhou and Zhu 2011, Theorem 2.6]. Let C be a 2-Calabi–Yau
triangulated category with a cluster tilting subcategory T . Then every functorially
finite maximal rigid subcategory is cluster-tilting.

Proof. This follows from Lemma 3.5 and Theorem 3.10. �

We give a characterization of weak ghost cluster tilting subcategories.

Theorem 3.14. Let C be a triangulated category with a cluster tilting subcategory
T , and X a subcategory of C . Then X is a weak ghost cluster tilting subcategory
if and only if X is a maximal ghost rigid subcategory such that T ⊆X [−1] ∗X .

Proof. This follows from similar arguments as in the proof of Theorem 3.10. �
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We conclude with a picture illustrating the relationships between ghost cluster
tilting subcategories and related subcategories:

cluster tilting

Proposition 3.3

��

ghost cluster tilting

F-stable
Theorem 3.6

OO

Proposition 3.7

��

Corollary 3.11
// weak ghost cluster tilting

contravariantly finite
Definition 3.1

oo

maximal ghost rigid

contravariantly finite
Theorem 3.10

OO

A characterization of ghost cluster tilting objects. In this subsection, we always
assume that C is a triangulated category with a Serre functor and a cluster tilting
object T. We will prove that the add(T [1])-cluster tilting objects are precisely the
T [1]-cluster tilting objects introduced in [Yang and Zhu 2019], see Definition 2.4.
Notice that the two objects have similar names but quite different definitions. To
prove it, we need a lemma:

Lemma 3.15. (a) Let T be a cluster tilting object and X a T [1]-cluster tilting
object in C . Let T0 ∈ addT, let g : T0 −→ X0 be a left addX-approximation
of T0 and consider the associated triangle:

M[−1] f
−→ T0

g
−→ X0

h
−→M.

Then M ∈ addX.

(b) Let T be a cluster tilting object and X a T [1]-cluster tilting object in C . Let
T0 ∈ addT, let f : X0[−1] → T0 be a right addX [−1]-approximation of T0

and consider the associated triangle:

X0[−1] f
−→ T0

g
−→M h

−→ X0.

Then M ∈ addX.

Proof. Using similar arguments as in the proof of Lemma 3.8 we conclude that

[T [1]](X ⊕M, (X ⊕M)[1])= 0.

By Corollary 3.7(1) in [Yang and Zhu 2019], we know that the number of non-
isomorphic indecomposable direct summands of any T [1]-rigid object is at most
the number of nonisomorphic indecomposable direct summands of a cluster tilting
object. Thus we have |X⊕M |≤ |T |. Since |X |= |T |, we deduce that M ∈ addX. �

Our main result in this subsection is the following:
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Theorem 3.16. Let T be a cluster tilting object in a triangulated category C with
a Serre functor. Let X be an object in C . Then X is an add(T [1])-cluster tilting
object, that is to say,

addX = {M ∈ C | add(T [1])(X,M[1])= 0 and add(T [1])(M, X [1])= 0},

by Definition 3.1, if and only if X is a T [1]-cluster tilting object, that is to say,

T [1](X, X [1])= 0 and |X | = |T |,

by Definition 2.4.

Proof. (1) The “only if” part: Assume that X is an addT [1]-cluster tilting object.
Then X is T [1]-rigid. By [Yang and Zhu 2019, Corollary 3.7(2)], there exists an
object M ∈C such that X⊕M is a T [1]-cluster tilting object. That is to say, X⊕M
is T [1]-rigid and |X ⊕M | = |T |. Since X ⊕M is T [1]-rigid, we have

[T [1]](M, X [1])= 0= [T [1]](X,M[1]).

By Definition 3.1(iv), we have M ∈ addX. It follows that |X | = |X ⊕ M | = |T |.
This shows that X is T [1]-cluster tilting.

(2) The “if” part: Assume X is a T [1]-cluster tilting object in Definition 2.4. Clearly,

addX ⊆ {M ∈ C | [T [1]](X,M[1])= 0= [T [1]](M, X [1])}.

Conversely, for any object M ∈ {M ∈C | [T [1]](X,M[1])= 0= [T [1]](M, X [1])},
since T is cluster tilting, we have a triangle

T1
f
−→ T0

g
−→M h

−→ T1[1],

where T0, T1∈addT. For the object T0∈addT, there is a left addX -approximation l1

of T0, which can be extended to a triangle

X1[−1] m
−→ T0

l1−→ X0→ X1.

By Lemma 3.15, we have X1 ∈ addX.
Let l2 = l1 f . It is easy to see that l2 is a left addX -approximation of T1. Indeed,

for any object X ′ ∈ addX and any map a ∈ Hom(T1, X ′), we have that ah[−1] ∈
[T ](M[−1], X ′)= 0. Then there exists b : T0 −→ X ′ such that a = b f . Because l1

is a left addX -approximation of T0, there is a map c : X0 −→ X ′ such that b = cl1.
Therefore a = b f = c(l1 f )= cl2 and l2 is a left (addX )-approximation of T1.

M[−1]
h[−1]

// T1
f
//

∀a
��

T0
g
//

b~~

l1
��

M h
// T1[1]

X ′ X0c
oo
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Using Lemma 3.15, we get a triangle

X2[−1] → T1
l2
−→ X0→ X2,

where X2 ∈ addX. Starting with l2= l1 f , we get the following commutative diagram
by the octahedral axiom.

M[−1]

��

M[−1]

��

X0[−1] // X2[−1]

��

// T1
l2

//

f

��

X0

X0[−1] // X1[−1]

n

��

m
// T0

g

��

l1
// X0

M M

Since n = gm ∈ [T ](X1[−1],M)= 0, we get a split triangle and thus M ∈ addX.
This shows that X is an addT [1]-cluster tilting object. �

Remark 3.17. Let C be a triangulated category with a cluster tilting object T. One
may want to define T [1]-cluster tilting objects in the spirit of Definition 2.1 as one
of the following two possibilities:

(3-7) addX = {M ∈ C | [T [1]](X,M[1])= 0},

or

(3-8) addX = {M ∈C | [T [1]](X,M[1])= 0} = {M ∈C | [T [1]](M, X [1])= 0}.

However, neither one of these agrees with the description in Definition 2.4 of a
T [1]-cluster tilting object which is a T [1]-rigid object with the same number of non-
isomorphic indecomposable direct summands as |T |, as one can see in Example 3.18.

Example 3.18. Let Q be the quiver 1 α
−→ 2 and τQ be the Auslander–Reiten

translation in Db(k Q). We consider a triangulated category, named repetitive
cluster category in [Zhu 2011], C = Db(k Q)/〈τ−2

Q [2]〉, whose objects are the same
in Db(k Q), and whose morphisms are given by

HomDb(k Q)/〈τ−2
Q [2]〉

(X, Y )=
⊕
i∈Z

HomDb(k Q)(X, (τ
−2
Q [2])

i Y ).
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We depict the Auslander–Reiten quiver of C as follows.

1
2

��

2[1]oo

��

1[1]oo

��

1
2 [2]

oo

��

2[3]oo

��

1
2

oo

2

EE

1oo

EE

1
2 [1]

oo

EE

2[2]oo

EE

1[2]oo

EE

2oo

EE

It is easy to check that the direct sum

T = 1⊕ 2[1]⊕ 1
2 [2]⊕ 1[2]

of the encircled indecomposable objects is a cluster tilting object. Thus it is also a
T [1]-cluster tilting object. Clearly,

{M ∈ C | [T [1]](T,M[1])= 0} = C 6= addT,

which means that (3-7) or (3-8) does not hold.

4. Connection with τ -tilting theory

Throughout this section, we assume that C is a k-linear, Hom-finite triangulated
category with a cluster tilting subcategory T . It is well known that the category
mod T of coherent T -modules is abelian. By Theorem 2.8, we know that the
restricted Yoneda functor H : C →mod T induces an equivalence

C /[T [1]] ∼−→mod T .

We will investigate this relationship between C and mod T via H more closely.

On the relationship between ghost cluster tilting and support τ -tilting. In this
subsection, we give a direct connection between ghost cluster tilting subcategories
of C and support τ -tilting pairs of mod T . We start with the following important
observation.

Lemma 4.1. Let C be a triangulated category with a cluster tilting subcategory T
and X a subcategory of C . For any object X ∈X , let

(4-1) T1
f
−→ T0

g
−→ X h

−→ T1[1]

be a triangle in C with T0, T1 ∈ T . Then applying the functor H gives a projective
presentation

(4-2) PH(X)
1

πH(X)
−−→ PH(X)

0 → H(X)→ 0

in mod T , and X is a T [1]-rigid subcategory if and only if the class {πH(X)
| X ∈X }

has Property (S).
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Proof. Applying H to the triangle (4-1), we have the projective presentation (4-2).
By Theorem 2.8(ii), for any object X ′ ∈X , we have the commutative diagram

Hommod T (H(T0),H(X ′))

'

��

Hommod T (π
H(X),H(X ′))

// Hommod T (H(T1),H(X ′))

'

��

HomC (T0, X ′)
HomC ( f, X ′)

// HomC (T1, X ′).

Thus the map Hommod T (π
H(X),H(X ′)) is the same as

(4-3) HomC (T0, X ′) HomC ( f, X ′)
−−−−−−−→HomC (T1, X ′).

So the class {πH(X)
| X ∈X } has Property (S) if and only if the morphism (4-3) is

surjective for all X, X ′ ∈X .
Assume the class {πH(X)

| X ∈X } has Property (S). For any a∈[T [1]](X ,X [1]),
we know that there exist two morphisms a1 : X → T [1] and a2 : T [1] → X ′[1]
such that a = a2a1, where X, X ′ ∈X and T ∈ T . Since HomC (T0, T [1])= 0, there
exists a morphism b : T1[1] → T [1] such that a1 = bh.

T1
f
// T0

g
// X h

//

a1
��

T1[1]

b}}

T [1]
a2
��

X ′[1]

Since HomC ( f, X ′) is surjective, there exists a morphism c : T0→ X ′ such that
a2[−1] ◦b[−1] = c f and thus a2b= c[1] ◦ f [1]. It follows that a = a2a1 = a2bh =
c[1]◦( f [1]h)= 0. This shows that [T [1]](X ,X [1])= 0. Hence X is a T [1]-rigid
subcategory.

Conversely, assume that X is a T [1]-rigid subcategory. For any morphism
x : T1 → X ′, since X is T [1]-rigid, we have x ◦ h[−1] = 0. So there exists a
morphism y : T0→ X ′ such that x = y f .

X [−1]
h[−1]

// T1
f
//

x
��

T0

y
~~

g
// X h

// T1[1]

X ′

This shows that HomC ( f, X ′) : HomC (T0, X ′)→ HomC (T1, X ′) is surjective. By
the above discussion, we deduce that the class {πH(X)

| X ∈X } has Property (S). �

The following result plays an important role in this paper:
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Proposition 4.2. Let C be a triangulated category with a cluster tilting subcat-
egory T . The functor H : C → Mod T induces a bijection between the sets of
T [1]-rigid subcategories of C and of τ -rigid pairs of mod T , given by

8 :X 7−→ (H(X ), T ∩X [−1]).

Proof. Step 1: The map 8 has values in τ -rigid pairs of mod T .
Assume that X is a T [1]-rigid subcategory of C . Since T is a cluster tilting

subcategory, for any X ∈X , there exists a triangle in C

T1
f
−→ T0

g
−→ X h

−→ T1[1],

where T0, T1 ∈ T . By Lemma 4.1, we have that H sends the set of these triangles to
a set of projective presentations (4-2) which has Property (S). It remains to show
that for any X ∈X and X ′ ∈ T ∩X [−1], we have H(X)(X ′)= 0. Indeed, since X

is a T [1]-rigid subcategory, we have H(X)(X ′)= HomC (X ′, X)= 0.

X ′ ∈X [−1] // X ∈X

X ′ ∈ T

OO

This shows that (H(X ), T ∩X [−1]) is a τ -rigid pair of mod T .

Step 2: The map 8 is surjective.
Let (M, E) be a τ -rigid pair of mod T . For each M ∈M, take a projective

presentation

(4-4) P1
πM
−→ P0→ M→ 0

such that the class {πM
| M ∈M} has Property (S). By Theorem 2.8(ii), there

is a unique morphism fM : T1 → T0 in T such that H( fM) = π
M. Moreover,

H(cone( fM))∼= M. Since (4-4) has Property (S), it follows from Lemma 4.1 that
the category

X1 := {cone( fM) | M ∈M}

is a T [1]-rigid subcategory.
Let X :=X1 ∨ E[1]. Now we show that X is a T [1]-rigid subcategory of C .

Let E ∈ E ⊆ T . Since T is cluster-tilting, we have

[T [1]](cone( fM)⊕ E[1], E[2])= 0.

Applying the functor HomC (E,−) to the triangle T1
fM
−→T0→ cone( fM)→ T1[1],

we have an exact sequence

HomC (E, T1)
fM◦
−−→HomC (E, T0)→ HomC (E, cone( fM))→ 0,
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which is isomorphic to

P1(E)
πM
−→ P0(E)→ M(E)→ 0.

The condition M(E)= 0 implies that HomC (E, cone( fM))= 0 and therefore

[T [1]](E[1], cone( fM)[1])= 0.

Thus the assertion follows.
Now we show that 8(X )= (M, E).
It is straightforward to check that T ∩X1[−1]=0. For any object X ∈T ∩X [−1],

we are able to write X = X1[−1] ⊕ E ∈ T , where X1 ∈ X1 and E ∈ E . Since
X1[−1] ∈ T ∩X1[−1] = 0, we have X = E ∈ E . Thus we have T ∩X [−1] ⊆ E . By
the definition of τ -rigid pair, we have E ⊆ T . Noting that E ⊆X1[−1]∨E =X [−1],
it follows that E ⊆ T ∩X [−1]. Hence T ∩X [−1] = E . It remains to show that
H(X )=M. Indeed, since E ⊆ T , we have

H(X )= HomC (T ,X )= HomC (T ,X1)= H(X1)=M.

Step 3: The map 8 is injective.
Let X and X ′ be two T [1]-rigid subcategories of C such that 8(X )=8(X ′).

Let X1 and X ′

1 be respectively the full subcategories of X and X ′ consisting
of objects without direct summands in T [1]. Then X = X1 ∨ (X ∩ T [1]) and
X ′
=X ′

1 ∨ (X
′
∩ T [1]). Since 8(X )=8(X ′), it follows that H(X1)=H(X ′

1 )

and X ∩ T [1] =X ′
∩ T [1].

For any object X1 ∈X1, there exists X ′1 ∈X ′

1 such that H(X1) = H(X ′1). By
Theorem 2.8(iii), there exists an isomorphism X1⊕ Y [1] ' X ′1⊕ Z [1] for some
Y, Z ∈ T . Since C is Krull–Remak–Schmidt, we have X1 ' X ′1. This implies that
X1 ⊆X ′

1 . Similarly, we obtain X ′

1 ⊆X1 and then X1 'X ′

1 . Therefore X =X ′.
This shows that 8 is injective. �

Our main result in this subsection is the following:

Theorem 4.3. Let C be a triangulated category with a cluster tilting subcategory T .
The functor H:C→Mod T induces a bijection between the sets of weak T [1]-cluster
tilting subcategories of C and of support τ -tilting pairs of mod T , given by

8 :X 7−→ (H(X ), T ∩X [−1]).

Proof. Step 1: The map 8 has values in support τ -tilting pairs of mod T .
Assume X is a weak T [1]-cluster tilting subcategory of C . By Proposition 4.2,

we get that 8(X ) is a τ -rigid pair of mod T . Therefore T ∩X [−1] ⊆Ker H(X ).
Let T ∈ T be an object of Ker H(X ), that is, HomC (T, X)= 0 for each X ∈X .

This implies [T [1]](X ⊕ T [1],X [1]) = 0. Note [T [1]](X , (X ⊕ T [1])[1]) = 0.
Since X is a T [1]-cluster tilting subcategory, we have X ⊕ T [1] ∈ X and thus
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T ⊆X [−1]. Therefore T ∈ T ∩X [−1]. This shows that Ker H(X )⊆ T ∩X [−1].
Hence

Ker H(X )= T ∩X [−1].

By the definition of weak T [1]-cluster tilting subcategories, for any T ∈ T , there
exists a triangle

T f
−→ X1

g
−→ X2

h
−→ T [1],

where X1, X2 ∈ X . Applying the functor H to the above triangle, we obtain an
exact sequence

H(T ) H( f )
−−→H(X1)→ H(X2)→ 0.

For any morphism a : T → X, where X ∈ X , since X is T [1]-rigid, we have
ah[−1] = 0. So there exists a morphism b : X1→ X such that a = b f . This shows
that HomC ( f, X) is surjective. Thus there exists the commutative diagram

HomC (X1, X)
HomC ( f, X)

//

��

HomC (T, X) //

��

0

Hommod T (H(X1),H(X))
◦H( f )

// Hommod T (H(T ),H(X)).

Using Theorem 2.8(ii), the right vertical map is an isomorphism. It follows that
◦H( f ) is surjective, that is, H( f ) is a left H(X )-approximation. Altogether, we
have shown that 8(X ) is a support τ -tilting pair of mod T .

Step 2: The map 8 is surjective.
Let (M, E) be a support τ -tilting pair of mod T and let X be the preimage of

(M, E) under 8 constructed in Proposition 4.2. Since H(X ) =M is a support
τ -tilting subcategory, for each T ∈ T , there is an exact sequence

H(T ) α
−→H(X3)→ H(X4)→ 0,

such that X3, X4 ∈X and α is a left H(X )-approximation. By Yoneda’s lemma,
there exists a unique morphism β : T → X3 such that H(β)= α. We complete this
to a triangle

(4-5) T β
−→ X3

γ
−→ YT

δ
−→ T [1].

Let X̃ :=X ∨add{ YT | T ∈T } be the additive closure of X and { YT | T ∈T }. We
claim X̃ is a weak T [1]-cluster tilting subcategory of C such that8(X̃ )= (M, E).

It is clear that T ⊆X [−1] ∗X . It remains to show that

X̃ = {M ∈ C | [T [1]](M, X̃ [1])= 0= [T [1]](X̃ ,M[1])}.

Applying the functor H to the triangle (4-5), we see that H(YT ) and H(X4) are
isomorphic in mod T . For any object X ∈X , consider the commutative diagram
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HomC (X3, X)
HomC (β, X)

//

H(−)

��

HomC (T, X)

'

��

Hommod T (H(X3),H(X)) ◦α
// Hommod T (H(T ),H(X)).

By Theorem 2.8, the map H(−) is surjective and the right vertical map is an
isomorphism. Because α is a left H(X )-approximation, ◦α is also surjective.
Therefore HomC (β, X) is surjective too.

For any morphism a ∈ [T [1]](YT , X [1]), since X is T [1]-rigid, we have aγ = 0.
So there exists a morphism b : T [1] → X [1] such that a = bδ.

T
β
// X3

γ
// YT

δ
//

a
��

T [1]

bzz

X [1]

Since HomC (β, X) is surjective, there exists a morphism c : X3→ X such that
cβ = b[−1] and thus b = c[1] ◦ β[1]. It follows that a = bδ = c[1] ◦ (β[1]δ)= 0.
This shows that

(4-6) [T [1]](YT ,X [1])= 0.

For any morphism x ∈ [T ](X [−1], YT ), we know that there exist two morphisms
x1 :X [−1]→T1 and x2 :T1→YT such that x= x2x1, where T1∈T . Since T is cluster
tilting, we have δx2= 0. So there exists a morphism y : T1→ X3 such that x2= γ y.

X [−1]
x1
��

T1

x2
��

y

xx
T

β
// X3

γ
// YT

δ
// T [1]

Since X is T [1]-rigid, we have x = x2x1 = γ (yx1)= 0. This shows that

(4-7) [T [1]](X , YT [1])= 0.

For any T ′ ∈ T and morphism u ∈ [T ](YT ′[−1], YT ), we know that there exist two
morphisms u1 : YT ′[−1]→ T2 and u2 : T2→ YT such that u = u2u1, where T2 ∈ T .
Since T is cluster tilting, we have δu2 = 0. So there exists a morphism v : T2→ X3

such that u2 = γ v.
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YT ′[−1]
u1
��

T2

u2
��

v

yy

T
β

// X3
γ

// YT
δ
// T [1]

Since [T [1]](YT ,X [1])= 0, we have vu1= 0. It follows that u= u2u1= γ vu1= 0.
This shows that

(4-8) [T [1]](YT ′, YT [1])= 0.

Using equalities (4-6), (4-7) and (4-8), we deduce that X̃ is a T [1]-rigid subcategory.
Now we show that {M ∈ C | [T [1]](M, X̃ [1])= 0= [T [1]](X̃ ,M[1])} ⊆ X̃ .
For any object M ∈ C , assume that [T [1]](M, X̃ [1])= 0= [T [1]](X̃ ,M[1]).

Since T is a cluster-tilting subcategory, there exists a triangle

T5
f
−→ T6

g
−→M h

−→ T5[1],

where T5, T6 ∈ T . By the above discussion, for an object T6 ∈ T , there exists a
triangle

T6
u
−→ X6

v
−→ YT6

w
−→ T6[1],

where X6 ∈ X , YT6 ∈ X̃ and u is a left X -approximation of T6. For an object
T5 ∈ T , there exists a triangle

T5
u′
−→ X5

v′
−→ YT5

w′
−→ T5[1],

where X5 ∈X , YT5 ∈ X̃ and u′ is a left X -approximation of T5. By the octahedral
axiom, we have a commutative diagram

T5
f
// T6

g
//

u
��

M h
//

a
��

T5[1]

T5
x=u f

// X6
y
//

v
��

N
z
//

b
��

T5[1]

YT6

w
��

YT6

c
��

T6[1]
g[1]
// M[1]

of triangles in C . We claim that x is a left X -approximation of T5. Indeed, for
any d : T5 → X, since dh[−1] ∈ [T ](M[−1], X̃ ) = 0, there exists a morphism
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e : T6→ X such that d = e f , where X ∈X .

M[−1]
h[−1]

// T5
f
//

d
��

T6

e
~~

g
// M h

// T5[1]

X

Since u is a left X -approximation of T6, there exists a morphism k : X6→ X such
that ku = e. It follows that d = e f = ku f = kx , as required.

Since x is a left X -approximation of T5, by Lemma 1.4.3 in [Neeman 2001],
we have the commutative diagram

T5
x
// X6

y
//

λ

��

N
z
//

ϕ

��

T5[1]

T5
u′
// X5

v′
// YT5

w′
// T5[1],

where the middle square is homotopy cartesian and the differential ∂ = x[1] ◦w′,
that is, there exists a triangle

X6
(−y
λ
)

−−→ N ⊕ X5
(ϕ,v′)
−−→ YT5

∂
−→ X6[1].

Note that ∂ ∈ [T [1]](X̃ , X̃ [1]) = 0. Thus we have N ⊕ X5 ' X6 ⊕ YT5 ∈ X̃ ,
which implies N ∈ X̃ . Since c = g[1]w ∈ [T [1]](X̃ ,M[1])= 0, we deduce that
the triangle

M a
−→ N b

−→ YT6
c
−→M[1]

splits. Hence M is a direct summand of N and thus M ∈ X̃ .
This shows that

X̃ = {M ∈ C | [T [1]](M, X̃ [1])= 0= [T [1]](X̃ ,M[1])}.

For any object T ∈ T , H(YT )' H(X4). Therefore

H(X̃ )' H(X )'M.

Since T ∩ X̃ [−1] ⊇ T ∩X [−1] = E and T ∩ X̃ [−1] ⊆Ker H(X )= E , we have

T ∩ X̃ [−1] = E .

This shows that 8 is surjective.

Step 3: The map 8 is injective.
This follows from Step 3 in Proposition 4.2. �
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For any support τ -tilting subcategory Y of mod T , by Theorem 4.3 there exists
a unique weak T [1]-cluster tilting subcategory X of C such that H(X ) = Y .
Throughout this paper, we denote the preimage X by H−1(Y ) for simplicity.
Consequently, we have the following result:

Theorem 4.4. The bijection in Theorem 4.3 induces a bijection from the first of the
following sets to the second:

(I) T [1]-cluster tilting subcategories of C .

(II) Support τ -tilting subcategories Y of mod T such that H−1(Y ) is contravari-
antly finite in C .

Moreover, if C admits a Serre functor S, we get a bijection from the first to the
second of the following sets.

(1) Cluster tilting subcategories of C .

(2) Support τ -tilting subcategories Y of mod T such that H−1(Y ) is contravari-
antly finite and F-stable in C .

Proof. The first bijection follows from the fact that T [1]-cluster tilting subcategories
of C are precisely contravariantly finite weak T [1]-cluster tilting subcategories,
and the second bijection follows from Theorem 3.6. �

τ -tilting subcategories and tilting subcategories. C and T are the same as above.
By definition we know that the category mod T is abelian and has enough projectives.
Thus we can investigate the projective dimension of an object M in mod T , which we
denote by pdM. For a subcategory D of mod T , we say that the projective dimension
of D is at most n, denoted by pdD ≤ n, if pdM ≤ n for any object M ∈ D .

Let X ∈ C , IX (T [1]) be the ideal of T [1] formed by the morphisms between
objects in T [1] factoring through the object X. For a subcategory D of C , we define
the factorization ideal of D , denoted by ID(T [1]), as follows

ID(T [1]) := {IX (T [1]) | X ∈ D}.

Theorem 2.8 indicates that mod T is Gorenstein of dimension at most one. Thus
all objects in mod T have projective dimension zero, one or infinity. The following
result characterizes the objects in mod T having finite projective dimension.

Theorem 4.5 [Beaudet et al. 2014; Lasnier 2011]. Let C be a triangulated category
with a cluster tilting subcategory T , and X be an object in C having no direct
summands in T [1]. Then

pdH(X)≤ 1 if and only if IX (T [1])= 0.
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In this subsection, we introduce two important classes of subcategories of mod T
and give a connection with ghost cluster tilting subcategories and cluster tilting
subcategories of C . We start with the following definition.

Definition 4.6. Let C be a triangulated category with a cluster tilting subcategory T .

(i) A subcategory M of mod T is said to be τ -tilting if (M, 0) is a support
τ -tilting pair of mod T .

(ii) [Beligiannis 2013] A subcategory M of mod T is said to be weak tilting if
the following three conditions are satisfied:

(T1) Ext1mod T (M,M)= 0.
(T2) pdM ≤ 1, for any M ∈M.
(T3) For any projective object P in mod T , there exists a short exact sequence

0→ P→ M0→ M1→ 0,

where M0,M1 ∈M.
A weak tilting subcategory M is called a tilting subcategory if it also satisfies
the following additional condition:

(T4) M is contravariantly finite in mod T .

Remark 4.7. Beligiannis [2010; 2013] indicates that a contravariantly finite sub-
category M of mod T is a tilting subcategory if and only if

Fac(M)= {X ∈mod T | Ext1mod T (M, X)= 0},

where Fac(M) is the full subcategory of mod T consisting of all factors of objects
of M.

Immediately, we have the following result:

Theorem 4.8. Let C be a triangulated category with a cluster tilting subcategory T .
The functor H : C →Mod T induces a bijection

8 :X 7−→ H(X )

from the first of the following sets to the second:

(I) Weak T [1]-cluster tilting subcategories of C whose objects do not have nonzero
direct summands in T [1].

(II) τ -tilting subcategories of mod T .

It restricts to a bijection from the first to the second of the following sets.

(I) T [1]-cluster tilting subcategories of C whose objects do not have nonzero
direct summands in T [1].

(II) τ -tilting subcategories Y of mod T such that H−1(Y ) is contravariantly finite
in C .
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Moreover, if C admits a Serre functor S, we get a bijection between the following
sets.

(1) Cluster tilting subcategories of C whose objects do not have nonzero direct
summands in T [1].

(2) τ -tilting subcategories Y of mod T such that H−1(Y ) is contravariantly finite
and F-stable in C .

Proof. Note that objects in X do not have nonzero direct summands in T [1] if and
only if T ∩X [−1] = 0. This assertion follows from Theorems 4.3, 4.4 directly. �

Now we give a close relationship between τ -tilting subcategories and weak tilting
subcategories.

Lemma 4.9. Let C be a triangulated category with a cluster tilting subcategory T .
Then any weak tilting subcategory of mod T is a τ -tilting subcategory.

Proof. Let M be a weak tilting subcategory of mod T .

(1) We first show that (M, 0) is a τ -rigid pair of mod T . For any object M ∈M,
since pdM ≤ 1, we get a short exact sequence

0→ P1
πM
−→ P0→ M→ 0.

Note that P1 = 0 if pdM = 0. Applying the functor Hommod T (−,M) to it, we get
an exact sequence

Hommod T (P0,M)
◦πM
−→Hommod T (P1,M)→ Ext1mod T (M,M)= 0.

This means there is a class of projective presentations {P1
πM
−→P0→M→0 |M ∈M}

which has Property (S). Therefore (M, 0) is a τ -rigid pair of mod T because
M(0)= 0.

(2) We show that (M, 0) is a support τ -tilting pair of mod T . For each object T ∈ T ,
T (−, T ) is a projective object in mod T . Since M is weak tilting in mod T , there
exists a short exact sequence

0→ T (−, T ) f
−→M0,→ M1→ 0

where M0,M1 ∈M. Applying the functor Hommod T (−,M) to the above exact
sequence, we have the following exact sequence:

Hommod T (M0,M)
◦ f
−→Hommod T (T (−, T ),M)→ Ext1mod T (M1,M)= 0.

This shows that f is a left M-approximation.
If M(E) = 0, where E ∈ T , by the above discussion, there exists an exact

sequence
0→ T (−, E)→ M0→ M1→ 0
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with M0,M1
∈M. It follows that there exists an exact sequence

0→ T (E, E)→ M0(E)→ M1(E)→ 0

Since M0(E)= 0, we have T (E, E)= 0 and thus E = 0. Therefore Ker (M)= 0.
This shows that (M, 0) is a support τ -tilting pair of mod T . �

The following result gives a criterion for a τ -tilting subcategory of mod T to be
a weak tilting subcategory.

Theorem 4.10. Let C be a triangulated category with a cluster tilting subcate-
gory T . A τ -tilting subcategory of mod T is a weak tilting subcategory if and only if
its projective dimension is at most one.

Proof. Let M be a τ -tilting subcategory of mod T and pdM≤ 1. By Theorem 4.8,
there exists a weak T [1]-tilting subcategory X of C whose objects do not have
nonzero direct summands in T [1] such that H(X )=M.

Step 1: We show Ext1mod T (M,M)= 0. Namely, Ext1mod T (H(X ),H(X ))= 0.
For any object X1 ∈X , since T is cluster tilting, there exists a triangle

(4-9) T0
f
−→ T1

g
−→ X1

h
−→ T0[1],

where g is a minimal right T -approximation of X1 and T0, T1∈T . Since H(X1)∈M,
we have pdH(X1) ≤ 1. Applying the functor H to the above triangle, we have a
minimal projective presentation

0→ H(T0)
f ◦
−→H(T1)

g◦
−→H(X1)→ 0

of H(X1), since X1 has no nonzero direct summands in T [1] and pdH(X1) ≤ 1.
Applying the functor Hommod T (−,H(X2)), where X2 ∈ X , to the above exact
sequence, we get an exact sequence:

Hom(H(T1),H(X2))→ Hom(H(T0),H(X2))

→ Ext1(H(X1),H(X2))→ Ext1(H(T1),H(X2))= 0,

where the Hom and Ext groups are taken over mod T . The last item vanishes
because H(T1) is projective in mod T . Note that the first map is isomorphic to

HomC (T1, X2)
HomC ( f, X2)
−−−−−−−→HomC (T0, X2).

It follows that Ext1mod T (H(X1),H(X2)) is isomorphic to Coker HomC ( f, X2).
Applying the functor HomC (−, X2) to the triangle (4-9), we have the following

exact sequence:

HomC (T1, X2)
HomC ( f, X2)
−−−−−−−→HomC (T0, X2)

HomC (h[−1], X2)
−−−−−−−−−→HomC (X1[−1], X2).
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In particular, we have the following exact sequence:

HomC (T1, X2)
HomC ( f, X2)
−−−−−−−→HomC (T0, X2)

HomC (h[−1], X2)
−−−−−−−−−→ Im HomC (h[−1], X2)→ 0.

We claim that Im HomC (h[−1], X2)= [T ](X1[−1], X2). Indeed,

Im HomC (h[−1], X2)⊆ [T ](X1[−1], X2)

is clear. For any morphism x ∈ [T ](X1[−1], X2), we have two morphisms x1 :

X1[−1] → T and x2 : T → X2, where T ∈ T such that x = x2x1. Since
HomC (T1[−1], T )= 0, there exists a morphism a : T0→ T such that ah[−1] = x1.

T1[−1]

0

##

g[−1]
// X1[−1]

h[−1]
//

x1

��

T0

a
{{

f
// T1

g
// X1

h
// T0[1]

T

It follows that x = x2x1 = (x2a)h[−1] ∈ Im HomC (h[−1], X2), as required.
Since X is T [1]-rigid, we have [T ](X1[−1], X2)= 0. Thus we obtain

Ext1mod T (H(X1),H(X2))' Coker HomC ( f, X2)= [T ](X1[−1], X2)= 0.

Step 2: We show that for any projective object P in mod T , there exists a short
exact sequence

0→ P→ M0→ M1→ 0,

where M0,M1 ∈M. We may assume P = T (−, T )=H(T ) in mod T , where T ∈ T .
Since T ∈ T ⊆X [−1] ∗X , there exists a triangle

X3[−1] u
−→ T v

−→ X4
w
−→ X3,

where X3, X4 ∈ X . Applying the functor H to the above triangle, we have the
following exact sequence:

H(X3[−1]) H(u)
−−→H(T )→ H(X4)→ H(X3)→ 0.

We claim that Im H(u)= 0. That is to say, for any morphism y : T ′→ X3[−1],
where T ′∈T , we have uy=0. Indeed, since T is cluster tilting, there exists a triangle

T2
α
−→ T3

β
−→ X3

γ
−→ T2[1],

where β is a minimal right T -approximation of X3 and T2, T3 ∈ T . Applying the
functor H to the above triangle, we have a minimal projective presentation

H(X3[−1]) H(γ [−1])
−−−−−−−→H(T2)

H(α)
−−→H(T3)

H(β)
−−→H(X3)→ 0
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of H(X3), since X1 has no nonzero direct summands in T [1]. Since H(X3) ∈M,
we have pdH(X3) ≤ 1. Thus we have Im H(γ [−1]) = 0 and thus γ [−1] ◦ y = 0.
So there exists a morphism b : T ′→ T3[−1] such that y = β[−1] ◦ b.

T ′

y
��

b

xx

T3[−1]
β[−1]

// X3[−1]
γ [−1]

// T2
α

// T3.

It follows that uy = (uβ[−1])b = 0 ◦ b = 0, as required. Hence we have the
following exact sequence:

0→ H(T )→ H(X4)→ H(X3)→ 0,

where H(X4),H(X3) ∈M.
This shows that M is a weak tilting subcategory of mod T . Combining this with

Lemma 4.9, the assertion follows. �

Consequently, we have the following result:

Theorem 4.11. Let C be a triangulated category with a cluster tilting subcate-
gory T . The functor H : C →Mod T induces a bijection

8 :X 7−→ H(X )

from the first of the following sets to the second:

(I) Weak T [1]-cluster tilting subcategories of C whose objects do not have nonzero
direct summands in T [1] and whose factorization ideals vanish.

(II) Weak tilting subcategories of mod T .

It restricts to a bijection from the first to the second of the following sets.

(1) T [1]-cluster tilting subcategories of C whose objects do not have nonzero
direct summands in T [1] and whose factorization ideals vanish.

(2) Tilting subcategories Y of mod T such that H−1(Y ) is contravariantly finite
in C .

Moreover, if C admits a Serre functor S, we get a bijection between the following
sets.

(1) Cluster tilting subcategories of C whose objects do not have nonzero direct
summands in T [1] and whose factorization ideals vanish.

(2) Tilting subcategories Y of mod T such that H−1(Y ) is contravariantly finite
and F-stable in C .

Proof. This follows from Theorems 4.5, 4.8 and 4.10 directly. �
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Remark 4.12. The above results generalize and improve several results in the
literature. More precisely, Proposition 4.2, Theorems 4.3, 4.8 and 4.11 generalize
a result in [Yang and Zhu 2019, Theorem 3.6], where analogous results were
proved in the case where C is 2-Calabi–Yau and T = addT, see [Adachi et al. 2014,
Theorem 4.1]. Theorem 4.11 generalizes a result of Beligiannis [2013, Theorem 6.6]
in some cases, but we don’t assume that modX has finite global dimension here.

We conclude this section with an example illustrating the bijections in Section 4:

Example 4.13. We revisit Example 3.4 presented in Section 3. Let A = k Q/I be
a self-injective algebra given by the quiver

Q : 1
α
// 2

β
oo

and I = 〈αβαβ, βαβα〉. The Auslander–Reiten quiver of mod A is

1
2
1
2

��

2
1
2
1

��2
1
2

??

��

1
2
1

oo

??

��

2
1
2

oo

2
1

��

??

1
2

��

??

oo

1

??

2oo

??

1oo

where the first and the last columns are identified. The stable module category

C :=mod A

is triangulated with a Serre functor. We get the Auslander–Reiten quiver of C by
deleting the first row in above figure. By simple calculation, we obtain that

T := add
(

2⊕
2
1
2

)
is a cluster tilting subcategory of C . The Auslander–Reiten quiver of mod T is

a
b

��

a
b

a

��

b

??

oo

b
a

??
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We illustrate the correspondences stated in this section as follows. In the table,
weak T [1]-cluster tilting subcategories of C and support τ -tilting pairs of mod T
are marked by ♣.

T [1]-rigid
τ -rigid pairssubcategories

add
(

2
1
2

) (
add

(a
b

)
, 0
)

add
(

1
2
1

) (
0, add

( b
a

))
add

( 2
1

)
(a, 0)

add
( 1

2

)
(b, 0)

add(2)
(
add

( b
a

)
, 0
)

add(1)
(
0, add

(a
b

))
♣ add

(
2
1
2
⊕ 2

) (
add

(a
b ⊕

b
a

)
, 0
)

♣ add
( 1

2 ⊕ 2
) (

add
( b

a ⊕ b
)
, 0
)

♣ add
(

2
1
2
⊕

2
1

) (
add

(a
b ⊕ a

)
, 0
)

♣ add
( 1

2 ⊕ 1
) (

b, add
(a

b

))
♣ add

(
2
1 ⊕

1
2
1

) (
a, add

( b
a

))
♣ add

(
1⊕

1
2
1

) (
0, add

(a
b ⊕

b
a

))
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