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ON MASAS IN q-DEFORMED VON NEUMANN ALGEBRAS

MARTIJN CASPERS, ADAM SKALSKI AND MATEUSZ WASILEWSKI

We study certain q-deformed analogues of the maximal abelian subalgebras
of the group von Neumann algebras of free groups. The radial subalgebra
is defined for Hecke deformed von Neumann algebras of the Coxeter group
(Z/2Z)?k and shown to be a maximal abelian subalgebra which is singular
and with Pukánszky invariant {∞}. Further all nonequal generator masas
in the q-deformed Gaussian von Neumann algebras are shown to be mutu-
ally nonintertwinable.

1. Introduction

Our aim is to investigate maximal abelian subalgebras in certain II1-factors that can
be viewed as deformations of VN(Fn). Our particular interest lies in the analysis of
counterparts of the radial masa Ar in VN(Fn), studied for example in [Boca and
Rădulescu 1992] and in [Cameron et al. 2010] (see also [Trenholme 1988]). The
main open problem concerning the radial masa in VN(Fn) is the question whether
it is isomorphic to the generator masa(s); so far they share all the known properties,
such as maximal injectivity, the same Pukánszky invariant, etc. They are also known
not to be unitarily conjugate (see Proposition 3.1 of [Cameron et al. 2010]). More
generally, radial masas have been studied for von Neumann algebras of groups of
the type (Z/nZ)

?k in [Trenholme 1988] and [Boca and Rădulescu 1992].
Here we want to analyse the behaviour of counterparts of the radial/generator

masa in some deformed versions of VN(Fn) or VN((Z/nZ)
?k); more specifically in

Hecke deformed von Neumann algebras of right-angled Coxeter groups VNq(W )

of Dymara [2006] (see also [Garncarek 2016] and [Caspers 2016a]) and in q-
deformed Gaussian von Neumann algebras 0q(HR) of Bożejko, Kümmerer and
Speicher [Bożejko et al. 1997]. In the former case we can naturally define the radial
subalgebra (and not the generator one), and in the latter the object that intuitively
corresponds to the radial subalgebra is in fact obviously isomorphic to the generator
one (as studied by Ricard [2005] and further by Wen [2017] and Parekh, Shimada
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and Wen [Parekh et al. 2018]). We show in Section 4 however that the different
generator masas inside the 0q(HR) are not unitarily conjugate.

Note that another example of a counterpart of the radial subalgebra in VN(Fn)

was studied and shown to be maximal abelian and singular in [Freslon and Vergnioux
2016]. It was a von Neumann subalgebra of the algebra L∞(O+N ), which shares
many properties with VN(Fn), although very recently the latter two were shown to
be nonisomorphic [Brannan and Vergnioux 2018].

The plan of the paper is as follows: after finishing this section introducing
certain notation, in Section 2 we define the radial subalgebra of the Hecke deformed
von Neumann algebra VNq(W ) and show it to be maximal abelian. In Section 3,
we compute its Pukánszky invariant and deduce its singularity. Finally Section 4
discusses the nonintertwinability of (a continuous family of) different generator
masas in the q-deformed Gaussian von Neumann algebras.

Notation. Throughout this paper, by a masa we mean a maximal abelian von
Neumann subalgebra of a given von Neumann algebra M. Let U (M) be the group of
unitaries in M. For a (unital) subalgebra A⊆M we define the normalizer of A in M as

NM(A)= {u ∈U (M) | uAu∗ ⊆ A}.

A subalgebra A ⊆ M is called singular if NM(A) ⊆ A. These notions were first
introduced by Dixmier [1954].

N0 denotes the natural numbers including 0.

2. The radial Hecke masa

In this section we show that right-angled Hecke von Neumann algebras admit a
radial algebra and prove that it is in fact a masa.

Let W denote a right-angled Coxeter group. Recall that this is the universal
group generated by a finite set S of elements of order 2, with the relations forcing
some of the distinct elements of S to commute, and some other to be free. This is
formally encoded by a function

m : S× S \ {(s, s) : s ∈ S} → {2,∞}

such that for all s, t ∈ S, s 6= t we have

(st)m(s,t) = e

(and (st)∞ = e means that s and t are free; necessarily m(s, t)= m(t, s)). We will
always associate to W the length function | · | :W → N0 given by the generating
set S. All the information about W is encoded by a graph 0 with a vertex set
V0 = S and the edge set E0 = {(s, t) ∈ S × S : m(s, t) = 2}. Let q ∈ (0, 1]
and put p = (q − 1)/q1/2 (note that our convention on q means that p ≤ 0). The
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algebra Cq [W ] is a *-algebra with a linear basis {Tw : w ∈ W } satisfying the
conditions (s ∈ S, w ∈W )

Ts Tw =
{

Tsw if |sw|> |w|,
Tsw + pTw if |sw|< |w|.

The algebra Cq [W ] acts in a natural way (via bounded operators) on the space `2(W )

and its von Neumann algebraic closure in B(`2(W )) will be denoted by VNq(W ).
The vector δe ∈ `

2(W ) will sometimes be denoted by �; the corresponding vector
state τ := ω� on VNq(W ) is a faithful trace. More generally to any element
T ∈ VNq(W ) we can associate its symbol T�, and as � is a separating vector for
VNq(W ) this correspondence is injective. Finally note that using the right action
of the Hecke algebra on itself, we can define another von Neumann algebra acting
on `2(W ), say VNq(W )r. It is obviously contained in the commutant of VNq(W );
in fact Proposition 19.2.1 of [Davis 2008] identifies it with VNq(W )′.

In what follows, we will write L to denote the cardinality of S.

Hecke von Neumann algebras were first considered in [Dymara 2006] and [Davis
et al. 2007] in order to study weighted L2-cohomology of Coxeter groups. In
[Davis et al. 2007], the authors raised a natural question: how large is the centre
of VNq(W )? A precise answer for the right-angled case was found in [Garncarek
2016], where the following result was shown.

Theorem 2.1. Let |S| ≥ 3 and assume that 0 is irreducible. Then for q ∈ [ρ, 1]
the right-angled Hecke von Neumann algebra Cq [W ] is a II1-factor and for (0, ρ)
we have that Cq [W ] is a direct sum of a II1-factor and C. Here ρ is the radius of
convergence of the fundamental power series

∑
∞

k=0

∣∣{w ∈W | |w| = k}
∣∣zk.

In particular VNq(W ) is diffuse if and only if q ∈ [ρ, 1]. Further structural
results were obtained in [Caspers 2016a; 2016b; Caspers and Fima 2017] where for
example noninjectivity, approximation properties, absence of Cartan subalgebras,
the Connes embedding property and the existence of graph product decompositions
were established for VNq(W ).

In this paper we consider the special case W = (Z2)
∗L, i.e., the case where m is

constantly equal to infinity. We assume also that L ≥ 3. Here the main result of
[Garncarek 2016] (see Theorem 2.1) says that VNq(W ) is a factor if and only if
q ∈

[ 1
L−1 , 1

]
, and results of [Dykema 1993] together with a calculation in Section 5

of [Garncarek 2016] show that for that range of q we have

VNq(W )≈ VN(F2Lq/(1+q)2),

where VN(Fs) for s ≥ 1 denote the interpolated free group factors of Dykema and
Radulescu.
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Definition 2.2. An element T ∈ VNq(W ) is said to be radial if for its symbol de-
composition T�=

∑
w∈W cwδw, where cw ∈C, we have cw= cv for every v,w∈W

with l(v) = l(w). We say that T has radius (at most) n if the frequency support
(i.e., the set of those w ∈ W for which cw 6= 0) of Tw is contained in the ball
{w ∈W : |w| ≤ n}.

Define h ∈ Cq [W ] ⊂ VNq(W ) by the formula h =
∑

s∈S Ts and put B := {h}′′.

Proposition 2.3. The von Neumann algebra B coincides with the collection of all
radial operators in VNq(W ). In particular the set of all radial operators forms an
algebra.

Proof. For each n ∈N consider the radial operator hn :=
∑

w∈W, |w|=n Tw ∈ Cq [W ]
and put h0 := I.

For each n ∈ N, n ≥ 2, we have

(2-1) hhn =
∑
s∈S

∑
|w|=n,
|sw|>|w|

Ts Tw+
∑
s∈S

∑
|w|=n,
|sw|<|w|

Ts Tw

=

∑
s∈S

∑
|w|=n,
|sw|>|w|

Tsw+
∑
s∈S

∑
|w|=n,
|sw|<|w|

Tsw+
∑
s∈S

∑
|w|=n,
|sw|<|w|

pTw

= hn+1+(L−1)hn−1+phn.

We also have h2
= h2 + ph + Lh0. This shows in particular that the algebra

generated by h consists of radial operators. Moreover viewing the above as a
recurrence formula we see that each hn can be expressed as a polynomial in h and I,
so that the subspace A generated by {hn : n ∈N} coincides with the unital ∗-algebra
generated by h.

Further define the radial subspace

`2(W )r := {(cw)w∈W ∈ `
2(W ) : cv = cw for all w, v ∈W, |w| = |v|}

and denote the orthogonal projection from `2(W ) onto `2(W )r by Pr . It is easy to
see that A� is norm dense in `2(W )r . Thus the unique trace-preserving conditional
expectation E onto A′′ ⊂ VNq(W ) is given by the formula

E(T )�= Pr T�, T ∈ VNq(W ).

This shows that the set of radial operators in VNq(W ) coincides with A′′ and passing
now to ultraweak closures we see that h generates the von Neumann algebra of all
radial operators. �

Note that the above fact is not true (even for p = 0) for a general right-angled
Coxeter group. Also note that formulae such as (2-1) (and the subsequent line in
the proof) play a very relevant role in our proof of singularity in Section 3.
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The first main theorem of this paper is based on the idea of Pytlik for the radial
algebra in VN(Fn) [1981]; see also [Sinclair and Smith 2008]. By Rh ∈ VNq(W )r ,
we understand the operator on `2(W ) given by the right action of

∑
s∈S Ts .

Lemma 2.4. For every v,w ∈W with |v| = |w| and for every ε > 0 there exists a
vector η ∈ `2(W ) such that

‖ev − ew − (hη− Rhη)‖2 < ε.

Proof. We first assume thatw=az and v= zb for some word z∈W with |z|= |v|−1
and some letters a, b ∈ S. In the proof x and y will always be words in W and
summations are always over x and y. Put for k ∈ N

ψk =
∑

|x |=|y|=k,
|xa|=|by|=k+1

exazby ∈ `
2(W ),

and define also ψ0 = eazb. Let δ > 0. As for each k ∈ N there are L(L − 1)k−1

reduced words in W of length k,

(2-2)
∥∥∥∥( 1− δ

L − 1

)k

ψk

∥∥∥∥2

2
≤

(
1− δ
L − 1

)2k

(L − 1)2k−2L2
≤ 4(1− δ)2k .

This means that we can define

ηδ =

∞∑
k=0

(
1− δ
L − 1

)k

ψk ∈ `
2(W ).

We claim that the vector ηδ, for δ small enough (dependent on ε), satisfies the
condition of the lemma. To show that we need to analyse the actions of h and Rh

on ψk . For k ≥ 1 we have (the bracket term included; the brackets are there in order
to define further vectors in the remainder of the proof)

(2-3) hψk =
∑
s∈S

∑
|x |=|y|=k, |sx |=k+1
|xa|=|by|=k+1

esxazby

+

∑
s∈S

∑
|x |=|y|=k, |sx |=k−1
|xa|=|by|=k+1

esxazby(+pexazby).

and similarly, for k ≥ 1,

(2-4) Rhψk =
∑
s∈S

∑
|x |=|y|=k, |ys|=k+1
|xa|=|by|=k+1

exazbys

+

∑
s∈S

∑
|x |=|y|=k, |ys|=k−1
|xa|=|by|=k+1

exazbys(+pexazby).
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Finally

(2-5) hψ0 = ezb+ peazb+
∑

s∈S\{a}

esazb, Rhψ0 = eaz + peazb+
∑

s∈S\{b}

eazbs .

We now analyse the “commutators” hψk − Rhψk and their sum. Note first that for
each k ∈ N0 the summand in hψk given by pexazby also occurs in Rhψk .

We define (compare to (2-5))

φ1,0 =
∑

s∈S\{a}

esazb, φ2,0 = ezb, χ1,0 =
∑

s∈S\{b}

eazbs, χ2,0 = eaz.

For k ≥ 1 we set the following notation: let φ1,k and φ2,k be the two large sums on,
respectively, the first and second line of (2-3), without the vectors between brackets.
Similarly we define χ1,k and χ2,k to be the two large sums on, respectively, the first
and second line of (2-4), without the vectors between brackets.

Then we have for all k ∈ N0

φ1,k =
1

L − 1
χ2,k+1, χ1,k =

1
L − 1

φ2,k+1,

so that

φ1,k −
1− δ
L − 1

χ2,k+1 = δφ1,k, χ1,k −
1− δ
L − 1

φ2,k+1 = δχ1,k .

Thus a version of the telescopic argument yields the equality

hηδ − Rhηδ =

∞∑
k=0

(
1− δ
L − 1

)k

(φ1,k +φ2,k −χ1,k −χ2,k)

= ezb− eaz + δ

( ∞∑
k=1

(
1− δ
L − 1

)k

(φ1,k −χ1,k)

)
.

As δ ↘ 0 this can be shown via a similar `2-counting estimate to that above to
converge in norm to ezb− eaz . From this we conclude the claim.

For general v= v1 . . . vn and w=w1 . . . wn with vn 6=w1 the proposition follows
from a triangle inequality and an application of the argument in the first part of
the proof to each pair wk . . . wnv1 . . . vk−1 and wk+1 . . . wnv1 . . . vk . In the case
where vn = w1 one can apply the above to the pairs vk . . . vnbw1 . . . wk−2 and
vk+1 . . . vnbw1 . . . wk−1 for some letter b 6= vn . �

We are ready to formulate the first main result in this section.

Theorem 2.5. The radial algebra B is a masa in VNq(W ).

Proof. Suppose that T ∈ B′∩VNq(W ) and write T�=
∑

u∈W cueu . Let v,w ∈W
with |v| = |w|, let ε > 0 and let η be as in Lemma 2.4. Note that as T commutes
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with h we have 〈T�, hη− Rhη〉 = 〈(hT − RhT )�, η〉 = 〈T (h − Rh)�, η〉 = 0.
Then we get

|〈T�, ev − ew〉| ≤ |〈T�, ev − ew + hη− Rhη〉| ≤ ε.

As ε > 0 is arbitrary, we see that cw = cv . Thus T is radial, which is equivalent to
the fact that T ∈ B by Proposition 2.3. �

Remark 2.6. The recurrence formula (2-1) allows us to compute explicitly the
distribution of h with respect to the canonical trace. As the formula (2-1) is valid
only from n = 2 we first define “new” h0 as L/L̃ , where L̃ := L − 1, so that
with respect to the new variables it holds for all n ∈ N. For simplicity assume
that q ∈ [1/L̃, 1], so that VNq(W ) is a (finite) factor. Then the distribution of h is
continuous (as B is diffuse) and the main result of [Cohen and Trenholme 1984]
implies that the corresponding density is given (up to a normalising factor) by

L̃
√

4L̃ − (x − p)2

π [−(x − p)2− p(2− L)(x − p)+ p2(L − 1)+ L2]
dx .

Note that for p = 0 we obtain, as expected, the distribution of the radial element in
the group (Z2)

∗L as computed in Theorem 4 of [Cohen and Trenholme 1984].

3. The Pukánszky invariant and singularity of the Hecke MASA

The Pukánszky invariant P(A) of a masa A⊆M is determined by the von Neumann
algebra generated by all A-A bimodule homomorphisms of L2(M). We refer to
[Sinclair and Smith 2008] for further discussion of P(A). Popa [1985] showed
that the Pukánszky invariant can be used to prove singularity of certain masas
(and indeed this was successfully applied by Radulescu [1991] in order to obtain
singularity of the radial masa in VN(Fn)). We will use this strategy in this section,
following very closely the proof of [Rădulescu 1991], to show that the Hecke radial
masa discussed in Section 2 is singular. In particular we determine its Pukánszky
invariant.

We need some terminology. Let again L ≥ 3, W = (Z2)
∗L, q ∈

[ 1
L−1 , 1

]
and let B be the radial subalgebra of the factor VNq(W ) (shown to be a masa in
Theorem 2.5).

Definition 3.1. The Pukánszky invariant of B⊆ VNq(W ) is defined as the type of
the von Neumann algebra 〈h, Rh〉

′
⊆ B(`2(W )), where h and Rh were defined in

Section 2.

Next we introduce the necessary notation in order to determine the Pukánszky
invariant of B⊆ VNq(W ). We need to construct certain bases, which are inspired
by Radulescu’s bases in free group factors (see [Rădulescu 1991]). For l ∈ N0
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let ql : Cq [W ] → Cq [W ] be the natural projection onto the span of {Tw, |w| = l}.
Write Cl

q [W ] = ql(Cq [W ]). As before set hl =
∑
|w|=l Tw. We have for m ≥ 1

(see (2-1) and its subsequent line)

(3-1) h1hm = hmh1 = hm+1+ phm + (Lm − 1)hm−1,

where Lm = L if m ≥ 2 and Lm = L + 1 if m = 1. Let

Sl = span{ql(h1x), ql(xh1) | x ∈ ql−1(Cq [W ])};

in particular S1 = Ch1. Further for l ∈ N, γ ∈ Cl
q [W ], set

γm,n = qm+n+l(hmγ hn), m, n ∈ N0.

We also set γm,n= 0 in case m< 0 or n< 0. Finally for l ∈N and γ ∈Cl
q [W ]	Sl set

Xγ = span‖ ‖2{γm,n | m, n ∈ N0} ⊂ `
2(W ).

Lemma 3.2 collects all computational results we need in what follows. As all the
(rather easy) arguments are basically contained in [Rădulescu 1991, Lemma 1]
we merely sketch the proof; all other proofs we give in this section will then be
self-contained.

Lemma 3.2. (1) For γ ∈ Cl
q [W ], l ≥ 1, m ≥ 1, n ≥ 0, we have

h1γm,n = γm+1,n + pγm,n + (L − 1)γm−1,n.

(2) For γ ∈ Cl
q [W ]	 Sl , l ≥ 2, m ≥ 0, n ≥ 0, we have

h1γm,n = γm+1,n + pγm,n + (L − 1)γm−1,n.

(Note that only the case m = 0 was not already covered by (1)).

(3) For β ∈ C1
q [W ]	 S1, n ≥ 0, we have

h1β0,n = β1,n + pβ0,n −β0,n−1.

(4) For γ ∈ Cl
q [W ], l ≥ 1 we have

ql+m+n+1(h1hmγ hn)= ql+n+m+1(h1ql+m+n(hmγ hn)), m,n ∈ N,

ql−m−n−1(h1hmγ hn)= ql−m−n−1(h1ql−m−n(hmγ hn)), 0≤ m+n ≤ l.

(5) For γ ∈ Cl
q [W ], l ≥ 1, we have ql(h1ql+1(h1γ ))= (L − 1)γ .

(6) For β ∈ C1
q [W ]	 S1, we have qn(h1qn+1(βhn))=−qn(βhn−1).

(7) For all γ ∈ Cl
q [W ]	 Sl , l ≥ 2, n ∈ N, m ≥ 1, we have

ql(qm+n+l(hmγ hn)hm+n)= 0.
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Proof. The proofs of (1)–(2) are easy consequences of (3-1); see also [Rădulescu
1991, Lemma 1 (a) and (b)]. The proof of (3) is essentially the same as [Rădulescu
1991, Lemma 1 (c)]. Statement (4) is a direct consequence of (3-1), and (5) and (6)
follow from (1) and (3), respectively. Statement (7) follows from (1) and (2). �

The following theorem gives the cornerstone in our computation of the Pukánszky
invariant. The idea is based on first showing that for suitable β and γ the mapping
T : Xβ → Xγ defined by the formula (3-2) is bounded and invertible. Then one
uses a basis transition to the respective bases {hmβhn}m,n∈N and {hmγ hn}m,n∈N to
show that T is actually a B-B bimodule map.

Theorem 3.3. Let l ∈ N, l ≥ 2, let β ∈ C1
q [W ] 	 S1 and let γ ∈ Cl

q [W ](W )	 Sl .
Then the following hold:

(1) There exists a bounded invertible linear map T : Xβ→ Xγ determined by

(3-2) T : βm,n 7→ γm,n + γm−1,n−1, m, n ∈ N0.

(2) We have Xβ=BβB
‖ ‖2 and Xγ =BγB

‖ ‖2. Moreover the map T defined by (3-2)
agrees with the linear map

(3-3) T : hmβhn 7→ hmγ hn, m, n ∈ N0.

The proof of Theorem 3.3 proceeds through a couple of lemmas, which we prove
in two separate subsections.

Proof of Theorem 3.3 (1). The first statement of Theorem 3.3 is essentially a
consequence of the following orthogonality property.

Lemma 3.4. Let l ∈ N, l ≥ 2, and let β, β ′ ∈ C1
q [W ] 	 S1, γ ∈ Cl

q [W ] 	 Sl ,
γ ′ ∈ Cl

q [W ], l ≥ 2. We have then for each m, n,m′, n′ ∈ N0

(3-4) 〈βm,n, β
′

m′,n′〉 = δm+n,n′+m′(L − 1)m+n−|n−n′|(−1)|n−n′|
〈β, β ′〉;

similarly,

(3-5) 〈γm,n, γ
′

m′,n′〉 = δm,m′δn,n′(L − 1)m+n
〈γ, γ ′〉.

Proof. Let us first prove (3-5). Firstly, as γm,n (resp. γ ′m′,n′) is in the range of
qm+n+l (resp. qm′+n′+l), we must have m+ n = m′+ n′ or else both sides of (3-5)
are nonzero. We claim that

(3-6) ql(hm′qm+n+l(hmγ hn)hn′)= δm,m′δn,n′(L − 1)m+nγ.

For k := m + n = 0 this is obvious. We proceed by induction on k and assume
the assertion for k− 1. For k ≥ 1 one of m and n is nonzero and we may assume
without loss of generality that m 6= 0 (the proof for n can be done in the same way,
or one can consider the adjoint of (3-6) which interchanges the roles of m and n).
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If the left-hand side of (3-6) is nonzero, then we must have that m′ is nonzero,
because otherwise this expression reads ql(qm+n+l(hmγ hn)hn+m) which is zero by
Lemma 3.2 (7).

Using (3-1) together with the fact that ql(hr qm+n+l(x)hn)= 0 for every r < m
and x ∈ Cq [W ] and qm+n+l(hsγ hn)= 0 for s < m, we get

ql(hm′qm+n+l(hmγ hn)hn′)= ql(hm′−1h1qm+n+l(h1hm−1γ hn)hn′).

Using Lemma 3.2 (4) and (5) for the first two of the following equalities and then
the induction hypothesis yields

(3-7) ql(hm′qm+n+l(hmγ hn)hn′)

= ql(hm′−1qm+n+l−1(h1qm+n+l(h1qm+n+l−1(hm−1γ hn))hn′)

= (L−1)ql(hm′−1qm+n+l−1(hm−1γ hn)hn′)

= (L−1)(L−1)m+n−1δm,m′δn,n′γ.

This completes the proof of (3-6). Then using the fact that hm′ and hn′ are self-
adjoint we get

(3-8) 〈γm,n, γ
′

m′,n′〉 = 〈qm+n+l(hmγ hn), qm′+n′+l(hm′γ
′hn′)〉

= 〈hm′qm+n+l(hmγ hn)hn′, γ
′
〉

= 〈ql(hm′qm+n+l(hmγ hn)hn′), γ
′
〉

= (L − 1)m+nδm,m′δn,n′〈γ, γ
′
〉.

Next we sketch the proof of (3-4); it is largely the same as (3-5). The claim (3-6)
gets replaced by

(3-9) ql(hm′qm+n+l(hmβhn)hn′)= (L − 1)|m+n|−|n−n′|(−1)|n−n′|δm+n,m′+n′β.

Again the proof proceeds by induction with respect to k := m+ n = m′+ n′. The
case k = 0 is obvious so assume k ≥ 1. First assume that both m,m′ ≥ 1. Similar
to (3-7) and using the same results from Lemma 3.2 we find that

(3-10) ql(hm′qm+n+l(hmβhn)hn′)= ql(hm′−1h1qm+n+l(h1hm−1βhn)hn′)

= (L−1)ql(hm′−1qm+n+l−1(hm−1βhn)hn′−1)

= (L−1)m+n−|n−n′|(−1)|n−n′|δm+n,m′+n′〈β,β
′
〉.

The proof of (3-10) (disregarding the intermediate steps) for the case n, n′ ≥ 1
proceeds in the same manner (or follows by taking adjoints of (3-10) which swaps
the roles of m,m′ and n, n′). The only case that remains is then m = 0 and n′ = 0
(again the case m′ = 0 and n = 0 follows by taking adjoints, or by symmetry).
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Then n ≥ 1 and m′ ≥ 1 and using Lemma 3.2 (6) for the second equality and then
applying the induction hypothesis we obtain

q1(hm′qn+1(βhn))= q1(hm′−1qn(h1qn+1(βhn−1h1)))

=−q1(hm′−1qn(βhn−1))

= (L − 1)m+n−|n−n′|δm+n,m′+n′(−1)|n−n′|
〈β, β ′〉.

Then the lemma follows by replacing γ by β in (3-8). �

Recall the elementary fact (see [Rădulescu 1991, Lemma 5] for a proof) that for
a real number a, |a|< 1, there exist constants Ba > 0 and Ca > 0 such that for any
k ∈ N, λ1, . . . , λk ∈ C, we have

(3-11) Ba

k∑
i=1

|λi |
2
≤

k∑
i=1

λiλ j a|i− j |
≤ Ca

k∑
i=1

|λi |
2.

Proof of Theorem 3.3 (1). By Lemma 3.4 and (3-11) we see that the assignment
βm,n 7→ γm,n extends to a bounded invertible linear mapping T0 : Xβ → Xγ . By
Lemma 3.4 we see that S : Xγ 7→ Xγ : γm,n 7→ γm−1,n−1 is bounded with norm
‖S‖≤ (L−1)−2. Therefore IdXγ + S is bounded and invertible. As the composition
(I + S) ◦ T0 is bounded and invertible and agrees with (3-2) we are done. �

Proof of Theorem 3.3 (2). The following Lemma 3.5 is the crucial part of the proof
of Theorem 3.3 (2).

Lemma 3.5. Let l≥2, β∈C1
q [W ]	S1, and let γ ∈Cl

q [W ]	Sl . For every m, n∈N0

there exist certain constants bm,n
k, j , cm,n

k, j ∈ R, k = 0, . . . ,m, j = 0, . . . , n, such that
we have the expansions

(3-12) hmβhn =
∑

k≤m, j≤n

bm,n
k, j βk, j , hmγ hn =

∑
k≤m, j≤n

cm,n
k, j γk, j .

Moreover, these constants satisfy

(3-13) cm,n
k, j = bm,n

k, j + bm,n
k+1, j+1, m, n ∈ N, k = 0, . . . ,m, j = 0, . . . , n,

where bm,n
m+1,n+1 = 0.

Proof. If m = 0 and n ∈ N arbitrary, then the existence of decompositions (3-12) is
a consequence of Lemma 3.2. The relation (3-13) for m = 0 becomes c0,n

k, j = b0,n
k, j

which is a rather direct consequence of Lemma 3.2 as well.
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The proof proceeds by induction on m. Let Lk = L if k > 1 and let L1 = L + 1.
We have by (3-1) and then Lemma 3.2 (1) and (3),

(3-14) hmβhn = (h1− p)hm−1βhn − (Lm−1− 1)hm−2βhn

= (h1− p)
m−1∑
k=0

n∑
j=0

bm−1,n
k, j βk, j − (Lm−1− 1)

m−2∑
k=0

n∑
j=0

bm−2,n
k, j βk, j

=

m−1∑
k=0

n∑
j=0

bm−1,n
k, j (βk+1, j + (L − 1)βk−1, j )

−

n∑
j=0

bm−1,n
0, j β0, j−1− (Lm−1− 1)

m−2∑
k=0

n∑
j=0

bm−2,n
k, j βk, j

=

m∑
k=0

n∑
j=0

(bm−1,n
k−1, j + (L − 1)bm−1,n

k+1, j )βk, j

−

n−1∑
j=0

bm−1,n
0, j+1 β0, j − (Lm−1− 1)

m−2∑
k=0

n∑
j=0

bm−2,n
k, j βk, j .

This shows that for all 0≤ k ≤ m, 0≤ j ≤ n, we obtain

bm,n
k, j = bm−1,n

k−1, j + (L − 1)bm−1,n
k+1, j − (Lm−1− 1)bm−2,n

k, j − δk,0bm−1,n
0, j+1 .

Let δk≥1 be 1 if k ≥ 1 and 0 otherwise. We get then

bm,n
k, j + bm,n

k+1, j+1 = δk≥1(b
m−1,n
k−1, j + bm−1,n

k, j+1 )+ (L − 1)(bm−1,n
k+1, j + bm,n+1

k+2, j+1)

− (Lm−1− 1)(bm−2,n
k, j + bm−2,n

k+1, j+1).

So by induction

(3-15) bm,n
k, j + bm,n

k+1, j+1 = δk≥1cm−1,n
k−1, j + (L − 1)cm−1,n

k+1, j − (Lm−1− 1)cm−2,n
k, j

= cm−1,n
k−1, j + (L − 1)cm−1,n

k+1, j − (Lm−1− 1)cm−2,n
k, j .

Exactly as we computed (3-14) (with the difference that Lemma 3.2 (3) is replaced
by Lemma 3.2 (2)) we get

hmγ hn =

m+1∑
k=0

n∑
j=0

(cm−1,n
k−1, j + (L − 1)cm−1,n

k+1, j )γk, j − (Lm−1− 1)
m−2∑
k=0

n∑
j=0

cm−2,n
k, j γk, j .

Thus
cm,n

k, j = cm−1,n
k−1, j + (L − 1)cm−1,n

k+1, j − (Lm − 1)cm−2,n
k, j .

Combining the above with (3-15) gives cm,n
k, j = bm,n

k, j + bm,n
k+1, j+1 for all 0≤ k ≤ m,

0≤ j ≤ n. �
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Proof of Theorem 3.3 (2). Lemma 3.5 shows that BγB⊆ Xγ and BβB⊆ Xβ and
hence the inclusions hold also for the ‖ ‖2-closures. For the converse inclusion
proceed by induction: take hnγ hm ∈ BγB and assume that all vectors hrβhs with
r < n, s ≤ m are contained in Xγ (if n = 0 then assume that r ≤ n, s < m and
consider adjoints, or use a similar induction argument on m). By (3-1) we have

hnγ hm = (h1− p)hn−1γ hm − (Ln − 1)hn−2γ hm ∈ h1 Xγ + Xγ .

Here again Ln = L if n ≥ 2 and L1 = L+1. So it suffices to show that h1 Xγ ⊆ Xγ ,
but this is a consequence of Lemma 3.2 (2). The proof for β instead of γ is the
same but uses Lemma 3.2 (1) and (3) for the latter argument.

The fact that (3-3) agrees with (3-2) is now a direct consequence of Lemma 3.5.
Indeed,

T (hmβhn)= T
( ∑

k≤m, j≤n

bm,n
k, j βk, j

)
=

∑
k≤m, j≤n

bm,n
k, j (γk, j + γk−1, j−1)

=

∑
k≤m, j≤n

(bm,n
k, j + bm,n

k+1, j+1)γk, j =
∑

k≤m, j≤n

cm,n
k, j γk, j = hmγ hn. �

Consequences of Theorem 3.3. Let Br = 〈Rh〉
′′ (note that as VNq(W ) is in the

standard form on `2(W ), it is also equal to JBJ, where J is the antilinear Tomita–
Takesaki modular conjugation δx 7→ δx−1). For a vector γ ∈

⋃
l∈N0

Cl
q [W ] we let

pγ be the central support in (B∪Br )
′′ of the vector state ωγ,γ . The operator pγ is

then given by the projection onto the closure of BγB.

Lemma 3.6. If vectors ξ, ξ ′ ∈ ∪l≥1Cl
q [W ]	 Sl are orthogonal then pξ and pξ ′ are

orthogonal projections.

Proof. Let ξ ∈ Cl
q [W ]	 Sl and let ξ ′ ∈ Cl ′

q [W ]	 Sl ′ with l, l ′ ≥ 1. If l = l ′ then the
lemma follows directly from Lemma 3.4. So assume that l 6= l ′ and say that l ′≤ l.
It suffices to show that

(3-16) ξ ′r,s ⊥ ξm,n for every r, s,m, n ∈ N0.

If m+ n+ l 6= r + s+ l ′ this is obvious as then the images of qm+n+l and qr+s+l ′

are mutually orthogonal. We may then assume m + n + l = r + s + l ′, so that
r + s ≥ m + n. If m + n = 0 then (3-16) is obvious, as ξ ⊥ Sl whereas ξ ′r,s ∈ Sl .
But then note that ξ ′r,s = (ξ

′

a,b)r−a,s−b for any a = 0, . . . , r , b = 0, . . . s such that
l ′+ a+ b = l. As ξ ′a,b ∈ Sl we see from Lemma 3.4 that (ξ ′a,b)r−a,s−b ⊥ ξm,n . �

We can now state and prove the main result of this section.

Theorem 3.7. The von Neumann algebra (B ∪ Br )
′(1− p�) is homogeneous of

type I∞.
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Proof. Because (B∪ Br )
′′ is abelian, the commutant (B∪ Br )

′ decomposes as a
direct sum

⊕
∞

n=1 An⊗B(Hn), where dim(Hn)= n and the algebras An are abelian
(see [Dixmier 1969]). Let (ξi )i∈N be an orthonormal basis in

⋃
l≥1 Cl

q [W ]	 Sl . By
Lemma 3.6 the projections (pξi )i∈N are mutually orthogonal and by Theorem 3.3
they have the same central support in (B ∪ Br )

′. As by Lemma 3.6 we have∑
i∈N pξi = 1− p� and 1− p� is central in (B∪Br )

′ (see [Popa 1985, Lemma 3.1]),
we see that the central support of each pξi in (B∪Br )

′ is 1− p�, which is the unit in
(B∪Br )

′(1− p�). Since we have a partition of unity formed by projections with the
same central support, the above decomposition of (B∪Br )

′ must in fact consist of
only one element. As there are infinitely many orthogonal projections, this summand
must correspond to n =∞, so that we have (B∪Br )

′(1− p�)= A∞⊗B(`2) �

Remark 3.8. Theorem 3.7 is phrased in the literature as follows: the Pukánszky
invariant of B is {∞}. This is because in the B-B-bimodule (1− p�)L2(M), the
only factors occurring in the direct integral decomposition of the commutant of
B∪Br are infinite (and necessarily of type I).

Corollary 3.9. The radial subalgebra B is a singular masa of VNq(W ).

Proof. This follows from Theorem 3.7 by [Popa 1985, Remark 3.4]. �

4. Generator masas in q-deformed Gaussian von Neumann algebras

In this section we consider masas in a different deformation of the free group factors,
i.e., so-called q-Gaussian algebras.

The starting point of the construction of q-Gaussian algebras is a real Hilbert
space HR. We complexify it, obtaining a complex Hilbert space H, and form an
algebraic direct sum

⊕
n>0 H

⊗n, where H⊗0
= C. Following [Bożejko et al. 1997]

(see that paper for all facts stated below without proofs), we will define an inner
product on this space using the parameter q ∈ (−1, 1). For each n ∈ N we define
an operator Pn

q :H⊗n
→H⊗n by the formula

Pn
q (e1⊗ · · ·⊗ en)=

∑
π∈Sn

q i(π)eπ(1)⊗ · · ·⊗ eπ(n),

where e1, . . . , en ∈H, Sn is the permutation group on n letters and i(π) denotes
the number of inversions in the permutation π . These operators are strictly positive,
so they define an inner product on

⊕
n>0 H

⊗n — the Hilbert space that we get after
completion is called the q-Fock space and is denoted by Fq(H). The direct sum
decomposition of the q-Fock space allows us to define shift-like operators.

Definition 4.1. Let ξ ∈ H. We define the creation operator a∗q(ξ) : Fq(H) →
Fq(H) by a∗q(ξ)(e1⊗ · · ·⊗ en)= ξ ⊗ e1⊗ · · ·⊗ · · · en . The annihilation operator
aq(ξ) : Fq(H)→ Fq(H) is defined as the adjoint of a∗q(ξ). Using the definition of
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the q-deformed inner product we can find the formula for aq(ξ):

aq(ξ)(e1⊗ · · ·⊗ en)=

n∑
i=1

q i−1
〈ξ, ei 〉e1⊗ · · · êi · · · ⊗ en,

where êi means that the factor ei is omitted. All the above operators extend to
bounded operators on Fq(H).

Creation and annihilation operators will allow us to define q-Gaussian algebras.

Definition 4.2. Let HR be a real Hilbert space and let H be its complexification. The
von Neumann subalgebra of B(Fq(H)) generated by the set {a∗q(ξ)+aq(ξ) : ξ ∈HR}

is called the q-Gaussian algebra associated with HR and is denoted by 0q(HR).
The vector �= 1 ∈C⊂H⊗0

⊂Fq(H) is called the vacuum vector. It is a cyclic
and separating vector for 0q(HR) and the associated vector state ω(x) := 〈�, x�〉
is a normal faithful trace on 0q(HR).

Remark 4.3. For q = 0 the assignment HR 7→ 0q(HR) is precisely Voiculescu’s
free Gaussian functor. In particular 00(HR)' L(Fdim(HR)).

We will study problems pertaining to conjugacy of masas in the q-Gaussian
algebras. It is a nice feature of these objects that the orthogonal operators on HR

give rise to automorphisms of 0q(HR). To introduce these automorphisms, we need
to present the first quantisation.

Definition 4.4. Let T :H→H be a contraction. The assignment⊕
k>0

H⊗k
3 e1⊗ · · ·⊗ en 7→ T e1⊗ · · ·⊗ T en ∈

⊕
k>0

H⊗k

extends to a contraction Fq(T ) :Fq(H)→Fq(H) and is called the first quantisation
of T.

Remark 4.5. If U :H→H is a unitary then Fq(U ) is also a unitary.

To work with 0q(HR) we need a convenient notation for its generators. For any
ξ ∈HR we put W (ξ) := a∗q(ξ)+aq(ξ). If η= ξ1+ iξ2 ∈H then we denote W (η)=

W (ξ1)+ iW (ξ2); therefore W (η) is complex-linear in η. Recall that the vacuum
vector� is cyclic and separating. One can check that for any vectors η1, . . . , ηn ∈H
we have η1⊗· · ·⊗ηn ∈0q(HR)�; the unique operator W (η1⊗· · ·⊗ηn)∈0q(HR)

such that W (η1 ⊗ · · · ⊗ ηn)� = η1 ⊗ · · · ⊗ ηn is called a Wick word. The span
of all such operators associated with finite simple tensors forms a strongly dense
∗-subalgebra of 0q(HR), which we call the algebra of Wick words. Finally note
that much as in Section 2 we can also consider the “right” version of 0q(HR),
generated by the combinations of right creation and annihilation operators, in
particular containing the right Wick words, to be denoted Wr (ξ). We are ready to
introduce the second quantisation.
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Definition 4.6. Let HR be a real Hilbert space and let H be its complexification.
Suppose that T : H → H is a contraction such that T (HR) ⊂ HR. Then the
assignment 0q(HR) 3W (η1⊗· · ·⊗ηn) 7→W (Tη1⊗· · ·⊗Tηn) ∈ 0q(HR), where
η1, . . . , ηn ∈ H, may be extended to a normal, unital, completely positive map
on 0q(HR), denoted by 0q(T ).

Remark 4.7. Note that the condition T (HR)⊂HR is essential, otherwise 0q(T )
would not even preserve the adjoint, let alone be completely positive.

We will only deal with automorphisms and, in this construction, they come from
orthogonal operators on HR. If U : HR → HR is orthogonal then 0q(U )(x) =
Fq(U )xFq(U )∗, where we still denote by U its canonical unitary extension to H.
It is easy to check that 0q(U )W (ξ)=W (Uξ).

To find candidates for masas, we draw inspiration from the case q = 0, in
which the most basic masas are the so-called generator masas. In our picture they
correspond to subalgebras generated by a single element W (ξ), where ξ ∈ HR.
Ricard [2005] proved they are also masas in the case of q-Gaussian algebras. As
an application, he established factoriality of all q-Gaussian algebras 0q(HR) with
dim(HR) > 2. Recently these generator masas were also shown to be singular
[Wen 2017] and maximally injective [Parekh et al. 2018] (the latter for sufficiently
small |q|).

Using the automorphisms produced by the second quantisation procedure, we can
easily show that all these masas are conjugate by an outer automorphism. Indeed,
consider masas generated by W (ξ) and W (η), where ξ, η ∈HR. By rescaling, we
may assume that ‖ξ‖ = ‖η‖ = 1. Therefore one can find an orthogonal operator U
such that Uξ = η; then 0q(U )((W (ξ))′′)= (W (η))′′. Our aim now is to show that
they are never conjugate by a unitary.

Case of orthogonal vectors. We first want to deal with the case when A := (W (e1))
′′

and B := (W (e2))
′′ are masas in M :=0q(HR) coming from two orthogonal vectors.

In the case q = 0 these masas correspond to two different generator masas of the
free group factor. One can prove that these are not unitarily conjugate using Popa’s
notion of orthogonal pairs of subalgebras (see [Popa 1983, Corollary 4.3]). We will
use another technique due to Popa giving a criterion for embedding A into B inside M
(in a certain technical sense). We will actually only state the part of the theorem that
is useful for us; for the full statement consult [Popa 2006, Theorem 2.1 and Corol-
lary 2.3] or [Popa 2019, Theorem 1.3.1]. We call A and B intertwinable (inside M) if
the intertwiner space IM(A,B), defined in [Popa 2019, Subsection 1.3] is nontrivial.

Proposition 4.8 (Popa). Let A and B be von Neumann subalgebras of a finite
von Neumann algebra (M, τ ). Suppose that there exists a sequence of unitaries
(uk)k∈N ⊂ U(A) such that for any x, y ∈ M we have limk→∞ ‖EB(xuk y)‖2 = 0,
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where EB is the unique τ -preserving conditional expectation from M onto B. Then
A and B are nonintertwinable; in particular there does not exist a unitary u ∈M
such that uAu∗ = B.

Remark 4.9. Note that it suffices to check that limk→∞ ‖EB(xuk y)‖2 = 0 only
for x, y ∈ M̃, where M̃ is a strongly dense ∗-subalgebra. It follows from Kaplansky’s
density theorem, because we can approximate in the strong operator topology (in
particular in L2) and control the norm of the approximants at the same time.

Proposition 4.10. Let e1, e2 ∈HR, ‖e1‖ = ‖e2‖ = 1, e1 ⊥ e2. Set A= (W (e1))
′′,

B = (W (e2))
′′, and M = 0q(HR). There exists a sequence of unitaries (uk)k∈N ⊂

U(A) such that we have limk→∞ ‖EB(xuk y)‖2 = 0 for all x, y ∈ M̃, where M̃ is the
algebra of Wick words.

Proof. Let (en)n∈N be an orthonormal basis of HR. Assume x =W (ei1 ⊗ · · ·⊗ ein )

and y =W (e j1 ⊗ · · ·⊗ e jm ); it clearly suffices because the span of such elements
is equal to M̃. By definition of the trace on 0q(HR) we have ‖EB(xuk y)‖2 =
‖(EB(xuk y))�‖. Since the conditional expectation on the level of the Fock space
is just the orthogonal projection (denoted P) onto the closed linear span of the
set {e⊗n

2 : n ∈ N}, we get ‖(EB(xuk y))�‖ = ‖P(xuk y�)‖. Note now that as the
left and right actions of y on � produce the same result, e j1 ⊗ · · · ⊗ e jm , we can
change y to its right version, Wr (e j1 ⊗ · · ·⊗ e jm ), denoted now by ỹ. Since ỹ ∈M′,
we get ‖P(xuk y�)‖ = ‖P(x ỹuk�)‖. We now choose the sequence (uk)k∈N —
it is an arbitrary sequence of unitaries in A such that the corresponding vectors
ηk := uk� converge weakly to zero (such a sequence exists, because A is diffuse).
Let Ql be the orthogonal projection from Fq(Ce1) onto span{e⊗ j

1 : j 6 l}. Then
for any l the sequence (Qlηk)k∈N converges to zero in norm. Therefore to check
that limk→∞ ‖P(x ỹηk)‖ = 0, it suffices to do so for ηk replaced by (1− Ql)ηk .
We now choose l = n+m. Therefore any ηk consists solely of tensors e⊗d

1 , where
d > n+m+ 1. Since x can be written as a sum of products of n (in total) creation
and annihilation operators and y can be decomposed similarly into products of m
creation and annihilation operators, any simple tensor appearing in x ỹ(1−Qn+m)ηk

will contain at least one e1. But all such simple tensors are orthogonal to Fq(Ce2),
so they are killed by P. �

Corollary 4.11. If the vectors e1 and e2 in HR are orthogonal, then masas (W (e1))
′′

and (W (e2))
′′ are not intertwinable inside 0q(HR).

General case. Let us check now if the method used for a pair of orthogonal vectors
can be applied in a more general setting. Assume now that e1 and v are two unit
vectors and write v = αe1 + βe2, where e2 ⊥ e1, α2

+ β2
= 1, and β 6= 0. We

fix now an orthonormal basis (en)n∈N of HR (if HR is finite-dimensional then this
should be a finite sequence).
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Proposition 4.12. The masas A :=W (v)′′ and B := (W (e1))
′′ are not intertwinable

(so in particular are not unitarily conjugate).

Proof. We proceed exactly as in the proof of Proposition 4.10 and also use the
same notation; note however that this time P will be the orthogonal projection onto
span{e⊗n

1 : n > 0}. The only problem is that now we do not have orthogonality.
Write ηk =

∑
j∈N a(k)j v

⊗ j. We have ‖v⊗ j
‖ ' (1/

√
1− q) j (see the third displayed

formula on page 660 of [Ricard 2005]). Let us compute v⊗ j :

v⊗ j
=

j∑
k=0

α j−kβk R j,k(e
⊗( j−k)
1 ⊗ e⊗k

2 ),

where R j,k(e
⊗( j−k)
1 ⊗ e⊗k

2 ) is equal to the sum of all simple tensors such that j − k
factors are equal to e1 and k factors are equal to e2; there are

( j
k

)
such simple tensors.

Note now that if k > n+m+ 1 then after applying x ỹ at least one e2 remains as
a factor, so the orthogonal projection P kills it. We conclude that it suffices to
perform the summation in the displayed formula above only up to j ∧ (n +m);
we call the resulting tensors ṽ⊗ j and the corresponding ηk is dubbed η̃k . Since k
is bounded, the number

( j
k

)
is polynomial in j, so if we get exponential decay

of the norm of the individual factors in the sum, the factor
( j

k

)
does not affect

the overall convergence. After neglecting the terms with k > n +m, we use the
trivial estimate ‖P(x ỹη̃k)‖ 6 C‖η̃k‖. The proof will be completed if we show
that ‖η̃k‖ converges to 0. Note now that the square of the norm of η̃k is equal
to
∑

j∈N |a
(k)
j |

2
· ‖ṽ⊗ j

‖
2. Recall that ‖ηk‖ 6 1 and ‖v⊗ j

‖ ' (1/
√

1− q) j, so the
coefficients a(k)j satisfy

∑
j∈N |a

(k)
j |

2
( 1

1−q

) j
. 1. It therefore suffices to show that

lim j→∞(1− q) j
‖ṽ⊗ j
‖

2
= 0, remembering that the vectors ηk converge weakly

to 0, so we only care about large j. We estimate the norm of ṽ⊗ j by the triangle
inequality:

‖ṽ⊗ j
‖6

j∧(n+m)∑
k=0

|α| j−k
|β|k

(
j
k

)
‖e⊗k

1 ⊗ e j−k
2 ‖.

Since k is bounded, one can easily get an estimate of the form

‖e⊗k
1 ⊗ e⊗( j−k)

2 ‖6 C(1/
√

1− q) j

(see [Ricard 2005, Remark 2]). This yields ‖ṽ⊗ j
‖6 C(1/

√
1− q) j

|α| j · j k. This
is the inequality that we wanted, i.e., we find out that (1− q) j

‖ṽ⊗ j
‖

2 is bounded
by C j k

|α| j, which converges to zero very fast, as we assumed that |α| < 1. This
finishes the proof of the proposition. �

We can now use the result to prove that the second quantisation automorphisms
are never inner, unless trivial; it extends a result of Houdayer and Shlyakhtenko in
the free case [2011, Theorem 5.1].
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Corollary 4.13. Let HR be a real Hilbert space and let U : HR→ HR be an or-
thogonal transformation. If 0q(U ) : 0q(HR)→ 0q(HR) is an inner automorphism
then U = 1.

Proof. If U is not a multiple of identity then there exists a vector v ∈HR such that
Uv is not a multiple of v. The masas A :=W (v)′′ and B := (W (Uv))′′ are conjugate
by the automorphism 0q(U ), but by Proposition 4.12 they are not conjugate by an
inner automorphism.

The only remaining case is now U =−1. We may assume that the dimension
of HR is at least 2, because otherwise 0q(HR) is commutative and any nontrivial
automorphism is outer. Pick two orthogonal vectors e1 and e2 and consider the
masas A = (W (e1))

′′ and B = (W (e2))
′′. Assume now that the automorphism

x 7→ Fq(−1)xFq(−1) is inner, so there is a unitary u ∈ 0q(HR) implementing it.
Since Fq(−1)W (e1)Fq(−1) = −W (e1), this automorphism preserves A; it also
preserves B. But the masas in question are singular, so u ∈ A ∩ B. It follows
that u� ∈ L2(A)∩ L2(B) = C�, so u has to be a multiple of identity, which is a
contradiction, because this would yield the trivial automorphism. �

Remark 4.14. The results above exhibit in particular explicitly a continuum of
nonmutually intertwinable singular masas in 0q(HR). Very recently Popa [2019]
showed the existence of such uncountable families in every separable II1-factor
(see Corollary 2.2 of that paper).

Remark 4.15. Generator masas can be also studied for the so-called mixed q-
Gaussians (see [Speicher 1993]). They are known to be masas by [Skalski and
Wang 2018], and in fact an application of methods of that paper and general results
of [Bikram and Mukherjee 2017] show that they are singular, as noted by Simeng
Wang. There seems to be however nothing known about the “radial” subalgebra in
this more general context. Is it a masa? Is it isomorphic to a generator one?
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