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We present a method to calculate intertwining operators between the under-
lying Harish-Chandra modules of degenerate principal series representations
of a reductive Lie group G and a reductive subgroup G′, and between their
composition factors. Our method describes the restriction of these operators
to the K ′-isotypic components, K ′ ⊆ G′ a maximal compact subgroup, and
reduces the representation-theoretic problem to an infinite system of scalar
equations of a combinatorial nature. For rank-one orthogonal and unitary
groups and spherical principal series representations we calculate these rela-
tions explicitly and use them to classify intertwining operators. We further
show that in these cases automatic continuity holds; i.e., every intertwiner
between the Harish-Chandra modules extends to an intertwiner between the
Casselman–Wallach completions, verifying a conjecture by Kobayashi. Alto-
gether, this establishes the compact picture of the recently studied symmetry-
breaking operators for orthogonal groups by Kobayashi and Speh, gives new
proofs of their main results, and extends them to unitary groups.
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1. Introduction

Representation theory of reductive Lie groups consists to a large extent in the study
of the structure of standard families of representations, for example principal series
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representations. Here intertwining operators, such as the classical Knapp–Stein
operators, play an important role, and they also provide important examples of
integral kernel operators appearing in classical harmonic analysis. Recently similar
operators have been introduced in [Kobayashi 2015] in connection with branching
laws, i.e., the study of how representations behave when restricted to a closed
subgroup of the original group; see also [Kobayashi and Speh 2015; Möllers et al.
2016a]. Again these are integral kernel operators, now intertwining with respect to
the subgroup, and they appear to be very natural objects, not only for the problem
of restricting representations, see [Möllers and Oshima 2015], but also for questions
in classical harmonic analysis and automorphic forms, see [Möllers and Ørsted
2017; Möllers et al. 2016c].

In this paper we shall give an alternative approach to this new class of symmetry-
breaking operators, namely one based on the Harish-Chandra module, i.e., the K -
finite vectors in the representation, in analogy with the idea of spectrum-generating
operators [Branson et al. 1996]. This gives new proofs of the main results of
[Kobayashi and Speh 2015] and generalizes these results to unitary groups. More-
over, our more algebraic framework provides an alternative proof of the discrete
spectrum in certain unitary representations.

The approach is quite general and discussed in the first part of the paper, while in
the second part we carry out all details for the real conformal case and the CR case.

1A. Symmetry-breaking operators. Let G be a reductive Lie group with compact
center and G ′ ⊆ G a reductive subgroup also with compact center. For irreducible
smooth representations π of G and τ of G ′ the space

HomG ′(π |G ′, τ )

of continuous G ′-intertwining operators between π and τ and its dimension m(π, τ )
have received considerable attention recently, in particular in connection with
multiplicity-1 statements asserting that m(π, τ ) ≤ 1 for certain pairs (G,G ′) of
classical groups such as (GL(n,R),GL(n − 1,R)), (O(p, q),O(p, q − 1)) or
(U(p, q),U(p, q − 1)); see [Sun and Zhu 2012]. A more refined problem is
to determine whether for given representations π and τ there exist nontrivial
G ′-intertwining operators π |G ′→ τ , also called symmetry-breaking operators in
[Kobayashi 2015], and to classify them. For the pair (G,G ′)= (O(1, n),O(1, n−1))
this question was completely answered in [Kobayashi and Speh 2015] in the case
where π and τ are spherical principal series representations, and in joint work
with Y. Oshima we generalized in [Möllers et al. 2016a] their construction of
symmetry-breaking operators to a large class of symmetric pairs.

Instead of studying this problem in the smooth category we attempt to apply the
“spectrum-generating method” by Branson, Ólafsson, and Ørsted [Branson et al.
1996] in the study of intertwining operators in the category of (g′, K ′)-modules,
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and verify a conjecture by Kobayashi on the automatic continuity of symmetry-
breaking operators between Harish-Chandra modules. To given smooth admissible
representations π of G and τ of G ′ one can associate the underlying Harish-
Chandra modules πHC and τHC. These are admissible (g, K )-modules, resp. (g′, K ′)-
modules, realized on the spaces of K -finite, resp. K ′-finite, vectors of π , resp. τ ,
where K ⊆G and K ′⊆G ′ are maximal compact subgroups. We consider the space

Hom(g′,K ′)(πHC|(g′,K ′), τHC)

of intertwining operators in the category of Harish-Chandra modules. The natural
restriction map

(1-1) HomG ′(π |G ′, τ )→ Hom(g′,K ′)(πHC|(g′,K ′), τHC)

is injective but in general not surjective and hence there might be more intertwining
operators in the category of Harish-Chandra modules than in the smooth category.
According to [Kobayashi 2014, Remark 10.2 (4)] it is plausible that this map is
surjective if the space (G×G ′)/ diag(G ′) is real spherical. (Note that for G ′ = G
the map is surjective by the Casselman–Wallach theorem.)

We remark that for (G,G ′)= (GL(2, F)×GL(2, F),GL(2, F)), F= R,C, and
(G,G ′)= (GL(2,C),GL(2,R)) intertwining operators between Harish-Chandra
modules were previously studied in [Loke 2001] using explicit computations.

1B. Symmetry breaking of principal series. In this paper we outline a method
to classify symmetry-breaking operators between the Harish-Chandra modules of
principal series representations induced from maximal parabolic subgroups, and
their composition factors. Let P = M AN ⊆ G be a maximal parabolic subgroup of
G such that P ′ = P ∩G ′ = M ′A′N ′ is maximal parabolic in G ′ and write a and a′

for the Lie algebras of A and A′. Fix ν ∈ a∗ such that the roots of (P, A) are given
by {ν, 2ν, . . . , qν} and do similarly for ν ′ ∈ (a′)∗. Consider the principal series
representations (smooth normalized parabolic induction)

πξ,r = IndG
P (ξ ⊗ erν

⊗ 1), τξ ′,r = IndG ′
P ′(ξ

′
⊗ er ′ν′

⊗ 1),

where ξ and ξ ′ are finite-dimensional representations of M and M ′ and r, r ′ ∈ C.
Let ξ ′ = ξ |M ′ and assume that for all K -types α of πξ,r and all K ′-types α′ of τξ ′,r ′
the multiplicity-free properties

dim HomK (α, πξ,r |K )≤ 1,

dim HomK ′(α
′, τξ ′,r ′ |K ′)≤ 1,

dim HomK ′(α|K ′, α
′)≤ 1.

hold; i.e., πξ,r is K -multiplicity-free, τξ ′,r ′ is K ′-multiplicity-free, and every K -type
in πξ,r is K ′-multiplicity-free.
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Let T : (πξ,r )HC→ (τξ ′,r ′)HC be a (g′, K ′)-intertwining operator; then T is in
particular K ′-intertwining. Consider a pair (α;α′) consisting of a K -type α in
πξ,r and a K ′-type α′ in τξ ′,r ′ which also occurs in α|K ′ . By the multiplicity-
free assumptions the restriction of T to the K ′-type α′ inside the K -type α in
πξ,r maps to the K ′-type α′ in τξ ′,r ′ and is unique up to a scalar tα,α′ ∈ C (see
Section 3A for the precise definition). This encodes every K ′-intertwining operator
T : (πξ,r )HC→ (τξ ′,r ′)HC into scalars tα,α′ . Using the method of spectrum-generating
operators by Branson, Ólafsson, and Ørsted [Branson et al. 1996] we prove:

Theorem A (see Theorem 3.4 and Corollary 3.6). Let T : (πξ,r )HC→ (τξ ′,r ′)HC be
a K ′-intertwining operator given by scalars tα,α′ . Then T is (g′, K ′)-intertwining if
and only if for all pairs (α;α′) and every K ′-type β ′ the following relation holds:

(1-2)
∑
β

(α;α′)↔(β;β ′)

λ
β,β ′

α,α′ (σβ − σα + 2r)tβ,β ′ = (σ ′β ′ − σ
′

α′ + 2r ′)tα,α′ .

Here we write (α;α′)↔ (β;β ′) if the K ′-type β ′ inside the K -type β in πξ,r
can be reached from α′ inside α by a single application of πξ,r (g′) for generic
r ∈ C (see Section 3B for details). Further, σα and σ ′α′ as well as λβ,β

′

α,α′ are certain
constants depending only on the representations ξ and ξ ′ (see Sections 2C and 3C
for their definition).

We note that the relations characterizing intertwining operators depend linearly
on the induction parameters r and r ′ and turn the representation-theoretic problem
of classifying symmetry-breaking operators into a combinatorial problem. We also
remark that Theorem A admits a slight modification characterizing also intertwining
operators between any subquotients of πξ,r and τξ ′,r ′ (see Remark 3.5).

1C. Examples. For the two pairs (G,G ′) = (O(1, n),O(1, n − 1)), n ≥ 3, and
(U(1, n),U(1, n− 1)), n ≥ 2, we explicitly write down the linear relations for the
scalars tα,α′ characterizing intertwining operators in the case where ξ = 1 is the
trivial representation (see Theorems 4.1 and 5.1), and use these relations to compute
multiplicities. For the statements we abbreviate πr = π1,r and τr ′ = τ1,r ′ . If V is a
(g, K )-module and W a (g′, K ′)-module we write

m(V,W)= dim Hom(g′,K ′)(V|(g′,K ′),W).

We note that much of the notation used here follows [Kobayashi and Speh 2015].

Theorem B (see Theorems 4.2(1) and 5.2(1)).
(1) For (G,G ′)= (O(1,n),O(1,n−1)) we have

m((πr )HC, (τr ′)HC)=

{
1 for (r, r ′) ∈ C2

\ Leven,
2 for (r, r ′) ∈ Leven,

where Leven =
{(
−

n−1
2 − i,−n−2

2 − j
)
: i, j ∈ N, i − j ∈ 2N

}
.
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(2) For (G,G ′)= (U(1, n),U(1, n− 1)) we have

m((πr )HC, (τr ′)HC)=

{
1 for (r, r ′) ∈ C2

\ L ,
2 for (r, r ′) ∈ L ,

where L = {(−n− 2i,−(n− 1)− 2 j) : i, j ∈ N, j ≤ i}.

Multiplicity 2 does not contradict the multiplicity-1 statements for the above
pairs (G,G ′), because for (r, r ′) ∈ Leven, resp. L , both representations πr and
τr ′ are reducible. In the case (G,G ′) = (O(1, n),O(1, n− 1)) the representation
(πr )HC is reducible if and only if r =±

( n−1
2 + i

)
, i ∈ N, its composition factors

consisting of a finite-dimensional subrepresentation F(i) and an infinite-dimensional
unitarizable quotient T (i). Similarly, in the case (G,G ′)= (U(1, n),U(1, n− 1))
the representation (πr )HC is reducible if and only if r =±(n+ 2i), i ∈ N, and its
composition factors consist of a finite-dimensional subrepresentation F(i), two
proper subquotients T±(i), and a unitarizable quotient T (i). Write F ′( j), T ′

±
( j)

and T ′( j) for the corresponding composition factors of (τr ′)HC at r ′ =−n−2
2 − j ,

resp. r ′ =−(n− 1)− 2 j .

Theorem C (see Theorems 4.2(2) and 5.2(2)).
(1) For (G,G ′)= (O(1, n),O(1, n− 1)), the multiplicities m(V,W) are given by

V↓ W→ F ′( j) T ′( j)

F(i) 1 0
T (i) 0 1

for i − j ∈ 2N,

V↓ W→ F ′( j) T ′( j)

F(i) 0 0
T (i) 1 0

otherwise.

(2) For (G,G ′)= (U(1, n),U(1, n− 1)), the multiplicities m(V,W) are given by

V↓ W→ F ′( j) T ′
+
( j) T ′

−
( j) T ′( j)

F(i) 1 0 0 0
T+(i) 0 1 0 0
T−(i) 0 0 1 0
T (i) 0 0 0 1

for j ≤ i ,

V↓ W→ F ′( j) T ′
+
( j) T ′

−
( j) T ′( j)

F(i) 0 0 0 0
T+(i) 0 0 0 0
T−(i) 0 0 0 0
T (i) 1 0 0 0

otherwise.
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We further construct a basis of Hom(g′,K ′)((πr )HC|(g′,K ′), (τr ′)HC) for all r, r ′ ∈
C by solving the relations (1-2) explicitly. More precisely, we find a family
(tα,α′(r, r ′))α,α′ consisting of rational functions in r, r ′ ∈ C that solve the relations
(1-2). Renormalizing the functions tα,α′(r, r ′) gives a family (t (1)α,α′(r, r

′))α,α′ of
holomorphic functions in r, r ′ ∈C satisfying the relations (1-2). By Theorem A this
constructs intertwining operators T (1)(r, r ′) depending holomorphically on r, r ′ ∈C.
We show that

T (1)(r, r ′)= 0 if and only if (r, r ′) ∈ Leven, resp. L .

For each (r, r ′) ∈ Leven, resp. L , the holomorphic function T (1)(r, r ′) can be renor-
malized along two different affine complex lines through (r, r ′), and one obtains
two different nontrivial operators T (2)(r, r ′), T (3)(r, r ′) for every (r, r ′) ∈ Leven,
resp. L (see Propositions 4.6 and 5.6 for details).

Theorem D (see Theorems 4.9 and 5.8 and Remarks 4.10 and 5.9). For the pair
(G,G ′)= (O(1, n),O(1, n− 1)), resp. (U(1, n),U(1, n− 1)), we have

Hom(g′,K ′)((πr )HC|(g′,K ′), (τr ′)HC)

=

{
CT (1)(r, r ′) for (r, r ′) ∈ C2

\L,
CT (2)(r, r ′)⊕CT (3)(r, r ′) for (r, r ′) ∈ L,

where L= Leven, resp. L. Moreover, by composing T (1)(r, r ′) with embeddings and
quotient maps for the composition factors of πr and τr ′ , and renormalizing along
certain affine complex lines, one can obtain every intertwining operator between
arbitrary composition factors of (πr )HC and (τr ′)HC.

The previous theorem shows that basically all the information about intertwining
operators between spherical principal series of G and G ′ and their composition
factors is contained in the single holomorphic family T (1)(r, r ′) of intertwiners.

Finally we turn to the question of whether every intertwining operator between
the Harish-Chandra modules (πr )HC and (τr ′)HC lifts to an intertwining operator
between the smooth globalizations πr and τr ′ , i.e., the question of whether (1-1) is
an isomorphism.

Theorem E (see Corollaries 4.12 and 5.11). For the pairs (G,G ′) = (O(1, n),
O(1, n−1)) and (U(1, n),U(1, n−1)) every intertwining operator between (πr )HC

and (τr ′)HC (resp. any of their subquotients) extends to a continuous intertwining
operator between πr and τr ′ (resp. the Casselman–Wallach completions of the
subquotients). In particular, the injective map (1-1) is surjective for all spherical
principal series representations and their subquotients.

This verifies Kobayashi’s conjecture [2014, Remark 10.2 (4)] in the above cases.
For (G,G ′)= (O(1, n),O(1, n−1)) the analogues of Theorems B, C and D in the

smooth category, i.e., for πr and τr ′ instead of (πr )HC and (τr ′)HC, were established
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in [Kobayashi and Speh 2015] using analytic techniques. With Theorem E we
obtain a new proof of their results as well as the corresponding results for (G,G ′)=
(U(1, n),U(1, n− 1)).

1D. Application. For (G,G ′)= (O(1, n),O(1, n− 1)) we further present an ap-
plication of the classification of symmetry-breaking operators. In Theorem 4.14
we use the explicit formula for the numbers tα,α′ to construct discrete components
in the restriction of certain unitary representations of G to G ′. The representations
in question are either spherical complementary series representations (i.e., those
πr which are unitarizable) or the unitarizable quotients T (i). This extends and
gives new proofs of previous results of [Speh and Venkataramana 2011; Zhang
2015; Kobayashi and Speh 2015; Möllers and Oshima 2015] (see Remark 4.15).
Analogous results hold for (G,G ′)= (U(1, n),U(1, n− 1)).

1E. Structure of the paper. In Section 2 we fix the notation for principal series
representations and recall the method of spectrum-generating operators [Branson
et al. 1996]. This method is applied in Section 3 to obtain an equivalent characteri-
zation of intertwining operators in the category of (g′, K ′)-modules by means of
scalar identities. After this quite general approach, we study in Section 4 the special
case (G,G ′)= (O(1, n),O(1, n− 1)) in detail and give some applications. Finally,
in Section 5 we repeat the same procedure for (G,G ′) = (U(1, n),U(1, n − 1))
providing a new classification of symmetry-breaking operators in this example.
Appendix A contains some basic properties of Gegenbauer and Jacobi polynomials
which are used in Appendix B to describe explicit branching laws for real and
complex spherical harmonics.

Throughout we will use the notation N= {0, 1, 2, . . .}.

2. Preliminaries

We fix the necessary notation, discuss induced representations and the method of
the spectrum-generating operator by Branson, Ólafsson, and Ørsted [Branson et al.
1996].

2A. Compatible maximal parabolic subgroups. Let G be a reductive Lie group
with compact center and G ′ ⊆ G a reductive subgroup also with compact center.
Denote by g and g′ the Lie algebras of G and G ′. Choose a maximal parabolic
subgroup P ⊆G with the property that P ′= P∩G ′ is maximal parabolic in G ′ and
write P = M AN and P ′ = M ′A′N ′ for the Langlands decompositions of P and P ′.
We fix a Cartan involution θ of G which leaves G ′ and the Levi subgroups M A and
M ′A′ invariant. Write K = Gθ and K ′ = (G ′)θ for the corresponding fixed point
subgroups of G and G ′ which are maximal compact and denote by k and k′ their
Lie algebras. Let s and s′ be the (−1)-eigenspaces of θ on g and g′ so that

g= k⊕ s, g′ = k′⊕ s′.
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Example 2.1. (1) Let (G,G ′) be one of the pairs

(O(1, n),O(1, n− 1)), (U(1, n),U(1, n− 1)),

(Sp(1, n),Sp(1, n− 1)), (F4(−20),Spin(8, 1)).

Then one can choose the minimal parabolic P such that P ′ = P ∩G ′ is minimal
parabolic in G ′. Since G and G ′ are of rank 1, minimal parabolics are maximal and
hence satisfy our assumptions.

(2) Let
(G,G ′)= (SL(n,R),SL(n− 1,R)),

with G ′ embedded in G as the upper-left block. Then all standard maximal parabol-
ics P = Pp,q = (S(GL(p,R)×GL(q,R)))nRp×q corresponding to the partition
n = p + q with q > 1 satisfy the assumptions. In this case P ′ = P ∩ G ′ is the
standard maximal parabolic of G ′ corresponding to the partition n−1= p+(q−1).

2B. Principal series representations. For any finite-dimensional representation
(ξ, Vξ ) of M and any ν ∈ a∗

C
, where a denotes the Lie algebra of A, consider the

induced representation IndG
P (ξ ⊗ eν ⊗ 1) (normalized smooth parabolic induction).

This representation is realized on the space

E(G; ξ, ν)= {F ∈ C∞(G, Vξ ) : F(gman)=a−ν−ρξ(m)−1 F(g)
for all g ∈ G, man ∈ M AN },

where ρ = 1
2 tr ad |n ∈ a∗. The group G acts on E(G; ξ, ν) by the left-regular action.

Since G = KP, restriction to K is an isomorphism E(G; ξ, ν)→ E(K ; ξ |M∩K ),
where

E(K ; ξ |M∩K )={F ∈C∞(K , Vξ ) :F(km)=ξ(m)−1 F(k) for all k∈K ,m∈M∩K }.

Let πξ,ν denote the action of G on E(K ; ξ |M∩K ) which makes this isomorphism
G-equivariant. Then (πξ,ν, E(K ; ξ |M∩K )) is a smooth admissible representation
of G. The restriction of πξ,ν to K is simply the left-regular representation of K on
E(K ; ξ |M∩K ).

Corresponding to the smooth representation πξ,ν we consider its underlying
(g, K )-module (πξ,ν)HC realized on the space E = E(K ; ξ |M∩K )K of K -finite
vectors. Abusing notation we denote the action of the Lie algebra g on E also
by πξ,ν . Then the restriction of (πξ,ν)HC to K decomposes as

E =
⊕
α∈K̂

E(α),

with E(α) being the α-isotypic component in E . Note that E and hence its decompo-
sition into K -isotypic components is independent of ν ∈ a∗

C
and only depends on ξ .
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Similarly we consider τξ ′,ν′ = IndG ′
P ′(ξ

′
⊗ eν

′

⊗ 1) for a finite-dimensional repre-
sentation (ξ ′, Vξ ′) of M ′ and an element ν ′ ∈ (a′)∗

C
, and its underlying (g′, K ′)-

module (τξ ′,ν′)HC realized on the space E ′ = E(K ′; ξ ′|K ′∩M ′)K ′ . As above we
decompose the restriction of (τξ ′,ν′)HC to K ′

E ′ =
⊕
α′∈K̂ ′

E ′(α′),

with E ′(α′) being the α′-isotypic component.

2C. The spectrum-generating operator. Since P is a maximal parabolic subgroup
we have dim a= 1 and we can choose H ∈ a such that the eigenvalues of ad(H) on
the Lie algebra n of N are 1, . . . , q. Define ν ∈ a∗ by ν(H) = 1; then 6(g, a) =
{±ν, . . . ,±qν}. We abbreviate πξ,r = πξ,rν for r ∈ C.

Let B be an invariant nondegenerate symmetric bilinear form on g normalized
by B(H, H)= 1. For 1≤ j ≤ q let

k j = k∩ (g jν + g− jν).

Choose a basis (X j,k)k of k j , denote by (X ′j,k)k the corresponding dual basis with
respect to B and put

Cas j =
∑

k

X j,k X ′j,k .

Then Cas j is an element of U(k), the universal enveloping algebra of k. Clearly
the elements Cas j ∈ U(k) do not depend on the choice of the corresponding bases.
Following [Branson et al. 1996] we define the spectrum-generating operator as the
second-order element in U(k) given by

P =
q∑

j=1

j−1Cas j .

We remark that even though the spaces k j do not form subalgebras the operator P
can be written as a rational linear combination of Casimir elements of subalgebras
of k; see [Branson et al. 1996, Remark 2.4]. Since the left-regular representation
of K on E commutes with the right-action RP of P the restriction of RP to each
isotypic component E(α) is a linear transformation

σα = σα,ξ |M∩K ∈ End E(α)

which only depends on ξ but not on ν.
Similarly we define H ′ ∈ a′, ν ′ ∈ (a′)∗ and choose an invariant nondegenerate

symmetric bilinear form B ′ on g′ with B ′(H ′, H ′)= 1. Let P ′ denote the spectrum-
generating operator for G ′ and write σ ′α′ ∈ End E ′(α′) for the restriction of RP ′ to
the isotypic component E ′(α′).
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2D. Reduction to the cocycle. For each X ∈ gC we define a scalar-valued function
ω(X) on K by

ω(X)(k)= B(Ad(k−1)X, H), k ∈ K ,

where we extend B to a symmetric C-bilinear form on gC. This defines a K -
equivariant map

ω : gC→ E(K ; 1)∼= C∞(K/(M ∩ K )),

where 1 is the trivial M ∩ K -representation. The map ω is called a cocycle. Note
that ω vanishes on kC. Let m(ω(X)) denote the multiplication operator

E→ E, ϕ 7→ ω(X)ϕ.

For α, β ∈ K̂ with E(α), E(β) 6= 0 we let

ωβα(X)= projE(β) ◦m(ω(X))|E(α), X ∈ gC,

where projE(β) denotes the projection from E onto E(β). We can now express the
differential representation πξ,r of g on E in terms of the cocycle ω and the maps σα:

Theorem 2.2 [Branson et al. 1996, Corollary 2.6]. For X ∈ sC and any α, β ∈ K̂
with E(α), E(β) 6= 0 we have

(2-1) projE(β) ◦πξ,r (X)|E(α) =
1
2(σβω

β
α(X)−ω

β
α(X)σα + 2rωβα(X)).

Similarly we denote by ω′(X) the corresponding cocycle for G ′ and by ωβ
′

α′ (X)
the corresponding map from E ′(α′) to E ′(β ′). Then we obtain for X ∈ s′

C
and any

α′, β ′ ∈ K̂ ′ with E ′(α′), E ′(β ′) 6= 0 the analogous identity

(2-2) projE ′(β ′) ◦ τξ ′,r ′(X)|E ′(α′) =
1
2(σ
′

β ′ω
β ′

α′ (X)−ω
β ′

α′ (X)σ
′

α′ + 2r ′ωβ
′

α′ (X)).

3. The compact picture of symmetry-breaking operators

Consider the admissible (g, K )-module (πξ,r )HC. Then its restriction (πξ,r )HC|(g′,K ′)

is a (g′, K ′)-module which is in general not admissible anymore. However, we can
still study the space

Hom(g′,K ′)((πξ,r )HC|(g′,K ′), (τξ ′,r ′)HC)

of intertwining operators between the (g′, K ′)-modules. In this section we use
Theorem 2.2 to characterize these intertwining operators in terms of their action on
the K ′-isotypic components in the K -types E(α).
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3A. Relating K-types and K ′-types. From now on we assume that both E and E ′

are multiplicity-free; i.e.,

(MF1) dim HomK (α, E), dim HomK ′(α
′, E ′)≤ 1 for all α ∈ K̂ , α′ ∈ K̂ ′.

This implies by Schur’s lemma that the maps σα and σ ′α′ are scalars which we denote
by the same symbols. We further assume that each K ′-type E ′(α′) 6= 0 occurs at
most once in each K -type E(α) 6= 0; i.e.,

(MF2) dim HomK ′(E(α), E ′(α′))≤ 1 for all E(α), E ′(α′) 6= 0.

Each K -isotypic component E(α) decomposes under the action of K ′ ⊆ K into

E(α)=
⊕
α′∈K̂ ′

E(α;α′),

where E(α;α′) is the α′-isotypic component in E(α). Then our assumptions imply
that if E(α;α′), E ′(α′) 6= 0 then E(α;α′) ∼= E ′(α′). In all such cases we fix an
isomorphism

Rα,α′ : E(α;α′)−→∼ E ′(α′).

To simplify notation, let Rα,α′ = 0 whenever E ′(α′)= 0, so that we have surjective
K ′-equivariant maps Rα,α′ : E(α;α′)→ E ′(α′) for all E(α;α′) 6= 0.

In applications, it is often useful to choose a natural isomorphism E(α;α′) ∼=
E ′(α′) relating K -types and K ′-types. For this we study the restriction of functions
from K to K ′. Assume for simplicity that ξ ′ = ξ |M ′ . In this case we can consider
the restriction operator

rest : E→ E ′, ϕ 7→ ϕ|K ′ .

This operator is K ′-equivariant and hence, if rest is nonzero on some K ′-type
E(α;α′) in E then rest |E(α;α′) is an isomorphism onto E ′(α′) by Schur’s lemma.
However, rest might also vanish on some E(α;α′) and therefore we need to combine
the restriction with differentiation in the normal direction.

For this we write
k= (m∩ k)⊕ q,

where q is the orthogonal complement of (m∩ k) in k with respect to the invariant
form B. Note that M ∩ K acts on q. Similarly

k′ = (m′ ∩ k′)⊕ q′.

Let q′′ denote the orthogonal complement of q′ in q; then

q= q′⊕ q′′.
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We note that since M ∩ K acts on q and M ′∩ K ′ acts on q′, the group M ′∩ K ′ also
acts on q′′. We then have

k/(m∩ k)∼= k′/(m′ ∩ k′)⊕ q′′;

i.e., q′′ identifies with the normal space of K ′/(M ′ ∩ K ′) in K/(M ∩ K ) at the
base point. Denote by S(q′′) the symmetric algebra over q′′ and by S(q′′)M ′∩K ′

its (M ′ ∩ K ′)-invariants. Note that S(q′′)M ′∩K ′ acts naturally from the right by
differential operators on functions defined on a small neighborhood of K ′/(M ′∩K ′)
in K/(M ∩ K ).

Lemma 3.1. Let (α, α′) ∈ K̂ × K̂ ′ with E(α;α′) 6= 0 and D ∈ S(q′′)M ′∩K ′. Then
the map rest ◦ D : E→ E ′ is K ′-equivariant. In particular,

(rest ◦ D)|E(α;α′) : E(α;α′)→ E ′(α′)

is an isomorphism whenever it is nonzero.

Remark 3.2. Of course one could as well consider other irreducible M ′ ∩ K ′-
subrepresentations of S(q′′) than the trivial one. In fact, using an idea of [Ørsted
and Vargas 2004] one can construct an injective K ′-equivariant map

E = C∞(K ×M∩K ξ)K →

∞⊕
m=0

C∞(K ′×M ′∩K ′ (ξ ⊗ Sm(q′′)))K ′

and use it to relate K -types and K ′-types of the induced representations πξ,r and
τξ ′,r ′ for ξ ′|M ′∩K ′ any subrepresentation of ξ |M ′∩K ′ ⊗ S(q′′). Lemma 3.1 can then
be viewed as the special case ξ ′ = ξ ⊗CD, where D ∈ S(q′′)M ′∩K ′ and hence CD
is the trivial M ′ ∩ K ′-representation.

3B. Intertwining operators between Harish-Chandra modules. Let V ⊆ E be a
(g′, K ′)-submodule of (πξ,r )HC; i.e., V is stable under πξ,r (g′) and stable under
πξ,r (K ′). A linear map T : V→ E ′ is called an intertwining operator for πξ,r and
τξ ′,r ′ if for every v ∈ V we have

(T ◦ πξ,r (X))v = (τξ ′,r ′(X) ◦ T )v for all X ∈ g′,(3-1)

(T ◦ πξ,r (k))v = (τξ ′,r ′(k) ◦ T )v for all k ∈ K ′.(3-2)

In particular an intertwining operator commutes by (3-2) with the action of K ′ and
hence restricts to a map Tα,α′ = T |E(α;α′) : E(α;α′)→ E ′(α′) for all E(α;α′)⊆ V . If
E ′(α′)= 0 then clearly Tα,α′ = 0. Recall that we fixed in Section 3A K ′-equivariant
maps Rα,α′ : E(α;α′)→ E ′(α′); then by Schur’s lemma Tα,α′ is a scalar multiple
of Rα,α′ . We write

(3-3) Tα,α′ = tα,α′ · Rα,α′ for all 0 6= E(α;α′)⊆ V,

with tα,α′ ∈ C.
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Restricting (3-1) to E(α;α′) and composing with the projection projE ′(β ′) we
obtain

(3-4) projE ′(β ′) ◦ T ◦ πξ,r (X)|E(α;α′) = projE ′(β ′) ◦ τξ ′,r ′(X) ◦ T |E(α;α′).

To simplify both sides we let

ω
β,β ′

α,α′ : s
′

C⊗ E(α;α′)→ E(β;β ′), ω
β,β ′

α,α′ (X)= projE(β;β ′) ◦m(ω(X))|E(α;α′),

where we view ω
β,β ′

α,α′ (X), X ∈ s′, as a linear map E(α;α′) → E(β;β ′). Write
(α;α′)→ (β;β ′) if ωβ,β

′

α,α′ 6= 0. The following lemma is proved along the same
lines as [Branson et al. 1996, Lemma 4.4 (c)] and justifies the use of the notation
(α;α′)↔ (β;β ′) instead of (α;α′)→ (β;β ′):

Lemma 3.3. For an orthonormal basis (Xk)k ⊆ s′ put

sβ,β
′

α,α′ =

∑
k

ω
α,α′

β,β ′(Xk) ◦ ω
β,β

α,α′(Xk).

Then sβ,β
′

α,α′ is independent of the choice of (Xk)k and

(α;α′)→ (β;β ′) ⇐⇒ sβ,β
′

α,α′ 6= 0 ⇐⇒ (β;β ′)→ (α;α′).

Now, on the left-hand side of the identity (3-4) we can express πξ,r (X)|E(α;α′) in
terms of the cocycle using (2-1):

projE ′(β ′) ◦ T ◦ πξ,r (X)|E(α;α′) =
∑
β

(α;α′)↔(β;β ′)

T ◦ projE ′(β;β ′) ◦πξ,r (X)|E(α;α′)

=
1
2

∑
β

(α;α′)↔(β;β ′)

(σβ−σα+2r)·(T ◦ ωβ,β
′

α,α′ (X))

=
1
2

∑
β

(α;α′)↔(β;β ′)

(σβ−σα+2r)tβ,β ′ ·(Rβ,β ′◦ ω
β,β ′

α,α′ (X)).

Similarly we use (2-2) to obtain for the right-hand side

projE ′(β ′) ◦ τξ ′,r ′(X) ◦ T |E(α;α′) = 1
2(σ
′

β ′ − σ
′

α′ + 2r ′)tα,α′ · (ω
β ′

α′ (X) ◦ Rα,α′).

Inserting both expressions into the initial equation (3-4) we obtain:

Theorem 3.4. Assume (MF1) and (MF2) and fix Rα,α′ : E(α;α′)→ E ′(α′) as in
Section 3A. Let V ⊆ E be a (g′, K ′)-submodule of (πξ,r )HC. A linear map T :V→ E ′

is an intertwining operator for πξ,r and τξ ′,r ′ if and only if

T |E(α;α′) = tα,α′ · Rα,α′ for all 0 6= E(α;α′)⊆ V,
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and for all 0 6= E(α;α′)⊆ V and E ′(β ′) 6= 0 we have

(3-5)
∑
β

(α;α′)↔(β;β ′)

(σβ − σα + 2r)tβ,β ′ · (Rβ,β ′ ◦ ω
β,β ′

α,α′ )

= (σ ′β ′ − σ
′

α′ + 2r ′)tα,α′ · (ω
β ′

α′ ◦ Rα,α′).

Remark 3.5. Through the formulation of Theorem 3.4 for any submodule V of
(πξ,r )HC one can also use (3-5) to describe intertwining operators from subquotients
of (πξ,r )HC to (τξ ′,r ′)HC. In fact, if V ′ ⊆ V ⊆ E are (g, K )-submodules of (πξ,r )HC

then any intertwining operator V/V ′→ E ′ for the actions πξ,r and τξ ′,r ′ is given by
an intertwining operator V→ E ′ which vanishes on V ′.

A little more complicated is the description of intertwining operators into sub-
quotients of (τξ ′,r ′)HC. Let W ′ ⊆ W ⊆ E ′ be (g′, K ′)-submodules of (τξ ′,r ′)HC

and decompose W = W ′ ⊕W ′′ as K ′-modules. Then a close examination of
the arguments above shows that any operator V→W/W ′ which intertwines the
actions of πξ,r and τξ ′,r ′ is given by a K ′-intertwining linear map T : V→W ′′ with
T |E(α;α′) = tα,α′ · Rα,α′ such that the relations (3-5) hold for any 0 6= E(α;α′)⊆ V
and 0 6= E ′(β ′)⊆W ′′. Note that tα,α′ = 0 whenever E ′(α′)*W ′′.

3C. Scalar identities. To extract from (3-5) information on the constants tα,α′ we
have to transform it into a scalar identity. For this we assume additionally that

(MF3) dim HomK ′(s
′

C⊗α
′, β ′)≤ 1 for all 0 6= E(α;α′)⊆ V, E(β ′) 6= 0.

This implies that the maps

η
β,β ′

α,α′ = Rβ,β ′ ◦ ω
β,β ′

α,α′ : s
′

C⊗ E ′(α, α′)→ E ′(β ′)

are proportional to each other. If further the map

η
β ′

α,α′ = ω
β ′

α′ ◦ Rα,α′ : s′C⊗ E ′(α;α′)→ E ′(β ′)

is nonzero then there exist constants λβ,β
′

α,α′ 6= 0 such that

η
β,β ′

α,α′ = λ
β,β ′

α,α′η
β ′

α,α′ .

We call λβ,β
′

α,α′ the proportionality constants. In this case (3-5) simplifies:

Corollary 3.6. Under the multiplicity-freeness assumption (MF3) the identity (3-5)
is equivalent to

(3-6)
∑
β

(α;α′)↔(β;β ′)

λ
β,β ′

α,α′ (σβ − σα + 2r)tβ,β ′ = (σ ′β ′ − σ
′

α′ + 2r ′)tα,α′ .

Whereas the constants σα and σ ′α′ are easy to calculate using the highest weights
of α and α′, see [Branson et al. 1996], we do not have a general method to find the
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constants λβ,β
′

α,α′ . Of course one can always try to compute the action of the cocycle
on explicit K -finite vectors and decompose the result, but this turns out to be quite
involved already in low-rank cases. However, in some special cases the following
information is enough to determine λβ,β

′

α,α′ :

Lemma 3.7. Assume that the elements H ∈a and H ′ ∈a′ coincide. Let E(α;α′) 6=0
and E ′(β ′) 6= 0 and assume that Rα,α′ = Rβ,β ′ = rest for all β with (α;α′)↔ (β;β ′).
Then ∑

β
(α;α′)↔(β;β ′)

λ
β,β ′

α,α′ = 1,
∑
β

(α;α′)↔(β;β ′)

(σβ − σα)λ
β,β ′

α,α′ = σ
′

β ′ − σ
′

α′ + 2(ρ− ρ ′).

Here ρ and ρ ′ are identified with the numbers ρ(H) and ρ ′(H ′).

Proof. For the first identity we note that H = H ′ implies ω(X)|K ′ = ω′(X) for all
X ∈ s′. Hence

Rβ,β ′ ◦ ω(X)= ω′(X) ◦ Rα,α′ for all X ∈ g′,

which implies

η
β ′

α,α′ =

∑
β

(α;α′)↔(β;β ′)

η
β,β ′

α,α′

and the claimed identity follows. For the second identity note that for r+ρ= r ′+ρ ′

the restriction operator rest : E→ E ′ is intertwining for πξ,r and τξ ′,r ′ . Hence the
identity (3-6) is satisfied with tα,α′ = 1 for all E(α;α′) 6= 0. Eliminating r and r ′

gives the desired formula. �

Remark 3.8. The knowledge of any intertwining operator T : (πξ,r )HC→ (τξ ′,r ′)HC

and the corresponding numbers tα,α′ provides an additional identity for the constants
λ
β,β ′

α,α′ just as in the proof of Lemma 3.7 for the restriction operator T = rest with
r + ρ = r ′+ ρ ′ and tα,α′ = 1.

3D. Automatic continuity. In this section we study the question of whether (g′, K ′)-
intertwining operators (πξ,r )HC → (τξ ′,r ′)HC between Harish-Chandra modules
extend to G ′-intertwining operators πξ,r→τξ ′,r ′ between the smooth representations,
i.e., whether the natural injective map

HomG ′(πξ,r |G ′, τξ ′,r ′)→ Hom(g′,K ′)((πξ,r )HC|(g′,K ′), (τξ ′,r ′)HC)

is an isomorphism. It is expected, see [Kobayashi 2014, Remark 10.2 (4)], that this
is true if the space (G ×G ′)/ diag(G ′) is real spherical. Statements of this type
are also known as “automatic continuity theorems” since they imply continuity
with respect to the smooth topologies of every intertwining operator between the
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algebraic Harish-Chandra modules. We provide a criterion to show automatic
continuity in the context of this paper.

Fix a Haar measure dk ′ on K ′. Then the nondegenerate bilinear pairing

E(K ′; ξ ′|M ′∩K ′)× E(K ′; ξ ′∨|M ′∩K ′)→ C, ( f1, f2) 7→

∫
K ′
〈 f1(k ′), f2(k ′)〉 dk ′

is invariant under τξ ′,r ′⊗τξ ′∨,−r ′ for any r ′ ∈C, where ξ ′∨ denotes the contragredient
representation of ξ ′ on the dual space V∨ξ ′ . Using this pairing we identify τξ ′,r ′ with
a subrepresentation of the contragredient representation τ∨ξ ′∨,−r ′ of τξ ′∨,−r ′ , which
is realized on the topological dual space E(K ′; ξ ′∨|M ′∩K ′)

∨ carrying the weak-?
topology.

Lemma 3.9. Every continuous G ′-intertwining operator T : πξ,r → τ∨ξ ′∨,−r ′ maps
into τξ ′,r ′ and defines a continuous G ′-intertwining operator T : πξ,r → τξ ′,r ′ .

Proof. Let T : E(K ; ξ |M∩K )→ E(K ′; ξ ′∨|M ′∩K ′)
∨ be a continuous linear operator

which is G ′-intertwining for πξ,r and τ∨ξ ′∨,−r ′ . Then T induces a continuous linear
functional

T : E(K ; ξ |M∩K ) ⊗̂ E(K ′; ξ ′∨|M ′∩K ′)→ C,

which is invariant under the diagonal action of K ′. The left-hand side is naturally
isomorphic to E(K × K ′; (ξ ⊗ ξ ′∨)|(M∩K )×(M ′∩K ′)). Composing with the surjective
continuous linear operator

[ : C∞(K × K ′; Vξ ⊗ V∨ξ ′ )→ E(K × K ′; (ξ ⊗ ξ ′∨)|(M∩K )×(M ′∩K ′)),

[F(k, k ′)=
∫

M∩K

∫
M ′∩K ′

(ξ(m)⊗ ξ ′(m′)∨)F(km, k ′m′) dm′ dm,

we obtain a functional

KT := T ◦ [ : C∞(K × K ′; Vξ ⊗ V∨ξ ′ )→ C,

i.e., a distribution on K×K ′ with values in Vξ ⊗ V∨ξ ′ . (This is basically the Schwartz
kernel of the operator T, avoiding distribution sections of vector bundles.) The
distribution KT is invariant under the diagonal action of K ′ from the left and
equivariant under the action of (M ∩ K )× (M ′ ∩ K ′) from the right. We define a
distribution K̃T on K with values in Vξ ⊗ V∨ξ ′ , i.e., a continuous linear functional
on C∞(K ; Vξ ⊗ V∨ξ ′ ), by

〈K̃T , φ〉 := 〈KT (x, x ′), φ(x ′−1x)〉.
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Then for φ ∈ E(K ; ξ |M∩K ) and ψ ∈ E(K ′; ξ ′∨|M ′∩K ′) we have

〈Tφ,ψ〉= 〈KT ,φ⊗ψ〉=

∫
K ′
〈KT (x, x ′),φ(k ′x)⊗ψ(k ′x ′)〉dk ′

=

〈
KT (x, x ′),

∫
K ′
φ(k ′x)⊗ψ(k ′x ′)dk ′

〉
=

〈
KT (x, x ′),

∫
K ′
φ(k ′x ′−1x)⊗ψ(k ′)dk ′

〉
=

∫
K ′
〈KT (x, x ′),φ(k ′x ′−1x)⊗ψ(k ′)〉dk ′=

∫
K ′
〈K̃T ,φ(k ′ ·)⊗ψ(k ′)〉dk ′.

This implies that for any λ ∈ V∨ξ ′

〈λ, Tφ(k ′)〉 = 〈K̃T , φ(k ′ · )⊗ λ〉,

which shows that Tφ ∈ C∞(K ′; Vξ ′). That Tφ ∈ E(K ′; ξ ′|M ′∩K ′) easily follows
from the equivariance property of K̃T with respect to M ∩ K and M ′ ∩ K ′. Finally,
continuity of the thus defined operator T : πξ,r → τξ ′,r ′ follows from the continuity
of the functional K̃T on C∞(K ; Vξ ⊗ V∨ξ ′ ) and the proof is complete. �

Fix invariant inner products on the representation ξ |M∩K , resp. ξ ′|M ′∩K ′ , and
let ‖ · ‖, resp. ‖ · ‖′, denote the corresponding L2-norm on L2(K ×M∩K ξ), resp.
L2(K ′×M ′∩K ′ ξ

′). These norms induce norms on each K ′-type E(α;α′) resp. E ′(α′).
Write ‖Rα,α′‖L2→L2 for the operator norm of Rα,α′ : E(α;α′)→ E ′(α′) with respect
to the L2-norms.

For any F ∈ L2(K ×M∩K ξ) write

F =
∑
α∈K̂

Fα,

with Fα ∈ E(α). Then the sequence {‖Fα‖}α belongs to `2(K̂ ), the space of square-
summable sequences. We identify the set K̂ , resp. K̂ ′, with the corresponding
weight lattice so that it becomes a subset of a finite-dimensional vector space.
Denote by | · |, resp. | · |′, a norm on this finite-dimensional vector space. It is known
that F ∈E(K ; ξM∩K ) if and only if the sequence {‖Fα‖}α belongs to s(K̂ ), the space
of rapidly decreasing sequences, i.e., those that are still bounded if multiplied with
any power |α|N. Moreover, E(K ; ξ∨|M∩K )

∨ is identified with all formal expansions
F =

∑
α Fα, where {‖Fα‖}α belongs to s ′(K̂ ), the space of tempered sequences,

i.e., those that grow at most at the rate of |α|N for some N ∈ N.

Proposition 3.10. A (g′, K ′)-intertwining operator T : (πξ,r )HC→ (τξ ′,r ′)HC with
T |E(α;α′)= tα,α′ ·Rα,α′ extends to a continuous G ′-intertwining operator πξ,r→ τξ ′,r ′

if both tα,α′ and ‖Rα,α′‖L2→L2 are of at most polynomial growth in α and α′.



40 JAN FRAHM AND BENT ØRSTED

Proof. By Lemma 3.9 it suffices to show that T extends to a continuous G ′-
intertwining operator πξ,r → (τξ ′∨,−r ′)

′. Let F ∈ πξ,r ; then F =
∑

α Fα with
{‖Fα‖}α a sequence in s(K̂ ). We have T F =

∑
α′(T F)α′ with

(T F)α′ =
∑
α

tα,α′ · Rα,α′Fα.

By the assumptions

|tα,α′ | ≤ C1(1+ |α| + |α′|)N1,

‖Rα,α′‖L2→L2 ≤ C2(1+ |α| + |α′|)N2

for some C1,C2 > 0 and N1, N2 ∈N. Further, since ‖Fα‖ ∈ s(K̂ ), for every N ∈N

there exists C > 0 such that ‖Fα‖ ≤ C(1+ |α|)−N. Hence, we have for any α′

‖(T F)α′‖′ ≤ CC1C2
∑
α

(1+ |α| + |α′|)N1+N2(1+ |α|)−N .

Choosing N large enough, this is uniformly bounded by a constant times
(1+ |α′|)N1+N2, and hence ‖(T F)α′‖′ ∈ s ′(K̂ ′) so that T F ∈ E(K ′; ξ ′∨|M ′∩K ′)

∨.
This shows that T extends to a G ′-intertwining operator πξ,r→ τ∨ξ ′∨,−r ′ . Continuity
of this operator also follows by the above estimates. �

4. Rank-one orthogonal groups

In this section we apply our method to classify symmetry-breaking operators for
rank-one orthogonal groups. Let n ≥ 3 and consider the indefinite orthogonal group
G = O(1, n) of (n+ 1)× (n+ 1) real matrices leaving the standard bilinear form
on Rn+1 of signature (1, n) invariant. The subgroup G ′ ⊆ G of matrices fixing the
last standard basis vector en+1 is isomorphic to O(1, n− 1).

4A. K-types. We fix K = O(1)×O(n) and choose

H =

0 1
1 0

0n−1


so that P = M AN , with M = 1O(1)×O(n− 1), where 1O(1) = {diag(x, x) :
x ∈ O(1)}. Note that ρ = n−1

2 . Then K acts transitively on Sn−1 via diag(ε, k) ·
x = εkx , ε ∈ O(1), k ∈ O(n), x ∈ Sn−1, and M is the stabilizer subgroup of
the first standard basis vector e1 ∈ Sn−1, whence K/M ∼= Sn−1. The subgroup
G ′ = O(1, n− 1) is embedded into G such that K ′ = O(1)×O(n− 1) and P ′ =
G ′∩ P =M ′A′N ′, with A′= A and M ′=1O(1)×O(n−2). Then K ′/M ′= Sn−2,
viewed as the equator in K/M = Sn−1

⊆ Rn given by xn = 0. Further we have
ν = ν ′ and ρ ′ = n−2

2 .
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×

×

α

α′

Legend: K ′ -types E(α;α′) with α−α′ ∈ 2Z

× K ′ -types E(α;α′) with α−α′ ∈ 2Z+ 1

Figure 1

Let ξ = 1, ξ ′ = 1 be the trivial representations of M and M ′ and abbreviate
πr = πξ,r and τr ′ = τξ ′,r ′ . As K -modules, resp. K ′-modules, we have

E =
∞⊕
α=0

sgnα �Hα(Rn)︸ ︷︷ ︸
E(α)

, E ′ =
∞⊕
α′=0

sgnα
′

�Hα′(Rn−1)︸ ︷︷ ︸
E ′(α′)

,

so that (MF1) is satisfied. Further, each K-type decomposes by (B-1) into K ′-types as

(sgnα �Hα(Rn))|K ′ '
⊕

0≤α′≤α

(sgnα �Hα′(Rn−1)),

and hence (MF2) holds. Comparing the sign representations of the O(1)-factor of
K ′ we find that HomK ′(E(α)|K ′, E ′(α′)) 6= 0 if and only if α−α′ ∈ 2Z. In this case
formulas (B-2) and (A-2) show that the restriction operator

Rα,α′ = rest |E(α;α′) : E(α;α′)→ E ′(α′)

is an isomorphism. Hence the restriction Tα,α′ = T |E(α;α′) of a K ′-intertwining
operator T : E → E ′ is given by Tα,α′ = tα,α′Rα,α′ for α− α′ ∈ 2N and Tα,α′ = 0
else. The K - and K ′-types are illustrated in Figure 1.

4B. Proportionality constants. The eigenvalues of the spectrum-generating oper-
ator on the K -types are simply the eigenvalues of the Laplacian on Sn−1 and given
by, see [Branson et al. 1996, Section 3.a],

σα = α(α+ n− 2), σ ′α′ = α
′(α′+ n− 3).

We identify s∼= Rn via

Rn
→ s, y 7→ X y =

(
0 yt

y 0n

)
.
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Then s′ ∼= Rn−1, embedded in Rn as the first n− 1 coordinates. Since s′
C
' Cn−1 is

a weight multiplicity-free K ′-module, (MF3) holds and we can use Corollary 3.6.
To compute the proportionality constants λβ,β

′

α,α′ we use Lemma 3.7, which applies
to this situation because H = H ′ and Rα,α′ = rest. The cocycle ω is given by

ω(X y)(x)= yt x, x ∈ Sn−1, y ∈ Rn.

Using (B-4) it is easy to see that for fixed 0≤ α′ ≤ α

(α;α′)↔ (β;β ′) ⇐⇒ |α−β| = |α′−β ′| = 1.

By Lemma 3.7 we have the following equations for λβ,β
′

α,α′ : for β ′ = α′+1 we obtain

λ
α+1,α′+1
α,α′ + λ

α−1,α′+1
α,α′ = 1,

(2α+ n− 1)λα+1,α′+1
α,α′ − (2α+ n− 3)λα−1,α′+1

α,α′ = 2α′+ n− 1,

which gives

λ
α+1,α′+1
α,α′ =

α+α′+ n− 2
2α+ n− 2

, λ
α−1,α′+1
α,α′ =

α−α′

2α+ n− 2
,

and for β ′ = α′− 1 we get

λ
α+1,α′−1
α,α′ + λ

α−1,α′−1
α,α′ = 1,

(2α+ n− 1)λα+1,α′−1
α,α′ − (2α+ n− 3)λα−1,α′−1

α,α′ = −2α′− n+ 5,

implying

λ
α+1,α′−1
α,α′ =

α−α′+ 1
2α+ n− 2

, λ
α−1,α′−1
α,α′ =

α+α′+ n− 3
2α+ n− 2

.

We remark that the constants λβ,β
′

α,α′ can in this case also be obtained by computing
the action of ω(X) on explicit K -finite vectors using (B-2) and recurrence relations
for the Gegenbauer polynomials. With the explicit form of the constants λβ,β

′

α,α′

Corollary 3.6 now provides the following characterization of symmetry-breaking
operators:

Theorem 4.1. An operator T : E→ E ′ is intertwining for πr and τr ′ if and only if

T |E(α;α′) =
{

tα,α′ · rest |E(α;α′) for α−α′ ∈ 2Z,
0 for α−α′ ∈ 2Z+ 1,

with numbers tα,α′ satisfying

(4-1) (2α+n−2)(2r ′+2α′+n−2)tα,α′ = (α+α′+n−2)(2r+2α+n−1)tα+1,α′+1

+(α−α′)(2r−2α−n+3)tα−1,α′+1
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(α, α′)

(α−1, α′+1) (α+1, α′+1) (α, α′)

(α−1, α′−1) (α+1, α′−1)

Figure 2. The relations (4-1) and (4-2).

and

(4-2) (2α+n−2)(2r ′−2α′−n+4)tα,α′ = (α−α′+1)(2r+2α+n−1)tα+1,α′−1

+(α+α′+n−3)(2r−2α−n+3)tα−1,α′−1.

We view these two relations as triangles connecting three vertices in the K -type
picture (see Figure 2).

Note that if r /∈−ρ−N then 2r+2α+n−1 6=0 for all α and hence one can define
tα+1,α′+1 in terms of tα,α′ and tα−1,α′+1 using (4-1) and do similarly for tα+1,α′−1

using (4-2). If r =−ρ− i ∈ −ρ−N and α = i the coefficient (2r + 2α+ n− 1)
vanishes and (4-1) and (4-2) reduce to identities involving only two terms. We
indicate this by drawing a vertical line between i and i+1 indicating that one cannot
“step” from the left-hand side to the right-hand side (see Figure 3). Similarly we
have that if r ′ /∈−ρ ′−N then 2r ′+2α′+n−2 6= 0 for all α′ and we can define tα,α′
in terms of tα±1,α′+1 using (4-1). If r ′ =−ρ ′− j ∈ −ρ ′−N and α′ = j we obtain
a horizontal line between j and j + 1 as barrier, indicating that we cannot step
from the part above this line to the part below. Note that if there is a vertical, resp.
horizontal, barrier like this the coefficient (2r−2α−n+3), resp. (2r ′−2α′−n+4),
never vanishes and one can step in the other direction, namely from right to left,
resp. from the part below the line to the part above.

4C. Multiplicities. The (g, K )-module (πr )HC is reducible if and only if r ∈
±(ρ+N). More precisely, for r =−ρ−i the module (πr )HC contains a unique non-
trivial finite-dimensional (g, K )-submodule F(i)⊆ E with K -types E(α), 0≤α≤ i .
Its quotient T (i) = E/F(i) is irreducible and can be identified with the unique
nontrivial (g, K )-submodule of (π−r )HC. Similarly we denote for r ′ =−ρ ′− j by

(α, α′)

(α−1, α′+1) (α+1, α′+1)

(α, α′)

(α−1, α′+1) (α+1, α′+1)

Figure 3. Barriers for r =−ρ− i and r ′ =−ρ ′− j .
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F ′( j) the unique finite-dimensional (g′, K ′)-submodule of (τr ′)HC and by T ′( j)
its irreducible quotient. Let

Leven = {(r, r ′) : r= − ρ− i, r ′= − ρ ′− j, i − j ∈ 2N},

Lodd = {(r, r ′) : r= − ρ− i, r ′= − ρ ′− j, i − j ∈ 2N+ 1}.

This notation agrees with the notation used in [Kobayashi and Speh 2015].

Theorem 4.2. (1) The multiplicities between spherical principal series of G and
G ′ are given by

m((πr )HC, (τr ′)HC)=

{
1 for (r, r ′) ∈ C2

\ Leven,
2 for (r, r ′) ∈ Leven.

(2) For i, j ∈ N the multiplicities m(V,W) between subquotients are given by

V↓ W→ F ′( j) T ′( j)

F(i) 1 0
T (i) 0 1

for i − j ∈ 2N,

V↓ W→ F ′( j) T ′( j)

F(i) 0 0
T (i) 1 0

otherwise.

To prove Theorem 4.2 we study how the relations (4-1) and (4-2) determine the
numbers tα,α′ . We first consider the diagonal α=α′. Relation (4-1) then simplifies to

(4-3) (2r ′+ 2α+ n− 2)tα,α = (2r + 2α+ n− 1)tα+1,α+1.

This immediately yields:

Lemma 4.3. (1) For (r, r ′) ∈ C2
\ (Leven ∪ Lodd) the space of diagonal sequences

(tα,α)α satisfying (4-3) has dimension 1. Any generator (tα,α)α satisfies:

(a) For r /∈ −ρ−N, r ′ /∈ −ρ ′−N,

tα,α 6= 0 for all α ∈ N.

(b) For r =−ρ− i ∈ −ρ−N, r ′ /∈ −ρ ′−N,

tα,α = 0 for all α ≤ i and tα,α 6= 0 for all α > i.

(c) For r /∈ −ρ−N, r ′ =−ρ ′− j ∈ −ρ ′−N,

tα,α 6= 0 for all α ≤ j and tα,α = 0 for all α > j.

(d) For r =−ρ− i ∈ −ρ−N, r ′ =−ρ ′− j ∈ −ρ ′−N, with i < j ,

tα,α 6= 0 for all i < α ≤ j and tα,α = 0 else.
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α−α′ ≤ 2k

α

α′

Legend: K ′ -types E(α;α′) with α−α′ ≤ 2k ( tα,α′ already defined)
K ′ -types E(α;α′) with α−α′ > 2k ( tα,α′ yet to define)

Figure 4

(2) For (r, r ′)= (−ρ−i,−ρ ′− j)∈ (Leven∪Lodd), the space of diagonal sequences
(tα,α)α satisfying (4-3) has dimension 2. It has a basis (t ′α,α)α, (t ′′α,α)α with the
properties

t ′α,α 6= 0 for all α ≤ j, t ′α,α= 0 for all α > j,

t ′′α,α = 0 for all α ≤ i, t ′′α,α 6= 0 for all α > i.

Next we investigate how a diagonal sequence (tα,α)α satisfying (4-3) can be
extended to a sequence (tα,α′)(α,α′) satisfying (4-1) and (4-2).

Lemma 4.4. Let (r, r ′)∈C2
\(Leven∪Lodd). Then every diagonal sequence (tα,α)α

satisfying (4-3) has a unique extension to a sequence (tα,α′)(α,α′) satisfying (4-1)
and (4-2).

Proof. Step 1. We first treat the case r /∈ −ρ −N. In this case the coefficients
(2r + 2α+ n − 1) in (4-1) and (4-2) never vanish. We now extend the diagonal
sequence (tα,α)α inductively to a sequence (tα,α′)α−α′≤2k with k ∈N which satisfies
(4-1) for (α, α′) with α − α′ ≤ 2k and (4-2) for (α, α′) with α − α′ ≤ 2k − 2 as
visualized in Figure 4 (i.e., the two relations hold whenever the corresponding
triangles in Figure 2 are contained in the region α − α′ ≤ 2k). For k = 0 the
diagonal sequence we start with satisfies these assumptions. For the induction step
k→ k + 1 let α − α′ = 2k and define tα+1,α′−1 and tα+2,α′ using (4-2) (the blue
triangles in Figure 5) in terms of tα−1,α′−1, tα,α′ and tα+1,α′+1. This is possible,
because 2r + 2α+ n − 1 6= 0 for all α and hence the corresponding coefficients
in (4-2) are nonzero. Now we have to prove that (4-1) holds for (α+ 1, α′ − 1)
(the red triangle). This can be done by an elementary calculation using the blue
triangles that are by definition valid as well as the green triangles that are valid by
the induction assumption. Hence this extends the diagonal sequence (tα,α)α to a
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(α− 2, α′)

(α−1, α′+1)

(α−1, α′−1)

(α, α′)

(α+1, α′+1)

(α+1, α′−1)

(α+ 2, α′)

Figure 5

sequence (tα,α′)0≤α′≤α satisfying (4-1) and (4-2). Since the relations were used to
extend the diagonal sequence this extension is unique.

Step 2. Next assume r =−ρ− i ∈ −ρ−N and r ′ /∈ −ρ ′−N. Then the coefficient
(2r +2α+n−1) vanishes if and only if α = i . We can therefore use the technique
in Step 1 to extend the upper part (tα,α)α>i of the diagonal sequence to a sequence
(tα,α′)i<α′≤α in the region α′> i . Next we extend the sequence (tα,α)α′>i inductively
to a sequence (tα,α′)α′>i−k with k = 0, . . . , i + 1 which satisfies (4-1) for (α, α′)
with α′ > i − k and (4-2) for (α, α′) with α′ > i − k+ 1 as visualized in Figure 6
(i.e., the two relations hold whenever the corresponding triangles in Figure 2 are
contained in the region α′ > i − k). For k = 0 the sequence we obtained using
Step 1 satisfies these assumptions by Step 1. For the induction step k→ k+ 1 let
α′ = i − k+ 1 and define tα−1,α′−1 and tα+1,α′−1 using (4-1) (the blue triangles in
Figure 7) in terms of tα−2,α′ , tα,α′ and tα+2,α′ . This is possible, because r ′ /∈−ρ ′−N

and hence the corresponding coefficient (2r ′+ 2α′+ n− 2) in (4-1) never vanishes.
Now we have to prove that (4-2) holds for (α, α′) (the red triangle) which is done
in a similar fashion as in Step 1 using the green triangle. This finishes Step 2.

α′ > i−k

α

α′

Legend: K ′ -types E(α;α′) with α′ > i − k ( tα,α′ already defined)
K ′ -types E(α;α′) with α′ ≤ i − k ( tα,α′ yet to define)

Figure 6
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(α−2, α′)

(α−1, α′+1)

(α−1, α′−1)

(α, α′)

(α+1, α′+1)

(α+1, α′−1)

(α+2, α′)

Figure 7

Step 3. Now let r =−ρ− i ∈ −ρ−N and r ′ =−ρ ′− j ∈ −ρ ′−N with i, j ∈ N,
j > i . Note that to carry out Step 2 we only need that (2r ′+ 2α′+ n− 2) 6= 0 for
α′ ≤ i . This is satisfied since

2r ′+ 2α′+ n− 2= 2(α′− j) < 2(α′− i)≤ 0

by assumption. Hence the technique in Step 2 carries over to this case. �

Lemma 4.5. Let (r, r ′)= (−ρ− i,−ρ ′− j), i, j ∈ N:

(1) For (r, r ′) ∈ Leven every diagonal sequence (tα,α)α satisfying (4-3) has a unique
extension to a sequence (tα,α′)(α,α′) satisfying (4-1) and (4-2).

(2) For (r, r ′) ∈ Lodd any sequence (tα,α′)α,α′ satisfying (4-1) and (4-2) has the
property tα,α′ = 0 for α ≤ i or α′ > j . Conversely, for any choice of ti+1, j ∈ C

there exists a unique extension to a sequence (tα,α′)(α,α′) satisfying (4-1) and (4-2).

Proof. (1) First Steps 1 and 2 in the proof of Lemma 4.4 extend a diagonal sequence
(tα,α)α uniquely to the range {(α, α′) : α ≤ i or α′ > j}. This extension satisfies
tα,α′ = 0 whenever j <α′≤α≤ i . Next one can use (4-2) for (α, α′)= (i+1, j+1)
to define ti+2, j in terms of ti, j and ti+1, j+1 (the blue triangle in Figure 8). Inductively,
using (4-2) for (α, α′)= (i+2k+1, j+1), k = 0, 1, 2, . . . , the values of ti+2k+2, j

are determined for all k. In the next step the technique from Step 2 in the proof of
Lemma 4.4 is used to inductively define tα,α′ for α > i and α′= j−k, k = 0, . . . , j
(the red triangle). That all relations (4-1) and (4-2) are satisfied within the four
quadrants in Figure 8 is clear from the arguments in Steps 1 and 2 in the proof
of Lemma 4.4. That these relations are also satisfied at the edges between the
quadrants holds either by definition or since all terms vanish.

(2) Let (tα,α′)α,α′ be a sequence satisfying (4-1) and (4-2). Note that Lemma 4.3(2)
already implies tα,α = 0 for j <α≤ i . Then by Step 1 in the proof of Lemma 4.4 we
have tα,α′ = 0 whenever j <α′≤ α≤ i (the black zeroes in Figure 9). We first show
inductively that ti−2k−1, j = 0 for k = 0, . . . , i− j−1

2 (the red zeroes). To show the
statement for k=0 consider the relation (4-2) for (α, α′)= (i, j+1). By the previous
considerations tα,α′ = 0 and further the coefficient (2r+2α+n−1) of tα+1,α′−1 van-
ishes. Hence tα−1,α′−1= ti−1, j = 0. For the induction step assume ti−2k−1, j = 0 and
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Legend: K ′ -types E(α;α′) with tα,α′ already defined
K ′ -types E(α;α′) with tα,α′ yet to define

Figure 8

consider the relation (4-2) for (α, α′)= (i−2k−2, j+1). Then tα,α′ = tα+1,α′−1= 0
and therefore tα−1,α′−1 = ti−2(k+1)−1, j = 0. Thus we have showed t j, j = 0. But in
view of (4-3) this yields tα,α = 0 for α ≤ j . In a similar way one uses (4-1) and
(4-2) for (α, α′)= (i + 1, j + 2k), k = 0, . . . , i− j+1

2 , to show that ti+1,i+1 = 0 and
hence tα,α = 0 for all α > i . From the vanishing of the diagonal the techniques in
Steps 1 and 2 in the proof of Lemma 4.4 yield tα,α′ = 0 whenever α ≤ i or α′ > j .

Now let ti+1, j ∈ C be given and put tα,α′ = 0 whenever α ≤ i or α′ > j . Then
(4-1) and (4-2) are trivially satisfied whenever all three terms are defined. Further,
using Steps 1 and 2 it is again easy to see that this sequence has a unique extension
(tα,α′)α,α′ with the required properties. �

Proof of Theorem 4.2. (1) Let first (r, r ′) ∈C2
\ (Leven∪ Lodd). Then by Lemma 4.3

the space of diagonal sequences satisfying (4-3) is one-dimensional and each such
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sequence gives by Lemma 4.4 rise to a unique extension (tα,α′)(α,α′) satisfying
(4-1) and (4-2). Hence, by Theorem 4.1 the multiplicity is 1. Similarly we
obtain multiplicity 2 for (r, r ′) ∈ Leven using Lemma 4.5(1). For (r, r ′) ∈ Lodd

the multiplicity statement is contained in Lemma 4.5(2).

(2) We first consider the case V = F(i) and W = F( j). Then any intertwining
operator in Hom(g′,K ′)(V|(g′,K ′),W) corresponds to an intertwining operator T :
(πr )HC → (τr ′)HC for r = ρ + i and r ′ = −ρ ′ − j such that T |E(α) = 0 for all
α > i and T (E)⊆F ′( j). This implies that T is given by a sequence (tα,α′)α,α′ with
tα,α′ = 0 if either α > i or α′ > j . By part (1) the space of intertwining operators
T : (πr )HC→ (τr ′)HC is one-dimensional, and using Lemma 4.3(1c) and Step 1 in
the proof of Lemma 4.4 it is easy to see that this operator satisfies the conditions on
tα,α′ if and only if i− j ∈ 2N. Hence m(F(i),F ′( j))= 1 for i− j ∈ 2N and= 0 else.
Similar considerations for r =−ρ− i and r ′= ρ ′+ j show that m(T (i), T ′( j))= 1
for i − j ∈ 2N and = 0 else.

Now let V = T (i) and W = F ′( j). Then m(V,W) 6= 0 if and only if there
exists a nontrivial sequence (tα,α′)α,α′ satisfying (4-1) and (4-2) for r =−ρ− i and
r ′ =−ρ ′− j such that tα,α′ = 0 whenever α ≤ i or α′ > j . First assume j > i , then
by part (1) there exists a unique sequence (tα,α′)α,α′ , and by Lemma 4.3(1d) and
Step 3 in the proof of Lemma 4.4 it is easy to see that for this sequence tα,α′ = 0
if either α ≤ i or α′ > j . Hence m(T (i),F ′( j)) = 1 in this case. Next assume
j ≤ i ; then by Lemmas 4.3(2) and 4.5 there can only exist a sequence (tα,α′)α,α′
with the above properties if i − j ∈ 2N+ 1. This shows the claimed formulas for
m(T (i),F ′( j)). That m(F(i), T ′( j)) = 0 for any i, j follows easily by similar
considerations. �

4D. Explicit formula for the spectral function. From the relations (4-1) and (4-2)
one can deduce an explicit spectral function (tα,α′(r, r ′))0≤α′≤α , i.e., a set of solutions
to the relations for all r, r ′ ∈ C depending meromorphically on r and r ′:

Proposition 4.6. For (α, α′) ∈ N with α−α′ ∈ 2Z the numbers

(4-4) tα,α′(r, r ′)=
∞∑

k=0

24k0
(
α+α′+n−2

2 +k
)
0
(
α−α′+2

2

)
(2k)!0

(
α+α′+n−2

2

)
0
(
α−α′+2

2 −k
)

×
0(r+ρ)0(r ′+ρ ′+α′)0

( 2r ′+2r+1
4 +k

)
0
( 2r ′−2r+3

4

)
0(r+ρ+α′+2k)0(r ′+ρ ′)0

( 2r ′+2r+1
4

)
0
( 2r ′−2r+3

4 −k
)

are rational functions in r and r ′ satisfying (4-1) and (4-2). They are normalized to
t0,0 ≡ 1.

Proof. First note that since α−α′ ∈ 2Z the number α−α
′
+2

2 − k is a negative integer
for k� 0 and hence the sum is actually finite for each fixed pair (α, α′). It is also
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easy to see that each summand is a rational function in r and r ′. A short calculation
shows that for each k ∈ N the term

0
(
α+α′+n−2

2 + k
)
0
(
α−α′+2

2

)
0(r ′+ ρ ′+α′)

0
(
α+α′+n−2

2

)
0
(
α−α′+2

2 − k
)
0(r + ρ+α′+ 2k)

solves (4-1). If we further make the ansatz

tα,α′ =
∞∑

k=0

bk
0
(
α+α′+n−2

2 + k
)
0
(
α−α′+2

2

)
0(r ′+ ρ ′+α′)

0
(
α+α′+n−2

2

)
0
(
α−α′+2

2 − k
)
0(r + ρ+α′+ 2k)

,

with bk = bk(r, r ′) not depending on α and α′ then we find that (4-2) holds if and
only if
∞∑

k=0

bk
0
(
α+α′+n−2

2 +k−1
)
0
(
α−α′+2

2

)
0(r ′+ρ ′+α′−1)

0
(
α+α′+n−2

2

)
0
(
α−α′+2

2 −k+1
)
0(r+ρ+α′+2k)

×
[
(2r ′+2r+4k+1)(2r ′−2r−4k−1)

(
α−α′+2

2 −k
)(
α+α′+n−2

2 +k−1
)

−2k(2k−1)(r+ρ+α′+2k−1)(r+ρ+α′+2k−2)
]
= 0.

Substituting k− 1 for k in the first summand in the brackets gives the condition
∞∑

k=1

0
(
α+α′+n−2

2 + k− 1
)
0
(
α−α′+2

2

)
0(r ′+ ρ ′+α′− 1)

0
(
α+α′+n−2

2

)
0
(
α−α′+2

2 − k+ 1
)
0(r + ρ+α′+ 2k− 2)

×[(2r ′+ 2r + 4k− 3)(2r ′− 2r − 4k+ 3)bk−1− 2k(2k− 1)bk] = 0,

which holds if

2k(2k− 1)bk = (2r ′+ 2r + 4k− 3)(2r ′− 2r − 4k+ 3)bk−1.

This recurrence relation has the solution

bk = c ·
24k0

( 2r ′+2r+1
4 + k

)
(2k)!0

( 2r ′−2r+3
4 − k

) ,
with c = c(r, r ′) not depending on k. Finally t0,0 ≡ 1 implies

c =
0(r + ρ)0

( 2r ′−2r+3
4

)
0(r ′+ ρ ′)0

( 2r ′+2r+1
4

) . �

Corollary 4.7. (1) The renormalized numbers

t (1)α,α′(r, r
′)=

1
0(r + ρ)

tα,α′(r, r ′)

are holomorphic in (r, r ′) ∈ C2 for every α, α′ ∈ N, α − α′ ∈ 2N. Further,
t (1)α,α′(r, r

′)= 0 for all α, α′ if and only if (r, r ′) ∈ Leven.
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(2) Fix r ′ =−ρ ′− j , j ∈ N; then the renormalized numbers

t (2)α,α′(r, r
′)=

0
(
(r+ρ)−(r ′+ρ′)

2

)
0(r + ρ)

tα,α′(r, r ′)

are holomorphic in r ∈C for every α, α′∈N, α−α′∈2N. We have t (2)α,α′(r,r
′)≡ 0 for

α′> j . Further, for every r ∈ C there exists a pair (α, α′)with t (2)α,α′(r, r
′) 6= 0.

(3) Fix N ∈ N and let r ′+ ρ ′ = r + ρ+ 2N ; then the renormalized numbers

t (3)α,α′(r, r
′)=

0(r ′+ ρ ′)
0(r + ρ)

tα,α′(r, r ′)

are holomorphic in r ∈C for every α, α′ ∈N, α−α′ ∈ 2N. Further, for every r ∈C

there exists α0 ∈ N such that t (3)α,α(r, r ′) 6= 0 for α ≥ α0.

Proof. (1) We can write

t (1)α,α′(r, r
′)= (r ′+ ρ ′)α′

α−α′

2∑
k=0

24k
(
α+α′+n−2

2

)
k

(
−
α−α′

2

)
k

( 2r ′+2r+1
4

)
k

( 2r−2r ′+1
4

)
k

(2k)!0(r + ρ+α′+ 2k)
,

where (λ)n = λ(λ + 1) · · · (λ + n − 1) denotes the Pochhammer symbol. This
expression is obviously holomorphic in (r, r ′) ∈ C2. Now assume t (1)α,α′(r, r

′)= 0
for all α, α′. For α = α′ we have

(
−
α−α′

2

)
k = 0 for k > 0 and hence

t (1)α,α(r, r
′)=

(r ′+ ρ ′)α
0(r + ρ+α)

,

which vanishes for all α ∈N if and only if r +ρ =−i and r ′+ρ ′ =− j with j ≤ i .
We claim that i− j ∈ 2N. In fact, if i− j ∈ 2N+1 then for (α, α′)= (i+1, j) only
the summand for k = i− j+1

2 is nonzero and hence t (1)α,α′(r, r
′) 6= 0, a contradiction.

Therefore i − j ∈ 2N which means (r, r ′) ∈ Leven.
Conversely assume r + ρ = −i , r ′+ ρ ′ = − j , with i − j ∈ 2N. Then in each

summand at least one of the three factors( 2r−2r ′+1
4

)
k =

(
−

i− j
2

)
k, (r ′+ ρ ′)α′ = (− j)α′, 1

0(r+ρ+α′+2k) =
1

0(−i+α′+2k)

vanishes and hence t (1)α,α′(r, r
′)= 0 for all α, α′.

(2) We can write

t (2)α,α′(r,r
′)= (− j)α′

α−α′

2∑
k=0

24k
(
α+α′+n−2

2

)
k

(
−
α−α′

2

)
k

( 2r−2 j−n+3
4

)
k0
( 2r+2 j+n−1

4 +k
)

(2k)!0(r+ρ+α′+2k)

as a meromorphic function of r . Then t (2)α,α′(r, r
′)≡ 0 for α′ > j . Further, for

α′ ≤ j each pole r of the factor 0
( 2r+2 j+n−1

4 + k
)

is simple and also a pole of
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the denominator 0(r + ρ + α′+ 2k), whence t (2)α,α′(r, r
′) is holomorphic in r ∈ C.

Now assume t (2)α,α′(r, r
′)= 0 for all α, α′. Then

0= t (2)j, j (r, r
′)= (− j) j

0
( 2r+2 j+n−1

4

)
0(r + ρ+ j)

and hence r has to be a pole of the denominator while it is a regular point for the
numerator. This means r + ρ =−i ∈ −N with i ≥ j and 2r+2 j+n−1

4 =
j−i
2 /∈ −N,

i.e., i − j ∈ 2N+ 1. But for (α, α′)= (i + 1, j) only the summand for k = i− j+1
2

is nonzero and hence t (2)α,α′(r, r
′) 6= 0, a contradiction.

(3) Note that
( 2r−2r ′+1

4

)
k = (−N )k = 0 for k > N and hence we can write

(4-5) t (3)α,α′(r,r
′)=

N∑
k=0

24k(−N )k
(
α+α′+n−2

2

)
k

(
−
α−α′

2

)
k

(2k)!
×
(
r+N+1

2

)
k(r+ρ+α

′
+2k)2N−2k,

which is clearly holomorphic in r ∈ C. Further, t (3)α,α(r, r ′)= (r + ρ+α)2N , which
is nonzero for α >−(r + ρ). �

Remark 4.8. After a few modifications we find that

tα,α′(r, r ′)=
(r ′+ ρ ′)α′
(r + ρ)α′

4 F3
(
−
α−α′

2 , α+α
′
+n−2
2 , 2r+2r ′+1

4 , 2r−2r ′+1
4 ;

1
2 ,

r+ρ+α′
2 ,

r+ρ+α′+1
2 ; 1

)
.

Note that the generalized hypergeometric function 4 F3(a1, a2, a3, a4; b1, b2, b3; z)
occurring here is balanced, i.e., a1+a2+a3+a4+1= b1+b2+b3. However, there
does not exist an explicit formula for its special value at z= 1 in the literature. Also,
we could not find estimates for special values of such hypergeometric functions for
large/small parameters, and therefore were not able to show that tα,α′(r, r ′) grows
at most polynomially in α, α′ ≥ 0 for fixed (r, r ′) ∈ C2. This is what is needed
to apply Proposition 3.10 in order to show automatic continuity of intertwining
operators. We will therefore first describe all intertwining operators in terms of
the holomorphic family T (1)(r, r ′) (see Theorem 4.9) and then show automatic
continuity using the corresponding holomorphic family in the smooth category
obtained in joint work with Y. Oshima [Möllers et al. 2016a]. This is done in
Corollary 4.12.

Theorem 4.9. For i = 1, 2, 3 we let T (i)(r, r ′) be the intertwining operators
(πr )HC→ (τr ′)HC corresponding to the numbers t (i)α,α′(r, r

′) in Corollary 4.7. Then
the operator T (1)(r, r ′) is defined for (r, r ′) ∈ C2, the operator T (2)(r, r ′) is defined
for r ′ ∈−ρ ′−N and the operator T (3)(r, r ′) is defined for (r+ρ)−(r ′+ρ ′)∈−2N.
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We have

Hom(g′,K ′)((πr )HC|(g′,K ′), (τr ′)HC)

=

{
CT (1)(r, r ′) for (r, r ′) ∈ C2

\ Leven,
CT (2)(r, r ′)⊕CT (3)(r, r ′) for (r, r ′) ∈ Leven.

Remark 4.10. By the proof of Theorem 4.2(2) every intertwining operator between
the subquotients F(i), T (i) and F ′( j), T ′( j) can be constructed by composing
an intertwining operator (πr )HC → (τr ′)HC for particular r, r ′ with embeddings
and/or quotient maps for the subquotients. Hence, also every intertwining operator
between subquotients is given by an operator in one of the three families T (i)(r, r ′).
Therefore, all information about intertwining operators between (πr )HC and (τr ′)HC

and any of their subquotients is contained in the holomorphic family T (1)(r, r ′).

Remark 4.11. The family of operators T (3) is (up to a constant) equal to Juhl’s fam-
ily of conformally invariant differential restriction operators D2N (r) :C∞(Sn−1)→

C∞(Sn−2); see [Juhl 2009; Kobayashi and Speh 2015]. The constants t (3)α,α′ then
give the “spectrum” of Juhl’s operators in the sense that they describe how the
operators are acting on explicit K -finite vectors. Note that by (4-5) the number of
summands for t (3)α,α′(r, r

′) is at most N + 1.

Corollary 4.12. For (G,G ′)= (O(1, n),O(1, n− 1)) the natural injective map

(4-6) HomG ′(π |G ′, τ )→ Hom(g′,K ′)(πHC|(g′,K ′), τHC)

is an isomorphism for all spherical principal series π of G and τ of G ′ and their
subquotients.

Proof. By Remark 4.10 all intertwining operators between subquotients arise by
composing with quotient maps and embeddings. It therefore suffices to show that
(4-6) is an isomorphism for π = πr and τ = τr ′ for all (r, r ′) ∈ C2. In [Möllers
et al. 2016a] a holomorphic family A(r, r ′) ∈HomG ′(πr |G ′, τr ′) was constructed in
the smooth category using singular integral operators (see Section 4F for details).
Denote by A(r, r ′) ∈ Hom(g′,K ′)((πr )HC|(g′,K ′), (τr ′)HC) its image under the map
(4-6). By Theorem 4.9 this space is generically spanned by T (1)(r, r ′), and since
both A(r, r ′) and T (1)(r, r ′) depend holomorphically on (r, r ′) ∈ C2 there exists a
meromorphic function φ(r, r ′) such that

A(r, r ′)= φ(r, r ′) · T (1)(r, r ′).

Replacing A(r, r ′) and A(r, r ′) by φ(r, r ′)−1 A(r, r ′) and φ(r, r ′)−1 A(r, r ′) we may
assume that

A(r, r ′)= T (1)(r, r ′).
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This already implies that for (r, r ′) ∈ C2
\ Leven every intertwining operator

in the space Hom(g′,K ′)((πr )HC|(g′,K ′), (τr ′)HC) extends to the smooth global-
ization. Further, for (r, r ′) ∈ Leven we may restrict (r, r ′) 7→ T (1)(r, r ′) to
an affine complex line and renormalize to obtain all intertwining operators in
Hom(g′,K ′)((πr )HC|(g′,K ′), (τr ′)HC) by Theorem 4.9. The same restriction and
renormalization can be applied to (r, r ′) 7→ A(r, r ′), and in this way one obtains
extensions of all operators in Hom(g′,K ′)((πr )HC|(g′,K ′), (τr ′)HC) to the smooth
globalization. Note that renormalization of A(r, r ′) preserves continuity of the
operators. This shows that the map (4-6) is surjective, hence an isomorphism for
all (r, r ′) ∈ C2. �

Remark 4.13. The operators T (i)(r, r ′) are related to the operators Ãλ,ν , ˜̃Aλ,ν and
C̃λ,ν studied in [Kobayashi and Speh 2015] for λ= r+ρ, ν = r ′+ρ ′. In fact, using
their notation we have

T (1)(r, r ′)=π−
n−2

2 Ãλ,ν, T (2)(r, r ′)=π−
n−2

2 ˜̃Aλ,ν, T (3)(r, r ′)=
(−1)N N !

22N C̃λ,ν,

where for i = 3 we write r ′+ ρ ′ = r + ρ+ 2N with N ∈ N.

4E. Discrete components in the restriction of unitary representations. We apply
our results to branching problems for unitary representations. The (g, K )-modules
(πr )HC are unitarizable if and only if r ∈ iR∪ (−ρ, ρ) and we denote by π̂r their
unitary completions. For r ∈ iR these representations form the unitary principal
series and for r ∈ (−ρ, ρ) they belong to the complementary series. Further, all
irreducible quotients T (i) are unitarizable and their unitary completions will be
denoted by π̂−ρ−i . We note that for r ∈ −(ρ+Z), r < 0, each representation π̂r is
isomorphic to some Zuckerman derived functor module Aq(λ) and occurs discretely
in the decomposition of the regular representation on L2(G/G ′).

Similarly we denote by τ̂r ′ , r ′ ∈ iR∪ (−ρ ′, ρ ′), the unitary completions of τr ′

and by τ̂−ρ′− j , j ∈ N, the unitary completions of T ′( j).
For r ∈ R we define the finite set

D(r)=
(
r + 1

2 + 2N
)
∩ (−∞, 0)

and note that for r ∈ (−ρ, 0)∪ (−ρ −N) and r ′ ∈ D(r) we have r ′ ∈ (−ρ ′, 0)∪
(−ρ ′−N); i.e., τ̂r ′ is a unitary representation.

Theorem 4.14. Let r ∈ (−ρ, 0)∪ (−ρ −N). Then for every r ′ ∈ D(r) the repre-
sentation τ̂r ′ occurs discretely with multiplicity 1 in the restriction of π̂r to G ′.

We note that for a complementary series representation π̂r , r ∈ (−ρ, 0), all
representations τ̂r ′ , r ′ ∈ D(r), are complementary series representations. If π̂r is an
Aq(λ)-module, r ∈ −ρ+Z, r < 0, then so are the representations τ̂r ′ , r ′ ∈ D(r).
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The restriction of the Aq(λ)-modules π̂r to G ′ decomposes with both discrete and
continuous spectrum and is therefore hard to study by purely algebraic methods.

Remark 4.15. For the special case r ′ = r + 1
2 , i.e., N = 0, the occurrence of τ̂r ′ in

π̂r |G ′ was first proved in [Speh and Venkataramana 2011] for r ∈
[
−ρ,− 1

2

)
and

generalized in [Zhang 2015] to the case r ∈
(
−ρ,−1

2

)
∪(−ρ−N). Later Kobayashi

and Speh [2015, Theorem 1.4] proved Theorem 4.14 for the case r ∈ (−ρ, 0). The
full decomposition of π̂r |G ′ for r ∈ (−ρ, 0)∪ (−ρ−N) including the continuous
spectrum was given in [Möllers and Oshima 2015].

We first describe the invariant norms on the unitarizable constituents for r ∈ R.
For this we fix the L2-norm ‖ · ‖L2(Sn−1) on L2(K/M)= L2(Sn−1) corresponding
to the standard Euclidean measure on Sn−1. For r ∈ (−ρ, ρ) the norm ‖ · ‖r on E
given by

‖v‖2r =

∞∑
α=0

bα(r)‖vα‖2L2(Sn−1)
for v =

∞∑
α=0

vα ∈

∞⊕
α=0

E(α),

with
bα =

0(ρ− r +α)
0(ρ+ r +α)

∼ (1+α)−2r

turns (πr )HC into a unitary (g, K )-module. Further, for r =−ρ− i the seminorm
‖ · ‖r on E has kernel F(i) and turns the quotient T (i) = E/F(i) into a unitary
(g, K )-module.

Similarly we denote by ‖ · ‖′r ′ the τr ′-invariant norm on E ′, respectively T ′( j),
given by

‖w‖′2r ′ =

∞∑
α=0

b′α′(r
′)‖wα′‖

2
L2(Sn−2)

for w =
∞∑
α′=0

wα′ ∈

∞⊕
α′=0

E ′(α′),

with

b′α′ =
0(ρ ′− r ′+α′)
0(ρ ′+ r ′+α′)

∼ (1+α′)−2r ′ .

We need the following two basic results; see, e.g., [Zhang 2015, Lemmas 3.2
and 3.5]:

Lemma 4.16. Let V ⊆ E be a K -invariant subspace and W ⊆ E ′ a K ′-invariant
subspace and assume that V and W are endowed with pre-Hilbert space structures
with respect to which the groups K and K ′ act unitarily. A linear map T : V→W
is bounded if and only if there exists a constant C > 0 such that∑

α
E(α;α′)⊆V

‖T |E(α;α′)‖2V→W ≤ C for all α′,

where ‖ · ‖V→W denotes the operator norm with respect to the given pre-Hilbert
space structures.
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Lemma 4.17. Suppose that α > −1, β ≥ 0, and β − α > 1. Then there exists a
constant C > 0 such that

∞∑
p=0

(1+ p)α

(1+ p+ q)β
≤

C
(1+ q)β−α−1 for all q ≥ 0.

Proof of Theorem 4.14. For r ∈ (−ρ, 0) let V = E and for r =−ρ− i ∈−ρ−N let
V =

⊕
∞

α=i+1E(α). Let r ′ ∈ D(r); then similarly we put W = E ′ for r ′ ∈ (−ρ ′, 0)
and W =

⊕
∞

α′= j+1E
′(α′) for r ′ =−ρ ′− j ∈−ρ ′−N. By Theorem 4.2 there exists

(up to scalar) a unique nonzero intertwining operator T : (πr )HC→ (τr ′)HC with
T (V)⊆W and if r =−ρ− i additionally T |F(i) = 0. In our notation

T |E(α;α′) = tα,α′ · rest |E(α;α′),

with tα,α′ = t (3)α,α′ for α′ > j and tα,α′ = 0 else (see Corollary 4.7 for the definition
of t (3)α,α′). We show that T is bounded if we endow V with the norm ‖ · ‖r and W
with the norm ‖ · ‖r ′ . To apply Lemma 4.16 we calculate

‖T |E(α;α′)‖2V→W = t2
α,α′‖ rest |E(α;α′)‖2E(α;α′)→E ′(α′)

b′α′(r
′)

bα(r)
,

where ‖ · ‖E(α;α′)→E ′(α′) denotes the operator norm with respect to the L2-inner
products on E(α;α′)⊆ L2(Sn−1) and E ′(α′)⊆ L2(Sn−2). Using (A-2), (B-2) and
(B-3) it is easy to see that for α = α′+ 2` we have

‖ rest |E(α;α′)‖2E(α;α′)→E ′(α′)=
22α′+n−3

(
α′+2`+ n−2

2

)
(2`)!0

(
α′+`+n−2

2

)2

π(`!)20(2α′+2`+n−2)

=

(
α′+2`+n−2

2

)
0
(
`+ 1

2

)
0
(
α′+`+ n−2

2

)
π0(`+1)0

(
α′+`+ n−1

2

) ∼
(1+α′+`)

1
2

(1+`)
1
2

.

Then Lemma 4.16 translates into
∞∑
`=0

t2
α′+2`,α′

(1+α′+ `)
1
2+2r

(1+ `)
1
2

≤ C(1+α′)2r ′ .

It is enough to check this for each of the N+1 summands of tα′+2`,α′ in (4-5) where
r ′+ ρ ′ = r + ρ+ 2N . The k-th summand grows of order

∼ (1+α′)(r
′
+ρ′)−(r+ρ+2k)(1+ `)k(1+α′+ `)k

and hence the claim follows by Lemma 4.17. Altogether this shows that T induces
a bounded G ′-intertwining operator T̃ : π̂r |G ′ → τ̂r ′ whose adjoint T̃ ∗ : τ̂r ′ →

π̂r |G ′ embeds τ̂r ′ isometrically as a subrepresentation of π̂r by Schur’s lemma.
Multiplicity 1 follows from the fact that any G ′-equivariant embedding S : τ̂r ′→

π̂r |G ′ induces an intertwiner S∗ : (πr )HC→ (τr ′)HC between the Harish-Chandra
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modules by taking the adjoint operator and then passing to K -finite vectors. Such
an operator is unique (up to scalars) by Theorem 4.2 and since K -finite vectors are
dense in π̂r the embedding S is unique (up to scalars). �

4F. Comparison with singular integral operators. In [Kobayashi and Speh 2015;
Möllers et al. 2016a] a meromorphic family of intertwining operators A(r, r ′) :
u1,rν |G ′→ u′1,r ′ν in the smooth category is constructed as family of singular integral
operators. In the compact picture this family is (up to scalars) given by

A(r, r ′) : C∞(Sn−1)→ C∞(Sn−2),

A(r, r ′) f (y)=
∫

Sn−1
(|x ′− y|2+ x2

n)
−(r ′+ρ′)

|xn|
(r−ρ)+(r ′+ρ′) f (x) dx,

where dx denotes the Euclidean measure on Sn−1.

Theorem 4.18. Let T (r, r ′) : C∞(Sn−1) → C∞(Sn−2) denote the intertwining
operator with spectrum given by the numbers tα,α′(r, r ′) in (4-4). Then

A(r, r ′)=
2r−r ′+ 1

2π
n−2

2 0
( 2r+2r ′+1

4

)
0
( 2r−2r ′+1

4

)
0
(
r + n−1

2

) · T (r, r ′).

Proof. Since by Theorem 4.2(1) and Corollary 4.12 we generically have

dim HomG ′(πr |G ′, τr ′)= 1

and both A(r, r ′) and T (r, r ′) are meromorphic in r, r ′ ∈ C there exists a scalar
meromorphic function c(r, r ′) with A(r, r ′)= c(r, r ′)T (r, r ′). To determine c(r, r ′)
we put f ≡ 1:

c(r, r ′)=
∫

Sn−1
(|x ′− y|2+ x2

n)
−(r ′+ n−2

2 )|xn|
r+r ′− 1

2 dx .

Using the stereographic projection

x =
(

1− |z|2

1+ |z|2
,

2z
1+ |z|2

)
, z ∈ Rn−1,

the measure transforms by dx = 2n−1(1+ |z|2)−(n−1) dz, where dz is the standard
Lebesgue measure on Rn−1. Writing

y =
(

1− |w|2

1+ |w|2
,

2w
1+ |w|2

)
, w ∈ Rn−2,

we find

c(r, r ′)= 2r−r ′+ 1
2 (1+ |w|2)r

′
+

n−2
2

∫
Rn−1

(|z′−w|2+ z2
n−1)

−(r ′+ n−2
2 )

× |zn−1|
r+r ′− 1

2 (1+ |z|2)−(r+
n−1

2 ) dz,
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where we have written z = (z′, zn−1). This integral is evaluated in [Kobayashi and
Speh 2015, Proposition 7.4] and we obtain

c(r, r ′)=
2r−r ′+ 1

2π
n−2

2 0
( 2r+2r ′+1

4

)
0
( 2r−2r ′+1

4

)
0
(
r + n−1

2

) ,

which shows the claim. �

Remark 4.19. The special value of the intertwiners A(r, r ′) at the spherical vector
f ≡ 1 was also calculated in [Möllers and Ørsted 2017] by a different method.

Remark 4.20. The action of A(r, r ′) on K -finite vectors was also computed in
[Kobayashi and Speh 2015, Lemma 7.7]. However, their parametrization of K -finite
vectors differs from our parametrization by (α, α′), and therefore it is nontrivial to
see the equivalence of their identity and our identity (4-4).

5. Rank-one unitary groups

We indicate in this section how the calculations in Section 4 can be generalized to
rank-one unitary groups and state the corresponding results. Let n ≥ 2 and consider
the indefinite unitary group G = U(1, n) of (n + 1)× (n + 1) complex matrices
leaving the standard Hermitian form on Cn+1 of signature (1, n) invariant. The
subgroup G ′⊆G of matrices fixing the last standard basis vector en+1 is isomorphic
to U(1, n− 1).

5A. K-types. We fix K = U(1)×U(n) and choose

H =

0 1
1 0

0n−1


so that P = M AN with M = 1U(1)×U(n − 1), where 1U(1) = {diag(x, x) :
x ∈U(1)}. Note that ρ = n. Then K acts transitively on the unit sphere S2n−1

⊆Cn

via diag(λ, k) · z = λ−1kz, λ ∈ U(1), k ∈ U(n), z ∈ S2n−1, and M is the stabilizer
subgroup of the first standard basis vector e1, whence K/M ∼= S2n−1. The subgroup
G ′ = U(1, n− 1) is embedded into G such that K ′ = U(1)×U(n− 1) and P ′ =
G ′ ∩ P = M ′A′N ′ with A′ = A and M ′ = 1U(1)×U(n − 2). Then K ′/M ′ =
S2n−3

⊆ Cn−1, viewed as the codimension 2 submanifold in K/M = S2n−1
⊆ Cn

given by zn = 0. Further we have ρ ′ = n− 1.
Let ξ = 1, ξ ′ = 1 be the trivial representations of M and M ′ and abbreviate

πr = πξ,r and τr ′ = τξ ′,r ′ . Then as K -modules, resp. K ′-modules, we have

E =
∞⊕

α1,α2=0

ei(α1−α2)θ � Hα1,α2(Cn)︸ ︷︷ ︸
E(α)

, E ′ =
∞⊕

α′1,α
′

2=0

ei(α′1−α
′

2)θ � Hα′1,α
′

2(Cn−1)︸ ︷︷ ︸
E ′(α′)

,
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where we abbreviate α = (α1, α2) and α′ = (α′1, α
′

2). Hence, (MF1) is satisfied.
Further, each K -type decomposes by (B-5) into K ′-types as

(ei(α1−α2)θ � Hα1,α2(Cn))|K ′ =
⊕

0≤α′1≤α1
0≤α′2≤α2

(ei(α1−α2)θ � Hα′1,α
′

2(Cn−1)),

so that (MF2) holds. Comparing the characters of the U(1)-factor of K ′ we find that
HomK ′(E(α)|K ′, E ′(α′)) 6= 0 if and only if α1−α2 = α

′

1−α
′

2. In this case formulas
(B-6) and (A-3) show that the restriction operator

Rα,α′ = rest |E(α;α′) : E(α;α′)→ E ′(α′)

is an isomorphism. Hence the restriction Tα,α′ = T |E(α;α′) of a K ′-intertwining
operator T : E→ E ′ is given by Tα,α′ = tα,α′Rα,α′ for α1−α2=α

′

1−α
′

2 and Tα,α′ = 0
else.

5B. Proportionality constants. The eigenvalues of the spectrum-generating oper-
ator on the K -types are given by (see [Branson et al. 1996, Section 3.b])

σ(α1,α2) = 2α1(α1+ n− 1)+ 2α2(α2+ n− 1),

σ ′
(α′1,α

′

2)
= 2α′1(α

′

1+ n− 2)+ 2α′2(α
′

2+ n− 2).

We write sC = s+ Js= s++ s− and identify s± ∼= Cn via

Cn
→ s±, w 7→ Xw,± =

(
0 w∗∓J iw∗

w±J iw 0n

)
.

Then s′
±
' Cn−1, embedded in Cn as the first n− 1 coordinates. Since both s′

±
are

multiplicity-free K ′-modules, (MF3) holds (with s′
C

replaced by s′
±

) and we can
use Corollary 3.6. The cocycle ω is given by

ω(Xw,+)(z)= w∗z, w ∈ s+, ω(Xw,−)(z)= z∗w, w ∈ s−,

where z ∈ S2n−1
⊆ Cn .

We note by (B-7) that if X ∈ s+ then the multiplication map m(ω(X)) maps the
K -type E(α1, α2) into the K -types E(α1+ 1, α2) and E(α1, α2− 1) and if X ∈ s−
into the K -types E(α1, α2+1) and E(α1−1, α2). Because of similar considerations
for s′

+
and s′

−
the equivalence relation (α, α′)↔ (β, β ′) is given by

((α1, α2); (α
′

1, α
′

2))↔ (β; (α′1+1, α′2)) ⇐⇒ β ∈ {(α1+1, α2), (α1, α2−1)},

((α1, α2); (α
′

1, α
′

2))↔ (β; (α′1−1, α′2)) ⇐⇒ β ∈ {(α1−1, α2), (α1, α2+1)},

((α1, α2); (α
′

1, α
′

2))↔ (β; (α′1, α
′

2+1)) ⇐⇒ β ∈ {(α1−1, α2), (α1, α2+1)},

((α1, α2); (α
′

1, α
′

2))↔ (β; (α′1, α
′

2−1)) ⇐⇒ β ∈ {(α1+1, α2), (α1, α2−1)}.
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Now, Lemma 3.7 yields the following equations for λβ,β
′

α,α′ : for β ′ = (α′1+ 1, α′2) we
obtain

λ
(α1+1,α2),(α

′

1+1,α′2)
(α1,α2),(α

′

1,α
′

2)
+ λ

(α1,α2−1),(α′1+1,α′2)
(α1,α2),(α

′

1,α
′

2)
= 1,

(2α1+ n)λ
(α1+1,α2),(α

′

1+1,α′2)
(α1,α2),(α

′

1,α
′

2)
− (2α2+ n− 2)λ

(α1,α2−1),(α′1+1,α′2)
(α1,α2),(α

′

1,α
′

2)
= 2α′1+ n,

which gives

λ
(α1+1,α2),(α

′

1+1,α′2)
(α1,α2),(α

′

1,α
′

2)
=
α′1+α2+ n− 1
α1+α2+ n− 1

, λ
(α1,α2−1),(α′1+1,α′2)
(α1,α2),(α

′

1,α
′

2)
=

α1−α
′

1

α1+α2+ n− 1
,

for β ′ = (α′1− 1, α′2) we get

λ
(α1−1,α2),(α

′

1−1,α′2)
(α1,α2),(α

′

1,α
′

2)
+ λ

(α1,α2+1),(α′1−1,α′2)
(α1,α2),(α

′

1,α
′

2)
= 1,

(2α1+ n− 2)λ
(α1−1,α2),(α

′

1−1,α′2)
(α1,α2),(α

′

1,α
′

2)
− (2α2+ n)λ

(α1,α2+1),(α′1−1,α′2)
(α1,α2),(α

′

1,α
′

2)
= 2α′1+ n− 4,

implying

λ
(α1−1,α2),(α

′

1−1,α′2)
(α1,α2),(α

′

1,α
′

2)
=
α′1+α2+ n− 2
α1+α2+ n− 1

, λ
(α1,α2+1),(α′1−1,α′2)
(α1,α2),(α

′

1,α
′

2)
=

α1−α
′

1+ 1
α1+α2+ n− 1

,

and similarly we find

λ
(α1,α2+1),(α′1,α

′

2+1)
(α1,α2),(α

′

1,α
′

2)
=
α1+α

′

2+ n− 1
α1+α2+ n− 1

, λ
(α1−1,α2),(α

′

1,α
′

2+1)
(α1,α2),(α

′

1,α
′

2)
=

α2−α
′

2

α1+α2+ n− 1
,

λ
(α1,α2−1),(α′1,α

′

2−1)
(α1,α2),(α

′

1,α
′

2)
=
α1+α

′

2+ n− 2
α1+α2+ n− 1

, λ
(α1+1,α2),(α

′

1,α
′

2−1)
(α1,α2),(α

′

1,α
′

2)
=

α2−α
′

2+ 1
α1+α2+ n− 1

.

We remark that the constants λβ,β
′

α,α′ can in this case also be obtained by computing the
action of ω(X) on explicit K -finite vectors using (B-6) and recurrence relations for
the Jacobi polynomials. With the explicit form of the constants λβ,β

′

α,α′ Corollary 3.6
now provides the following characterization of symmetry-breaking operators:

Theorem 5.1. An operator T : E→ E ′ is intertwining for πr and τr ′ if and only if

T |E(α;α′) =
{

tα,α′ · rest |E(α;α′) for α1−α2 = α
′

1−α
′

2,
0 else,

with numbers tα,α′ satisfying the following four relations:

(5-1) (α1+α2+ n− 1)(r ′+ 2α′1+ n− 1)t(α1,α2),(α
′

1,α
′

2)

= (α′1+α2+ n− 1)(r + 2α1+ n)t(α1+1,α2),(α
′

1+1,α′2)

+ (α1−α
′

1)(r − 2α2− n+ 2)t(α1,α2−1),(α′1+1,α′2),
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(5-2) (α1+α2+ n− 1)(r ′− 2α′1− n+ 3)t(α1,α2),(α
′

1,α
′

2)

= (α′1+α2+ n− 2)(r − 2α1− n+ 2)t(α1−1,α2),(α
′

1−1,α′2)

+ (α1−α
′

1+ 1)(r + 2α2+ n)t(α1,α2+1),(α′1−1,α′2),

(5-3) (α1+α2+ n− 1)(r ′+ 2α′2+ n− 1)t(α1,α2),(α
′

1,α
′

2)

= (α1+α
′

2+ n− 1)(r + 2α2+ n)t(α1,α2+1),(α′1,α
′

2+1)

+ (α2−α
′

2)(r − 2α1− n+ 2)t(α1−1,α2),(α
′

1,α
′

2+1),

(5-4) (α1+α2+ n− 1)(r ′− 2α′2− n+ 3)t(α1,α2),(α
′

1,α
′

2)

= (α1+α
′

2+ n− 2)(r − 2α2− n+ 2)t(α1,α2−1),(α′1,α
′

2−1)

+ (α2−α
′

2+ 1)(r + 2α1+ n)t(α1+1,α2),(α
′

1,α
′

2−1).

5C. Multiplicities. The (g, K )-module (πr )HC is reducible if and only if r ∈
±(ρ+ 2N). More precisely, for r =−ρ− 2i the module (πr )HC contains a unique
nontrivial finite-dimensional (g, K )-submodule

F(i)=
i⊕

α1,α2=0

E(α1, α2)

as well as the two nontrivial infinite-dimensional submodules

F+(i)=
∞⊕
α1=0

i⊕
α2=0

E(α1, α2), F−(i)=
i⊕

α1=0

∞⊕
α2=0

E(α1, α2).

Then the composition series of (πr )HC is given by

{0} ⊆ F(i)⊆ F+(i)⊆ (F+(i)+F−(i))⊆ E

(or equivalently with F+ and F− switched). Hence the quotients

T (i)= E/(F+(i)+F−(i)) and T±(i)= F±(i)/F(i)

are irreducible and infinite-dimensional. Similarly we denote by F ′( j), F ′
±
( j) and

T ′( j), T ′
±
( j) the corresponding composition factors of (τr ′)HC for r ′ =−ρ ′− 2 j ,

j ∈ N.
Define

L = {(r, r ′) ∈ C2
: r =−ρ− 2i, r ′ =−ρ ′− 2 j, 0≤ j ≤ i}.

Theorem 5.2. (1) The multiplicities between spherical principal series of G and
G ′ are given by

m((πr )HC, (τr ′)HC)=

{
1 for (r, r ′) ∈ C2

\ L ,
2 for (r, r ′) ∈ L.
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(2) For i, j ∈ N the multiplicities m(V,W) between subquotients are given by

V↓ W→ F ′( j) T ′
+
( j) T ′

−
( j) T ′( j)

F(i) 1 0 0 0
T+(i) 0 1 0 0
T−(i) 0 0 1 0
T (i) 0 0 0 1

for j ≤ i ,

V↓ W→ F ′( j) T ′
+
( j) T ′

−
( j) T ′( j)

F(i) 0 0 0 0
T+(i) 0 0 0 0
T−(i) 0 0 0 0
T (i) 1 0 0 0

otherwise.

To prove Theorem 5.2 we proceed approximately as in Section 4C. For this we
first reduce the four relations (5-1)–(5-4) in the four parameters α1, α2, α

′

1, α
′

2 with
α1−α2 = α

′

1−α
′

2 to two pairs of two relations with only two parameters.
Put

p = α1+α2, q1 = α
′

1, q2 = α
′

2.

Then
α1 =

p+q1−q2
2 , α2 =

p−q1+q2
2 , α′1 = q1, α′2 = q2.

Then 0≤α′1≤α1, 0≤α′2≤α2, and α1−α2=α
′

1−α
′

2 if and only if p, q1, q2∈N with
p− q1− q2 ∈ 2N. With this reparametrization, the parameter q2 is constant in the
identities (5-1) and (5-2) and the parameter q1 is constant in (5-3) and (5-4). Abusing
notation and writing tp,q1,q2 for t(α1,α2),(α

′

1,α
′

2)
the relations (5-1)–(5-4) become

(5-5) (p+ n− 1)(r ′+ 2q1+ n− 1)tp,q1,q2

=
( p+q1+q2

2 + n− 1
)
(r + p+ q1− q2+ n)tp+1,q1+1,q2

+
( p−q1−q2

2

)
(r − p+ q1− q2− n+ 2)tp−1,q1+1,q2,

(5-6) (p+ n− 1)(r ′− 2q1− n+ 3)tp,q1,q2

=
( p+q1+q2

2 + n− 2
)
(r − p− q1+ q2− n+ 2)tp−1,q1−1,q2

+
( p−q1−q2

2 + 1
)
(r + p− q1+ q2+ n)tp+1,q1−1,q2,

(5-7) (p+ n− 1)(r ′+ 2q2+ n− 1)tp,q1,q2

=
( p+q1+q2

2 + n− 1
)
(r + p− q1+ q2+ n)tp+1,q1,q2+1

+
( p−q1−q2

2

)
(r − p− q1+ q2− n+ 2)tp−1,q1,q2+1,

(5-8) (p+ n− 1)(r ′− 2q2− n+ 3)tp,q1,q2

=
( p+q1+q2

2 + n− 2
)
(r − p+ q1− q2− n+ 2)tp−1,q1,q2−1

+
( p−q1−q2

2 + 1
)
(r + p+ q1− q2+ n)tp+1,q1,q2−1.
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Note that q2 is fixed in (5-5) and (5-6), and these relations hold for p, q1 ∈ N with
p− q1 ∈ q2+ 2N. The obvious similar statement holds for (5-7) and (5-8).

We first consider the diagonal p=q1+q2; then relations (5-5) and (5-7) simplify to

(r ′+ 2q1+ n− 1)tq1+q2,q1,q2 = (r + 2q1+ n)tq1+q2+1,q1+1,q2,(5-9)

(r ′+ 2q2+ n− 1)tq1+q2,q1,q2 = (r + 2q2+ n)tq1+q2+1,q1,q2+1.(5-10)

This immediately yields:

Lemma 5.3. (1) For (r,r ′)∈C2
\L the space of diagonal sequences (tq1+q2,q1,q2)q1,q2

satisfying (5-9) and (5-10) has dimension 1. Any generator (tq1+q2,q1,q2)q1,q2 satis-
fies:

(a) For r /∈ −ρ− 2N, r ′ /∈ −ρ ′− 2N,

tq1+q2,q1,q2 6= 0 for all q1, q2 ∈ N.

(b) For r =−ρ− 2i ∈ −ρ− 2N, r ′ /∈ −ρ ′− 2N,

tq1+q2,q1,q2=0 for all q1≤ i or q2≤ i and tq1+q2,q1,q2 6=0 for all q1,q2> i.

(c) For r /∈ −ρ− 2N, r ′ =−ρ ′− 2 j ∈ −ρ ′− 2N,

tq1+q2,q1,q2 6=0 for all q1,q2≤ j and tq1+q2,q1,q2=0 for all q1> j or q2> j.

(d) For r =−ρ− 2i ∈ −ρ− 2N, r ′ =−ρ ′− 2 j ∈ −ρ ′− 2N with i < j ,

tq1+q2,q1,q2 6= 0 for all i < q1, q2 ≤ j and tq1+q2,q1,q2 = 0 else.

(2) For (r, r ′) = (−ρ − 2i,−ρ ′ − 2 j) ∈ L the space of diagonal sequences
(tq1+q2,q1,q2)q1,q2 satisfying (5-9) and (5-10) has dimension 4.

Next we investigate how a diagonal sequence (tq1+q2,q1,q2)q1,q2 satisfying (5-9)
and (5-10) can be extended to a sequence (tp,q1,q2)p,q1,q2 satisfying (5-5) and (5-6)
and the corresponding relations in q2. For this note that if we fix, say, q2, and put
p′ = p− q2, then the relations (5-5) and (5-6) read

(5-11) (p′+ q2+ n− 1)(r ′+ 2q1+ n− 1)tp′,q1

=
( p′+q1

2 + q2+ n− 1
)
(r + p′+ q1+ n)tp′+1,q1+1

+
( p′−q1

2

)
(r − p′+ q1− 2q2− n+ 2)tp′−1,q1+1,

(5-12) (p′+ q2+ n− 1)(r ′− 2q1− n+ 3)tp′,q1

=
( p′+q1

2 + q2+ n− 2
)
(r − p′− q1− n+ 2)tp′−1,q1−1

+
( p′−q1

2 + 1
)
(r + p′− q1+ 2q2+ n)tp′+1,q1−1,

where we again abuse notation and write tp′,q1 for tp,q1,q2 . Similar relations hold if
q1 is fixed. We note that (5-11) and (5-12) have to be satisfied for all p′, q1 ∈N with
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(p′, q1)

(p′−1, q1+1) (p′+1, q1+1) (p′, q1)

(p′−1, q1−1) (p′+1, q1−1)

Figure 10. Barriers for r =−ρ− 2i .

p′− q1 ∈ 2N, just as in the case of orthogonal groups, see Figure 1. Thus, many
arguments used in the orthogonal situation can be translated to this context. There
are, however, differences to the orthogonal situation. If r =−ρ− 2i ∈ −ρ− 2N

then the coefficient (r + p′+ q1+ n) in (5-11) vanishes for p′+ q1 = 2i and the
coefficient (r+ p′−q1+2q2+n) in (5-12) vanishes for p′−q1 = 2(i−q2), which
we indicate by diagonal lines as in Figure 10. Further, if r ′ =−ρ ′−2 j ∈−ρ ′−2N

then the coefficient (r ′ + 2q1 + n − 1) in (5-11) vanishes for q1 = j , which we
indicate by a vertical line as in Figure 11.

Lemma 5.4. Let (r, r ′) ∈ C2
\ L. Then every diagonal sequence (tq1+q2,q1,q2)q1,q2

satisfying (5-9) and (5-10) has a unique extension to a sequence (tp,q1,q2)p,q1,q2

satisfying (5-5)–(5-8).

Proof. The proof is similar to the proof of Lemma 4.4 and we only indicate the
relevant steps.

Step 1. We first treat the case r /∈ −ρ− 2N. We fix q2; then the diagonal sequence
determines tp′,q1 for p′=q1. Since r /∈−ρ−2N the coefficient (r+ p′−q1+2q2+n)
in (5-12) never vanishes. Hence, (5-12) can be used to express tp′+1,q1−1 in terms of
tp′,q1 and tp′−1,q1−1. As in the proof of Lemma 4.4, Step 1, this uniquely determines
all numbers tp′,q1 . Since q2 was arbitrary this determines all numbers tp,q1,q2 .

Step 2. Next assume r =−ρ−2i ∈−ρ−2N and r ′ /∈−ρ ′−2N. Then the coefficient
(r + p′− q1+ 2q2+ n) vanishes if and only if p′− q1 = 2(i − q2). In particular, it
does not vanish for q2 > i . We can therefore use the technique in Step 1 to extend
the diagonal sequence to tp,q1,q2 for q2 > i and all p, q1. Fixing q1 instead of q2

we are in the situation that tp′,q2 is given on the diagonal p′ = q2 and in the region
q2 > i . Since r ′ /∈−ρ ′−2N the coefficient (r ′+2q2+n−1) in (5-11) (with q1 and

(p′, q1)

(p′−1, q1+1) (p′+1, q1+1)

Figure 11. Barrier for r ′ =−ρ ′− 2 j .
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q2 interchanged) never vanishes, so we can use (5-11) (with q1 and q2 interchanged)
to extend tp′,q2 to all p′, q2 as in the proof of Lemma 4.4 Step 2. Since q1 was
arbitrary this determines all numbers tp,q1,q2 .

Step 3. Now let r = −ρ − 2i ∈ −ρ − 2N and r ′ = −ρ ′ − 2 j ∈ −ρ ′ − 2N, with
i, j ∈N, j > i . Note that to carry out Step 2 we only need that r ′+2q2+n−1 6= 0
for q2 ≤ i . This is satisfied since

r ′+ 2q2+ n− 1= 2(q2− j) < 2(q2− i)≤ 0

by assumption. Hence the technique in Step 2 carries over to this case. �

The case (r, r ′) ∈ L has to be handled a little differently from the orthogonal
situation.

Lemma 5.5. Let (r, r ′)= (−ρ−2i,−ρ ′−2 j) ∈ L. Then every choice of t0,0,0 and
t2i+2,0,0 determines a unique sequence (tp,q1,q2)p,q1,q2 satisfying (5-5)–(5-8).

Proof. Fix q2 = 0, p′ = p− q2 = p; then by the assumption tp′,q1 is known for
(p′, q1)= (0, 0) and (2i+2, 0). This is illustrated in Figure 12, where the barriers are
as in Figures 10 and 11. Then the techniques from the proof of Lemma 5.4 extend t0,0
uniquely to the region p′+q1≤2i ; see also Figure 12. To overcome the barrier given
by p′+q1= 2i we use (5-12) for p′−q1= 2i in which the coefficient (r+ p′−q1+

2q2+ n) vanishes. Hence, this relation can be applied to extend along the diagonal
line p′−q1=2i as indicated in Figure 12. It may also be applied anywhere above the
diagonal p′−q1=2i so that we actually extend to the area p′−q1≤2i ; see Figure 13.
Next we need to overcome the barrier p′−q1= 2i , which we do by using (5-11) for
q1= j . In this relation the coefficient (r ′+2q1+n−1) vanishes, and hence we can
extend along the line q1= j+1. Using again (5-12) even extends to the whole region

p′

q1

2i 2i+2

j

j+1

∗ ∗ p′

q1

2i 2i+2

j

j+1

∗ ∗ ∗

∗

Legend: K ′ -types with tp′,q1 already defined
K ′ -types with tp′,q1 yet to define

Figure 12
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p′

q1

2i 2i+2

j

j+1

∗ ∗ ∗

∗ ∗

∗ ∗

∗ ∗

∗ ∗

∗ ∗

∗

p′

q1

2i 2i+2

j

j+1

∗ ∗ ∗

∗ ∗

∗ ∗ ∗

∗ ∗ ∗

∗ ∗

∗ ∗

∗

Legend: K ′ -types with tp′,q1 already defined
K ′ -types with tp′,q1 yet to define

Figure 13

q1 > j ; see Figure 13. We note that up to this point we have not yet made use of
t2i+2,0. This is needed now to extend into the region {(p′, q1) : p′−q1> 2i, q1≤ j};
see Figure 13. Here both relations (5-11) and (5-12) are needed. Summarizing, we
have extended t0,0,0 and t2i+2,0,0 uniquely to a sequence (tp,q1,0)p,q1 . Next fix q1

and let p′ = p−q1. Then tp′,q2 is already determined for (p′, q2)= (p′, 0) with p′

arbitrary; see Figure 14. Note that in relation (5-12) (with q1 and q2 interchanged)
the coefficient (r ′−2q2−n+3) never vanishes, and hence this relation can be used
to extend (tp′,0)p′ uniquely to (tp′,q2)p′,q2 ; see Figure 14. Since q1 was arbitrary
this finally yields tp,q1,q2 for any p, q1, q2 and finishes the proof. �

Proof of Theorem 5.2. (1) This statement is contained in Lemmas 5.3, 5.4, and 5.5.

(2) Composing with embeddings and quotient maps most of the multiplicity state-
ments can be reduced to statements about the (non-)existence of intertwining
operators T : (πr )HC → (τr ′)HC for particular r and r ′ such that the numbers

p′

q2

∗ ∗ ∗ ∗ ∗

Legend: K ′ -types with tp′,q1 already defined
K ′ -types with tp′,q1 yet to define

Figure 14
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t(α1,α2),(α
′

1,α
′

2)
vanish in certain regions. These statements can be checked using the

techniques used in Lemmas 5.3, 5.4 and 5.5. This does not work if either V = T±(i)
or W = T ′

±
( j). We therefore show the multiplicity statements for m(T+(i), T+( j))

in detail, using Remark 3.5. Similar considerations can then be applied to the
remaining cases.

Let first V = T+(i) and W = T ′
+
( j). Then, due to Remark 3.5, an intertwining

operator T+(i)→ T+( j) is given by an operator

T : F+(i)→
∞⊕

α′1= j+1

j⊕
α′2=0

E ′(α′1, α
′

2), T |E(α;α′) = tα,α′ · Rα,α′

such that T |F(i) = 0, and the numbers tα,α′ solve the relations (5-1)–(5-4) whenever
the two terms t(β1,β2),(β

′

1,β
′

2)
on the right-hand sides of (5-1)–(5-4) satisfy β ′1 > j ,

β ′2 ≤ j (i.e., the two upper, resp. lower, vertices of the corresponding triangles are
contained in the region {(β ′1, β

′

2) : β
′

1 > j, β ′2 ≤ j}).
Assume first that j > i . Then for any fixed q2≤ j and p′= p−q2 we are looking

for numbers tp′,q1 which vanish if either q1 ≤ j (i.e., α′1 ≤ j , the region below the
horizontal line in Figure 15) or p′− q1 > 2(i − q2) (i.e., α2 > i , the region below
the diagonal line going into the upper right corner in Figure 15). As indicated in
Figure 15, relation (5-11) can be used along the diagonal to obtain tq1,q1 = 0 for
q1> j . Then using (5-12) yields tp′,q1=0 for all p′, q1, so that m(T+(i), T ′+( j))=0.
Next assume j ≤ i . Then for fixed q2 ≤ j and p′ = p−q2 we have to find numbers
as indicated in Figure 16. Here the relations (5-11) and (5-12) don’t force any of
the numbers in the region {(p′, q1) : p′− q1 ≤ 2(i − q2), p′+ q1 > 2i} to vanish
and hence the choice of one tp′,q1 determines the remaining numbers. We note that
in this case tp′,q1 = 0 for p′+ q1 ≤ 2i and q1 > j as desired. Similarly, if we fix

× × × × ×

× × × × ×

× × × ×

× × × ×

×

×

p′

q1

2(i−q2) 2i+2

j

j+1 0

Legend: K ′ -types with tp′,q1 to be determined
× K ′ -types with tp′,q1 = 0 by formal reasons

Figure 15
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× × × × ×

× × × × ×

× × × ×

× ×

×

×

p′

q1

2(i−q2) 2i+2

j

j+1 0 ∗

∗ ∗

∗ ∗

∗ ∗

Legend: K ′ -types with tp′,q1 to be determined
× K ′ -types with tp′,q1 = 0 by formal reasons

Figure 16

q1 > j and let p′ = p− q1 we are in the situation of Figure 17. More precisely, we
need to find numbers tp′,q2 satisfying the relations (5-11) and (5-12) (with q1 and q2

interchanged) in the region {(p′, q2) : q2 ≤ j, p′+ q2 ≤ 2i} such that tp′,q2 = 0 for
p′− q2 ≤ 2i . Again the relations do not force any number in the nontrivial region
to vanish (indicated by stars in Figure 17). Within this region, the choice of one of
the numbers uniquely determines the rest. Together with the previous observation
for the case of q2 ≤ j fixed we obtain m(T+(i), T+( j))= 1. �

5D. Explicit formula for the spectral function. As in Section 4D we also find the
generic solution to the relations (5-1)–(5-4) as a meromorphic function in r, r ′ ∈ C.

×

× ×

× × × ×

× × × ×

× × ×

× × ×

× ×

p′

q2

2(i−q2) 2i+2

j

j+1

0 ∗ ∗ ∗

0 ∗ ∗

Legend: K ′ -types with tp′,q1 to be determined
× K ′ -types with tp′,q1 = 0 by formal reasons

Figure 17
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Proposition 5.6. For α1, α2 ∈ N and 0 ≤ α′1 ≤ α1, 0 ≤ α′2 ≤ α2, with α1 − α2 =

α′1−α
′

2, the numbers

t(α1,α2),(α
′

1,α
′

2)
(r, r ′)

=

∞∑
k=0

2k0
(α1+α2−α

′

1−α
′

2+2
2

)
0
(α1+α2+α

′

1+α
′

2
2 + n− 1+ k

)
(k!)20

(α1+α2−α
′

1−α
′

2+2
2 − k

)
0
(α1+α2+α

′

1+α
′

2
2 + n− 1

)
×

0
( r+n

2

)2
0
( r ′+n−1

2 +α′1

)
0
( r ′+n−1

2 +α′2

)
0
( r ′−r+1

2

)
0
( r ′+r+1

2 + k
)

0
( r ′+n−1

2

)2
0
( r+n

2 +α
′

1+ k
)
0
( r+n

2 +α
′

2+ k
)
0
( r ′+r+1

2

)
0
( r ′−r+1

2 − k
)

are rational functions in r and r ′ satisfying the relations (5-1)–(5-4). They are
normalized to t(0,0),(0,0) ≡ 1.

Proof. The proof is similar to the proof of Proposition 4.6 and we omit some of the
details. For simplicity we use the reparametrization (p, q1, q2) instead of (α1, α2)

and (α′1, α
′

2). Fix q2 and let p′ = p− q2; then it is easy to see that for every k ∈ N

the expression

0
( p′−q1+2

2

)
0
( p′+q1

2 + q2+ n− 1+ k
)
0
( r ′+2q1+n−1

2

)
0
( p′−q1+2

2 − k
)
0
( p′+q1

2 + q2+ n− 1
)
0
( r+2q1+n

2 + k
)

satisfies (5-11). Further, the series

∞∑
k=0

bk
0
( p′−q1+2

2

)
0
( p′+q1

2 + q2+ n− 1+ k
)
0
( r ′+2q1+n−1

2

)
0
( p′−q1+2

2 − k
)
0
( p′+q1

2 + q2+ n− 1
)
0
( r+2q1+n

2 + k
)

satisfies (5-12) if and only if

bk = c
2k0

( r ′+r+1
2 + k

)
(k!)20

( r+2q2+n
2 + k

)
0
( r ′−r+1

2 − k
)

for some constant c = c(r, r ′, q2) which does not depend on p′, q1 and k. Plugging
in p′ = p− q2, using the symmetry of the relations (5-5)–(5-8) in q1 and q2, and
normalizing to t0,0,0 ≡ 0 yields

(5-13) tp,q1,q2(r,r
′)

=

∞∑
k=0

2k0
( p−q1−q2+2

2

)
0
( p+q1+q2

2 +n−1+k
)

(k!)20
( p−q1−q2+2

2 −k
)
0
( p+q1+q2

2 +n−1
)

×
0
( r+n

2

)2
0
( r ′+n−1

2 +q1
)
0
( r ′+n−1

2 +q2
)
0
( r ′−r+1

2

)
0
( r ′+r+1

2 +k
)

0
( r ′+n−1

2

)2
0
( r+n

2 +q1+k
)
0
( r+n

2 +q2+k
)
0
( r ′+r+1

2

)
0
( r ′−r+1

2 −k
)
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Reparametrizing p, q1, q2 to α1, α2, α
′

1, α
′

2 shows the claimed formula. Rewriting
(5-13) as

(5-14) tp,q1,q2(r, r
′)

=

p−q1−q2
2∑

k=0

1
(k!)2

( r+n
2

)
q1+k

( r+n
2

)
q2+k

2k(
−

p−q1−q2
2

)
k

( p+q1+q2
2 + n− 1

)
k

×
( r ′+n−1

2

)
q1

( r ′+n−1
2

)
q2

( r−r ′+1
2

)
k

( r ′+r+1
2

)
k

further shows that this is a rational function in r and r ′. �

Also the next two results are proven along the same lines as Corollary 4.7 and
Theorem 4.9.

Corollary 5.7. (1) The renormalized numbers

t (1)
(α1,α2),(α

′

1,α
′

2)
(r, r ′)=

1

0
( r+ρ

2

)2 t(α1,α2),(α
′

1,α
′

2)
(r, r ′)

are holomorphic in (r, r ′) ∈ C2 for all (α1, α2), (α′1, α
′

2). Further,

t (1)
(α1,α2),(α

′

1,α
′

2)
(r, r ′)= 0

for all (α1, α2), (α′1, α
′

2) if and only if (r, r ′) ∈ L.

(2) Fix r ′ =−ρ ′− 2 j , j ∈ N; then the renormalized numbers

t (2)
(α1,α2),(α

′

1,α
′

2)
(r, r ′)=

0
(
(r+ρ)−(r ′+ρ′)

2

)
0
( r+ρ

2

)2 t(α1,α2),(α
′

1,α
′

2)
(r, r ′)

are holomorphic in r ∈C for all (α1, α2), (α′1, α
′

2). We have t (2)
(α1,α2),(α

′

1,α
′

2)
(r, r ′)≡ 0

whenever α′1 > j or α′2 > j . Further, for every r ∈ C there exist (α1, α2), (α′1, α
′

2)

with t (2)
(α1,α2),(α

′

1,α
′

2)
(r, r ′) 6= 0.

(3) Fix N ∈ N and let r ′+ ρ ′ = r + ρ+ 2N ; then the renormalized numbers

t (3)
(α1,α2),(α

′

1,α
′

2)
(r, r ′)=

0
( r ′+ρ′

2

)2

0
( r+ρ

2

)2 t(α1,α2),(α
′

1,α
′

2)
(r, r ′)

are holomorphic in r ∈ C for all (α1, α2), (α′1, α
′

2). Further, for every r ∈ C there
exists α0 ∈ N such that t (3)(α1,α2),(α1,α2)

(r, r ′) 6= 0 for α1, α2 ≥ α0.

Theorem 5.8. For i = 1, 2, 3 we let T (i)(r, r ′) be the intertwining operators
(πr )HC→ (τr ′)HC corresponding to the numbers t (i)

(α1,α2),(α
′

1,α
′

2)
(r, r ′) in Corollary 5.7.

Then the operator T (1)(r, r ′) is defined for (r, r ′) ∈ C2, the operator T (2)(r, r ′) is
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defined for r ′ ∈ −ρ ′ − 2N and the operator T (3)(r, r ′) is defined for (r + ρ)−
(r ′+ ρ ′) ∈ −2N. We have

Hom(g′,K ′)((πr )HC|(g′,K ′), (τr ′)HC)

=

{
CT (1)(r, r ′) for (r, r ′) ∈ C2

\ L ,
CT (2)(r, r ′)⊕CT (3)(r, r ′) for (r, r ′) ∈ L.

Remark 5.9. We remark that also every intertwining operator between subquotients
V = F(i), T±(i), T (i) and W = F ′( j), T ′

±
( j), T ′( j) can be obtained from the

holomorphic family T (i)(r, r ′) by restricting and renormalizing. More precisely, if V
is a quotient of (πr )HC and W is a subrepresentation of (τr ′)HC then any intertwining
operator T : V→W gives rise to an intertwining operator (πr )HC→ (τr ′)HC and
is hence of the form T (i)(r, r ′) for some i = 1, 2, 3. This constructs all except the
intertwiners T±(i)→ T ′

±
( j) for 0≤ j ≤ i . These can be obtained from T (1)(r, r ′)

as follows:
We first construct an intertwining operator T+ :F+(i)→ (τr ′)HC for r ′=−ρ ′−2 j

such that T+(F+(i))⊆ F+( j). Since F+(i) consists of all K -type E(α1, α2) with
α2≤ i it is given by a sequence (t+

(α1,α2),(α
′

1,α
′

2)
)α2≤i . Reparametrizing to p, q1, q2 this

means that we have to find a sequence (t+p,q1,q2
)p−q1+q2≤2i satisfying the necessary

relations. Let r ′+ ρ ′ = r + ρ+ 2N , with N = i − j ∈ N, and define

t+p,q1,q2
(r, r ′) :=

0
( r ′+ρ′

2

)
0
( r+ρ

2

) tp,q1,q2(r, r
′), p− q1+ q2 ≤ 2i.

Then by (5-14) we have

t+p,q1,q2
(r, r ′)=

∑
k

1
(k!)2

( r+n
2

)
q2+k

2k(
−

p−q1−q2
2

)
k

( p+q1+q2
2 + n− 1

)
k

×
( r+n

2 + k+ q1
)

N−k

( r+n
2 + N

)
q2
(−N )k(r + N + 1)k .

In the sum all terms for k > p−q1−q2
2 vanish, so that k ≤ p−q1−q2

2 =
p−q1+q2

2 −q2 ≤

i−q2. This implies that the denominator does not vanish at r =−ρ−2i . Therefore
t+p,q1,q2

(r, r ′) is holomorphic in r =−ρ− 2i and evaluation there yields

t+p,q1,q2
= t+p,q1,q2

(−ρ−2i,−ρ ′−2 j)

=

i− j∑
k=0

1
(k!)2(−i)q2+k

2k(
−

p−q1−q2
2

)
k

×
( p+q1+q2

2 +n−1
)

k(k+q1−i)i− j−k(− j)q2( j−i)k(1−n−i− j)k .

The sequence t+p,q1,q2
clearly satisfies the necessary relations since it is simply

a renormalization of the sequence tp,q1,q2 , and hence it defines an intertwining
operator T+ : F+(i)→ (τr ′)HC. We note that for q2 > j the term (− j)q2 vanishes
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so that t+p,q1,q2
= 0. Therefore T+(F+(i))⊆ F ′

+
( j). Composing with the quotient

map F ′
+
( j)→ T ′

+
( j) yields an intertwiner T+ : F+(i)→ T ′

+
( j). We claim that

this intertwiner vanishes on F(i) and hence factorizes through T+(i). In fact, for
α2=

p+q1−q2
2 ≤ i and q1 > j we have p−q1−q2

2 ≤ i−q1 so that we may take the sum
over all k≤ i−q1. But then q1+k−i ≤0 and therefore (q1+k−i)i− j−k=0, whence
t+p,q1,q2

= 0. This implies that T+ : F+(i)→ T ′
+
( j) factorizes to an intertwiner

T+ : T+(i)→ T+( j). To finally see that this intertwiner is nontrivial we note that
for all q1 > i , q2 ≤ j , and p = q1+ q2 we have

t+p,q1,q2
=
(q1− i)i− j (− j)q2

(−i)q2

6= 0.

Remark 5.10. The operators T (1)(r, r ′) are related to the meromorphic family
of singular integral operators constructed in [Möllers et al. 2016a]. Further, the
family T (3) is (up to a constant) equal to the differential restriction operators on
the Heisenberg group constructed in [Möllers et al. 2016b]. They can be viewed
as a generalization of Juhl’s conformally invariant operators (see Remark 4.11). It
would be interesting to carry out a detailed investigation of all operators T (i)(r, r ′),
i = 1, 2, 3, in the noncompact picture as in [Kobayashi and Speh 2015].

As in the real case, we can prove automatic continuity using the full classification
in Theorem 5.8 in terms of the holomorphic family T (1)(r, r ′). Note that the
corresponding holomorphic family of intertwining operators in the smooth category
was also constructed in [Möllers et al. 2016a].

Corollary 5.11. For (G,G ′)= (U(1, n),U(1, n− 1)) the natural injective map

HomG ′(π |G ′, τ )→ Hom(g′,K ′)(πHC|(g′,K ′), τHC)

is an isomorphism for all spherical principal series π of G and τ of G ′ and their
subquotients.

Appendix A: Orthogonal polynomials

Gegenbauer polynomials. The classical Gegenbauer polynomials Cλ
n (z) can be

defined by, see [Erdélyi et al. 1953, 10.9, equation (18)],

Cλ
n (z)=

b
n
2 c∑

m=0

(−1)m(λ)n−m

m! (n− 2m)!
(2z)n−2m .

They obviously satisfy the parity condition, see [Erdélyi et al. 1953, 10.9, equa-
tion (16)],

(A-1) Cλ
n (−z)= (−1)nCλ

n (z).
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The special value at z = 0 can be written as

(A-2) Cλ
n (0)=

2n√π0
(
λ+ n

2

)
n!0

( 1−n
2

)
0(λ)

(n=2k)
=

(−1)k0(λ+ k)
k!0(λ)

.

Jacobi polynomials. The classical Jacobi polynomials P (α,β)n (z) can be defined by,
see [Erdélyi et al. 1953, 10.8, equation (12)],

P (α,β)n (z)= 2−n
n∑

m=0

(n+α
m

)( n+β
n−m

)
(x − 1)n−m(x + 1)m .

The special value at z = 1 is given by

(A-3) P (α,β)n (1)=
(n+α

n

)
.

Appendix B: Spherical harmonics

Real spherical harmonics. Let Hα(Rn) denote the space of harmonic homoge-
neous polynomials of degree α on Rn . Endowed with the natural action of O(n),
the space Hα(Rn) is an irreducible representation. It is unitary with respect to the
norm on Hα(Rn) given by

‖φ‖2L2(Sn−1)
=

∫
Sn−1
|φ(x)|2 dx,

where dx denotes the Euclidean measure on Sn−1. Upon restriction to the subgroup
O(n− 1) the representation Hα(Rn) decomposes into

(B-1) Hα(Rn)'
⊕

0≤α′≤α

Hα′(Rn−1).

Explicit O(n−1)-equivariant embeddings of the direct summands are given by, see
[Kobayashi and Mano 2011, Fact 7.5.1],

(B-2) I n
α′→α :H

α′(Rn−1)→Hα(Rn), I n
α′→α(φ)(x

′, xn)= φ(x ′)C
n−2

2 +α
′

α−α′ (xn),

where x = (x ′, xn) ∈ Sn−1. The following Plancherel formula holds for φ ∈
Hα′(Rn−1) (see [Kobayashi and Mano 2011, Fact 7.5.1(3)], note the different
normalization of the Gegenbauer polynomials):

(B-3) ‖I n
α′→α(φ)‖

2
L2(Sn−1)

=
23−n−2α′π0(n− 2+α+α′)

(α−α′)!
(
α+ n−2

2

)
0
(
α′+ n−2

2

)2 ‖φ‖
2
L2(Sn−2)

.

For φ ∈Hα(Rn) we have

(B-4) x jφ = φ
+

j + |x |
2φ−j ,
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with φ±j ∈H
α±1(Rn) given by

φ+j = x jφ−
|x |2

n+ 2α− 2
∂φ

∂x j
, φ−j =

1
n+ 2α− 2

∂φ

∂x j
.

Complex spherical harmonics. Identifying R2n
' Cn we embed U(n) into O(2n).

Then the restriction of the irreducible representation Hα(R2n) of O(2n) to the
subgroup U(n) decomposes into

Hα(R2n)=
⊕

α1+α2=α

Hα1,α2(Cn),

where Hα1,α2(Cn) denotes the space of harmonic polynomials on Cn which are
holomorphic of degree α1 and antiholomorphic of degree α2. Endowed with the
natural action of U(n) the space Hα1,α2(Cn) is an irreducible representation. It is
unitary with respect to the norm ‖·‖L2(S2n−1), where we view S2n−1 as the unit sphere
in Cn. Upon restriction to the subgroup U(n − 1) the representation Hα1,α2(Cn)

decomposes into

(B-5) Hα1,α2(Cn)=
⊕

0≤α′1≤α1
0≤α′2≤α2

Hα′1,α
′

2(Cn−1).

Explicit U(n− 1)-equivariant embeddings

I n
(α′1,α

′

2)→(α1,α2)
:Hα′1,α

′

2(Cn−1)→Hα1,α2(Cn)

are given by

(B-6) I n
(α′1,α

′

2)→(α1,α2)
(φ)(z′, zn)

=φ(z′)


z
(α1−α2)−(α

′

1−α
′

2)
n P

((α1−α2)−(α
′

1−α
′

2),α
′

1+α
′

2+n−2)
α2−α

′

2
(1−2|zn|

2)

for α1−α2≥α
′

1−α
′

2,

z̄
(α′1−α

′

2)−(α1−α2)
n P

((α′1−α
′

2)−(α1−α2),α
′

1+α
′

2+n−2)
α1−α

′

1
(1−2|zn|

2)

for α1−α2≤α
′

1−α
′

2,

where z = (z′, zn) ∈ S2n−1. For φ ∈Hα1,α2(Cn) we have

(B-7) z jφ = φ
+,hol
j + |z|2φ−,ahol

j , z̄ jφ = φ
+,ahol
j + |z|2φ−,hol

j ,

with φ±,hol
j ∈Hα1±1,α2(Cn) and φ±,ahol

j ∈Hα1,α2±1(Cn) given by

φ
+,hol
j = z jφ−

|z|2

α1+α2+ n− 1
∂φ

∂ z̄ j
, φ

−,hol
j =

1
α1+α2+ n− 1

∂φ

∂z j
,

φ
+,ahol
j = z̄ jφ−

|z|2

α1+α2+ n− 1
∂φ

∂z j
, φ

−,ahol
j =

1
α1+α2+ n− 1

∂φ

∂ z̄ j
.
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