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SYMPLECTIC AND ODD ORTHOGONAL PFAFFIAN
FORMULAS FOR ALGEBRAIC COBORDISM

THOMAS HUDSON AND TOMOO MATSUMURA

In the Chow ring of symplectic/odd orthogonal Grassmann bundles the
degeneracy loci classes can be expressed as a sum of Schur–Pfaffians. An
analogous Schur–Pfaffian formula was obtained for K -theory by the au-
thors together with T. Ikeda and M. Naruse. Here we generalize this ex-
plicit formula of degeneracy loci classes to algebraic cobordism, which is
universal among all oriented cohomology theories.

1. Introduction

The r-th degeneracy locus for a morphism of vector bundles ϕ : E → F over a
smooth quasi-projective scheme M is the subvariety Xr of M consisting of all the
points at which the rank of ϕ is at most r . Assuming ϕ to be sufficiently general, the
classical Giambelli–Thom–Porteous formula describes the Chow ring fundamental
class [Xr ] as a Schur-determinant in the Chern classes of E and F . Similarly,
one can consider more restrictive settings in which ϕ is either skewsymmetric or
symmetric. In both cases [Xr ] is given as a Schur-Pfaffian instead of a Schur-
determinant. A more general family of degeneracy loci can be constructed by
considering flags of subbundles of E and F and imposing multiple rank conditions.

Fundamental examples of these loci are the Schubert varieties of isotropic
Grassmannians. The isotropic Grassmannian consists of subspaces on which a
given symplectic or odd orthogonal form vanishes identically. Inside this ambient
space, the degeneracy loci correspond to the Schubert varieties indexed by the
combinatorial objects known as k-strict partitions.

Pragacz [1991] considered the maximal isotropic case and showed that the
Chow ring fundamental classes of Schubert varieties can be expressed through a
Schur-Pfaffian formula. Kazarian [2000] generalised Pragacz’s formula to general
degeneracy loci (compare [Ikeda 2007]). Buch, Kresh and Tamvakis [Buch et al.
2017] obtained a theta polynomial formula for the non-maximal isotropic Grass-
mannians, which can also be written as a sum of Schur–Pfaffian. Wilson [2010]
conjectured an analogous formula for general degeneracy loci, which was proved
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in [Ikeda and Matsumura 2015] (compare [Tamvakis and Wilson 2016; Anderson
and Fulton 2018]).

In recent years, following the trend of generalised Schubert calculus, there has
been an attempt to lift results as the ones above from the Chow ring CH∗ to other
functors like connective K -theory CK∗ and algebraic cobordism �∗, highlighting
the role played in the formulas by the associated formal group law F and formal
inverse χ . In [Hudson et al. 2017], together with T. Ikeda and H. Naruse, we
generalized aforementioned results for CH∗ to CK∗, and established a Pfaffian-sum
formula describing the degeneracy loci classes of symplectic and odd orthogonal
Grassmann bundles in CK∗. The goal of this paper is to further extend these
formulas to �∗.

We begin by explaining our results in the symplectic case. Let E→ X be a vector
bundle of rank 2n with a nowhere vanishing skewsymmetric form and fix a non-
negative integer k ≤ n. Consider the symplectic Grassmann bundle SGk(E) whose
fiber at x ∈ X is the Grassmannian of (n−k)-dimensional isotropic subspaces of Ex .
For each k-strict partition λ, there is the degeneracy locus Xλ⊂ SGk(E). Following
[Kazarian 2000], we can construct a resolution of singularities $ : Yλ→ Xλ inside
of a certain flag bundle over SGk(E). In CH∗ or CK∗, the fundamental class of Xλ
is well-defined and it coincides with the pushforward $∗[Yλ] of the fundamental
class of Yλ along $ . However, in algebraic cobordism, not all degeneracy loci
have a well-defined notion of fundamental class. Hence we consider $∗[Yλ] as a
replacement of [Xλ]. As in [Hudson et al. 2017], the fundamental class [Yλ] can
be expressed as a product of top Chern classes of certain bundles. In our previous
paper [Hudson and Matsumura 2019], we developed a technique to compute the
pushforward of such classes along a flag bundle in terms of relative Segre classes
of vector bundles. With that method at our disposal, we are able to obtain the
following description of the class $∗[Yλ] as our main result. The tautological
isotropic subbundle of SGk(E) is denoted by U and the subbundles

0= Fn
⊂ Fn−1

⊂ · · · ⊂ F1
⊂ F0

⊂ F−1
⊂ · · · ⊂ F−n

= E,

form the reference flag used to define the degeneracy loci. In �∗(SGk(E)), we
consider the relative Segre classes

C (`)
m :=Sm

(
U∨− (E/F`)∨)

)
(∀m ∈ Z,−n ≤ ∀`≤ n).

Main Theorem (Theorem 3.9). Let λ = (λ1, . . . , λr ) be a k-strict partition such
that r ≤ n− k and λ1 ≤ n+ k, and let χ = (χ1, . . . , χr ) be its characteristic index
(see (3-1)). In �∗(SGk(E)), we have

(1-1) [Yλ→ SGk(E)] :=$∗[Yλ] =
∑

s=(s1,...,sr )∈Zr

f λs C
(χ1)
λ1+s1
· · ·C

(χr )
λr+sr

.



PFAFFIAN FORMULAS FOR ALGEBRAIC COBORDISM 99

Here cλs ∈ L are the coefficients of the Laurent series expansion

(1-2)

∏
1≤i< j≤r (1− ti/t j )P(t j , ti )∏

(i, j)∈C(λ)(1−χ(ti )/t j )P(t j , χ(ti ))
=

∑
s=(s1,...,sr )∈Zr

f λs · t
s1
1 · · · t

sr
r ,

where C(λ) := {(i, j) | 1 ≤ i < j ≤ r, χi + χ j ≥ 0} and P(u, v) is the unique
power series satisfying F(u, χ(v))= (u− v)P(u, v).

Now consider the odd orthogonal Grassmann bundle OGk(E), with E of rank
2n+ 1 and each fiber being an orthogonal Grassmannian of (n− k)-dimensional
isotropic subspaces. The essential difference with the previous situation is that it is
far more complex to deal with the case of quadric bundles OGn−1(E)= Q(E), the
orthogonal analogue of projective bundles. Let the reference flag be denoted by

0= Fn
⊂ Fn−1

⊂ · · · ⊂ F1
⊂ F0

⊂ (F0)⊥ ⊂ F−1
⊂ · · · ⊂ F−n

= E .

The fundamental classes of the Schubert varieties X(λ1) are actually well-defined in
�∗(Q(E)) and, as elements of �∗(Q(E))⊗Z Z[1/2], they are given by

[Xλ1→Q(E)]=B
(χ1)
λ1
:=


Sλ1

(
U∨− (E/Fχ1)∨

)
(0≤ λ1< n),

1
F (2)

(
c1(U∨)

)Sλ1

(
U∨− (E/Fχ1)∨

)
(n ≤ λ1< 2n),

where F (2)(u) is the power series defined by the equation F(u, u) = u · F (2)(u).
More generally, the pushforward classes [Yλ→ OGk(E)] are obtained from (1-1)
by replacing C

(i)
m with B

(i)
m (see Theorem 4.12).

A key aspect of algebraic cobordism, which was established in [Levine and Morel
2007], is its universality. In particular, this means that formulas which hold for
�∗ can be specialised to any other oriented cohomology theory. An easy example
of this phenomenon is illustrated by the behaviour of the first Chern class of line
bundles. In C H∗ one has

c1(L ⊗M)= c1(L)+ c1(M) and c1(L∨)=−c1(L),

while in CK∗ these equalities become

c1(L ⊗M)= c1(L)+ c1(M)−βc1(L)c1(M) and c1(L∨)=
−c1(L)

1−βc1(L)
,

where β ∈ CK∗(Spec k) is the pushforward of the fundamental class of P1 to the
point. If we set β = 0, we recover the identities for CH∗. In algebraic cobordism
�∗, the expressions describing c1(L⊗M) and c1(L∨) are respectively given by the
universal formal group law F(u, v) and the universal formal inverse χ(u) which
are certain power series with coefficients in �(Spec k). The universality of �∗

implies that in any other oriented cohomology theory A∗, c1(L ⊗M) and c1(L∨)
can be obtained by specializing the coefficients of F(u, v) and χ(u) to A∗(Spec k).
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In particular, in CK∗ we have P(u, v)= 1
1−βv and χ(u)= −u

1−βu and the Laurent
series (1-2) can be expressed as a sum of Pfaffians ([Hudson et al. 2017, Lemma
5.18]). As a consequence (1-1) reduces to the Pfaffian sum formula describing the
K -theoretic degeneracy loci classes [Hudson et al. 2017, Theorem 5.20].

Our choice of resolutions Yλ has the advantage of being stable: the class $∗[Yλ]
doesn’t change when n→∞. On the other hand, there are different resolutions
for Xλ, such as Bott–Samelson resolutions. These resolutions are well-studied in
the context of generalized Schubert calculus. On the one hand the advantage of
Bott–Samelson classes is represented by their compatibility with divided difference
operators, however this comes at the cost of not being stable along the limit n→∞.
See, for example, [Hornbostel and Kiritchenko 2011; Kiritchenko and Krishna
2013; Hornbostel and Perrin 2018]. The classes related to other resolutions are also
studied in [Nakagawa and Naruse 2016; 2018], a Hall–Littlewood type formula
in �∗ is derived. All of these resolution classes coincide with honest Schubert
classes if one works in CK∗, while they form different families of classes in �∗.
As an application of our explicit formulas, it would be interesting to compare those
different classes which replace Schubert classes in algebraic cobordism. To this
aim it would be advisable to first consider functors more suitable for computations
like the infinitesimal theories used in [Hudson and Matsumura 2018].

Anderson [2019] extended the results of [Hudson et al. 2017] to more general
degeneracy loci including those arising from even orthogonal Grassmann bundles.
His work is based on the approach he and Fulton employed in their study of the
Chow ring fundamental classes of degeneracy loci for all types [Anderson and
Fulton 2012; 2018]. In our future work we would like to lift Anderson’s results to
�∗ so to cover the even orthogonal case as well.

The organisation of the paper is as follows. In section 2 we recall some basic
facts about Borel–Moore homology theories and we translate into this setting the
results on Segre classes presented in [Hudson and Matsumura 2019]. This becomes
necessary because the resolutions are not smooth in general. In section 3 we prove
the main theorem for symplectic Grassmann bundles, while in section 4 we first
deal with the special case of quadric bundles and then establish the main theorem
for odd orthogonal Grassmann bundles.

Notations and conventions. Throughout this paper k will be a field of characteristic
0. By Schk we will denote the category of separated schemes of finite type over
k and Lcik will stand for its full subcategory constituted by the objects whose
structural morphism is a local complete intersection. For a given category C we will
write C ′ to refer to its subcategory given by allowing only projective morphisms.
Ab∗ represents the category of graded abelian groups.
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2. Preliminaries

The goal of this section is to collect some basic properties of Borel–Moore homology
theories and to translate in this context some of the results on generalised Segre
classes presented in [Hudson and Matsumura 2019].

Borel–Moore homology theories. An oriented Borel–Moore (BM) homology the-
ory on Schk (or mutatis mutandis on Lcik) is given by a covariant functor A∗ :
Sch′k→ Ab∗ , by a family of pullback maps { f ∗ : A∗(Y )→ A∗(X)} associated
to l.c.i. morphism and by an external product A∗(X)⊗ A∗(Y )→ A∗(X ×Spec k Y ).
Let us remind the reader that a morphism is a local complete intersection if and
only if it can be factored as the composition of a regular embedding and a smooth
morphism. A detailed description of the properties that these three components
have to satisfy would force us to take a significant detour, so we will focus only on
the aspects that are more relevant to our work and refer the reader to [Levine and
Morel 2007, Definition 5.1.3] for the precise definition.

For us the most relevant feature of oriented BM homology theories is that they
satisfy the projective bundle formula. Roughly speaking it states that for every
vector bundle E of rank e with X ∈ Schk, the evaluation of A∗ on the associated
dual projective bundle P∗(E)

q
→ X can be described in terms of A∗(X). More

precisely for i ∈ {0, 1, . . . , e− 1} one has operations

ξ (i) : A∗+i−e+1(X)−→ A∗(P∗(E))

given by ξ (i) := c̃1(Q)i ◦ q∗, where Q→ P∗(E) is the tautological line bundle
and c̃1(Q) := s∗ ◦ s∗, for any section s : P∗(E)→ Q. Altogether these yield the
following isomorphism

Ψ :

e−1⊕
i=0

A∗+i−e+1(X)
∑e−1

i=0 ξ
(i)

−→ A∗(P∗(E)).

A very important consequence of this is that every oriented BM homology theory
admits a theory of Chern class operators: to E one associates {c̃A

i (E) : A∗(X)→
A∗−i (X)}0≤i≤e. These are defined by setting c̃A

0 (E)= idA∗(X) and, up to a sign, by
considering the different components of Ψ−1

◦ ξ (e), so that one obtains the relation

e∑
i=0

(−1)iξ (e−i)
◦ c̃A

i (E)= 0.

These operators can be collected in the so-called Chern polynomial c̃A(E; u) :=∑e
i=0 c̃A

i (E)u
i and it is worth mentioning that, in view of the Whitney formula, its
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definition can be extended to the Grothendieck group of vector bundles by setting

c̃A(E − F; u) :=
c̃A(E; u)
c̃A(F; u)

.

Beside being extremely useful for computations, Chern classes allow one to get
some insight on how a general oriented BM homology theory A∗ differs from the
Chow group C H∗, probably the most commonly known example. Let us consider,
as an example, the behaviour of the first Chern class with respect to the tensor
product of two line bundles L and M . While in C H∗ one has

c̃CH
1 (L ⊗M)= c̃CH

1 (L)+ c̃CH
1 (M),

in general the relation between the three Chern class operators is described by a
formal group law

(
A∗(Spec k), FA

)
, where FA(u, v) is a special power series with

coefficients in the coefficient ring of the theory A∗(Spec k). The precise relation is
given by

c̃A
1 (L ⊗M)= FA(c̃A

1 (L), c̃A
1 (M)).

In a similar fashion, whereas in C H∗ one simply has c̃CH
1 (L∨) = −c̃CH

1 (L), in
general one needs to introduce the formal inverse χA, a power series in one variable
satisfying both

c̃A
1 (L

∨)= χA(c̃1(L)) and FA(u, χA(u))= 0.

In some case we will denote the formal inverse χA(u) simply by ū.
All our computations will take place in the algebraic cobordism of Levine–Morel

�∗ and our choice is motivated by the following fundamental result.

Theorem 2.1 [Levine and Morel 2007, Theorems 7.1.3 and 4.3.7]. The algebraic
cobordism �∗ is universal among oriented BM homology theories on Lcik. That is,
for any other oriented BM homology theory A∗ there exists a unique morphism

ϑA :�∗→ A∗

of oriented BM homology theories. Furthermore, its associated formal group law(
�∗(Spec k), F�

)
is isomorphic to the universal one defined on the Lazard ring

(L, F).

One consequence of this universality is that all the formulas obtained for �∗ can
be specialised to every other oriented BM homology theory A∗. In other words,
algebraic cobordism allows one to work with all theories at once. Since we will
only work with algebraic cobordism, in the remainder of the paper we will remove
the subscript � from the notation.

Let us conclude our general discussion by briefly mentioning the construction
of fundamental classes and some results which can be used to compute them. To
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every X ∈ Schk whose structural morphism πX is l.c.i. we associate its fundamental
class by setting 1X := π

∗

X (1). Notice that here 1 stands for the multiplicative unit
in A∗(Spec k). In the special case of the zero scheme of a bundle, the fundamental
class can be computed via the following lemma.

Lemma 2.2 [Levine and Morel 2007, Lemma 6.6.7]. Let E be a vector bundle of
rank e over X ∈ Schk. Suppose that E has a section s : X→ E such that the zero
scheme of s, i : Z→ X is a regularly embedded closed subscheme of codimension
e. Then we have

c̃e(E)= i∗ ◦ i∗.

In particular, if X is an l.c.i. scheme, we have

c̃e(E)(1X )= i∗(1Z ).

Finally, as it will play an important role in our computations, we would like to
make more explicit the case of the fundamental class of a nonreduced divisor. For
this we will require a bit of notation. For every integer n ≥ 2, let n ·FA u be the
formal multiplication by n, that is, the power series obtained by adding n times the
variable u using the formal group law FA. Since FA is a formal group law, one has

n ·FA u = u · F (n)A (u)(2-1)

for some degree 0 power series F (n)A (u) whose costant term is n. We are now able
to restate [Levine and Morel 2007, Proposition 7.2.2] for the particular case we
will need.

Lemma 2.3. Let W be a smooth scheme and D a smooth prime divisor of W . For
any integer n ≥ 2, let |E | be the closed subscheme associated to the divisor E = nD.
If L is the line bundle corresponding to D and ι : D→ |E | is the natural morphism,
then in A∗(|E |) we have

1|E | = ι∗
(
F (n)A (c̃A

1 (L |D))(1D)
)
,

where L |D is the restriction of L to D.

Segre class operators. In [Hudson and Matsumura 2019], in order to be able to
describe the pushforwards along projective bundles over a smooth scheme, we
generalised to algebraic cobordism the classical definition of Segre classes given
in [Fulton 1998]. As in this paper we deal with the resolutions of symplectic or
orthogonal degeneracy loci, it becomes necessary to extend such description to
the case of projective bundles over non-smooth schemes. Therefore, we will now
introduce Segre class operators for oriented BM homology theories, since these can
be defined for more general schemes.
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Following [Hudson et al. 2017, §4], we define the relative Segre operators in
terms of generating functions. Let X ∈ Schk.

Definition 2.4. Let x̃1, . . . , x̃e be Chern root operators of a vector bundle E over
X so that c̃(E; u)=

∏e
i=1(1+ x̃i u). We define

w̃(E; u)=
∞∑

s≥0

w̃−s(E)u−s
=

e∏
i=1

P(u−1, x̃i ),

where P(u, v) is defined by F(u, χ(v))= (u− v)P(u, v) (compare [Hudson and
Matsumura 2019, Lemma 4.1]). Since the right-hand side is symmetric in the x̃i ,
this definition of w̃−s(E) is independent of the choice of Chern root operators of E .
It should be noticed that w̃0(E) has constant term 1 and as a consequence w̃(E; u)
is an invertible power series in u−1. One can also define w̃(E − F; u) for a virtual
bundle [E − F], where E and F are vector bundles over X , by setting

w̃(E − F; u)=
∞∑

s≥0

w̃−s(E − F)u−s
=
w̃(E; u)
w̃(F; u)

.

Definition 2.5. Let E be a vector bundle of rank e over X and n a nonnegative
integer. Consider the dual projective bundle π : P∗(E ⊕ O⊕n

X )→ X where OX is
the trivial line bundle over X . For every integer m ≥−e− n+ 1, define the degree
m Segre class operator S̃m(E) of E by setting

S̃m(E)= π∗ ◦ c̃1(Q)m+e+n−1
◦π∗,(2-2)

where Q is the tautological quotient line bundle of P∗(E ⊕ O⊕n
X ). It is easy to

verify (see [Hudson and Matsumura 2019, Remark 4.4]) that this assignment is
independent of n. Finally, we set

S̃ (E; u) :=
∑
m∈Z

S̃m(E)um .

Proposition 2.6. Let E→ X be a vector bundle of rank e over X ∈ Schk. Then we
have the following equality of power series:

S̃ (E; u)=
P̃(u)

c̃(E;−u)w̃(E; u)
.

Here P̃(u) :=
∑
∞

i=0 [̃P
i ]u−i is the power series collecting the operators given by

external multiplication with the pushforwards classes of projective spaces [Pi
] :=

[Pi
→ Spec k] ∈ L−i .

Proof. Once one has translated in the language of operators the proof given in
[Hudson and Matsumura 2019, Theorem 4.6], the only thing left to check is that for
every trivial dual projective bundle (Pn

X )
∗ π
→ X the composition π∗ ◦π∗ coincides
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with external multiplication by [Pn
]. This can be verified directly at the level of

cobordism cycles by making use of the definitions of pushforward and pullback
morphisms and of the external product. �

Remark 2.7. It is worth mentioning that, provided one restricts to the case X ∈Smk,
Proposition 2.6 can be derived from the analogue of Quillen’s formula for algebraic
cobordism established in [Vishik 2007, Theorem 5.35]. The same formula can
be used to express the classes [Pi

] in terms of the generators of the Lazard ring
and, as a consequence, of the coefficients of the formal group law. On the other
hand, an easy computation shows that Quillen’s formula can be recovered from
Proposition 2.6, provided one knows the expression for the classes of projective
spaces. In this sense our approach allows us to extend the validity of Vishik’s result
from Smk to Schk.

In view of the last proposition, we are now able to extend to virtual bundles the
definition of Segre classes.

Definition 2.8. For vector bundles E and F over X , define the relative Segre class
operators S̃m(E − F) on �∗(X) as

(2-3) S̃ (E − F; u) :=
∑
m∈Z

S̃m(E − F)um
= P̃(u)

c̃(F;−u)w̃(F; u)
c̃(E;−u)w̃(E; u)

.

Remark 2.9. If the rank of F is f , then we have

S̃m(E − F)=
f∑

p=0

∞∑
q=0

(−1)p c̃p(F) ◦ w̃−q(F) ◦ S̃m−p+q(E).

Even if F itself is a virtual bundle, this equation holds by replacing f with∞.

We conclude this section by providing a description of relative Segre classes in
terms of pushforwards of Chern classes. This should be seen as an analogue of
[Hudson and Matsumura 2019, Theorem 4.9].

Theorem 2.10. Let X ∈ Schk and let E and F be two vector bundles over X ,
respectively of rank e and f . Let π : P∗(E)→ X be the dual projective bundle of
E and Q its universal quotient line bundle. As operators over �∗(X), we have

π∗ ◦ c̃1(Q)s ◦ c̃ f (Q⊗ F∨) ◦π∗ = S̃s+ f−e+1(E − F).(2-4)

In particular if X ∈ Lcik, then one has

π∗ ◦ c̃1(Q)s ◦ c̃ f (Q⊗ F∨)(1P∗(E))= S̃s+ f−e+1(E − F)(1X ).
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Proof. Let us begin by observing that an easy Chern roots computation analogue to
[Hudson and Matsumura 2019, formula (4.1)] gives us

c̃ f (Q⊗ F∨)=
f∑

p=0

∞∑
q=0

(−1)p c̃p(F) ◦ w̃−q(F) ◦ c̃1(Q) f−p+q .

Thus the left-hand side of (2-4) can be rewritten as

f∑
p=0

∞∑
q=0

(−1)p c̃p(F) ◦ w̃−q(F) ◦π∗ ◦ c̃1(Q)s+ f−p+q
◦π∗.(2-5)

By (2-2), we find that (2-5) equals to

f∑
p=0

∞∑
q=0

(−1)p c̃p(F) ◦ w̃−q(F) ◦ S̃s+ f−e+1−p+q(E),

which coincides with the right-hand side of (2-4) in view of Remark 2.9. The second
statement follows immediately by applying both sides of (2-4) to the fundamental
class 1X . �

Remark 2.11. If E is a line bundle, then one has π = idX and Q = E . As a
consequence we have

c̃1(Q)s ◦ c̃ f (Q⊗ F∨)(1X )= S̃ f−e+1+s(E − F)(1X ).

3. Symplectic degeneracy loci

For this section we fix a nonnegative integer k.

k-strict partitions and characteristic indices. A k-strict partition λ is a weakly
decreasing infinite sequence (λ1, λ2, . . . ) of nonnegative integers such that the
number of nonzero parts is finite, and if λi > k, then λi > λi+1. The length of λ is
the number of nonzero parts of λ. Let SPk be the set of all k-strict partitions. Let
SPk

r be the set of all k-strict partitions with the length at most r . If λ ∈ SPk
r , then

we often write λ = (λ1, . . . , λr ). Let SPk(n) be the set of all k-strict partitions
such that λ1 ≤ n+ k and the length of λ is at most n− k.

Let W∞ be the infinite hyperoctahedral group which can be identified with the
group of all signed permutations (permutations w of Z\{0} such that w(i) 6= i for
only finitely many i ∈ Z\{0}, and w(i)= w(ī) for all i where ī := −i). A signed
permutation w is determined by the sequence (w(1), w(2), . . . ) which we call one
line notation. An element w ∈W∞ is called k-Grassmannian if

0<w(1) < · · ·<w(k), w(k+ 1) < w(k+ 2) < · · · .

The set of all k-Grassmannian elements in W∞ is denoted by W (k)
∞ .
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Between W (k)
∞ and SPk , there is a bijection defined as follows. For eachw∈W (k)

∞ ,
the corresponding k-strict partition is given by

λi :=

{
w(k+ i) if w(k+ i) < 0,
#{ j ≤ k | w( j) > w(k+ i)} if w(k+ i) > 0.

For each λ ∈ SPk (with the corresponding w ∈W (k)
∞ ), we define its characteristic

index χ = (χ1, χ2, . . . ) by

(3-1) χi :=

{
−w(k+ i)− 1 if w(k+ i) < 0,
−w(k+ i) if w(k+ i) > 0.

Moreover, the following notations are necessary for our formulas of Grassman-
nian degeneracy loci in type C and B: for each λ ∈ SPk and the corresponding
characteristic index χ , define

C(λ) := {(i, j) | 1≤ i < j, χi +χ j ≥ 0},

γ j := ]{i | 1≤ i < j, χi +χ j ≥ 0} for each j > 0.

Symplectic degeneracy loci and the class κC
λ . Let E be a symplectic vector bundle

over a smooth scheme X of rank 2n, i.e., we are given a nowhere degenerating sec-
tion of

∧2 E . For a subbundle F of E , we denote by F⊥ the orthogonal complement
of F with respect to the symplectic form. Fix a reference flag F • of subbundles
of E ,

0= Fn
⊂ Fn−1

⊂ · · · ⊂ F1
⊂ F0

⊂ F−1
⊂ · · · ⊂ F−n

= E,

where rk F i
= n− i and (F i )⊥ = F−i for all i with −n ≤ i ≤ n. Let SGk(E)→ X

be the Grassmannian bundle over X consisting of pairs (x,Ux) where x ∈ X and
Ux is an n − k dimensional isotropic subspace of Ex . Let U be the tautological
bundle of SGk(E).

For each λ ∈ SPk(n) of length r , let XC
λ be the symplectic degeneracy locus in

SGk(E) defined by

XC
λ =

{
(x,Ux) ∈ SGk(E) | dim(Ux ∩ Fχi

x )≥ i, i = 1, . . . , r
}
,

where χ = (χ1, χ2, . . . ) is the characteristic index for λ.
Let Flr (U )→ SGk(E) be the r -step flag bundle of U where the fiber at (x,Ux)∈

SGk(E) consists of the flag (D•)x ={(D1)x ⊂ · · · ⊂ (Dr )x} of subspaces of Ux with
dim(Di )x = i . Let D1⊂ · · · ⊂ Dr be the flag of tautological bundles of Flr (U ). We
set D0 = 0. The bundle Flr (U ) can be constructed as a tower of projective bundles

(3-2) π : Flr (U )= P(U/Dr−1)
πr
−→ P(U/Dr−2)

πr−1
−→ · · ·

π3
−→ P(U/D1)

π2
−→ P(U )

π1
−→ SGk(E).
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The quotient line bundle D j/D j−1 is regarded as the tautological line bundle of
P(U/D j−1) and we set τ̃ j := c̃1((D j/D j−1)

∨).
We are now able to define the resolution of singularities of the degeneracy loci.

Definition 3.1. For each j = 1, . . . , r , we define a subvariety Y j of P(U/D j−1) by

Y j :=
{
(x,Ux , (D1)x , . . . , (D j )x) ∈ P(U/D j−1) | (Di )x ⊂ Fχi

x , i = 1, . . . , j
}
.

We set Y0 := SGk
r (U ) and Y C

λ := Yr . Let Pj−1 := π
−1
j (Y j−1), π ′j : Pj−1→ Y j−1

the projection and ι j : Y j → Pj−1 the obvious inclusion. Let $ j := π
′

j ◦ ι j . We
have the commutative diagram

P(U/D j−1) π j
// P(U/D j−2)

Pj−1
π ′j

//

OO

Y j−1

OO

Y j

ι j

OO

$ j

77

Definition 3.2. Let $ := $1 ◦ · · · ◦$r : Y C
λ → SGk(E). Define the class κC

λ ∈

�∗(SGk(E)) by
κC
λ = [Y

C
λ → SGk(E)] :=$∗(1Y C

λ
).

Remark 3.3. It is also known that Y C
λ is irreducible and has at worst rational

singularities. Furthermore Y C
λ is birational to XC

λ through the projection π (see
[Hudson et al. 2017], for example). Therefore in K -theory and Chow ring of
SGk(E) the class κC

λ coincides with the fundamental class of the degeneracy loci
XC
λ . Note that in a general oriented cohomology theory, the fundamental class of

XC
λ is not defined since XC

λ may not be an l.c.i. scheme.

Computing κC
λ . In this section, we establish an explicit formula of the class κC

λ in
�∗(SGk(E)) in terms of a power series in relative Segre classes. The key ingredients
for the computation are twofold: one is the formula that computes pushforwards
along each $ j and the other is so-called umbral calculus which is a computational
technique to combine the pushforwards along all the $ j .

We begin by the following lemma which was proved in [Hudson et al. 2017]
for CK∗. One can easily check that the proof works for an arbitrary oriented BM
homology and in particular for �∗.

Lemma 3.4. For each j = 1, . . . , r , the variety Y j is regularly embedded in Pj−1

and Pj−1 is regularly embedded in P(U/D j−1). Furthermore, in �∗(Pj−1), we
have

ι j∗(1Y j )= c̃λ j+n−k− j
(
(D j/D j−1)

∨
⊗ (D⊥γ j

/Fχ j )
)
(1Pj−1).
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Based on this lemma together with Theorem 2.10, we have the next pushforward
formula for $ j . For simplicity, let us introduce the following notation: for each
m ∈ Z and −n ≤ `≤ n, let

C̃ (`)
m := S̃m

(
U∨− (E/F`)∨

)
.

In �∗(SGk(E)), we set C
(`)
m := C̃

(`)
m (1SGk(E)).

Lemma 3.5. In �∗(Y j−1), we have

$ j∗ ◦ τ̃
s
j (1Y j )=

j−1∑
p=0

∞∑
q=0

(−1)p c̃p(D∨j−1− Dγ j ) ◦w−q(D∨j−1− Dγ j ) ◦ C̃
(χ j )

λ j+s−p+q(1Y j−1).

Proof. By Lemma 3.4, we have

$ j∗ ◦ τ̃
s
j (1Y j )= π

′

j∗ ◦ ι j∗ ◦ τ̃
s
j (1Y j )= π

′

j∗ ◦ τ̃
s
j ◦ ι j∗(1Y j )= π

′

j∗ ◦ τ̃
s
j ◦ α̃ j (1Pj−1),

where α̃ j := c̃λ j+n−k− j ((D j/D j−1)
∨
⊗ (D⊥γ j

/Fχ j )). By Theorem 2.10, we have

π ′j∗ ◦ τ̃
s
j ◦ α̃ j (1Pj−1)= S̃s+λ j

(
(U/D j−1)

∨
− (D⊥γ j

/Fχ j )∨
)
(1Y j−1)

= S̃s+λ j

(
U∨− (E/Fχ j )∨− (D j−1− D∨γ j

)∨
)
(1Y j−1),

where we have used D⊥γ j
= E − D∨γ j

. Now the claim follows from Remark 2.9. �

For the umbral calculus mentioned above, we need to establish some notation.
Let R = �∗(Grd(E)), viewed as a graded algebra over L, and let t1, . . . , tr be
indeterminates of degree 1. We use the multi-index notation t s

:= t s1
1 · · · t

sr
r for

s = (s1, . . . , sr ) ∈ Zr . A formal Laurent series f (t1, . . . , tr ) =
∑

s∈Zr ast s is ho-
mogeneous of degree m ∈ Z if as is zero unless as ∈ Rm−|s| with |s| =

∑r
i=1 si .

Let supp f = {s ∈ Zr
| as 6= 0}. For each m ∈ Z, define LR

m to be the space of
all formal Laurent series of homogeneous degree m such that there exists n ∈ Zr

for which n+ supp f is contained in the cone in Zr defined by s1 ≥ 0, s1+ s2 ≥

0, · · · , s1+ · · ·+ sr ≥ 0. Then LR
:=
⊕

m∈Z LR
m is a graded ring over R with the

obvious product. For each i = 1, . . . , r , let LR,i be the R-subring of LR consisting
of series that do not contain any negative powers of t1, . . . , ti−1. In particular,
LR,1

= LR . A series f (t1, . . . , tr ) is a power series if it doesn’t contain any
negative powers of t1, . . . , tr . Let R[[t1, . . . , tr ]]m denote the set of all power series
in t1, . . . , tr of degree m ∈ Z. We set R[[t1, . . . , tr ]]gr :=

⊕
m∈Z R[[t1, . . . , tr ]]m .

Definition 3.6. Define a graded R-module homomorphism φ1 :LR
→�∗(SGk(E))

as
φC

1 (t
s1
1 · · · t

sr
r )= C̃ (χ1)

s1
◦ · · · ◦ C̃ (χr )

sr
(1SGk(E)).
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Similarly, for each j = 2, . . . , d, define a graded R-module homomorphism φC
j :

LR, j
→�∗(Y j−1) by setting

φC
j (t

s1
1 · · · t

sr
r )= τ̃

s1
1 ◦ · · · ◦ τ̃

s j−1
j−1 ◦ C̃

(χ j )
s j ◦ · · · ◦ C̃ (χr )

sr
(1Y j−1).

Remark 3.7. By regarding �∗(SGk(E))=�dim SGk(E)−∗(SGk(E)), we have

φC
1 (t

s1
1 · · · t

sr
r )= C (χ1)

s1
· · ·C (χr )

sr
.

Using φC
j , we can restate Lemma 3.5 as follows.

Lemma 3.8. One has

$ j∗ ◦ τ̃
s
j (1Y j )= φ

C
j

(
tλ j+s

j

∏ j−1
i=1 (1− ti/t j )P(t j , ti )∏γ j
i=1(1− t̄i/t j )P(t j , t̄i )

)
.

Proof. Consider the functions of t1, . . . , t j−1 defined by the following generating
functions:

∞∑
p=0

Hλ
p (t1, . . . , t j−1)u p

:=
e(t1, . . . , t j−1; u)
e(t̄1, . . . , t̄γ j ; u)

=

∏ j−1
i=1 (1+ ti u)∏γ j
i=1(1+ t̄i u)

,

∞∑
q=0

W λ
−q(t1, . . . , t j−1)u−q

:=
w(t1, . . . , t j−1; u)
w(t̄1, . . . , t̄γ j ; u)

=

∏ j−1
i=1 P(u−1, ti )∏γ j
i=1 P(u−1, t̄i )

.

Then we have

Hλ
p (τ̃1, . . . , τ̃ j−1)= c̃p(D∨j−1− Dγ j ), W λ

−q(τ̃1, . . . , τ̃ j−1)= w̃−q(D∨j−1− Dγ j ).

Thus, by Lemma 3.5 and the definition of φC
j , we have

$ j∗ ◦ τ̃
s
j (1Y j )

= φC
j

( j−1∑
p=0

∞∑
q=0

(−1)p Hλ
p (t1, . . . , t j−1)W λ

−q(t1, . . . , t j−1)t
λ j+s−p+q
j

)

=φC
j

(
tλ j+s

j

( j−1∑
p=0

(−1)p Hλ
p (t1, . . . , t j−1)t

−p
j

)( ∞∑
q=0

W λ
−q(t1, . . . , t j−1)t

q
j

))
.

The claim follows from the definitions of Hλ
p and W λ

−q in terms of the generating
functions. �

Finally, we are able to prove the main theorem in the case of symplectic Grassmann
bundles.
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Theorem 3.9. For a strict partition λ ∈ SPk(n), the associated class κC
λ is given

by

κC
λ =

∑
s=(s1,...,sr )∈Zr

f λs C
(χ1)
s1+λ1
· · ·C

(χr )
sr+λr

,

where f λs ∈ L are the coefficients of the Laurent series

(3-3)

∏
1≤i< j≤r (1− ti/t j )P(t j , ti )∏
(i, j)∈C(λ)(1− t̄i/t j )P(t j , t̄i )

=

∑
s=(s1,...,sr )∈Zr

f λs · t
s1
1 · · · t

sr
r

as an element of LL.

Proof. By Definition 3.2, it follows from successive applications of Lemma 3.8
(compare [Hudson et al. 2017]) that

κC
λ = φ

C
1

(
tλ1
1 · · · t

λr
r

∏
1≤i< j≤r (1− ti/t j )P(t j , ti )∏
(i, j)∈C(λ)(1− t̄i/t j )P(t j , t̄i )

)
.

Then, in view of the definition of the coefficients fs, it suffices to apply φC
1 to obtain

the claim. �

4. Odd orthogonal degeneracy loci

For this section we fix a nonnegative integer k.

Orthogonal degeneracy loci. Consider the vector bundle E of rank 2n + 1 over
X with a symmetric non-degenerate bilinear form 〈 , 〉 : E ⊗ E→ OX where OX

is the trivial line bundle over X . Let ξ : OGk(E)→ X be the Grassmann bundle
consisting of pairs (x,Ux) where x ∈ X and Ux is an n− k dimensional isotropic
subspace of Ex . Note that the bilinear form 〈 , 〉 on E induces an isomorphism
F⊥/F⊗F⊥/F ∼= OX for any maximal isotropic subbundle F of E where F⊥ is the
orthogonal complement of F with respect to 〈 , 〉. This implies that c1(F⊥/F)= 0
in �∗(X)⊗Z Z[1/2].

Fix a reference flag

0= Fn
⊂ Fn−1

⊂ · · · ⊂ F1
⊂ F0

⊂ (F0)⊥ ⊂ F−1
⊂ · · · ⊂ F−n

= E,

such that rk F i
= n−i for i ≥ 0 and (F i )⊥= F−i for all i ≥ 1. For each λ∈SPk(n)

of length r , we define the associated degeneracy loci X B
λ in OGk(E) is defined by

X B
λ =

{
(x,Ux) ∈ OGk(E) | dim(Ux ∩ Fχi )≥ i, i = 1, . . . , r

}
,

where χ is the characteristic index associated to λ.
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Quadric bundle. The bundle OGn−1(E) is also known as the quadric bundle and
we denote it by Q(E). In this section, we do not assume that X is smooth as
long as it is regularly embedded in a quasi-projective smooth variety. Let S be the
tautological line bundle of Q(E). In this particular case the Schubert varieties of
Q(E) are indexed by a single integer λ1 and can be explicitly described as follows:

(4-1) X B
λ1
=

{
Q(E)∩P(Fλ1−n) (0≤ λ1 < n),
P(Fλ1−n) (n ≤ λ1 < 2n).

It is worth noting that λ1 represents the codimension of X B
λ1

in Q(E).

Lemma 4.1. The fundamental class of the subvariety X B
λ1

in �∗(Q(E)) for λ1 < n
is given by

(4-2) [X B
λ1
→ Q(E)] = c̃λ1(S

∨
⊗ E/Fλ1−n)(1Q(E)).

Moreover the fundamental class of X B
λ1

in�∗(Q(E)) for λ1≥ n satisfies the identity

(4-3) F (2)
(
c̃1(S∨⊗ (F0)⊥/F0)

)(
[X B

λ1
→ Q(E)]

)
= c̃λ1

(
S∨⊗ (E/(F0)⊥⊕ F0/Fλ1−n)

)(
1Q(E)

)
,

where F (2) is a special case of the power series defined in (2-1).

Proof. The formula (4-2) follows from Lemma 2.2. For (4-3), first we show the case
for λ1 = n, by computing the class [X B

n → Q(E)] in �∗(Q(E)) in two different
ways. The variety X B

n is a divisor in P((F0)⊥), corresponding to the line bundle
S∨⊗ (F0)⊥/F0. Moreover, the scheme theoretic intersection Q(E)∩P((F0)⊥)

defines the Weil divisor 2X B
n on P((F0)⊥) and in view of Lemma 2.3 we have

1Q(E)∩P((F0)⊥) = ι∗
(
F (2)(c̃1(S∨⊗ (F0)⊥/F0))(1X B

n
)
)
,

where ι : X B
n → Q(E) ∩ P((F0)⊥) is the obvious inclusion. Thus, by pushing

forward this identity to Q(E), we obtain the following identity in �∗(Q(E)):

[Q(E)∩P((F0)⊥)→ Q(E)] = F (2)
(
c̃1(S∨⊗ (F0)⊥/F0)

)(
[X B

n → Q(E)]
)
.

On the other hand, Lemma 2.2 implies that

[Q(E)∩P((F0)⊥)→ Q(E)] = c̃n
(
S∨⊗ E/(F0)⊥

)
(1Q(E)).

This proves (4-3) for λ1 = n.
If λ1 > n, again by Lemma 2.2 we have [X B

λ1
→ X B

n ] = c̃i (S∨⊗ F0/F i )(1X B
n
)

in �∗(X B
n ). Thus we have

F (2)
(
c̃1(S∨⊗ (F0)⊥/F0)

)
=
(
[X B

λ1
→ X B

n ]
)

= F (2)
(
c̃1(S∨⊗ (F0)⊥/F0)

)
◦ c̃i (S∨⊗ F0/F i )(1X B

n
).
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By pushing it forward to �∗(Q(E)) and applying (4-3) for λ1 = n, we obtain

F (2)
(
c̃1(S∨⊗ (F0)⊥/F0)

)(
[X B

λ1
→ Q(E)]

)
= c̃n

(
S∨⊗ E/(F0)⊥

)
◦ c̃λ1−n(S∨⊗ F0/Fλ1−n)(1Q(E))

= c̃λ1

(
S∨⊗ (E/(F0)⊥⊕ F0/F i )

)
(1Q(E)).

This proves (4-3) for λ1 > n. �

As mentioned above, we have c̃1((F0)⊥/F0)= 0 in �∗(Q(E))⊗Z Z[1/2] so that
c̃1(S∨⊗ (F0)⊥/F0)= c̃1(S∨). Therefore we have

F (2)
(
c̃1(S∨⊗ (F0)⊥/F0)

)
= F (2)

(
c̃1(S∨)

)
.

Notice that, since it is homogeneous of degree 0 with constant term 2, the series
F (2)(u) is invertible in L⊗Z Z[1/2]. Thus we have the following corollary.

Corollary 4.2. In �∗(Q(E))⊗Z Z[1/2], we have

[X B
λ1
→ Q(E)] =


c̃λ1(S

∨
⊗ E/Fλ1−n)(1Q(E)) (0≤ λ1 < n),

1
F (2)

(
c̃1(S∨)

) ◦ c̃λ1(S
∨
⊗ E/Fλ1−n)(1Q(E)) (n ≤ λ1 < 2n).

Remark 4.3. As mentioned in Remark 2.11, we have

[X B
λ1
→Q(E)]=


S̃λ1

(
S∨− (E/Fλ1−n)∨

)
(1Q(E)) (0≤ λ1 < n),

1
F (2)

(
c1(S∨)

)S̃λ1

(
S∨− (E/Fλ1−n)∨

)
(1Q(E)) (n ≤ λ1 ≤ 2n).

Resolution of singularities and the class κ B
λ . Consider the r-step flag bundle π :

Flr (U )→OGk(E) as before. We let D1⊂ · · · ⊂ Dr be the tautological flag. Recall
that Flr (U ) can be constructed as the tower of projective bundles

(4-4) π : Flr (U )= P(U/Dr−1)
πr
→ · · ·

π3
→ P(U/D1)

π2
→ P(U )

π1
→ OGk(E)

We regard D j/D j−1 as the tautological line bundle of P(U/D j−1) where we let
D0 = 0. For each j = 1, . . . , r , let τ̃ j := c̃1((D j/D j−1)

∨) be the first Chern class
operator of (D j/D j−1)

∨ on �∗(P(U/D j−1)).

Definition 4.4. Let λ ∈ SPk(n) be of length r . For each j = 1, . . . , r , we define a
subvariety Y j of P(U/D j−1) by setting

Y j :=
{
(x,Ux , (D1)x , . . . , (D j )x) ∈ P(U/D j−1) | (Di )x ⊂ Fχi

x , i = 1, . . . , j
}
.

We set Y0 := SGk
r (U ) and Y B

λ := Yr . Let Pj−1 := π
−1
j (Y j−1), π ′j : Pj−1→ Y j−1

the projection and ι j : Y j → Pj−1 the obvious inclusion. Let $ j := π
′

j ◦ ι j . We
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have the commutative diagram

P(U/D j−1) π j
// P(U/D j−2)

Pj−1
π ′j

//

OO

Y j−1

OO

Y j

ι j

OO

$ j

77

As in the symplectic case we set $ :=$1 ◦ · · · ◦$r : Y B
λ → OGk(E) and define

κ B
λ :=$∗(1Y B

λ
).

Computing κ B
λ . The following lemma is known from [Hudson et al. 2017], where

the computation of the fundamental class of Y j in Pj−1 is done in connective
K -theory CK∗. However, the proof is valid in an arbitrary oriented BM homology
and in particular in �∗.

Lemma 4.5. For each j = 1, . . . , r , the variety Y j is regularly embedded in Pj−1

and Pj−1 is regularly embedded in P(U/D j−1), in particular they both belong to
Lcik. Moreover we have

ι j∗(1Y j )= α̃ j (1Pj−1)

in �∗(Pj−1), where

α̃ j =


c̃λ j+n−k− j

(
(D j/D j−1)

∨
⊗ (D⊥γ j

/Fχ j )
)

(−n ≤ χ j < 0),

1
F (2)(c1((D j/D j−1)∨))

c̃λ j+n−k− j
(
(D j/D j−1)

∨
⊗ (D⊥γ j

/Fχ j )
)
(0≤ χ j < n).

Definition 4.6. Let −n ≤ ` < n. For each m ∈ Z, we define the operators B̃
(`)
m for

�∗(OGk(E))⊗Z Z[1/2] by means of the following generating function

∑
m∈Z

B̃(`)
m um

=

{
S̃
(
U∨− (E/F`)∨; u

)
(−n ≤ ` < 0),

1
F (2)(u−1)

S̃
(
U∨− (E/F`)∨; u

)
(0≤ ` < n).

If 1
F (2)(u−1)

=
∑

s≥0 fsu−s with fs ∈ L⊗Z Z[1/2], then we have

B̃(`)
m =

∑
s≥0

fsS̃m+s
(
U∨− (E/F`)∨

)
(0≤ ` < n).

Remark 4.7. If λ= (λ1) ∈ SPk(n), we have κ B
λ =B

(χ1)
λ1

.
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Lemma 4.8. For each s ≥ 0, we have

$ j∗ ◦ τ̃
s
j (1Y j )

=

∞∑
p=0

∞∑
q=0

(−1)p c̃p(D∨j−1− Dγ j ) ◦ w̃−q(D∨j−1− Dγ j ) ◦ B̃
(χ j )

λ j+s−p+q(1Y j−1).

Proof. By Lemma 4.5, we have

(4-5) $ j∗◦ τ̃
s
j (1Y j )=π

′

j∗◦ι j∗◦ τ̃
s
j (1Y j )=π

′

j∗◦ τ̃
s
j ◦ι j∗(1Y j )=π

′

j∗◦ τ̃
s
j ◦α̃ j (1Pj−1).

Suppose that χ j < 0. By Theorem 2.10, the right-hand side of (4-5) equals

S̃λ j+s
(
(U/D j−1−D⊥γ j

/Fχ j )∨
)
(1Y j−1)= S̃λ j+s

(
(U−E/Fχ j−D j−1+D∨γ j

)∨
)
(1Y j−1),

where D⊥γ j
= E − D∨γ j

. Then the claim follows from Remark 2.9. Similarly, if
0≤ χ j , Theorem 2.10 implies that the right-hand side of (4-5) equals

∞∑
s′=0

fs′S̃λ j+s+s′
(
(U/D j−1)

∨
− (D⊥γ j

/Fχ j )∨
)
(1Y j−1),

where we set F (2)(u−1)−1
=
∑

s′≥0 fs′u−s′ with fs′ ∈ L⊗Z [1/2] as above. Again,
we use the identity D⊥γ j

= E−D∨γ j
and then the claim follows from Remark 2.9. �

Set R :=�∗(OGk(E))⊗Z Z[1/2] and let LR be the ring of formal Laurent series
with indeterminates t1, . . . , tr defined in the previous section.

Definition 4.9. Define a graded R-module homomorphism

φB
1 : L

R
⊗Z Z[1/2] →�∗(OGk(E))⊗Z Z[1/2]

by

φB
1 (t

s1
1 · · · t

sr
r )= S̃s1

(
U∨− (E/Fχ1)∨

)
◦ · · · ◦ S̃sr

(
U∨− (E/Fχr )∨

)
(1OGk(E)).

Similarly, for each j = 2, . . . , r , define a graded R-module homomorphism

φB
j : L

R, j
⊗Z Z[1/2] →�∗(Y j−1)⊗Z Z[1/2]

by

φB
j (t

s1
1 · · · t

sr
r )

= τ̃
s1
1 ◦ · · · ◦ τ̃

s j
j−1 ◦ S̃s j

(
U∨− (E/Fχ j )∨

)
◦ · · · ◦ S̃sr

(
U∨− (E/Fχr )∨

)
(1Y j−1).

Remark 4.10. Note that φB
j replaces tm

i
F (2)(ti )

by B̃
(χi )
m (1Y j−1) for each i such that

j ≤ i ≤ r and χi ≥ 0, and m ∈ Z.

As with Lemma 3.8, by making use of Lemma 4.8 we can prove the following
lemma.
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Lemma 4.11. We have

$ j∗ ◦ τ̃
s
j (1Y j )=


φB

j

(
tλ j+s

j

∏ j−1
i=1 (1− ti/t j )P(t j , ti )∏γ j
i=1(1− t̄i/t j )P(t j , t̄i )

)
(χ j < 0),

φB
j

( tλ j+s
j

F (2)(t j )

∏ j−1
i=1 (1− ti/t j )P(t j , ti )∏γ j
i=1(1− t̄i/t j )P(t j , t̄i )

)
(0≤ χ j ),

for all s ≥ 0.

A repeated application of Lemma 4.11 to the definition of κ B
λ , together with

Remark 4.10, allows us to obtain the main theorem for odd orthogonal Grass-
mannians.

Theorem 4.12. We have

κ B
λ =

∑
s=(s1,...,sr )∈Zr

f λs B
(χ1)
λ1+s1
· · ·B

(χr )
λr+sr

,

where the f λs ∈ L are the coefficients of the Laurent series

(4-6)

∏
1≤i< j≤r (1− ti/t j )P(t j , ti )∏
(i, j)∈C(λ)(1− t̄i/t j )P(t j , t̄i )

=

∑
s=(s1,...,sr )∈Zr

f λs · t
s1
1 · · · t

sr
r

viewed as an element of LL.
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