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Let (M, g) be a closed Riemannian manifold of dimension 5≤ n≤ 7. Assume
that (M, g) is not conformally equivalent to the round sphere. If the scalar
curvature Rg is greater than or equal to 0 and the Q-curvature Qg is greater
than or equal to 0 on M with Qg( p) > 0 for some point p ∈ M, we prove
that the set of metrics in the conformal class of g with prescribed constant
positive Q-curvature is compact in C4,α for any 0< α < 1.

1. Introduction

On a manifold (Mn, g) of dimension n ≥ 5, the Q-curvature of [1985] is defined by

Qg =−
2

(n− 2)2
|Ricg|

2
+

n3
− 4n2

+ 16n− 16
8(n− 1)2(n− 2)2

R2
g −

1
2(n− 1)

1g Rg,

where Ricg is the Ricci curvature of g, Rg is the scalar curvature of g and 1g is the
Laplacian operator with negative eigenvalues. The Paneitz operator [1983], which
is the linear operator in the conformal transformation formula of the Q-curvature,
is defined as

(1-1) Pg =1
2
g − divg(an Rgg− bnRicg)∇g +

n− 4
2

Qg,

with

an =
(n− 2)2+ 4

2(n− 1)(n− 2)
and bn =

4
n− 2

.

In fact, under the conformal change g̃ = u4/(n−4)g, the transformation formula of
the Q-curvature is given by

Pgu =
n− 4

2
Q g̃u

n+4
n−4 .
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In comparison, for n ≥ 3 the change of scalar curvature under the conformal change
g̃ = u4/(n−2)g satisfies

Lgu ≡−
4(n− 1)
(n− 2)

)1gu+ Rgu = Rg̃ u
n+2
n−2 .

Let (Mn, g) be a closed Riemannian manifold of dimension n ≥ 5. For existence
of solutions u to the prescribed constant positive Q-curvature equation

(1-2) Pgu =
n− 4

2
Qu

n+4
n−4 ,

with Q = 1
8 n(n2

−4), one may refer to [Esposito and Robert 2002; Qing and Raske
2006b; Hebey and Robert 2004; Gursky and Malchiodi 2015; Hang and Yang
2016a; 2016b; Gursky et al. 2016]. Recently, based on a version of maximum
principle, Gursky and Malchiodi proved the following:

Theorem 1.1 [Gursky and Malchiodi 2015]. For a closed Riemannian manifold
(Mn, g) of dimension n ≥ 5, if Rg ≥ 0 and Qg ≥ 0 on M with Qg not identically
zero, then there is a conformal metric h = u4/(n−4)g with positive scalar curvature
and constant Q-curvature Qh = Q.

Moreover, they showed positivity of the Green’s function of the Paneitz operator.
Also, for n = 5, 6, 7, they proved a version of the positive mass theorem (see
Theorem 2.1), which is important in proving compactness of the set of positive
solutions to the prescribed constant Q-curvature problem in C4,α(M)with 0<α<1.
Note that when the pointwise condition in Theorem 1.1 is replaced by the require-
ment that the Yamabe constant Y (M, [g]) be greater than 0 and Qg ≥ 0, existence
of solutions to (1-2) is proved in [Hang and Yang 2016b].

For compactness results of solutions to the prescribed constant Q-curvature
equation under different conditions; see [Djadli et al. 2000; Hebey and Robert 2004;
Humbert and Raulot 2009; Qing and Raske 2006a]. Djadli, Hebey and Ledoux
[2000] studied the optimal Sobolev constant in the embedding W 2,2 ↪→ L2n/(n−4)

when Pg has constant coefficients when g is an Einstein metric and also when
Pg is replaced by a more general Paneitz-type operator. With some additional
assumptions, they studied compactness of solutions to the related equations with
W 2,2 bound and obtained existence of positive solutions for the corresponding
equations. Under the assumption that the Paneitz operator is of strong positive type,
Hebey and Robert [2004] considered compactness of positive solutions to (1-2)
with W 2,2 bound in locally conformally flat manifolds with positive scalar curvature.
They showed that under these conditions, when the Green’s function of Pg satisfies a
positive mass theorem, the compactness of solutions to (1-2) holds. Later, Humbert
and Raulot [2009] showed that the positive mass theorem holds automatically under
the assumption in [Hebey and Robert 2004]. Qing and Raske [2006a], with the
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use of the developing map and moving plane method, they showed an L∞ bound
of solutions to (1-2), for locally conformally flat manifolds with positive scalar
curvature and an upper bound of the so-called Poincaré exponent (see [Chang et al.
2004]).

In this article we want to study compactness of solutions to (1-2) under the
hypotheses in Theorem 1.1, following Schoen’s outline of the proof of compactness
of solutions to the prescribed scalar curvature problem. It is known that nonunique-
ness of solutions to the prescribed scalar curvature problem (the Yamabe problem)
could happen when the Yamabe constant of (M, g) is positive ([Schoen 1989;
Pollack 1993]). In the conformal class of the round sphere metric, the solutions
to the Yamabe problem are not uniformly bounded. Compactness of solutions
to the Yamabe problem with positive Yamabe constant are well studied when g
is not conformally equivalent to the round sphere metric. Following Schoen’s
original outline, one has the compactness of the solutions when (Mn, g) is locally
conformally flat, or when n ≤ 24 and the positive mass theorem holds on (M, g);
see [Schoen 1991; Schoen and Zhang 1996; Li and Zhu 1999; Druet 2004; Chen
and Lin 1998; Li and Zhang 2005; 2007; Marques 2005; Khuri et al. 2009]. It is
interesting that when n ≥ 25, there are conformal classes (which are not the round
sphere metrics) with infinitely many solutions to the Yamabe problem which are not
uniformly bounded; see [Brendle 2008; Brendle and Marques 2009]. In comparison,
Wei and Zhao [2013] showed noncompactness of solutions to the positive constant
Q-curvature equations for n ≥ 25 in some conformal class different from that of the
round sphere. For the compactness argument for the Nirenberg problem for a more
general type conformal equation on the round sphere, see [Jin et al. 2017]. More
precisely, we follow the approach in [Li and Zhu 1999] and [Marques 2005] for
compactness of the set of solutions to the prescribed constant Q-curvature problem
in dimension 5≤ n ≤ 7 under the hypotheses of Theorem 1.1.

Our main theorem is the following:

Theorem 1.2. Let (Mn, g) be a closed Riemannian manifold of dimension 5≤n≤7
with Rg ≥ 0, and also Qg ≥ 0 with Qg(p) > 0 for some point p ∈ M. Assume that
(M, g) is not conformally equivalent to the round sphere. Then there exists C > 0
depending on M and g such that for any positive solution u to (1-2), we have that

C−1
≤ u ≤ C,

and for any 0< α < 1, there exists C ′ > 0 depending on M, g, and α such that

‖u‖C4,α ≤ C ′.

We use a contradiction argument based on local information derived from a
Pohozaev type identity for constant Q-curvature metrics and global information
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derived from the positive mass theorem of Gursky and Malchiodi [2015] (see
Theorem 2.1). In comparison, for compactness of the Yamabe problem, the appli-
cation of the positive mass theorem by Schoen and Yau [1979] (see also [Eichmair
2013; Eichmair et al. 2016; Witten 1981]) is crucial.

We extend the maximum principle in [Gursky and Malchiodi 2015] to manifolds
with boundary under a Dirichlet-type condition and a scalar curvature condition
restricted on the boundary; see Lemma 3.2. It turns out to be very useful and
performs a role of a comparison theorem in the proof of the lower bound of the
solutions away from the isolated blowup points (see Theorem 3.3) and in estimating
upper bounds of solutions near blowup points (see Lemma 5.4). The Green’s
function is used as a comparison function in the uniform lower bound estimate
Theorem 3.3. Note that Theorem 3.3 is important in the proof of the remark
on page 138, Proposition 5.3 and Proposition 6.1. Since the main term of order
O(d−n

g ) vanishes in Pgd4−n
g , there is no comparison function to give the upper

bound estimate in Proposition 5.3 directly. For that, the upper bound estimates of a
sequence of blowup solutions near isolated simple blowup points are decomposed
to a series of lemmas, following the approach in [Li and Zhu 1999] and in [Marques
2005]; see Section 5. We are able to prove a Harnack type inequality near the
isolated blowup points for 5 ≤ n ≤ 9; see Lemma 5.1. Besides the prescribed
Q-curvature equation, nonnegativity of the scalar curvature is also important in the
analysis of the blowing-up argument. With the aid of the Pohozaev type identity,
we get a nice expansion of the limit of the blowing-up sequence near the blowup
point, see Proposition 5.9, and using this we then show that in dimension 5≤ n ≤ 7,
each isolated blowup point is in fact an isolated simple blowup point. For the
proof of Proposition 5.9, as in [Marques 2005], we need to estimate the speed
of convergence of the rescaled functions to the limit, and for that, in Lemma 5.7
we need to classify bounded solutions to a linear fourth order elliptic equation
on the Euclidean space which vanish uniformly at infinity, for 5 ≤ n ≤ 7. The
main difficulty for the classification problem in the Euclidean space is that the
fourth order linear equation lacks the maximum principle, which is overcome by a
combination of a comparison theorem for an initial value problem of ODEs, Kelvin
transformation and an energy estimate; see Appendix B. After that, the proof of
Theorem 1.2 is more or less standard, except that for the fourth order equation,
more is involved for the blowing-up limit in ruling out the bubble accumulations;
see Proposition 7.3. The Pohozaev type identity and the positive mass theorem
in [Gursky and Malchiodi 2015] finally derive a contradiction on the sign of the
constant term of the expansion of the singular limit function at the singular point in
the proof of the main theorem. In Appendix A, we analyze the singular solutions to
a linear fourth order elliptic equation near an isolated singular point, which is needed
in Lemma 5.5 when finding the upper bound estimates of the solutions near the
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isolated simple blowup points. It is interesting to point out that in comparison with
the proof of compactness of solutions to the Yamabe problem, here for compactness
of positive constant Q-curvature metrics, no argument on vanishing of the Weyl
tensor is needed for dimension 5≤ n ≤ 7.

For n ≥ 8, the Weyl tensor and its covariant derivatives are involved in the
expansion of the Green’s function and a vanishing argument of the Weyl tensor at
the blowup points is needed (for instance, in Corollary 5.8 and Proposition 5.9),
and yet a positive mass theorem for the Paneitz operator for cases which are not
locally conformally flat in these dimensions is lacking. In this paper, for technical
reasons, the Harnack inequality in Lemma 5.1 is only proved for n ≤ 9, the decay at
infinity of the limit function w(x) in Lemma 5.7 is only proved for n ≤ 8 due to the
estimate (5-46), and the classification theorem (Corollary B.5) of solutions to the
linear problem in Appendix B is given for n ≤ 8. But we believe that Lemma 5.1
and Corollary B.5 can be extended to high dimensions with some more discussion.

Remark. Let Y (M, [g]) be the Yamabe constant of (M, g) so that

Y (M, [g])= inf
u∈C∞(M), u>0

∫
M

4(n−1)
n−2 |∇u|2+ Rgu2 dVg(∫

M u2n/(n−2) dVg
)(n−2)/n .

Also, for α = 4
n−4 define

Y ∗4 (M, [g])= inf
u∈C∞(M), u>0,Ruαg>0

∫
M u Pgu dVg

‖u‖2L2n/(n−4)(M,g)

.

From [Gursky et al. 2016], the following three statements are equivalent for dimen-
sion n ≥ 6:

(1) Y (Mn, [g]) > 0, Pg > 0.

(2) Y (M, [g]) > 0, Y ∗4 (M, [g]) > 0.

(3) There exists a metric g1 ∈ [g] such that Rg1 > 0 and Qg1 > 0 on M.

As a corollary of Theorem 1.2, compactness of solutions to (1-2) holds for these
conformal classes different from that of the round sphere for dimension n = 6, 7.

Remark. Recently, Li and Xiong [2019] proved compactness of prescribed constant
Q metrics in a more general setting independently, by using the integration method
developed from [Jin et al. 2017]. We follow the classical approach of [Li and Zhu
1999] and [Marques 2005].

To end the introduction, we introduce the definition of isolated blowup points
and isolated simple blowup points.

Definition 1.3. Let gj be a sequence of Riemannian metrics on a domain �⊆ M
with a uniform lower bound of injectivity radius δ > 0. Let {u j }j be a sequence
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of positive solutions to (1-2) under the background metrics gj in �. We call
a point x̄ ∈ � an isolated blowup point of {u j } if there exist C > 0, 0 < δ <

min
{
δ
2 , distgj (x̄, ∂�)

}
and x j → x̄ as a local maximum of u j with u j (x j )→∞

satisfying

(1-3) Bgj
δ (x̄), Bgj

δ (x j )⊆�;

(1-4) (Bgj
δ (x j ), x j , gj )→ (Bg

δ (x̄), x̄, g) in Ck,α in the pointed Cheeger–Gromov
sense, for k > 0 large and 0< α < 1 and a smooth Riemannian metric g;

(1-5) u j (x)≤ Cdgj (x, x j )
(4−n)/2 for dgj (x, x j )≤ δ,

where Bgj
δ is the δ-geodesic ball with respect to the metric gj , and dgj (x, x j ) is the

geodesic distance between x and x j with respect to the metric gj .

In this paper, the sequence of metrics {gj }j in the definition of the isolated blowup
points are either a fixed metric on M, or the rescaled metrics {Tj g}j of g with a
sequence of numbers Tj →∞, which converge to the flat metric as j→∞. Both
these two cases satisfy the condition (1-4). For an isolated blowup point x j → x̄
of u j , we define

ū j (r)=
1

|∂Bgj
r (x j )|

∫
∂B

gj
r (x j )

u j dsgj , 0< r < δ,

and

(1-6) û j (r)= r
n−4

2 ū j (r), 0< r < δ,

with Bgj
r (x j ) that r -geodesic ball centered at x j , dsgj the area element and |∂Bgj

r (x j )|

the volume of ∂Bgj
r (x j ).

Definition 1.4. We call x̄ an isolated simple blowup point if it is an isolated blowup
point and there exists 0< δ1 < δ independent of j such that û j has precisely one
critical point in (0, δ1), for j large.

2. The Green’s representation

In this section, we assume that (Mn, g) is a closed Riemannian manifold of di-
mension n ≥ 5 with Rg ≥ 0, and also Qg ≥ 0 with Qg(p) > 0 for some point
p ∈ M.

Theorem 2.1 [Gursky and Malchiodi 2015]. For a closed Riemannian manifold
(Mn, g) of dimension n ≥ 5, if Rg ≥ 0, Qg ≥ 0 on M and also Qg(p) > 0 for some
point p ∈ M, then:

• The scalar curvature Rg is greater than 0 in M.

• The Paneitz operator Pg is in fact positive and the Green’s function G of Pg is
positive where G : M ×M − {(q, q), q ∈ M} → R. Also, if u ∈ C4(M) and
Pgu ≥ 0 on M, then either u ≡ 0 or u > 0 on M.
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• For any metric g1 in the conformal class of g, if Qg1 ≥ 0, then Rg1 > 0.

• For any distinct points q1, q2 ∈ M,

(2-1) G(q1, q2)= G(q2, q1)= cndg(q1, q2)
4−n(1+ f (q1, q2)),

with cn =
1

(n−2)(n−4)ωn−1
, ωn−1 = |Sn−1

|, and dg(q1, q2) the distance between
q1 and q2. Here f is bounded and f → 0 as dg(q1, q2)→ 0 and

(2-2) |∇
j f | ≤ C j dg(q1, q2)

1− j

for 1≤ j ≤ 4.

• (positive mass theorem) For 5≤ n ≤ 7, or when (M, g) is locally conformally
flat with dimension n ≥ 5, for any point q1 ∈ M, let x = (x1, . . . , xn) be the
conformal normal coordinates constructed in [Lee and Parker 1987 ] centered
at q1 and h be the corresponding conformal metric. For q2 close to q1, the
Green’s function Gh(q2, q1) of the Paneitz operator Ph has the expansion

Gh(q2, q1)= cndh(q2, q1)
4−n
+α+ f (q2)

with a constant α ≥ 0 and f satisfying (2-2) and f (q2)→ 0 as q2 → q1;
moreover, α = 0 if and only if (Mn, g) is conformally equivalent to the round
sphere.

Let u ∈ C4,α(M) be a solution to the equation

Pgu = f ≥ 0.

Then we have the Green’s representation

u(x)=
∫

M
G(x, y) f (y) dVg(y)

for x ∈ M.
Now let u > 0 be a solution to the constant Q-curvature equation (1-2). Using

the Green’s representation

u(x)=
n− 4

2
Q
∫

M
G(x, y) u

n+4
n−4 (y) dVg(y),

we first show some basic estimates on the solution u.

Lemma 2.2. Let (Mn, g) be a closed Riemannian manifold of dimension n ≥ 5
with Rg > 0, Qg ≥ 0 on M and Qg(p) > 0 for some point p ∈ M. Then there exist
C1, C2 > 0 depending on (M, g), so that for any solution u to (1-2), we have

inf
M

u ≤ C1, sup
M

u ≥ C2.
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Proof. Let u(q)= infM u. Then by the Green’s representation,

u(q)=
n− 4

2
Q
∫

M
G(q, y) u(y)

n+4
n−4 dVg(y)

≥ u(q)
n+4
n−4 ×

n− 4
2

Q
∫

M
G(q, y) dVg(y)≥ C

−
8

n−4
1 u(q)

n+4
n−4

with C1 independent of the solution u and the point q , and the last inequality follows
from (2-1). Therefore, the upper bound of infM u is established. A similar argument
leads to the lower bound of supM u. �

Next we give an integral type inequality, which shows that if u is bounded from
above, then we get the lower bound of u.

Lemma 2.3. Let (Mn, g) be a closed Riemannian manifold with dimension n ≥ 5,
Rg > 0, and also Qg ≥ 0 with Qg(p) > 0 for some point p ∈ M. Then we have the
inequality

inf
M

u ≥ C
(∫

M
G(z, y)p u(y)

8
n−4αp dVg(y)

)− q
p

where p= n+4
n−4−a, 1

p+
1
q =1, and α = (n−4)a

8p , for any fixed number 4
n−4 < a < 8

n−4 ,
and z is the maximum point of u and C = C(a, g) > 0 is a constant. In particular,
a uniform upper bound of u implies a uniform lower bound of u.

Proof. Let u(x)= infM u and u(z)= supM u.
By the expansion formula (2-1), there exist two constants C3,C4 > 0 such that

(2-3) 0< C3 <
1

C4
dg(z1, z2)

4−n
≤ G(z1, z2)≤ C4dg(z1, z2)

4−n

for any two distinct points z1, z2 ∈ M.
By the Green’s representation at the maximum point z we choose, we have

u(z)=
n− 4

2
Q
∫

M
G(z, y) u(y)

n+4
n−4 dVg(y)

≤
n− 4

2
Qu(z)

∫
M

G(z, y) u(y)
8

n−4 dVg(y)

so that

1≤
(n− 4)

2
Q
∫

M
G(z, y) u(y)

8
n−4 (α+(1−α)) dVg(y)

≤
(n− 4)

2
Q
(∫

M
G(z, y)p u(y)

8
n−4αp dVg(y)

) 1
p
(∫

M
u(y)

8
(n−4) (1−α)q dvg(y)

) 1
q

=
(n− 4)

2
Q
(∫

M
G(z, y)p u(y)

8
n−4αp dVg(y)

) 1
p
(∫

M
u(y)

n+4
n−4 dvg(y)

) 1
q
,



A COMPACTNESS THEOREM ON BRANSON’S Q-CURVATURE EQUATION 127

with α, p, q chosen in the statement of the lemma. Here the second inequality is
by Hölder’s inequality. The range of a in the lemma keeps 0< α < 1, p > 1 and
q > 1, and also p(4− n) >−n so that G p is integrable.

Therefore, combining this with (2-3) we have

inf
M

u = u(x)=
n− 4

2
Q
∫

M
G(x, y)u(y)

n+4
n−4 dVg(y)

≥ C ′
∫

M
u(y)

n+4
n−4 dVg(y)≥ C

(∫
M

G(z, y)p u(y)
8

n−4αp dVg(y)
)− q

p
,

where C ′,C > 0 are uniform constants independent of u, z and x . �

3. A maximum principle

In this section we prove a maximum principle for smooth domains with boundary in
the manifold (M, g) defined in Lemma 2.2, which is a modification of the maximum
principle given by Gursky and Malchiodi; see Lemma 3.2. As an application, we
give a lower bound estimate of the blowing-up sequence.

Lemma 3.1. Let (�, g) be a compact Riemannian manifold of dimension n ≥ 5
with boundary ∂�. Let � be the interior of �. Assume the scalar curvature Rg is
greater than or equal to 0 in � and Rg > 0 at points on the boundary, and also
Qg ≥ 0 in �. Then Rg > 0 in �.

Proof. The proof is similar to that for closed manifolds. The Q-curvature is
expressed as

Qg =−
1

2(n− 1)
1g Rg + c1(n)R2

g − c2(n)|Ric|2g

with c1(n), c2(n) positive. By the nonnegativity of Qg,

1
2(n− 1)

1g Rg ≤ c1(n)R2
g.

By the strong maximum principle and the boundary condition, Rg > 0 in �. �

Lemma 3.2. Let (Mn, g) be a closed Riemannian manifold of dimension n ≥ 5
with Rg ≥ 0, and Qg ≥ 0. Let �⊆ M be an open domain with smooth boundary
∂� so that �=�∪ ∂�. Assume that u ∈ C4(�) with u > 0 on ∂� satisfies

(3-1) Pgu ≥ 0 in�.

Let g̃ = u4/(n−4)g be the conformal metric in a neighborhood U of ∂� where u > 0.
If the scalar curvature of (U, g̃) satisfies Rg̃(p) > 0 for all points p ∈ ∂�, then
u > 0 in �.
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Proof. Our conditions on the boundary guarantee that all the arguments are focused
on the interior and then the argument is the same as in the proof of the maximum
principle by Gursky and Malchiodi. For completeness, we present the proof.

We define the function
uλ = (1− λ)+ λu

for λ ∈ [0, 1], so that u0 = 1 and u1 = u. We assume

min
�

u ≤ 0.

Then there exists λ0 ∈ (0, 1] so that

λ0 =min{λ ∈ (0, 1], min
�

uλ = 0}.

By definition, for 0< λ < λ0, uλ > 0. For the metric

gλ = u
4

n−4
λ g,

the Q-curvature satisfies
Qgλ ≥ 0 in�,

for 0< λ < λ0. That follows from the conformal transformation formula

Qgλ =
2

n−4
u
−

n+4
n−4

λ Pguλ =
2

n−4
u
−

n+4
n−4

λ ((1− λ)Pg(1)+ λPgu)

=
2

n−4
u
−

n+4
n−4

λ ((1− λ)n−4
2

Qg + λPgu)≥ (1− λ)Qgu
−

n+4
n−4

λ ≥ 0.

Under the conformal transformation, the scalar curvature of gλ satisfies

Rgλ = u
−

n
n−4

λ

(
−

4(n− 1)
n− 4

1guλ−
8(n− 1)
(n− 4)2

|∇guλ|2

uλ
+ Rguλ

)
= u
−

n
n−4

λ

(
−

4(n− 1)
n− 4

λ1gu−
8(n− 1)
(n− 4)2

λ2
|∇gu|2

(1− λ)+ λu
+ Rguλ

)
≥ u
−

n
n−4

λ

(
−

4(n− 1)
n− 4

λ1gu−
8(n− 1)
(n− 4)2

λ|∇gu|2

u
+ λRgu

)
= λ

(
u
uλ

) n
n−4

Rg̃ > 0

on ∂� for 0< λ < λ0. Then by Lemma 3.1,

Rgλ > 0 in �,

for 0< λ< λ0. Again by the conformal transformation formula of scalar curvature,

1guλ ≤
n− 4

4(n− 1)
Rguλ in �.
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By taking limit λ↗ λ0, this also holds at λ= λ0. But

uλ = (1− λ)+ λu > 0

on ∂� for 0≤ λ≤ 1. By the strong maximum principle, uλ0 > 0 in �, contradicting
our choice of λ0. Therefore, for all 0≤ λ≤ 1,

uλ > 0 in �.

In particular, u > 0 in �. �

Theorem 3.3. Let (Mn, g) be a closed Riemannian manifold of dimension n ≥ 5
with Rg ≥ 0, and also Qg ≥ 0 with Qg(p0) > 0 for some point p0 ∈ M. There
exists C > 0 such that if there exists a sequence of positive solutions {u j }

∞

j=1 of (1-2)
such that

Mj = u j (x j )= sup
M

u j →∞

as j→∞, then

(3-2) u j (p)≥ C M−1
j d4−n

g (p, x j )

for any p ∈ M such that dg(p, x j )≥ M−2/(n−4)
j .

Proof. To prove the theorem, we only need to show that there exists C > 0 such
that for any blowing-up sequence, there exists a subsequence such that (3-2) holds.

For each j, let x = (x1, . . . , xn) be the corresponding normal coordinates in
a small geodesic ball centered at x j with radius δ > 0 and x j the origin. Let
y = M2/(n−4)

j x and the metric h j be given by (h j )pq(y)= gpq(M
−2/(n−4)
j y). Let

vj (y)= M−1
j u j (expx j

(M
−

2
n−4

j y)) for |y| ≤ δM
2

n−4
j .

Then,
0< vj (y) ≤ vj (0)= 1,

Ph jvj (y)=
n−4

2
Qvj (y)

n+4
n−4 for |y| ≤ δM2/(n−4)

j .

Here h j converges to the Euclidean metric on Rn in Ck norm for any k ≥ 0. By
ellipticity, we have, after passing to a subsequence (still denoted as {vj }), vj → v

in C4
loc(R

n), and v satisfies

(3-3)
0≤ v(y)≤ v(0)= 1 in Rn,

12v(y)=
n− 4

2
Qv(y)

n+4
n−4 in Rn.

Also, since Rh j > 0 and Ru4/(n−4)
j g > 0 (by Theorem 2.1) on M, by the conformal

transformation formula of scalar curvature,

1h jvj ≤
n− 4

4(n− 1)
Rh jvj .
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Passing to the limit we have

1v(y)≤ 0 in Rn.

By the strong maximum principle, since v(0) = 1, we have that v(y) > 0 in Rn.
Then by the classification theorem of C.S. Lin [1998], we have

v(y)=
(

1
1+ 4−1|y|2

)n−4
2

in Rn.

We will abuse the notation with v(|y|)= v(y). Thus, for fixed R > 0, for j large,

1
2

(
1

1+4−1 R2

)n−4
2

Mj ≤ u j (expx j
(x))≤ Mj for |x | ≤ RM

−
2

n−4
j .

For any ε > 0, there exists j0 > 0 such that, for j > j0,

‖vj − v‖C4 ≤ ε for |y| ≤ 2.

We define φj : M −{x j } → R as

φj (p)= u j (p)− τM−1
j Gx j (p),

with Gx j (p) = G(x j , p) the Green’s function of the Paneitz operator and τ > 0
a small constant to be chosen. We will use the maximum principle to show that
for ε, τ > 0 small,

φj > 0 in M − BM−2/(n−4)
j

(x j ) for j > j0.

Here, we denote by BM−2/(n−4)
j

(x j ) the geodesic M−2/(n−4)
j -ball centered at x j in

(M, g). If this holds, we will choose {u j } j> j0 as the subsequence and the theorem
is proved.

It is clear that

Pgφj = Pgu j =
n−4

2
Qu

n+4
n−4
j > 0 in M − BM−2/(n−4)

j
(x j ).

To apply the maximum principle, we only need to verify the sign of φj and the
related scalar curvature on ∂BM−2/(n−4)

j
(x j ).

First, for |x | = M
−

2
n−4

j , we choose ε small so that for j > j0,

u j (expx j
(x))= Mjvj (M

2
n−4
j x)≥ 1

2v(1)Mj ;

while by (2-3),
M−1

j Gx j (expx j
(x))≤ C4 Mj .

We take τ < v(1)/(4C4). Then

φj > 0 on ∂BM−2/(n−4)
j

(x j ) for j > j0.
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Now let g̃j = φ
4/(n−4)
j gj in small neighborhood of ∂BM−2/(n−4)

j
(x j ) where φj > 0.

By conformal transformation,

Rg̃j = φ
−

n
n−4

j

(
−

4(n− 1)
n− 4

1gφj −
8(n− 1)
(n− 4)2

|∇gφj |
2

φj
+ Rgφj

)
.

Note that Rgφj > 0 on ∂BM−2/(n−4)
j

(x j ). We only need to show that

(3-4) −
4(n− 1)

n− 4

(
1gφj +

2
n−4
|∇gφj |

2

φj

)
> 0 on ∂BM−2/(n−4)

j
(x j ) for j > j0.

Recall that(
1gu j +

2
n−4
|∇gu j |

2

u j

)
= M

1+ 4
n−4

j

(
1h jvj +

2
n−4
|∇h jvj |

2

vj

)
.

Also,(
1h jvj +

2
n−4
|∇h jvj |

2

vj

)
→

(
1v+

2
n−4
|∇v|2

v

)
= 2(4− n)(|y|2+ 4)−

n
2 (|y|2+ 2n) + 2

n−4
(4− n)2(|y|2+ 4)2−n

|y|2

(|y|2+ 4)(4−n)/2

= 2(4− n)(|y|2+ 4)−
n
2 (|y|2+ 2n) + 2(n− 4)(|y|2+ 4)−

n
2 |y|2

= 4n(4− n)(|y|2+ 4)−
n
2 < 0 at |y| = 1.

Then we can choose ε < |v|C4(B1(0))/100n . Combining this with the fact that

|Dk
gG p(q)| ≤ Ckd4−n−k

g (p, q) for 0≤ k ≤ 4,

for any distinct points p, q ∈ M with constants Ck > 0 independent of p and q , we
have that there exists τ > 0 only depending on Ck and ε so that

τM−1
j |1gGx j (expx j

(M
−

2
n−4

j y))|<−M
1+ 4

n−4
j

1v

4(2n+ 1)
, and

|∇gφj |
2

φj
≤

5
4 M

1+ 4
n−4

j
|∇v|2

v
at |y| = 1, for j > j0.

Therefore, (3-4) holds for j > j0, which implies

Rg̃j > 0 on ∂BM−2/(n−4)
j

(x j ).

By Lemma 3.2, φj > 0 in M − BM−2/(n−4)
j

(x j ). Recall that ε and τ are chosen
independent of choice of the sequence. This completes the proof of the theorem. �
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4. A Pohozaev type identity

In this section we introduce a Pohozaev type identity related to the constant Q-
curvature equation. It will provide local information on the solutions in later use.

Let (Mn, g) be a closed Riemannian manifold of dimension n ≥ 5 with Rg ≥ 0,
and Qg ≥ 0 with Qg(p0) > 0 for some point p0 ∈ M. Let u be a positive solution
to (1-2). For any geodesic ball � = Bδ(q) in M with 2δ less than the injectivity
radius of (M, g), we let

x = (x1, . . . , xn)

be the geodesic normal coordinates centered at q so that gi j (0) = δi j and the
Christoffel symbols 0k

i j (0) = 0. In this section, the gradient ∇, Laplacian 1,
divergence div, volume element dx , area element ds, σ -ball Bσ and

|x |2 = (x1)2+ · · ·+ (xn)2

are all with respect to the Euclidean metric. Define

P(u)≡
∫
�

(
x · ∇u+ n−4

2
u
)
12u dx

=

∫
�

[n−4
2

div(u∇(1u)−1u∇u)

+ div((x · ∇u)∇(1u)−∇(x · ∇u)1u+ 1
2(1u)2x)

]
dx

=

∫
∂�

n−4
2

(
u
∂

∂ν
(1u)−1u

∂

∂ν
u
)

+

(
(x · ∇u)

∂

∂ν
(1u)−

∂

∂ν
(x · ∇u)1u+ 1

2(1u)2x · ν
)

ds,

where ν is the outward-pointing normal vector of ∂� in the Euclidean metric. Then
using (1-2), we have

P(u)=
∫
�

(
x · ∇u+ n−4

2
u
)
(12
− Pg)u+

(
x · ∇u+ n−4

2
u
)

Pgu dx

=

∫
�

(
x · ∇u+ n−4

2
u
)
(12
− Pg)u+

n−4
2

Q
(

x · ∇u+ n−4
2

u
)

u
n+4
n−4 dx

=

∫
�

(
x · ∇u+ n−4

2
u
)
(12
− Pg)u+

(n− 4)2

4n
Q div(u

2n
n−4 x) dx

=

∫
�

(
x · ∇u+ n−4

2
u
)
(12
− Pg)u dx +

(n− 4)2

4n
Q
∫
∂�

(x · ν)u
2n

n−4 dx .

Using (1-1), we have

(12
− Pg)u = (12

−12
g)u+ divg(an Rgg− bnRicg)∇gu− n−4

2
Qgu.
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Since 0k
i j (0)= 0 and gi j (0)= δi j ,

(12
−12

g)u

= (δ pqδi j
∇p∇q∇i∇j − g pq gi j

∇
g
p∇

g
q∇

g
i ∇

g
j )u

= (δ pqδi j
− g pq gi j )∇p∇q∇i∇j u+ O(|x |)|D3u| + O(1)|D2u| + O(1)|Du|

= O(|x |2)|D4u| + O(|x |)|D3u| + O(1)|D2u| + O(1)|Du|.

It follows that there exists C > 0 which depends on |Rmg|L∞(�), |Qg|C(�) and
|Ricg|C1(�) such that

(4-1) |(12
− Pg)u| ≤ C(|x |2|D4u| + |x | |D3u| + |D2u| + |Du| + u).

5. Upper bound estimates near isolated simple blowup points

In this section we perform a parallel approach of [Li and Zhu 1999] to show the
upper bound estimates of the solutions to (1-2) near an isolated simple blowup
point; see Proposition 5.3. We start with a Harnack type inequality near an isolated
blowup point.

Lemma 5.1. Let (Mn, g) be a closed Riemannian manifold of dimension 5≤ n ≤ 9
with Rg ≥ 0, and also Qg ≥ 0 with Qg(p0) > 0 for some point p0 ∈ M. Let {u j } be
a sequence of positive solutions to (1-2) and x j → x̄ be an isolated blowup point.
Then there exists a constant C > 0 such that for any 0< r < δ

3 and j > 0, we have

(5-1) max
q∈B2r (x j )−Br/2(x j )

u j (q)≤ C min
q∈B2r (x j )−Br/2(x j )

u j (q).

Proof. Let x = (x1, . . . , xn) be the geodesic normal coordinates centered at x j . Here
δ > 0 (see Definition 1.3) and 2δ is less than the injectivity radius. Let y = r−1x .
Define

vj (y)= r
n−4

2 u j (expx j
(r y)) for |y|< 3.

Then by (1-5),

vj (y)≤ C |y|−
n−4

2 for |y|< 3,

vj (y)≤ 3
n−4

2 C for 1
3 < |y|< 3.

We denote
�r = B3r (x j )− B r

3
(x j ).

By the Green’s representation,

vj (y)= r
n−4

2 u j (expx j
(r y))=

(n− 4)Q
2

r
n−4

2

∫
M

G(expx j
(r y), q)u j (q)

n+4
n−4 dVg(q)
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=
(n− 4)Q

2
r

n−4
2

(∫
�r

G(expx j
(r y), q)u j (q)

n+4
n−4 dVg(q)

+

∫
M−�r

G(expx j
(r y), q)u j (q)

n+4
n−4 dVg(q)

)
.

We claim that for 5
12 ≤ |y| ≤

12
5 , if

(5-2) vj (y)≥ 2 ×
(n− 4)Q

2
r

n−4
2

∫
�r

G(expx j
(r y), q)u j (q)

n+4
n−4 dVg(q),

then there exists C > 0 independent of j, x j , r and y, such that for any 5
12 ≤ |z| ≤

12
5 ,

(5-3) vj (z)≥ Cvj (y).

In fact, by (2-3), there exists C > 0, such that

G(expx j
(r y), q)≤ CG(expx j

(r z), q)

for q ∈ M −�r . Therefore,

1
2vj (y)≤

(n− 4)Q
2

r
n−4

2

∫
M−�r

G(expx j
(r y), q)u j (q)

n+4
n−4 dVg(q)

≤ Cr
n−4

2

∫
M−�r

G(expx j
(r z), q)u j (q)

n+4
n−4 dVg(q)

≤ Cvj (z).

This proves the claim.
We denote

C =
{

y ∈ Rn, 5
12 ≤ |y| ≤

12
5 , so that (5-2) fails for y

}
.

We choose 5
12 ≤ |y| ≤

12
5 with

vj (y)≥ 1
2 sup

5/12≤|z|≤12/5
vj (z).

If y /∈ C, then using the claim, we are done. If y ∈ C, we will prove that the Harnack
inequality (5-1) still holds.

By Hölder’s inequality,

u j (expx j
(r y))≤ 2×

(n− 4)Q
2

∫
�r

G(expx j
(r y), q)u j (q)

n+4
n−4 dVg(q)
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≤ (n− 4)Q
(∫

�r

G(expx j
(r y), q)α dVg(q)

)1
α

×

(∫
�r

u j (q)
n+4
n−4β dVg(q)

)1
β

≤ C(α)r4−n+ n
α

(∫
�r

u j (q)
n+4
n−4β dVg(q)

)1
β

≤ C(α)r4−n+ n
α (C3

n−4
2 r

4−n
2 )

n+4
n−4

(
1− 1

β

)(∫
�r

u j (q)
n+4
n−4 dVg(q)

)1
β

≤ C(α)r4−n+ n
α (C3

n−4
2 r

4−n
2 )

n+4
n−4

(
1− 1

β

)

×

(∫
�r

C4(4r)n−4G(expx j
(r z), q)u j (q)

n+4
n−4 dVg(q)

)1
β

≤ C(α)r4−n+ n
α (C3

n−4
2 r

4−n
2 )

n+4
n−4

(
1− 1

β

)
r

n−4
β u j (expx j

(r z))
1
β

= C(α,C, n)r(2−
n
2 )
(

1− 1
β

)
u j (expx j

(r z))
1
β

for any 1
3 ≤ |z| ≤ 3, where 1<α < n

n−4 , 1
α
+

1
β
= 1 such that β > n

4 . Here we have
used (1-5) and (2-3).

Since
n+ 4
n− 4

>
n
4

for 5≤ n ≤ 9, we set β = n+4
n−4 and obtain

u j (expx j
(r z))≥ C(C, n) r4 u j (expx j

(r y))
n+4
n−4(5-4)

≥ C(C, n) r4 (2−1u j (q))
n+4
n−4 ,(5-5)

for all q ∈ B12r/5(x j )− B5r/12(x j ) and 1
2 ≤ |z| ≤ 2, where 5≤ n ≤ 9.

For any 1
2 ≤ |z| ≤ 2,

(5-6) |∇gu j |(expx j
(r z))

≤
n−4

2
Q
∫

B12r/5(x j )−B5r/12(x j )

|∇gG(expx j
(r z),q)|u j (q)

n+4
n−4 dVg(q)

+
n−4

2
Q
∫

M−(B12r/5(x j )−B5r/12(x j ))

|∇gG(expx j
(r z),q)|u j (q)

n+4
n−4 dVg(q).
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Note that for 1
2 ≤ |z| ≤ 2,

(5-7) u j (expx j
(r z))

≥
n− 4

2
Q
∫

M−(B12r/5(x j )−B5r/12(x j ))

G(expx j
(r z), q) u j (q)

n+4
n−4 dVg(q)

≥ Cr
∫

M−(B12r/5(x j )−B5r/12(x j ))

|∇g G(expx j
(r z), q)| u j (q)

n+4
n−4 dVg(q),

for a uniform constant C independent of j and the choice of points, where for the
last inequality we have used (2-1).

Combining (5-4), (5-7) and (5-6), for 1
2 ≤ |z| ≤ 2 we have the gradient estimate

|∇g log(u j (expx j
(r z)))|

=
|∇gu j (expx j

(r z))|

u j (expx j
(r z))

≤
1

u j (expx j
(r z))

n−4
2

Q
∫

B12r/5(x j )−B5r/12(x j )

|∇gG(expx j
(r z),q)|u j (q)

n+4
n−4 dVg(q)

+
1

u j (expx j
(r z))

n−4
2

Q

×

∫
M−(B12r/5(x j )−B5r/12(x j ))

|∇gG(expx j
(r z),q)|u j (q)

n+4
n−4 dVg(q)

≤
n−4

2
Q
∫

B12r/5(x j )−B5r/12(x j )

|∇gG(expx j
(r z),q)|C(C,n)−1r−42−

n+4
n−4 dVg(q)

+C−1r−1

≤C(C,n)(r3r−4
+r−1)

=C(C,n)r−1,

where C(C, n) is some uniform constant depending on C , the manifold and n. For
any two points p, q ∈ B2r (x j )− Br/2(x j ), by the gradient estimate,

u j (p)
u j (q)

≤ eC(C,n)r−1 dg(p,q) ≤ e4nC(C,n).

This completes the proof of the Harnack inequality. �

Next we show that near an isolated blowup point, after rescaling the functions
u j converge to a standard solution to (3-3) in Rn.

Lemma 5.2. Let (Mn, g) be a closed Riemannian manifold of dimension 5≤ n ≤ 9
with Rg ≥ 0, and also Qg ≥ 0 with Qg(p0) > 0 for some point p0 ∈ M. Let {u j }

be a sequence of positive solutions to (1-2) and x j → x̄ be an isolated blowup point.
Let Mj = u j (x j ). Assume {Tj }j and {εj }j are any sequences of positive numbers
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such that Tj → +∞ and εj → 0 as j →∞. Then after possibly passing to a
subsequence ukj and xkj (still denoted as u j and x j ),

(5-8) ‖M−1
j u j (expx j

(M
−

2
n−4

j y))− (1+ 4−1
|y|2)−

n−4
2 ‖C4(B2Tj )

+‖M−1
j u j (expx j

(M
−

2
n−4

j y))− (1+ 4−1
|y|2)−

n−4
2 ‖H4(B2Tj )

≤ εj ,

and

(5-9)
Tj

log(Mj )
→ 0 as j→∞.

Proof. Let x = (x1, . . . , xn) be geodesic normal coordinates centered at x j ,
y = r−1x and the metric h = r−2g be the rescaled metric such that (h j )pq(y) =
(gj )pq(r y) in normal coordinates. Define

vj (y)= M−1
j u j (expx j

(M
−

2
n−4

j y)) for |y|< δ M
2

n−4
j .

Then vj satisfies

Ph jvj (y)=
n−4

2
Qvj (y)

n+4
n−4 for |y| ≤ δM

2
n−4
j ,(5-10)

vj (0)= 1, ∇h jvj (0)= 0,(5-11)

0< vj (y)≤ C |y|−
n−4

2 for |y| ≤ δM
2

n−4
j .(5-12)

We next show that vj is uniformly bounded. Since Rh j > 0 and Ru4/(n−4)
j g > 0 on M,

by the conformal transformation formula of the scalar curvature,

(5-13) 1h jvj ≤
n− 4

4(n− 1)
Rh jvj ,

where Rh j → 0 uniformly in |y| ≤ 2 as j → ∞. Then the function ηj (y) =
(1+ |y|2)−1vj (y) satisfies

1h jηj +

n∑
k=1

bk(y)∂kηj (y)≤ 0,

in |y| ≤ 2 with some function bk(y). By the maximum principle,

(5-14) ηj (0)≥ inf
|y|=r

ηj (y) for 0< r ≤ 1.

By the Harnack inequality (5-1) in Lemma 5.1,

(5-15) max
|y|=r

vj (y)≤ C min
|y|=r

vj (y) for 0< r ≤ 1,

where C is independent of r and j. The inequalities (5-14) and (5-15) immediately
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lead to
max
|y|=r

vj (y)≤ C min
|y|=r

vj (y)≤ Cvj (0)= C for 0< r ≤ 1.

Combining this with (5-12), we have for |y| ≤ δM2/(n−4)
j ,

vj (y)≤ C,

with C independent of j, y and r .
Standard elliptic estimates of vj imply that, after possibly passing to a subse-

quence, vj → v in C4
loc in Rn where, by (5-11) and (5-13), v satisfies

12v(y)=
n− 4

2
Qv

n+4
n−4 , 1v(y)≤ 0, v(y)≥ 0, for y ∈ Rn,

v(0)= 1, ∇v(0)= 0.

By the strong maximum principle, v(y) > 0 in Rn. Then the classification theorem
in [Lin 1998] gives

v(y)= (1+ 4−1
|y|2)−

n−4
2 . �

Remark. From Lemma 5.2, we can see that the proof of Theorem 3.3 still works
at the isolated blowup point x j → x̄ . Therefore, there exists C > 0 independent of
j > 0 such that for any isolated blowup point x j → x̄ ,

u j (q)≥ Cu j (x j )
−1d4−n

g (q, x j )

for any q ∈ M such that dg(q, x j )≥ u j (x j )
−2/(n−4).

We now state the upper bound estimate of u j near the isolated simple blowup
points.

Proposition 5.3. Let (Mn, g) be a closed Riemannian manifold of dimension 5≤
n≤9 with Rg≥0, and also Qg≥0 with Qg(p0)>0 for some point p0∈M. Let {u j }

be a sequence of positive solutions to (1-2) and x j→ x̄ be an isolated simple blowup
point. Let δ1 and C be the constants defined in Definition 1.4 and (1-5). Then there
exists a constant C depending only on δ1, C , ‖Rg‖C1(Bδ1 (x̄))

and ‖Qg‖C1(Bδ1 (x̄))
,

such that

(5-16) u j (p)≤ Cu j (x j )
−1dg(p, x j )

4−n for dg(p, x j )≤
δ1

2
,

for δ1 > 0 small. Moreover, up to a subsequence,

(5-17) u j (x j )u j (p)→ aG(x̄, p)+ b(p) in C4
loc(Bδ1(x̄)−{x̄}),

where G is the Green’s function of the Paneitz operator Pg, a > 0 is a constant and
b(p) ∈ C4(Bδ1/2(x̄)) satisfies Pgb = 0 in Bδ1/2(x̄).
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The proof of the proposition follows after a series of lemmas.
We first give a rough estimate on the upper bound of u j near the isolated simple

blowup points.

Lemma 5.4. Under the condition in Proposition 5.3, assume Tj →∞ and 0 <
εj < e−Tj satisfy (5-8) and (5-9). Denote Mj = u j (x j ). Then for any small number
0< σ < 1

100 , there exists 0< δ2 < δ1 and C > 0 independent of j such that

Mλ
j u j (p)≤ Cdg(p, x j )

4−n+σ ,(5-18)

Mλ
j |∇

k
gu j (p)| ≤ Cdg(p, x j )

4−n−k+σ ,(5-19)

for any p in Tj M−2/(n−4)
j ≤ dg(p, x j )≤ δ2 and 1≤ k ≤ 4, where λ= 1− 2

n−4σ .

Proof. The outline of the proof is from [Li and Zhu 1999], while the use of
our maximum principle here is more subtle. Let x = (x1, . . . , xn) be the geodesic
normal coordinates centered at x j for dg(p, x j )≤ δ. Let r = |x |. For any δ2 ∈ (0, δ1)

to be chosen, let
�j = {p ∈ M, Tj M

−
2

n−4
j ≤ dg(p, x j )≤ δ2}.

We want to use the maximum principle to get the upper bound of u j . Before the
construction of the barrier function on �j , we first go through some properties
of u j .

From Lemma 5.2, we know that

(5-20) u j (p)≤ CT 4−n
j Mj for dg(p, x j )= Tj M

−
2

n−4
j ,

and there exists a critical point r0 of û j (r) defined in (1-6) in 0< r < Tj M−2/(n−4)
j ;

moreover, for r > r0, û j (r) is decreasing. Using the assumption that x̄ is an isolated
simple blowup point, û j is strictly decreasing for Tj M−2/(n−4)

j < r < δ1. Therefore,
combined with the Harnack inequality (5-1), for p ∈�j we have

dg(p, x j )
n−4

2 u j (p)≤ Cū j (dg(p, x j ))

≤ CT
n−4

2
j M−1

j ū j (Tj M
−

2
n−4

j )

≤ CT
n−4

2
j M−1

j T 4−n
j Mj

= CT
−

n−4
2

j .

This leads to

(5-21) u j (p)
8

n−4 ≤ CT−4
j dg(p, x j )

−4 for Tj M
−

2
n−4

j < r < δ1.

We now define a linear elliptic operator on �j ,

L jφ = Pgφ−
n−4

2
Qu

8
n−4
j φ for φ ∈ C4(�j ).
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Therefore
L j u j = 0 in �j .

Set

ϕj (p)= B M jδ
σ
2 dg(p, x j )

−σ
+ AM

−1+ 2
n−4σ

j dg(p, x j )
−n+4+σ , p ∈�j ,

where A, B > 0 are constants to be determined, 0< σ < 1
100 and

M j = sup
dg(p,x j )=δ2

u j ≤ Cδ
−

n−4
2

2 .

There exists C > 0 such that for m > 0, 1≤ k ≤ 4, and any p ∈ M fixed and q ∈ M
with dg(p, q) < δ2 and δ2 less than the injectivity radius, we have

(5-22) |Dk
gdg(p, q)−m

| ≤ Cmkdg(p, q)−m−k .

It is easy to check that there exists δ2 > 0 independent of j so that in �j ,

|(Pg −1
2
0)|x |

−σ
| ≤ 100−1

|Pg(|x |−σ )|,

|(Pg −1
2
0)|x |

−n+4+σ
| ≤ 100−1

|Pg(|x |−n+4+σ )|,

where |x | = dg(p, x j ) and 10 is the Euclidean Laplacian in the normal coordinates.
It is easy to check that for 0< m < n− 4 and 0< r < δ2,

−10r−m
=−m(m+ 2− n)r−m−2 > 0,(5-23)

12
0r−m

= m(m+ 2− n)(m+ 2)(m+ 4− n)r−m−4 > 0.(5-24)

But for p ∈�j , by (5-21),

n− 4
2

Qu j (p)
8

n−4 r−m
≤

n− 4
2

QCT−4
j r−m−4.

Therefore,
L jϕj ≥ 0 in �j ,

for j large. By (5-20), for A > 1,

(5-25) u j (p) < ϕj (p) for dg(p, x j )= Tj M
−

2
n−4

j .

Also, for B > 1,

(5-26) u j (p) < ϕj (p) for dg(p, x j )= δ2.

We now want to check the sign of the scalar curvature R(ϕj−u j )4/(n−4)g near ∂�j . By
the conformal transformation formula, it has the same sign as

−
4(n− 1)

n− 4
1g(ϕj − u j )−

8(n− 1)
(n− 4)2

|∇g(ϕj − u j )|
2

(ϕj − u j )
+ Rg(ϕj − u j ).
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Combining (1-5) and the standard interior estimate of (1-2), we have, for k = 1, 2,

(5-27) |Dk
gu j (p)| ≤ Cdg(p, x j )

−
n−4

2 −k

for some constant C independent of j and any p ∈�j . It is easy to check that for
0< m < n− 4,

(5-28) 10|x |−m
+

2
n− 4

|∇0|x |−m
|
2

|x |−m =

(
m(m+ 2− n)+

2m2

n− 4

)
|x |−m−2

=
m(n− 2)(m− (n− 4))

n− 4
|x |−m−2 < 0.

Also, note that for any positive functions φ1, φ2 ∈ C2,

(5-29) 10(φ1+φ2)+
2

n− 4
|∇0(φ1+φ2)|

2

φ1+φ2

≤

(
10φ1+

2
n− 4

|∇0(φ1)|
2

φ1

)
+

(
10φ2+

2
n− 4

|∇0(φ2)|
2

φ2

)
.

Here we have used the fact that for any four positive numbers a, b, c, d > 0, we
have

2cd
a+ b

≤
bc2

a(a+ b)
+

ad2

b(a+ b)

so that
(c+ d)2

a+ b
=

c2
+ 2c d + d2

a+ b
≤

c2

a
+

d2

b
.

Using (5-25)–(5-29), we can choose A, B > 100n(1+C) independent of j and t
with C > 0 in (5-27) so that

(5-30) −
4(n− 1)

n− 4
1g(tϕj − u j )

−
8(n− 1)
(n− 4)2

|∇g(tϕj − u j )|
2

(tϕj − u j )
+ Rg(tϕj − u j ) > 0 on ∂�j ,

for all t ≥ 1. Now for t ≥ 1, we define

φt
j (p)= tϕj (p)− u j (p), p ∈�j .

Then

(5-31) 0≤ L jφ
t
j = Pgφ

t
j −

n− 4
2

Qφt
j in �j .

If

(5-32) φ1
j = ϕj − u j ≥ 0 in �j ,

then we are done. Otherwise, since�j is compact, we pick the smallest number tj >1
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so that φtj
j ≥ 0. Therefore, by (5-31)

(5-33) Pgφ
tj
j ≥

n− 4
2

Qφtj
j ≥ 0.

Combining (5-25), (5-26), (5-30) and (5-33), the maximum principle in Lemma 3.2
implies

φ
tj
j > 0 in �j ,

contradicting the choice of tj . Therefore, (5-32) holds. Now for p ∈ �j , we use
Lemma 5.1, monotonicity of û j , and apply (5-32) at p to obtain

δ
n−4

2
2 M j ≤ Cû j (δ2)≤ Cû j (dg(p, x j ))

≤ Cdg(p, x j )
n−4

2 (B M jδ
σ
2 dg(p, x j )

−σ
+ AM−λj dg(p, x j )

4−n+δ).

Here n−4
2 > σ . We choose p with dg(p, x j ) a small fixed number depending

on n, σ, δ2 to obtain
M j ≤ C(n, σ, δ2)M−λj .

The inequality (5-18) is then established from (5-32), and by the standard interior
estimates for derivatives of u j , the lemma is proved. �

Lemma 5.5. Under the assumption in Proposition 5.3, for any 0< ρ ≤ δ2/2 there
exists a constant C(ρ) > 0 such that

lim sup
j→∞

max
p∈∂Bρ(x j )

u j (p)Mj ≤ C(ρ),

where Mj = u j (x j ).

Proof. By Lemma 5.1, it suffices to show the inequality for some fixed small
constant ρ > 0.

For any pρ ∈ ∂Bρ(x j ), we denote ξj (p)= u j (pρ)−1u j (p). Then ξj satisfies

Pgξj (p)=
n− 4

2
Qu j (pρ)

8
n−4 ξj (p)

n+4
n−4 .

For any compact subset K ⊆ Bδ2/2(x̄)−{x̄}, there exists C(K ) > 0 such that for j
large,

C(K )−1
≤ ξj ≤ C(K ) in K .

Moreover, by Lemma 5.1, there exists C > 0 independent of 0< r < δ2 and j such
that

(5-34) max
Br (x j )−Br/2(x j )

u j ≤ C inf
Br (x j )−Br/2(x j )

u j .
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By the estimate (5-18), u j (pρ)→ 0 as j→∞. Therefore, by the interior estimates
of ξj , up to a subsequence,

ξj → ξ in C4
loc(Bδ2/2(x̄)−{x̄}),

with ξ > 0 such that
Pgξ = 0 in Bδ2/2(x̄)−{x̄},

and ξ satisfies (5-34) for 0 < r < δ2/2. Moreover, for 0 < r < ρ and ξ̄ (r) =
|∂Br |

−1
∫
∂Br (x̄)

ξ dsg,

lim
j→∞

u j (pρ)−1r
n−4

2 ū j (r)= r
n−4

2 ξ̄ (r).

Since x j → x̄ is an isolated simple blowup point, r (n−4)/2ξ̄ (r) is nonincreasing in
0< r < ρ. Therefore, x̄ is not a regular point of ξ .

Recall that

−
4(n− 1)

n− 2
1gu

n−2
n−4
j + Rgu

n−2
n−4
j = Ru4/(n−4)

j gu
n+2
n−4
j ≥ 0.

Passing to the limit, we have

(5-35) −
4(n− 1)

n− 2
1gξ

n−2
n−4 + Rgξ

n−2
n−4 ≥ 0,

in Bδ2/2(x̄)−{x̄}.
By Corollary A.5, for ρ > 0 small, there exists m > 0 independent of j such that

for j large,

(5-36)
∫

Bρ(x j )

(
Pgξj−

n−4
2

Qgξj

)
dVg

=

∫
∂Bρ(x j )

(
∂

∂ν
1gξj−

(
an Rg

∂

∂ν
ξj−bnRicg(∇gξj ,ν)

))
dsg

=

∫
∂Bρ(x j )

(
∂

∂ν
1gξ−

(
an Rg

∂

∂ν
ξ−bnRicg(∇gξ,ν)

))
dsg+o(1)>m.

On the other hand, nonnegativity of Qg implies

(5-37)
∫

Bρ(x j )

(
Pgξj −

n−4
2

Qgξj

)
dVg

=

∫
Bρ(x j )

(
n− 4

2
Qu j (pρ)−1u j (p)

n+4
n−4 −

n− 4
2

Qgξj

)
dVg

≤
n− 4

2
Q
∫

Bρ(x j )

u j (pρ)−1u j (p)
n+4
n−4 dVg.
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Using (5-8) and εj ≤ e−Tj, we have∫
B

Tj M−2/(n−4)
j

(x j )

u
n+4
n−4
j dVg ≤ C M−1

j ,

while by (5-18) we have∫
Bρ(x j )−B

Tj M−2/(n−4)
j

(x j )

u
n+4
n−4
j dVg ≤C

∫
Bρ(x j )−B

Tj M−2/(n−4)
j

(x j )

(M−λj dg(p, x j )
4−n+σ )

n+4
n−4

≤C(Tj M
−

2
n−4

j )−4+ n+4
n−4σ M

−λ n+4
n−4

j

= T
−4+ n+4

n−4σ

j M−1
j = o(1)M−1

j .

Therefore,

(5-38)
∫

Bρ(x j )

u
n+4
n−4
j dVg ≤ C M−1

j .

Lemma 5.5 follows from (5-36)–(5-38). �

Proof of Proposition 5.3. Suppose (5-16) fails. Let Mj = u j (x j ). Then there exists
a subsequence u j and {pj } with dg(pj , x j )≤ δ2/2 with δ2 in Lemma 5.4 such that

(5-39) u j (pj )Mj dg(pj , x j )
n−4
→∞.

By Lemma 5.2 and 0< εj ≤ e−Tj,

Tj M
−

2
n−4

j ≤ dg(pj , x j )≤
δ2

2
.

For each j, let x = (x1, . . . , xn) be the geodesic normal coordinates centered at x j .
Denote y = d−1

j x where dj = dg(pj , x j ). We rescale:

vj (y)= d
n−4

2
j u j (expx j

(dj y)), |y| ≤ 2.

Then vj satisfies

Ph jvj (y)=
n− 4

2
Qvj (y)

n+4
n−4 , |y| ≤ 2,

where h j = d−2
j g so that (h j )pq(y)= (g)pq(dj y). The metrics h j depend on j. But

since dj has a uniform upper bound, the sequence of metrics stays in compact sets
of Ck,α with k > 4 large and all the results in Lemma 5.5 hold uniformly for j.
Also, the conclusion of Lemma 5.4 is scaling invariant. Note that the metrics h j

converge to a metric h in Ck,α with k > 4, and hence the Green’s functions of
Paneitz operators Ph j converge to the Green’s functions of Paneitz operators Ph

uniformly away from the singularity. In particular, if dj → 0 then h j converges
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to a flat metric on B2(0) so that in the proof of Proposition A.4, G(p, x̄) will be
replaced by cn|y|4−n in Euclidean balls with cn in (2-1). Therefore, Lemma 5.5
holds for vj , and hence

max
|x |=1

vj (0)vj (x)≤ C,

which shows that

Mj u j (pj )dg(pj , x j )
4−n
≤ C,

contradicting (5-39). We have proved (5-16) in Bδ2/2(x̄). By Lemma 5.1, the
inequality (5-16) holds in Bδ1(x̄).

The same properties for ξj in Lemma 5.5 now hold for Mj u j in Bδ2/2(x̄). Up to
a subsequence

Mj u j → v in C4
loc(Bδ2/2(x̄)),

and
Pgv = 0 in Bδ2/2(x̄).

By the remark on page 138, v > 0 in Bδ2/2(x̄). Since x̄ is an isolated simple blowup
point, the same argument in Lemma 5.5 shows that r (n−4)/2v̄(r) is nonincreasing for
0< r < δ2/2, where v̄(r)= |∂Br (x̄)|−1

∫
∂Br (x̄)

v dsg. Combined with the Harnack
inequality, it implies that v is not regular at x̄ . Also, v satisfies the condition in
Proposition A.4. By Proposition A.4, we obtain (5-17). This completes the proof
of Proposition 5.3. �

As an easy consequence of Proposition 5.3 and by the standard interior estimates
of the elliptic equation (1-2), we have the following corollary:

Corollary 5.6. Under the condition in Lemma 5.4, there exists δ2 > 0 independent
of j such that for Tj M−2/(n−4)

j ≤ dg(p, x j )≤ δ2,

(5-40) |∇
k
gu j (p)| ≤ C M−1

j dg(p, x j )
4−n−k for 0≤ k ≤ 4,

where Mj = u j (x j ), and C is a constant independent of j. For each j , let x be
the geodesic normal coordinates of (�, g) centered at x j . Then there exists C > 0
depending on |g|C3(�) such that for any fixed r ≤ δ2,

(5-41)
∣∣∣∣∫

dg(p,x j )≤r

(
x · ∇u j +

n− 4
2

u j

)
(12
− Pg)u j dx

∣∣∣∣≤ C M
−

4
n−4+o(1)

j

where o(1)→ 0 as j→∞.

Proof. Inequality (5-40) is a direct consequence of Proposition 5.3 and standard
interior estimates of the elliptic equation (1-2). We will next establish (5-41). Note
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that 0 < εj ≤ e−Tj. Using the estimates (5-40), (5-8) and (5-9), and recalling the
error bound (4-1), we have∫
|x |≤Tj M−2/(n−4)

j

∣∣∣∣(x · ∇u j +
n− 4

2
u j

)
(12
− Pg)u j

∣∣∣∣ dx

≤

∫
|x |≤Tj M−2/(n−4)

j

C(|x | |Du j (x)| + u j (x))

×
(
|x |2|D4u j (x)| + |x | |D3u j (x)| + |D2u j (x)| + |Du j (x)| + u j (x)

)
dx

≤ C
∫
|y|≤Tj

Mj (1+ 4−1
|y|2)−

n−4
2 Mj (1+ 4−1

|y|2)−
n−4

2 −1 M
4

n−4
j M

−
2n

n−4
j dy

= C M
−

4
n−4

j

∫
|y|≤Tj

(1+ 4−1
|y|2)3−n dy = C M

−
4

n−4+o(1)
j

and∫
Tj M−2/(n−4)

j ≤|x |≤r

∣∣∣∣(x · ∇u j +
n− 4

2
u j

)
(12
− Pg)u j

∣∣∣∣ dx

≤

∫
Tj M−2/(n−4)

j ≤|x |≤r
C(|x | |Du j (x)| + u j (x))

×
(
|x |2|D4u j (x)| + |x | |D3u j (x)| + |D2u j (x)| + |Du j (x)| + u j (x)

)
dx

≤ C
∫

Tj M−2/(n−4)
j ≤|x |≤r

M−2
j |x |

6−2n dx

≤ C M
−

4
n−4+o(1)

j ,

where o(1)→0 as j→∞ and C>0 is a constant depending on |g|C3(�). Therefore,∫
|x |≤r

∣∣∣∣(x · ∇u j +
n− 4

2
u j

)
(12
− Pg)u j

∣∣∣∣ dx ≤ C M
−

4
n−4+o(1)

j for Tj M
−

2
n−4

j ≤ r,

where C > 0 is a constant independent of j and o(1)→ 0 as j→∞. �

For n ≥ 6, a better estimate is needed in order to cancel the error terms in the
Pohozaev identity. By (5-8),

u j (expx j
(x))≤ 2Mj (1+ 4−1 M

4
n−4
j |x |

2)−
n−4

2 for |x | ≤ Tj M
−

2
n−4

j .

Combining this with Proposition 5.3, we have

u j (expx j
(x))≤ C min{Mj (1+ 4−1 M

4
n−4
j |x |

2)−
n−4

2 , C M−1
j |x |

4−n
}

≤ C Mj (1+ 4−1 M
4

n−4
j |x |

2)−
n−4

2 for |x | ≤ δ2.
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For n = 6 and Tj M−2/(n−4)
j ≤ r ,∫

|x |≤r

∣∣∣∣(x ·∇u j+
n−4

2
u j

)
(12
−Pg)u j

∣∣∣∣dx ≤C
∫ M2/(n−4)

j r

1
M−2

j M
2(n−6)

n−4
j |y|5−n d|y|

≤C M
−

4
n−4

j ln(M
2

n−4
j r).

For n ≥ 7 and Tj M−2/(n−4)
j ≤ r ,∫

|x |≤r

∣∣∣∣(x ·∇u j+
n−4

2
u j

)
(12
−Pg)u j

∣∣∣∣dx ≤C
∫ M2/(n−4)

j r

1
M−2

j M
2(n−6)

n−4
j |y|5−n d|y|

≤C M
−

4
n−4

j .

For the term M2
j

∫
|x |≤r |Qg| (u2

j + |x | |Du j | u j ) dx with r > 0 fixed,

M2
j

∫
|x |≤r
|Qg|(u2

j+|x | |Du j |u j )dx ≤C M2
j

∫ r M2/(n−4)
j

0
M2

j (1+|y|)
8−2n M

−
2n

n−4
j |y|n−1 d|y|

≤C M
2− 8

n−4
j

∫ r M2/(n−4)
j

0
(1+|y|)7−n d|y|.

For n = 6,

M2
j

∫
|x |≤r
|Qg| (u2

j + |x | |Du j | u j ) dx ≤ Cr2.

For n = 7,

M2
j

∫
|x |≤r
|Qg| (u2

j + |x | |Du j | u j ) dx ≤ Cr.

These are good terms. For later use, estimates on the error term

M2
j

∫
|x |≤r

∣∣∣∣(x · ∇u j +
n− 4

2
u j

)
(12
− Pg)u j

∣∣∣∣ dx

are needed for n ≥ 6.
For manifolds (Mn, g) of dimension 5 ≤ n ≤ 7, to estimate the error terms

and to analyze the expansion of the limit function of Mj u j at the singular point,
we have to work with the conformal normal coordinates. Let u j be a sequence
of positive solutions to (1-2) with isolated blowup points x j → x̄ . For each j,
let x = (x1, . . . , xn) be the conformal normal coordinates centered at x j with the
corresponding conformal metrics gj = ρ

4/(n−4)
j g constructed in [Lee and Parker

1987] such that
det((gj )pq(x))= 1+ O(|x |N ),

with some large number N, say N = 10n. We define gj = ρ
4/(n−4)
j g globally on M
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by replacing the coefficient ρ4/(n−4)
j with (ηρj+(1−η))4/(n−4) which is still denoted

as ρ4/(n−4)
j for simplicity, where η is a cut-off function supported in Bδ2(x j ) under

the metric g and η = 1 in Bδ2/(2)(x j ). Recall that ρj (x) = 1 + O(|x |2) for |x |
small. Since x j → x̄ , by the construction of the conformal normal coordinates,
ρj (x)→ ρ(x) in C N (M) with g0 = ρ

4/(n−4)g the conformal metric corresponding
to the conformal normal coordinates centered at x̄ . Let ǔ j = ρ

−1
j u j . Then ǔ j

satisfies the equation

Pgj ǔ j =
n− 4

2
Qǔ j on M.

Let
M̂j = ǔ j (x j )= u j (x j )ρj (x j )

−1.

We define the scaled coordinates y = M̂2/(n−4)
j x . Let h j = M̂4/(n−4)

j gj and vj (y)=
M̂−1

j ǔ j (M̂
−2/(n−4)
j y). Denote

U0(y)= (1+ 4−1
|y|2)−

n−4
2 , y ∈ Rn.

By the same argument as in Lemma 5.2, vj converges to U0 locally uniformly with
the control as in (5-8) and (5-9). We will use this notation in Lemma 5.7.

Lemma 5.7. Let (Mn, g) be a closed Riemannian manifold of dimension 5≤ n ≤ 7
with Rg ≥ 0, and also Qg ≥ 0 with Qg(p) > 0 for some point p ∈ M. Let {u j } be a
sequence of positive solutions to (1-2) and x j → x̄ be an isolated simple blowup
point. For each j, let x = (x1, . . . , xn) be the conformal normal coordinates at x j

with the corresponding conformal metric gj . Denote y = M̂2/(n−4)
j x. Then there

exist δ2 > 0 and C > 0 independent of j such that for |y| ≤ δ2 M̂2/(n−4)
j ,

(5-42) |vj (y)−U0(y)| ≤ C M̂−2
j ,

where M̂j = ǔ j (x j ).

Proof. The proof is a modification of Lemma 5.1 in [Marques 2005].
Let sj = δ2 M̂2/(n−4)

j and

3j = max
|y|≤sj
|vj −U0| = |vj (yj )−U0(yj )|,

for some |yj | ≤ sj .
We claim that if there exists c> 0 such that |yj | ≥ cM̂2/(n−4)

j , there exists C > 0
such that (5-42) holds. To see this, observe that for |yj | ≥ cM̂2/(n−4)

j , by (5-16),

vj (yj )≤ C |yj |
4−n
≤ C M̂−2

j ,

and therefore
3j ≤ C M̂−2

j .

This proves the claim.
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Now assume |yj |M̂
−2/(n−4)
j → 0 as j→∞. Then for j > 0 large, |yj |≤ sj/2. Let

wj (y)=3−1
j (vj (y)−U0(y)).

Then wj (0)= 0 and Dwj (0)= 0.
We will argue by contradiction. If (5-42) fails, then, as j→∞,

3−1
j M̂−2

j → 0.

Let h j = M̂4/(n−4)
j gj . Then wj satisfies the equation

Ph jwj − bjwj = Hj , for |y| ≤ δ2 M̂
2

n−4
j ,

where

bj =
(n− 4)Q(v(n+4)/(n−4)

j −U (n+4)/(n−4)
0 )

2(vj −U0)
≥ 0,

and

Hj (y)=3−1
j

(
−Ph j U0+

n−4
2

QU
n+4
n−4

0

)
=3−1

j (−Ph j+1
2
0)U0(y)

=3−1
j

(
M̂
−

8
n−4

j Qgj (M̂
−

2
n−4

j y)U0(y)+M̂
−

2
n−4 N

j O(|y|N )(1+4−1
|y|2)−

n
2

+M̂
−

2
n−4 (1+N )

j O(|y|N )|y|(1+4−1
|y|2)−

n
2

+M̂
−

2
n−4 (2+N )

j O(|y|N )(1+4−1
|y|2)1−

n
2

+M̂
−

2
n−4 (3+N )

j O(|y|N )|y|(1+4−1
|y|2)1−

n
2

)
=3−1

j (M̂
−

8
n−4

j Qgj (M̂
−

2
n−4

j y)U0(y)+M̂
−

2
n−4 N

j O(|y|N )(1+4−1
|y|2)−

n
2 ),

with N = 10n. By (5-16), for |y| ≤ sj ,

vj (y)≤ CU0(y) and bj (y)≤ cQ(1+ 4−1
|y|2)−4 for some constant c > 0.

By the interior estimates of the equation

Pgjwj = M̂
8

n−4
j Ph jwj = M̂

8
n−4
j (bjwj + Hj ),

we have

|∇
kwj (y)|h j

≤ C M̂
−

2k
n−4

j

(
supB 1

2 (δ2)2M̂2/(n−4)
j

(y) |wj | + M̂
8

n−4
j supB 1

2 (δ2)2M̂2/(n−4)
j

(y) |bjwj + Hj |
)

≤ C(M̂
−

2k
n−4

j + M̂
8−2k
n−4

j (1+ |y|2)−4)min{1,3−1
j (1+ |y|2)

4−n
2 }+C M̂

8−2k
n−4

j 3−1
j

×
(
M̂
−

8
n−4

j Qgj (M̂
−

2
n−4

j y)U0(y)+ M̂
−

2
n−4 N

j O(|y|N )(1+ 4−1
|y|2)−

n
2
)
,

for |M̂−2/(n−4)
j y| ≤ δ2 and 1≤ k ≤ 3.
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For 1
2(δ2)M̂

2/(n−4)
j ≤ |y| ≤ δ2 M̂2/(n−4)

j , we have that |wj (y)| ≤ C M̂−2
j 3−1

j , and
then by a bootstrapping argument we get the estimate

(5-43) |∇
kwj (y)|h j ≤ C M̂

−
2k

n−4
j M̂−2

j 3−1
j ,

for 1≤ k ≤ 5.
Since |wj | ≤ 1, by the interior estimates of the equation

Ph jwj = (bjwj + Hj ),

we have that
|∇

kwj (y)|h j ≤ C

where |y| ≤ δ2 M̂2/(n−4)
j and 1 ≤ k ≤ 5. Therefore, up to a subsequence, wj → w

in C4
loc(R

n). Moreover, Hj (y)→ 0 and w satisfies

(5-44) 12w(y)=
n+ 4

2
QU0(y)

8
n−4w(y), y ∈ Rn.

For any fixed y ∈ Rn, by the Green’s representation, for j large,

wj (y)=
∫
�

Gh j (y, z)Ph jwj (z) dVh j (z)

−

∫
∂�

Gh j (y, z)
[
∂

∂ν
1h jwj − anRich j (ν,∇wj )+ bn Rh j

∂

∂ν
wj

]
d Sh j

−

∫
∂�

[
−
∂

∂ν
Gh j (y, z)1h jwj

+ anRich j (ν,∇Gh j (y, z))wj − bn Rh jwj
∂

∂ν
Gh j (y, z)

]
d Sh j

−

∫
∂�

[
1h j Gh j (y, z)

∂

∂ν
wj −

∂

∂ν
1h j Gh j (y, z)wj

]
d Sh j

=

∫
�

Gh j (y, z)Ph jwj (z) dVh j (z)+ O(1)M−2
j 3−1

j ,

as j→∞, where �= {|z| ≤ δ2 M̂2/(n−4)
j } and the last equation is by (5-43). But

for any δ > 0, there exists R(δ) > |y| + 1> 0 independent of j such that∫
�∩{|z|≥R(δ)}

Gh j (y, z)|Ph jwj (z)| dVh j (z)

=

∫
�∩{|z|≥R(δ)}

Gh j (y, z)|bjwj (z)+ Hj (z)| dVh j (z)

≤ C(y)
∫ δ2 M̂2/(n−4)

j

R
|z|4−n

×

∣∣∣(1+ 1
4 |z|

2)−4
wj +3

−1
j M̂

−
8

n−4
j |z|4−n

+3−1
j M̂

−
2N
n−4

j |z|N (1+ |z|2)−
n
2

∣∣∣× |z|n−1 d|z|
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≤ C(y)
∫ δ2 M̂2/(n−4)

j

R
|z|3(|z|−8

|wj | +3
−1
j M̂−2

j M̂
−16+2n

n−4
j |z|4−n

+3−1
j M̂−2

j (M̂
−

2
n−4

j |z|)N−n+4
|z|−4) d|z|

≤ C(y)
∫ δ2 M̂2/(n−4)

j

R
(|z|−5

+3−1
j M̂−2

j M̂
−16+2n

n−4
j |z|7−n

+3−1
j M̂−2

j (M̂
−

2
n−4

j |z|)N−n+4
|z|−1) d|z|

≤ C(y)(R−4
+3−1

j M̂−2
j )≤ δ

for j large and 5≤ n ≤ 7.
Therefore,

(5-45) w(y)=cn

∫
Rn
|y−z|4−n12

0w(z)dz= n+4
2

cn

∫
Rn
|y−z|4−nU0(z)

8
n−4w(z)dz.

Also, for |y| ≤ 1
2δ2 M̂2/(n−4)

j , since |wj | ≤ 1, we have

(5-46) |wj (y)| =
∣∣∣∣∫
�

Gh j (y, z)Ph jwj (z) dVh j (z)+ O(1)M̂−2
j 3−1

j

∣∣∣∣
=

∣∣∣∣∫
�

Gh j (y, z)(bjwj + Hj ) dVh j (z)+ O(1)M̂−2
j 3−1

j

∣∣∣∣
≤ C

[
(1+ |y|)−4

+ (1+ |y|)4−n
+3−1

j M̂−2
j (M̂

2n−16
n−4

j (1+ |y|)8−n

+ (M̂
−

2
n−4

j |y|)N−n+4
+ 1)+3−1

j M̂−2
j

]
,

with N = 10n. Therefore, for 5≤ n ≤ 7, there exists C > 0 such that for y ∈ Rn,

|w(y)| ≤ C [ (1+ |y|)−4
+ (1+ |y|)4−n

].

Since vj (0)= 1 and Dvj (0)= 0, we also have that w(0)= 0 and Dw(0)= 0.
Now by Corollary B.5, w(y)= 0 for y ∈Rn. Therefore, yj→∞ as j→∞. But

then by (5-46), wj (yj )→ 0 as j→∞, which is a contradiction with wj (yj )= 1
for j ≥ 1. This completes the proof of Lemma 5.7. �

Remark. Using (5-42) and the equation satisfied by (vj −Uj ) instead of that of wj

in the proof of Lemma 5.7, there exists a constant C > 0 independent of j such that

|∇
k(vj −Uj )| ≤ C M̂−2

j (1+ |y|)−k,

for |y| ≤ δ2 M̂2/(n−4)
j and 1≤ k ≤ 4.

Corollary 5.8. Under the condition in Lemma 5.4, for each j let x = (x1, . . . , xn)

be the conformal normal coordinates of (�, g) centered at x j constructed in [Lee
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and Parker 1987 ], and we denote gj as the corresponding conformal metrics so that

det(gj )= 1+ O(r N ),

where N = 10n. Then there exists C > 0 such that for any fixed r ≤ δ2,

(5-47) lim
j→∞

M̂2
j

∣∣∣∣∫
dgj (p,x j )≤r

(
x · ∇ǔ j +

n− 4
2

ǔ j

)
(12
− Pgj )ǔ j dx

∣∣∣∣≤ Cr

for 5≤ n≤ 7, where ǔ j = u jρ
−1
j and M̂j = ǔ j (x j ) are defined as in the paragraph

preceding Lemma 5.7, N = 10n and gj = ρ
4/(n−4)
j g.

Proof. Let

ũ j (x)= M̂−1
j (|x |2+ M̂

−
4

n−4
j )

4−n
2 .

We denote

3j (r)= M̂2
j

∫
dgj (p,x j )≤r

(
x · ∇ǔ j +

n− 4
2

ǔ j

)
(12
− Pgj )ǔ j dx,

and

3̃j (r)= M̂2
j

∫
dgj (p,x j )≤r

(
x · ∇ũ j +

n− 4
2

ũ j

)(
12
− Pgj +

n− 4
2

Qgj

)
ũ j dx

for r < δ2.
As in the discussion below Corollary 5.6, there exists a constant C > 0 indepen-

dent of j such that

M̂2
j

∣∣∣∣∫
dgj (p,x j )≤r

(
x · ∇ǔ j +

n− 4
2

ǔ j

)
Qgj ǔ j dx

∣∣∣∣≤ Cr8−n

for 5≤ n ≤ 7. Therefore,

|3j (r)−3̃j (r)|

≤ M̂2
j

∣∣∣∣∫
|x |≤r

[(
x ·∇ǔ j+

n−4
2

ǔ j

)(
12
−12

gj
+divgj (an Rgj gj−bnRicgj )∇gj

)
ǔ j

−

(
x ·∇ũ j+

n−4
2

ũ j

)(
12
−12

gj
+divgj (an Rgj gj−bnRicgj )∇gj

)
ũ j

]
dx
∣∣∣∣+Cr8−n

for some constant C > 0 independent of j. The change of variables y = M̂2/(n−4)
j x

yields∫
|x |≤r

{(
x · ∇ǔ j +

n− 4
2

ǔ j

)(
12
−12

gj
+ divgj (an Rgj gj − bnRicgj )∇gj

)
ǔ j

−

(
x · ∇ũ j +

n− 4
2

ũ j

)(
12
−12

gj
+ divgj (an Rgj gj − bnRicgj )∇gj

)
ũ j

}
dx
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=

∫
|y|≤M2/(n−4)

j r

{
M̂j

(
yk∂ykvj +

n− 4
2

vj

)
M̂

8
n−4+1
j ×

[
δabδcd∂ya∂yb∂yc∂ydvj

−
(
gab

j (x)∂ya∂yb +
(
∂ya gap

j (x)−
1
2 gab

j g ps
j ∂ys (gj )ab

)
∂y p
)

×
(
gcd

j ∂yc∂yd +
(
∂yc gcq

j −
1
2 gcd

j gqk
j ∂yk (gj )cd

)
∂yq
)
vj

+ (an −
1
2 bn)M̂

−
4

n−4
j g pq

j (x)∂y p Rg(x)∂yqvj (y)

+ an M̂
−

4
n−4

j Rgj (x)
(
g pq

j ∂y p∂yqvj +
(
∂yc gcq

j −
1
2 gcd

j gqk
j ∂yk (gj )cd

)
∂yqvj

)
− bn M̂

−
4

n−4
j Ricpq

gj
(x)

×
(
∂y p∂yqvj −

1
2 gsk

j (∂y p(gj )qk + ∂yq (gj )pk − ∂yk (gj )pq)∂ysvj
)]

− M̂j

(
yk∂yk U0(y)+

n− 4
2

U0

)
M̂

8
n−4+1
j ×

[
δabδcd∂ya∂yb∂yc∂yd U0

−
(
gab

j (x)∂ya∂yb +
(
∂ya gap

j (x)−
1
2 gab

j g ps
j ∂ys (gj )ab

)
∂y p
)

×
(
gcd

j ∂yc∂yd +
(
∂yc gcq

j −
1
2 gcd

j gqk
j ∂yk (gj )cd

)
∂yq
)
U0

+
(
an −

1
2 bn

)
M̂
−

4
n−4

j g pq
j (x)∂y p Rg(x)∂yq U0(y)

+ an M̂
−

4
n−4

j Rgj (x)
(
g pq

j ∂y p∂yq U0(y)+
(
∂yc gcq

j −
1
2 gcd

j gqk
j ∂yk (gj )cd

)
∂yq U0

)
− bn M̂

−
4

n−4
j Ricpq

gj
(x)

×
(
∂y p∂yq U0−

1
2 gsk

j
(
∂y p(gj )qk + ∂yq (gj )pk − ∂yk (gj )pq

)
∂ys U0

)]}
M̂
−

2n
n−4

j dy.

Then by Lemma 5.7, one can check that

|3j (r)− 3̃j (r)|

≤ cM̂2
j

∫
|y|≤M̂2/(n−4)

j r

[(
|vj (y)−U0(y)| + |y| |Dy(vj −U0)|

)
×
(
M̂
−

2
n−4

j (1+ |y|)1−n
+ M̂

−
6

n−4
j (1+ |y|)3−n)

+ |Dy(vj −U0)| M̂
−

6
n−4

j (1+ |y|)4−n
+ |D2

y(vj −U0)|M̂
−

4
n−4

j (1+ |y|)4−n

+ |D3
y(vj −U0)|M̂

−
6

n−4
j (1+ |y|)4−n

]
dy+Cr8−n

≤ cr +Cr8−n
≤ Cr.

Also, by the construction of conformal normal coordinates,

|3̃j (r)|

= M̂2
j

∫
|x |≤r

∣∣∣∣(x ·∇ũ j+
n−4

2
ũ j

)(
12
−12

gj
+divgj (an Rgj gj−bnRicgj )∇gj

)
ũ j dx

∣∣∣∣
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≤ cM̂2
j

∫
|y|≤M2/(n−4)

j r
M̂j (1+ |y|)4−n M̂

8
n−4+1
j

×

[
M̂
−

6
n−4

j |x |N−3(1+ |y|)3−n

+ M̂
−

4
n−4

j |x |N−2(1+ |y|)2−n
+ M̂

−
2

n−4
j |x |N−1(1+ |y|)1−n

]
M̂
−

2n
n−4

j dy

≤ C(r N+4−n
+ M̂

2− 2N
n−4

j ).

Therefore, (5-47) holds for 5≤ n ≤ 7. �

Proposition 5.9. Let (Mn, g) be a closed Riemannian manifold of dimension 5≤
n ≤ 7 with Rg ≥ 0, and also Qg ≥ 0 with Qg(p) > 0 for some point p ∈ M. Let {u j }

be a sequence of positive solutions to (1-2) and x j→ x̄ be an isolated simple blowup
point so that

u j (x j )u j (p)→ H(p) in C4,α
loc (Bδ2(x̄)−{x̄}),

for some 0< α < 1. Assume that for some constants a > 0 and A,

(5-48) H(p)=
a

dg(p, x̄)n−4 + A+ o(1) as dg(p, x̄)→ 0,

for n = 5, or

(5-49) Ĥ(p)≡ρ−1(x̄)ρ−1(p)H(p)= a
dg0(p, x̄)n−4+A+o(1) as dg0(p, x̄)→0,

for 5≤ n ≤ 7, where g0 = ρ
4/(n−4)g is the conformal metric corresponding to the

conformal normal coordinates centered at x̄ . Then A = 0.

Proof. Let us first consider n = 5 under the condition (5-48).
Let x = (x1, . . . , xn) be the geodesic normal coordinates at x j for each j. Denote

�γ, j = Bγ (x j ) for γ < δ2/(2). Then �γ, j → �γ = Bγ (x̄). By the Pohozaev
identity,∫
∂�γ, j

n− 4
2

(
u j
∂

∂ν
(1u j )−1u j

∂

∂ν
u j

)
+

(
(x · ∇u j )

∂

∂ν
(1u j )−

∂

∂ν
(x · ∇u j )1u j +

1
2(1u j )

2x · ν
)

ds

=

∫
�γ, j

(
x ·∇u j+

n− 4
2

u j

)
(12
−Pg)u j dx+

(n− 4)2

4n
Q
∫
∂�γ, j

(x ·ν)u
2n

n−4
j dx .

Multiplying M2
j = u j (x j )

2 on both sides and taking limγ→0+ lim sup j→∞ on both
sides, we have that by Corollary 5.6,

lim
γ→0

lim sup
j→∞

M2
j

∫
�γ, j

(
x · ∇u j +

n− 4
2

u j

)
(12
− Pg)u j dx = 0,
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and

lim
γ→0

[∫
∂�γ

n− 4
2

(
H
∂

∂ν
(1H)−1H

∂

∂ν
H
)

+

(
(x · ∇H)

∂

∂ν
(1H)−

∂

∂ν
(x · ∇H)1H + 1

2(1H)2x · ν
)

ds
]

= lim
γ→0

lim sup
j→∞

M2
j

∫
∂�γ, j

[
n− 4

2

(
u j
∂

∂ν
(1u j )−1u j

∂

∂ν
u j

)
+

(
(x · ∇u j )

∂

∂ν
(1u j )−

∂

∂ν
(x · ∇u j )1u j +

1
2(1u j )

2x · ν
)]

ds

= lim
γ→0

lim sup
j→∞

M
−

8
n−4

j

∫
∂�γ, j

(x · ν)(Mj u j )
2n

n−4 dx = 0.

By assumption,

lim
γ→0

[∫
∂�γ

n− 4
2

(
H
∂

∂ν
(1H)−1H

∂

∂ν
H
)

+

(
(x · ∇H)

∂

∂ν
(1H)−

∂

∂ν
(x · ∇H)1H + 1

2(1H)2x · ν
)

ds
]

= lim
γ→0

∫
∂�γ

(n− 4)2(n− 2)a A|x |1−n ds

= (n− 4)2(n− 2)a A|Sn−1
|,

where |Sn−1
| is the area of an (n−1)-dimensional round sphere. Therefore,

A = 0.

For 5 ≤ n ≤ 7 under the condition (5-49), for each j, let x = (x1, . . . , xn) be
the conformal normal coordinates of (�, g) centered at x j and gj = ρ

4/(n−4)
j g the

corresponding conformal metrics defined as in the paragraph preceding Lemma 5.7.
Denote �γ, j = Bγ (x j ) with respect to the metric gj , for γ < δ2/2. Then

�γ, j →�γ = Bγ (x̄).

By the Pohozaev identity,∫
∂�γ, j

n− 4
2

(
ǔ j
∂

∂ν
(1ǔ j )−1ǔ j

∂

∂ν
ǔ j

)
+

(
(x · ∇ǔ j )

∂

∂ν
(1ǔ j )−

∂

∂ν
(x · ∇ǔ j )1ǔ j +

1
2(1ǔ j )

2x · ν
)

ds

=

∫
�γ, j

(
x ·∇ǔ j+

n− 4
2

ǔ j

)
(12
−Pgj )ǔ j dx+

(n− 4)2

4n
Q
∫
∂�γ, j

(x ·ν)ǔ
2n

n−4
j dx,
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where ǔ j = u jρ
−1
j . Note that

ǔ j (p)ǔ j (x j )→ H(p)ρ(x̄)−1ρ(p)−1
= Ĥ(p),

in
C4,α

loc (Bδ2/2(x̄)−{x̄}).

Multiplying M̂2
j = ǔ j (x j )

2 on both sides of the identity and taking the limit
limγ→0+ lim sup j→∞ on both sides, we have that by Corollary 5.8,

lim
γ→0

lim sup
j→∞

M̂2
j

∫
�γ, j

(
x · ∇ǔ j +

n− 4
2

ǔ j

)
(12
− Pgj )ǔ j dx = 0,

and

lim
γ→0

[∫
∂�γ

n− 4
2

(
Ĥ
∂

∂ν
(1Ĥ)−1Ĥ

∂

∂ν
Ĥ
)

+

(
(x · ∇ Ĥ)

∂

∂ν
(1Ĥ)−

∂

∂ν
(x · ∇ Ĥ)1Ĥ + 1

2(1Ĥ)2x · ν
)

ds
]

= lim
γ→0

lim sup
j→∞

M̂2
j

∫
∂�γ, j

[
n− 4

2

(
ǔ j
∂

∂ν
(1ǔ j )−1ǔ j

∂

∂ν
ǔ j

)
+

(
(x · ∇ǔ j )

∂

∂ν
(1ǔ j )−

∂

∂ν
(x · ∇ǔ j )1ǔ j +

1
2(1ǔ j )

2x · ν
)]

ds

= lim
γ→0

lim sup
j→∞

M̂
−

8
n−4

j

∫
∂�γ, j

(x · ν)(M̂j ǔ j )
2n

n−4 dx = 0.

By assumption,

lim
γ→0

[∫
∂�γ

n− 4
2

(
Ĥ
∂

∂ν
(1Ĥ)−1Ĥ

∂

∂ν
Ĥ
)
+(

(x · ∇ Ĥ)
∂

∂ν
(1Ĥ)−

∂

∂ν
(x · ∇ Ĥ)1Ĥ + 1

2(1Ĥ)2x · ν
)

ds
]

= lim
γ→0

∫
∂�γ

(n− 4)2(n− 2)a A|x |1−n ds

= (n− 4)2(n− 2)a A|Sn−1
|,

where |Sn−1
| is the area of an (n−1)-dimensional round sphere. Therefore,

A = 0. �

Remark. It is easy to check that all conclusions in this section hold for an isolated
(respectively, simple) blowup point x j → x̄ of a sequence of solutions {vj }j to
(1-2), with the background metric g replaced by a sequence of rescaled metrics
gj = Tj g corresponding to a sequence of positive numbers Tj →∞ as j→∞. In
this situation, ρ ≡ 1 in (5-49) in Proposition 5.9.
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6. From isolated blowup points to isolated simple blowup points

In this section we show that an isolated blowup point is an isolated simple blowup
point.

Proposition 6.1. Let (Mn, g) be a closed Riemannian manifold of dimension 5≤
n ≤ 7 with Rg ≥ 0, and also Qg ≥ 0 with Qg(p0) > 0 for some point p0 ∈ M.
Let {u j } be a sequence of positive solutions to (1-2) and x j → x̄ be an isolated
blowup point. Let Mj = u j (x j ). Then x̄ is an isolated simple blowup point.

Proof. We prove the proposition by a contradiction argument. Assume that x̄
is not an isolated simple blowup point. Then there exist two critical points of
r (n−4)/2ū j (r) in (0, µ̄j ) with some µ̄j → 0 up to a subsequence as j →∞. By
Lemma 5.2 with 0<εj < e−Tj, we have r (n−4)/2ū j (r) has precisely one critical point
in (0, Tj M−2/(n−4)

j ). We choose µj to be the second critical point of r (n−4)/2ū j (r)
so that µj ≥ Tj M−2/(n−4)

j and by assumption µj → 0.
For each j let x = (x1, . . . , xn) be the geodesic normal coordinates centered

at x j , and let y = µ−1
j x . For ease of notation, we assume δ2 = 1. We define the

scaled metric g̃j = µ
−2
j g so that (g̃j )pq(µ

−1
j x)dx pdxq

= gpq(x)dx pdxq, and

ξj (y)= µ
n−4

2
j u j (expx j

(µj y)) for |y|< µ−1
j .

We denote ξ̄j as the spherical average of ξj . Then we have:

(6-1) Pg̃j ξj (y)= n−4
2 Qξj (y)(n+4)/(n−4), where |y|< µ−1

j ,

(6-2) |y|(n−4)/2ξj (y)≤ C , where |y|< µ−1
j .

(6-3) lim j→∞ ξj (0)=∞.

(6-4) −4(n−1)
n−2 1g̃j ξ

(n−2)/(n−4)
j + Rg̃j ξ

(n−2)/(n−4)
j ≥ 0, where |y|< µ−1

j .

(6-5) r (n−4)/2ξ̄j (r) has precisely one critical point in 0< r < 1.

(6-6) d
dr (r

(n−4)/2ξ̄j (r))= 0 at r = 1.

Therefore {0} is an isolated simple blowup point of the sequence {ξj }. Note that
the remark on page 138 holds for u j so

(6-7) ξj (0)ξj (y)≥ C |y|4−n for |y| ≥ µ−1
j Tj M

−
2

n−4
j ,

where µ−1
j Tj M−2/(n−4)

j ≤ 1. By Lemma 5.1, there exists C > 0 independent of j
and k so that for any k ∈ R,

(6-8) max
2k≤|y|≤2k+1

ξj (0)ξj (y) ≤ C min
2k≤|y|≤2k+1

ξj (0)ξj (y), when 2k+1 < µ−1
j
δ2

3
.

Note that Q g̃j ≥ 0 and Rg̃j > 0 in M. Also the rescaled metrics g̃j are all well
controlled in |y| ≤ 1. In the proof of Lemma 5.4 the maximum principle holds
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for g̃j and the coefficients of the test function are still uniformly chosen for g̃j

so that the estimate in Lemma 5.4 holds for each ξj in |y| ≤ δ̃2 for some δ̃2 < 1
independent of j. Hence Proposition 5.3 holds for ξj in |y| ≤ δ̃2. This combined
with (6-7) and (6-8) implies

C(K )−1
≤ ξj (0)ξj (y)≤ C(K )

for K b Rn
− {0} when j is large; moreover, g̃j converges to the flat metric and

there exists a > 0 such that ξj (0)ξj (y) converges to

H(y)= a|y|4−n
+ b(y) in C4

loc(R
n
−{0}),

where b(y) ∈ C4(Rn) satisfies
12b = 0

in Rn. Here H > 0 in Rn
−{0}. Also,

(6-9) −1H(y)
n−2
n−4 ≥ 0, |y|> 0.

Moreover, for a fixed point y0 in |y| = 1, by (6-8),

H(y)≤ |y|2+
ln C
ln 2 H(y0)

for |y| ≥ 1. Since H > 0 for |y|> 0, it follows that b(y) is a polyharmonic function
of polynomial growth on Rn. Therefore, b(y) must be a polynomial in Rn; see
[Armitage 1973]. Nonnegativity of H near infinity implies that b(y) is of even
order. Then either b(y) is a nonnegative constant or b(y) is a polynomial of even
order with order at least two and b(y) is nonnegative at infinity. The later case
contradicts (6-9) for y near infinity. Therefore, b(y) must be a nonnegative constant
on Rn and

H(y)= a|y|4−n
+ b

with a constant a > 0 and a constant b.
By (6-6),

d
dr
(r

n−4
2 H(r))= 0 at r = 1.

We then have b= a > 0, which contradicts Proposition 5.9. In fact, Proposition 5.9
applies to isolated simple blowup points with respect to the sequence of rescaled
metrics {g̃j } with uniform curvature bound and uniform bound of injectivity radius
with the property that Q g̃j > 0 and Rg̃j > 0 (see the proof of Proposition 5.9).
Here Ĥ = H in the condition (5-49). Indeed, for n = 6, 7, after rescaling, the
conformal metric gj = ρ

4/(n−4)
j g corresponding to the conformal normal coordinates

centered at x j becomes ĝj (y)=µ−2
j ρj (µj y)4/(n−4)g(µj y) and the functions ρ̂j (y)=

ρj (µj y)→ ρ(y) ≡ 1 locally uniformly in C N as j →+∞. This completes the
proof of Proposition 6.1. �
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Remark. It is easy to check the proof of Proposition 6.1 shows that an isolated
blowup point x j→ x̄ of a sequence of solutions {vj }j to (1-2), with the background
metric g replaced by a sequence of rescaled metrics gj = Tj g corresponding to a
sequence of positive numbers Tj →∞ as j →∞, is in fact an isolated simple
blowup point.

7. Compactness of solutions to the constant Q-curvature equations

Based on Propositions 5.3 and 6.1, the proof of compactness of the solutions is
more or less standard; see, for example, [Li and Zhu 1999]. But again we need to
deal with the limit of the blowup argument carefully, which satisfies a fourth order
elliptic equation; see Lemma 7.1 and Proposition 7.3.

We first show that there are no bubble accumulations.

Lemma 7.1. Let (Mn, g) be a closed Riemannian manifold of dimension 5≤ n ≤ 9
with Rg ≥ 0, and also Qg ≥ 0 with Qg(p0) > 0 for some point p0 ∈ M. For any
given ε > 0 and large constant T > 1, there exists some constant C1 > 0 depending
on M, g, ε, T, ‖Qg‖C1(M) such that for any solution u to (1-2) and any compact
subset K ⊂ M satisfying

max
p∈M−K

d(p, K )
n−4

2 u(p)≥ C1 if K 6=∅

and
max
p∈M

u(p)≥ C1 if K =∅,

we have that there exists some local maximum point p′ of u in M − K with
BT u(p′)−2/(n−4)(p′)⊂ M − K satisfying

(7-1) ‖u(p′)−1u(expp′(u(p
′)−

2
n−4 y))− (1+ 4−1

|y|2)−
n−4

2 ‖C4(|y|≤2T ) < ε.

Proof. We argue by contradiction. That is to say, there exists a sequence of compact
subsets K j and a sequence of solutions u j to (1-2) on M such that

max
p∈M−K j

d(p, K j )
n−4

2 u(p)≥ j,

but no point satisfies (7-1) (here d(p, K j )=1 when K j=∅). We choose x j ∈M−K j

satisfying

dg(x j , K j )
n−4

2 u j (x j )= max
p∈M−K j

dg(p, K j )
n−4

2 u j (p).

Denote Tj ≡
1
4 u j (x j )

2/(n−4)dg(x j , K j ). We then define

vj (y)= u j (x j )
−1u j (expx j

(u j (x j )
−

2
n−4 y)) for |y| ≤ Tj .
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Let h j = u j (x j )
4/(n−4)g. The rescaled function vj satisfies

(7-2) Ph jvj =
n− 4

2
Qv

n+4
n−4
j ,

and by Theorem 2.1,

(7-3) 1h jvj ≤
n− 4

4(n− 1)
Rh jvj .

We will analyze the limit of the sequence {vj } as in Theorem 3.3 and conclude
that (7-1) indeed holds. By assumption,

Tj ≡
1
4 u j (x j )

2
n−4 dg(yj , K j )≥

1
4 j

2
n−4 ,

and
dg(expx j

(u j (x j )
−

2
n−4 y), K j )≥

1
2 dg(x j , K j ) for |y| ≤ Tj .

It follows that

0< vj (y)= u j (x j )
−1u j (expx j

(u j (x j )
−

2
n−4 y))

≤ u j (x j )
−1dg(expx j

(u j (x j )
−

2
n−4 y), K j )

−
n−4

2 dg(x j , K j )
n−4

2 u j (x j )

≤ 2
n−4

2 for |y| ≤ Tj .

Standard elliptic estimates imply that up to a subsequence,

vj → v in C4
loc(R

n),

with v satisfying

12v =
n− 4

2
Qv

n+4
n−4 in Rn,

v(0)= 1, 0≤ v ≤ 2
n−4

2 in Rn,

1v ≤ 0, in Rn.

By the strong maximum principle, v > 0 in Rn. Then by the classification theorem
of C.S. Lin [1998]),

v(y)=
(

λ

1+ 4−1λ2|y− ȳ|2

)n−4
2

in Rn,

with v(0)= 1 and v(y)≤ λ(n−4)/2
≤ 2(n−4)/2. Therefore, |ȳ| ≤C(n) with C(n) > 0

only depending on n. We choose yj to be the local maximum point of vj converging
to ȳ. Then pj = expx j

(u j (x j )
−2/(n−4)yj ) ∈ M− K j is a local maximum point of u j .

We now repeat the blowup argument with x j replaced by pj and u j (x j ) replaced by
u j (pj ) and obtain the limit

v(y)= (1+ 4−1
|y|2)−

n−4
2 in Rn.
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Therefore, for large j, there exists pj ∈ M − K j such that (7-1) holds. This
contradicts the assumption. Therefore, the proof of the lemma is completed. �

Lemma 7.2. Let (Mn, g) be a closed Riemannian manifold of dimension 5≤ n ≤ 9
with Rg≥ 0, and also Qg≥ 0 with Qg(p0)> 0 for some point p0 ∈M. For any given
ε > 0 and a large constant T > 1, there exist some constants C1 > 0 and C2 > 0
depending on M, g, ε, T, ‖Qg‖C1(M) such that for any solution u to (1-2) with

max
p∈M

u(p) > C1,

there exists some integer N = N (u) depending on u and N local maximum points
{p1, . . . , pN } of u such that:

(i) For i 6= j,
Bγi (pi )∩ Bγj (pj )=∅,

with γj = T u(pj )
−2/(n−4) and Bγj (pj ) the geodesic γj -ball centered at pj , and

(7-4) ‖u(pj )
−1u(exppj

(u(pj )
−

2
n−4 y))− (1+ 4−1

|y|2)−
n−4

2 ‖C4(|y|≤2R) < ε,

where y = u(pj )
2/(n−4)x , with x geodesic normal coordinates centered at pj ,

and |y| =
√
(y1)2+ · · ·+ (yn)2.

(ii) For i < j, we have dg(pi , pj )
(n−4)/2u(pj )≥ C1, while for p ∈ M,

dg(p, {p1, . . . , pn})
n−4

2 u(p)≤ C2.

Proof. We will use Lemma 7.1 and prove the lemma by induction. To start, we
apply Lemma 7.1 with K =∅. We choose p1 to be a maximum point of u and thus
(7-4) holds. Next we let K = Bγ1(p1).

Assume that for some i0 ≥ 1, (i) holds for 1 ≤ j ≤ i0 and 1 ≤ i < j, and also
dg(pi , pj )

(n−4)/2u(pj ) ≥ C1 with pj chosen as in Lemma 7.1 by induction (this
holds for i0 = 1). Then we let K =

⋃i0
j=1 Bγj (pj ). It follows that for ε > 0 small,

for any p such that dg(p, pj )≤ 2γj with 1≤ j ≤ i0, we have

dg(p, {p1, . . . , pi0})
n−4

2 u(p)≤ dg(p, pj )
n−4

2 u(p)≤ 2dg(p, pj )
n−4

2 u(pj )

≤ 2(2T u(pj )
−

2
n−4 )

n−4
2 u(pj )= 2

n−2
2 T

n−4
2 ,

and therefore, for p ∈
⋃i0

j=1 B2γj (pj ),

(7-5) dg(p, {p1, . . . , pi0})
n−4

2 u(p)≤ 2
n−2

2 T
n−4

2 .

If, for all p ∈ M , the inequality

dg(p, {p1, . . . , pi0})
n−4

2 u(p)≤ C1,
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holds then the induction stops. Otherwise, we apply Lemma 7.1, and we denote
pi0+1 as the local maximum point y0 obtained in Lemma 7.1 so that

BT u(pi0+1)−2/(n−4)(pi0+1)⊂ M − K .

Thus, (i) holds for i0+ 1. Also, by assumption, dg(pj , pi0+1)
(n−4)/2u(pi0+1) > C1.

By the same argument, (7-5) holds for i0 replaced by i0+ 1. The induction must
stop in a finite time N = N (u), since

∫
M u2n/(n−4) dVg is bounded and∫

Bγj (pj )

u
2n

n−4 dVg

is bounded below by a uniform positive constant. It is clear now that for p ∈
M −

⋃N
j=1 Bγj (pj ),

d(p, {p1, . . . , pN })
n−4

2 u(p)≤ 2
n−4

2 d
(

p,
N⋃

j=1

Bγj (pj )

)n−4
2

u(p)≤ 2
n−4

2 C1.

By induction, (7-5) holds for i0 replaced by N. We set

C2 = 2
n−2

2 T
n−4

2 + 2
n−4

2 C1. �

The next proposition rules out the bubble accumulations.

Proposition 7.3. Let (Mn, g) be a closed Riemannian manifold of dimension 5≤
n ≤ 7 with Rg ≥ 0, and also Qg ≥ 0 with Qg(p0) > 0 for some point p0 ∈ M.
For ε > 0 small enough and a constant T > 1 large enough, there exists γ > 0
depending on M, g, ε, T, ‖Rg‖C1(M) and ‖Qg‖C1(M) such that for any solution u
to (1-2) with maxp∈M u(p) > C1, we have

d(pi , pj )≥ γ,

for 1≤ i, j ≤ N and i 6= j, where N = N (u), pj = pj (u), pi = pi (u) and C1 are
defined in Lemma 7.2.

Proof. Suppose the proposition fails, which implies that there exist ε > 0 small and
T >0 large and a sequence of solutions u j to (1-2) such that maxp∈M u j (p)>C1 and

lim
j→∞

min
i 6=k

d(pi (u j ), pk(u j ))= 0.

We denote p1, j and p2, j to be the two points realizing the minimum distance in
{p1(u j ), . . . , pN (u j )} of u j constructed in Lemma 7.2. Let γ̄j = dg(p1, j , p2, j ).
Since

BT u j (p1, j )−2/(n−4)(p1, j )∩ BT u j (p2, j )−2/(n−4)(p2, j )=∅,

we have that u j (p1, j )→∞ and u j (p2, j )→∞.
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For each j, let x = (x1, . . . , xn) be the geodesic normal coordinates centered
at p1, j , y = γ̄−1

j x , and expp1, j
(x) be exponential map under the metric g. We

define the scaled metric h j = γ̄
−2
j g, and the rescaled function

vj (y)= γ̄
n−4

2
j u j (expp1, j

(γ̄j y)).

It follows that vj satisfies vj > 0 in |y| ≤ γ̄−1
j r0 and that

Ph jvj (y)=
n− 4

2
Qvj (y)

n+4
n−4 for |y| ≤ γ̄−1

j r0,(7-6)

1h jvj ≤
(n− 4)

4(n− 1)
Rh jvj for |y| ≤ γ̄−1

j r0,(7-7)

where r0 is half of the injectivity radius of (M, g). We define yk = yk(u j ) ∈ Rn

such that expp1, j
(γ̄j yk)= pk for the points pk(u j ). It follows that for pk 6= p1, j ,

|yk | ≥ 1+ o(1)

with o(1)→ 0 as j→∞. Let y2, j ∈ Rn be such that p2, j = expp1, j
(γ̄j y2, j ). Then

|y2, j | → 1 as j→∞.

It follows that there exists ȳ ∈ Rn with |ȳ| = 1 such that up to a subsequence,

ȳ = lim
j→∞

y2, j .

By Lemma 7.2,

γ̄j ≥ C max{T u j (p1, j )
−

2
n−4 , T u j (p2, j )

−
2

n−4 }.

Thus, vj (0)≥ C3, vj (y2, j )≥ C3 for some C3 > 0 independent of j, yk is a local
maximum point of vj for all 1≤ k≤ N (u j ), and min

1≤k≤N (u j )
|y− yk |

(n−4)/2vj (y)≤ C2

for all |y| ≤ γ̄−1
j .

We claim that either

(7-8) vj (0)→∞ and vj (y2, j )→∞,

or both of these two sequences are uniformly bounded. To see this, we first assume
that one of them tends to infinity up to a subsequence, say vj (0)→∞ for instance.
It is clear that 0 is an isolated blowup point, and by Proposition 6.1 it is an isolated
simple blowup point. Then vj (y2, j )→∞ in this subsequence since otherwise, by the
control (7-4) at p2, j in Lemma 7.2 and the rescaling, the upper bound of vj in the 1

2 -
geodesic ball centered at y2, j under h j is controlled by the lower bound of vj in it up
to a uniform multiplier, and thus by the Harnack inequality (5-1) in B4/5(0)−B1/5(0)
and Proposition 5.3, vj → 0 in B1/2(p2, j ), contradicting vj (y2, j )≥ C3. The claim
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is established. If vj are uniformly bounded on any fixed compact subset of Rn, then
as discussed in Lemma 7.1, vj → v in C4

loc(R
n) with v > 0 and

12v =
n− 4

2
Qv

n+4
n−4

in Rn. Also, 0 and ȳ are local maximum points of v. That contradicts the classifica-
tion theorem in [Lin 1998]. Therefore, the set (denoted as K0) of isolated blowup
points of {vj } is nonempty. Hence vj is uniformly bounded on any compact subset
in Rn

− K0. By a similar argument as the claim, there are at least two points in K0

and for any two distinct points y, z ∈ K, |y− z| ≥ 1. Also, by Proposition 6.1 (see
also the remark on page 159), K0 is a set of isolated simple blowup points.

Choose any two blowup points ym, j → ym and yk, j → yk ∈ K0. For j large, we
pick a point p on the 1

2 -geodesic sphere of yk, j . Now we apply Theorem 3.3 (see also
the remark on page 138) about the blowup point ym of vj at p and Proposition 5.3
about the blowup point yk of vj at p; then we have that there exists a constant C > 0
independent of j such that

vj (ym, j )≥ Cvj (yk, j ).

Similarly, there exists a constant C ′ > 0 independent of j such that

vj (yk, j )≥ C ′vj (ym, j ).

For any point y ∈ Rn
− K0, let yk be one of the nearest points to y in K0. Let � be

the convex hull of B1/2(y)∪ B1/2(yk). The argument in Lemma 5.1 still holds with
B2r (x j ) and B2r (x j )−Br/2(x j ) replaced by� and any compact subset of�−{yk, j }

containing y, and therefore the Harnack inequality holds uniformly for vj on each
compact subset of Rn

− K0 when j is large. Therefore, by Proposition 5.3, for a
given blowup point yk, j → yk ∈ K0, vj (yk, j )vj is uniformly bounded in any fixed
compact subset of Rn

− K0. Multiplying vj (yk, j ) on both sides of (7-6) and (7-7),
we have that, up to a subsequence,

lim
j→∞

vj (yk, j )vj = F ≥ 0 in C4
loc(R

n
− K0),

such that

12 F = 0 in Rn
− K0,(7-9)

1F ≤ 0 in Rn
− K0.(7-10)

Pick a point ym ∈ K0−{yk}. Since all the blowup points in K0 are isolated simple
blowup points, by Proposition 5.3,

F(y)= a1|y− yk |
4−n
+81(y)= a1|y− yk |

4−n
+ a2|y− ym |

4−n
+82(y)
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for y ∈ Rn
− K0 with the constants a1, a2 > 0. Moreover,

82 ∈ C4(Rn
− (K0−{yk, ym}))

and82 satisfies (7-9) in Rn
−(K0−{yk, ym}). Define ξ =181 in Rn

−(K0−{yk}).
By (7-10), F > 0 in Rn

− K0. Therefore,

lim inf
|y|→∞

81(y)= lim inf
|y|→∞

(F(y)− a1|y− yk |
4−n) ≥ 0,(7-11)

lim sup
|y|→∞

ξ(y) = lim sup
|y|→∞

1(F(y)− a1|y− yk |
4−n) ≤ 0,(7-12)

where for (7-12) we have used (7-10). Moreover, ξ < 0 near any isolated singular
point in K0−{yk} by Proposition 5.3. Applying the strong maximum principle to ξ
and the equation

1ξ =12(F − a1|y− yk |
4−n)= 0

in Rn
− (K0−{yk}),

ξ =181 < 0

in Rn
− (K0−{yk}). Since 81 > 0 near any isolated singular point in K0−{yk} by

Proposition 5.3, and also (7-11) holds, applying the strong maximum principle to81

and181<0 in Rn
−(K0−{yk}), we have81>0 in Rn

−(K0−{yk}). It follows that

F(y)= a1|y− yk |
4−n
+81(0)+ O(|y− yk |) with 81(yk) > 0 near y = yk,

contradicting Proposition 5.9 (It is easy to check that Proposition 5.9 applies for the
scaled metrics h j instead of g.). Here in the statement of Proposition 5.9, H= Ĥ= F.
Indeed, for 5≤n≤7, after rescaling, for each j the conformal metric gj = ρ

4/(n−4)
j g

corresponding to the conformal normal coordinates centered at x j becomes

ĝj (y)= γ̄−2
j ρj (γ̄j y)4/(n−4)g(γ̄j y)

and the functions ρ̂j (y)=ρj (γ̄j y)→ρ(y)≡ 1 locally uniformly in C N as j→+∞.
Proposition 7.3 is then established. �

We are now ready to prove the compactness theorem of positive solutions to (1-2).

Proof of Theorem 1.2. By Lemma 2.3 and the ellipticity of (1-2), we only need to
show that there is a constant C > 0 depending on M and g such that

u ≤ C.

Suppose the contrary, then there exists a sequence of positive solutions u j to (1-2)
such that

max
p∈M

u j →∞

as j→∞. By Proposition 7.3, after passing to a subsequence, there exist N distinct
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isolated simple blowup points p1, j→ p1, . . . , pN , j→ pN with N ≥ 1 independent
of j. Applying Proposition 5.3, we have that up to a subsequence,

u j (p1, j )u j (p)→ F(p)=
N∑

k=1

ak Gg(pk, p)+ b(p) in C4
loc(M −{p1, . . . , pN }),

where a1 > 0, a2 ≥ 0, . . . , aN ≥ 0 are some constants, Gg is the Green’s function
of Pg under the metric g and b(p) ∈ C4(M) satisfying

Pgb = 0

on M. Since Qg ≥ 0 on M with Qg > 0 at some point, by the strong maximum
principle of Pg, b ≥ 0 in M. We know that Gg(pk, p) > 0 for 1 ≤ k ≤ N by
Theorem 2.1. Let x = (x1, . . . , xn) be the conformal normal coordinates centered at
p1, j for each j (respectively, p1) constructed in [Lee and Parker 1987] with respect
to the conformal metric h j = ρ

−4/(n−4)
j g (respectively, h = ρ−4/(n−4)g) such that

det(hi j )= 1+ O(|x |10n).

Then there exists C1 > 0 independent of j such that

C−1
1 ≤ ρj ≤ C1,

and
‖ρj − ρ‖C N (M)→ 0 as j→∞.

As shown in Theorem 2.1, under the conformal normal coordinates x= (x1, . . . , xn)

centered at p1, the Green’s function under metric h satisfies

Gh(p1, p)= ρ2(p)Gg(p1, p)= dh(p1, p)4−n
+ A+ o(1)

near p1 with the constant A > 0 and o(1)→ 0 as p→ p1. Therefore,

ρ(p)2 F(p)= a1dh(p1, p)4−n
+ B+ o(1)

B = a1 A +
∑N

k=2 akρ(p1)
2Gg(pk, p1) + b(p1) > 0 and o(1) → 0 as p → p1.

That contradicts Proposition 5.9 with Ĥ = F in (5-49). Therefore, Theorem 1.2 is
established. �

Appendix A: Positive solutions of certain linear fourth order elliptic
equations in punctured balls

Assume Bδ(x̄) is a geodesic δ-ball on a complete Riemannian manifold (Mn, g)
with 2δ less than the injectivity radius. For application, for 5≤ n≤ 9, (M, g) could
either be the closed manifold in Proposition 5.3, or the Euclidean space.
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Lemma A.1. Let u ∈ C4(Bδ(x̄)−{x̄}) be a solution to

(A-1) Pgu = 0 in Bδ(x̄)−{x̄}.

If u(p)= o(dg(p, x̄)4−n) as p→ x̄ , then u ∈ C4,α
loc (Bδ(x̄)) for 0< α < 1.

Proof. Step 1. We show that (A-1) holds in Bδ(x̄) in the distribution sense.
To see this, given any small ε > 0, we define the cutoff function ηε on Bδ(x̄)

with 0≤ ηε ≤ 1 so that

ηε(p)= 1 for dg(p, x̄)≤ ε,

ηε(p)= 0 for dg(p, x̄)≥ 2ε,

|∇ηε(p)| ≤ Cε−1 for ε ≤ dg(p, x̄)≤ 2ε.

For any given φ ∈C∞c (Bδ(x̄)) we multiply by φ(1−ηε) on both sides of (A-1) and
do integration by parts, ∫

Bδ(x̄)
Pg(φ(1− ηε))u dVg = 0.

Let ε→ 0, then∫
Bδ(x̄)

(1− ηε)u Pgφ dVg = O(1)
(

Cε−4
∫

B2ε(x̄)−Bε(x̄)
|u|
)
+C

∫
Bε(x̄)
|u| → 0,

where in the last step we have used u(p) = o(dg(p, x̄)4−n). Therefore, Step 1 is
established.

Step 2. The assumption of u near x̄ implies that u∈ L p
loc(Bδ(x̄)) for any 1< p< n

n−4 .
By W 4,p estimates of the elliptic equation we obtain that u ∈W 4,p

loc (Bδ(x̄)); see [Ag-
mon 1959] for instance. The standard bootstrap argument gives u ∈C4,α

loc (Bδ(x̄)). �

For later use, we now present Lemma 9.2 from [Li and Zhu 1999] without proof.

Lemma A.2. There exists some constant 0< δ0 ≤ δ depending on n, ‖gi j‖C2(Bδ(x̄))
and ‖Rg‖L∞(Bδ(x̄)) such that the maximum principle for − 4(n−1)

n−2 1g + Rg holds on
Bδ0(x̄), and there exists a unique G1(p) ∈ C2(Bδ0(x̄)−{x̄}) satisfying

−
4(n− 1)

n− 2
1gG1+ RgG1 = 0 in Bδ0(x̄)−{x̄},

G1 = 0 on ∂Bδ0(x̄),

lim
p→x̄

dg(p, x̄)n−2G1(p)= 1.

Furthermore, G1(p)= dg(p, x̄)2−n
+R(p) where, for all 0<ε < 1, R(p) satisfies

dg(p, x̄)n−4+ε
|R(p)| + dg(p, x̄)n−3+ε

|∇R(p)| ≤ C(ε), p ∈ Bδ0(x̄), n ≥ 4,

where C(ε) depends on ε, n, ‖gi j‖C2(Bδ(x̄)) and ‖Rg‖L∞(Bδ(x̄)).
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Lemma A.3. Suppose a positive function u ∈ C4(Bδ(x̄)− {x̄}) satisfies (A-1) in
Bδ(x̄)−{x̄}, and assume that there exists a constant C > 0 such that for 0< r < δ,
the Harnack inequality holds:

max
dg(p,x̄)=r

u(p)≤ C min
dg(p,x̄)=r

u(p).

If moreover,

−
4(n− 1)

n− 2
1gu

n−2
n−4 + Rgu

n−2
n−4 ≥ 0 in Bδ(x̄)−{x̄},

then
a = lim sup

p→x̄
dg(p, x̄)n−4u(p) <+∞.

Proof. If the lemma is not true, then for any A > 0, there exists ri → 0+ satisfying

u(p) > A r4−n
i for all dg(p, x̄)= ri .

Let vA =
1
2 A(n−2)/(n−4)G1 with G1 in Lemma A.2. For i large, by the maximum

principle,

u(p)
n−2
n−4 ≥ vA(p) for ri < dg(p, x̄) < δ0.

As i→∞,

u(p)
n−2
n−4 ≥ vA(p) for 0< dg(p, x̄) < δ0.

Since A can be arbitrarily large, u(p) = ∞ in 0 < dg(p, x̄) < δ0, which is a
contradiction. �

Proposition A.4. Let u be as in Lemma A.3. Then there exists a constant b ≥ 0
such that

(A-2) u(p)= bG(p, x̄)+ E(p) for p ∈ Bδ0(x̄)−{x̄},

where G is the Green’s function of Pg ( for the existence of the Green’s function
in our application, G is the limit of the Green’s function of the Paneitz operator
of a sequence of metrics on M restricted to certain domains, and when g is the
flat metric, let G(x, y) = cn|x − y|4−n), and δ0 is defined in Lemma A.2. Here
E ∈ C4(Bδ0(x̄)) satisfies Pg E = 0 in Bδ0(x̄).

Proof. We rewrite (A-1) as

1g(1gu)= divg(an Rgg− bnRicg)∇gu−
n− 4

2
Qgu.

By Lemma A.3, 0< u(p)≤ a1G(p, x̄) with some constant a1 > a in Bδ0(x̄)−{x̄}
with δ0 > 0 in Lemma A.2. Combining this with the interior estimates, there exists
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a constant C > 0 such that∣∣∣∣divg(an Rgg− bnRicg)∇gu−
n− 4

2
Qgu

∣∣∣∣≤ Cd2−n
g (p, x̄),(A-3)

|1gu(p)| ≤ C d2−n
g (p, x̄),(A-4)

for p ∈ Bδ0(x̄)−{0}. We define G2 to be a Green’s function of 1g on Bδ0(x̄) such
that

(A-5) 0< G2(p, q)≤ Cdg(p, q)2−n,

for some constant C > 0 and any two distinct points p and q in Bδ0(x̄). Then

φ1(p)=
∫

Bδ0 (x̄)
G2(p, q)

(
divg(an Rgg− bnRicg)∇gu(q)−

n− 4
2

Qgu(q)
)

dVg(q)

is a special solution to the equation

1gφ = divg(an Rgg− bnRicg)∇gu−
n− 4

2
Qgu in Bδ0(x̄)−{x̄}.

Combining (A-3) and (A-5), we have that there exists a constant C > 0 such that

|φ1(p)| ≤ Cdg(p, x̄)4−n

for p ∈ Bδ0(x̄)−{x̄}. Therefore,

1g(1gu−φ1)= 0 in Bδ0(x̄)−{x̄}.

Since we also have (A-4), the proof of Proposition 9.1 in [Li and Zhu 1999] applies
and there exists a constant −C ≤ b2 ≤ C such that

(1gu(p)−φ1(p))= b2G1(p)+ϕ1(p) in Bδ0(x̄)−{x̄},

with G1 as in Lemma A.2 and ϕ1 a harmonic function on Bδ0(x̄). Therefore,

1gu(p)= b2G1(p)+φ1(p)+ϕ1(p) in Bδ0(x̄)−{x̄}.

By the same argument, there exists b3 ∈ R such that

u(p)= b3G1(p)+ϕ2(p)+
∫

Bδ0 (x̄)
G2(p, q)[b2G1(q)+φ1(q)+ϕ1(q)] dVg(q)

= b3G1(p)+ϕ2(p)+ O(dg(p, x̄)4−n)

in Bδ0(x̄)− {x̄}, with ϕ2 a harmonic function on Bδ0(x̄). But since 0 < u(p) ≤
a1G(p, x̄), we have b3 = 0 and

u(p)= b2

∫
Bδ0 (x̄)

G2(p, q)G1(q) dVg(q)+ o(dg(p, x̄)4−n)
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in Bδ0(x̄)−{x̄}. Therefore, there exists a constant b ≥ 0 such that

u(p)= bdg(p, x̄)4−n
+ o(dg(p, x̄)4−n)

= bG(p, x̄)+ o(dg(p, x̄)4−n).

Then by Lemma A.1, there exists a function E ∈ C4(Bδ0(x̄)) satisfying (A-1) and

u(p)= bG(p, x̄)+ E(p)

for p ∈ Bδ0(x̄)−{x̄}.
This completes the proof of the proposition. �

Using Proposition A.4, we immediately conclude the following corollary.

Corollary A.5. For n ≥ 5, assume that u ∈ C4(Bδ0(x̄)−{x̄}) is a positive solution
of (A-1) with x̄ a singular point, and also that the assumptions in Lemma A.3 hold
for u. Then

lim
r→0

∫
Br (x̄)

(
Pgu−

n− 4
2

Qu
)

dVg

= lim
r→0

∫
∂Br (x̄)

(
∂

∂ν
1gu− (an Rg

∂

∂ν
u− bnRicg(∇gu, ν))

)
dsg

= b lim
r→0

∫
∂Br (x̄)

∂

∂ν
1gG(p, x̄) dsg(p)= 2(n− 2)(n− 4)|Sn−1

| b > 0,

where ν is the outer unit normal and b > 0 is as in (A-2).

Appendix B: Classification of solutions with decay at infinity for a fourth
order linear equation

Let n ≥ 5. It is easy to check that U0 = (1+ 4−1
|x |2)−(n−4)/2 is a solution to the

Q-curvature equation

12U0 =
n− 4

2
QU

n+4
n−4

0

on Rn with Q = 1
8 n(n2

− 4).
We now consider bounded solutions to the linearized equation

(B-1) 12φ(x)=
n+ 4

2
QU

8
n−4

0 φ(x), x ∈ Rn.

Chen and Lin [1998] classified bounded solutions to the linearized equation of the
Yamabe equation in Rn with certain decay near infinity. Similarly, we want to show
that if a solution φ to (B-1) has the decay φ→ 0 uniformly as |x | →∞, then

φ = c0

(
x · ∇U0+

n− 4
2

U0

)
+

n∑
j=1

cj∂x j U0.



A COMPACTNESS THEOREM ON BRANSON’S Q-CURVATURE EQUATION 171

Let {ξk,m}m be the eigenfunctions of the Laplacian on Sn−1, with respect to the
eigenvalue λk = k(n+ k− 2). Let x = rθ with r = |x |. Then we have the decom-
position

φ(rθ)=
∞∑

k=0

∑
m

φk,m(r)ξk,m(θ),

which converges locally uniformly, with φk,m(r) =
∫

Sn−1 φ(rθ)ξk,m(θ) d S. Let
uk,m(rθ)= φk,m(r)ξk,m(θ). Then uk,m satisfies the equation

(B-2) 12uk,m(x)=
n+ 4

2
QU0(x)

8
n−4 uk,m(x), x ∈ Rn,

and φk,m satisfies

(B-3)
(
∂2

r +
n−1

r
∂r−

λk

r2

)(
∂2

r +
n−1

r
∂r−

λk

r2

)
φk,m=

n+4
2

QU
8

n−4
0 φk,m, r>0,

with φk,m(0)= 0 and φ′k,m(0)= 0. Equivalently, φk,m is a solution to the equation

(B-4)
(
1−

λk

r2

)(
1−

λk

r2

)
φk,m =

n+ 4
2

QU
8

n−4
0 φk,m .

Denote

vk,m(r)=
(
∂2

r +
n− 1

r
∂r −

λk

r2

)
φk,m .

Then (
∂2

r +
n− 1

r
∂r −

λk

r2

)
φk,m = vk,m,(B-5) (

∂2
r +

n− 1
r

∂r −
λk

r2

)
vk,m =

n+ 4
2

QU
8

n−4
0 φk,m,(B-6)

where

(B-7) φk,m(0)= 0, φ′k,m(0)= 0, vk,m(0)= 0 and v′k,m(0)= 0.

By (B-2), we know that uk,m is analytic locally in Rn. Then the solutions φk,m to
(B-3) and (B-7) are generated linearly by the two solutions

φ1,k,m(r)= r k
+ E1r k+4

+

∞∑
j=2

E jr k+2+2 j ,

φ2,k,m(r)= r k+2
+C1r k+6

+

∞∑
j=2

C jr k+4+2 j ,

with E1 > 0 and C1 > 0. The constants Ei and C j can be calculated inductively
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using (B-3). It is easy to check that the radius of convergence of φi,k,m is positive
for i = 1, 2 and k ≥ 1. Therefore,

φk,m = Cφ1,k,m(r)+C ′φ2,k,m(r),

with C and C ′ constants.
Now we employ a useful comparison theorem motivated by [Grunau et al. 2008];

see also [McKenna and Reichel 2003] and [Choi and Xu 2009].

Theorem B.1. Let φ and v be a solution to (B-5) and (B-6) in r > 0. If it holds
that for some r1 > 0,

φ(r1)≥ 0, φ′(r1)≥ 0, v(r1)≥ 0 and v′(r1)≥ 0,

with one of them nonzero, then

(B-8) φ(r) > 0, φ′(r) > 0, v(r) > 0 and v′(r) > 0

for r > r1, and there exists a constant C > 0 such that φ(r) ≥ C(r − r1 − 1)2

for r > r1 + 1. Moreover, there exists a positive constant C ′ = C ′(k) such that
φ(r)≤ C ′(rn+k+2

+ 1). In particular, φ(r) is positive and exists for all r > r1.

Proof. By the equations (B-5) and (B-6),

∂r (rn−1∂rφ)= rn−1v+
λk

r2 φrn−1,

∂r (rn−1∂rv)=
n+ 4

2
QU

8
n−4

0 φrn−1
+
λk

r2 vrn−1.

Using integration,

rn−1φ′(r)= rn−1
1 φ′(r1)+

∫ r

r1

rn−1v+
λk

r2 φrn−1 dr,

rn−1v′(r)= rn−1
1 v′(r1)+

∫ r

r1

n+ 4
2

QU
8

n−4
0 φrn−1

+
λk

r2 vrn−1 dr.

Then it is easy to see that (B-8) holds for r > r1. Also, for r > r1+ 1,

rn−1φ′(r)= (r1+ 1)n−1φ′(r1+ 1)+
∫ r

r1+1
rn−1v+

λk

r2 φrn−1 dr

≥ (r1+ 1)n−1φ′(r1+ 1)+
∫ r

r1+1
rn−1v(r1+ 1) dr

≥ v(r1+ 1)
(1

n rn
−

1
n (r1+ 1)n

)
,

with v(r1+ 1) > 0. Therefore, for r > r1+ 1,

φ′(r)≥ 1
n v(r1+ 1)r − 1

n (r1+ 1)v(r1+ 1).
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Therefore, φ grows at least quadratically.
Now let’s see the upper bound of growth of φ. It is easy to check that(

1−
λk

r2

)(
1−

λk

r2

)
rn+k+2

≥
n+ 4

2
QU

8
n−4

0 rn+k+2, r > 0.

Also,

d
dr

rn+k+2> 0,
(
1−

λk

r2

)
rn+k+2> 0, and

d
dr

(
1−

λk

r2

)
rn+k+2> 0 for r > 0.

Therefore, for any r1> 0, there exists a constant δ= δ(r1)> 0 such that the function
ϕ(r)= rn+k+2

− δφ(r) satisfies (B-8) at r = r1. Note that(
1−

λk

r2

)(
1−

λk

r2

)
ϕ(r)≥

n+ 4
2

QU
8

n−4
0 ϕ(r), r > 0.

Denote

ṽ(r)=
(
1−

λk

r2

)
ϕ(r)

so that (
1−

λk

r2

)
ṽ(r)≥

n+ 4
2

QU
8

n−4
0 ϕ(r), r > 0.

Using the same integration argument starting from r = r1, we obtain that ϕ(r) > 0
for r ≥ r1. This completes the proof of Theorem B.1. �

Now we consider the behavior of φ1,k,m and φ2,k,m .
Let v1,k,m and v2,k,m be defined as above with respect to φ1,k,m and φ2,k,m :

v1,k,m(r)=
(
∂2

r +
n− 1

r
∂r −

λk

r2

)
φ1,k,m,

v2,k,m(r)=
(
∂2

r +
n− 1

r
∂r −

λk

r2

)
φ2,k,m .

By the Taylor expansion, for r > 0 close to 0, φ1,k,m(r) > 0, φ′1,k,m(r) > 0,
v1,k,m(r) > 0 and v′1,k,m(r) > 0. Then by Theorem B.1, φ1,k,m(r) keeps increasing
at least quadratically as r increases. Also, for any ε > 0, there exists C = C(ε, k)
such that φ1,k,m(r) is bounded from above by Crn+k+2 with some constant C
for r > ε. In particular, φ1,k,m(r) is positive and exists for any r > 0. The same
holds for φ2,k,m .

For any r1> 0, we know that φi,k,m satisfies (B-8) at r = r1, for i = 1, 2 and k≥ 1.
Then there exists C>0 such that both (φ1,k,m−C−1φ2,k,m) and (φ2,k,m−C−1φ1,k,m)

satisfy (B-8) at r = r1. Then by Theorem B.1, for r > r1,

φ1,k,m(r)−C−1φ2,k,m(r) > 0 and φ2,k,m(r)−C−1φ1,k,m(r) > 0.
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That is to say, φ1,k,m and φ2,k,m are both positive on (0,∞) and they go to infinity
as r→∞ in the same order. This leads to the following corollary.

Corollary B.2. For any k ≥ 1, there is at most one constant C > 0 such that
φ1,k,m −Cφ2,k,m is bounded on r ∈ (0,+∞).

Now we consider the asymptotic behavior of bounded solutions to (B-3) and
(B-7) which vanish at infinity.

Lemma B.3. Let φk,m = φ1,k,m−Cφ2,k,m be a bounded solution to the initial value
problem (B-3) and (B-7) such that φk,m(r) = o(1) as r →∞. Then φk,m(r) =
O(r2−k−n) as r→+∞.

Proof. We introduce

φ∗k,m(r)= r4−nφk,m(r−1), r > 0,

to be the Kelvin transformation of φk,m and

v∗k,m(r)=
(
1−

λk

r2

)
φ∗k,m(r), r > 0.

Also, for uk,m(rθ)= φk,m(r)ξk,m(θ), we denote

u∗k,m(x)= |x |
4−nuk,m

(
x
|x |2

)
, x ∈ Rn,

to be the Kelvin transformation of uk,m . Then it is easy to check that φ∗k,m is a
solution to (B-3) and equivalently a solution to (B-4) in (0,+∞) and u∗k,m is a
solution to (B-2) in Rn

−{0}. By our assumption on the decay of φk near infinity,

u∗k,m(x)= o(|x |4−n)

as x→ 0. Then using the proof of Lemma A.1 in Appendix A we have that 0 is a
removable singularity of u∗k,m and u∗k,m(x)= φ

∗

k,m(r)ξk,m(θ) is a solution to (B-2)
in Rn. Therefore, φ∗k,m and v∗k,m satisfy

φ∗k,m(0)= 0, (φ∗k,m)
′(0)= 0, v∗k,m(0)= 0, (v∗k,m)

′(0)= 0.

Also, by the definition,

φ∗k,m(r)= r4−nφk,m(r−1)= O(r4−k−n) as r→+∞.

Recall that φ1,k,m and φ2,k,m form a basis of the solution space to the problem
(B-3) and (B-7). Since φk,m and φ∗k,m are both bounded solutions to (B-3) and (B-7),
by Corollary B.2 there exists a constant a ∈ (−∞,+∞) such that φ∗k,m(r) =
aφk,m(r) for r > 0. Note that φ∗k,m(1) = φk,m(1). If φk,m(1) 6= 0, then a = 1.
Otherwise, if also φ′k,m(1) 6= 0, then by L’Hospital’s Rule, a = −1; else, if also
φ′k,m(1)=0 but vk,m(1) 6=0, then by L’Hospital’s rule, a=1; else, if also φ′k,m(1)=0,
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vk,m(1) = 0 but v′k,m(1) 6= 0, then by L’Hospital’s rule, a = −1 (In fact, by the
comparison theorem Theorem B.1, since φk,m is bounded in (0,+∞), this could
not happen). Since φk,m is assumed not to be identically zero, it is not possible that
all the four data vanishes at r = 1. Therefore, a is either 1 or −1. Therefore,

φk,m(r)= r k
+ O(r k+2) as r→ 0,

φk,m(r)=±r4−k−n
+ O(r2−n−k) as r→+∞. �

Let φ be a solution to (B-1) with the decay φ→ 0 uniformly as |x | →∞. Let
uk,m(rθ)= φk,m(r)ξk,m(θ)=

∫
Sn−1 φ(r)ξk,m(θ) d S ξk,m(θ), k ≥ 1. Then φk,m(r)=

o(1) as r→∞. Using the energy method, in the following theorem we show that
for 5≤ n ≤ 8, φk,m = 0 for k ≥ 2.

Theorem B.4. Let φk,m with k ≥ 2 be a bounded solution to the initial value
problem (B-3) and (B-7) for 5≤ n ≤ 8 such that φk,m(r)= o(1) as r→∞. Then
φk,m = 0.

Proof. By Lemma B.3, it is easy to check that φk,m ∈ H 2(Rn), for k ≥ 2.
By (B-4), for any ε > 0,∫

Rn−Bε(0)
φk,m

(
1−

λk

r2

)(
1−

λk

r2

)
φk,m dx =

∫
Rn−Bε(0)

n+ 4
2

QU
8

n−4
0 φ2

k,m dx .

Using integration by parts and letting ε→ 0, we have that

(B-9)
∫

Rn

(
1−

λk

r2

)
φk,m

(
1−

λk

r2

)
φk,m dx =

∫
Rn

n+ 4
2

QU
8

n−4
0 φ2

k,m dx .

Note that∫
Rn

(
1−

λk

r2

)
φk,m

(
1−

λk

r2

)
φk,m dx

=

∫
Rn

[
(1φk,m)

2
− 2λkr−2φk,m1φk,m + λ

2
kr−4φ2

k,m
]

dx,

where by integration by parts,∫
Rn
−2λkr−2φk,m1φk,m dx =

∫
Rn

2λkr−2
|∇φk,m |

2 dx+
∫

Rn
2λkφk,m∇φk,m ·∇r−2 dx

=

∫
Rn

2λkr−2
|∇φk,m |

2 dx+
∫

Rn
λk∇(φ

2
k,m)·∇r−2 dx

=

∫
Rn

2λkr−2
|∇φk,m |

2 dx−
∫

Rn
λkφ

2
k,m1r−2 dx

=

∫
Rn

2λkr−2
|∇φk,m |

2 dx+(2n−8)
∫

Rn
λkr−4φ2

k,m dx
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for n ≥ 6. Therefore,∫
Rn

(
1−

λk

r2

)
φk,m

(
1−

λk

r2

)
φk,m dx

=

∫
Rn
(1φk,m)

2 dx+
∫

Rn
2λkr−2

|∇φk,m |
2 dx+(2nλk−8λk+λ

2
k)

∫
Rn

r−4φ2
k,m dx

≥ (2nλk−8λk+λ
2
k)

∫
Rn

r−4φ2
k,m dx .

Since (1+ 4−1r2)−1
≤ r−1 for r > 0 and, for k ≥ 2 and 5≤ n ≤ 8,

2nλk−8λk+λ
2
k=(2n−8)k(n+k−2)+k2(n+k−2)2>

n+4
2
×Q=

n+4
2
×

n(n2
−4)

8
,

we have that∫
Rn

(
1−

λk

r2

)
φk,m

(
1−

λk

r2

)
φk,m dx >

∫
Rn

n+ 4
2

QU
8

n−4
0 φ2

k,m dx,

which contradicts (B-9) for k≥ 2 and 5≤ n≤ 8. Therefore, there exists no nontrivial
bounded solution φk to (B-3) such that φk(r) = o(1) as r →+∞ for k ≥ 2 and
5≤ n ≤ 8. �

It is easy to check that

u0+
∑

m

u1,m = c0

(
x · ∇U0+

n− 4
2

U0

)
+

n∑
j=1

cj∂x j U0

with c0, . . . , cn some constants. As a direct corollary of Theorem B.4, we have:

Corollary B.5. Let φ be a solution to (B-1) with the decay φ → 0 uniform as
|x | →∞. Then for 5≤ n ≤ 8, we have that

φ = c0

(
x · ∇U0+

n− 4
2

U0

)
+

n∑
j=1

cj∂x j U0

for some constants c0, c1, . . . , cn .
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