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We give a simple proof that any rigid representation of π1(6g) in Homeo+(S1)

with Euler number at least g is necessarily semiconjugate to a discrete, faith-
ful representation into PSL(2,R). Combined with earlier work of Matsumoto,
this precisely characterizes Fuchsian actions by a topological rigidity prop-
erty. We have proved this result in greater generality, but with a much more
involved proof, in arxiv:1710.04902.

1. Introduction

Let 6g be a surface of genus g ≥ 2, and let 0g = π1(6g). The representation
space Hom(0g,Homeo+(S1)) is the set of all actions of 0g on S1 by orientation-
preserving homeomorphisms, equipped with the compact-open topology. This is
also the space of flat topological circle bundles over 6g, or equivalently, the space
of circle bundles with a foliation transverse to the fibers. The Euler class of a
representation ρ ∈ Hom(0g,Homeo+(S1)) is defined to be the Euler class of the
associated bundle, and the Euler number eu(ρ) is the integer obtained by pairing the
Euler class with the fundamental class of the surface. The classical Milnor–Wood
inequality [Milnor 1958; Wood 1971] is the statement that the absolute value of
the Euler number of a flat bundle is bounded by the absolute value of the Euler
characteristic of the surface.

While the Euler number determines the topological type of a flat S1 bundle, it
does not determine its flat structure — except in the special case where the Euler
number is maximal, i.e., equal to ±(2g− 2). In this case, a celebrated result of
Matsumoto states that for any representation ρ with eu(ρ)=±(2g− 2), there is a
continuous, degree one, monotone map h : S1

→ S1 such that

(1) h ◦ ρ = ρF ◦ h,

where ρF is Fuchsian, meaning a faithful representation of 0g onto a cocompact
lattice in PSL(2,R). (We view PSL(2,R)⊂Homeo+(S1) via the action on RP1∼= S1

by Möbius transformations.)
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An important consequence of Matsumoto’s theorem is that representations with
maximal Euler number are dynamically stable or rigid in the following sense.

Definition 1.1. Let 0 be a discrete group. A representation ρ : 0→ Homeo+(S1)

is called path-rigid if its path-component in Hom(0,Homeo+(S1)) consists of a
single semiconjugacy class.

Semiconjugacy is the equivalence relation generated by the property shared by ρ
and ρF in (1) above; we recall the precise definition in Section 2. As semiconjugacy
classes are connected in Hom(0g,Homeo+(S1)), path-rigid representations are
precisely those whose path-component is as small as possible.

The purpose of this article is to prove the following converse to Matsumoto’s
result.

Theorem 1.2. Let ρ : 0g → Homeo+(S1) be a path-rigid representation, with
|eu(ρ)| ≥ g. Then eu(ρ) is maximal, i.e., |eu(ρ)| = 2g− 2, and ρ is semiconjugate
to a discrete, faithful representation into PSL(2,R).

As shown in [Mann 2015], any 2-fold lift of a Fuchsian representation is path-
rigid and has Euler class g− 1; hence the inequality |eu(ρ)| ≥ g is optimal for this
statement.

A stronger, but equally natural notion of rigidity comes from considering the
character space, X (0g,Homeo+(S1)), defined as the largest Hausdorff quotient
of the quotient Hom(0g,Homeo+(S1))/Homeo+(S1). We say a representation is
rigid if its image in X (0g,Homeo+(S1)) is an isolated point. In [Mann and Wolff
2017], we prove that all rigid representations are semiconjugate to the k-fold lift
of a Fuchsian representation, for some divisor k of 2g − 2; and that the weaker
hypothesis of path-rigidity is sufficient provided the Euler class is nonzero. This is
a more general statement than Theorem 1.2 here, but the proof in [Mann and Wolff
2017] is long and involved. This article gives a much easier, self-contained proof of
this partial result. The assumption |eu(ρ)| ≥ g greatly simplifies the situation, as it
implies in particular that many elements of the group have north-south dynamics. In
fact, our assumption here can be replaced with an a priori strictly weaker assumption
on the dynamics of ρ, phrased in terms of rotation numbers of elements, as follows.

Theorem 1.3. Suppose ρ : 0g → Homeo+(S1) is path-rigid. If there exist based
simple closed curves a, b ∈ 0g with intersection number 1 and such that

r̃ot[ρ(a), ρ(b)] = ±1,

then eu(ρ)=±(2g− 2), and ρ is semiconjugate to a Fuchsian representation.

Commutators of elements of Homeo+(S1) have a well defined translation number,
as we will recall in Section 2A. The hypothesis r̃ot[ρ(a), ρ(b)] = ±1 is equivalent
to the statement that the restriction of the representation to the torus defined by a
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and b is semiconjugate to a standard Fuchsian one (see [Matsumoto 2016]). Thus,
one can think of the statement above as a local-to-global result: the local condition
that a torus is Fuchsian, together with path-rigidity, implies the global statement
that the representation is Fuchsian.

Outline. In Section 2 we recall standard material on dynamics of groups acting on
the circle, including rotation numbers and the Euler number for actions of surface
groups. We then introduce important tools for the proof of Theorem 1.3, and give a
quick proof that Theorem 1.3 implies Theorem 1.2.

Sections 3 through 5 are devoted to the proof of Theorem 1.3. Given a represen-
tation ρ satisfying the hypotheses of Theorem 1.3, we proceed as follows:

1. After modifying ρ by a semiconjugacy, we show there exists a ∈ 0g represented
by a nonseparating simple closed curve such that ρ(a) is hyperbolic, meaning that
it is conjugate to a hyperbolic element of PSL(2,R).

2. Using step 1, we show that (again after semiconjugacy of ρ), any γ ∈ 0g

represented by a nonseparating simple closed curve has the property that ρ(γ ) is
hyperbolic. These two first steps are done in Section 3.

3. Next, in Section 4, we start to “reconstruct the surface”, showing that the
arrangement of attracting and repelling points of hyperbolic elements ρ(γ ), as γ
ranges over simple closed curves, mimics that of a Fuchsian representation.

4. Finally, in Section 5 we show that the restriction of ρ to small subsurfaces is
semiconjugate to a Fuchsian representation; this is then improved to a global result
by additivity of the relative Euler class.

Throughout this paper, whenever we say “deformation”, we mean deformation
along a continuous path in Hom(0g,Homeo+(S1)).

2. Preliminaries

This section gives a quick review of basic concepts used later in the text. The only ma-
terial that is not standard is the based intersection number discussed in Section 2D.

2A. Rotation numbers and the Euler number. Most of the material in Sections 2A
and 2B is covered in more detail in [Ghys 2001] and [Mann 2018].

Let Homeo+Z (R) denote the group of homeomorphisms of R that commute
with integer translations; this is a central extension of Homeo+(S1) by Z. The
primary dynamical invariant of such homeomorphisms is the translation or rotation
number, whose use can be traced back to work of Poincaré [1885, Chapitre XV].
If g̃ ∈ Homeo+Z (R) and x ∈ R, the translation number of g̃ is defined by r̃ot(g̃) :=
limn→∞(g̃n(x))/n; this limit exists and does not depend on x . If g ∈Homeo+(S1),
its rotation number is defined by rot(g) := r̃ot(g̃) mod Z, where g̃ is any lift of g.
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The translation number is invariant under conjugacy (and under semiconjugacy),
and restricts to a morphism on every abelian subgroup of Homeo+Z (R). On the
whole group it is a quasimorphism, as it satisfies the following inequality.

Lemma 2.1 (see [Calegari and Walker 2011, Theorem 3.9]). Let f, g∈Homeo+Z (R).
Then |r̃ot( f g)− r̃ot( f )− r̃ot(g)| ≤ 1, and −1≤ r̃ot([ f, g])≤ 1.

The second inequality is a direct consequence of the first. This in turn was
implicit already in [Wood 1971]. An optimal inequality, which depends on the
values of r̃ot( f ) and r̃ot(g), is obtained in [Calegari and Walker 2011].

One way of defining the Euler number of a representation is in terms of translation
numbers. This was perhaps first observed by Milnor and Wood [1958; 1971], who
showed the following. For the purposes of this work, the reader may take this as
the definition of the Euler number.

Proposition 2.2. Consider a standard presentation

0g =

〈
a1, b1, . . . , ag, bg |

∏
i

[ai , bi ]

〉
.

Let ρ ∈ Hom(0g,Homeo+(S1)), and let ρ̃(ai ) and ρ̃(bi ) be any lifts of ρ(ai ) and
ρ(bi ) to Homeo+Z (R). Then the Euler number eu(ρ) is given by

eu(ρ)= r̃ot([ρ̃(a1), ρ̃(b1)] · · · [ρ̃(ag), ρ̃(bg)]).

Note that, for any f and g in Homeo+(S1), the value of the commutator [ f̃ , g̃] ∈
Homeo+Z (R) is independent of the choice of lifts f̃ and g̃. Abusing notation slightly,
we will often denote its translation number by r̃ot([ f, g]) (as in the statement
of Theorem 1.3). Thus, in the statement above, the translation by an integer,
[ρ̃(a1), ρ̃(b1)] · · · [ρ̃(ag), ρ̃(bg)], is independent of the choices of lifts. The Euler
number eu(ρ) is then simply the magnitude of this translation.

As remarked in the introduction, the Milnor–Wood inequality is the statement
that |eu(ρ)| ≤ 2g− 2; it is a consequence of Lemma 2.1.

Though unimportant in the preceding remarks, in what follows we will need to
fix a convention for commutators and group multiplication.

Convention 2.3. We read words in 0g from right to left, so that group multiplication
coincides with function composition. We set the notation for a commutator as

[a, b] := b−1a−1ba.

2B. Dynamics of groups acting on S1.

Definition 2.4 [Ghys 1987]. Let 0 be a group. Two representations ρ1, ρ2 in
Hom(0,Homeo+(S1)) are semiconjugate if there is a monotone (possibly non-
continuous or noninjective) map h̃ : R→ R such that h̃(x + 1) = h̃(x)+ 1 for
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all x ∈ R, and such that, for all γ ∈ 0, there are lifts ρ̃1(γ ) and ρ̃2(γ ) such that
h̃ ◦ ρ̃1(γ )= ρ̃2(γ ) ◦ h̃.

Ghys gave an (incorrect, as he himself later noted [2001]) version of this definition
in the introduction of [Ghys 1987]; but his text becomes correct and consistent upon
replacing it by Definition 2.4. He proved that semiconjugacy is an equivalence
relation on Hom(0,Homeo+(S1)), and it follows from his [1987, Propositions 2.2
and 2.3; 2001, Proposition 5.8] that this is the relation generated by the relationship
shared by ρ and ρF in (1) of Section 1; this latter equivalence relation was used by
other authors as a definition of semiconjugacy (see, e.g., [Calegari 2006]). Historical
elements, and more discussion on the theme of semiconjugacy can be found in
[Bucher et al. 2016].

The next proposition states a useful dynamical trichotomy for groups acting on
the circle, which in particular can be used to explain when a semiconjugacy map
can be taken to be continuous. As it is classical, we do not repeat the proof; the
reader may refer to [Ghys 2001, Proposition 5.6].

Proposition 2.5. Let G ⊂ Homeo+(S1). Then exactly one of the following holds:

(i) G has a finite orbit.

(ii) G is minimal, meaning that all orbits are dense.

(iii) There is a unique compact G-invariant subset of S1 contained in the closure of
any orbit, on which G acts minimally. This set is homeomorphic to a Cantor
set and called the exceptional minimal set for G.

In case (iii), defining h to be a map that collapses each interval in the complement
of the exceptional minimal set to a point gives the following (we leave the proof as
an exercise; see, e.g., [Ghys 2001, Proposition 5.8; 1987, Proposition 2.2] for more
detail).

Proposition 2.6. Let ρ :G→Homeo+(S1) be a homomorphism such that ρ(G) has
an exceptional minimal set. Then ρ is semiconjugate to a homomorphism ν whose
image is minimal. Moreover, provided that ν is minimal, any semiconjugacy h to
any representation ρ ′ such that h ◦ ρ ′ = ν ◦ h is necessarily continuous.

We will make frequent use of the following two consequences of Proposition 2.6.

Corollary 2.7. Suppose that ρ and ρ ′ are semiconjugate representations. If both ρ
and ρ ′ are minimal, then they are conjugate.

Corollary 2.8. Let ρ ∈ Hom(0g,Homeo+(S1)) be a path-rigid representation.
Then ρ is semiconjugate to a minimal representation.

Proof. Corollary 2.7 follows immediately from Proposition 2.6. We now prove
Corollary 2.8. Using Propositions 2.5 and 2.6, it suffices to show that a repre-
sentation with a finite orbit is not path-rigid. If ρ has a finite orbit, then we
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may perform the Alexander trick, replacing the points of the periodic orbit with
intervals and collapsing the complementary intervals, to continuously deform ρ into
a representation with image in a conjugate K of SO(2). As Hom(0g, K ) = K 2g,
the representation ρ can be deformed arbitrarily within this space, in particular to a
representation which is not semiconjugate. �

Following Corollary 2.8, in the proof of Theorem 1.3 we will occasionally make
the (justified) assumption that a path-rigid representation ρ is also minimal.

2C. Deforming actions of surface groups. Let γ ∈ 0g be a based, simple loop.
Cutting 6g along γ decomposes 0g into an amalgamated product 0g = A ∗〈γ 〉 B if
γ is separating, and an HNN-extension A∗〈γ 〉 if not. In both cases, A and B are free
groups. As there is no obstruction to deforming a representation of a free group into
any topological group, deforming a representation ρ : 0g→ Homeo+(S1) amounts
to deforming the restriction(s) of ρ on A (and B, if γ separates), subject to the
single constraint that these should agree on γ .

The following explicit deformations are analogous to special cases of bending
deformations from the theory of quasi-Fuchsian and Kleinian groups.

Definition 2.9. (bending deformations) Let ρ : 0g→ Homeo+(S1).

(1) Separating curves. Let γ = c ∈ 0g represent a separating simple closed curve
with 0g = A ∗〈c〉 B. Let ct be a one-parameter group of homeomorphisms
commuting with ρ(c). Define ρt to agree with ρ on A, and to be equal to
ctρc−1

t on B.

(2) Nonseparating curves. Let γ = a be a nonseparating curve, and let b be a
nonseparating curve such that a and b are standard generators of a once-holed
torus embedded in 6g (equivalently, the first two generators of a standard
generating set of 0g). Let c = [a, b], and let A = 〈a, b〉 ⊂ 0g; we write again
0g = A ∗〈c〉 B. Let at be a one-parameter group commuting with ρ(a) and
define ρt to agree with ρ on B and on 〈a〉, and define ρt(b)= atρ(b).

In both cases, we call this deformation of ρ a bending along γ .

In particular, if γt is a one-parameter group with γ1= ρ(γ ), then the deformation
given above is the precomposition of ρ with τγ ∗, where τγ is the Dehn twist along γ .
Note that we have made a specific (though arbitrary) choice realizing the Dehn
twist as an automorphism of 0g. This will allow us to do specific computations,
for which having a twist defined only up to inner automorphism would not suffice.
(See the discussion on based curves in the next subsection for more along these
lines.)

Not every f ∈ Homeo+(S1) embeds in a one-parameter group. However, every
element with at least one fixed point does. Indeed, S1 rFix( f ) is then a union of
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intervals on which the action of f is conjugated to the map R→ R, t 7→ t + 1 or
its inverse, and it is easy to build a one-parameter group out of this observation;
see, e.g., [Ghys 2001, Proposition 5.10] for more detail. This is the situation in
which we will typically apply bending deformations in this article.

The next corollary is used frequently in the proof of Theorem 1.3.

Corollary 2.10. Suppose that ρ is a path-rigid, minimal representation. Let ρt be
a bending deformation along a, using a deformation at , with a1 = ρ(a)N for some
N ∈ Z. Then ρ1 is conjugate to ρ.

Proof. By the discussion above, ρ1 agrees with precomposition of ρ with an
automorphism of 0g, so has the same image. Corollary 2.7 now implies that these
are conjugate. �

2D. Based curves, chains, and Fuchsian tori. If a and b are simple closed curves
on 6g , the familiar geometric intersection number is the minimum value of |a′∩b′|,
where a′ and b′ are any curves freely homotopic to a and b, respectively. It is
well known that if a and b are nonseparating simple closed curves with geometric
intersection number 1, then there is a subsurface T ⊂6 homeomorphic to a torus
with one boundary component with fundamental group (freely) generated by a
and b. (See, e.g., [Farb and Margalit 2012, Section 1.2.3])

As mentioned earlier, the fact that we are working with specific representations,
rather than conjugacy classes of elements, forces us to take the basepoint and orien-
tation of curves into account. Although our notation 0g = π1(6g) does not mention
a basepoint, all elements of π1(6g) will henceforth always be assumed based, and
we will use the following variation on the standard definition of intersection number.

Definition 2.11 (based intersection number). Let a, b ∈ 0g. We write i(a, b)= 0
if we can represent a and b by differentiable maps a, b : [0, 1] →6g, based at the
base point, whose restrictions to [0, 1) are injective, and such that the cyclic order
of their tangent vectors at the base point is either (a′(0),−a′(1), b′(0),−b′(1)) or
(a′(0),−a′(1),−b′(1), b′(0)), or the reverse of one of these.
If, instead, the cyclic order of tangent vectors is (a′(0), b′(0),−a′(1),−b′(1)) or
the reverse, we write i(a, b)= 1 and i(a, b)=−1, respectively.

This is a somewhat ad hoc definition. In particular, i(a, b) is left undefined for
many pairs (a, b).

Definition 2.12. A directed k-chain in 6g is a k-tuple (γ1, . . . , γk) of elements
of 0g that can be represented by the images of the edges under an embedding
(possibly orientation-reversing, but respecting the orientation of the edges) of the
fat graph shown in Figure 1.

In particular, i(γi , γ j )=±1 if | j − i | = 1, and 0 otherwise. Note that we do not
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Figure 1. A directed chain of length 5.

require that the embedding be π1-injective. For example, whenever i(γ1, γ2)= 1,
then (γ1, γ2, γ

−1
1 ) is a (rather degenerate) directed 3-chain.

These k-chains will be useful especially to study bending deformations that
realize sequences of Dehn twists. Whenever (γ1, . . . , γk) is a directed k-chain, the
Dehn twist along the curve γi may be described by an automorphism of 0g leaving
invariant the elements γ j for | j − i | ≥ 2 and j = i , and mapping γi−1 to γ−1

i γi−1,
and γi+1 to γi+1γi .

Notation 2.13. Let i(a, b)=±1. Then their commutator [a, b] bounds a genus 1
subsurface (well-defined up to homotopy) containing a and b. We denote this
surface by T (a, b).

Definition 2.14. We call any representation ρ : π1(T (a, b))→ PSL(2,R) arising
from a complete hyperbolic structure of infinite volume on T (a, b) a standard
Fuchsian representation of a once-punctured torus. Similarly, we say that ρ :
0g→PSL(2,R) is standard Fuchsian if it comes from a hyperbolic structure on6g.

Convention 2.15. We assume 6g is oriented; hence standard Fuchsian represen-
tations of 0g have Euler number −2g+ 2, and are all conjugate in Homeo+(S1).
Similarly, T (a, b) inherits an orientation, so all its standard Fuchsian representations
are conjugate in Homeo+(S1).

Definition 2.16. We say that ρ : 0g → Homeo+(S1) has a Fuchsian torus if
there exist two simple closed curves a, b ∈ 0g, with i(a, b) = ±1 and such that
r̃ot([ρ(a), ρ(b)])=±1.

The terminology “Fuchsian torus” in Definition 2.16 comes from the following
observation by Matsumoto.

Observation 2.17 [Matsumoto 1987]. Let α, β ∈Homeo+(S1) satisfy r̃ot([α, β])=
±1. Then α and β generate a free group, and, up to reversing the orientation of S1,
this group is semiconjugate to a standard Fuchsian representation of a one-holed
torus T (a, b) with ρ(a)= α and ρ(b)= β.

The proof is not difficult; an easily readable sketch is given in [Matsumoto
2016, §3].
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The next lemma shows the existence of such a torus is guaranteed, provided the
absolute value of the Euler number of a representation is sufficiently high.

Lemma 2.18. If |eu(ρ)| ≥ g then ρ has a Fuchsian torus.

Proof. If eu(ρ)≥ g, then conjugating ρ by an orientation-reversing homeomorphism
of S1 gives a representation with Euler number at most −g. Thus, we may assume
that eu(ρ)≤−g. Let f ∈ Homeo+Z (R). It is an easy consequence of the definition
of r̃ot that r̃ot( f ) > 0 if and only if f (x) > x for all x ∈ R. Hence if f1, . . . , fg ∈

Homeo+Z (R) satisfy r̃ot( fi ) > 0 for all i , then r̃ot( f1 · · · fg) > 0.
By composing such fi by the translation by −1, which is central in Homeo+Z (R),

we deduce that if r̃ot( fi ) > −1 for all i then r̃ot( f1 · · · fg) > −g. Now let ρ be
a representation, and let fi = [ρ̃(ai ), ρ̃(bi )], where ai , bi are standard generators
for 0g. Then the inequality eu(ρ) ≤ −g implies r̃ot( fi ) ≤ −1 for some i . As the
maximum absolute value of the rotation number of a commutator is 1 by Lemma 2.1,
we in fact have r̃ot( fi )=−1 for some i . �

Lemma 2.18 immediately shows that Theorem 1.3 implies Theorem 1.2. The
rest of this work is devoted to the proof of Theorem 1.3.

3. Steps 1 and 2: Existence and abundance of hyperbolic elements

Definition 3.1. We say a homeomorphism f ∈ Homeo+(S1) is hyperbolic if it is
conjugate to a hyperbolic element of PSL(2,R), i.e., it has one attracting fixed point
f+ ∈ S1 and one repelling fixed point f− 6= f+ such that limn→+∞ f n(x)= f+ for
all x 6= f−, and limn→+∞ f −n(x)= f− for all x 6= f+.

The first step of the proof of Theorem 1.3 is to show that a rigid, minimal
representation has very many hyperbolic elements.

Lemma 3.2. Let T (a, b) be a one-holed torus subsurface, and let A = π1T (a, b).
Suppose ρ : A→ Homeo+(S1) is semiconjugate to a standard Fuchsian represen-
tation, as in Definition 2.14. Then there exists a continuous deformation ρt with
ρ0 = ρ such that

(i) ρ1(a) is hyperbolic, and

(ii) there exists a continuous family of homeomorphisms ft ∈ Homeo+(S1) such
that ρt([a, b])= ftρ([a, b]) f −1

t for all t .

Proof. Let c denote the commutator [a, b]. Let ρ denote the minimal representation
(unique up to conjugacy) that is semiconjugate to ρ. Since ρ is semiconjugate to a
standard Fuchsian representation, we may suppose ρ is a representation correspond-
ing to a finite volume complete hyperbolic structure on T (a, b). By Proposition 2.6,
there is a continuous map h : S1

→ S1, collapsing each component of the exceptional
minimal set for ρ to a point, satisfying hρ = ρh. Let x+ and x− be the endpoints
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of the axis of ρ(a), and X+ and X− the preimages under h of their orbits ρ(A)x+
and ρ(A)x−.

Note that X+ and X− are both ρ(A)-invariant sets and their images under h
are the attractors (respectively, repellers) of closed curves in T (a, b) conjugate
to a. Moreover, for this reason, X+ and X− lie in a single connected component
of S1 rFix(ρ(c)), and the interiors of the intervals that make up X+ and X− are
disjoint from the exceptional minimal set of ρ.

Define a continuous family of continuous maps ht : S1
→ S1, with h0 = id,

as follows: We define ht to be the identity on the complement of the connected
component of S1rFix(ρ(c)) containing X+ and X−, and for each interval I of X+
or of X−, have ht be a homotopy contracting that interval so that h1(I ) is a point.
To make this precise, one needs to fix an identification of the target of ht with the
standard unit circle. Let J be the connected component of S1 r Fix(ρ(c)) that
contains the exceptional minimal set of ρ(A). Define ht to rescale the length of
each connected component of X+ or X− by a factor of (1− t) and rescale the
complement of X+ ∪ X− in J so that the total length of J remains unchanged.
This gives us the desired map ht which is the identity outside of J, and contracts
intervals of X+ and X− to points.

Now define ρt by htρ(g)h−1
t =ρt(g) for t ∈[0, 1). We claim that there is a unique

ρ1(g) satisfying h1ρ(g) = ρ1(g)h1. Indeed, ρ(g) permutes the complementary
intervals of the exceptional minimal set for ρ, so letting h−1

1 (x) denote the preimage
of x by h1 (which is either a point or an open interval complementary to the
exceptional minimal set), h1ρ(g)h−1

1 (x) is always a single point, and h1ρ(g)h−1
1

defines in this way a homeomorphism, which we denote by ρ1(g). It is easily
verified that ρt(g) approaches ρ1(g) as t→ 1. By construction, ρ1(a) is hyperbolic,
and ρt(c) is conjugate to a translation on the interval J defined above (and hence
its restriction to J is conjugate to ρ(c)|J ), and ρt(c) restricted to S1 r J agrees
with ρ(c). Let ft : S1

→ S1 be a continuous family of homeomorphisms supported
on J that conjugate the action of ρt([a, b]) to the action of ρ(c) there. (For the
benefit of the reader, justification of this step via a simple construction of such a
family is given in Lemma 3.3 below.) Then ρt(c)= ftρ(c) f −1

t , as claimed. �

Lemma 3.3. Let gt be a continuous family (though not necessarily a subgroup) of
homeomorphisms of an open interval I, with Fix(gt)∩ I =∅ for all t ∈ [0, 1]. There
exists a continuous family of homeomorphisms ft such that ft gt f −1

t = g0 for all t .

Proof. Fix x in the interior of I, and let Dt := [x, gt(x)] be a fundamental domain
for the action of gt . Define the restriction of ft to D0 be the (unique) affine homeo-
morphism D0→ Dt , and extend ft equivariantly to give a homeomorphism of I. �

Corollary 3.4. Let ρ : 0g→Homeo+(S1). Suppose that a and b are simple closed
curves in 0g with i(a, b) = ±1 and r̃ot([ρ̃(a), ρ̃(b)]) = ±1. Then there exists a
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deformation ρ ′ of ρ such that ρ ′(a) is hyperbolic. If , additionally, ρ is assumed
path-rigid and minimal, then ρ(a) is hyperbolic.

Proof. Let A denote the subgroup generated by a and b and let c = [a, b], so
0g = A ∗〈c〉 B. Let ρ denote the restriction of ρ to A. By Lemma 3.2, there exists a
family of representations ρt : A→ Homeo+(S1) such that ρt(c)= ftρ(c) f −1

t for
some continuous family ft ∈ Homeo+(S1), and such that ρ1(a) is hyperbolic. As
in the bending construction, define a deformation of ρ by

ρt(γ )=

{
ρt(γ ) for γ ∈ A,
ftρ(γ ) f −1

t for γ ∈ B.

By construction, ρt is a well-defined representation, and ρ1(a)=ρ1(a) is hyperbolic.
If ρ is assumed path-rigid, then this deformation ρ1 is semiconjugate to ρ. If ρ

is additionally known to be minimal, then there is a continuous map h satisfying
h ◦ρ1 = ρ ◦h. In particular, this implies that Fix(ρ(a))= hFix(ρ1(a)), so ρ(a) has
at most two fixed points. In this case, if ρ(a) does not have hyperbolic dynamics
then it has a lift to Homeo+Z (R) satisfying |x − ρ̃(a)(x)| ≤ 1 for all x . However,
this easily implies that |r̃ot([ρ̃(a), ρ̃(b)])| < 1. (The reader may verify this as
an exercise, or see the proof of Theorem 2.2 in [Matsumoto 1987] where this
computation is carried out.) We conclude that ρ(a) must be hyperbolic when ρ is
path-rigid and minimal. �

Having found one hyperbolic element, our next goal is to produce many others.
An important tool here, and in what follows, is the following basic observation on
dynamics of circle homeomorphisms.

Observation 3.5. Let f ∈ Homeo+(S1) be hyperbolic, with attracting point f+
and repelling point f−, and let g ∈ Homeo+(S1). For any neighborhoods U− and
U+ of f− and f+, respectively, and any neighborhoods V− and V+ of g−1( f−) and
g( f+), respectively, there exists N ∈ N such that

f N g(S1 r V−)⊂U+ and g f N (S1 rU−)⊂ V+.

The proof is a direct consequence of Definition 3.1. Note that, if f is hyperbolic,
then f −1 is as well (with attracting point f− and repelling point f+), so an analogous
statement holds with f −1 in place of f and the roles of f+ and f− reversed.

We now state two useful consequences of this observation. The proofs are
elementary and left to the reader.

Corollary 3.6. Let f ∈ Homeo+(S1) be hyperbolic, and suppose g does not ex-
change the fixed points of f . Then for N sufficiently large, either f N g or f −N g has
a fixed point.

Corollary 3.7. Let f ∈ Homeo+(S1) be hyperbolic, and suppose g−1( f−) 6= f+.
Suppose also that f N g is known to be hyperbolic for large N. Then as N →∞,
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the attracting point of f N g approaches f+ and the repelling point approaches
g−1( f−).

With these tools in hand, we can use one hyperbolic element to find others.

Proposition 3.8. Let ρ be path-rigid and minimal, and suppose that i(a, b)=±1
and that ρ(a) is hyperbolic. Then ρ(b) is hyperbolic.

Proof. We prove this under the assumption that ρ(b) does not exchange the fixed
points of ρ(a). This assumption is justified by Lemma 3.9 below. Assuming ρ(b)
does not exchange the points of Fix(ρ(a)), by Corollary 3.6, there exists some
N ∈Z such that ρ(aN b) has a fixed point. Since ρ(a) is hyperbolic, ρ(a)N belongs
to a one-parameter family of homeomorphisms, and a bending deformation using
this family gives a deformation ρ1 of ρ with ρ1(b)= ρ(aN b). By Corollary 2.10,
using the fact that ρ is minimal, ρ1 and ρ are conjugate. Thus, ρ(b) has a fixed
point and belongs to a one-parameter group bt .

Now we can build a bending deformation ρ ′t such that ρ ′1(b)= ρ(b) and ρ ′1(a)=
ρ(ba). Thus, ρ ′1(a

−1b)=ρ(a−1), which is hyperbolic. Since ρ ′1 and ρ are conjugate,
this means that ρ(a−1b) is hyperbolic. Similarly, using the fact that a belongs to a
one-parameter group, there exists a bending deformation ρ ′′t with ρ ′′1 (a

−1b)= ρ(b),
and such that ρ ′′1 is conjugate to ρ. This implies that ρ(b) is hyperbolic. �

Lemma 3.9. Let a, b ∈ 0g satisfy i(a, b) = ±1, and let ρ : 0g → Homeo+(S1).
Suppose that ρ(a) is hyperbolic, and ρ(b) exchanges the fixed points of ρ(a). Then
there is a deformation ρ ′ of ρ which is not semiconjugate to ρ.

Proof. Note first that the property that ρ(b) exchanges the fixed points of ρ(a)
implies that ρ(b−1a−1b) is hyperbolic with the same attracting and repelling points
as a. Hence [ρ(a), ρ(b)] is hyperbolic with the same attracting and repelling points
as well. We now produce a deformation ρ1 of ρ such that ρ1(a) and ρ1(b) are in
PSL(2,R), after this we will easily be able to make an explicit further deformation
to a representation which is not semiconjugate.

First, conjugate ρ so that ρ(a)∈PSL(2,R) and so that the attracting and repelling
fixed points of ρ(a) are at 0 and 1/2 respectively (thinking of S1 as R/Z). Now
choose a continuous path bt from b0 = b to the order two rotation b1 : x 7→ x+1/2,
and such that bt(0) = 1/2 and bt(1/2) = 0 for all t . By the observation above,
[ρ(a), bt ] is hyperbolic with attracting fixed point 0 and repelling fixed point
1/2 for all t , and so is conjugate to ρ(a). By Lemma 3.3, applied separately to
(0, 1/2) and (1/2, 1), there exists a continuous choice of conjugacies ft such that
ft [ρ(a), ρ(b)] f −1

t = [ρ(a), bt ]. Now to define ρt , we consider 0g = A ∗c B where
A = 〈a, b〉 and c = [a, b], and set

ρt(γ )= ftρ(γ ) f −1
t for γ ∈ B, ρt(a)= ρ(a), ρt(b)= bt .
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This gives a continuous family of well-defined representations, with ρ1(b) the
standard order 2 rotation, and ρ1(a) ∈ PSL(2,R).

To finish the proof of the lemma, it suffices to note that, for a sufficiently
small deformation b′t of ρ1(b) in SO(2), the commutator [ρ1(a), b′t ] will remain
hyperbolic, as the set of hyperbolic elements is open in PSL(2,R). Thus, there
is a continuous path of conjugacies in Homeo+(S1) to [ρ1(a), b]. This allows
us to build a deformation ρ ′ of ρ with ρ ′(b) = b′t ∈ SO(2), using the strategy
from Corollary 3.4. Since rot(b′t) 6= rot(b)= 1/2, it follows that ρ ′ and ρ are not
semiconjugate. �

The following corollary summarizes the results of this section.

Corollary 3.10. Let ∼i denote the equivalence relation on nonseparating sim-
ple closed curves in 6g generated by a ∼i b if i(a, b) = ±1. Suppose ρ :
0g→ Homeo+(S1) is path-rigid, and suppose that there are simple closed curves
a, b with i(a, b)=±1 such that r̃ot[ρ(a), ρ(b)] = ±1. Then ρ is semiconjugate to
a (minimal) representation with ρ(γ ) hyperbolic for all γ ∼i a.

Remark 3.11. In fact, the relation ∼i has only a single equivalence class! This
statement of connectedness of a certain complex of based curves can be proved
using the connectedness of the arc complex of the once-punctured surface 61

g; see
[Mann and Wolff 2017, Section 2.1] for details. However, we will not need to use
this fact here, so to keep the proof as self-contained and short as possible we will
not refer to it further.

4. Step 3: Configuration of fixed points

The objective of this section is to organize the fixed points of the hyperbolic elements
in a directed 5-chain; we will achieve this gradually by considering first 2-chains,
then 3-chains, and finally 5-chains.

As in Definition 3.1, for a hyperbolic element f ∈ Homeo+(S1) we let f+
denote the attracting fixed point of f , and f− the repelling point. By “Fix( f )
separates Fix(g)” we mean that g− and g+ lie in different connected components
of S1 rFix( f ). In particular, Fix( f ) and Fix(g) are disjoint.

Lemma 4.1. Let ρ be path-rigid and minimal, and let a, b be simple closed curves
with i(a, b) = ±1 and ρ(a) hyperbolic. Then ρ(b) is hyperbolic, and Fix(ρ(a))
separates Fix(ρ(b)) in S1.

Proof. That ρ(b) is hyperbolic follows from Proposition 3.8 above.
We prove the separation statement. As a first step, let us show that Fix(ρ(a))

and Fix(ρ(b)) are disjoint. Suppose for contradiction that they are not. Then, (after
reversing orientations if needed) we have ρ(a)+ = ρ(b)+. Let I be a neighborhood
of ρ(a)+ with closure disjoint from {ρ(a)−, ρ(b)−}. Then, for N > 0 large enough,
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we have I ⊂ ρ(a−N b)(I ). Let ρt be a bending deformation with ρ0 = ρ, ρt(a)=
ρ(a) and ρ1(b) = ρ(a−N b). By Corollary 2.10, ρ1(b) is hyperbolic. Since I ⊂
ρ(a−N b)(I ), its attracting fixed point is outside I, and hence ρ1(b)+ 6= ρ1(a)+. But
ρ and ρ1 are conjugate by Corollary 2.10; this is a contradiction.

Now that we know that Fix(ρ(a)) ∩ Fix(ρ(b)) = ∅, we will prove that they
separate each other. Suppose for contradiction that Fix(ρ(a)) does not separate
Fix(ρ(b)). Up to conjugating ρ by an orientation-reversing homeomorphism of S1,
and up to replacing b with b−1, the fixed points of ρ(a) and ρ(b) have cyclic order
(a+, a−, b+, b−). (For simplicity, we have suppressed the notation ρ.)

Fix N ∈ N large, and let ρ ′ be a bending deformation of ρ so that ρ ′(b) =
ρ(aN )ρ(b), and ρ ′(a) = ρ(a). It follows from Corollaries 2.10 and 3.7 that,
if N is large enough, the points b′

+
= ρ ′(b)+ and b′

−
= ρ ′(b)− can be taken

arbitrarily close, respectively, to a+ and ρ(b)−1(a−). Since the cyclic order of
fixed points is preserved under deformation, they are also in order (a+, a−, b′

+
, b′
−
).

This is incompatible with the positions of a+ and ρ(b)−1(a−), unless perhaps
if ρ(b)−1(a−) = a+. But if ρ(b)−1(a−) = a+, then ρ ′(b) has no fixed point in
(ρ(b)−1(a+), a+) as this interval is mapped into (a+, a−) by ρ(b′). This again
gives an incompatibility with the cyclic order. �

Lemma 4.2. Let ρ be path-rigid and minimal, and let (a, b, c) be a directed 3-
chain. Suppose that ρ(a) is hyperbolic, and suppose that ρ(a) and ρ(c) do not have
a common fixed point. Then ρ(b) and ρ(c) are hyperbolic, and, up to reversing the
orientation of S1, their fixed points are in the cyclic order

(ρ(a)−, ρ(b)−, ρ(a)+, ρ(c)−, ρ(b)+, ρ(c)+).

Proof. It follows from Proposition 3.8 that ρ(b) and ρ(c) are hyperbolic, and from
Lemma 4.1 that up to reversing orientation, the fixed points of ρ(a) and ρ(b) come
in the cyclic order

(a−, b−, a+, b+).

(For simplicity we drop ρ from the notation for the fixed points.) As mentioned
above, the effect of a bending deformation that realizes a power of a Dehn twist
along a is to leave a and c invariant and to replace b with baN. Corollary 2.10
says that the resulting representation is conjugate to ρ. By doing this with N > 0
and N < 0 large, we get representations for which b′

−
= ρ(baN )− can be taken

arbitrarily close to a+, as well as to a−. This, and Lemma 4.1 applied to the curves
(b, c), imply that the intervals (a+, b+) and (b+, a−) each contain one fixed point
of c. To prove the lemma, it now suffices to prove the cyclic order of fixed points

(a−, b−, a+, c+, b+, c−)

cannot occur. Suppose for contradiction that this configuration holds, and apply a
power of Dehn twist along b, replacing a with b−N a and c with cbN (and leaving
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b invariant), for N > 0 large. Denote by c′
+
, c′
−
, a′
−

and a′
+

the resulting fixed
points, i.e., the fixed points of ρ(cbN ) and ρ(b−N a) for N > 0 large. If N is chosen
large enough, then c′

+
, c′
−

and a′
−

are arbitrarily close to c(b+), b− and a−1(b+),
respectively. (See Corollary 3.7.) These three points are in the reverse cyclic order
as c+, c− and a−; hence, the representation ρ ′ obtained from this Dehn twist cannot
be conjugate to ρ. This contradicts Corollary 2.10, and so eliminates the undesirable
configuration. �

We are now ready to prove the main result of this section.

Proposition 4.3. Let ρ be a path-rigid, minimal representation, and (a, b, c, d, e)
be a directed 5-chain in 6g. Suppose ρ(a) is hyperbolic. Then, ρ(b), . . . , ρ(e)
are hyperbolic as well, and up to reversing the orientation of the circle, their fixed
points are in the following (total) cyclic order:

(a−, b−, a+, c−, b+, d−, c+, e−, d+, e+).

In particular, these fixed points are all distinct. As before, for simplicity we have
dropped ρ from the notation.

Proof. That ρ(b), . . . , ρ(e) are all hyperbolic follows from Proposition 3.8. Next,
using a bending deformation realizing a Dehn twist along d, we may change the
action of c into d−N c without changing a, and without changing the conjugacy
class of ρ. In particular, such a deformation moves the fixed points of c, so we can
ensure that Fix(ρ(a)) and Fix(ρ(c)) are disjoint.

Similarly, for any two elements in the chain (a, b, c, d, e), there is a third one
that intersects one but not the other. Thus, we may apply the same reasoning to
show that all these five hyperbolic elements have pairwise disjoint fixed sets. It
remains to order these fixed sets. For this, we will apply Lemma 4.2 repeatedly.

First, fix the orientation of S1 so that, applying Lemma 4.2 to the directed 3-chain
(a, b, c), we have the cyclic order of fixed points

(a−, b−, a+, c−, b+, c+).

Now, Lemma 4.2 applied to the directed 3-chain (b, c, d) implies that d− lies in
the interval (b+, c+) and d+ in the interval (c+, b−). Applying the lemma to the
directed 3-chain (a, cb, d) implies that d+ in fact lies in the interval (c+, a−).

The same argument using Lemma 4.2 applied to the directed 3-chains (c, d, e)
and (a, dcb, e) shows that e− lies in the interval (c+, d+) and e+ in the interval
(d+, a−), as desired. �

5. Step 4: Maximality of the Euler number

In order to compute the Euler number of ρ, we will decompose 6g into subsurfaces
and compute the contribution to eu(ρ) from each part. The proper framework for



196 KATHRYN MANN AND MAXIME WOLFF

� .da/�1
d

a

Figure 2. A pair of pants with standard generators of its fundamental group.

discussing this is the language of bounded cohomology: if 6 is a surface with
boundary ∂6, and ρ : π1(6)→ Homeo+(S1), one obtains a characteristic number
by pulling back the bounded Euler class in H 2

b (Homeo+(S1);R) to H 2
b (6, ∂6;R)

and pairing it with the fundamental class [6, ∂6]. The contribution to the Euler
number of ρ :6g→Homeo+(S1) from a subsurface 6 is simply this Euler number
for the restriction of ρ to 6.

However, in order to keep this work self-contained and elementary, we will avoid
introducing the language of bounded cohomology, and give definitions in terms
of rotation numbers alone. The reader may refer to [Burger et al. 2014, §4.3] for
details on the cohomological framework.

Definition 5.1 (Euler number for pants). Let ρ :0g→Homeo+(S1), and let P⊂6g

be a subsurface homeomorphic to a pair of pants, bounded by curves a, d and (da)−1,
with orientation induced from the boundary. Let ρ̃(a) and ρ̃(d) be any lifts of ρ(a)
and ρ(d) to Homeo+Z (R). The Euler number of ρ on P is the real number

euP(ρ)= r̃ot(ρ̃(a))+ r̃ot(ρ̃(d))− r̃ot(ρ̃(d)ρ̃(a)).

An illustration in the case where P contains the basepoint is given in Figure 2.
Note that the number euP(ρ) is independent of the choice of lifts of ρ(a) and ρ(d).

We also allow for the possibility that the image of P in 6g has two boundary curves
identified, and so is a one-holed torus subsurface. In this case, one may choose free
generators a, b for the fundamental group, with i(a, b)=−1 so the torus is T (a, b)
and the boundary of P is given by the curves b−1, a−1ba and the commutator [a, b].
Then the definition above gives

euP(ρ)= r̃ot[ρ̃(a), ρ̃(b)].

Now, the following is a restatement of Lemma 2.1 above.

Lemma 5.2. Let P be any pants and ρ a representation. Then |euP(ρ)| ≤ 1.
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More generally, if S ⊂6g is any subsurface, we define the Euler number euS(ρ)

to be the sum of relative Euler numbers over all pants in a pants decomposition
of S. From the perspective of bounded cohomology, it is immediate that this sum
does not depend on the pants decomposition; however, since we are intentionally
avoiding cohomological language, we give a short stand-alone proof.

Lemma 5.3. For any subsurface S ⊆ 6g, the number euS(ρ) is well defined, i.e.,
independent of the decomposition of S into pants.

Proof. Any two pants decompositions can be joined by a sequence of elementary
moves; namely those of types (I) and (IV) as shown in [Hatcher and Thurston
1980]. A type (IV) move takes place within a pants-decomposed one-holed torus P
and so does not change the value of euP , which is simply the rotation number of
the boundary curve, as remarked above. A type (I) move occurs within a four-
holed sphere S′; if the boundary of the sphere is given by oriented curves a, b, c, d
with dcba = 1, then it consists of replacing the decomposition along da with a
decomposition along ab. It is easy to verify by the definition that, in either case,
the sum of the Euler numbers of the two pants on S′ is given by

r̃ot(ρ̃(a))+ r̃ot(ρ̃(b))+ r̃ot(ρ̃(c))+ r̃ot(ρ̃(d)). �

Corollary 5.4 (additivity of Euler number). Let P be any decomposition of 6 into
pants. Then

eu(ρ)=
∑
P∈P

euP(ρ).

Proof. By Lemma 5.3, we may use any pants decomposition to compute the Euler
class. By using a standard generating system (a1, . . . , bg) and cutting 6g along
geodesics freely homotopic to ai , ci =[ai , bi ], for i =1, . . . , g and di = ci · · · c1 for
i = 2, . . . , g−1, we recover the formula taken as a definition in Proposition 2.2. �

We now return to our main goal: we prove that maximality of the Euler class
holds first on small subsurfaces, then globally on 6g.

Proposition 5.5. Let S⊂6g be a subsurface homeomorphic to a four-holed sphere.
Suppose that none of the boundary components of S is separating in 6g, and let ρ
be a path-rigid, minimal representation mapping one boundary component of S to
a hyperbolic element of Homeo+(S1). Then, ρ maps all four boundary components
of S to hyperbolic elements, and the relative Euler class euS(ρ) is equal to ±2.

In the statement above, we do not require that the boundary components are
geodesics for some metric on 6g, in particular, two of them may well be freely
homotopic.

Proof. Put the base point inside of S. The complement 6g r S may have one or
two connected components, since none of the curves of ∂S are separating in 6g. In
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Figure 3. A four-holed sphere and two 5-chains.

either case, we may find two based, nonseparating, simple closed curves u, v ∈ 0g,
with i(u, v) = 0, each having nonzero intersection number with exactly two of
the boundary components of S, as shown in Figure 3. Additionally, we may fix
orientations for u and v and choose four elements a, b, c, d ∈ π1S, each freely
homotopic to a different boundary component of S, with dcba = 1, and such that
(a, u, d−1a−1, v, d) and (c, v, ad, u, b) are directed 5-chains in 6g. As we have
assumed that the image under ρ of one of a, b, c or d is hyperbolic, Proposition 3.8
implies that all the curves appearing in these 5-chains are in fact hyperbolic.

Orient the circle so that (u−, (ad)+, u+, (ad)−) are in cyclic order (as before,
we drop the letter ρ from the notation, for better readability). Then, Proposition 4.3
applied to the two directed 5 chains above gives the cyclic orderings

(a−, u−, a+, (ad)+, u+, v−, (ad)−, d−, v+, d+)
and

(c−, v−, c+, (ad)−, v+, u−, (ad)+, b−, u+, b+).

These two orderings together yield the cyclic ordering

((ad)−, d−, d+, a−, a+, (ad)+, b−, b+, c−, c+).

We now use this ordering to prove maximality of the Euler class. Let α, β, γ
and δ, respectively, denote the lifts of ρ(a), ρ(b), ρ(c) and ρ(d) to Homeo+Z (R)
with translation number zero. Let x = (ad)− be the repelling fixed point of ad .

Since x has a repelling fixed point of d immediately to the right, and an attracting
fixed point of d to the left, we have δ(x) < x . By the same reasoning, if y is any
point in the interval between consecutive lifts of fixed points a+ and a− containing x ,
then α(y) < y. Since ad(x)= x , it follows that δ(x) must lie to the left of the lift
of a+, and we have αδ(x)= x − 1.

Since cbad=1, we also have that cb(x)= x . Considering the location of repelling
points of b and c and imitating the argument above, we have again β(x) < x , and
also γβ(x) < x . It follows that γβ(x) = x − 1, hence γβαδ(x) = x − 2, and
euS(ρ)=−2. �
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With this information on subsurfaces, we prove the Euler number of ρ is maximal.

Proposition 5.6. Let ρ be path-rigid, and suppose that ρ admits a Fuchsian torus.
Then ρ has Euler number ±(2g− 2).

Proof. After semiconjugacy, we may assume that ρ is minimal. Let T (a, b) be a
Fuchsian torus for ρ. By Corollary 3.4, we may suppose that ρ(a) is hyperbolic. Ig-
noring the curve b, find a system of simple closed curves a1= a, a2, . . . , ag−1, with
each ai nonseparating, that decomposes 6g into a disjoint union of pairs of pants.

The dual graph of such a pants decomposition is connected (because 6g is
connected), so we may choose a finite path that visits all the vertices. In other words,
we may choose a sequence P1, . . . , PN of pants from the decomposition (possibly
with repetitions), that contains each of the pants of the decomposition, such that each
two consecutive pants Pi and Pi+1 are distinct, but share a boundary component. Let
Si denote the four-holed sphere obtained by taking the union of Pi and Pi+1 along a
shared boundary curve. (If Pi and Pi+1 share more than one boundary component,
choose only one). We may further assume that a is one of the boundary curves of S1.

Starting with S1 as the base case, and applying Proposition 5.5, we induc-
tively conclude that all boundary components of all the Si are hyperbolic, and that
euSi (ρ)=±2. Thus, the contributions of Pi and Pi+1 are equal, and equal to ±1,
for all i . It follows that the contributions of all pairs of pants of the decomposition
have equal contributions, equal to ±1. By definition of the Euler class, we conclude
that eu(ρ)=±(2g− 2). �

The proof of Theorem 1.3 now concludes by citing Matsumoto’s result [1987]
that such a representation of maximal Euler number is semiconjugate to a Fuchsian
representation. �
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