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DEGENERACY THEOREMS FOR TWO HOLOMORPHIC
CURVES IN Pn(C) SHARING FEW HYPERSURFACES

KAI ZHOU AND LU JIN

In value distribution theory, many uniqueness and degeneracy theorems for
holomorphic curves in Pn(C) sharing hyperplanes or sharing sufficiently many
hypersurfaces have been obtained in the last few decades. But there is no
result concerning holomorphic curves in Pn(C) sharing few hypersurfaces.
We prove several degeneracy theorems for two algebraically nondegenerate
holomorphic curves in Pn(C) sharing n + k hypersurfaces in general position.

1. Introduction

Since Fujimoto [1975] generalized Nevanlinna’s uniqueness theorems of meromor-
phic functions sharing values to the case of meromorphic maps of Cm into Pn(C)

sharing hyperplanes, plenty of uniqueness and degeneracy results for meromorphic
maps sharing hyperplanes have been obtained; see for instance [Smiley 1983;
Fujimoto 1998; Fujimoto 1999; Chen and Yan 2009; Si and Le 2015]. Some
uniqueness theorems for holomorphic curves in Pn(C) sharing sufficiently many
hypersurfaces have also been proven; see [Dulock and Ru 2008; Phuong 2013;
Quang and An 2017].

But as far as we know, there is no result concerning two holomorphic curves in
Pn(C) sharing n+ k hypersurfaces. This paper proves some degeneracy theorems
for two holomorphic curves in Pn(C) sharing n+ k hypersurfaces.

Now we introduce some notions. A holomorphic map f :C→Pn(C) is said to be
linearly (resp. algebraically) nondegenerate if its image is not contained in any proper
linear subspace (resp. algebraic subset) of Pn(C). Hypersurfaces D1, . . . , Dq(q>n)
in Pn(C) are said to be located in general position if

⋂n+1
k=1 Supp D jk =∅ for any n+1

distinct indices j1, . . . , jn+1 ∈ {1, . . . , q}. For a nonzero meromorphic function h
on the complex plane C, let ν0

h (resp. ν∞h ) be the zero (resp. pole) divisor of h, and
let νh = ν

0
h − ν

∞

h .
We may regard Pn(C)×Pn(C) as a subvariety of P(n+1)2−1(C) via the Segre

embedding (a0 : · · · : an)× (b0 : · · · : bn) 7→ (. . . : ai b j : . . .). And a holomorphic
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map F : C→ Pn(C)×Pn(C) is said to be algebraically degenerate if its image is
contained in a proper algebraic subset of Pn(C)×Pn(C).

We state our main theorems now. Let f, g : C→ Pn(C) be two algebraically
nondegenerate holomorphic curves with reduced representations f̃ = ( f0, . . . , fn)

and g̃= (g0, . . . , gn). Let q>n and let D j , 1≤ j≤q, be hypersurfaces of degrees d j

in Pn(C) located in general position. Let Q j ∈ C[x0, . . . , xn], 1 ≤ j ≤ q, be the
homogeneous polynomials of degrees d j defining D j . Let d be the least common
multiple of the d j ’s and set Q̃ j = Qd/d j

j for 1≤ j ≤ q .

Theorem 1.1. Assume that q =max{4, n+ 2}. If

(a) f −1(Di )∩ f −1(D j )=∅ for all i ∈ {1, . . . , q} and j ∈ {1, 2, 3, 4} \ {i},

(b) νQ j ( f̃ ) = νQ j (g̃) for 1≤ j≤4 and min{νQ j ( f̃ ), 1}=min{νQ j (g̃), 1} for 4< j≤q ,

(c) f = g on
⋃q

j=1 f −1(D j ),

then there are three distinct indices i, j, k ∈ {1, 2, 3, 4} such that(
Q̃i ( f̃ ) · Q̃k(g̃)

Q̃i (g̃) · Q̃k( f̃ )

)s

·

(
Q̃ j ( f̃ ) · Q̃k(g̃)

Q̃ j (g̃) · Q̃k( f̃ )

)t

≡ 1

for some (s, t) ∈ Z×Z \ {(0, 0)}. Consequently { fugv}0≤u,v≤n satisfy a nontrivial
homogeneous polynomial equation; thus f ×g :C→Pn(C)×Pn(C) is algebraically
degenerate.

Since the conditions “ f = g on
⋃q

j=1 f −1(D j )” and “ f −1(Di )∩ f −1(D j )=∅
for i 6= j” are really rigid, it’s natural to study the related problem without the two
conditions. In this direction, Fujimoto [1999] proved a degeneracy theorem for
sharing 2n+2 hyperplanes with truncated multiplicities. In our case of sharing few
hypersurfaces, we can only prove the following.

Theorem 1.2. Assume that q = n+ 3. If

(a) νQ j ( f̃ ) = νQ j (g̃) for 1≤ j ≤ q,

(b) f = g on
⋃n+2

j=1 f −1(D j ),

then there are three distinct indices i, j, k ∈ {1, . . . , q} such that(
Q̃i ( f̃ ) · Q̃k(g̃)

Q̃i (g̃) · Q̃k( f̃ )

)s

·

(
Q̃ j ( f̃ ) · Q̃k(g̃)

Q̃ j (g̃) · Q̃k( f̃ )

)t

≡ 1

for some (s, t) ∈ Z× Z \ {(0, 0)}. In particular f × g : C→ Pn(C)× Pn(C) is
algebraically degenerate.

In fact we prove a stronger theorem (see Theorem 4.1) with a weaker condition
than “ f = g on

⋃n+2
j=1 f −1(D j )” (see Remark 4.2).

If we require further that the order of f (see Definition 2.5) is less than 1, then
we can get rid of both the two conditions; namely we have:
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Theorem 1.3. Assume that f is of order < 1. Let q = n + 2. If νQ j ( f̃ ) = νQ j (g̃)

for j = 1, 2 and min{νQ j ( f̃ ), 1} =min{νQ j (g̃), 1} for 2< j ≤ q, then there exists a
nonzero constant C such that

Q̃1( f̃ ) · Q̃2(g̃)

Q̃1(g̃) · Q̃2( f̃ )
≡ C.

In particular, f × g : C→ Pn(C)×Pn(C) is algebraically degenerate.

Remark 1.4. If all D j ’s are hyperplanes in Pn(C), then the nondegeneracy assump-
tion on f and g only needs to be linearly nondegenerate.

Our proof is based on the second main theorem for holomorphic curves in Pn(C)

intersecting hypersurfaces, which was first proved by Ru [2004], and a gcd bound
for holomorphic units (see [Pasten and Wang 2017, Theorem 3.1]). The technique
of using the gcd bound is due to Si [2013].

2. Preliminaries from Nevanlinna theory

For a divisor ν on C, we define the counting function of ν by

N (r, ν)=
∫ r

0

n(t, ν)− n(0, ν)
t

dt + n(0, ν) log r,

where n(t, ν) :=
∑
|z|≤t ν(z).

Let f :C→Pn(C) be a holomorphic map and let f̃ = ( f0, . . . , fn) be a reduced
representation of f ; namely, f0, . . . , fn are entire functions on C without common
zeros and f (z)= [ f0(z) : · · · : fn(z)] for every z ∈ C. The characteristic function
of f is defined by

T f (r) :=
1

2π

∫ 2π

0
log ‖ f̃ (reiθ )‖dθ − log ‖ f̃ (0)‖,

where ‖ f̃ (z)‖ =
√
| f0(z)|2+ · · ·+ | fn(z)|2. This definition is independent of the

choice of the reduced representation. Let D be a hypersurface of degree d in Pn(C)

with f (C) 6⊆ D. Let Q ∈C[x0, . . . , xn] be the homogeneous polynomial of degree d
defining D. Then the proximity function m f (r, D) is defined by

m f (r, D)=
1

2π

∫ 2π

0
log
‖ f̃ (reiθ )‖d‖Q‖

|Q( f̃ )(reiθ )|
dθ,

where ‖Q‖ is the maximum of the absolute values of the coefficients of Q. And the
counting function of f intersecting D with truncation level M , M ∈ Z+ ∪ {+∞},
is defined by

N [M]f (r, D) := N (r,min{νQ( f̃ ),M}).
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We also write N [1]f (r, D)= N f (r, D) and N [+∞]f (r, D)= N f (r, D). If H is a
hyperplane in Pn(C) defined by the linear form L , we also write L( f̃ ) as ( f, H).

The Jensen formula (see [Ru 2001, Corollary A1.1.3]) implies the following first
main theorem:

Theorem 2.1. Let f : C→ Pn(C) be a holomorphic map and let D be a hypersur-
face of degree d in Pn(C). If f (C) 6⊆ D, then there is a real constant C , such that
for all r > 0,

m f (r, D)+ N f (r, D)= dT f (r)+C.

The following is the well known second main theorem for holomorphic curves in
Pn(C) intersecting hyperplanes (see [Ru 2001, Theorem A3.2.2]) which was first
proved by H. Cartan.

Theorem 2.2. Let f : C→ Pn(C) be a linearly nondegenerate holomorphic map
and {H j }

q
j=1 be q hyperplanes in Pn(C) located in general position. Then∥∥∥ (q − n− 1)T f (r)≤

q∑
j=1

N [n]f (r, H j )+ o(T f (r)),

where the notation “‖” means that the assertion holds for all r > 0 outside a set of
finite Lebesgue measure.

Ru [2004] proved a second main theorem for holomorphic curves in Pn(C)

intersecting hypersurfaces. The following version with truncation was proved in
[Yan and Chen 2008; An and Phuong 2009].

Theorem 2.3. Let f : C→ Pn(C) be an algebraically nondegenerate holomorphic
map. Let D j , 1≤ j ≤ q, be hypersurfaces of degrees d j in Pn(C) located in general
position. Then for any ε > 0, there is a positive integer Mε such that∥∥∥ (q − n− 1− ε)T f (r)≤

q∑
j=1

d−1
j N [Mε ]

f (r, D j ).

For a meromorphic function h on the complex plane C, the Nevanlinna’s charac-
teristic function of h is defined by

T (r, h) := m(r, h)+ N (r, h),

where m(r, h) := 1
2π

∫ 2π
0 log+ |h(reiθ )|dθ with log+ x = max{log x, 0} for x ≥ 0,

and N (r, h) := N (r, ν∞h ). It follows from the definition that for any meromorphic
functions h1, h2 on C, T (r, h1+h2)≤ T (r, h1)+T (r, h2)+ ln 2 and T (r, h1h2)≤

T (r, h1)+T (r, h2) for r ≥ 1. Furthermore we have the following first main theorem
for meromorphic functions (see [Ru 2001, Theorem A1.1.5]).

Theorem 2.4. T (r, h)= T
(
r, 1

h−a

)
+ O(1) for any meromorphic function h on C

and a ∈ C provided that h 6≡ a.
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Definition 2.5. The order of a holomorphic map f : C→ Pn(C) is defined to be

lim
r→+∞

log+ T f (r)
log r

.

The order of a meromorphic function h on C can be similarly defined.

3. Proof of Theorem 1.1

We prove Theorem 1.1 in this section; in fact, we prove the following stronger
theorem.

Theorem 3.1. Let f, g, f̃ , g̃, d, D j , Q j , Q̃ j , 1 ≤ j ≤ q, be given as in Section 1.
Assume there exist I, J ⊆{1, . . . , q} with #I ≥ n+2 and for any i ∈ I , #(J \{i})≥ 3,
such that the following conditions are satisfied:

(a) f −1(Di )∩ f −1(D j )=∅ for all i ∈ I and j ∈ J \ {i},

(b) νQ j ( f̃ ) = νQ j (g̃) for j ∈ J and min{νQi ( f̃ ), 1} =min{νQi (g̃), 1} for i ∈ I,

(c) f = g on
⋃

i∈I f −1(Di ).

Then there exist three distinct indices i, j, k ∈ J such that(
Q̃i ( f̃ ) · Q̃k(g̃)

Q̃i (g̃) · Q̃k( f̃ )

)s

·

(
Q̃ j ( f̃ ) · Q̃k(g̃)

Q̃ j (g̃) · Q̃k( f̃ )

)t

≡ 1

for some (s, t) ∈ Z× Z \ {(0, 0)}. In particular, f × g : C→ Pn(C)×Pn(C) is
algebraically degenerate.

Taking q =max{4, n+2}, I = {1, . . . , q}, J = {1, 2, 3, 4}, we get Theorem 1.1.
Furthermore, we can deduce the following corollary by taking q = n + 5 , I =
{4, . . . , q}, J = {1, 2, 3}.

Corollary 3.2. Let f, g, f̃ , g̃, d, D j , Q j , Q̃ j , 1≤ j ≤ q, be given as in Section 1.
Assume that q = n+ 5. If

(a) f −1(Di )∩ f −1(D j )=∅ for i = 1, 2, 3 and j = 4, . . . , q ,

(b) νQ j ( f̃ ) = νQ j (g̃) for j = 1, 2, 3, and min{νQ j ( f̃ ), 1} = min{νQ j (g̃), 1} for
j = 4, . . . , q ,

(c) f = g on
⋃q

j=4 f −1(D j ),

then (
Q̃1( f̃ ) · Q̃3(g̃)

Q̃1(g̃) · Q̃3( f̃ )

)s

·

(
Q̃2( f̃ ) · Q̃3(g̃)

Q̃2(g̃) · Q̃3( f̃ )

)t

≡ 1

for some (s, t) ∈ Z× Z \ {(0, 0)}. In particular, f × g : C→ Pn(C)×Pn(C) is
algebraically degenerate.
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For our purpose, we need the following lemma on the gcd bound for holomorphic
units; for the proof refer to [Pasten and Wang 2017, Theorem 3.1].

Lemma 3.3. Let F,G be nowhere zero holomorphic functions on C. If F s
·G t is

not constant for all (s, t) ∈ Z×Z \ {(0, 0)}, then for any ε > 0,∥∥ N (r, F − 1,G− 1)≤ εmax{T (r, F), T (r,G)},

where N (r, F − 1,G − 1) is the counting function of the common 1-points of F
and G; namely, N (r, F − 1,G− 1) := N (r,min{ν0

F−1, ν
0
G−1}).

Remark 3.4. If F s
·G t
≡ c∈C\{1} for some (s, t)∈Z×Z\{(0, 0)}, then F and G

have no common 1-points; namely, N (r, F − 1,G− 1)≡ 0. So the conclusion of
the above lemma actually holds when F s

·G t
6≡ 1 for all (s, t) ∈ Z×Z \ {(0, 0)}.

Now we are going to prove Theorem 3.1. We give the following lemma first.

Lemma 3.5. Let f :C→Pn(C) be a holomorphic map with reduced representation
f̃ = ( f0, . . . , fn). Let Q1, Q2 ∈ C[x0, . . . , xn] be two homogeneous polynomials
of same degree d > 0 with Q2( f̃ ) 6≡ 0. Then there are constants C1,C2 > 0 such
that for all r > 0 large enough,

T
(

r,
Q1( f̃ )

Q2( f̃ )

)
≤ C1T f (r)+C2.

Proof. Take k ∈ {0, . . . , n} such that fk 6≡ 0. Write Q1( f̃ )=
∑

a f i0
0 · · · f in

n and
Q2( f̃ )=

∑
b f j0

0 · · · f jn
n , then

Q1( f̃ )

Q2( f̃ )
=

Q1( f̃ )/ f d
k

Q2( f̃ )/ f d
k

=

∑
a
( f0

fk

)i0
· · ·
( fn

fk

)in∑
b
( f0

fk

) j0
· · ·
( fn

fk

) jn
.

Thus by the first main theorem and the properties of Nevanlinna’s characteristic
function, we conclude that

T
(

r,
Q1( f̃ )

Q2( f̃ )

)
≤T

(
r,
∑

a
(

f0

fk

)i0

· · ·

(
fn

fk

)in
)

+ T
(

r,
∑

b
(

f0

fk

) j0
· · ·

(
fn

fk

) jn)
+ O(1)

≤C̃1

(
T
(

r,
f0

fk

)
+ · · ·+ T

(
r,

fn

fk

))
+ C̃2.

By [Ru 2001, Theorem A3.1.2], we know that T (r, ft/ fk)≤ T f (r)+ O(1) for t =
0, . . . , n, this together with the above inequality imply the desired conclusion. �

Proof of Theorem 3.1. Set h j = Q̃ j ( f̃ )/Q̃ j (g̃) for j = 1, . . . , q. Then by condi-
tion (b), h j is a nowhere zero holomorphic function on C for every j ∈ J.
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We argue by the method of contradiction. Assume that the conclusion doesn’t
hold, then for arbitrary three distinct indices j1, j2, j3 ∈ J,(

h j1

h j3

)s

·

(
h j2

h j3

)t

6≡ 1

for all (s, t) ∈ Z×Z \ {(0, 0)}. So applying Lemma 3.3 (see Remark 3.4) to the
functions h j1/h j3 and h j2/h j3 , we conclude that for any ε > 0,

(3.6)
∥∥∥ N (r, h j1/h j3 − 1, h j2/h j3 − 1)≤ εmax

{
T
(

r,
h j1

h j3

)
, T
(

r,
h j2

h j3

)}
.

Note that the Q̃ j ’s are all of degree d, so by Lemma 3.5, we see that for any
i, j ∈ {1, . . . , q},

T
(

r,
hi

h j

)
≤ T

(
r,

Q̃i ( f̃ )

Q̃ j ( f̃ )

)
+ T

(
r,

Q̃ j (g̃)

Q̃i (g̃)

)
≤ C1(T f (r)+ Tg(r))+C2.

Combining this with inequality (3.6), we get that for arbitrary three distinct indices
j1, j2, j3 ∈ J, for any ε > 0,

(3.7)
∥∥ N (r, h j1/h j3 − 1, h j2/h j3 − 1)≤ ε(T f (r)+ Tg(r)).

Take i ∈ I. By #(J \ {i}) ≥ 3, we can choose three distinct j1, j2, j3 ∈ J \ {i}.
By conditions (a), (b) and (c), if z ∈ f −1(Di ), then z is not the zero of Q̃ jk ( f̃ )
and Q̃ jk (g̃), k = 1, 2, 3, and f̃ (z) = cg̃(z) for some nonzero constant c. So for
k = 1, 2, 3,

h jk (z)=
Q̃ jk ( f̃ )(z)

Q̃ jk (g̃)(z)
=

Q̃ jk ( f̃ (z))

Q̃ jk (g̃(z))
= cd ,

thus
h j1

h j3
(z)=

h j2

h j3
(z)=

cd

cd = 1;

namely, z is a common 1-point of h j1/h j3 and h j2/h j3 . So combining this with
inequality (3.7), we have for any ε > 0,∥∥ N f (r, Di )≤ N (r, h j1/h j3 − 1, h j2/h j3 − 1)≤ ε(T f (r)+ Tg(r)).

Summing up the above inequality over i ∈ I and noting that N f (r, Di )= N g(r, Di ),

we get that for any ε > 0,

(3.8)
∥∥∥∑

i∈I

(N f (r, Di )+ N g(r, Di ))≤ ε(T f (r)+ Tg(r)).

On the other hand, by the second main theorem for holomorphic curves inter-
secting hypersurfaces (see Theorem 2.3) and the assumption #I ≥ n+2, and noting



378 KAI ZHOU AND LU JIN

that N [M]f (r, D)≤ M N f (r, D), we deduce that there is a positive constant κ such
that ∥∥∥∑

i∈I

(N f (r, Di )+ N g(r, Di ))≥ κ(T f (r)+ Tg(r)).

This contradicts (3.8).
Therefore we have proved that there exist three distinct indices i, j, k∈ J such that(

Q̃i ( f̃ ) · Q̃k(g̃)

Q̃i (g̃) · Q̃k( f̃ )

)s

·

(
Q̃ j ( f̃ ) · Q̃k(g̃)

Q̃ j (g̃) · Q̃k( f̃ )

)t

≡ 1

for some (s, t) ∈ Z×Z \ {(0, 0)}. Now since all Q̃t ’s are of the same degree d, it
is easy to see that the (n+ 1)2 functions { fugv}0≤u,v≤n satisfy a nontrivial homoge-
neous polynomial equation. This shows that the image of f×g :C→Pn(C)×Pn(C)

is contained in a proper algebraic subset of Pn(C) × Pn(C); in other words,
f × g : C→ Pn(C)×Pn(C) is algebraically degenerate.

Furthermore from the above proof, we easily see that if all D j ’s are hyperplanes,
then the proof still works if f and g are only assumed to be linearly nondegenerate.
This completes the proof. �

4. Proof of Theorem 1.2

We prove the following theorem which implies Theorem 1.2.

Theorem 4.1. Let f, g, f̃ , g̃, d, D j , Q j , Q̃ j , 1 ≤ j ≤ q, be given as in Section 1.
Let q = n+ 3 and set h j = Q̃ j ( f̃ )/Q̃ j (g̃) for j = 1, . . . , q. Assume that

(a) νQ j ( f̃ ) = νQ j (g̃) for j = 1, . . . , q , and

(b) for every i ∈ {1, . . . , n+ 2}, the set

Ai :=

{
h j

hk
(z) | z∈ f −1(Di ), 1≤ j, k ≤ q with z 6∈ f −1(D j ∪Dk)∪ g−1(D j ∪Dk)

}
is of finite cardinality.

Then there exist distinct indices i, j, k ∈ {1, . . . , q} and constants

C1,C2 ∈ A := {1} ∪
n+2⋃
i=1

Ai

such that (
Q̃i ( f̃ ) · Q̃k(g̃)

C1 Q̃i (g̃) · Q̃k( f̃ )

)s

·

(
Q̃ j ( f̃ ) · Q̃k(g̃)

C2 Q̃ j (g̃) · Q̃k( f̃ )

)t

≡ 1

for some (s, t) ∈ Z× Z \ {(0, 0)}. In particular f × g : C→ Pn(C)× Pn(C) is
algebraically degenerate.
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Remark 4.2. By the condition “ f = g on
⋃n+2

j=1 f −1(D j )” of Theorem 1.2, one
deduces as in the proof of Theorem 3.1 that for i ∈ {1, . . . , n + 2} and j, k ∈
{1, . . . , q}, (h j/hk)(z)= 1 for every point

z ∈ f −1(Di ) \ ( f −1(D j ∪ Dk)∪ g−1(D j ∪ Dk)).

So A = {1}. Thus the conclusion of Theorem 1.2 follows from Theorem 4.1.

Proof. By assumption, h j is a nowhere zero holomorphic function on C for every
1 ≤ j ≤ q and A is a nonempty set consisting of finitely many nonzero complex
numbers. So we may set A = {c1, . . . , cp}.

Assume that the conclusion doesn’t hold, then for any distinct indices i, j, k ∈
{1, . . . , q} and constants cu, cv ∈ A,(

hi

cuhk

)s

·

(
h j

cvhk

)t

6≡ 1

for all (s, t) ∈ Z×Z \ {(0, 0)}. Much as in the proof of Theorem 3.1, by making
use of Lemmas 3.3 and 3.5, we conclude that for any ε > 0,

(4.3)
∥∥∥ N

(
r,

hi

cuhk
− 1,

h j

cvhk
− 1

)
≤ ε(T f (r)+ Tg(r)).

Let ν =
∑

1≤i< j<k≤q
∑

cu ,cv∈A min{ν0
hi/(cuhk)−1, ν

0
h j/(cvhk)−1}, then

N (r, ν)=
∑

1≤i< j<k≤q

∑
cu ,cv∈A

N
(

r,
hi

cuhk
− 1,

h j

cvhk
− 1

)
.

So (4.3) gives that for any ε > 0,

(4.4)
∥∥ N (r, ν)≤ ε(T f (r)+ Tg(r)).

Now take l ∈ {1, . . . , n+ 2}. For a point z ∈ f −1(Dl), by the “in general position”
assumption, we know that there are at most n− 1 distinct k ∈ {1, . . . , q} \ {l} such
that z ∈ f −1(Dk). Since q = n+ 3, there are three distinct i, j, k ∈ {1, . . . , q} \ {l}
with i < j < k such that z 6∈ f −1(Di ∪ D j ∪ Dk)∪ g−1(Di ∪ D j ∪ Dk). Then

hi

hk
(z),

h j

hk
(z) ∈ Al ⊆ A.

Thus there are cu, cv ∈ A such that z is a common 1-point of hi/(cuhk) and
h j/(cvhk), so the point z is counted in N (r, ν). Consequently, for any ε > 0,∥∥ N f (r, Dl)≤ N (r, ν)≤ ε(T f (r)+ Tg(r)).
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From this we see that for any ε > 0,∥∥∥ n+2∑
l=1

(N f (r, Dl)+ N g(r, Dl))≤ ε(T f (r)+ Tg(r)).

On the other hand, using the second main theorem (see Theorem 2.3), as in the
proof of Theorem 3.1, we deduce that there exists a constant κ > 0 such that∥∥∥ κ(T f (r)+ Tg(r))≤

n+2∑
l=1

(N f (r, Dl)+ N g(r, Dl)),

which contradicts the above inequality. This proves Theorem 4.1. �

Combining the proof of Theorem 4.1 with that of Theorem 3.1, one concludes
easily the following theorem which is an improvement of Theorem 3.1.

Theorem 4.5. Let f, g, f̃ , g̃, d, D j , Q j , Q̃ j , 1 ≤ j ≤ q, be given as in Section 1.
Assume that there exist I, J ⊆ {1, . . . , q} with #I ≥ n + 2 and for any i ∈ I ,
#(J \ {i})≥ 3, such that the following conditions are satisfied:

(a) νQ j ( f̃ ) = νQ j (g̃) for j ∈ J and min{νQi ( f̃ ), 1} =min{νQi (g̃), 1} for i ∈ I;

(b) for every i ∈ I, the set{
h j

hk
(z) | z ∈ f −1(Di ), j, k ∈ J \ {i}

}
=: Ai

is of finite cardinality.

Then there exist three distinct indices i, j, k ∈ J and constants

C1,C2 ∈ A := {1} ∪
⋃
u∈I

Au

such that (
Q̃i ( f̃ )· Q̃k(g̃)

C1 Q̃i (g̃) · Q̃k( f̃ )

)s

·

(
Q̃ j ( f̃ ) · Q̃k(g̃)

C2 Q̃ j (g̃) · Q̃k( f̃ )

)t

≡ 1

for some (s, t) ∈ Z×Z \ {(0, 0)}.

5. Proof of Theorem 1.3

We prove Theorem 1.3 and then as a consequence we give a uniqueness theorem.

Proof of Theorem 1.3. Let f, g, f̃ , g̃, d, D j , Q j , Q̃ j , (1 ≤ j ≤ q) be given as
in Section 1. We set h j = Q̃ j ( f̃ )/Q̃ j (g̃) for j = 1, . . . , q. Then the assumption
shows that h1 and h2 are nowhere zero holomorphic functions on C. We need to
show that h1/h2 is constant.
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Since q = n+ 2 and N f (r, D j )= N g(r, D j ) for j = 1, . . . , q, it follows from
the first and the second main theorem that there are constants C1,C2 > 0 such that∥∥∥ C1Tg(r)≤

q∑
j=1

N g(r, D j )=

q∑
j=1

N f (r, D j )≤ qdT f (r)+C2;

therefore there is a constant C > 0 such that

(5.1)
∥∥ Tg(r)≤ CT f (r).

By Lemma 3.5, there is a constant C3 > 0 such that for all large r ,

T (r, h1/h2)≤ C3(T f (r)+ Tg(r)).

Combining this with (5.1), we have∥∥ T (r, h1/h2)≤ C4T f (r)

for some constant C4 > 0. From this and the assumption that f is of order < 1, it
follows that

(5.2) lim
r→+∞

log+ T (r, h1/h2)

log r
≤ lim

r→+∞

log+ T f (r)
log r

< 1.

Since h1/h2 is nowhere zero holomorphic on C, we may write h1/h2 = eH for
some entire function H. If h1/h2 is nonconstant, then either H is a polynomial of
degree ≥ 1 or H is a transcendental entire function; thus by [Yang and Yi 2003,
Theorem 1.44] we have

lim
r→+∞

log+ T (r, h1/h2)

log r
≥ 1.

This contradicts (5.2). Thus h1/h2 is constant, which completes the proof. �

Remark 5.3. From the above proof, we easily see that if all D j ’s are hyperplanes,
then the conclusion still holds when f and g are only assumed to be linearly
nondegenerate. So we have the following uniqueness theorem:

Corollary 5.4. Let f, g : C→ Pn(C) be two linearly nondegenerate holomorphic
maps. Let H1, . . . , Hn+2 be hyperplanes in Pn(C) located in general position.
Suppose that f is of order < 1. If ν( f,H j ) = ν(g,H j ) for every j = 1, . . . , n+2, then
f = g.

Proof. Take reduced representations f̃ , g̃ for f and g respectively and let L j ,
1 ≤ j ≤ n + 2, be the linear forms that define H j . Set h j = L j ( f̃ )/L j (g̃), 1 ≤
j ≤ n+ 2. Then Theorem 1.3 shows that hi/h1 = ci is a constant for any i ≥ 2,
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and L i ( f̃ )= h1ci L i (g̃). Since the H j ’s are in general position, we can write
L1 =

∑n+2
i=2 bi L i for some nonzero constants bi . Thus

h1

n+2∑
i=2

bi L i (g̃)= h1L1(g̃)= L1( f̃ )=
n+2∑
i=2

bi L i ( f̃ )= h1

n+2∑
i=2

bi ci L i (g̃),

which implies that (n+2∑
i=2

bi (1− ci )L i

)
(g̃)= 0.

Now by the linearly nondegeneracy of g and the fact that L2, . . . , Ln+2 are linearly
independent, we conclude that

cn+2 = cn+1 = · · · = c2 = 1;

namely, h1 = h2 = · · · = hn+2. This implies that f = g. �
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