Vol. 302, No. 2, 2019

Download this article
Download this article For screen
For printing
Recent Issues
Vol. 332: 1  2
Vol. 331: 1  2
Vol. 330: 1  2
Vol. 329: 1  2
Vol. 328: 1  2
Vol. 327: 1  2
Vol. 326: 1  2
Vol. 325: 1  2
Online Archive
Volume:
Issue:
     
The Journal
About the journal
Ethics and policies
Peer-review process
 
Submission guidelines
Submission form
Editorial board
Officers
 
Subscriptions
 
ISSN 1945-5844 (electronic)
ISSN 0030-8730 (print)
 
Special Issues
Author index
To appear
 
Other MSP journals
$\tau$-tilting finite gentle algebras are representation-finite

Pierre-Guy Plamondon

Vol. 302 (2019), No. 2, 709–716
Abstract

We show that a gentle algebra over a field is τ-tilting finite if and only if it is representation-finite. The proof relies on the “brick-τ-tilting correspondence” of Demonet, Iyama, and Jasso and on a combinatorial analysis.

Keywords
representation theory, $\tau$-tilting theory, finite representation type, gentle algebras
Mathematical Subject Classification 2010
Primary: 16G20
Secondary: 16G60
Milestones
Received: 15 November 2018
Revised: 23 March 2019
Accepted: 23 March 2019
Published: 27 November 2019
Authors
Pierre-Guy Plamondon
Laboratoire de Mathématique d’Orsay
Université Paris-Sud
Centre National de la Recherche Scientifique
Université Paris-Saclay
Orsay
France