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APPENDIX BY ARLO CAINE AND SAMUEL EVENS

Using the wonderful compactification of a semisimple adjoint affine alge-
braic group G defined over an algebraically closed field k of arbitrary
characteristic, we construct a natural compactification X0(G) of the G-
character variety of any finitely generated group 0. When 0 is a free group,
we show that this compactification is always simply connected with respect
to the étale fundamental group, and when k = C it is also topologically
simply connected. For other groups 0, we describe conditions for the com-
pactification of the moduli space to be simply connected and give examples
when these conditions are satisfied, including closed surface groups and free
abelian groups when G = PGLn(C). Additionally, when 0 is a free group
we identify the boundary divisors of X0(G) in terms of previously studied
moduli spaces, and we construct a family of Poisson structures on X0(G)

and its boundary divisors arising from Belavin–Drinfeld splittings of the
double of the Lie algebra of G. In the appendix, we explain how to put a
Poisson structure on a quotient of a Poisson algebraic variety by the action
of a reductive Poisson algebraic group.

1. Introduction

To understand how groups 0 act on spaces X one considers homomorphisms
0 → Aut(X). When Aut(X) is an algebraic group G, the collection of homo-
morphisms Hom(0,G) is an algebraic variety and so deformation techniques are
available. From the associated study of G-local systems, two homomorphisms are
equivalent when they are conjugate via an element of G. In this case, the quotient
space Hom(0,G)/G is naturally considered. Unfortunately this quotient space
is not generally algebraic and so deformation techniques are not available. An
approximation to this space, that often has better properties, is called the G-character
variety of 0. It will be denoted by X0(G).

When G is a reductive algebraic group over an algebraically closed field k, the
above mentioned space X0(G) is precisely the geometric invariant theoretic (GIT)
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quotient Hom(0,G)//G; in other words, it is the spectrum of the ring of invariants
k[Hom(0,G)]G.

Considering families lying in X0(G) demands an understanding of (geometrically
meaningful) boundary divisors, and as such compactifications of X0(G) arise
naturally.

For example, in [Morgan and Shalen 1984], a compactification of SL2(C)-
character varieties by actions on R-trees gave a new proof of Thurston’s theorem that
projective measured geodesic laminations give a compactification of Teichmüller
space; the latter gives a classification of surface group automorphisms. Extensions
of these ideas to real Lie groups were considered by Parreau [2012]. More recently,
in [Manon 2015], it was shown that each quiver-theoretic avatar of a free group char-
acter variety developed in [Florentino and Lawton 2013] determines a natural com-
pactification, under the assumption that G is simple and simply connected over C.
And in [Komyo 2015], compactifications of relative character varieties of punctured
spheres are considered in order to understand the relationship between the Dolbeault
moduli space of Higgs bundles and the Betti moduli space of representations.

In this paper, we prove the following theorem:

Theorem 1.1. Let G be a semisimple algebraic group of adjoint type defined
over an algebraically closed field k. Then the wonderful compactification of G
determines a compactification of X0(G) for any finitely generated group 0. If 0 is
a free group, then this compactification is étale simply connected. Moreover, when
k= C there exists a compactification of X0(G) that is both topologically and étale
simply connected whenever X0(G) is simply connected and normal.

This result follows from Theorem 3.5, Corollary 4.2 and Lemma 4.3. Let X0(G)
denote the compactification of X0(G) from Theorem 1.1. In Proposition 4.5, we
apply Theorem 1.1 to prove the following corollary.

Corollary 1.2. Let G be a semisimple algebraic group of adjoint type over C. Then
X0(G) is both topologically and étale simply connected if :

(1) 0 is a free group,

(2) 0 is a surface group and G = PGLn(C), or

(3) 0 is free abelian and G does not have exceptional factors.

In Sections 5 and 6 we further study the case in which 0 is a free group. We
identify the boundary divisors of X0(G) (Theorem 5.2) in terms of the parabolic
character varieties studied by Biswas, Florentino, Lawton and Logares [Biswas et al.
2014], and we construct a Poisson structure on X0(G) and on its boundary divisors
(Theorem 6.5) using work of Evens and Lu [2001; 2006], who constructed a Poisson
structure on G. To show there is a Poisson structure on X0(G), we utilize recent
work of Lu and Mouquin [2017] to equip G r with a Poisson structure for which
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the diagonal conjugation action of G is a Poisson action (for an appropriate Poisson
Lie group structure on G). To show that this Poisson structure descends to X0(G),
we use the fact that when a reductive algebraic Poisson group acts on a projective
Poisson variety and the action is Poisson, then the GIT quotient inherits a Poisson
structure. This fact, although known to experts, does not appear in the literature.
The Appendix, written by Arlo Caine and Sam Evens, provides a proof of this fact.

2. Wonderful compactification of groups

Let G be a connected affine algebraic group defined over an algebraically closed
field k; there is no condition on its characteristic. Let g = Derk(k[G], k)G be the
Lie algebra of G, where G acts on the derivations via the left-translation action
of G on itself. The group G is said to be of adjoint type if the adjoint representation

(2-1) ρ : G→ GL(g)

is an embedding. The center of a group of adjoint type is trivial.
We will always assume that G is semisimple of adjoint type. Therefore, G is of

the form
∏m

i=1(Gi/Zi ), where each Gi is a simple simply connected group and Zi

is the center of Gi .
A compactification of a variety X is a complete variety Y with X as a dense

open subset. In [De Concini and Procesi 1983], assuming the base field is of
characteristic 0, a compactification of G is constructed, called the wonderful com-
pactification. In [Strickland 1987] the construction is generalized to arbitrary
characteristic. Denote the wonderful compactification of G by G. In [Evens and
Lu 2001; 2006], a Poisson structure on G is constructed when the characteristic of
the base field is zero.

We now describe the construction of G, following the exposition in [Evens and
Lu 2001; Evens and Jones 2008]. Let n be the dimension of G. The general linear
group GL(g⊕g) acts on the space of n-dimensional subspaces of g⊕g transitively
with the stabilizer of a point being a parabolic subgroup P. The Grassmannian
Gr(n, g⊕ g) = GL(g⊕ g)/P of dimension (2n)2 − 3n2

= n2 parametrizes the
n-dimensional subspaces of g⊕ g. Consider the composition homomorphism

G×G ρ×ρ
−−→GL(g)×GL(g) ↪→ GL(g⊕ g),

where ρ is the homomorphism in (2-1) and GL(g)× GL(g) is the subgroup of
automorphisms of g⊕ g that preserves its decomposition. This homomorphism
produces an action of G×G on Gr(n, g⊕ g). Let

g1 := {(x, x) | x ∈ g} ⊂ g⊕ g

be the diagonal subalgebra, which is an n-dimensional subspace and hence a point
in Gr(n, g⊕ g). The stabilizer of g1 with respect to the above action of G×G on
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Gr(n, g⊕ g) is
G1 := {(g, g) | g ∈ G}.

Therefore, the orbit of g1 is

(G×G) · g1 = (G×G)/G1
∼= G.

The wonderful compactification of G is then G = (G×G) · g1, where the
closure is taken inside Gr(n, g⊕ g), making G an irreducible projective variety
containing G = (G×G) · g1 as a Zariski open subvariety.

Theorem 2.1 [Strickland 1987; De Concini and Procesi 1983]. The following
properties hold for the wonderful compactification G:

(1) The action of G × G on G, defined by (g1, g2) · x = g1xg−1
2 , extends to a

G×G action on G with 2r orbits, where r = rank(G);

(2) G is smooth, as is each G×G orbit closure in G;

(3) The complement G \G consists of r smooth divisors D1, . . . , Dr with simple
normal crossings, each of which is the closure of a single G×G orbit.

Remark 2.2. In [De Concini and Procesi 1983], a canonical compactification
(called the wonderful compactification) is constructed for certain homogeneous
spaces H/K called symmetric varieties, where K is the fixed locus of an involution.
The wonderful compactification of G above is a special case of this more general
construction since the diagonal copy of G inside G×G, denoted G1, is the fixed
locus of the involution (a, b) 7→ (b, a). Then G∼= (G×G)/G1, and the left action of
H on H/K extends to the wonderful compactification of H/K and becomes the G×
G action on G after passing through this isomorphism. We note this generalization
since we will be referring to properties about this more general construction later.

Note that the diagonal G1
∼= G acts by conjugation on G. We now show that G

is simply connected, after reminding the reader of requisite terms.
A morphism of irreducible normal projective varieties f : Y → X is étale if the

induced map Ô f (y)→ Ôy between complete local rings is an isomorphism for all
points y ∈ Y. An étale morphism f is Galois if the induced injection on quotient
fields k(X)→ k(Y ) is a Galois extension. The Galois group for this extension acts
on Y with X being the quotient. A Galois covering of X is a finite Galois étale
map Y → X. We say X is étale simply connected if it does not admit any nontrivial
Galois coverings. Over C, if the topological fundamental group of X (in the strong
topology) is trivial, then the étale fundamental group is trivial [Milne 1980].

Corollary 2.3. The variety G is étale simply connected. When k = C, the topolog-
ical fundamental group of G is trivial.
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Proof. Recall that G is an open dense affine subvariety of G. Since we are over
an algebraically closed field, the Bruhat decomposition gives an affine cell in G
that is open and dense [Borel 1991]. So G is birational to affine space, which itself
is birational to projective space. Therefore, G is a rational variety. In general a
projective, smooth, rational variety over an algebraically closed field is étale simply
connected [Kollár 2003]. Thus, G is étale simply connected.

When k = C, the topological fundamental group of G is trivial, because G is a
rational variety [Serre 1959, p. 483, Proposition 1]. �

Remark 2.4. Our proof of Corollary 2.3 shows that any smooth compactification
of G is étale simply connected, and topologically simply connected over C.

Example 2.5. In the case of G = PSL2(C) = PGL2(C), we have that G =
P(M2(C)) = CP3 where M2(C) is the monoid of 2×2 complex matrices. Naturally
PSL2(C)⊂ P(M2(C)) and the action of PSL2(C)× PSL2(C) on PSL2(C) defined
by (g1, g2) · x = g1xg−1

2 extends to an action on P(M2(C)). The complement
D = P(M2(C)) \PGL2(C) is the divisor

({X ∈ M2(C) | det(X) = 0} \ {0})/C∗ = ({(a, b, c, d) ∈ C4
| ad = bc} \ {0})/C∗

which is the image of CP1
×CP1 under the Segre embedding. In this divisor, the

locus of a 6= 0 is an affine open C2, and when a = 0 we have two copies of CP1

intersecting at the point [(0, 0, 0, 1)].

3. Wonderful compactification of character varieties

In this section, given a finitely generated group 0 and a semisimple algebraic
group G of adjoint type we construct a compactification of the G-character variety
of 0. There is no assumption on the characteristic of the algebraically closed base
field k.

First however we remind the reader of the basic terms and theorems of projective
GIT. A G-linearized line bundle over a G-variety X is a line bundle L over X
such that the projection map L→ X is G-equivariant, and where the zero section
of L is G-invariant. A point x ∈ X is semistable with respect to L if there exists a
G-invariant section s : X → L⊗m so s(x) 6= 0 and the principal open Us defined
by s is affine. If additionally the stabilizer at x is finite and all G-orbits in Us are
closed then x is called stable. Any point that is not semistable is called unstable.
If there exists a basis {s0, . . . , sn} for the space of sections of L over X such that
the map x 7→ (s0(x), . . . , sn(x)) is a closed embedding into Pn then we say L is
very ample. If L⊗m is very ample for some positive m, then we say L is ample.
An algebraic variety X is isomorphic to a quasiprojective variety if and only if
there exists an ample line bundle over X. Given a G-linearized line bundle L over
X, there always exists a GIT quotient X ss

L → X//L G := X ss
L //G, where X ss

L is the
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set of semistable points in X. Moreover, X//L G is in general quasiprojective (see
[Mumford et al. 1994, Theorem 1.10] or [Dolgachev 2003, Theorem 8.1]) and is
projective if X was projective and L was ample to begin with (see [Dolgachev 2003,
Proposition 8.1]).

We begin constructing our compactifications with the case of a free group. Let
0 = Fr be the free group of rank r (we call the standard presentation of Fr the one
with no relations). With respect to the standard presentation, the evaluation map
gives a bijection Hom(Fr , G) ∼= Gr. Therefore, as the adjoint action of G on G
extends to G, the diagonal adjoint action of G on Gr also extends to the product G r.
Precisely, the action of g∈G sends any (x1, . . . , xr )∈G r to (gx1g−1, . . . , gxr g−1).
Thus, Hom(Fr , G) is an affine Zariski open G-invariant subset of the G-variety G r;
that is, G r is a compactification of Hom(Fr , G).

With respect to an ample line bundle L , the GIT quotient G r//L G is a projective
variety. We claim there is a line bundle that makes it a compactification of XFr (G).

To establish this we prove a lemma that will also be relevant in Section 5, where
we discuss divisors.

Lemma 3.1. Let G be a semisimple algebraic group of adjoint type, and let G be
the wonderful compactification of G. Then there is an ample line bundle L on G so
the divisors G \G are the zero locus of a G×G-invariant section of L.

Proof. We follow the discussion in Section 3 of [De Concini et al. 2008], making
some slight notational changes.

Let H be a semisimple adjoint-type algebraic group over a field k of arbitrary
characteristic (not equal to 2) and let H̃ be a simply-connected cover of H. Let
ι : H̃ → H be the corresponding central isogeny. Let σ be an involution of H
and let K = ι−1(Hσ ), where Hσ is the fixed locus of σ . Define X := H̃/K ; a
symmetric variety. In [De Concini and Procesi 1983; De Concini and Springer
1999], a compactification of X, denoted X , is constructed called the wonderful
compactification. It is a compactification of X that is a H̃ -wonderful variety in the
sense of Luna [2001].

As noted in Remark 2.2, we can think of G as an example of the wonderful
compactification of a symmetric variety where H̃ = G̃ × G̃, σ is the involution
(a, b) 7→ (b, a), Hσ

= G1, and K is the inverse image of G1 by the central
isogeny ι : G̃× G̃→G×G. Then H̃/K = (G̃× G̃)/ι−1(G1)∼= (G×G)/G1

∼=G.
Returning to the more general setting, let S be a maximal torus in H̃ such that

σ(s) = s−1 for all s ∈ S. Denote 3A = Hom(A, k∗) for any abelian group A,
and let SK = S/(S ∩ K ). In [De Concini et al. 2008, Sections 2.2 and 3.1],
the authors construct a basis for 3SK consisting of simple restricted roots 1̃ =
{α̃1, . . . , α̃`}, where ` is the dimension of S. Let 1X be the irreducible components
of codimension 1 in X \ X (i.e., the divisors). They show (Theorem 3.2 of the same
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work) that there is a bijection between 1X and 1̃ given by D 7→ j (O(D)), where
j : Pic(X)→3SK is a monomorphism and O(D) is the line bundle over X with
section whose zero locus is D. This correspondence extends to a bijection between
subsets 0 ⊂ 1̃ and the set of H̃ -orbit closures defined by X0 :=

⋂
{D| j (O(D))∈0} D.

From this, for each α̃ ∈ 1̃ there is a line bundle Lα̃ over X and an H̃ -invariant
section sα̃ of Lα̃ whose divisor is X α̃. In our setting, G and each of its divisors
are embedded in a Grassmannian, and so we may take Lα̃ to be ample. Therefore,
Lα̃1 ⊗ · · · ⊗Lα̃` is an ample line bundle over X whose section sα̃1 ⊗ · · · ⊗ sα̃` is
H̃ -invariant and whose nonzero locus is exactly X.

Therefore, the same holds for the special case when X = G. We note that
the G̃ × G̃-action on G factors through the G ×G-action we consider given the
isomorphism (G̃× G̃)/ι−1(G1)∼= (G×G)/G1. �

Theorem 3.2. There exists an ample line bundle L on Gr so that G r//LG is a
compactification of XFr (G).

Proof. Let L be the line bundle on G and s the invariant section from Lemma 3.1.
Then L := L�r is an ample line bundle on Gr with a G×G-invariant section s�r

whose nonvanishing locus is Gr. Therefore the GIT quotient Gr//LG, which is a
projective variety, is a compactification of XFr (G). �

Remark 3.3. As in [He and Starr 2011], which concerned the case of r = 1, we
suspect the above construction is independent of L. Regardless, we will always use
the line bundle L in our constructions, even if the notation is suppressed.

Now let 0 be a finitely generated group, say with r generators. Fixing r genera-
tors, there is a surjection ϕ : Fr→0 that induces an inclusion ϕ# :X0(G) ↪→XFr (G).

Definition 3.4. The wonderful compactification of X0(G) is the closure of X0(G)
in G r//LG with respect to the above inclusion ϕ#. This compactification will be
denoted by X0(G).

Up to isomorphism X0(G) does not depend on ϕ#, however the compactification
X0(G) does depend on the choice of ϕ; see [Martin 2011] for example. In other
words, since a presentation of 0 is equivalent to ϕ, the compactification depends
on a choice of a presentation for 0.

It would be interesting to explore how different presentations of 0 change the
geometry of the resulting divisors (the Zariski open subvariety X0(G) does not
change up to isomorphism).

With that said, it is perhaps surprising that some of our theorems concerning
X0(G) do not depend on the presentation of 0. Because of this, we will not always
specify the presentation of 0 in the statement of our theorems.
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Theorem 3.5. With respect to the standard presentation of Fr , the wonderful com-
pactification XFr (G) is normal and étale simply connected. When k = C it is
topologically simply connected.

Proof. Since the GIT quotient of a smooth variety is normal, and G r is smooth, it
follows that XFr (G)∼= G r//LG is normal.

The quotient map G r
→ G r//LG induces an isomorphism of étale fundamental

groups (and topological fundamental groups when k = C) by [Biswas et al. 2015a,
Theorem 1]. From Corollary 2.3 we know that G is étale simply connected and
therefore the product G r is also étale simply connected. Consequently, XFr (G)∼=
G r//LG is étale simply connected.

If k = C, then G r is topologically simply connected by Corollary 2.3. Hence
XFr (G) is topologically simply connected when k = C. �

Example 3.6. By [He and Starr 2011, Theorem 0.7], in arbitrary characteristic
XF1(G)∼= T //W , where T is the closure of a maximal torus T ⊂ G in G, W ⊂ G
is the Weyl group, and the quotient is independent of the line bundle.

Example 3.7. Let K := Z/2Z×Z/2Z be the Klein 4-group. Consider

XF2(PSL2(C))∼= XF2(SL2(C))//K.

By [Sikora 2015],

XF2(PSL2(C))∼= C3//K ∼= Spec(C[g1, g2, g3, g4]/(g1g2g3− g2
4)),

where

XF2(SL2(C))∼= {(tr(A), tr(B), tr(AB)) | A, B ∈ SL2(C)} ∼= C3,

and g1 corresponds to tr(A)2, g2 to tr(B)2, g3 to tr(AB)2, and g4 to tr(A)tr(B)tr(AB).
Given Example 2.5, XF2(PSL2(C))∼= (CP3

×CP3)//LPSL2(C).

Remark 3.8. In [Florentino and Lawton 2013, Theorem 3.4] it is shown that to
each connected quiver Q and connected reductive complex algebraic group G, there
is an algebraic variety MQ(G) isomorphic to XFr (G), where r is the first Betti
number of Q. In [Manon 2015, Theorem 1.1] it is shown, in the case where G is
simple and simply connected, that each such MQ(G) determines a generally distinct
compactification of XFr (G). When Q has exactly one vertex the compactification
in [Manon 2015] reduces to the GIT quotient of a product of compactifications of G,
similar to the construction considered here for 0 = Fr . Now the compactification
of the group G considered in [Manon 2015] comes from its so-called Rees algebra.
As shown in [Kaveh and Manon 2019, Example 8.1], this compactification of G
coincides with the wonderful compactification of G. Therefore, our construction
is a special case of the construction in [Manon 2015] in the overlapping situation
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when 0 is free, and G is a simple, simply connected, complex algebraic group of
adjoint type (exactly if G is one of G2, F4, or E8; see [Hu 2013] for example).

Remark 3.9. In [Senthamarai Kannan 1999, Remark 4.6] it is shown that there
is a natural isomorphism G r

→ Gr. For any semisimple algebraic group H of
adjoint type over an algebraically closed field, Lusztig [2004a; 2004b] introduced a
partition of H into finitely many H -stable pieces (where H acts by conjugation).
Applied to the group H =Gr ∼=Hom(Fr ,G), this gives a partition of Gr ∼=G r into
Gr -stable pieces, which are automatically stable under the diagonal conjugation
action of the diagonal subgroup G ∼= G1 ⊂ Gr. The closures of these Gr -stable
pieces were investigated by He [2007]. It would be interesting to understand the
images of these sets in XFr (G).

4. Simply connected compactifications over C

In this section we work over C, and argue that in some cases we can normalize the
wonderful compactification of X0(G) and obtain simply connected compactifica-
tions of character varieties when 0 is not free.

We need the following standard result; see [Arapura et al. 2016].

Proposition 4.1. If Z is a normal projective variety, and A ( Z is a closed
subvariety, then the natural homomorphism π1(Z \ A)→ π1(Z) is surjective.

Corollary 4.2. Let G be a semisimple algebraic group of adjoint type over C,
and let 0 be either a finitely generated free or free abelian group of rank r , or
the fundamental group of a closed, orientable surface. If X0(G) is a normal
compactification of X0(G), then X0(G) is simply connected. Consequently, X0(G)
is also étale simply connected.

Proof. For the allowed G and 0, it is shown in [Biswas and Lawton 2015; Biswas
et al. 2015b] that π1(X0(G)) = 1. The result now follows from Proposition 4.1. �

The following two lemmas are standard.

Lemma 4.3. If A ⊂ Z is a nonempty Zariski open normal subset of an irreducible
projective variety Z , then the normalization Z̃ of Z contains an open subset isomor-
phic to A. In particular, Z̃ is still a compactification of A.

Lemma 4.4. Let X and Y be normal varieties over an algebraically closed field k.
Then X × Y is also normal.

With the above lemmas and corollary in mind, we define the normalized wonder-
ful compactification of a normal character variety X0(G) to be the normalization
of X0(G).
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Proposition 4.5. Let X0
0(G) denote the component of X0(G) that contains the

trivial representation. In the following cases, the normalized wonderful compactifi-
cation of X0

0(G) is a simply connected compactification of X0
0(G) independent of

the presentation of 0:

(1) 0 = Zr and G is any semisimple algebraic adjoint group with no exceptional
factors;

(2) 0 = π1(6), with 6 a closed orientable surface, and G = PGLn .

Proof. We will show that in both these cases, the character variety X0(G) is normal.
The result will then follow from Corollary 4.2 and Lemma 4.3.

When G = SLn,GLn , SOn , or Sp2n , Sikora [2014, Theorem 2.1] has shown
that X0

Zr (G) is normal. Now since the left action of the center of G, denoted
Z(G), commutes with the conjugation action of G on Hom(Zr ,G), we conclude
XZr (G/Z(G))∼=XZr (G)/Z(G)r. In view of this, since normality is preserved under
GIT quotients XZr (G) is likewise normal for G = PSLn ∼= PGLn , PSOn , or PSp2n .

Now let G be a semisimple algebraic adjoint group with no exceptional factors.
Then G ∼= G1 × · · · × Gn , where each Gi is isomorphic to a simple algebraic
adjoint group of type An, Bn, Cn, Dn . By Lemma 4.4 and the previous paragraph
XZr (G1× · · ·×Gn) ∼= XZr (G1)× · · ·×XZr (Gn) is normal.

In the second case, Simpson [1994a; 1994b] has shown that Hom(π1(6),GLn)

is a normal variety. The group Z = Hom(π1(6), Z(GLn)), which is isomorphic
to G

b1(6)
m , acts on Hom(π1(6),GLn) by left multiplication, and we have

Hom(π16,GLn)//Z ∼= Hom0(π1(6),PGLn),

where the right-hand side denotes the identity component. Since the GIT quotient
of a normal variety is normal, we find Hom0(π1(6),PGLn), and consequently
X0
π1(6)

(PGLn), are normal. �

We have conjectured that for certain groups 0 whose abelianization is free abelian
(which we call exponent canceling groups), that X0

0(G) is simply connected; see
[Biswas et al. 2015b, Conjecture 2.7]. We also expect that X0

0(G) is normal in
these cases. Consequently, we now make:

Conjecture 4.6. The normalized wonderful compactification of X0
0(G) is a sim-

ply connected compactification of X0
0(G) for all exponent canceling 0 and any

semisimple adjoint type complex algebraic group G.

5. Boundary divisors

In this section we continue to work over C. Given a complex projective variety X
with a distinguished dense open affine subvariety A ⊂ X, we will use the term
boundary divisor to refer to hypersurfaces of X (that is, irreducible codimension 1
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subvarieties) contained in X \ A. By Theorem 2.1, the complement G \G is a union
of r = rank(G) smooth boundary divisors, and each of these divisors is the closure
of a G×G-orbit.

Now let Di be a boundary divisor of G. Then there exist

mI1, . . . ,mImi
∈ Gr(n, g× g),

where each I j ⊂ {1, . . . , r}, so that

Di =
⋃

j

(G×G) ·mI j
∼=

⋃
j

(G×G)/Stab(mI j ).

In particular, each boundary divisor is isomorphic to a union of homogeneous
spaces, each a quotient by a closed subgroup (since stabilizers of algebraic group
actions are always algebraic subgroups).

Given a surjective, continuous map q : X→ Y, we say that A ⊂ X is saturated
with respect to q if A = q−1(q(A)).

Lemma 5.1. Let V be an affine G-variety and W a compactification of V on
which the G-action extends. Let L be an ample line bundle with a G-invariant
section whose nonzero locus is exactly V. Assume that each boundary divisor
of W is saturated with respect to the GIT quotient map W → W//L G. Then the
boundary divisors of W//L G, with respect to the open subvariety V//G, are exactly
the components of (W \ V )//L G.

Proof. As the G-action extends to W, we see that V is a G-stable affine open subset
of W, and the boundary divisors in W \ V are unions of G-orbits. The usual gluing
construction for the GIT quotient (see [Dolgachev 2003, Section 8.2]) shows that
V//G is an affine open subvariety in W//L G. Since the boundary divisors in W \ V
are saturated, W \V is itself saturated, so we find that (W//L G)\ (V//G) is exactly(⋃

i Di
)
//L G where the Di ’s are the boundary divisors in W \ V. �

In [Biswas et al. 2014] parabolic character varieties of free groups are defined
and studied. We recall their definition. Let G be a complex reductive group, and let
G1, . . . ,Gm be closed subgroups. Then G acts on the product

Gn
×

∏
1≤ j≤m

G/G j

by

g·(h1, . . . , hn, g1G1, . . . , gmGm) = (gh1g−1, . . . , ghng−1, gg1G1, . . . , ggmGm).

The quotient (Gn
×
∏

1≤ j≤m G/G j )//G is the parabolic character variety of the
free group of rank n with parabolic data {G/G j }

m
j=1. We note that when the Gi ’s

are reductive, as assumed in [Biswas et al. 2014], the homogeneous spaces G/Gi

are affine, and when the Gi ’s are parabolic, the homogeneous spaces G/Gi are
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projective. In general, the homogeneous spaces G/Gi are quasiprojective [Borel
1991, Theorem 6.8].

Theorem 5.2. The boundary divisors in G r//LG are unions of parabolic character
varieties of free groups.

Proof. As noted above the boundary divisors in G are unions of homogeneous
spaces of G ×G, and by Theorem 2.1 each boundary divisor is the closure of a
single G×G-orbit. Therefore, G r

\Gr consists of unions of products of G×G-
homogeneous spaces. Since the conjugation action is a restriction of the G ×G-
action and by Lemma 3.1 there exists a G × G-equivariant section s to L such
that Gr is the nonvanishing locus of s, the boundary divisors of Gr are saturated
with respect to the GIT quotient map for the conjugation action. The action of
conjugation on an orbit corresponds, under the isomorphism between the orbit and
the corresponding homogeneous space, to the left action on the homogeneous space.
Thus, by Lemma 5.1 and the definition of parabolic character variety of free groups,
the result follows. �

Remark 5.3. As shown in [Esposito 2012], the closure of an orbit in G under the
conjugation action need not be a finite union of suborbits. Therefore, the boundary
divisors in Theorem 5.2 need not be finite unions of parabolic character varieties.

Example 5.4. In Example 2.5 we see that the sole boundary divisor of the won-
derful compactification of PSL2(C) is isomorphic to CP1

× CP1, a product of
homogeneous spaces. Therefore, in Example 3.7, given Theorem 5.2, we have
that XF2(PSL2(C)) \XF2(PSL2(C)) consists of GIT quotients of the diagonal left
multiplication action of PSL2(C) on products of CP1

×CP1. This is an example
of a parabolic character variety as it is a left diagonal quotient of a product of
homogeneous spaces.

It would be interesting to work out more examples (especially when 0 is not
free), or the above examples in more detail. We leave this to future work.

6. Poisson structures

Recall that a Poisson algebra is a Lie algebra in which the Lie bracket is also a
derivation in each variable. We call a quasiprojective variety X over C a Poisson
variety if the sheaf of regular functions on X, denoted O(X), is equipped with the
structure of a sheaf of Poisson algebras. In this case, the sheaf of holomorphic
functions on X sm (where X sm is the smooth locus of X ) becomes a sheaf of Poisson
algebras as well, making X sm a complex Poisson manifold.

The Poisson bracket on the algebra of holomorphic functions O(X sm) is induced
by an exterior bivector field 3 ∈32(T 1,0 X sm), see for instance [Polishchuk 1997].
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In other words, if f, g ∈ O(X sm), then the bracket is given by { f, g} =3(d f, dg).
In local (complex) coordinates (z1, . . . , zk) the bivector takes the form

3=
∑
i, j

3i, j
∂

∂zi
∧

∂

∂z j

and so

(6-1) { f, g} =
∑
i, j

(
3i, j

∂

∂zi
∧

∂

∂z j

)
·

(
∂ f
∂zi

dzi ⊗
∂g
∂z j

dz j

)

=

∑
i, j

3i, j

(
∂ f
∂zi

∂g
∂z j
−
∂ f
∂z j

∂g
∂zi

)
.

In general, complex Poisson manifolds admit (2, 0)-symplectic foliations; see
[Laurent-Gengoux et al. 2013]. For f, g ∈ O(X sm), the Hamiltonian vector field
H f associated to f is defined by H f (g) = { f, g}. Restricting the bivector 3 to
symplectic leaves gives the symplectic form ω(Hg, H f ) = { f, g}.

For the rest of the section, G will denote a semisimple algebraic group of adjoint
type over C, with Lie algebra g. Let 〈〈 , 〉〉 denote the Killing form on g. Following
[Evens and Lu 2006], we give the double d := g⊕ g the symmetric, nondegenerate,
and Ad-invariant bilinear form

(6-2) 〈(x1, x2), (y1, y2)〉 = 〈〈x1, y1〉〉− 〈〈x2, y2〉〉.

A Lie subalgebra l ⊂ d is said to be Lagrangian if l is maximal isotropic with
respect to the form (6-2). In other words, l is Lagrangian if dimC l= dimC g and
〈x, y〉 = 0 for all x, y ∈ l.

A Lagrangian splitting of d= g⊕g is a vector space decomposition d= l1+ l2 in
which both l1 and l2 are Lagrangian (note that it is not assumed that d is isomorphic
to l1⊕ l2 as Lie algebras). It will be helpful to observe that the form (6-2) yields
an isomorphism l2

∼=
−→ (l1)

∗. It is clear that the diagonal Lie subalgebra g1 =

{(x, y) ∈ d | x = y} is Lagrangian in d. A Belavin–Drinfeld splitting, or just BD
splitting, is a Lagrangian splitting d = l1 + l2 where l1 = g1. In [Evens and Lu
2006, Example 4.4] BD splittings are classified via [Belavin and Drinfeld 1998].
There is always at least one such splitting, namely the standard Lagrangian splitting
l2 ⊂ b⊕ b− where b, b− are opposite Borel subalgebras of g (see [Evens and Lu
2006] for details).

Evens and Lu [2001; 2006] show that each Lagrangian splitting of d endows G
with a Poisson structure. Moreover, they show that each of these Poisson structures
restricts to a Poisson structure on each (G×G)-orbit, and hence to each boundary
divisor in G. We now review this construction.

For a complex manifold M, a bracket on the ring of holomorphic functions is
a Poisson bracket if and only if the associated bivector 3 satisfies [3,3] = 0,
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where [3,3] ∈33(T 1,0 M) is the Schouten bracket of 3 with itself; see [Dufour
and Zung 2005, Theorem 1.8.5]. We will say that 3 is a Poisson bivector when
[3,3] = 0. To simplify notation, given a holomorphic map f :M→ N of complex
manifolds, we write f∗ to denote both the derivative D f of f and the maps on
higher-order tensor fields induced by D f .

Let Ld ⊂ Gr(n, d) be the space of Lagrangians in d = g⊕ g. Clearly Ld is a
subvariety of the Grassmannian Gr(n, d). Following the construction in [Evens and
Lu 2001; 2006], the Evens–Lu bivector 3 on Ld is defined by choosing a basis
{xi }i for l1, and letting {yi } be the dual basis for l2 ∼= l∗1 (that is, {yi } is the basis
satisfying 〈xi , ξ j 〉 = δi j ). Now define

r = 1
2

∑
i

xi ∧ yi ∈3
2(g⊕ g)

and
3l = (ρl)∗(r)= 1

2

∑
i

(ρl)∗(xi )∧ (ρl)∗(yi ) ∈3
2(TlLd),

where ρl is defined below. We note3l is independent of the choice of basis {xi }i : for
instance, using the form (6-2), we may view r = 1

2

∑
i xi ∧ yi as an element of

(32d)∗, and evaluating r on an element (v1, f1)∧(v2, f2)∈3
2(l1⊕l

∗

1)
∼=32(d) gives

f1(v2)− f2(v2), as can be checked on the basis for32(l1⊕l
∗

1) constructed from {xi }i .
As discussed in [Evens and Lu 2006, Examples 4.3 and 4.4], this bivector induces

a Poisson structure on Ld and on each G×G orbit in Ld, as well as on the closure
of each orbit. In particular, 3 induces a Poisson structure on G, which is the closure
of the orbit (G×G) · g1 of the diagonal g1 ∈ Ld.

Our next goal is to understand how the Evens–Lu Poisson structure interacts
with the action of G×G on G, which is induced by the inclusion

G×G ↪→ Aut(g)×Aut(g)⊂ Aut(g⊕ g).

We recall some terminology regarding Poisson Lie groups and Poisson actions.
Let M1 and M2 be two Poisson varieties. A morphism M1 → M2 is called a
Poisson morphism (or ichthyomorphism) if the dual morphism O(M2)→O(M1) is
a morphism of Poisson sheaves. A Poisson algebraic group is an algebraic group G,
equipped with a Poisson structure for which the group multiplication G×G→G is
a Poisson map. The action of a Poisson algebraic group G on a Poisson variety M
is a Poisson action when the action map α : G×M→ M is a Poisson map, where
G×M has the product Poisson structure (defined by the sum of bivectors).

We introduce some notation that will be needed in the next lemma. Consider the
(left) action of G×G on Ld. For each l ∈ Ld, let

ρl : G×G→ Ld

be the map
ρl(g, h)= (g, h) · l.
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For each (g, h) ∈ G×G, let

ρ(g,h) : Ld→ Ld

be the map
ρ(g,h) = (g, h) · l,

and let
µR
(g,h) : G×G→ G×G and µL

(g,h) : G×G→ G×G

be the maps given by right- and left-multiplication by (g, h) (respectively).
Define the BD-bivector on G×G associated to the data {xi }i , {yi }i by

(6-3) 5(h,k) =
1
2

∑
i

[
(µR

(h,k))∗(xi ∧ yi )− (µ
L
(h,k))∗(xi ∧ yi )

]
.

Similar to the discussion of the Evens–Lu bivector, the BD-bivector is indepen-
dent of the choice of basis and so only depends on the BD splitting.

We will need the following standard fact.

Lemma 6.1. The bivector 5 is Poisson, and induces a Poisson–Lie group structure
on G×G called the BD–Poisson structure.

This fact is discussed in various places in the literature. As discussed in [Lu
and Mouquin 2017, Section 2], the element 1

2

∑
i xi ⊗ yi ∈ d⊗ d is a quasitriangu-

lar r-matrix, and a quasitriangular r-matrix always induces a Poisson Lie group
structure via the construction (6-3); see [Kosmann-Schwarzbach 1997, pp. 46–47].
Another discussion of this fact can be found in [Korogodski and Soibelman 1998,
Proposition 3.4.1].

The next lemma is a version of Proposition 2.17 in [Evens and Lu 2001].

Lemma 6.2. For any BD-splitting of g⊕ g, the action of G×G on Ld is a Poisson
action, where G×G has the BD–Poisson structure and Ld has the Evens–Lu Poisson
structure.

Proof. Written in terms of bivectors, the condition for the action to be Poisson is

(6-4) 3(g,h)·l = (ρ(g,h))∗(3l)+ (ρl)∗(5(g,h))

(see, for instance, [Dufour and Zung 2005, 5.4.5]).
To prove (6-4), observe that

ρ(g,h)·l = ρl ◦µ
R
(g,h) and ρ(g,h) ◦ ρl = ρl ◦µ

L
(g,h).

We now have

3(g,h)·l− (ρ(g,h))∗(3l)= (ρ(g,h)·l)∗(r)− (ρ(g,h))∗((ρl)∗(r))

= (ρl)∗((µ
R
(g,h))∗(r))− (ρl)∗((µ

L
(g,h))∗(r))

= (ρl)∗(5(g,h)). �
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We now turn to the conjugation action of G on G, which extends the conjugation
action of G on itself. Recall that G is the closure of (G×G)·g1 inside Ld. The map

G→ (G×G) · g1

defined by g 7→ (g, e) · g1 is a diffeomorphism. If we give G the G×G action

(h, k) · g = hgk−1,

then this diffeomorphism is G × G-equivariant. In particular, the action of the
subgroup G1 ⊂ G×G on G corresponds, under this diffeomorphism, to the (left)
conjugation action of G on itself; h · g = hgh−1.

We wish to study the conjugation action of G on G n and its interaction with
the Evens–Lu Poisson structure. However, a subtlety arises: if we equip G n and
(G ×G)n with the direct product Poisson structures arising from a BD-splitting
of d, then the action of (G ×G)n on G n is Poisson, but this does not imply that
the action of the diagonal subgroup {(g, g, . . . , g)} ⊂ (G×G)n is Poisson, as this
diagonal subgroup need not be a Poisson Lie subgroup.

Recent work of Lu and Mouquin [2017] provides a way to avoid this problem
by using the mixed product Poisson structure on G n. We briefly explain the setup,
specialized to our situation. Details may be found in Section 6 of the same work.
Let G be as above, and equip D = G×G with the above Poisson structure. Given
a Poisson D-space (Z , πZ ), let λ : d→ V1(Z) be the map induced by the action,
sending x ∈ d to the vector field (d/dt)|t=0 exp(t x)y; see [Lu and Mouquin 2017,
Section 1.4].

Lu and Mouquin define the mixed product Poisson bivector on Zn by the formula

πZn = (πZ , . . . , πZ )+
∑

1≤ j<k≤n

∑
i

(i j )∗λ(yi )∧ (ik)∗(λ(xi )),

where r =
∑

i xi ⊗ yi is the r-matrix defining the Poisson structure on D and
il : Z→ Zn is the inclusion into the l-th factor of the product. By [Lu and Mouquin
2017, Theorem 6.8 and Lemma 2.13], the diagonal action of D on (Zn, πZn ) is a
Poisson action. In particular, letting Z = G with πZ =3 (the Evens–Lu Poisson
bracket), we find that the diagonal action of D on (G n,3n) is Poisson, where 3n is
the mixed product Poisson structure on G n associated to 3. The diagonal subgroup
G1 ⊂ D (corresponding to the Lagrangian subalgebra g1 ⊂ d= g⊕g) is a Poisson
Lie subgroup of D, as explained (for instance) in [Evens and Lu 2007, Appendix].
Returning to the general setting above, this implies that the diagonal action of D
on Zn restricts to a Poisson action of G = G1 on (Zn, πZn ); note that this is
precisely the action of G given by the diagonal embedding of G into Dn

= G2n. In
our case, these facts lead to the following result:



WONDERFUL COMPACTIFICATION OF CHARACTER VARIETIES 429

Proposition 6.3. Let G be a semisimple group of adjoint type, and fix a BD-splitting
of g⊕ g, with associated quasitriangular r-matrix r ∈ 32(g⊕ g). Equip G with
the Poisson structure induced by r , and equip G n with the mixed product Poisson
structure associated to the Evens–Lu Poisson structure on G. Then the diagonal
action of G on G n is Poisson, and restricts to the diagonal conjugation action of G
on Gn

⊂ G n.

It is well known that if X is a Poisson manifold and a Lie group G acts on X
through Poisson maps, then the G-invariant functions on X form a Poisson algebra;
see for instance [Dufour and Zung 2005, p. 24]. The following proposition is a
version of this statement.

Proposition 6.4. Let X be a quasiprojective Poisson variety and let G be a reductive
algebraic group that is a Poisson Lie group. If G acts on X and the action map
X ×G→ X is Poisson, then with respect to any G-linearized ample line bundle L ,
the GIT quotient X//L G is a Poisson variety and the quotient map X→ X//L G is a
Poisson map.

Proof. This is a consequence of Property (1) of Lemma 5.4.5 in [Dufour and
Zung 2005] which characterizes Poisson actions in terms of bivectors. The explicit
statement, in the affine case, is given in [Laurent-Gengoux et al. 2013, Proposi-
tion 5.33]. In the quasiprojective case, X//L G is built from open affine subvarieties;
see [Dolgachev 2003, Section 8.2], so one can apply the affine case locally. A
detailed discussion is provided in the Appendix. �

Theorem 6.5. There exists a Poisson structure on the wonderful compactification
of a free group character variety over C, and also on its boundary divisors.

Proof. The Poisson structure on XFr (G) follows directly from Propositions 6.3
and 6.4.

Since each boundary divisor of G r is a union of products of orbits where each
admits a Poisson structure (restricted from that on G), the same argument as above
shows that the Poisson structures on the boundary divisors of G r descend to the
boundary divisors of XFr (G). �

Since the boundary divisors of XFr (G) are unions of parabolic free group char-
acter varieties, we immediately conclude:

Corollary 6.6. There exists a Poisson structure on those parabolic character vari-
eties of free groups that lie inside the boundary divisors of XFr (G).

We call the Poisson structures shown to exist above the wonderful Poisson
structures.

In [Goldman 1984; 1986] it was shown that there is a Poisson structure on
Hom(π1(6g,n),G)//G where6g,n is an orientable surface of genus g with n disjoint
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boundary components; see also [Lawton 2009]. Moreover, the Casimirs (those
functions that Poisson commute) are exactly the invariant functions restricted to the
boundary components.

Question 6.7. How does Goldman’s Poisson structure on Gr//G relate to the
wonderful Poisson structures on Gr//LG, and G r//G?

Remark 6.8. Given an affine Poisson variety V, the Poisson bracket { , }V is
determined by its action on the coordinate ring C[V ] by the Stone–Weierstrass
theorem. Suppose V has Casimirs {c1, . . . , cm}. Then the algebra

A := C[V ]/(c1− λ1, . . . , ck − λk),

where λ1, . . . , λk ∈C, is a Poisson algebra with bracket defined by { f + I, g+ I } =
{ f, g}V + I where I is the ideal (c1 − λ1, . . . , ck − λk). Therefore, the variety
Spec(A) is an affine Poisson variety.

Now applying Remark 6.8 to the setting of parabolic character varieties of
free groups we see that whenever the parabolic data {G/Hi } are isomorphic to
G-conjugation orbits (equivalently Hi ’s are isomorphic to conjugation stabilizers),
then the Goldman Poisson bracket on Gr//G with some set of its Casimirs fixed
(fixing some set of the boundaries up to conjugation is equivalent to fixing some set
of the Casimirs) determines a Poisson structure on the parabolic character variety of
a free group resulting from fixing some (but not all) the boundaries to conjugation
orbits. Therefore, we have a Goldman-type Poisson structure on certain parabolic
character varieties of free groups.

Question 6.9. How does this Goldman-type Poisson structure compare to the won-
derful Poisson structures from Corollary 6.6?

Appendix: Poisson structures on GIT quotients
by Arlo Caine and Sam Evens

We explain how to put a Poisson structure on a quotient of a linearized irreducible
Poisson algebraic variety by the action of a reductive Poisson algebraic group G. We
discuss the affine setting, and then we apply the affine case to the general situation.

Quotient of an affine variety. We explain how to put a Poisson structure on the
quotient of an affine variety. These results are in [Yang 2002] and in [Laurent-
Gengoux et al. 2013].

As above, let (G, πG) be a reductive Poisson linear algebraic group. Denote
the Poisson Lie algebra structure on the coordinate ring k[G] by {φ1, φ2}G for
φ1, φ2 ∈ k[G].

Let (X, { , }X ) be a Poisson algebraic variety, i.e., { , } makes the sheaf of regular
functions OX into a Poisson algebra. Assume that X is a G-variety with action
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map a : G × X → X, and denote by p : G × X → X the projection p(g, x) = x .
The sheaf of functions OG×X =OG ⊗k OX then acquires the structure of a Poisson
Lie algebra, which is uniquely determined by the property (see [Korogodski and
Soibelman 1998], Proposition 1.2.10, p. 9):

(∗) {φ1⊗ f1, φ2⊗ f2}= {φ1, φ2}G⊗ f1 f2+φ1φ2⊗{ f1, f2}X , φi ∈OG, fi ∈OX .

Suppose for the remainder of this subsection that X is affine, so we may work
with regular functions k[G× X ] ∼= k[G]⊗k k[X ]. Note that p∗( f )= 1⊗ f using
this identification. By formula (∗), it follows that p : G× X→ X is Poisson.

Remark A.1. Let f ∈ k[X ], and k[X ]G the ring of G-invariant functions on X.
Then f ∈ k[X ]G if and only if p∗( f )= a∗( f ).

Lemma A.2. Let X be an affine Poisson G-variety. If a : G× X→ X is a Poisson
morphism, then k[X ]G is a Poisson subalgebra of k[X ].

Proof. Since a is a Poisson morphism, we have a∗{ f1, f2}X = {a∗ f1, a∗ f2}G×X for
f1, f2∈k[X ]. Suppose f1, f2∈k[X ]G. Using Remark A.1, a∗( fi )= p∗( fi )=1⊗ fi .
It follows that

a∗{ f1, f2}X = {1⊗ f1, 1⊗ f2}G×X = 1⊗{ f1, f2}X = p∗{ f1, f2}X .

Again by Remark A.1, { f1, f2}X ∈ k[X ]G. �

Now assume that G is reductive. Then k[X ]G is a finitely generated k-algebra,
and by definition the geometric invariant theory quotient X//G = Spec(k[X ]G), or
in other words, X//G is the affine variety with ring of regular functions k[X//G] =
k[X ]G. There is a quotient morphism q : X → X//G with the property that
q∗ : k[X//G] → k[X ] is the inclusion of invariant functions.

By Lemma A.2, k[X//G] is a Poisson algebra, so X//G is a Poisson algebraic
variety. Since the inclusion q∗ : k[X//G] → k[X ] is Poisson, it follows that
q : X→ X//G is Poisson. Therefore we have proved the following proposition:

Proposition A.3. If (G, πG) is a reductive Poisson linear algebraic group and
(X, { , }X ) is an affine Poisson algebraic variety, and the action map G× X→ X is
Poisson, then X//G is a Poisson algebraic variety, and the morphism q : X→ X//G
is Poisson.

Quotient of a G-linearized variety. In this section, we explain how to put a Poisson
structure on a GIT quotient of a linearized irreducible G-variety X. Recall the
notions of G-linearized line bundle L on X and semistable locus from Section 3. The
semistable locus X ss

L =
⋃

si
Xsi is a finite union of open affine G-stable subsets Usi

of X, where Usi is the nonvanishing locus of the section si of a power of L . Let
Ysi :=Usi //G be the quotient of the affine G-variety Usi . Then the quotient X//L G
has an open affine cover X//L G =

⋃
Ysi ; see [Dolgachev 2003, Theorem 8.1].
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We remark that if we are given a Poisson structure on a variety Z , there is an
induced Poisson structure on any open set U of Z . Indeed, we may assume that Z
is affine and U is covered by affine open sets Z f := {x ∈ Z : f (x) 6= 0}. The
Poisson structure on Z induces a Poisson Lie algebra structure on k[Z ], and we
can define a Poisson Lie algebra structure on k[Z f ] by the formula given in the
proof of Lemma 1.3 in [Kaledin 2009]. These Poisson structures glue together on
Z f ∩ Zg = Z f g and hence define a Poisson structure on the open set U.

Proposition A.4. Let X be an irreducible Poisson G-variety with G-linearization L ,
where (G, πG) is a reductive Poisson algebraic group and the action morphism
a : G × X → X is a Poisson morphism. Then X ss

L and X//L G are Poisson and
q : X ss

L → X//L G is a Poisson morphism.

Proof. There is a finite set of G-invariant sections si with the property that the
nonvanishing locus Xsi of si , is open, affine and G-stable. Hence by Proposition A.3,
Yi :=Usi //G is an affine Poisson variety. Thus, we have a Poisson structure πi on
each open set Yi in the open cover X//L G=

⋃
Yi . The functions on the intersections

Yi ∩ Y j form a subring in the fraction field k(Yi ), and the above formula from
[Kaledin 2009] implies that πi and π j coincide on the sheaf of functions on Yi ∩Y j

and thus glue to give an induced Poisson structure on X//L G. Since the morphism
q : X→Y is Poisson on the affine cover Ui→Yi for each of our invariant sections si ,
it follows that q is a Poisson morphism. �
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