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Our result contains as special cases the Frobenius theorem (1895) on the
number of solutions to the equation xn = 1 in a group, the Solomon theorem
(1969) on the number of solutions in a group to a system of equations having
fewer equations than unknowns, and the Iwasaki theorem (1985) on roots
of subgroups. There are other curious corollaries on groups and rings.

0. Introduction

The following result was proved in the nineteenth century.

Frobenius theorem [1895]. The number of solutions to the equation xn
= 1 in a

finite group is divisible by GCD(|G|, n) for any integer n.

This theorem was generalized in different directions; see, e.g., [Hall 1936;
Kulakoff 1938; Sehgal 1962; Brown and Thévenaz 1988; Yoshida 1993; Asai and
Takegahara 2001; Asai et al. 2013], and references therein. For example, Frobenius
[1903] himself obtained the following generalization:

for any positive integer n and any element g of a finite group G, the
number of solutions to the equation xn

= g in G is divisible by the
greatest common divisor of n and the order of the centralizer of g.

P. Hall [1936, Theorem II] showed that

in any finite group, the number of solutions to a system of equations in one
unknown is divisible by GCD(|C |, n1, n2, . . . ), where C is the centralizer
of the set of all coefficients and ni are exponent sums of the unknown in
the i-th equation.
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Here as usual, an equation over a group G is an expression of form v(x1, . . . , xm)=1,
where v is a word whose letters are unknowns, their inverses, and elements of G
(called coefficients). In other terms, the left-hand side of an equation is an element
of the free product G ∗ F(x1, . . . , xm) of G and the free group F(x1, . . . , xm) of
rank m (where m is the number of unknowns).

The following theorem is also about equations in groups and divisibility, but on
first view, it is not similar to the Frobenius theorem and its generalizations.

Solomon theorem [1969]. In any group, the number of solutions to a system of
coefficient-free equations is divisible by the order of the group provided the number
of equations is less than the number of unknowns.

This theorem was also generalized in different directions; see [Isaacs 1970;
Strunkov 1995; Amit and Vishne 2011; Gordon and Rodriguez-Villegas 2012;
Klyachko and Mkrtchyan 2014; 2017], and references therein. For instance, in
[Klyachko and Mkrtchyan 2014], it was shown that

in any group, the number of solutions to a system of equations (with
coefficients from this group) is divisible by the order of the intersection of
centralizers of all coefficients provided the rank of the matrix composed
of the exponent sums of the j-th unknown in the i-th equation is less than
the number of unknowns.

Solomon [1969] himself wrote:

“There seems to be no connection between this theorem and the Frobenius
theorem on solutions of xk

= 1.”

Nevertheless, a connection between the Frobenius and Solomon theorems exists.

Theorem 0. In any (not necessarily finite) group, the number of solutions to a (not
necessarily finite) system of equations in m unknowns is a multiple of the greatest
common divisor of the centralizer of the set of coefficients and the number 1m

1m−1
,

where 1i is the greatest common divisor of all minors of order i of the matrix of the
system, and the following conventions are assumed: 1i = 0 if i is larger than the
number of equations, 10 = 1, and 0

0 = 0.

We define the greatest common divisor GCD(G, n) of a group G and an integer n
as the least common multiple of orders of subgroups of G dividing n. The divisibility
is always understood in the sense of cardinal arithmetic: each infinite cardinal is
divisible by all smaller nonzero cardinals (and surely zero is divisible by all cardinals
and divides only zero). This means that GCD(G, 0)= |G| for any group G and, e.g.,
GCD(SL2(Z), 2018)= 2. Although, the reader will not lose much by assuming all
group to be finite; in this case, GCD(G, n)= GCD(|G|, n) by the Sylow theorem
(and because a finite p-group contains subgroups of all possible orders).
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The matrix of a system of equations over a group is the integer matrix A = (ai j ),
where ai j is the exponent sum of the j -th unknown in the i-th equation. For example,
the matrix of the system 

xay2
[x, y]2019(xby)3 = 1,

bx3 y[x, y]100(xby)4 = 1,

[x, y5
]x−2
= 1

(where x and y are unknowns, and a and b are coefficients, i.e., some fixed group
elements) has the form  4 5

7 5
−2 0

 .
As usual, the minors of order i are determinants of submatrices composed of entries
at the intersections of some i rows and i columns. In the example above, there are
three minors of order m (up to signs),

det
(

4 5
7 5

)
=−15, det

(
4 5
−2 0

)
= 10, det

(
7 5
−2 0

)
= 10,

and six minors of order m− 1: 4, 5, 7, 5,−2, 0. Thus, the theorem asserts that (in
this example) the number of solutions is divisible by

GCD
(

GCD(−15, 10, 10)
GCD(4, 5, 7, 5,−2, 0)

, |C(a)∩C(b)|
)
= GCD(5, |C(a)∩C(b)|).

Note that the agreements about boundary cases in Theorem 0 are natural. Indeed,
we always can add a fictitious equation 1 = 1 to make the number of equations
larger than m. We can also add a new variable z and the equation z = 1 (this does
not affect the number of solutions and makes m > 1). As for the philosophical
question on the interpretation of the fraction 0

0 , it can be understood arbitrarily, e.g.,
the reader may assume that 0

0 = 2019; in any case, Theorem 0 remains valid (but
weaker than under the suggested interpretation).

The meaning of the value 1m
1m−1

is as follows. It is well known (see, e.g., [Vinberg
2003]) that invertible integer elementary transformations of rows and columns can
transform any integer matrix A into a diagonal matrix, where the diagonal entries
divide each other (each diagonal entry divides the next one). This diagonal matrix is
uniquely determined up to the signs of diagonal elements (and is sometimes called
the Smith form of A); the diagonal elements of the Smith form (sometimes called
the invariant factors of A) equal the ratios 1i

1i−1
. Thus, in these terms, 1m

1m−1
is the

m-th invariant factor of the matrix of the system of equations. One can also say that
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the absolute value of 1m
1m−1

is the period (exponent) of the quotient of the
free abelian group Zm by the subgroup generated by the rows of the matrix
of the system of equations

(with the stipulation that this ratio vanishes if and only if the period is infinite).
The Frobenius and Solomon theorems as well as their generalizations stated

above are special cases of Theorem 0.
The following theorem is on first view similar to neither the Frobenius theorem

nor the Solomon theorem.

Iwasaki theorem [1982]. For any integer n, the number of elements of a finite
group G whose n-th powers lie in a subgroup H ⊆ G is divisible by |H |.

This beautiful theorem remains (for some reason) not widely known. In [Sato
and Sakurai 2007], it was noticed that the divisibility by |H | still holds for the
number of solutions to the “equation” xn

∈ HgH , where HgH is any double coset
of a subgroup H . Clearly, the Iwasaki theorem and its generalizations deal with
predicates that are not equations in the usual sense. Let us say that a generalized
equation over a group G is an expression of the form w(x1, . . . , xn)∈ HgH , where
H is a subgroup of G 3 g, and w(x1, . . . , xm) is an element of the free product
G ∗ F(x1, . . . , xm) of G and a free group; in other terms, w is a word in the
alphabet G t {x±1

1 , . . . , x±1
m }. The elements of G occurring in this word are called

the coefficients of the generalized equation. A system of generalized equations, a
solution to this system, and a matrix of this system are defined in a natural way.

In [Klyachko and Mkrtchyan 2017], the following generalization of the Iwasaki
theorem was obtained:

the number of solutions to a system of generalized coefficient-free equa-
tions whose right-hand sides are double cosets of the same subgroup H
(e.g., {x100 y2019

[x, y]4 ∈ Hg1 H, [x5, y6
]
7(xy)8 ∈ Hg2 H, . . . }) is divisi-

ble by |H |.

The following theorem includes all results stated above.

Theorem 1. Let S be a (not necessarily finite) system of generalized equations in
finitely many unknowns x1, . . . , xm over a group G and let P be its subsystem:

S = {ui (x1, . . . , xm) ∈ Hi gi Hi | i ∈ I } ⊇ P = {u j (x1, . . . , xm) ∈ H j g j H j | j ∈ J },

(where J ⊆ I , ui ∈ G ∗ F(x1, . . . , xm), gi ∈ G, and Hi are subgroups of G). Then
the number of solutions to S in G is divisible by the greatest common divisor of the
subgroup

H̃=
(⋂

j∈J

N (H j g j H j )

)
∩

( ⋂
i∈I\J

Hi

)
∩(the centralizer of the set of coefficients of S)
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and the number 1m
1m−1

, where 1k is the greatest common divisor of all minors of
order k of the matrix of the subsystem P. Henceforth, N (A) := {g∈G | g−1 Ag= A}
is the normalizer of a subset A in a group G.

To deduce Theorem 0 from Theorem 1, we rewrite the system of equations
in the “generalized” form, i.e., we put S = P = {u1(x1, . . . , xm) ∈ {1}1{1} and
u2(x1, . . . , xm) ∈ {1}1{1}, . . . } and note that the normalizer of the trivial subgroup
is the whole group.

On the other hand, setting

S = {u1(x1, . . . , xm) ∈ Hg1 H, u2(x1, . . . , xm) ∈ Hg2 H, . . . }

(where ui ∈ F(x1, . . . , xm)),

P =∅,

we obtain the above-mentioned generalization (from [Klyachko and Mkrtchyan
2017]) of the Iwasaki theorem.

As a matter of fact, a relation between Solomon’s and Iwasaki’s theorems was
established in [Klyachko and Mkrtchyan 2014; 2017]; our achievement consists
only of adding “Frobeniusness”. The main theorem of [Klyachko and Mkrtchyan
2017] says that, if we have a group F with a fixed epimorphism onto Z and some
set of homomorphisms from F into another group G, and this set is invariant with
respect to some natural transformations (depending on the epimorphism F→ Z

and a subgroup H of G), then the number of these homomorphisms F → G is
divisible by |H |. Choosing suitable sets of homomorphisms, the Klyachko and
Mkrtchyan [2017] obtained Solomon’s and Iwasaki’s theorems as special cases of
their main theorem.

Our main theorem (see Section 1) is a modular analogue of the main theorem
of [Klyachko and Mkrtchyan 2017]: we take an epimorphism F→ Z/nZ instead
of F→ Z. One can say that the main theorem of this paper is related to the main
theorem of [Klyachko and Mkrtchyan 2017] in the same way as Theorem 0 to the
generalization (from [Klyachko and Mkrtchyan 2014]) of the Solomon theorem
mentioned in the beginning of this paper. An important role in our argument is
played by an elementary (but nontrivial) lemma due to Brauer [1969]. Actually,
we need this lemma not to prove the main theorem but rather to explain that its
statement per se makes some sense. For readers’ convenience, we give a proof of
the Brauer lemma. Section 5 contains the proof of the main theorem.

In Section 2, we deduce Theorem 1 from the main theorem. As another corollary,
we obtain a theorem on equations in rings (Theorem 4 in Section 3) that implies,
e.g., the following fact, which can be considered as a generalization of the Frobenius
theorem in another direction:
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for any representation ρ : G → GL(V ) of a group G and any words
ui (x1, . . . , xm) ∈ F(x1, . . . , xm), the number of solutions to the equation

k∑
i=1

(ρ(ui (x1, . . . , xm)))
li = id

is divisible by 
GCD(G,GCD{li }) always,
GCD(G,LCM{li }) if k ≤ m,
|G| if k < m.

In Section 4, we show that the main theorem implies some fact about the number
of crossed homomorphisms, generalizing earlier known results. In the last section,
we discuss open questions.

Notations and conventions. We use mainly standard notations and conventions.
Note only that, if k ∈ Z and x and y are elements of a group, then x y , xky , and x−y

denote y−1xy, y−1xk y, and y−1x−1 y, respectively. The commutator subgroup of
a group G is denoted by G ′ or [G,G]. If X is a subset of a group, then |X |, 〈X〉,
〈〈X〉〉, C(X), and N (X) are the cardinality of X , subgroup generated by X , normal
closure of X , centralizer of X , and normalizer of X . The index of a subgroup H
of a group G is denoted by |G : H |. The letter Z denotes the set of integers. If R
is an associative ring with unity, then R∗ denotes the group of units of this ring.
GCD and LCM are the greatest common divisor and least common multiple. The
symbol exp G denotes the period (exponent) of a group G if this period is finite;
we assume exp G = 0 if the period is infinite. The symbol 〈g〉n denotes the cyclic
group of order n generated by an element g. The free group of rank n is denoted
by F(x1, . . . , xn) or Fn . The symbol A ∗ B denotes the free product of groups A
and B.

Let us recall once again that the finiteness of groups is not assumed by default;
the divisibility is always understood in the sense of cardinal arithmetic (an infinite
cardinal is divisible by all nonzero cardinals not exceeding it), and GCD(G, n) :=
LCM{|H | | H is a subgroup of G, and |H | divides n}.

1. Main theorem

A group F equipped with an epimorphism F → Z/nZ (where n ∈ Z) is called
an n-indexed group. This epimorphism F→ Z/nZ is called degree and denoted
deg. Thus, to any element f of an indexed group F , an element deg f ∈ Z/nZ is
assigned; the group F contains elements of all degrees and deg( f g)= deg f +deg g
for any f, g ∈ F .
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Suppose that φ : F→ G is a homomorphism from an n-indexed group F to a
group G and H is a subgroup of G. The subgroup

Hφ =
⋂
f ∈F

Hφ( f )
∩C(φ(ker deg))

is called the φ-core of H [Klyachko and Mkrtchyan 2017]. In other words, the
φ-core Hφ of H consists of elements h such that hφ( f )

∈ H for all f , and hφ( f )
= h

if deg f = 0.

Main theorem. Suppose that an integer n is a multiple of the order of a subgroup H
of group G and a set8 of homomorphisms from an n-indexed group F to G satisfies
the following conditions.

(I) 8 is invariant with respect to conjugation by elements of H :

if h ∈ H and φ ∈8, then the homomorphism ψ : f 7→ φ( f )h lies in 8.

(II) For any φ ∈8 and any element h of the φ-core Hφ of H , the homomorphism
ψ defined by

ψ( f )=


φ( f ) for all elements f ∈ F of degree zero,
φ( f )h for some element f ∈ F of degree one

(and, hence, for all degree-one elements)

belongs to 8 too.

Then |8| is divisible by |H |.

Note that the mappingψ from condition (I) is a homomorphism for any h∈G, and
the formula for ψ from condition (II) defines a homomorphism for any h ∈ Hφ (as
explained below). Thus, conditions (I) and (II) only require these homomorphisms
to belong to 8.

Lemma 2. Suppose that φ : F→ G is a homomorphism from an n-indexed group
F to a group G, f1 ∈ F is an element of degree one, and g ∈ G. Then the
homomorphism ψ : F→G such that ψ( f )=φ( f ) for all f ∈ F of degree zero and
ψ( f1)= φ( f1)g exists if and only if g ∈ C(φ(ker deg)) and (φ( f1)g)n = (φ( f1))

n .

Proof. The group F can be presented in the form

F ' (F0 ∗ 〈x〉∞)/〈〈{ux u− f1 | u ∈ F0} ∪ {xn f −n
1 }〉〉, where F0 = ker deg.

Therefore, the mapping ψ : F0 ∪ {x} → G can be extended to a homomorphism if
and only if its restriction to F0 is a homomorphism and the relations ux

= u f1 (for
u ∈ F0) and xn

= f n
1 are mapped to true equalities in G:

(∗) ψ(u)ψ(x) = ψ(u f1) and ψ(x)n = ψ( f n
1 ).
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If the restrictions of ψ and φ to F0 coincide and ψ(x) = φ( f1)g, then the first
equality of (∗) says that g commutes with φ(u) (for all u ∈ F0), while the second
equality of (∗) takes the form (φ( f1)g)n = (φ( f1))

n . �

Recall also the following beautiful (but not widely known) fact.

Brauer lemma [1969]. If U is a finite normal subgroup of a group V , then, for all
v ∈ V and u ∈U , the elements v|U | and (vu)|U | are conjugate by an element of U.

Proof. The group Z acts by permutations on the subgroup U :

a ◦ i = v−i a(vu)i (where i ∈ Z and a ∈U ).

Let m be the minimum length of an orbit. In other words, m is the minimum length
of a cycle in the decomposition of the permutation a 7→ v−1avu (of U ) into the
product of independent cycles. The set X = {a ∈ U | a ◦m = a} is the union of
all orbits of length m; therefore, |X | is divisible by m. On the other hand, (by
definition of the action) X ={a ∈U | v−ma(vu)m = a}= {a ∈U | a−1vma= (vu)m}
and, hence, |X | is the order of the centralizer of vm in U (because, in any group, a
nonempty set of the form {x | x−1 yx = z} is a coset of the centralizer of y). Thus,
|X | divides |U | and, therefore, m divides |U | and a ◦ |U | = a (if a lies in an orbit
of length m). �

These two lemmata imply immediately that the mapping ψ from condition (II)
is a homomorphism for any h ∈ Hφ because (φ( f )h)n = (φ( f ))n by the Brauer
lemma applied to U = Hφ ⊂ V = Hφ · 〈φ( f1)〉 3 φ( f1) = v. Indeed, we obtain
the equality (φ( f1)h)|Hφ | = (φ( f1))

|Hφ |u for some u ∈ Hφ and, hence, (φ( f1)h)n =
(φ( f1))

nu
= (φ( f n

1 ))
u (because |Hφ| divides n). It remains to note that u ∈ Hφ

commutes with φ( f n
1 ) because deg f n

1 = n = 0 ∈ Z/nZ. Thus, we obtain the
equality (φ( f1)h)n = (φ( f1))

n . It remains to refer to Lemma 2.
In the case n = 0 the main theorem was proved by Klyachko and Mkrtchyan

[2017]. So, our theorem is a “modular analogue” of their main result. On the other
hand, our main theorem is deduced (in Section 5) from this special case n = 0.

Lemma 3. In condition (II) of the main theorem, ψ( f ) ∈ φ( f )Hφ for all f ∈ F.

Proof. Indeed, if deg f = d, then f = f d
1 f0, where f1 is the (fixed) element of

degree one (from condition (II)) and f0 is an element of degree zero. Then

ψ( f )=ψ( f1)
dψ( f0)=(φ( f1)h)dφ( f0)

(E)
= φ( f1)

dφ( f0)h′=φ( f d
1 f0)h′=φ( f )h′,

where the equality (E) is valid for some h′ ∈ Hφ because h ∈ Hφ and φ(F)
normalizes Hφ . �
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2. Proof of Theorem 1

Let L ⊆ G be the subgroup generated by all coefficients of the system S. Take
as H any subgroup of the group H̃ whose order divides n := 1m

1m−1
, and put

F = L ∗ F(x1, . . . , xm),

8= {φ : F→ G | φ( f )= f for f ∈ L and φ(ui ) ∈ Hi gi Hi for i ∈ I }.

As the indexing deg : F→ Z/nZ, take an epimorphism whose kernel contains L
and all u j , where j ∈ J . Such an epimorphism exists because n is the period of the
finitely generated abelian group F/([F, F] · L · 〈{u j | j ∈ J }〉).

Let us verify that the conditions of the main theorem hold. Condition (I) holds
obviously for all h∈H (and even for all h∈ H̃ ) because (by definition) H̃ centralizes
L and normalizes double cosets Hi gi Hi .

Condition (II) holds also for all h ∈ Hφ because

• on L , the homomorphism ψ coincides with φ as L consists of zero-degree
elements,

• ψ(u j )= φ(u j ) for j ∈ J because again deg u j = 0, and

• for i ∈ I \ J , we have ψ(ui ) ∈ φ(ui )Hφ ⊆ φ(ui )Hi (where the inclusion ∈
follows from Lemma 3).

Thus, the main theorem implies that |8| is divisible by the order of any subgroup
H ⊆ H̃ whose order divides n, i.e., |8| is divisible by GCD(H̃ , n). It remains to
note that |8| is the number of solutions to S.

3. Rings and representations

A generalized homogeneous modulo n equation with a set of unknowns X over an
associative unital ring R is a finite expression of the form∑

i

∏
j

ci j x
ki j
i j = 0,

where coefficients ci j ∈ R, unknowns xi j ∈ X , and exponents ki j ∈ Z,

such that, for some mapping deg : X→ Z/nZ, the value
∑

j ki j deg xi j (called the
degree of the equation) does not depend on i (i.e., the “polynomial” in the left-hand
side of the equation is homogeneous with respect to some assigning of degrees to
variables), and 〈{deg x | x ∈ X}〉 = Z/nZ. (This means that the free group F(X) is
n-indexed with respect to the map deg.)

A system of equations is called generalized homogeneous modulo n if all equa-
tions of this system are generalized homogeneous modulo n (of possibly different
degrees) with respect to the same function deg : X→ Z/nZ.
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As we explain below, the set M = {n ∈ Z | a given system is generalized homo-
geneous modulo n} consists of all divisors of a number n0, called the homogeneity
modulus of the system. In other words, the homogeneity modulus is the maximal
number from M or zero if M is infinite.

To find the homogeneity modulus, consider a homogenous system of linear
equations, where unknowns are degrees of variables and also (the negations of)
degrees of equations; these linear equations say that the degree of each monomial
equals the degree of the corresponding equation. The matrix of this system (called
the homogeneity matrix of the initial system of equations) has the following form.
Suppose that X = {x1, . . . , xm}. The homogeneity matrix of p-th equation is the
integer matrix Ap = (akl) of size

(the total number of monomials in the system)×(m+(the number of equations)),

where, for l ≤ m, the (k, l)-th entry is the exponent sum of the l-th unknown in the
k-th monomial, the (m+ p)-th column consists of ones, and the remaining columns
are zero for l >m. The homogeneity matrix of the system of equations is composed
from the matrices Ap written one under another: A =

(
A1 A2 · · ·

)T
. For example,

the system of equations {ax3 y2
+ y7bx − 1= 0, xy2x + y7x5

= 0} (where x and y
are unknowns and a, b ∈ R are coefficients) has the homogeneity matrix

A =


3 2 1 0
1 7 1 0
0 0 1 0
2 2 0 1
5 7 0 1

=
(

A1

A2

)
, where A1 =

3 2 1 0
1 7 1 0
0 0 1 0

 and A2 =

(
2 2 0 1
5 7 0 1

)
.

Homogeneity-modulus lemma. The homogeneity modulus of a system of s equa-
tions in m unknowns over an associative ring with unity is 1m+s

1m+s−1
, where 1i is

the greatest common divisor of all minors of order i of the homogeneity matrix of
the system. As always, the following conventions are assumed: 1i = 0 if the total
number of monomials in all equations is less than i , 10 = 1, and 0

0 = 0.

Proof. Let A be the homogeneity matrix. We have to find the maximal number n
such that the system of linear homogeneous equations AX = 0 (in m+ s variables)
has a solution in Z/nZ whose components generate Z/nZ as an additive group
(or, equivalently, the first m components of the solution generate Z/nZ, because
the equations say that the last s components are combinations of the first m ones).
In other words, n is the largest order of cyclic quotient of the finitely generated
group Zm+s/N , where N is the subgroup generated by rows of A. As noted already,
the largest cyclic quotient n of Zm+s/N is 1m+s

1m+s−1
, as required. �

Theorem 4. Let R be an associative ring with unity and let G be a subgroup of
the multiplicative group of this ring. Then, for each system of equations over R in
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m unknowns, the number of its solutions lying in Gm is divisible by the greatest
common divisor of the homogeneity modulus of the system and the intersection of G
with the centralizer of the set of coefficients of the system.

Proof. Let G0 be the intersection of G and the centralizer of the set of coefficients
and let n be the homogeneity modulus. Consider the free group F = F(X) (where
X is the set of unknowns) and an epimorphism deg : F→ Z/nZ.

Let us apply the main theorem taking 8 to be the set of all homomorphisms
φ : F → G such that the tuple (φ(x1), . . . , φ(xm)) is a solution to the system of
equations (so, the number of solutions is |8|). Take H to be any subgroup of G0

of order dividing n. Condition (I) of the main theorem obviously holds. To verify
condition (II), choose an element t ∈ F of degree one and write each variable xi in
the form xi = tdeg xi yi , where yi = t− deg xi xi has degree zero. In new notation, each
equation w(x1, . . . , xm)= 0 takes the form v(t, y1, . . . , ym)= 0 and the exponent
sum of t in each term of this equation is the same (modulo n). Now, note that, if
v(φ(t), φ(y1), . . . , φ(ym))= 0 and h ∈ Hφ , then v(φ(t)h, φ(y1), . . . , φ(ym))= 0.
This result follows from the (right) divisibility of v(φ(t)h, φ(y1), . . . , φ(ym)) by
v(φ(t), φ(y1), . . . , φ(ym)) due to the following fact.

Fact [Klyachko and Mkrtchyan 2017, Lemma 1]. If M is a monoid, bi , a, h ∈ M ,
elements a and h are invertible, and the elements a−shas , where s ∈ Z, commute
with all bi , then, for any expression of the form u(t) = b0tm1b1 · · · tml bl , where
mi ∈ Z, we have

u(ah)=


ha−1

ha−2
· · · ha−k

u(a) if k =
∑

mi > 0,
h−1h−a

· · · h−a−1−k
u(a) if k =

∑
mi < 0,

u(a), if k =
∑

mi = 0.

We apply this fact to each term of v; we also use that tn has degree zero and
(φ(t)h)n = (φ(t))n according to Lemma 2.

Thus, the main theorem implies that |8| (i.e., the number of solutions to the
system of equations) is divisible by |H | as required (because H is an arbitrary
subgroup of G0 whose order divides the homogeneity modulus). �

Example. If ρ : G→ R∗ is a homomorphism from a finite group G to the multi-
plicative group of an associative ring R with unity (e.g., ρ : G→GL(V ) is a linear
representation of G), then, for any words ui (x1, . . . , xm) ∈ F(x1, . . . , xm),

the number of solutions to the equation
k∑

i=1

(ρ(ui (x1, . . . , xm)))
li = 1

is divisible by


GCD(G,GCD{li }) always,
GCD(G,LCM{li }) if k ≤ m,
|G| if k < m.
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To show this, it suffices to apply Theorem 4 to the subgroup ρ(G)⊆ R∗. The
homogeneity matrix of this equation has the form

B =

 A
1
...

0 · · · 0 1

 ,
where the last row corresponds to 1 in the right-hand side of the equation, and the
i-th row of the matrix A corresponds to the i-th term in the left-hand side of the
equation and, therefore, all elements of this row are divisible by li . It remains to
note that the j-th invariant factor of the matrix B coincides with the ( j − 1)-th
invariant factor of A and use the following fact, which we leave to readers as an
easy exercise:

if the i-th row of an integer matrix k×m is divisible by li , then the m-th
invariant factor of this matrix

is divisible by GCD{li } always,
is divisible by LCM{li } for k = m,
vanishes for k < m.

Note that Theorem 0 can be obtained as a corollary of Theorem 4. Indeed, take
R = ZG; the group ring contains G as a subgroup of the multiplicative group. Any
system of equations over G can be rewritten in “ring” form: {wi (x1, . . . )− 1= 0}.
It remains to note that the value 1m

1m−1
from Theorem 0 becomes exactly the homo-

geneity modulus from the homogeneity-modulus lemma.

4. Crossed homomorphisms

Suppose a group F acts (on the right) on a group B by automorphisms: ( f, b) 7→ b f .
Recall that a crossed homomorphism from F to B with respect to this action is a
mapping α : F → B such that α( f f ′) = α( f ) f ′α( f ′) for all f, f ′ ∈ F . Saveliy
Skresanov noted that the main theorem easily implies the following fact proved in
[Asai et al. 2013] (using character theory) for finite groups F and B.

Theorem 5. If a group F admitting an epimorphism onto Z/nZ acts by automor-
phisms on a group B, then the number of crossed homomorphisms F → B is
divisible by GCD(B, n).

Proof. The set of crossed homomorphisms is in one-to-one correspondence with
the set 8 of (usual) homomorphisms from F to the semidirect product G = F i B
(with respect to the given action) such that their compositions with the projection
π : F i B→ F is the identity mapping F → F . We have to show that |8| is a
multiple of |H | for any subgroup H ⊆ B whose order divides n (by definition of
GCD(B, n)).
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The group F is n-indexed by the hypothesis of Theorem 5. Therefore, the
assertion follows immediately from the main theorem. Conditions of the main
theorem hold by trivial reasons: condition (I) is fulfilled because π(h−1gh)= π(g),
and condition (II) follows immediately from Lemma 3 because π(gh)= π(g) (for
g ∈ G and h ∈ H ). �

5. Proof of the main theorem

Take an element f1 ∈ F of degree one, put F0 = ker deg ⊂ F , and consider the
semidirect product F̃ = 〈a〉∞i F0, where a acts on F0 as f1 does: ua

= u f1 for
u ∈ F0. The group F̃ admits a natural indexing (0-indexing) deg : F̃→ Z (denoted
by the same symbol deg). The kernel of this map is F0 and deg a = 1. Moreover,
there is a natural epimorphism α : F̃→ F mapping a to f1 and identity on F0. Let
us verify that the conditions of the main theorem hold for the set 8̃={φ◦α |φ ∈8}
of homomorphisms from F̃ to G.

Condition (I) holds obviously. To verify condition (II), take the degree-one
element a ∈ F̃ and some homomorphism φ̃ = φ ◦α ∈ 8̃ (where φ ∈8). Then the
homomorphism ψ̃ from condition (II) has the form

(∗∗) ψ̃( f̃ )=
{
φ( f̃ ) for all elements f̃ ∈ F0,

φ( f1)h for f̃ = a,
where φ ∈8 and h ∈ Hϕ̃.

We have to show that ψ̃ lies in 8̃, i.e., has the form ψ̃ = φ′ ◦α, where φ′ ∈8. Note
that Hϕ̃=Hφ, because the images of φ̃=φ◦α and φ coincide, and the images of zero-
degree elements for these homomorphisms coincide: φ̃(ker deg)= φ̃(F0)= φ(F0).
Equation (∗∗) takes the form

ψ̃( f̃ )=
{
φ( f̃ ) for f̃ ∈ F0,

φ( f1)h for f̃ = a,
where φ ∈8 and h ∈ Hφ.

This means that ψ̃ = ψ ◦α, where

ψ( f )=
{
φ( f ) for f ∈ F0,

φ( f1)h for f = f1,
where φ ∈8 and h ∈ Hφ.

The homomorphism ψ : F→ G lies in 8 by condition (II) of the theorem we are
proving. Therefore, ψ̃ ∈ 8̃. Thus, the conditions of the main theorem hold for
the set 8̃ of homomorphisms from the 0-indexed group F̃ to G. Therefore, |8̃| is
divisible on |H | by virtue of the main theorem of [Klyachko and Mkrtchyan 2017].
It remains to note that |8| = |8̃| since α is surjective. This completes the proof.

Note that we do not verify here that ψ defines a homomorphism; this is non-
obvious but true; see Section 1.
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6. Open questions

Theorems 0, 1, 4, and 5 assert that some numbers are multiples of the ratios of
two integers. Oddly, we do not know whether these ratios can be replaced by their
numerators.

Questions 6 and 7. Is it possible to replace the ratio 1m/1m−1 by its numerator
1m in Theorems 0 and 1?

For coefficient-free systems of equations, Question 6 is equivalent to the following
question posed in [Asai and Yoshida 1993] (for finite groups F and G):

is the number of homomorphisms from a finitely generated group F to a
group G divisible by GCD(|F/F ′|,G)?

This problem remains unsolved even for finite groups (as far as we know). A survey
of some results can be found in [Asai and Takegahara 2001]; e.g., the answer is
positive if F is abelian [Yoshida 1993].

Theorem 4 suggests a similar question.

Question 8. Is it possible, in Theorem 4, to replace the homogeneity modulus by its
numerator 1m+s (see the homogeneity-modulus lemma)?

As for Theorem 5, it also leads us to a similar question. Indeed, Theorem 5
implies, in particular, the following corollary.

Corollary. If a finitely generated group F acts by automorphisms on a group B,
then GCD(exp(F/F ′), B) divides the number of crossed homomorphisms F→ B.

Question 9. Is it possible, in this corollary, to replace the period exp(F/F ′) by the
order of this quotient group?

This question was posed for the first time in [Asai and Yoshida 1993] (for finite
groups F and B). To show the similarity of Questions 9 and 6, we recall that the
absolute value of the ratio 1m/1m−1 in Question 6 is the period of the quotient
group of the free abelian group Zm by the subgroup generated by the rows of the
matrix of the system of equations, while the absolute value of the numerator 1m is
the order of this quotient group.
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