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ON HOMOGENEOUS AND INHOMOGENEOUS
DIOPHANTINE APPROXIMATION OVER

THE FIELDS OF FORMAL POWER SERIES

YANN BUGEAUD AND ZHENLIANG ZHANG

We prove over fields of power series the analogues of several Diophantine
approximation results obtained over the field of real numbers. In partic-
ular we establish the power series analogue of Kronecker’s theorem for
matrices, together with a quantitative form of it, which can also be seen
as a transference inequality between uniform approximation and inhomo-
geneous approximation. Special attention is devoted to the one-dimensional
case. Namely, we give a necessary and sufficient condition on an irrational
power series α which ensures that, for some positive ε, the set

lim inf
Q∈Fq [z], deg Q→∞

‖Q‖ · min
y∈Fq [z]

‖Qα− θ − y‖ ≥ ε

has full Hausdorff dimension.

1. Introduction

Let q be a power of a prime number p and Fq the finite field of order q . Recall that
Fq [z] and Fq(z) denote the ring of polynomials and the field of rational functions
over Fq , respectively. Let Fq((z−1)) denote the field of formal power series x =∑
∞

i=−n ai z−i over the field Fq . We equip Fq((z−1)) with the norm ‖x‖ = qn, where
a−n 6= 0 is the first nonzero coefficient in the expansion of the nonzero power
series x . This integer n is called the degree of x and denoted by deg x .

The sets Fq [z], Fq(z), and Fq((z−1)) play the roles of Z,Q, and R, respectively.
A power series x in Fq((z−1)) but not in Fq(z) is called irrational. We denote
by [x] and {x} the “integral part” and the “fractional part” of the power series
x =

∑
∞

i=−n ai z−i in Fq((z−1)), defined as

[x] =
0∑

i=−n

ai z−i , {x} =
∞∑

i=1

ai z−i .

In particular, [x] is a polynomial in z.
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Let I= {x ∈ Fq((z−1)) : ‖x‖< 1} be the open unit ball. A natural measure on I

is the normalized Haar measure on
∏
∞

n=1 Fq , which we denote by µ. Observe that
µ(I)= 1. If B(x, q−r ) is the open ball of center x in I and radius q−r, namely,

B(x, r)= {y ∈ I : ‖y− x‖< q−r
},

then µ(B(x, q−r ))= q−r. Since the norm ‖ · ‖ is non-Archimedean, any two balls
C1 and C2 satisfy either C1 ∩C2 = ∅, C1 ⊂ C2, or C2 ⊂ C1. This is sometimes
referred to as the ball intersection property. Moreover, the distance between any
two disjoint balls is not less than the maximal radius of the two balls.

For any (column) vector θ in Fq((z−1))n, we denote by ‖θ‖ the maximum of the
norm of its coordinates and by

|〈θ〉| = min
y∈Fq [z]n

‖θ − y‖

the maximum of the distances of its coordinates to their integral parts.
There are numerous results on Diophantine approximation in the fields of formal

power series, see [Lasjaunias 2000] and Chapter 9 of [Bugeaud 2004] for references;
more recent works include [Bank et al. 2017; Ganguly and Ghosh 2017; 2019;
Kristensen 2003; Zhang 2012; Zheng 2017]. However, few results are known on
the relation between homogenous and inhomogeneous Diophantine approximation.
Our first result is the analogue of Kronecker’s theorem over fields of formal power
series. As far as we are aware, it has not yet been proved in such a generality
(see, however, [Carlitz 1952; Mahler 1941] for the case of column matrices). The
transposed matrix of a matrix A is denoted by AT.

Theorem 1.1. Let m, n be positive integers. Let A be in Mn,m(Fq((z−1))) and θ
in Fq((z−1))n . Then the following two statements are equivalent:

(1) For every ε > 0, there exists a polynomial vector x in Fq [z]m such that

|〈Ax − θ〉| ≤ ε.

(2) If u = (u1, . . . , un)
T is any polynomial vector such that ATu is in Fq [z]m , then

u1θ1+ · · ·+ unθn ∈ Fq [z].

As in [Bugeaud and Laurent 2005], which deals with the real case, our aim is to
give a quantitative version of Theorem 1.1. Following [Bugeaud and Laurent 2005],
we introduce several exponents of homogeneous and inhomogeneous Diophantine
approximation. Let n and m be positive integers and A a matrix in Mn,m(Fq((z−1))).
Let θ be in Fq((z−1))n. We denote by ω(A, θ) the supremum of the real numbers ω
for which, for arbitrarily large real numbers H, the inequalities

(1) |〈Ax − θ〉| ≤ H−ω and ‖x‖ ≤ H
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have a solution x in Fq [z]m. Let ω̂(A, θ) be the supremum of the real numbers ω
for which, for all sufficiently large positive real numbers H, the inequalities (1)
have a solution x in Fq [z]m. It is obvious that

ω(A, θ)≥ ω̂(A, θ)≥ 0.

We define furthermore two homogeneous exponents ω(A) and ω̂(A) as in (1) when
θ is the zero vector, requiring moreover that the polynomial solution x should be
nonzero.

Our second result is the power series analogue of the main result of [Bugeaud and
Laurent 2005]. Throughout this paper, the quantity 1/+∞ is understood to be 0.

Theorem 1.2. Let m, n be positive integers. Let A be in Mn,m(Fq((z−1))) and θ
in Fq((z−1))n. Then, we have the lower bounds

(2) ω(A, θ)≥
1

ω̂(AT )
and ω̂(A, θ)≥

1
ω(AT )

,

with equalities in (2) for almost all θ with respect to the Haar measure on Fq((z−1))n.
If θ is not in AFq [z]m + Fq [z]n, then we also have the upper bound

ω̂(A, θ)≤ ω(A).

If the subgroup G A = AT Fq [z]n + Fq [z]m of Fq((z−1))m has rank rkFq [z](G A)

smaller than m+ n, then there exists x in Fq [z]n with arbitrarily large norm such
that |〈AT x〉| = 0 and we have

ω̂(AT )= ω(AT )=+∞.

Throughout the paper, we avoid this degenerate case and consider only matrices A
for which rkFq [z](G A)= m+ n.

Kim and Nakada [2011] proved that, for any α in I, we have

lim inf
n→∞

(qn min
deg Q=n

‖{Qα}−β‖)= 0

for almost all β in I. In a subsequent paper [Kim et al. 2013], the authors comple-
mented this result in showing that, for any irrational power series α in I, the set

{β ∈ I : lim inf
n→∞

(qn min
deg Q=n

‖{Qα}−β‖) > 0}

has full Hausdorff dimension. Our next result generalizes this statement to matrices
of arbitrary dimension. Before stating it, we introduce the following notation.

Let m, n be positive integers and A in Mn,m(Fq((z−1))). For ε > 0, we define
the set

Badε(A) := {θ ∈ In
: lim inf

x∈Fq [z]m , ‖x‖→∞
‖x‖m/n

· |〈Ax − θ〉| ≥ ε}
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and we put

Bad(A) :=
⋃
ε>0

Badε(A)= {θ ∈ In
: lim inf

x∈Fq [z]m , ‖x‖→∞
‖x‖m/n

· |〈Ax − θ〉|> 0}.

When n = m = 1 and A = (α) we simply write Badε(α) and Bad(α) instead of
Badε(A) and Bad(A).

Theorem 1.3. Let m, n be positive integers. For any matrix A in Mn,m(Fq((z−1))),
the set Bad(A) has full Hausdorff dimension. More precisely, there exists a continu-
ous function f : R+→ R+ such that f (0)= 0 and the Hausdorff dimension of the
set Badε(A) is at least n− f (ε), for every positive ε ≤ q−m/n−6.

If the sequence of the norms of the best approximation vectors associated to A
(see Definition 3.3) increases sufficiently rapidly, then the above results can be
strengthened as follows. Similar results in the real case have been established in
[Bugeaud et al. 2019].

Theorem 1.4. Let m, n be positive integers. Let A be in Mn,m(Fq((z−1))) and
(yk)k≥1 the sequence of best approximation vectors associated to A. If ‖yk‖

1/k

tends to infinity with k, then there exists a positive real number ε such that the
set Badε(A) has full Hausdorff dimension. More precisely, ε can be taken to be
any positive real number less than q−4−m/n . Moreover, if m = n = 1, A = (α),
and the degree of the partial quotients in the continued fraction expansion of α in
Fq((z−1)) tends to infinity, then the set Badε(α) has full Hausdorff dimension for
every ε ≤ q−2.

Except for (m, n)= (1, 1) (see the next section), we do not know whether the
condition “‖yk‖

1/k tends to infinity with k” is necessary to ensure that Badε(A)
has full Hausdorff dimension for some positive ε.

The present paper is organized as follows. In Section 2, we give additional
results in the one-dimensional case, including necessary and sufficient conditions to
ensure that the set Bad ε(α) has full Hausdorff dimension. In Section 3, we present
some auxiliary results. A transference lemma is established in Section 4, where
we also give the proof of Theorem 1.1. The proofs of Theorem 1.2, Theorem 1.3,
and Theorem 1.4 are given in Sections 5, 6, and 7, respectively. We use similar
arguments to those in the real case. In Section 8, we prove Theorem 2.3. The proofs
of Theorem 2.1 and Theorem 2.2 are postponed to Sections 9 and 10.

2. One-dimensional case

In the one-dimensional case, Theorem 1.4 can be complemented as follows.

Theorem 2.1. Let α be an irrational power series in Fq((z−1)) and Qk the denom-
inator of its k-th convergent for k ≥ 1. Then, there exists ε > 0 such that the set
Bad ε(α) has full Hausdorff dimension if and only if limk→∞ ‖Qk‖

1/k
=∞.
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In addition, we give a third condition equivalent to those occurring in Theorem 2.1.
For an irrational power series α in I and a positive real number c, let1N ,c(α) denote
the number of integers l in {1, . . . , N } for which the inequality ‖{Qα}‖ ≤ c2−l has
a solution Q in Fq [z] with 0< ‖Q‖≤ 2l. Then, the power series α is called singular
on average if, for every c > 0, we have limN→∞

1
N1N ,c(α)= 1. As far as we are

aware, this notion was introduced in [Kadyrov et al. 2017].

Theorem 2.2. Let α be an irrational power series. There exists ε > 0 such that the
set Bad ε(α) has full Hausdorff dimension if and only if α is singular on average.

Theorems 2.1 and 2.2 are the power series analogues of Theorem 1.1 of [Bugeaud
et al. 2019]. In the proof of Theorem 2.1, our method is different: we replace the
use of the three-distance theorem in [Bugeaud et al. 2019] by that of Ostrowski
expansions; see Theorem 9.1 and its proof. Theorem 2.2 is proved in a similar way
to that in the real case.

Our last result gives additional information about the relation between the
exponents of homogeneous and inhomogeneous Diophantine approximation in
dimension one. Its first statement has already been established in Theorem 1.2.

Theorem 2.3. Let ξ in Fq((z−1)) be an irrational power series. For any element θ
in Fq((z−1)) not in Fq [z] + ξFq [z], we have

1
ω((ξ))

≤ ω̂((ξ), θ)≤ ω((ξ)).

Let ω denote +∞ or a real number greater than or equal to 1; then there exists
a ξ in Fq((z−1)) for which ω((ξ))= ω and the set of values taken by the function
ω̂((ξ), · ) is equal to the interval

[ 1
ω
, ω
]
.

Theorem 2.3 is the power series analogue of Proposition 8 of [Bugeaud and
Laurent 2005] and its proof uses similar arguments.

3. Preliminaries

In this section, we briefly recall some notation and classical results which will be
used later in the proofs of our theorems.

In the setting of formal power series, every irrational element α in I has a unique
infinite continued fraction expansion over the field Fq((z−1)), which is induced by
the map

Tα = 1
α
−

[ 1
α

]
.

The reader is referred to Artin [1924a; 1924b] or Berthé and Nakada [2000] for more
details. For every irrational power series α in I, we denote by α=[0; A1, A2, . . . ] its
continued fraction expansion, where Ak = Ak(α) := [1/(T k−1α)] is called the k-th
partial quotient of α. For each k ≥ 1, Pk(α)/Qk(α)= [0, A1, A2, . . . , Ak] is the
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k-th convergent of α. This defines Pk(α) and Qk(α) up to a common multiplicative
factor. To define numerator and denominator of the k-th convergent of α, we set
P−1(α)= Q0(α)= 1 and Q−1(α)= P0(α)= 0, and, for any k ≥ 0,

Pk+1(α)= Ak+1(α)Pk(α)+ Pk−1(α),

Qk+1(α)= Ak+1(α)Qk(α)+ Qk−1(α).

The following elementary properties of continued fraction expansions of formal
power series are well known (see Fuchs [2002] for details).

Lemma 3.1 [Fuchs 2002]. Under the above notation, we have for k ≥ 1:

(1) (Pk(α), Qk(α))= 1.

(2) 1= ‖Q0(α)‖< ‖Q1(α)‖< ‖Q2(α)‖< · · · .

(3) ‖Qk(α)‖ =
∏k

i=1 ‖Ai (α)‖.

(4) Pk−1(α)Qk(α)− Pk(α)Qk−1(α)= (−1)k.

We also need a version of Dirichlet’s theorem in the fields of formal power series.
The next statement follows from Theorem 2.1 of [Ganguly and Ghosh 2017].

Theorem 3.2. Let m, n be positive integers. Let A be in Mn,m(Fq((z−1))). Then,
for any positive integer c, there is a nonzero polynomial vector u such that

|〈Au〉|< q−c m
n and 1≤ ‖u‖ ≤ qc.

In dimension greater than one, we deal with sequences of vectors having similar
properties to the sequence of convergents in dimension one. For this purpose, for a
matrix A = (αi, j )1≤i≤n,1≤ j≤m , we denote by

M j (y)=
n∑

i=1

αi j yi , y = (y1, . . . , yn)
T , 1≤ j ≤ m,

the linear forms determined by its columns. Then, for y in Fq((z−1))n, we set

M(y)= max
1≤ j≤m

|〈M j (y)〉| = |〈AT y〉|.

Definition 3.3. For a sequence of polynomial vectors (yi )i≥1, write

‖yi‖ = Yi , Mi = M(yi ).

If the sequence satisfies

1= Y1 < Y2 < · · · , M1 > M2 > · · ·

and M(y) ≥ Mi for all nonzero polynomial vectors y of norm ‖y‖ < Yi+1, then
it is called a sequence of best approximations related to the matrix AT (or to the
linear forms M1,M2, . . . ,Mm).
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Now we construct inductively a sequence of best approximations related to the
matrix AT.

Let Y1 = ‖y1‖ = 1, and M(y) ≥ M(y1) = M1 for any polynomial vector y in
Fq [z]n with ‖y‖ = 1.

Suppose that y1, . . . , yi have already been constructed in such a way that M(y)≥
Mi for all nonzero polynomial vectors y with ‖y‖ ≤ Yi . Let Y be the smallest
integer power of q greater than Yi and for which there exists a polynomial vector z
with ‖z‖ = Y and M(z) < Mi . Since Mi is positive, the integer Y does exist by
Theorem 3.2. Among those points z, we select an element y for which M(z) is
minimal. Then we set

yi+1 = y, Yi+1 = Y, and Mi+1 = M(y).

The sequence (yi )i≥1 constructed in this way enjoys the desired properties.
The following two lemmas collect some properties of the sequence of best

approximations.

Lemma 3.4. Let (yi )i≥1 be the sequence of best approximations related to the
linear forms M1, . . . ,Mm . Then we have:

(i) Yi ≥ q i for i ≥ 1.

(ii) Mi < q
n
m Y
−

n
m

i+1 for i ≥ 1.

(iii) For ω < ω̂(AT ), Mi ≤ Y−ωi+1 holds for any sufficiently large i .

(iv) For ω < ω(AT ), Mi ≤ Y−ωi holds for infinitely many i .

Remark. In the special case m = 1, (ii) can be replaced by the large inequality
Mi ≤ qn−1Y−n

i+1.

Proof. (i). This is immediate since Yi+1 ≥ qYi .

(ii). It follows from Theorem 3.2 that the system of inequalities

M(y) < q−c n
m and ‖y‖ ≤ qc

has a nonzero polynomial y for qc
= q−1Yi+1. This implies Mi < (q−1Yi+1)

−n/m ,
as asserted.

(iii). Let ω with 0< ω < ω̂(AT ). Then, the system of inequalities

M(y)≤ H−ω and ‖y‖ ≤ H

has a nonzero solution for any sufficiently large real number H. In particular, for
every sufficiently large integer i , the system of inequalities

M(y)≤ Y−ωi+1 and ‖y‖< Yi+1
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has a nonzero solution zi , satisfying

Mi ≤ M(zi )≤ Y−ωi+1.

(iv). For ω < ω(AT ), there are infinitely many polynomial vectors h in Fq((z−1))n

such that M(h) ≤ ‖h‖−ω. For every such h in Fq((z−1))n, there exists an index i
such that Yi ≤ ‖h‖< Yi+1. Then, Mi ≤ M(h)≤ ‖h‖−ω ≤ Y−ωi . �

Lemma 3.5. Let (yi )i≥1 be the sequence of best approximations related to the
linear forms M1, . . . ,Mm . Then, for almost all θ = (θ1, . . . , θn)

T in Fq((z−1))n,
we have

|〈yi θ〉| ≥ Y−δi ,

for any δ > 0 and any index i which is sufficiently large in terms of δ and θ .

Proof. For any δ > 0 and any i ≥ 1, consider the set

B(yi )= {θ = (θ1, . . . , θn)
T
: |〈yi θ〉|< Y−δi }.

It follows from equality (2.3) in [Kristensen 2003] that the Haar measure of B(yi ) is
bounded from above by Y−δi times some absolute, positive constant. Combined with
the fact that Yi ≥ q i for i ≥ 1, which ensures that the series

∑
i≥1 Y−δi converges, we

deduce from the Borel–Cantelli lemma that the set of θ which belong to infinitely
many sets B(yi ) has Haar measure zero. This implies the lemma. �

Let α be in I. Denote by [0 ; A1, A2, . . . ] its continued fraction expansion and
by (Pk)/(Qk) its k-th convergent, for k ≥ 0. Set

Dk = Qkα− Pk for k ≥ 1.

Lemma 3.6 [Fuchs 2002]. Under the above notation, we have

(1) Dk+1 = Ak+1 Dk + Dk−1,

(2) ‖Dk‖ = ‖Qkα− Pk‖ = ‖{Qkα}‖ =
1

‖Qk+1‖
.

In addition to continued fractions, we also make use of the Ostrowski expansion
of the elements of I with respect to an irrational power series α.

Lemma 3.7 [Kim and Nakada 2011]. Under the above notation, for every pos-
itive integer k and every Q in Fq [z] with deg Q < deg Qk+1, there is a unique
decomposition

Q = B1 Q0+ B2 Q1+ · · ·+ Bk+1 Qk,

where Bi is in Fq [z] and deg Bi < deg Ai for 1≤ i ≤ k+ 1.
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Lemma 3.8 [Kim et al. 2013]. Under the above notation, for every β in I, there is
a representation of β under the form

(3) β =

∞∑
k=0

σk+1(β)Dk = σ1(β)D0+ σ2(β)D1+ · · · ,

where σi (β) is in Fq [z] and deg σi (β) < deg Ai (α) for i ≥ 1. The representation (3)
is called the Ostrowski expansion of β with respect to α or an α-expansion for β.

For simplicity, we write

β = [σ1(β), σ2(β), . . . , σn(β), . . . ]α

and call the sequence (σn(β))n≥1 the sequence of digits of β. To facilitate the
exposition, we make use of a kind of symbolic space defined as follows.

For any n ≥ 1, set

Ln(α)= {(σ1, . . . , σn) : σi ∈ Fq [z] and deg σi < deg Ai (α) for 1≤ i ≤ n}

L(α)=

∞⋃
n=1

Ln(α).

Then, for any (σ1, . . . , σn) in Ln(α), there exists an element β in I whose sequence
of digits begins with (σ1, . . . , σn).

For an n-tuple σ = (σ1, . . . , σn) in Ln(α), we call

In(σ1, . . . , σn)= {β ∈ I : σk(β)= σk for 1≤ k ≤ n}

a cylinder of order n; this is the set of formal power series in I which have an
α-expansion beginning with σ1, . . . , σn .

For the size of the cylinder, we have the following lemma.

Lemma 3.9 [Kim et al. 2013]. For any σ = (σ1, . . . , σn) in Ln(α), the n-th cylin-
der In(σ1, . . . , σn) is a closed disc centered at

∑n−1
k=0 σk+1 Dk and of diameter

q− deg Qn−1.

4. A transference lemma and the proof of Theorem 1.1

Recall that

M j (y)=
n∑

i=1

αi, j yi , y = (y1, . . . , yn)
T , 1≤ j ≤ m,

are the linear forms determined by the columns of the matrix A = (αi, j ), and

L i (x)=
m∑

j=1

αi, j x j , x = (x1, . . . , xm)
T , 1≤ i ≤ n,

are the linear forms determined by its rows.
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In this section, by using a similar method to that in the real case (see [Cassels
1957]), we prove a transference lemma, which establishes a relation between
inhomogeneous simultaneous approximation and homogeneous approximation. To
give the proof, we need some auxiliary results. We first state a power series analogue
of Theorem XVI on page 97 of [Cassels 1957].

Theorem 4.1. Let l be a positive integer and fk(θ), gk(ξ) for 1≤ k ≤ l be linear
forms in θ = (θ1, . . . , θl) and ξ = (ξ1, . . . , ξl), respectively. Suppose that

(4)
l∑

k=1

fk(θ)gk(ξ)=

l∑
k=1

θkξk

identically. Let β = (β1, . . . , βl) be a vector in Fq((z−1))l. If

(5)
∣∣∣∣〈 l∑

k=1

gk(ξ)βk

〉∣∣∣∣≤ max
1≤k≤l

‖gk(ξ)‖

holds for all polynomial vectors ξ , then there exists a polynomial vector b in Fq [z]l

such that

(6) |〈βk − fk(b)〉| ≤ 1, 1≤ k ≤ l.

Proof. We regard ξ as a row vector and θ and β as column vectors. Let G= (gi, j ) be
the l × l square matrix whose k-th column is the coefficients of gk and F = ( fi, j ) be
the l × l square matrix whose k-th row is the coefficients of fk . Then, (4) becomes

(ξ1, ξ2, . . . , ξl)


g11 g21 · · · gl1

g12 g22 · · · gl2
...

...
. . .

...
g1l g2l · · · gll




f11 f12 · · · f1l

f21 f22 · · · f2l
...

...
. . .

...

fl1 fl2 · · · fll



θ1

θ2
...

θl

=
l∑

k=1

θkξk .

This implies that

(7) G = F−1.

By the analogue of Minkowski’s theorem in Fq((z−1)) proved in Section 9 of
[Mahler 1941] and applied to the convex body max1≤ j≤l ‖g j (ξ)‖ ≤ 1, there is a
polynomial l × l matrix W with ‖ det W‖ = 1 whose k-th row w(k) satisfies

(8) max
1≤ j≤l

‖g j (w
(k))‖ = µk,

l∏
k=1

µk = ‖ det G‖,

where the positive real numbers µk , 1≤ k ≤ l, are the successive minima for the
function max1≤ j≤l ‖g j (ξ)‖.



ON DIOPHANTINE APPROXIMATION OVER THE FIELDS OF FORMAL POWER SERIES 463

By (5), (8), and the definition of gk(ξ), we have

W Gβ =


w(1)G
w(2)G
...

w(l)G

β

=


g1(w

(1)) g2(w
(1)) · · · gl(w

(1))

g1(w
(2)) g2(w

(2)) · · · gl(w
(2))

...
...

. . .
...

g1(w
(l)) g2(w

(l)) · · · gl(w
(l))



β1

β2
...

βl



=


∑l

j=1 β j g j (w
(1))∑l

j=1 β j g j (w
(2))

...∑l
j=1 β j g j (w

(l))

= a+ δ,

where a is polynomial vector and

(9) ‖δk‖ ≤ µk for 1≤ k ≤ l.

Hence, by (7), we get

(10) β = Fb+ γ ,

where b = W−1a and δ = W Gγ . Here, b is also a polynomial vector since
‖det W‖ = 1. By the matrix operation on the ring of matrices whose coordinates
are in the fields of power series, we get

γ j =
det((W G) j )

det(W G)−1 ,

where

(W G) j =


g1(w

(1)) · · · g j−1(w
(1)) δ1 g j+1(w

(1)) · · · gl(w
(1))

g1(w
(2)) · · · g j−1(w

(2)) δ2 g j+1(w
(2)) · · · gl(w

(2))
...

. . .
...

...
...

. . .
...

g1(w
(l)) · · · g j−1(w

(l)) δl g j+1(w
(l)) · · · gl(w

(l))

.
By (8), the norm of the k-th row of the W G is at mostµk . Combined with (9), we get

(11) ‖γ j‖ ≤ ‖ det G‖−1
l∏

k=1

µk ≤ 1,

which gives
|〈βk − fk(b)〉| ≤ 1, 1≤ k ≤ l. �
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Corollary 4.2. Let L j (x) and Mi (u) be as above and set l = m + n. Let α =
(α1, . . . , αn) in Fq((z−1))n, and s and t be positive integers. Suppose that

(12) |〈u1α1+ · · ·+ unαn〉| ≤max
{
q t max

1≤i≤m
|〈Mi (u)〉|, q−s max

1≤ j≤n
‖u j‖

}
holds for all polynomial vectors u. Then, there exists a polynomial vector b =
(b1, . . . , bm) with

|〈L j (b)−α j 〉| ≤ q−s, ‖b j‖ ≤ q t , j = 1, . . . ,m.

Proof. This is a special case of Theorem 4.1. Let C and X be in Fq((z−1)) with
‖C‖ = q−s and ‖X‖ = q t. Let

θ = (x, z)= (x1, . . . , xm, z1, . . . , zn),

ξ = (v, u)= (v1, . . . , vm, u1, . . . , un),

fk(θ)=

{
C−1(Lk(x)+ zk) for k ≤ n,

X−1xk−n for n < k ≤ l,

gk(ξ)=

{
Cuk for k ≤ n,

X (vk−n −Mk−n(u)) for n < k ≤ l,

and β = (C−1α, 0). The corollary then follows from Theorem 4.1. �

Lemma 4.3 (transference lemma). Let s and t be positive integers. Suppose that
the inequality

M(y)≥ q−t

holds for any nonzero polynomial n-tuple y of norm ‖y‖ ≤ qs. Then, for all n-tuples
(θ1, . . . , θn) in Fq((z−1))n, there exists a polynomial vector x with ‖x‖ ≤ q t such
that

max
1≤i≤n

|〈L i (x)− θi 〉| ≤ q−s .

Proof. We apply Corollary 4.2 with u = y and α = θ . If ‖y‖ > qs, then the
inequality (12) holds, since the left-hand side of inequality (12) is not greater than 1

q .
If ‖y‖ ≤ qs, then, since M(y) ≥ q−t, the right-hand side of (12) is greater than 1
and (12) holds. By Corollary 4.2, the proof is established. �

Proof of Theorem 1.1. First of all, we suppose that for every ε > 0, there is a
polynomial vector x such that simultaneously |〈L i (x)− θi 〉| ≤ ε, (1 ≤ i ≤ n). If
u = (u1, . . . , un)

T is any polynomial vector such that AT u is in Fq [z]m, then

u1L1(x)+ · · ·+ un Ln(x)= uT Ax ∈ Fq [z].
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It follows that

|〈u1θ1+ · · ·+ unθn〉| = |〈u1(L1(x)− θ1)+ · · ·+ un(Ln(x)− θn)〉|

≤max{|〈u1(L1(x)− θ1)〉|, . . . , |〈un(Ln(x)− θn)〉|}

≤ ‖u‖ε.

Since ε is arbitrary, we have

|〈u1θ1+ · · ·+ unθn〉| = 0.

Thus,
u1θ1+ · · ·+ unθn ∈ Fq [z].

Now we turn to proving that (2) implies (1), with the help of Corollary 4.2.
For every ε > 0, there is a positive integer s such that q−s

≤ ε.
If |〈u1θ1+· · ·+unθn〉| = 0, then the inequality (12) obviously holds. Otherwise,

we have max1≤i≤m |〈Mi (u)〉|> 0 by the assumption.
Since |〈u1θ1+ · · ·+ unθn〉| ≤ q−1, (12) is satisfied if ‖u‖ ≥ qs. For the finitely

many polynomial vectors u whose norm is less than qs, (12) still holds if we choose
the integer t large enough. Then the proof is completed by using Corollary 4.2. �

5. Proof of the Theorem 1.2

We begin by proving that the inequalities

(13) ω(A, θ)≥
1

ω̂(AT )
and ω̂(A, θ)≥

1
ω(AT )

hold for all vectors θ = (θ1, . . . , θn)
T in Fq((z−1))n.

For the first inequality, we can clearly assume that ω̂(AT ) is finite. Let ω>ω̂(AT )

be a real number. By the definition of the exponent ω̂(AT ), there exists a real
number H, which may be chosen arbitrarily large, such that

(14) M(y)≥ H−ω

for any nonzero polynomial vector y of norm at most equal to H. Let s, t be positive
integers such that H−ω ≥ q−t > q−1 H−ω and qs

≤ H < qs+1. Then we have
M(y)≥ H−ω ≥ q−t for any nonzero polynomial vector y of norm at most equal
to qs. By Lemma 4.3, there exists a polynomial n-tuple x with ‖x‖ ≤ q t such that

max
1≤i≤n

|〈L i (x)− θi 〉| ≤ q−s
≤ q H−1 < q1+ 1

ω q−t 1
ω < q1+ 1

ω ‖x‖−
1
ω .

This shows that ω(A, θ)≥ 1
ω

.
For the second inequality of (13), we can clearly assume that ω(AT ) is finite.

For ω > ω(AT ) and all real numbers H with sufficiently large, the inequality (14)
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is satisfied for any nonzero polynomial vector y of norm ‖y‖ ≤ H. We argue in a
similar way as in the proof of the first inequality. We omit the details.

We now prove that

(15) ω(A, θ)≤
1

ω̂(AT )
and ω̂(A, θ)≤

1
ω(AT )

hold for almost all vectors θ = (θ1, . . . , θn)
T in Fq((z−1))n.

By the formula yT Ax = xT AT y, it is easily seen that

y1θ1+ · · ·+ ynθn =

m∑
j=1

x j M j (y1, . . . , yn)−

n∑
i=1

yi (L i (x1, . . . , xm)− θi ),

from which it follows that

(16) |〈y1θ1+ · · ·+ ynθn〉| ≤max{‖y‖ max
1≤i≤n

|〈L i (x)− θi 〉|, ‖x‖M(y)}

for all polynomial vectors x = (x1, . . . , xm)
T and y = (y1, . . . , yn)

T.
We follow the notation in Section 3 and denote by

yi = (yi1, . . . , yin)
T and Yi = ‖yi‖, i ≥ 1,

the sequence of best approximations associated with the matrix AT.
By Lemma 3.5, for almost all θ in Fq((z−1))n, the inequality

(17) |〈yi1θ1+ · · ·+ yinθn〉| ≥ Y−δi

holds for all δ > 0 and any index i large enough. Let us fix two real numbers δ and
ω such that

0< δ < ω < ω̂(AT ).

Let x be a polynomial m-tuple with sufficiently large norm ‖x‖, and let k be the
index defined by the inequality

Yk ≤ ‖x‖
1

ω−δ < Yk+1.

This gives

Yωk+1 > ‖x‖
ω
ω−δ ≥ ‖x‖Y δk .

By (iii) of Lemma 3.4, we have

‖x‖M(yk)≤ ‖x‖Y−ωk+1 < Y−δk .

Using (16) with y = yk and (17) with i = k, we deduce that

Y−δk ≤ ‖yk‖ max
1≤i≤n

|〈L i (x)− θi 〉| ≤ Yk max
1≤i≤n

|〈L i (x)− θi 〉|,
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which gives

|〈Ax − θ〉| = max
1≤i≤n

|〈L i (x)− θi 〉| ≥ Y−1−δ
k ≥ ‖x‖−

1+δ
ω−δ .

This implies

ω(A, θ)≤
1+ δ
ω− δ

.

Let δ andω be arbitrarily close to 0 and to ω̂(AT ), respectively. Then, it is immediate
that the first inequality of (15) holds.

The second upper bound can be handled in the same manner. Let us fix now two
real numbers δ and ω such that

0< δ < ω < ω(AT ).

Let x be a polynomial m-tuple with ‖x‖ ≤ Hk := Yω−δk /2. By (iv) of Lemma 3.4,
there exist infinitely many integers k ≥ 1 such that M(yk)≤ Y−ωk , thus, for which,

‖x‖M(yk)≤ ‖x‖Y−ωk ≤
Y−δk

2
.

Applying again inequality (16), we obtain

Y−δk ≤ ‖yk‖ max
1≤i≤n

|〈L i (x)− θi 〉| ≤ Yk max
1≤i≤n

|〈L i (x)− θi 〉|,

which yields

|〈Ax − θ〉| = max
1≤i≤n

|〈L i (x)− θi 〉| ≥ Y−1−δ
k = 2−

1+δ
ω−δ H

−
1+δ
ω−δ

k .

Since the above lower bound holds for any polynomial x whose norm is less than
Hk and for infinitely many k ≥ 1, noting that the sequence (Hi )i≥1 tends to infinity,
it follows that

ω̂(A, θ)≤
1+ δ
ω− δ

.

Choosing δ and ω arbitrarily close to 0 and to ω(AT ), respectively, we get the
second inequality of (15), and the proof of the first assertion is completed.

It only remains to prove that

ω̂(A, θ)≤ ω(A),

when θ = (θ1, . . . , θn)
T is not in AFq [z]m + Fq [z]n.

For any x in Fq [z]m, set L(x) = |〈Ax − θ〉|. By the denseness of AFq [z]m in
Fq((z−1))n (which is implied by Theorem 1.1) and following the same method as in
the homogeneous case, we can construct a sequence of polynomial vectors x i , i ≥ 1,
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in Fq [z]m associated with L(x1), L(x2), . . . which satisfy the following properties.
Set ‖x i‖ = Hi and L i = L(x i ), then we have

1= H1 < H2 < · · · and L1 > L2 > · · ·

and L(x)≥ L i for all polynomial vectors x with ‖x‖< Hi+1. Here we also call the
above sequence (x i )i≥1 a sequence of best approximations related to L1, L2, . . . . By
definition of ω̂(A, θ) and best approximation, for any ω < ω̂(A, θ), the inequality

0< |〈Ax i − θ〉| ≤ H−ωi+1

holds for any index i sufficiently large in terms of ω. By using the triangle inequality,
we conclude that

|〈A(x i − x i−1)〉| = |〈Ax i − θ − (Ax i−1− θ)〉|

≤max{|〈Ax i − θ〉|, |〈Ax i−1− θ〉|}

≤ H−ωi ,

which gives that ω(A)≥ ω. Choosing ω arbitrarily close to ω̂(A, θ), we complete
the proof.

6. Proof of Theorem 1.3

Before proving Theorem 1.3 we establish an auxiliary lemma.

Lemma 6.1. Let l ≥ 2 be an integer. For a sequence (hk)k≥1 of polynomial vectors
such that ‖hk‖ ≥ ql

‖hk−1‖ for k ≥ 2, set

S{hk} = {θ ∈ In
: there exists k0(θ) such that |〈hk θ〉| ≥ q−1 for all k ≥ k0(θ)}.

Then we have dimH S{hk} ≥ n− 1
l .

Proof. Our strategy to prove this lemma is as follows. First, we define some
partitions of In and construct a family of balls covering the points which do not
satisfy the condition in the definition of the set S{hk}. Then we delete the family of
balls from the partitions to construct a Cantor subset contained in S{hk}.

For any i ≥ 1, define di by ‖hi‖ = qdi and set

0i = z−di−1Fq [z]n ∩ In.

It is clear that all distinct elements x, y in 0i satisfy

(18) ‖x − y‖ ≥ q−di−1.

Now we define a partition of In. For each i ≥ 1, let Ci be the family of balls
B(c, q−di−1) centered at some point c in 0i , i.e.,

Ci = {B(c, q−di−1) : c ∈ 0i }.
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By (18) and the ball intersection property, any two distinct balls in Ci have empty
intersection. Each ball in Ci has measure q(−di−1)n. Since there are exactly q(di+1)n

of these balls, they do indeed define a partition of In.
For any i ≥ 1, we consider the resonant set

Ri = {x ∈ In
: hi x = p for some p ∈ Fq [z]}.

Since x is in In, each resonant set Ri is contained in one of the affine spaces

Ri (r)= {x ∈ In
: hi x = r}, where r is in Fq [z] with ‖r‖ ≤ ‖hi‖.

In each Ri (r), we choose a subset 3i (r) such that the distance between any two
different points in 3i (r) is at least q−di−1 and such that, for any point ξ in Ri (r),
there is a point η in 3i (r) at a distance to ξ less than q−di−1. Let 3i be the union
of the sets 3i (r) where ‖r‖ ≤ ‖hi‖. Set

Gi = {B(c, q−di−1) : c ∈3i }.

If θ in In satisfies |〈hi θ〉|<
1
q , then we have

‖hi‖ dist∞(θ, Ri )≤ |〈hiθ〉|<
1
q
,

where dist∞ denotes the distance associated with the supremum norm. Then,

dist∞(θ, Ri ) < q−di−1,

which implies that there exists ξ in Ri such that

‖θ − ξ‖< q−di−1,

and, consequently, θ is contained in some ball which belongs to Gi .
Let Di = {B ∈ Ci : B ∩Gi =∅}. Define

Ei =
⋃

B∈Di

B and E =
∞⋂

i=1

Ei .

Then, E ⊂ S{hk}.
Now we determine the Hausdorff dimension of the set E . By the ball intersection

property, the distance between any two balls in Di is εi = q−di−1. Since Ci is a
partition of In, for any ball B in Di , the number of balls of Ci+1 contained in B is
q(di+1−di )n.

For any ξ in Ri+1(r), θ in Ri+1(t), where r and t are in Fq [z], we obtain

1≤ ‖r − t‖ ≤ ‖hi+1ξ − hi+1θ‖ ≤ ‖hi+1‖‖ξ − θ‖;

hence
‖ξ − θ‖ ≥

1
‖hi+1‖

.
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Consequently, the number of affine spaces which can intersect a ball B in Di is
at most qdi+1−di−1. Since every such affine space contains q(di+1−di )(n−1) points of
3i+1 ∩ B, the number of balls of Di+1 contained in the ball B is at least

mi+1 = q(di+1−di )n − q(di+1−di )n−1
= q(di+1−di )n(1− q−1)≥ 2−1q(di+1−di )n.

Since ‖hk‖≥ql
‖hk−1‖ for k≥2, we have dk≥ (k−1)l. By this fact and Example 4.6

of [Falconer 1990], we have

dimH E ≥ lim inf
k→+∞

log m1m2 · · ·mk−1

− log mkε
n
k

· n

≥ lim inf
k→+∞

k log 1
2 + ndk−1 log q

− log 1
2 + n(dk−1+ 1) log q

· n

≥ lim inf
k→+∞

ndk−1− k
n(dk−1+ 2)

· n

≥ lim inf
k→+∞

ndk−1−
1
l (dk−1)− 2

n(dk−1+ 2)
· n ≥ n−

1
l
. �

Now we prove Theorem 1.3.
For a positive integer l ≥ 2, we extract a subsequence (yϕl (k))k≥1 from the

sequence of best approximations (yk)k≥1, where the index function is an increasing
function ϕl : Z≥1→ Z≥1 satisfying ϕl(1)= 1 and, for any integer i ≥ 2,

(19) Yϕl (i) ≥ qlYϕl (i−1) and Yϕl (i−1)+1 ≥ q−2lYϕl (i).

Let
J0 = { j : Y j+1 ≥ qlY j }.

To define the function ϕl we distinguish two cases, according to whether the set J0

is finite or not.
If J0 is an infinite set, then set ϕl(1)= 1. Suppose that ϕl(i) has already been

defined for 1≤ i ≤ h′, and define ϕl(h) to be the smallest element of J0 greater than
ϕl(h′). We let ϕl(h−1) be the largest index t ≥ϕl(h′) for which Yϕl (h)≥qlYt , we let
ϕl(h−2) be the largest index t ≥ϕl(h′) for which Yϕl (h−1)≥ qlYt , and so on until an
index t as above does not exist. We have just defined ϕl(h), ϕl(h−1), . . . , ϕl(h−h0).
Then, we set h = h′ + h0 + 1, and the inequalities (19) are satisfied for i =
h′+ 1, . . . , h′+ h0+ 1.

If J0 is a finite set, we denote by g the largest of its elements, putting g = 1
if J0 is empty. We apply the above process to construct the initial values of the
function ϕ up to g = ϕl(h). Then, we define ϕl(h + 1) as the smallest index t
for which Yt ≥ qlYϕl (h). We observe that Yϕl (h+1)−1 < qlYϕl (h) and Yϕl (h)+1 ≥

Yϕl (h) > q−lYϕl (h+1)−1 > q−2lYϕl (h+1), as required. We continue in this way, by



ON DIOPHANTINE APPROXIMATION OVER THE FIELDS OF FORMAL POWER SERIES 471

defining ϕl(h+2) as the smallest index t for which Yt ≥ qlYϕl (h+1), and so on. The
inequalities (19) are then satisfied.

By Lemma 6.1, for any θ in S{yϕl (i)}
, it follows that

|〈yϕl (i),1θ1+ · · ·+ yϕl (i),nθn〉| ≥
1
q

for sufficiently large i.

Let x be a nonzero polynomial m-tuple whose norm is sufficiently large and let k
be the index defined by the inequalities

Yϕl (k) ≤ q(2l+1)q
m
n ‖x‖

m
n < Yϕl (k+1).

By Lemma 3.4 and inequality (16) with y = yϕl (k), we have

1
q
≤max

{
q(2l+1)q

m
n ‖x‖

m
n |〈Ax − θ〉|, ‖x‖q

n
m Y
−

n
m

ϕl (k)+1

}
.

By construction of the subsequence (Yϕl (i))i≥1, we have Y−1
ϕl (k)+1Yϕl (k+1) ≤ q2l, so

‖x‖q
n
m Y
−

n
m

ϕl (k)+1 < q−1q−
(2l+1)n

m q
n
m q

2ln
m = q−1,

then
1
q
≤ q(2l+1)q

m
n ‖x‖

m
n |〈Ax − θ〉|,

which gives
|〈Ax − θ〉| ≥ q−(2l+2)q−

m
n ‖x‖−

m
n .

From this, we deduce that S{yϕl (i)}
⊂ Badε(A) with ε = q−(2l+2)q−m/n, and then

dimH Badε(A)≥ n−
1
l
,

which implies the second assertion.
Recall that

Bad(A) :=
⋃
ε>0

Badε(A)= {θ ∈ In
: lim inf

x∈Fq [z]m ,‖x‖→∞
‖x‖m/n

· |〈Ax − θ〉|> 0}.

We have just proved that, for any integer l ≥ 2, we have

S{yϕl (i)}
⊂ Bad(A).

Letting l tend to infinity, we obtain

dimH Bad(A)= n.

This completes the proof of the theorem.
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7. Proof of Theorem 1.4

We use the same method as in the last section. The next lemma can be seen as a
sharpening of Lemma 6.1 when the sequence of norms of the polynomial vectors
increases very rapidly.

Lemma 7.1. For any δ in (0, q−1
], let (hk)k≥1 be a sequence of polynomial vectors

such that ‖hk+1‖/‖hk‖ ≥ qδ−1 for k ≥ 1 and limk→∞ ‖hk‖
1/k
=∞. Then, the set

Sδ = {θ ∈ In
: there exists k0(θ) such that |〈hkθ〉| ≥ δ for all k ≥ k0(θ)}

has full Hausdorff dimension.

Proof. Since the proof is very similar to that of Lemma 6.1, we just give the
necessary modifications here.

Let δ be in (0, q−1
]. For any k ≥ 1, set ‖hk‖ = qdk. We note that δ plays the

role of q−1 in the proof of Lemma 6.1. The remaining part of the construction of
a suitable subset can be done in a similar way. Notice that, since dk/k tends to
infinity with k, we have

dimH E ≥ lim inf
k→+∞

log m1m2 · · ·mk−1

− log mkε
n
k

· n

= lim inf
k→+∞

k log 1
2 + ndk−1 log q

− log 1
2 + n(dk−1+ 1) log q

· n = n,

which completes the proof. �

Let us begin the proof of Theorem 1.4.
Let

yk = (yk1, . . . , ykn)
T , k ≥ 1,

be the sequence of best approximations associated to the matrix AT, and set Yk :=

‖yk‖ for k ≥ 1.

Let δ be in (0, q−1
] and set R = qδ−1. Since Y 1/k

k tends to infinity with k, the set

JR = { j : Y j+1 ≥ RY j }.

is an infinite set. In the same way as in the proof of Theorem 1.3, we can extract a
subsequence (yϕ(k))k≥1 of (yk)k≥1 with the property that

(20) Yϕ(k) ≥ RYϕ(k−1), Yϕ(k−1)+1 ≥ R−1Yϕ(k), for k ≥ 2.

We apply Lemma 7.1 to (yϕ(k))k≥1 and take θ = (θ1, . . . , θn) in the corresponding
set Sδ, that is, satisfying

(21) |〈yϕ(k)1θ1+ · · ·+ yϕ(k)nθn〉| ≥ δ for sufficiently large k.
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Let h be a nonzero polynomial m-tuple whose norm is sufficiently large and let k
be the index defined by the inequality

Yϕ(k) ≤ q Rδ−
m
n ‖h‖

m
n < Yϕ(k+1).

By (16), (20), and (ii) of Lemma 3.4 with y = yϕ(k) and x = h, since

‖h‖M(yϕ(k))≤ ‖h‖q
n
m Y
−

n
m

ϕ(k)+1 < δ(q R)−
n
m q

n
m Y
−

n
m

ϕ(k)+1Y
n
m
ϕ(k+1) ≤ δ,

we have
δ ≤ Yϕ(k)|〈Ah− θ〉| ≤ q Rδ−

m
n ‖h‖

m
n |〈Ah− θ〉|.

Consequently, we get

‖h‖
m
n |〈Ah− θ〉| ≥

δ1+m
n

q R
=
δ2+m

n

q2 .

By letting δ = q−1, this gives the first assertion of Theorem 1.4.
If m = n = 1, A = (α), and the degrees of the partial quotients of α tend to

infinity, then the assumption of Lemma 7.1 is satisfied for hk = Qk+N for some
constant N ≥ 0. For any 0< δ ≤ 1

q , the set Sδ has full Hausdorff dimension. Let x
be in I and let h be a polynomial. Then, for every y in Fq [z], we have

(22) |〈yx〉| = |〈yx − yαh+ yαh〉| ≤max{‖y‖|〈hα− x〉|, ‖h‖|〈yα〉|}.

Now we assume that ‖h‖ is large enough and let l be the integer with ‖Ql‖ ≤

δ−1
‖h‖< ‖Ql+1‖. For any θ in Sδ , letting y = Ql and x = θ in the inequality (22),

since ‖h‖‖{Qlα}‖ = ‖h‖/‖Ql+1‖< δ, we have

δ ≤ |〈Qlθ〉| ≤ ‖Ql‖|〈hα− θ〉| ≤ δ−1
‖h‖|〈hα− θ〉|.

This gives ‖h‖|〈hα− θ〉| ≥ δ2. Setting δ = 1
q , the proof is complete.

8. Proof of Theorem 2.3

Since we always have ω((ξ))= 1 for any irrational power series ξ whose partial
quotients have bounded degree, we may assume that ω > 1.

If ω((ξ)) is finite and equal to ω, then let (ωn)n≥0 be the constant sequence equal
to ω, otherwise, put ωn = n for any n ≥ 0. Let ξ be an element in Fq((z−1)) such
that the sequence of the denominators (Qn)n≥0 of its convergents Pn/Qn satisfies
the growth condition

‖Qn‖
ωn ≤ ‖Qn+1‖< q‖Qn‖

ωn .

By Theorem 1.2, we have ω̂((ξ), θ)= 1/ω((ξ)) for almost all θ in Fq((z−1)). Let ν
be a nonnegative real number. If ω((ξ)) is finite, then assume furthermore that
1
ω
≤ ν ≤ω. We construct an element θ in Fq((z−1)) for which ω̂((ξ), θ)= ν. When
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ω((ξ))=+∞, our process furnishes moreover some θ not in Fq [z] + ξFq [z] with
ω̂((ξ), θ)=+∞.

Let (un)n≥0 be a sequence of polynomials with

‖Qn‖
ωn−ν
ν+1 ≤ ‖un‖< q‖Qn‖

ωn−ν
ν+1 , for n ≥ 1.

Set
θ =

∑
k≥0

uk(Qkξ − Pk).

For any n ≥ 0, set

Vn =

n∑
k=0

uk Qk and Wn =

n∑
k=0

uk Pk .

Then we have

‖Vn‖ = ‖un‖‖Qn‖ and ‖Vnξ −Wn − θ‖ = ‖un+1‖‖Qn+2‖
−1,

so

‖Qn‖
ωn+1
ν+1 ≤ ‖Vn‖< q‖Qn‖

ωn+1
ν+1

and

q−1
‖Qn+1‖

−
ν(ωn+1+1)

ν+1 < ‖Vnξ −Wn − θ‖< q‖Qn+1‖
−
ν(ωn+1+1)

ν+1 ;

hence

(23) ‖Vnξ −Wn − θ‖< q‖Qn+1‖
−
ν(ωn+1+1)

ν+1 ≤ q1+ν
‖Vn+1‖

−ν

which implies that ω̂((ξ), θ)≥ ν. When ω((ξ))=+∞, we construct θ in Fq((z−1))

not in Fq [z]+ ξFq [z] and with ω̂((ξ), θ)=+∞ exactly in the same way, by taking
un = 1 for any n ≥ 0.

Next we prove that for infinitely many n and all polynomials x and y with
‖x‖ ≤ 1

q ‖Vn‖, we have

(24) ‖xξ − y− θ‖ ≥ q−2
‖Vn‖

−ν .

It follows that ω̂((ξ), θ)≤ ν, and therefore that ω̂((ξ), θ)= ν.
To obtain a contradiction, we suppose inequality (24) does not hold for some

polynomials x and y with ‖x‖≤ 1
q ‖Vn‖. Then we deduce from (23) and the triangle

inequality that

‖(x − Vn−1)ξ − (y−Wn−1)‖ = ‖xξ − y− θ − (Vn−1ξ −Wn−1− θ)‖

≤max{‖xξ − y− θ‖, ‖Vn−1ξ −Wn−1− θ‖}

≤ q1+ν
‖Vn‖

−ν .
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Set

a=−Pn(x−Vn−1)+Qn(y−Wn−1) and b= Pn−1(x−Vn−1)−Qn−1(y−Wn−1)

if n is even (the case n is odd can be handled in the same way). Then we have

x − Vn−1 = aQn−1+ bQn and y−Wn−1 = a Pn−1+ bPn.

A trivial verification shows that

b = (x − Vn−1)Pn−1− Qn−1(y−Wn−1)

= (x − Vn−1)(Pn−1− ξQn−1)− Qn−1(y−Wn−1− (x − Vn−1)ξ).

This gives

‖b‖ ≤max{q1+ν
‖Qn−1‖‖Vn‖

−ν, q−1
‖Vn‖‖Qn‖

−1
}

= q−1
‖Vn‖‖Qn‖

−1
≤ q−1

‖un‖.

Now we use the formula

xξ − y− θ = a(Qn−1ξ − Pn−1)− (un − b)(Qnξ − Pn)−
∑

k≥n+1

uk(Qkξ − Pk).

When a 6= 0, we bound from below

‖xξ − y− θ‖ = ‖a(Qn−1ξ − Pn−1)‖ ≥
q
‖Qn‖

≥ ‖Qn‖
−
ν(ωn+1)
ν+1 ≥ ‖Vn‖

−ν .

When a = 0, we obtain

‖xξ − y− θ‖ = ‖(un − b)(Qnξ − Pn)‖ = ‖un‖‖Qn+1‖
−1

> q−1
‖Qn‖

−ωn‖Qn‖
ωn−ν
ν+1

≥ q−1
‖Vn‖

−ν .

We have reached the expected contradiction.

9. Proof of Theorem 2.1

We only need to establish the implication “⇒” in Theorem 2.1 and it can be restated
as follows.

Theorem 9.1. Under the assumption that lim infk→∞
1
k log ‖Qk‖<∞, we have

dimH Bad ε(α) < 1 for any ε > 0.

Proof. For positive integers K and t , set

Badt
K (α)= {θ ∈ I : ‖Q‖‖{Qα}− θ‖ ≥ q−t for all Q in Fq [z] with ‖Q‖ ≥ ‖QK‖}.

For k ≥ 1, set nk = deg Qk .
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We define a sequence (ki )i≥0 as follows. Set k0= K and, for i ≥ 1, let ki+1 be the
smallest integer k for which nk−nki > t+4. Since ‖Qk+1‖≥ q‖Qk‖, the sequence
(ki+1− ki )i≥0 is uniformly bounded from above by an absolute constant and we
deduce from our assumption on the growth of the sequence ((log ‖Qk‖)/k)k≥1 that

λ := lim inf
i→∞

1
i

log ‖Qki‖<+∞.

Setting �(i)=
⋃

deg Q=n, nki≤n≤nki+1−t B({Qα}, q−nki+1 ), we have⋃
deg Q=n, nki≤n<nki+1

B({Qα}, q−t
‖Q‖−1)=

⋃
deg Q=n, nki≤n<nki+1

B({Qα}, q−n−t)⊃�(i).

Write
C(k)= {I (σ1, . . . , σk) : (σ1, . . . , σk) ∈ Lk(α)},

where I (σ1, . . . , σk) is the cylinder of order n with respect to the α-expansion (see
the end of Section 3), and

Hi = {B ∈ C(ki+1) : B ∩�(i)=∅}.

Let
Ei =

⋃
B∈Hi

B and E =
⋂
i≥1

Ei .

Then we have
Badt

K (α)⊂ E .

Every ball B in C(ki ) can be written as B= I (σ1, . . . , σki ) for some (σ1, . . . , σki )

in Lki (α). For any Q with deg Q = n where nki ≤ n ≤ nki+1 − t , it follows from
Lemma 3.7 that

(25) {Qα} = σ1 D0+ σ2 D1+ · · ·+ σki Dki−1+ · · ·+ σki+d Dki+d−1,

where d is defined by ‖Qki+d−1‖ ≤ qnki+1−t < ‖Qki+d‖. Then, the element of such
{Qα} contained in the ball B is at least qdeg Aki+1+···+deg Aki+d , which is greater than
qnki+1−nki−t. In the same way as one gets (25), we deduce that, for any distinct Q
and Q′ in Fq [z] with deg Q and deg Q′ < nki+1 , we have

‖{Qα}− {Q′α}‖ ≥ ‖Dki+1−1‖ = q−nki+1 .

Thus the number of balls B({Qα}, q−nki+1 ) with deg Q = n and nki ≤ n ≤ nki+1 − t
which are contained in the ball B is at least qnki+1−nki−t.

Then the number of balls in Ei+1 contained in a ball of Ei is at most

qnki+1−nki − qnki+1−nki−t
= (1− q−t)qnki+1−nki .
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For a real number s in (0, 1), let H s denote the Hausdorff s-measure. For any M
satisfying log M > λ, for any s with 1> s > 1+ log(1− q−t)/log M , we have

H s(E)≤
∑

B∈
⋂i

j=1 E j

|B|s ≤ (1− q−t)i qnki (q−nki )s

≤ (1− q−t)i M (1−s)i
≤ 1.

Then dimH (E)≤ 1+ log(1− q−t)/log M < 1; this completes the proof. �

10. Proof of Theorem 2.2

By Theorem 2.1, we only need to prove the following statement.

Theorem 10.1. Let α in Fq((z−1)) be an irrational power series and (Pk/Qk)k≥1

the sequence of its convergents. Then α is singular on average if and only if ‖Qk‖
1/k

tends to infinity with k.

Proof. First, we prove that α is singular on average under the condition that ‖Qk‖
1/k

tends to infinity with k.
Let 0 < c < 1

q and k ≥ 3 be an integer. By Lemmas 3.6 and 3.7, for any Q in
Fq [z] with 0< ‖Q‖< ‖Qk+1‖, we have Q = B1 Q0+ B2 Q1+· · ·+ Bk+1 Qk . Then

{Qα} = B1 D0+ B2 D1+ · · ·+ Bk+1 Dk,

which gives

‖{Qα}‖ = ‖B1 D0+ B2 D1+ · · ·+ Bk+1 Dk‖ ≥ ‖Dk‖ = ‖{Qkα}‖ = |〈Qkα〉|.

In this way, for each integer X with ‖Qk‖ ≤ X < ‖Qk+1‖, the inequalities

(26) ‖{hα}‖ ≤ cX−1 and 0< ‖h‖ ≤ X

have a solution in Fq [z] if and only if ‖{Qkα}‖ ≤ cX−1.
Thus for each integer l in [log2 ‖Qk‖, log2 ‖Qk+1‖), inequalities (26) have no

solution for X = 2l if and only if

− log2
‖{Qkα}‖

c
< l < log2 ‖Qk+1‖.

Since ‖{Qkα}‖ = ‖Qk+1‖
−1, the number of integers l in [log2 ‖Qk‖, log2 ‖Qk+1‖)

such that inequalities (26) have no solution for X = 2l is at most

log2 ‖Qk+1‖+ log2
‖{Qkα}‖

c
+ 1≤ log 1

c
+ 1.

Therefore, for an integer N with log2 ‖Qk‖ ≤ N < log2 ‖Qk+1‖, the number of
integers l in {1, 2, . . . , N } such that inequalities (26) have no solution for X is
not greater than

(
log 1

c + 1
)
(k+ 1). Recalling that 1N ,c(α) denote the number of
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integers l in {1, . . . , N } for which the inequality ‖{Qα}‖ ≤ c2−l has a solution with
0< ‖Q‖ ≤ 2l, we have

N −1N ,c(α)

N
≤

(
log 1

c + 1
)
(k+ 1)

N
≤

(
log 1

c + 1
)
(k+ 1)

log2 ‖Qk‖
.

Using the assumption that ‖Qk‖
1/k tends to infinity with k, we can deduce that

1
N (N −1N ,c(α)) converges to 0. Therefore, α is singular on average.

Suppose that α is singular on average, and choose c = q−3. Let l be an integer
satisfying q−2

‖Qk+1‖ ≤ 2l < ‖Qk+1‖ for some k ≥ 1. Then, we have

‖{Qkα}‖ = ‖Qk+1‖
−1
≥

q−2

2l >
c
2l .

Since ‖{hα}‖ ≥ ‖{Qkα}‖ for any polynomial h with 0 < ‖h‖ < ‖Qk+1‖, we
conclude that inequalities (26) have no solution for X = 2l, if l is an integer in
[log2 ‖Qk+1‖− 2 log2 q, log2 ‖Qk+1‖).

By Lemma 3.6, ‖Qk+1‖ =
∏k+1

i=1 ‖Ai‖ and deg Ak ≥ 1, we have that

‖Qk+1‖ ≥ q2
‖Qk−1‖,

which implies that

[log2 ‖Qk−1‖−2log2 q, log2 ‖Qk−1‖) and [log2 ‖Qk+1‖−2log2 q, log2 ‖Qk+1‖)

are disjoint for k ≥ 1. Let N be an integer with log2 ‖Q2k‖ ≤ N < log2 ‖Q2k+2‖;
it follows that the number of integers l in {1, 2, . . . , N } such that inequalities (26)
have no solution for X = 2l and c = q−3 is at least 2k. In this way,

2k
log2 ‖Q2k+2‖

≤
2k
N
≤

N −1N ,c(α)

N
.

The condition of singularity on average implies that the right-hand side of the above
inequality goes to 0 as N tends to infinity. By the monotonicity of (‖Qk‖)k≥1, we
conclude that (‖Qk‖

1/k)k≥1 tends to infinity. �
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