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THE TOPOLOGICAL BIQUANDLE OF A LINK

EVA HORVAT

To every oriented link L, we associate a topologically defined biquandle B̂L ,
which we call the topological biquandle of L. The construction of B̂L is
similar to the topological description of the fundamental quandle given by
Matveev. We find a presentation of the topological biquandle and explain
how it is related to the fundamental biquandle of the link.

1. Introduction

A biquandle is an algebraic structure with two operations that generalizes a quandle.
The axioms of both structures represent an algebraic encoding of the Reidemeister
moves, and study of quandles and related structures has been closely intertwined
with knot theory.

It is well known that every knot has a fundamental quandle, that admits an
algebraic as well as a topological interpretation. Its topological description is due
to Matveev [1982], who called it the geometric groupoid of a knot and proved that
the fundamental quandle is a complete knot invariant up to inversion (taking the
mirror image and reversing orientation).

The fundamental biquandle of a knot or link, however, is purely algebraically
defined. It is not clear whether it also admits a topological interpretation [Kauffman
et al. 2012]. Various other issues concerning biquandles have not yet been resolved,
see [Fenn et al. 2005].

To any classical oriented link, we associate a topologically defined biquandle
B̂L , which we call the topological biquandle of the link. Our construction is similar
to Matveev’s construction of the geometric groupoid of a knot. The topological
construction enables us to visualize the biquandle operations directly and improves
our understanding of the biquandle structure. Another advantage of this construction
is that it defines a functor from the (topological) category of oriented links in S3 to
the category of biquandles.

We show that the topological biquandle B̂L is a quotient of the fundamental
biquandle, but its structure is simpler than that of a general biquandle.
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This paper is organized as follows. In Section 2, we give the definition of a
biquandle, recall some of its basic properties, define biquandle presentations and
the fundamental biquandle of a link. Section 3 is the core of the paper, in which we
define the topological biquandle of a link, prove that it is a biquandle and study some
of its properties. In Section 4, we investigate the topological biquandle from the
perspective of a link diagram. We find a presentation of the topological biquandle
and show that it is a quotient of the fundamental biquandle.

2. Preliminaries

For an introduction to biquandles, we refer the reader to [Fenn et al. 2004; Hrencecin
and Kauffman 2007; Kauffman and Manturov 2005].

Definition 2.1 (Biquandle axioms). A biquandle is a set B with two binary opera-
tions, the up operation and the down operation , such that B is closed under
these operations and the following axioms are satisfied:

(1) For every a ∈ B, the maps fa, ga : B→ B and S : B× B→ B× B, defined
by fa(x)= x a , ga(x)= x a and S(x, y)= (y x , x y ), are bijections.

(2) For every a ∈ B, we have f −1
a (a)= a f −1

a (a) and g−1
a (a)= a g−1

a (a) .

(3) For every a, b, c ∈ B, the equalities

up interchanges a b c = a cb bc ,

rule of five a b cba = a c bca ,

down interchanges a b c = a cb bc

are valid.

A biquandle (B, , ) in which a b = a for all a ∈ B is called a quandle.
It follows from the first biquandle axiom that the map S : B× B→ B× B has

an inverse. Define two new operations and on B by

S−1(a, b)= (b a , a b ) .

Remark 2.2. This “corner” notation was introduced by Kauffman [Fenn et al.
2004]. Another alternative is the “exponential notation” that was used by Fenn and
Rourke [1992], and avoids brackets. One may translate between the two notations
using equalities: ab

= a b , ab̄
= a b , ab = a b and ab̄ = a b .

Lemma 2.3. For every a, b ∈ B, the equalities

a b ba = a b b a = a b ba = a b b a = a

are valid.
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Proof. We compute

(a, b)= S−1(S(a, b))= S−1(ba , a b )= (a b ba , ba a b ),

(a, b)= S(S−1(a, b))= S(b a , a b )= (a b b a , b a a b )

and the desired equalities follow. �

Lemma 2.4. Let X and Y be two biquandles. If f : X → Y is a biquandle
homomorphism, then f (a b ) = f (a) f (b) and f (a b ) = f (a) f (b) for every
a, b ∈ X.

Proof. Let f : X→Y be a biquandle homomorphism. Choose elements a, b∈ X and
denote f (b a )= x and f (a b )= y. By Lemma 2.3 we have a b b a = a, and since
f is a biquandle homomorphism, it follows that f (a b ) f (b a ) = y x = f (a). Also
by Lemma 2.3, we have b a a b = b, and since f is a biquandle homomorphism,
it follows that f (b a ) f (a b ) = x y = f (b). Putting those two equalities together,
Lemma 2.3 gives

y = y x x y = f (a) f (b) and x = x y y x = f (b) f (a) . �

The fundamental biquandle of a link is usually defined via a presentation, coming
from a link diagram. Following [Ishikawa 2018], we define biquandle presentations
categorically.

Definition 2.5. Let A be a set. A free biquandle on A is the biquandle FBQ(A)
together with an injective map i : A→ FBQ(A), characterized by the following.
For any map f : A→ B, where B is a biquandle, there exists a unique biquandle
homomorphism f̄ : FBQ(A)→ B such that f = f̄ ◦ i .

For a biquandle X , let j : A→ X be a map and let j̄ : FBQ(A)→ X be the
induced biquandle homomorphism. Let R ⊂ FBQ(A)× FBQ(A) be a relation on
the set FBQ(A). We say that 〈A|R〉 is a presentation of the biquandle X if

(1) ( j̄ × j̄)(R)⊂1X (here 1X ⊂ X × X is the diagonal),

(2) for any biquandle Y and for any map f : A→ Y such that ( f̄ × f̄ )(R)⊂1Y ,
there exists a unique biquandle homomorphism f̃ : X→ Y such that f = f̃ ◦ j .

Any classical oriented link may be given by its diagram, i.e., the image of a
regular projection of the link to a plane in R3. A link diagram D is a directed
4-valent graph, whose vertices contain the information about the over- and under-
crossings. The edges of the graph are called semiarcs, while the vertices are called
crossings of the diagram. Denote by A(D) the set of semiarcs and by C(D) the set
of crossings of the diagram D. In any crossing, the four semiarcs are connected by
two crossing relations, depicted in Figure 1.
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b a

c = a b d = ba

a b

d = b a c = a b

Figure 1. Crossing relations between the semiarcs of D.

Definition 2.6. The fundamental biquandle BQ(L) of a link L with a diagram D
is the biquandle, given by the presentation

〈A(D)|crossing relations for every c ∈ C(D)〉 .

3. The topological biquandle of a link

By a link we will mean an oriented subspace of S3, homeomorphic to a disjoint
union of circles

⊔k
i=1 S1. For a link L , denote by NL a regular neighborhood of L

in S3 and let EL = closure(S3
− NL). The orientation of L induces an orientation

of its normal bundle using the right-hand rule.
Choose a 3-ball B3

⊂ S3 such that NL ⊂ B3, then let z0 and z1 be two antipodal
points of S2

= ∂B3. Define

BL =
{
(a0, a1) | ai : [0, 1] → EL a path from a point on ∂NL to zi

for i = 0, 1 and a0(0)= a1(0)
}
.

If a : [0, 1]→ EL is a path, we denote by ā : [0, 1]→ EL the reverse path, given
by ā(t)= a(1− t). Given paths a, b : [0, 1]→ EL with a(1)= b(0), their combined
path a · b is given by

(a · b)(t)=
{

a(2t), 0≤ t ≤ 1
2 ,

b(2t − 1), 1
2 < t ≤ 1.

We say that two elements (a0, a1), (b0, b1) ∈ BL are equivalent if there exists
a homotopy Ht : [0, 1] → EL such that H0 = a0 · a1, H1 = b0 · b1, Ht(0) = z0,
Ht(1) = z1 and Ht

( 1
2

)
∈ ∂NL for all t ∈ [0, 1]. It is easy to see this defines

an equivalence relation on the set BL . The quotient set B̂L = BL/∼ will be the
underlying set of the topological biquandle of L .

Remark 3.1. Observe that every element of BL is given by a pair of paths (a0, a1)

in EL . The homotopy class of the path ai is an element of the fundamental quandle
Q(L) with the basepoint zi for i = 0, 1. We thus obtained the set B̂L by taking
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pairs of representatives of the fundamental quandle Q(L), and then imposing on
those pairs a new equivalence relation.

The set B̂L is closely related to the group of the link L . For any point p ∈ ∂NL ,
denote by m p the loop in ∂NL , based at p, which goes once around the meridian of
L in the positive direction according to the orientation of the normal bundle. Define
two maps pi : BL → π1(EL , zi ) by pi (a0, a1)= [ai ·mai (0) · ai ] for i = 0, 1.

Lemma 3.2. If (a0, a1)∼ (b0, b1), then pi (a0, a1)= pi (b0, b1) for i = 0, 1.

Proof. Let (a0, a1)∼ (b0, b1) be two equivalent elements of BL . Then there exists
a homotopy Ht : [0, 1] → EL such that H0 = a0 · a1, H1 = b0 · b1, Ht(0) = z0,
Ht(1)= z1 and Ht

( 1
2

)
∈ ∂NL for all t ∈ [0, 1]. It follows that a0(0) and b0(0) lie in

the same boundary component of ∂NL . Since ma0(0) and mb0(0) are two meridians
of the same component of L , we may choose a homotopy G t : [0, 1] → ∂NL such
that G0 =ma0(0), G1 =mb0(0) and G t(0)=G t(1)= Ht

( 1
2

)
for t ∈ [0, 1]. Similarly,

we may choose a homotopy Jt : [0, 1] → ∂NL such that J0 = ma1(0), J1 = mb1(0)

and Jt(0)= Jt(1)= Ht
( 1

2

)
for t ∈ [0, 1]. Define a map St : [0, 1] → EL by

St(u)=


Ht(3u/2), 0≤ u ≤ 1

3 ,

G t(3u− 1), 1
3 ≤ u ≤ 2

3 ,

Ht(3(1− u)/2), 2
3 ≤ u ≤ 1.

Now St is a homotopy between the loops a0 ·ma0(0) · a0 and b0 ·mb0(0) · b0, which
thus represent the same element of the fundamental group π1(EL , z0). It follows
that p0(a0, a1)= p0(b0, b1). The proof for i = 1 is similar. �

Corollary 3.3. The map pi induces a map p̂i : B̂L → π1(EL , zi ) for i = 0, 1.

Denote by [a0, a1] ∈ B̂L the equivalence class of the element (a0, a1) ∈ BL .
We have found a way to associate to each element [a0, a1] of the set B̂L two
elements of the fundamental groups π1(EL , z0) and π1(EL , z1), namely p̂0[a0, a1]

and p̂1[a0, a1]. Using this association, we will now define the operations on B̂L .
Define two binary operations (called the up- and down-operation) on BL by

(a0, a1)
(b0,b1) := (a0 · p0(b0, b1), a1) and (a0, a1)(b0,b1) := (a0, a1 · p1(b0, b1)).

We intend to show that these operations induce operations on the quotient space B̂L ,
and that B̂L equipped with those operations forms a biquandle.

Lemma 3.4. If (a0, a1) ∼ (c0, c1) and (b0, b1) ∼ (d0, d1), then (a0, a1)
(b0,b1) ∼

(c0, c1)
(d0,d1) and (a0, a1)(b0,b1) ∼ (c0, c1)(d0,d1).

Proof. Let (a0, a1) ∼ (c0, c1) and (b0, b1) ∼ (d0, d1) in BL . There is a homotopy
Ht : [0, 1] → EL such that H0 = a0 · a1, H1 = c0 · c1, Ht(0)= z0, Ht(1)= z1 and
Ht
( 1

2

)
∈∂NL for all t ∈[0, 1]. Since (b0, b1)∼ (d0, d1), it follows by Lemma 3.2 that
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there exists a homotopy G t : [0, 1]→ EL such that G0= p0(b0, b1), G1= p0(d0, d1)

and G t(0)= G t(1)= z0 for all t ∈ [0, 1]. Define a map St : [0, 1] → EL by

St(u)=


G t(1− 4u), 0≤ u ≤ 1

4 ,

Ht
(
2u− 1

2

)
, 1

4 ≤ u ≤ 1
2 ,

Ht(u), 1
2 ≤ u ≤ 1.

Now St is a homotopy from a0 · p0(b0, b1)·a1 to c0 · p0(d0, d1)·c1, for which St(0)=
z0, St(1) = z1 and St

( 1
2

)
∈ ∂NL for all t ∈ [0, 1]. It follows that (a0, a1)

(b0,b1) ∼

(c0, c1)
(d0,d1). The proof is similar for (a0, a1)(b0,b1) ∼ (c0, c1)(d0,d1). �

Corollary 3.5. There are induced up- and down-operations on B̂L , defined by

[a0, a1]
[b0,b1] := [a0 · p0(b0, b1), a1] and [a0, a1][b0,b1] := [a0, a1 · p1(b0, b1)].

Lemma 3.6. The maps fa, ga : B̂L → B̂L , defined by fa(x)= xa and ga(x)= xa ,
are bijective for any a ∈ B̂L .

Proof. Define maps f ′a, g′a : B̂L → B̂L by f ′a([b0, b1]) = [a0 · p0(b0, b1), a1] and
g′a([b0, b1])= [a0, a1 · p1(b0, b1)]. It is easy to see that f ′a is the inverse of fa and
g′a is the inverse of ga , thus fa and ga are bijective. �

Theorem 3.7. The set B̂L , equipped with the induced up- and down-operations, is
a biquandle.

Proof. For any a, b ∈ B̂L , denote a b := ab and a b := ab. We need to show that
B̂L equipped with those operations satisfies all the biquandle axioms.

(1) Let a∈ B̂L . The maps fa, ga : B̂L→ B̂L , defined by fa(x)= x a and ga(x)= x a ,
are bijective by Lemma 3.6. The map S : B̂L × B̂L → B̂L × B̂L is defined by
S(a, b)= (ba , a b ). Consider another map T : B̂L × B̂L → B̂L × B̂L , defined by
T ([a0, a1], [b0, b1])=

(
[b0 · p0(a0, a1), b1], [a0, a1 · p1(b0, b1)]

)
, and compute

T
(
S([a0, a1], [b0, b1])

)
= T

(
[b0, b1 · p1(a0, a1)], [a0 · p0(b0, b1), a1]

)
=

(
[a0 · p0(b0, b1) · p0(b0, b1 · p1(a0, a1)), a1],

[b0, b1 · p1(a0, a1) · p1(a0 · p0(b0, b1), a1)]
)

=
(
[a0b̄0mb0(0)b0b̄0m̄b0(0)b0, a1], [b0, b1ā1ma1(0)a1ā1m̄a1(0)a1]

)
= ([a0, a1], [b0, b1]).

A similar calculation shows that ST = id, thus S is bijective with inverse T .
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(2) Let a = [a0, a1] ∈ B̂L . We calculate

f −1
a (a)= [a0, a1]

[a0,a1] = [a0ā0m̄a0(0)a0, a1] = [m̄a0(0)a0, a1],

a f −1
a (a) = [a0, a1]([a0,a1]

[a0,a1])
= [a0, a1][a0ā0m̄a0(0)a0,a1] = [a0, a1ā1ma1(0)a1]

= [a0,ma1(0)a1].

Since a0(0)= a1(0), we have ma0(0) = ma1(0) and therefore the path m̄a0(0)a0a1 is
homotopic to the path ā0ma1(0)a1. It follows that f −1

a (a)= a f −1
a (a) . The proof

of g−1
a (a)= a g−1

a (a) is similar.

(3) Let a = [a0, a1], b= [b0, b1] and c= [c0, c1] be elements of B̂L . Then we have

a cb bc = (acb)(b
c)
= ([a0, a1]

[c0,c1b̄1mb1(0)b1])[b0c̄0mc0(0)c0,b1]

= [a0c̄0mc0(0)c0, a1]
[b0c̄0mc0(0)c0,b1]

= [a0c̄0mc0(0)c0c̄0m̄c0(0)c0b̄0mb0(0)b0c̄0mc0(0)c0, a1]

= [a0b̄0mb0(0)b0c̄0mc0(0)c0, a1] = ([a0, a1]
[b0,b1])[c0,c1] = a b c ,

a b cba = (ab)
c(ba ) = [a0, a1b̄1mb1(0)b1]

[c0,c1][b0 ā0ma0(0)
a0,b1]

= [a0, a1b̄1mb1(0)b1]
[c0,c1b̄1mb1(0)b1] = [a0c̄0mc0(0)c0, a1b̄1mb1(0)b1]

= [a0c̄0mc0(0)c0, a1][b0c̄0mc0(0)c0,b1]

= [a0c̄0mc0(0)c0, a1]([b0,b1]
[c0,c1 ā1ma1(0)

a1])

= ([a0, a1]
[c0,c1])

([b0,b1]
[c0,c1][a0,a1] )

= a c bca .

A similar calculation proves the down interchanges equality a cb bc = a b c .
Therefore B̂L is a biquandle. �

Since B̂L is a biquandle, there are two more operations and on B̂L , defined
by S−1(a, b)= (b a , a b ). We call those operations the up-bar and the down-bar
operation, respectively. It follows from the proof of Theorem 3.7 that the bar
operations are computed as

[a0, a1] [b0, b1] = [a0, a1]
[b0,b1] = [a0 · p0(b0, b1), a1] and

[a0, a1] [b0, b1] = [a0, a1][b0,b1]
= [a0, a1 · p1(b0, b1)].

Definition 3.8. Biquandle B̂L is called the topological biquandle of the link L .

Observe that in the case of the topological biquandle, the name biquandle becomes
further justified, since every element of B̂L is represented by an ordered pair of
paths (whose homotopy classes represent the elements of the fundamental quandle).
We might ask ourselves which biquandles could be constructed from two quandles
in a similar way. In [Horvat 2018] it is shown that given two quandles Q and K , one
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may construct a product biquandle with underlying set Q× K , whose operations
are induced by the operations on Q and K . Product biquandles are classified in
[Horvat 2018, Theorem 5.3].

In the remainder of this Section, we study properties of the topological biquan-
dle B̂L . It turns out that its structure is simpler than that of a general biquandle.

Lemma 3.9. In the topological biquandle, for any a, b, c ∈ B̂L the following hold:

(1) Any up-operation commutes with any down-operation.

(2) a b b = a b b = a b b = a b b = a.

(3) a bc = a b c = a b , a bc = a b c = a b ,

a bc = a b c = a b , a bc = a b c = a b .

Proof. (1) For any [a0, a1], [b0, b1], [c0, c1] ∈ B̂L we have

([a0, a1]
[b0,b1])[c0,c1] = [a0 · p0(b0, b1), a1 · p1(c0, c1)] = ([a0, a1][c0,c1])

[b0,b1],

and similar equalities hold for the up-bar and down-bar operations.

(2) Let a, b ∈ B̂L , a = [a0, a1], b = [b0, b1], and compute

a b b = ([a0, a1]
[b0,b1])[b0,b1] = [a0 · b̄0mb0(0)b0 · b̄0m̄b0(0)b0, a1] = [a0, a1] = a,

and similarly in the other three cases.

(3) We have

[a0, a1]
([b0,b1][c0,c1]) = [a0, a1]

[b0,b1·p1(c0,c1)] = [a0 · b̄0mb0(0)b0, a1] = [a0, a1]
[b0,b1],

and similar calculations settle the other cases. �

Proposition 3.10. Let (X, , ) be any biquandle in which the equalities a bc =
a b , a bc = a b , a bc = a b and a bc = a b are valid for any a, b, c ∈ X. Then

(1) the equalities (3) from Lemma 3.9 are valid for any a, b, c ∈ X ,

(2) for any a, b ∈ X we have a b b = a b b = a b b = a b b = a,

(3) any up-operation on X commutes with any down-operation,

(4) for any a, b, c ∈ X we have a bc = a c b c and a bc = a c b c .

Proof. Let X be a biquandle with the prescribed property. To prove (1), we use
Lemma 2.3 to compute a b c = a b c c b = a b and similarly for the other three
cases.

To prove (2), choose elements a, b ∈ X and use Lemma 2.3 to compute

a b b = a b ba = a, a b b = a b b a = a,

a b b = a b ba = a, a b b = a b b a = a.
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To prove (3), choose elements a, b, c∈ X and use the second equality of biquandle
axiom (3) to compute

(1) a c b = a c bca = a b cba = a b c .

Now write x = a b c and use (2) together with Equation (1) to obtain a = x c b =
x b c , which implies x = a c b = a b c .

Writing y = a c b , we use (2) and the second equality of biquandle axiom (3) to
compute

y c = y cba = a c b cba = a c c bca = a b ,

which implies y = a b c = a c b .
Finally, write z = a b c and use the previously proved equality to obtain a =

z c b = z b c , which implies z = a c b = a b c .
To prove (4), choose elements x, y, z ∈ X and use the first equality of biquandle

axiom (3) to compute x y z y = x y z z y = x z y and putting a = x y , b= z and
c = y gives a bc = a c b c . Similarly, the third equality of biquandle axiom (3)
gives x y z y = x y z z y = x z y and putting a = x y , b = z and c = y implies
a bc = a c b c . �

Part (3) of Lemma 3.9 together with Proposition 3.10 implies:

Corollary 3.11. Let A be a generating set of the topological biquandle B̂L . Any
element of B̂L can be expressed in the form aw1 w2 , where a ∈ A and wi is a word
in F(A) for i = 1, 2.

4. Presentation of the topological biquandle

Recall the setting described at the beginning of Section 3. For a link L in S3, we have
chosen a regular neighborhood NL and fixed an orientation of the normal bundle of L .
We have also chosen the basepoints z0 and z1, which represent two antipodal points
of the boundary sphere of a 3-ball neighborhood of NL . Choose a coordinate system
in which the points z0 and z1 have coordinates (0, 0, 1) and (0, 0,−1) respectively,
and let D be the diagram of L obtained by projection to the plane z = 0.

As before, we denote by A(D) the set of semiarcs and by C(D) the set of
crossings of the diagram D. We would like to find a presentation of the topological
biquandle B̂L in terms of the link diagram.

For any a, b, c ∈ A(D), denote by Ra,b,c the set of relations

Ra,b,c =
{
a bc = a b , a bc = a b , a bc = a b , a bc = a b

}
.

Theorem 4.1. Let D be a diagram of a link L in S3. Then〈
A(D)|crossing relations for each c ∈ C(D), Ra,b,c for each a, b, c ∈ A(D)

〉
is a presentation of the topological biquandle B̂L .
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Proof. Let R =
{
crossing relations for each c ∈ C(D), Ra,b,c for each a, b, c ∈

A(D)
}
. We will define a map j : A(D)→ B̂L such that

(1) ( j̄ × j̄)(R)⊂1B̂L
,

(2) for any biquandle Y and for any map f : A(D)→Y such that ( f̄ × f̄ )(R)⊂1Y ,
there exists a unique biquandle homomorphism f̃ : B̂L→Y such that f = f̃ ◦ j .

For a semiarc a ∈ A(D), let j (a)= [a0, a1], where a0 is any path from the parallel
curve to the semiarc a to z0 that passes over all the other arcs of the diagram, and
a1 is a path from a0(0) to z1 that passes under all the other arcs of the diagram.

Proof of 1. By definition of a free biquandle, there exists a unique biquandle
homomorphism j̄ : FBQ(A(D))→ B̂L that extends the map j , and it is given by

j̄(a b )= j (a) j (b)
= [a0, a1]

[b0,b1], j̄(a b )= j (a) j (b) = [a0, a1][b0,b1].

It follows from Lemma 2.4 that j̄ also satisfies

j̄(a b )= j (a) j (b)
= [a0, a1]

[b0,b1], j̄(a b )= j (a) j (b) = [a0, a1][b0,b1]
.

For any a, b, c ∈ A(D), we use part (3) of Lemma 3.9 to compute

j̄(a bc )= j (a) j (b) j (c) = j (a) j (b) = j̄(a b ),

and a similar computation shows that the homomorphism j̄ preserves every relation
from the set Ra,b,c.

At every positive crossing of the diagram D, the outgoing semiarcs c and d are
related to the incoming semiarcs a and b by two crossing relations c = a b and
d = ba (see the left part of Figure 1). Figure 2 shows a homotopy between j̄(a b )
and j̄(c) and another homotopy between j̄(ba ) and j̄(d).

At every negative crossing of the diagram D, the outgoing semiarcs c and d are
related to the incoming semiarcs a and b by two relations, c= a b and d = b a (see
the right part of Figure 1). Figure 3 shows a homotopy between j̄(a b ) and j̄(c) and
another homotopy between j̄(b a ) and j̄(d). This shows that ( j̄ × j̄)(R)⊂1B̂L

.

Proof of 2. Suppose Y is a biquandle and choose any map f : A(D)→ Y such that
( f̄ × f̄ )(R)⊂1Y . An element of B̂L is represented by a pair (γ0, γ1), where γi is
a path in EL from a point in ∂NL to zi for i = 0, 1 and γ0(0)= γ1(0). Project the
paths γ0, γ1 in general position onto the plane of the diagram D. Suppose that the
initial point γ0(0)= γ1(0) lies on the parallel curve to the semiarc a and suppose
that γ0 subsequently passes under the semiarcs labeled by b1, b2, . . . , bm , while γ1

subsequently passes over the semiarcs labeled by c1, c2, . . . , cn . Define

f̃ ([γ0, γ1]) := f (a) f (b1)
ε1 · · · f (bm)

εm f (c1)
φ1 · · · f (cn)

φn ,

where εi denotes the sign of the crossing between γ0 and its overlying semiarc bi ,
while φi denotes the sign of the crossing between γ1 and its underlying semiarc ci .
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z0

z1

c0 ' a0b̄0mb0(0)b0

c1 ' a1

b0

a0

a1

z0

z1

b0

b1

a1

d0 ' b0

d1 ' b1ā1ma1(0)a1

Figure 2. An illustration of the crossing relations [a0, a1]
[b0,b1] =

[c0, c1] and [b0, b1][a0,a1] = [d0, d1].

z0

z1

c0 ' a0b̄0m̄b0(0)b0

c1 ' a1

b0

a0

a1

z0

z1

b0

b1

a1

d0 ' b0

d1 ' b1ā1m̄a1(0)a1

Figure 3. An illustration of the crossing relations [a0, a1]
[b0,b1] =

[c0, c1] and [b0, b1][a0,a1]
= [d0, d1].

It follows from the above definition of f̃ that for any a ∈ A(D), we have
( f̃ ◦ j)(a)= f̃ ([a0, a1])= f (a), therefore f̃ ◦ j = f . We need to show that f̃ is a
well defined map on B̂L and that it is a biquandle homomorphism. To show that f̃
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a

d

c
z1

z0

γ0

γ1

α0

α1

Figure 4. The invariance of f̃ — change of initial point.

a

d

c

z1

z0

γ0

γ1

α0

α1

Figure 5. The invariance of f̃ — change of initial point.

is well defined, we have to check that any representative of the equivalence class
[γ0, γ1] gives the same value of f̃ . During a homotopy from (γ0, γ1) to another
representative (α0, α1), the following critical stages may occur:

(a) The initial point γ0(0)= γ1(0) moves to another semiarc.
First suppose that the initial point of γi is at the semiarc a, while the initial point

of αi is at the semiarc d where a c = d (see Figure 4). Since ( f̄ × f̄ )(R)⊂1Y , we
have f (a) f (c) = f (d). Writing f̃ ([γ0, γ1]) = f (a)w1 w2 , we use Lemma 2.3
to obtain f̃ ([α0, α1]) = f (d) f̄ (ca ) w1 w2 = f (a) f (c) f (c) f (a) w1 w2 =

f (a)w1 w2 = f̃ ([γ0, γ1]).
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a

b

z1

z0

γ0

γ1

α0

α1

Figure 6. The invariance of f̃ under a homotopy — first case of (b).

Second, suppose that the initial point of γi is at the semiarc a, while the initial
point of αi is at the semiarc d where a c = d (see Figure 5). Since f̄ preserves
the crossing relations, we have f (a) f (c) = f (d). Since f̄ preserves the rela-
tions Ra,b,c, it follows by Proposition 3.10 that any up-operation on f̄ (A(D))
commutes with any down-operation. Write f̃ ([γ0, γ1]) = f (a)w1 w2 and it fol-
lows that f̃ ([α0, α1]) = f (d)w1 f̄ (ca ) w2 = f (a) f (c) f (c) f (a) w1 w2 =

f (a)w1 w2 = f̃ ([γ0, γ1]).

For the two remaining cases, we prove the invariance in a similar way.

(b) The arc γ0, overcrossed by the same semiarc b twice, homotopes to an arc
α0 that is not crossed by b (or the arc γ1, overcrossing the same semiarc b twice,
homotopes to an arc α1 that does not cross b).

For the first case, see Figure 6. We have

f̃ ([γ0, γ1])= f (a)w1 f (b) f (b) w2 w3 and f̃ ([α0, α1])= f (a)w1 w2 w3 .

Since f̄ preserves the relations Ra,b,c, it follows by Proposition 3.10 that

f̃ ([γ0, γ1])= f̃ ([α0, α1]).

For the second case, see Figure 7. We have

f̃ ([γ0, γ1])= f (a)w1 w2 f (b) f (b) w3 and f̃ ([α0, α1])= f (a)w1 w2 w3 .

Since f̄ preserves the relations Ra,b,c, it follows by Proposition 3.10 that

f̃ ([γ0, γ1])= f̃ ([α0, α1]).
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a

b

z1

z0

γ0

γ1

α0

α1

Figure 7. The invariance of f̃ under a homotopy — second case of (b).

(c) γ0 passes under a crossing between two semiarcs (or γ1 passes over a crossing
between two semiarcs).

For the first case, see Figure 8. We write

f̃ ([γ0, γ1])= f (a)w1 f (b) f (c) w2 w3 ,

f̃ ([α0, α1])= f (a)w1 f (c) f (b) f (b) f (c) w2 w3 .

Since f̄ preserves the relations Ra,b,c, we may use the first equality of biquandle
axiom (3) to compute

f (a)w1 f (c) f (b) f (b) f (c) = f (a)w1 f (b) f (c)

and therefore f̃ ([γ0, γ1])= f̃ ([α0, α1]). The remaining cases are settled in a similar
way.

To show that f̃ is a biquandle homomorphism, choose two elements

[α0, α1], [β0, β1] ∈ B̂L .

Let f̃ [α0, α1] = f (a)w1 w2 and f̃ [β0, β1] = f (b)z1 z2 . Using Proposition 3.10,
we calculate

f̃ ([α0, α1]
[β0,β1])= f̃ [α0β0mβ0(0)β0, α1] = f (a)w1 z1 f (b) z1 w2

= f (a)w1 w2 z1 f (b) z1 = f̃ [α0, α1] f (b)z1 ,

= f̃ [α0, α1] f̃ [β0, β1] ,

f̃ ([α0, α1][β0,β1])= f̃ [α0, α1β1mβ1(0)β1] = f (a)w1 w2 z2 f (b) z2

= f̃ [α0, α1] f (b)z2 = f̃ [α0, α1] f (b)z2 z1

= f̃ [α0, α1] f̃ [β0, β1] ,
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a

b

c

cb

bc

z1

z0

γ0

γ1

α0

α1

Figure 8. The invariance of f̃ under a homotopy — first case of (c).

thus f̃ is indeed a biquandle homomorphism.
To prove uniqueness of f̃ , observe that by Corollary 3.11, any element of B̂L

can be written as [γ0, γ1] = j (a) j̄(w1) j̄(w2) , where a ∈ A(D) and w1, w2 are
elements of the free group, generated by A(D). If g : B̂L → Y is any biquandle
homomorphism for which g ◦ j = f , then we have

g[γ0, γ1] = f [a0, a1] f̄ (w1) f̄ (w2) = f̃ [γ0, γ1]. �

Corollary 4.2. For any link L , the topological biquandle B̂L is a quotient of its
fundamental biquandle BQ(L).

Corollary 4.3. The topological biquandle is a link invariant.

Example 4.4. Consider the link L = L6n1 in the Thistlethwaite Link Table, whose
diagram is depicted in Figure 9. Denoting the semiarcs of the diagram as shown in
Figure 9, the fundamental biquandle of L is given by the presentation

BQ(L)=
〈
a, b, c, d, e, f, g, h, i, j, k, l

∣∣ l a = i, a l = b, f k = g, k f = l,
g d = h, d g = a, c j = d, j c = k,

i h = j, h i = e, be = c, eb = f
〉
,

that reduces to

BQ(L)=
〈
b, f, l

∣∣ b f b l f b f b f l f l = b, f l f b l f l f l b l b = f,

l b l f b l b l b f b f = l
〉
.
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a

b

c

d

e

f

g

h

i

j

k

l

Figure 9. A diagram of the link L6n1 from Example 4.4.

The topological biquandle B̂L is given by the presentation

B̂L =

〈
a, b, c, d, e, f, g, h, i, j, k, l

∣∣ l a = i, a l = b, f k = g, k f = l, g d = h,

d g = a, c j = d, j c = k, i h = j, h i = e,

be = c, eb = f, R
〉
,

where R denotes all relations Rx,y,z for x, y, z ∈ {a, b, c, d, e, f, g, h, i, j, k, l}.
These relations include: x y x = x y , x y z w z = x y and x y z = x y for every
x, y, z, w ∈ {b, f, l}. Since none of these new relations is implied from the relations
in the presentation of BQ(L), it follows that the topological biquandle B̂L is a
quotient of the fundamental biquandle BQ(L). The presentation of the topological
biquandle thus reduces to

B̂L =
〈
b, f, l | b f l f l = b, f l b l b = f, l b f b f = l, R

〉
.

Remark 4.5. A presentation of the topological biquandle B̂L is obtained from a
presentation of the fundamental biquandle BQ(L) by adding relations

Ra,b,c =
{
a bc = a b , a bc = a b , a bc = a b , a bc = a b

}
for every ordered triple of generators (a, b, c). Seeing B̂L as a subbiquandle of the
fundamental biquandle BQ(L), we may talk about the corresponding “sections.”
For any a ∈ BQ(L), the section B̂La is given as B̂La = {x a , x a | x ∈ B̂L}. The
quotient set BQ(L)/B̂L is generated by

BQ(L)/B̂L =
〈̂
BLa b , B̂La b , B̂La b , B̂La b | a, b ∈ BQ(L)

〉
.
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Denoting by n the number of generators of BQ(L), the quotient set BQ(L)/B̂L has
4n2 generators, which indicates the “index” of the topological biquandle inside the
fundamental biquandle. In Example 4.4, the quotient BQ(L)/B̂L has 36 generators.

One might question the need for the topological biquandle, when the fundamental
quandle is already a complete invariant of knots up to inversion. In a more sophisti-
cated study of links (e.g., virtual links), however, we sometimes need to combine
two or more different link invariants to yield a stronger invariant. Some examples of
this are the quantum enhancements using biquandles, see [Nelson et al. 2017; 2019;
Nelson and Oyamaguchi 2017; Ilyutko and Manturov 2017]. In the study of virtual
links, Manturov [2010] introduced the concept of parity, that induces a function
on the set of crossings of any virtual link diagram. Parity allows constructions of
new link invariants and also improvement of the existing invariants (e.g., Kauffman
bracket). As was shown in [Ilyutko and Manturov 2017, Example 2.3], a parity
of knots may be induced by a certain coloring of the fundamental biquandle of
the knot. It might be possible to define other parities of virtual knots using the
fundamental or topological biquandle.

The topological biquandle may just as well be defined for links in other 3-
manifolds, virtual links, or higher-dimensional links, and it might lead to interesting
new invariants.
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