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We explore the distinctions between L p convergence of metric tensors on
a fixed Riemannian manifold versus Gromov–Hausdorff, uniform, and in-
trinsic flat convergence of the corresponding sequence of metric spaces. We
provide a number of examples which demonstrate these notions of conver-
gence do not agree even for two dimensional warped product manifolds with
warping functions converging in the L p sense. We then prove a theorem
which requires L p bounds from above and C0 bounds from below on the
warping functions to obtain enough control for all these limits to agree.
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1. Introduction

When mathematicians have studied sequences of Riemannian manifolds arising
naturally in questions of almost rigidity or when searching for solutions to geometric
partial differential equations, they have obtained bounds on the metric tensors
of these Riemannian manifolds. When the bounds they obtained on (Mn, g j )

guaranteed a subsequence, g j → g∞ converging in the C0 sense or stronger, then
the Riemannian manifolds, (M, g j ), viewed as metric spaces, (M, d j ), converge
uniformly to (M, d∞) where d∞ is defined as the infimum of the lengths of curves
between points measured using g∞. After observing this, Gromov [1981] introduced
the Gromov–Hausdorff distance between metric spaces, proving that uniform con-
vergence implies Gromov–Hausdorff convergence of metric spaces. The advantage
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MSC2010: 53C23.
Keywords: Gromov–Hausdorff convergence, Sormani–Wenger intrinsic flat convergence,

convergence of Riemannian manifolds, warped products.
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of Gromov–Hausdorff convergence is that one may allow the spaces themselves
to change (Mj , d j ) and one may obtain a limit metric space which is not even
a manifold. Gromov [1981] proved that if (Mj , g j ) have uniform lower bounds
on Ricci curvature and uniform upper bounds on diameter then a subsequence
converges in the Gromov–Hausdorff sense to a metric space, and since then many
people have analyzed the properties of these limit spaces.

More recently Sormani and Wenger [2011] introduced the intrinsic flat distance
between oriented Riemannian manifolds which need not be diffeomorphic. Roughly
the intrinsic flat distance is measuring a filling volume between two manifolds. A
standard sphere and a sphere with a thin deep well are very close in the intrinsic
flat sense based on the filling volume of the well, while they are far apart in
the Gromov–Hausdorff distance based on the depth of the well. As soon as this
notion was introduced people began asking whether L p convergence of the metric
tensors might in some way be related to intrinsic flat convergence of the metric
spaces. After all, a uniform Ln bound on metric tensors implies a uniform upper
bound on volume. Wenger [2011] proved that as long as a sequence of oriented
Riemannian manifolds has a uniform upper bound on volume and on diameter it
has a subsequence converging in the intrinsic flat sense. However it is not known
whether the limit space is in anyway related to (M, g∞) even when g∞ was smooth.
In joint work with Lakzian [Lakzian and Sormani 2013], and work of Lakzian
alone [2016] it was shown that even when g j→ g∞ smoothly away from a singular
set, the Gromov–Hausdorff and intrinsic flat limits need not be closely related to
(M, g∞) unless one controls volumes, areas, and distances near the singular set.

In this paper we provide a number of examples demonstrating that when metric
tensors g j converge in the L p sense to a metric tensor g∞, then uniform, intrinsic
flat and Gromov–Hausdorff limits need not converge to a metric space which is
defined by g∞ using the infimum of lengths over all curves. Our examples include
very simple two dimensional warped product Riemannian manifolds whose metric
tensors are of the form dr2

+ f j (r)2 dθ2.
In Example 3.4 we find a sequence of warping functions f j (r) which converge

in the L p sense to a constant function, f∞, but the uniform, Gromov–Hausdorff,
and intrinsic flat limit of the sequence is not even a Riemannian manifold. In this
example the f j ≤ f∞ but have an increasingly narrow dip downward about r = 0
so we say the sequence of manifolds is “cinched” at 0. This is an example with
smooth convergence away from a singular set that was not seen in [Lakzian and
Sormani 2013]. The limit metric space is described in detail within the example
and a proof is given afterwards. In Example 3.5 the f j ≤ f∞ and L p converge to
f∞ again, but the cinch moves around so that the f j do not converge pointwise
almost everywhere. This example has no uniform, Gromov–Hausdorff, or intrinsic
flat limit unless one takes a subsequence where the cinch’s location converges.
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In Examples 3.7–3.9 we also consider warping functions, f j , that L p converge
to a constant function, f∞, but now f j ≥ f∞. In Example 3.7 we have a single
increasingly narrow peak about r = 0. We say there is a “ridge” at 0. This is another
example with smooth convergence away from a singular set that was not studied in
[Lakzian and Sormani 2013]. We observe how the shortest paths between points on
the ridge, do not lie on the ridge in Lemma 3.6. In Example 3.8 we have a sequence
of manifolds with moving ridges, so there is no pointwise convergence almost
everywhere. In Example 3.9 we have increasingly many increasingly dense ridges.
In all three of these examples we prove uniform convergence of the distances, d j ,
to d∞ of the isometric product Riemannian manifold with metric tensor g∞ =
dr2
+ f j (r)2 dθ2. We obtain intrinsic flat and Gromov–Hausdorff convergence to

this limit as well.
In Example 3.12 we have f j ≥ f∞ with f∞ constant and f j = f∞ on an

increasingly dense set. However, now our f j do not converge in L p to f∞. For
the particular sequence we chose, we obtain uniform, intrinsic flat and Gromov–
Hausdorff convergence to a non-Riemannian Finsler manifold we call a minimized
R-stretched Euclidean taxi metric space. This metric is defined as an infimum over
an interpolation between a Euclidean metric stretched by R in one direction and a
taxi metric. Our example demonstrates that the L p convergence was crucial in the
prior examples. As discussed in Remark 3.13, this example shows the necessity of
scalar curvature bounds in the statement of the scalar compactness conjecture of
Gromov and Sormani (see [Gromov 2018]) to conclude that the limit has Euclidean
tangent cones almost everywhere. This conjecture was recently verified in the
rotationally symmetric case by Park, Tian, and Wang [Park et al. 2018].

We then prove the following general theorem concerning warped product mani-
folds Mn

= [r0, r1]× f 6 where 6 is an n−1 dimensional manifold including also
M without boundary that have f periodic with period r1− r0 as in (1)):

Theorem 1.1. Assume the warping factors, f j ∈ C0(r0, r1), satisfy the following:

0< f∞(r)−
1
j
≤ f j (r)≤ K <∞ and f j (r)→ f∞(r) > 0 in L2,

where f∞ ∈ C0(r0, r1).
Then we have GH and F convergence of the warped product manifolds,

Mj = [r0, r1]× f j 6→ M∞ = [r0, r1]× f∞ 6,

Nj = S1
× f j 6→ N∞ = S1

× f∞ 6,

and uniform convergence of their distance functions, d j → d∞.

Remark 1.2. In our theorem we assume L2 convergence but since we are assuming
that the f j are uniformly bounded this is equivalent to L p, p ∈ [1,∞) convergence.
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The proof of this theorem and indeed the proof of all the examples relies on a
theorem of the second author with Huang and Lee in the appendix of [Huang et al.
2017] which is reviewed in the background section of this paper. The theorem in
[Huang et al. 2017] states that if one has uniform upper and lower bounds on the d j ,
a subsequence of the Riemannian manifolds converges in the uniform, Gromov–
Hausdorff, and intrinsic flat convergence sense to some common limit space. Thus
we need only prove pointwise convergence of the original sequence of d j to our
proposed d∞. The method applied to control d j is different in each proof in this
paper. For the theorem, we apply the C0 lower bound to bound d j from below and
the L p upper bound is all that is needed to bound d j from above pointwise. Note
that the hypothesis of the theorem immediately implies a uniform upper bound on
diameter (Lemma 4.2). We end the paper with Theorem 5.1 concerning warped
product manifolds where the warping function depends on two variables.

Applications of these theorems will appear in a paper by the first author with
Hernandez-Vazquez, Parise, Payne, and Wang [Allen et al. 2019] on a conjecture of
Gromov concerning the almost rigidity of the scalar torus theorem. The first author
hopes to apply the techniques developed here in combination with his prior work
in [Allen 2018a; 2018b] to prove a special case of Lee and Sormani’s conjecture
[2014] on almost rigidity of the positive mass theorem. Additional applications to
conjectures involving scalar curvature that were raised by the second author at the
Fields Institute and described in [Sormani 2017] will be explored with other teams
of students and postdocs in the near future. Anyone interested in joining one of
these teams should contact the second author.

2. Review

In this subsection we review what we mean by a warped product space even with
a noncontinuous warping function and what one needs to know about Gromov–
Hausdorff and intrinsic flat convergence to prove all examples and theorems in
this paper. The reader does not need any prior knowledge of these two notions
of convergence. Readers who are experts in these notions of convergence are
recommended to read just the first and last subsections of this review section of the
paper, particularly Theorem 2.4 which combines results of Gromov [1981] and the
second author with Huang and Lee [Huang et al. 2017]. All examples and theorems
in this paper apply that theorem to prove convergence.

2A. Warped product spaces. Let (6n−1, σ ) be a compact Riemannian manifold
and

f : [r1, r2] → R+

and define the warped product manifolds

(1) M = [r1, r2]× f 6 and N = S1
× f 6
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with warped product metrics defined by

(2) g = dr2
+ f 2(r)σ,

where either r ∈ [r1, r2] or r ∈ S1. On such a manifold we define lengths of curves
to be

(3) Lg(C)=
∫ 1

0
g(C ′(t),C ′(t))1/2 dt =

∫ 1

0

√
|r ′(t)|2+ | f (r(t))|2|θ ′(t)|2 dt

which is well defined even when f is only L1. We then define distances d M
g (p, q)

and d N
g (p, q) on M and N respectively as

(4) dg(p, q)= inf{Lg(C) :C(0)= p, C(1)= q}

where the value is different on M and N because the selection of curves between
points within these two spaces are different.

Remark 2.1. Note that we do not need f to be smooth or even continuous to define
a warped product metric space. As long as the function is bounded above, we
can define lengths using (3). Following the text of Burago, Burago, and Ivanov
[Burago et al. 2001], the distance d defined by (4) is symmetric and satisfies the
triangle inequality. It is positive definite as long as f is bounded below by a positive
number. Such a metric space is then compact and there are geodesics whose lengths
achieve the infimum in (4). Even more general warped products of metric spaces
are explored by Alexander and Bishop [2004].

Remark 2.2. Throughout this paper we will assume that our warping function
f is continuous. Annegret Burtscher has proven that if a Riemannian manifold
has a continuous metric tensor then the distance between points is achieved by an
absolutely continuous curve (See Proposition 4.1 and Theorem 4.11 in [Burtscher
2015]). This is achieved by showing that the length of absolutely continuous curves
defined by (3) is equivalent to the induced length (see [loc. cit., Definition 2.1])
defined by dg in [loc. cit., Theorem 4.11]. This will be important for us because we
will repeatedly use the fact that the distance between points of M can be achieved
by an absolutely continuous curve C(t) and hence we can reparametrize C(t) so
that |C ′(t)|g = 1 almost everywhere.

For warped products we can show that L2 convergence of metrics g j → g∞
is equivalent to L2 convergence of the warping functions f j → f∞. For this we
fix the background metric δ = dr2

+ σ and an orthonormal basis for this metric
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{∂r , ∂θ1, . . . , ∂θn } and compute∫
M
|g j − g∞|2δ dm =

∫
M

n∑
i=1

| f j − f∞|2σ(∂θi , ∂θi ) dm

= n
∫ r2

r1

∫
6

| f j − f∞|2 dµ dr = n|6|
∫ r2

r1

| f j − f∞|2 dr,

where dm is the measure on M induced by δ, dµ is the measure on 6 from σ

and |6| is n-dimensional volume of 6. This shows that we can just work with L2

convergence of the warping functions for the sake of this paper.

2B. Gromov–Hausdorff convergence. Gromov–Hausdorff convergence was intro-
duced by Gromov [1981]. See also the text of Burago–Burago–Ivanov [Burago
et al. 2001]. It measures a distance between metric spaces. It is an intrinsic version
of the Hausdorff distance between sets in a common metric space Z :

d Z
H (A1, A2)= inf{r : A1 ⊂ Tr (A2) and A2 ⊂ Tr (A1)},

where Tr (A)= {x ∈ Z : ∃a ∈ A s.t. dZ (x, a) < r}. Since an arbitrary given pair of
compact metric spaces, (X i , di ), might not lie in the same compact metric space,
we use distance preserving maps:

ϕi : X i → Z such that dZ (ϕi (p), ϕi (q))= di (p, q) for all p, q ∈ X i

to map them into a common compact metric space, Z .
The Gromov–Hausdorff distance between two compact metric spaces, (X i , di ),

is then defined to be

dGH((X1, d1), (X2, d2))= inf{d Z
H (ϕ1(X1), ϕ2(X2)) :ϕi : X i → Z},

where the infimum is taken over all compact metric spaces Z and all distance
preserving maps, ϕi : X i → Z .

2C. Warped products as integral current spaces. Intrinsic flat convergence is de-
fined for sequences of integral current spaces in [Sormani and Wenger 2011]. An
integral current space is a metric space, (X, d), endowed with a current structure, T ,
where T is defined by a collection of bi-Lipschitz charts with weights. If we start
with an oriented smooth Riemannian manifold, M , then (X, d) is the standard
metric space defined by M using lengths of curves as in (3) and T is defined by the
orientation of M ,

(5) T ( f, π1, . . . , πm)=

∫
M

f dπ1 ∧ · · · ∧ dπm .

Here we are considering warped product spaces, M and N , as in (1) allowing our
function, f : [r1, r2]→R+, to simply have a maximum and a positive minimum and
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do not require it to be smooth. In order to confirm that we still may use (5) to define
the integral current structure on our space, we need only verify that our standard
oriented charts on the isometric product manifold are bi-Lipschitz to the metric d
we obtain as in (3)–(4). This is confirmed by showing the identity map between
the isometric product manifold, M1 = [r1, r2]×16, and our warped product space,
M = [r1, r2]× f 6, is bi-Lipschitz:

Lemma 2.3. Suppose the warping function is bounded

f (r) ∈ [a, b] for all r ∈ [r1, r2],

then the identity map

F : M1 = [r1, r2]×16→ M = [r1, r2]× f 6

is bi-Lipschitz:

0<min{a, 1} ≤
dM(F(p), F(q))

dM1(p, q)
≤ (max{1, b}).

Proof. This can be seen by observing that

Lg(C)=
∫ 1

0

√
|r ′(t)|2+ | f (r(t))|2|θ ′(t)|2 dt

≤ (max{1, b})
∫ 1

0

√
|r ′(t)|2+ |θ ′(t)|2 dt

≤ (max{1, b})Lg1(C).
Thus

dM(F(p), F(q))≤ (max{1, b})dM1(p, q).

For the other direction we have

Lg1(C)=
∫ 1

0

√
|r ′(t)|2+ |θ ′(t)|2 dt

≤ (min{a, 1})−1
∫ 1

0

√
|r ′(t)|2+ | f (r(t))|2|θ ′(t)|2 dt

≤ (min{a, 1})−1Lg(C).
Thus

dM1(p, q)≤ (min{a, 1})−1dM(F(p), F(q)). �

2D. Key theorem we apply to prove GH and F convergence. The following the-
orem was proven by the second author jointly with Huang and Lee in [Huang et al.
2017] building upon earlier work of Gromov [1981]. This theorem allows us to
prove GH and intrinsic flat convergence using only information about the sequence
of distance functions. Note that it is a compactness theorem, providing the existence
of a converging subsequence once one simply has uniform bi-Lipschitz control
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on the metrics. The convergence is not bi-Lipschitz convergence but instead it is
uniform convergence of the distance functions and also GH and F convergence of
the spaces.

Theorem 2.4. Fix a precompact n-dimensional integral current space (X, d0, T )
without boundary (e.g., ∂T = 0) and fix λ > 0. Suppose that d j are metrics on X
such that

(6) λ≥
d j (p, q)
d0(p, q)

≥
1
λ
.

Then there exists a subsequence, also denoted d j , and a length metric d∞ satisfying
(6) such that d j converges uniformly to d∞:

ε j = sup
{
|d j (p, q)− d∞(p, q)| : p, q ∈ X

}
→ 0.

Furthermore
lim

j→∞
dGH

(
(X, d j ), (X, d∞)

)
= 0

and
lim

j→∞
dF
(
(X, d j , T ), (X, d∞, T )

)
= 0.

In particular, (X, d∞, T ) is an integral current space and set(T )= X so there are
no disappearing sequences of points x j ∈ (X, d j ).

In fact we have
dGH

(
(X, d j ), (X, d∞)

)
≤ 2ε j

and
dF
(
(X, d j , T ), (X, d∞, T )

)
≤ 2(n+1)/2λn+12ε j M(X,d0)(T ).

Remark 2.5. In order to apply this theorem we will use the following method
repeatedly. We will demonstrate that a sequence has pointed convergence of the
distance functions and also satisfies the bi-Lipschitz bound in (6). Then by this
theorem there is a converging subsequence. However by the pointed convergence
we will see that all the subsequences must in fact converge to the same limit space.
Thus we obtain F and GH convergence of the original sequence.

3. Examples

In this section we present our examples. Each example contains a sequence of
smooth warped product manifolds which converge in various ways to warped
product metric spaces. We first study distances on warped product spaces with deep
valleys. We apply this to present our cinched warped product example. We then
observe what happens to distances on warped product spaces with peaks.
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3A. Distances on warped products with valleys. First let us develop the intuitive
picture first. Consider a warped product manifold [−π, π] ×g S1 as in Figure 1
with a warping function

f j (r)=


1, r ∈ [−π,−1/j],
h( jr), r ∈ [−1/j, 1/j],
1, r ∈ [1/j, π],

where h is a smooth even function defining a valley with h(−1)= 1 with h′(−1)= 0,
decreasing to h(0)= h0 ∈ (0, 1] and then increasing back up to h(1)= 1, h′(1)= 0.
Keep in mind that the distance between the level sets, r−1(a) and r−1(b) is |a− b|
and so we have evenly spaced levels drawn in the figure.

A minimizing geodesic, draw in red in Figure 1, will proceed diagonally towards
the valley, climb down into the valley, run along the valley, then climb out and
proceed diagonally away from the valley. The climbing parts are very short if the
change in r is small (which is true for large j). Since it is more efficient to travel
around inside the valley (for the change in θ), it is more efficient to travel almost
directly to the valley as in the geodesic in the figure. Observe that the length of this
geodesic is bounded above by the length of a curve which goes directly to the valley
and straight down, then turns a right angle to stay along the bottom of the valley,
and then makes a right angle to climb out and move directly to the end point. Thus

d((−r, θ1), (r, θ2))≤ |− r − 0| + f (0) dS1(θ1, θ2)+ |0− r |.

In the following lemmas we use this same basic idea to bound distances in warped
products with a wide variety of warping functions.

Lemma 3.1. Given a warped product space M (or respectively N ) defined as in (1),
suppose f (r)≥ f (r0) for all r ∈ [r1, r2] (or respectively r ∈S1). If x1, x2 ∈ r−1(r0)

then
dg(x1, x2)= f (r0)dσ (θ2, θ1).

Figure 1. The geodesic will cut across the valley.
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Proof. Let C(t) = (r(t), θ(t)) be any curve joining x1 = (r0, θ1) to x2 = (r0, θ2).
Then

L(C[0, 1])=
∫ 1

0

√
|r ′(t)|2+ | f (r(t))|2|θ ′(t)|2 dt

≥

∫ 1

0

√
|0|2+ | f (r0)|

2
|θ ′(t)|2 dt

= f (r0)

∫ 1

0
|θ ′(t)| dt

= f (r0) L6(θ [0, 1])

≥ f (r0) dσ (θ2, θ1).

However if we take the curve C(t)= (r0, θ(t)), where θ(t) is a minimizing geodesic
in 6 from θ1 to θ2, we have equality everywhere above. So the infimum over all
lengths is achieved:

dg(x1, x2)= inf
C

L(C[0, 1])= f (r0)dσ (θ2, θ1). �

Lemma 3.2. Given a warped product space M defined as in (1) and a pair of points
x1 = (r1, θ1) and x2 = (r2, θ2) with r1 < r2 then the distance between those points
is bounded by

d M
g j
(x1, x2)≤ |r2− r1| + D j (r1, r2)dσ (θ2, θ1),

where
D j (r1, r2)= min

r∈[r1,r2]
f j (r)

and dσ is the distance on (6, σ ).

Proof. Let r̂ j ∈ (r1, r2) be chosen so that f j (r̂ j ) = D j (r1, r2). Construct the
following curve between the points x1, x2 ∈ Mj , where α ⊂6 is a geodesic with
respect to (6, σ ), α(0)= θ1 and α(1)= θ2,

C j (t)=


(r1+ 3(r̂ j − r1)t, θ1), t ∈

[
0, 1

3

]
,

(r̂ j , α(3t − 1)), t ∈
[1

3 ,
2
3

]
,(

r̂ j + 3(r2− r̂)
(
t − 2

3

)
, θ2
)
, t ∈

[2
3 , 1

]
,

and then

d M
g j
(x1, x2)≤ L j (C j )= |r2− r̂ j | + f j (r̂ j )dσ (θ2, θ1)+ |r̂ j − r1|. �

Almost the same proof can be applied to show the following lemma.

Lemma 3.3. Given a warped product space N defined as in (1) and a pair of points
x1 = (r1, θ1) and x2 = (r2, θ2) then the distance between those points is bounded by

d M
g j
(x1, x2)≤ dS1(r1, r2)+ D j (r1, r2)dσ (θ2, θ1),
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where
D j (r1, r2)= min

r∈arc(r1,r2)
f j (r),

where arc(r1, r2) is the minor arc between r1 and r2 in S1 and where dσ is the
distance on (6, σ ).

3B. Cinched spaces. Here we see examples of spaces whose warping functions
converge in the L p sense but the GH and SWIF limits do not agree with the L p limit
due to the existence of deep canyons or cinching. See Figure 1 and now imagine
that the valley remains equally as deep but becomes very narrow.

Example 3.4. Consider the sequence of smooth functions f j (r) : [−π, π]→ [1, 2]

f j (r)=


1, r ∈ [−π,−1/j],
h( jr), r ∈ [−1/j, 1/j],
1, r ∈ [1/j, π],

where h is a smooth even function such that h(−1)= 1 with h′(−1)= 0, decreasing
to h(0)= h0 ∈ (0, 1] and then increasing back up to h(1)= 1, h′(1)= 0. Note that
this defines a sequence of smooth Riemannian metrics, g j , as in (2), with distances,
d j , as in (4) on the manifolds,

Mj = [−π, π]× f j 6 or Nj = S1
× f j 6

for any fixed Riemannian manifold 6. Consider also M∞ and N∞ defined as above
with f∞(r)= 1 for all r .

Despite the fact that
f j → f∞ in L p,

we do not have Mj converging to M∞ nor Nj to N∞ in the GH or F sense. In fact

Mj
GH
−→ M0 and Mj

F
−→ M0

and
Nj

GH
−→ N0 and Nj

F
−→ N0,

where M0 and N0 are warped metric spaces defined as in (1) with warping factor

f0(r)=


1, r ∈ [−π, 0),
h0, r = 0,
1, r ∈ (0, π].

Proof. First we verify our claim about L p convergence(∫ π

−π

| f j − 1|p dr
)1/p

=

(∫ 1/j

−1/j
|h j − 1|p dr

)1/p

≤

(2
j

)1/p
→ 0,
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where we use the fact that |h j − 1|p ≤ 1 by construction.
Let us consider (Mj , d j ). Since we have

0< h0 ≤ f j (r)≤ f0(r)≤ f∞(r)= 1

then
(h0)

2 g∞ ≤ g j ≤ g0 ≤ g∞
and

h0 d∞(x1, x2)≤ d j (x1, x2)≤ d0(x1, x2)≤ d∞(x1, x2).

Using d∞ as our background metric we can apply the theorem in the appendix of
[Huang et al. 2017] to see that a subsequence of the d j converges uniformly to
some limit, d , such that

(7) h0 d∞(x1, x2)≤ d(x1, x2)≤ d0(x1, x2)≤ d∞(x1, x2).

In addition the subsequences converge in the Gromov–Hausdorff and intrinsic flat
sense:

(Mj , d j )
GH
−→ (M, d) and (Mj , d j , T )

F
−→ (M, d, T ).

We need only prove d = d0 for then no subsequence was necessary and we have
proven our example.

Consider x1, x2 ∈ M such that

d(x1, x2) <min{d(x1, p)+ d(p, x2) : p ∈ r−1(0)}.

So there exists δ > 0 depending on these two points such that

d(x1, x2)+ δ ≤min{d(x1, p)+ d(p, x2) : p ∈ r−1(0)}.

Then for N sufficiently large, and all j ≥ N (in our subsequence) we have

d j (x1, x2)+ δ/2≤min{d j (x1, p)+ d j (p, x2) : p ∈ r−1(0)}.

Thus the Lg j -shortest curve, γ j , between x1 and x2 avoids r−1(−δ/4, δ/4). Here
we have g j = g0 = g∞ so its length is the same with respect to all three metrics:

Lg j (γ j )= Lg0(γ j )= Lg∞(γ j ).

So
d j (x1, x2)≥ d0(x1, x2)

and taking the limit we have

d(x1, x2)≥ d0(x1, x2)

and combining this with (7) we have

d(x1, x2)= d0(x1, x2).
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In fact for any Ld -shortest curve γ ,

(8) γ ([t1, t2])∩ r−1(0)=∅ =⇒ d(γ (t1), γ (t2))= d0(γ (t1), γ (t2)).

We need only confirm that d(x1, x2)= d0(x1, x2) for x1, x2 ∈ M such that

d(x1, x2)=min{d(x1, p)+ d(p, x2) : p ∈ r−1(0)}.

Taking the Ld -shortest curve γ between x1 and x2, we know that s1 ≤ s2

s1 = inf{t : γ (t) ∈ r−1(0)} and s2 = sup{t : γ (t) ∈ r−1(0)}.

We have

d(x1, x2)= Ld(γ )= d(γ (0), γ (s1))+ d(γ (s1), γ (s2))+ d(γ (s2), γ (1))

By (8) if s1 > 0 then for all δ > 0 we have

d(γ (0), γ (s1− δ))= d0(γ (0), γ (s1− δ))

so
d(γ (0), γ (s1))= d0(γ (0), γ (s1)).

Similarly
d(γ (s2), γ (1))= d0(γ (s2), γ (1)).

Thus we need only confirm that d(x1, x2)= d0(x1, x2) for x1, x2 ∈ r−1(0). This
easily follows by applying Lemma 3.1 to both f j and f0 since both functions have
minimum = h0 at r = 0:

d(x1, x2)= lim
j→∞

d j (x1, x2)= h0dσ (θ1, θ2)= d0(x1, x2).

To prove the case where we have a warped product of the form N as in (1) the
proof is almost the same. �

3C. Moving cinches. Here we explore what happens when the warping functions
converge in L p but not pointwise almost everywhere.

Example 3.5. We first construct a classical sequence of smooth functions f j :

[−π, π] → (0, 1] which converge L p to f∞ = 1 but do not converge pointwise
almost everywhere without taking a subsequence. Let

f j (r)=
{

h((r − t j )/δ j ), r ∈ [t j − δ j , t j + δ j ],

1, elsewhere,

where h is a smooth even function as in Example 3.4 such that h(−1) = 1 with
h′(−1)= 0, decreasing to h(0)= h0 ∈ (0, 1] and then increasing back up to h(1)= 1,
h′(1)= 0, and where

{t j : j ∈ N} =
{0

1 ,
1
1 ,

0
2 ,

1
2 ,

2
2 ,

0
4 ,

1
4 ,

2
4 ,

3
4 , . . .

}
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and
{δ j : j ∈ N} =

{1
1 ,

1
1 ,

1
2 ,

1
2 ,

1
2 ,

1
4 ,

1
4 ,

1
4 ,

1
4 , . . .

}
.

Then the cylinders, Nj , defined as in (1) will not converge in the GH or F sense
without taking a subsequence. The tori Mj will converge since each torus in this
sequence is isometric to a torus in the sequence of tori in Example 3.4 via an
isometry which moves t j to 0.

Proof. First we check that f j converges in L p but not pointwise almost everywhere.
To this end we check that(∫ π

−π

| f j − 1|p dr
)1/p

=

(∫ t j+δ j

t j−δ j

|h0− 1|p dr
)1/p

= (2δ j )
1/p
→ 0

since |h0−1|p ≤ 1 by construction. Of course we do not find pointwise convergence
for any r ∈ [0, 1] since for every choice of J > 0 one can find a j1 ≥ J and a
r ∈ [−π, π] so that f j1(r)= h0 and another j2 ≥ J so that f j2(r)= 1.

Now if we take a subsequence where t jk = 0, then exactly as in Example 3.4
we see that Njk converges in the GH and F sense to N0 of that example. On the
other hand, if we take a subsequence where t j ′k = 1, then imitating the proof in
Example 3.4 we see that Nj ′k converges in the GH and F sense to N ′0 which is a
warped product whose warping function is 1 everywhere except at r = 1 where it
is h0. Thus the original sequence of Nj of this example has no GH nor F limit. �

3D. Avoiding ridges. The cinched spaces of Example 3.4 did not converge to their
L p limit because their warping functions, f j , all had a minimum uniformly below
the level of their L p limit, f∞. Here we will see there is no corresponding problem
when the f j have a maximum uniformly above the level of their L p limit.

In the following lemma, we have a ridge as in Figure 2, the minimal geodesic
between points, p, q lying on that ridge, will not run along the ridge. In the
following we consider f j with a maximum at r∗ and thus there is a ridge along the
level set f −1

j (r∗).

Lemma 3.6. Given r∗, r̂ ∈ [r0, r1], the distance between x1 = (r∗, θ1) and x2 =

(r∗, θ2) in a warped product space is bounded above by

d(x1, x2)≤ 2|r̂ − r∗| + f j (r̂)dσ (θ1, θ2).

Thus for a fixed r∗ ∈ [r0, r1], if there exists an r̂ ∈ [r0, r1] such that

(9) f j (r̂) < f j (r∗)− 2
|r̂ − r∗|

dσ (θ1, θ2)

then the minimizing geodesic from x1= (r∗, θ1) to x2= (r∗, θ2), θ1, θ2 ∈6, θ1 6= θ2,
cannot be a curve with constant r-component, r(t)= r∗.
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Figure 2. A curve γ from p to q on a ridge, which first cuts down
to p′ and then runs across to q ′ before cutting up to q is shorter
than curve running along the ridge between p and q if the ridge is
narrow enough.

See Figure 2 taking p = x1 = (r∗, θ1) and q = x2 = (r∗, θ2) and p′ = (r̂ , θ1)

and q = x2 = (r̂ , θ2). So d(p, q)≤ L(γ )= d(p, p′)+ d(p′, q ′)+ d(q ′, q), where
d(p, p′)= d(q, q ′)= |r∗− r̂ |.

Proof. Let x1, x2 ∈ Mj with coordinates x1 = (r∗, θ1) to x2 = (r∗, θ2), θ1, θ2 ∈6,
θ1 6= θ2 so that (9) is satisfied for r∗. Let α ⊂ 6 be a curve between θ1, θ2 with
length L6(α)= dσ (θ1, θ2) and consider the curve

γ (t)=


(r∗+ 3(r̂ − r∗)t, θ1), t ∈

[
0, 1

3

]
,

(r̂ , α(3t − 1)), t ∈
[ 1

3 ,
2
3

]
,(

r̂ + 3(r∗− r̂)
(
t − 2

3

)
, θ2
)
, t ∈

[ 2
3 , 1

]
,

as depicted in Figure 2. Then

L j (γ )= 2|r̂ − r∗| + f j (r̂)dσ (θ1, θ2).

So if we consider β(t)= (r∗, α(t)) and use the assumption (9) then we find that

L j (γ ) < L j (β)

and hence β(t) cannot be the minimizing geodesic. �

3E. A single ridge disappears. Here we see that a sequence of warped product
spaces with a consistently high ridge that is increasingly narrow converges in the
L p, pointwise a.e., GH, and F sense to an isometric product manifold as if the
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ridge simply disappears despite the fact that the warping functions do not converge
pointwise to the constant function 1. See Figure 2.

Example 3.7. Consider the sequence of functions f j (r) : [−π, π] → [1, 2] with

f j (r)=


1, r ∈ [−π,−1/j],
h( jr), r ∈ [−1/j, 1/j],
1, r ∈ [1/j, π],

where h = hridge is a smooth even function such that h(−1)= 1 with h′(−1)= 0,
increasing to h(0) = h0 ∈ (1, 2] and then decreasing back down to h(1) = 1,
h′(1)= 0. Note that this defines a sequence of smooth Riemannian metrics, g j , as
in (2), with distances, d j , as in (4) on the manifolds,

Mj = [−π, π]× f j 6 or Nj = S1
× f j 6,

for any fixed Riemannian manifold 6. Consider also M∞ and N∞ defined as above
with f∞(r)= 1 for all r . Here we have

f j → f∞ = 1 in L p but not pointwise

and yet Mj → M∞ and Nj → N∞ in both the GH and F sense.

Proof. First we check that f j converges in L p to f∞. To this end we check that(∫ π

−π

| f j − f∞|p dr
)1/p

=

(∫ 1/j

−1/j
|h( jr)− 1|p dr

)1/p

≤ (2/j)1/p
→ 0

since |h j − 1|p ≤ 1 by construction. Observe that f j does not converge pointwise
to f∞ because f j (0)= h0 > 1= f∞(0). Let

(10) Jδ = 1/δ

so that f j (r)= f∞(r) on [0,−1/j] ∪ [1/j, 1] for all j ≥ Jδ.
Next observe that since 2 f∞(r)≥ f j (r)≥ f∞(r) at all r ∈ [−π, π], we have

(11) d∞(p, q)≤ d j (p, q)≤ 2d∞(p, q) for all p, q.

Since our limit space, M∞, is an isometric product space, any pair of points
x1 = (s1, θ1) to x2 = (s2, θ2) with s1 < s2 is joined by a smooth L∞ minimizing
geodesic, C : [0, 1] → M∞, such that

d∞(p, q)= L∞(C).

In fact C(t)= (r(t), θ(t)) where r : [0, 1] → [r1, r2] is strictly increasing from s1

to s2, and θ : [0, 1] → 6 is a geodesic from θ1 to θ2 with respect to (6, σ ). Let
Tδ ⊂ [0, 1] be defined as the possibly empty interval

Tδ = {t : r(t) ∈ [−δ, δ]}.
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Observe that the length of C restricted to the interval Tδ satisfies

L∞(C(Tδ))≤ 2δL∞(C)≤ 2δd∞(x1, x2).

For j ≥ Jδ as in (10), we have

d j (x1, x2)≤ L j (C)=
∫ 1

0
g j (C ′(t),C ′(t))1/2 dt

≤

∫
Tδ

2g∞(C ′(t),C ′(t))1/2+
∫
[0,1]\Tδ

g∞(C ′(t),C ′(t))1/2

≤ 2L∞(C(Tδ))+ L∞(C[0, 1])

≤ (1+ 2δ)d∞(x1, x2).

Thus for x1 and x2 lying on different levels of r we have pointwise convergence
d j (x1, x2)→ d∞(x1, x2).

Taking points that lie on the same level, x1 = (s, θ1) to x2 = (s, θ2), we know
that the minimizing geodesic, C , in our isometric product will have the form
C(t)= (s, θ(t)). If the points do not lie on the ridge, s 6= 0, and so

d j (x1, x2)≤ L j (C)= L∞(C)= d∞(x1, x2) for all j ≥ Jδ.

So again we have pointwise convergence d j (x1, x2)→ d∞(x1, x2).
If the points both lie on the ridge x1 = (0, θ1) to x2 = (0, θ2) then by Lemma 3.6

we have

d j (x1, x2)≤ 1d6(θ1, θ2)+ 2δ = d∞(x1, x2)+ 2δ for all j ≥ Jδ.

And again we have pointwise convergence d j (x1, x2)→ d∞(x1, x2).
By Theorem 2.4 combined with (11) we know a subsequence d jk converges uni-

formly to some limit distance. Since we have pointwise convergence to d∞, we know
in fact that the d j thus converge uniformly to d∞ without even taking a subsequence.
Furthermore we have Gromov–Hausdorff and intrinsic flat convergence.

The proof when we have warped around S1 to create Nj is very similar. �

3F. Moving ridges. Here we see a sequence of spaces which have f j converging
to f∞ = 1 in the L p sense and f j ≥ 1. The sequence does not converge pointwise
almost everywhere unless one takes a subsequence. Nevertheless by Theorem 1.1
there is a GH and a SWIF limit without taking a subsequence and indeed the limit
is the space warped by f∞.

Example 3.8. We first construct a classical sequence of smooth functions f j :

[−π, π] → [1, 2] which converge L p to f∞ = 1 but do not converge pointwise
almost everywhere without taking a subsequence. Let

{s j : j ∈ N} =
{ 0

1 ,
1
1 ,

0
2 ,

1
2 ,

2
2 ,

0
4 ,

1
4 ,

2
4 ,

3
4 , . . .

}
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and
{δ j : j ∈ N} =

{1
1 ,

1
1 ,

1
2 ,

1
2 ,

1
2 ,

1
4 ,

1
4 ,

1
4 ,

1
4 , . . .

}
.

Let

f j (r)=
{

h((r − s j )/δ j ), r ∈ [s j − δ j , s j + δ j ],

1, elsewhere,

where h is a smooth even function such that h(−1)= 1 with h′(−1)= 0, increasing
up to h(0) = h0 ∈ (1, 2] and then decreasing back down to h(1) = 1, h′(1) = 0.
Note that this defines a sequence of smooth Riemannian metrics, g j , as in (2), with
distances, d j , as in (4) on the manifolds,

(12) Mj = [−π, π]× f j 6 or Nj = S1
× f j 6,

for any fixed Riemannian manifold 6. Consider also M∞ and N∞ defined as above
with f∞(r)= 1 for all r . Here we have

(13) f j → f∞ = 1 in L p but not pointwise

and yet Mj → M∞ and Nj → N∞ in both the GH and F sense.

Proof. First we check that f j converges in L p but not pointwise almost everywhere.
To this end we check that(∫ π

−π

| f j − 1|p dr
)1/p

=

(∫ s j+δ j

s j−δ j

|h j − 1|p dr
)1/p

= (2δ j )
1/p
→ 0

since |h j−1|p ≤ 1 by construction. Of course we do not find pointwise convergence
for any r ∈ [−π, π] since for every choice of J > 0 one can find a j1 ≥ J so that
f j1(r)= 0 and another j2 ≥ J so that f j2(r) > 0.

The proof of the Gromov–Hausdorff and intrinsic flat convergence follows almost
exactly as in Example 3.7 except that we must choose Jδ and Tδ differently. We
skip this proof since the convergence follows from Theorem 1.1 anyway. �

3G. Many ridges. Here we see a sequence of spaces which have f j converging to
f∞= 1 in the L p sense and f j ≥ 1. The sequence converges pointwise to a nowhere
continuous function. Nevertheless by Theorem 1.1 there is a GH and a SWIF limit
without taking a subsequence and indeed the limit is the isometric product space.

Example 3.9. We first construct a classical sequence of smooth functions f j :

[−π, π]→ [1, 2] as in Figure 3 which converge L p to f∞ = 1 but do not converge
pointwise almost everywhere without taking a subsequence. Let

S =
{
si, j =−π + 2π i/2 j

: i = 1, 2, . . . , (2 j
− 1), j ∈ N

}
=
{
−π + 2π

2 ,−π +
2π
4 ,−π +

2π2
4 ,−π +

2π3
4 ,−π +

2π
8 , . . .

}
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Figure 3. The warping functions of Example 3.9.

which is dense in [−π, π] and{
δ j =

( 1
2

)2 j
: j ∈ N

}
=
{1

4 ,
1

16 ,
1

32 , . . .
}
.

Let

f j (r)=
{

h((r − si, j )/δ j ), r ∈ [si, j − δ j , si, j + δ j ] for i = 1, . . . , 2 j
− 1,

1, elsewhere,

where h is a smooth even function such that h(−1)= 1 with h′(−1)= 0, increasing
up to h(0)= h0 ∈ (1, 2] and then decreasing back down to h(1)= 1 with h′(1)= 0.
Note that this defines a sequence of smooth Riemannian metrics, g j , as in (2), with
distances, d j , as in (4) on the manifolds,

Mj = [−π, π]× f j 6 or Nj = S1
× f j 6

for any fixed Riemannian manifold 6. Consider also M∞ and N∞ defined as above
with f∞(r)= 1 for all r . Here we have

f j → f∞ = 1 in L p but not pointwise

and yet Mj → M∞ and Nj → N∞ in both the GH and F sense.

Proof. First we check that f j converges in L p

(∫ π

−π

| f j − 1|p dr
)1/p

=

(2 j
−1∑

i=1

∫ si, j+δ j

si, j−δ j

| f j − 1|p dr
)1/p

= ((2 j
− 1)(2δ j ))

1/p

=
(
(2 j
− 1)

( 1
2

)2 j)1/p
→ 0.

Next observe that f j converges pointwise on S to h0 and pointwise to 1 elsewhere.
Since S is dense and h0 > 1 the pointwise limit is continuous nowhere.

The proof of the Gromov–Hausdorff and intrinsic flat convergence follows almost
exactly as in Example 3.7 except that we must choose Jδ and Tδ differently. We
skip this proof since the convergence follows from Theorem 1.1 anyway. �
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3H. Converging to Euclidean-taxi spaces. In Theorem 1.1 we will prove that if
f j ≥ 1 and f j → 1 in the L p sense then we have Gromov–Hausdorff and intrinsic
flat convergence to the isometric product space just as in Examples 3.7, 3.8 and 3.9.
We now investigate what might happen if f j does not converge to 1 in the L p sense
but does have a dense collection of points where f j converges pointwise to 1. In
the example below we see that this does not suffice to prove GH or intrinsic flat
convergence to the isometric product space.

Here we will construct a sequence of warped product spaces with increasingly
many cinches. The limit metric we obtain in this example is not a Riemannian
metric but a metric of the following form:

Definition 3.10. Let M and N be product manifolds as in (1). For any R > 1, we
define the minimized R-stretched Euclidean taxi metric (R-ET metric) between
x1 = (s1, θ1) and x2 = (s2, θ2) to be

d M
R-ET(x1, x2)= min

2∈[0,d6(θ1,θ2)]

√
|s1− s2|2+ R222+ d6(θ1, θ2)−2,

d N
R-ET(x1, x2)= min

2∈[0,d6(θ1,θ2)]

√
dS1(s1, s2)

2
+ R222

+ d6(θ1, θ2)−2.

Note that the R-ET metric is smaller than the isometric product metric with the
θ direction scaled by R (achieved at 2= d6(θ1, θ2)), and it is also smaller than the
taxi product (achieved at 2= 0). One may view the R-ET metric as an infimum
over lengths of all curves which are partly line segments of the form θ = ms+ θ0

(whose lengths are measured by stretching the Euclidean metric by R in the θ
direction) and partly vertical segments purely in the θ direction (whose lengths are
not rescaled). Without stretching, taking R = 1, we see the minimum is achieved
going purely diagonal with the standard Euclidean metric.

It is not immediately obvious that R-ET metrics are true metrics satisfying
positivity, symmetry and the triangle inequality. We prove this in the following
lemma.

Lemma 3.11. When

(14) d6(θ1, θ2)≤
|s1− s2|

R
√

R2− 1
,

the metric is an isometric product

(15) d M
R-ET((s1, θ1), (s2, θ2))=

√
|s1− s2|2+ R2 d6(θ1, θ2)2,

and otherwise the metric is a stretched taxi product:

(16) d M
R-ET((s1, θ1), (s2, θ2))= |s1− s2|

(√
R2− 1

R

)
+ d6(θ1, θ2).
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Figure 4. The concentric balls of radius r = 2, 4, and 6 in an R-ET
space with R = 2 are unions of diamonds, |s| +

√
3

2 |θ | < r , and
ellipses, s2

+ 2θ2 < r2.

In fact d M
R-ET is a minimum of these two metrics and is a length metric whose balls

are the unions of diamonds and ellipses (as in Figure 4). It is a true metric satisfying
positivity, symmetry and the triangle inequality.

Proof. To locate the minimum in the definition of the ET metric, we take the
derivative

d
d2

√
|s1− s2|2+ R222+d6(θ1, θ2)−2=

1
2(|s1− s2|

2
+ R222)−1/2(2R22)−1.

This derivative is negative at 2 = 0 so the minimum is not achieved by the taxi
product metric. The derivative becomes 0 at

(17) 20 =
|s1− s2|

R
√

R2− 1

and is then positive for2>20. If (14) holds then20 does not lie in (0, d6(θ1, θ2)),
so the minimum is achieved at 2= d6(θ1, θ2) and we have (15).

Otherwise, the minimum is achieved at 20. Since

R222
0 = |s1− s2|

2/(R2
− 1) and 1+ (1/(R2

− 1))= R2/(R2
− 1)
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we have

d M
R-ET((s1, θ1), (s2, θ2))≤

√
|s1− s2|

2
+ R222

0+ d6(θ1, θ2)−20

=
|s1− s2| · |R|
√

R2− 1
+ d6(θ1, θ2)−

|s1− s2|

R
√

R2− 1

=
|s1− s2|(R2

− 1)

R
√

R2− 1
+ d6(θ1, θ2)

= |s1− s2|

√
R2− 1

R
+ d6(θ1, θ2).

Thus we have (16).
We also see that d M

R-ET((s1, θ1), (s2, θ2)) is the minimum of the two metrics in
(15) and (16). We know that both these metrics are length metrics. Indeed the
metric in (15) is the infimum of the lengths of curves, C(t)= (s(t), θ(t)) where

L E(C)=
∫ 1

0

√
s ′(t)2+ R2g6(θ ′(t), θ ′(t)) dt

and the metric in (16) is the infimum of the lengths of curves C(t) = (s(t)θ(t))
where

LT (C)=
∫ 1

0
|s ′(t)|

√
R2− 1
|R|

+ g6(θ ′(t), θ ′(t))1/2 dt.

Thus

d M
R-ET(x1, x2)=min{infC L E(C), infC LT (C)} = infC L R-ET(C),

where L R-ET(C) = min{L E(C), LT (C)}. Thus we have positivity and symmetry
(which was easy to see) and now the triangle inequality as well (which was not). �

We now present our example: a sequence of warped product spaces with increas-
ingly many cinches which converges in the uniform, GH and F sense to a produce
space with a minimized R-stretched Euclidean taxi metric. Here we have R = 5,
but we could easily construct similar sequences converging to any R-ET metric
with R > 1.

Example 3.12. Let

S =
{
si, j =−π + 2π i/2 j

: i = 1, 2, . . . , (2 j
− 1), j ∈ N

}
=
{
−π + 2π

2 ,−π +
2π
4 ,−π +

2π2
4 ,−π +

2π3
4 ,−π +

2π
8 , . . .

}
which is dense in [−π, π] and{

δ j =
( 1

2

)2 j
: j ∈ N

}
=
{ 1

4 ,
1

16 ,
1

32 , . . .
}
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Figure 5. The warping functions of Example 3.12.

Define the functions f j as in Figure 5 as follows:

f j (r)=
{

h((r − si, j )/δ j ), r ∈ [si, j − δ j , si, j + δ j ] for i = 1, . . . , 2 j
− 1,

5, elsewhere,

where h is a smooth even function such that h(−1)= 5 with h′(−1)= 0, decreasing
down to h(0)= 1 and then increasing back up to h(1)= 5 with h′(1)= 0.

Then f j (r)≥ 1 converges pointwise to 1 on the dense set, S.
If we define Mj and Nj as in (1) then they do not converge to isometric products

with warping function 1. Instead they converge in the GH and F sense to a product
manifold with an R-ET metric with R = 5.

Proof. First we check that f j → 5 in L p by using the fact that | f j − 5|p ≤ 4p:(∫ π

−π

| f j − 5|p dr
)1/p

=

(2 j
−1∑

i=1

∫ si, j+δ j

si, j−δ j

| f j − 5|p dr
)1/p

≤ ((2 j
− 1)(2δ j )4p)1/p

= 4
(
(2 j
− 1)

( 1
2

)2 j)1/p
→ 0.

Now observe that since

(18) 1≤ f j (r)≤ 5 for all r ∈ [−π, π]

we have
d1(p, q)≤ d j (p, q)≤ 5d1(p, q),

where d1 is the warped product metric with warping function 1. Thus by [Huang
et al. 2017], a subsequence of the warped product manifolds converges in the
uniform, GH and intrinsic flat sense to some limit metric space with limit metric
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d∞
d1(p, q)≤ d∞(p, q)≤ 5d1(p, q) for all p, q.

We will show that the pointwise limit of the d j is d5-ET, thus proving that the original
sequence of warped product manifolds converges in the uniform, GH and intrinsic
flat sense to the Euclidean taxi space.

Let us consider an arbitrary pair of points, xi = (si , θi ). If θ1 = θ2 then

d j (x1, x2)= |s1− s2| = d5-ET(s1, s2).

In general, if θ1 6= θ2 let s ′i, j ∈ f −1
j (1) with

|s ′i, j − si |< 2π/2 j , x ′i, j = (s
′

i, j , θi ).

By the triangle inequality applied two ways we have

(19) |d j (x1, x2)− d j (x ′1, j , x ′2, j )| ≤ d j (x1, x ′1, j )+ d j (x ′2, j , x2)

≤ |s1− s ′1, j | + |s
′

2, j − s2|< 4π/2 j

and

(20) |d5-ET(x1, x2)− d5-ET(x ′1, j , x ′2, j )| ≤ d5-ET(x1, x ′1, j )+ d5-ET(x ′2, j , x2)

≤ |s1− s ′1, j | + |s
′

2, j − s2|< 4π/2 j .

Recall that to complete the proof we must prove the pointwise limit:

lim
j→∞

d j (x1, x2)= d5-ET(x1, x2).

By (19) we need only show

lim
j→∞

d j (x ′1, j , x ′2, j )= d5-ET(x1, x2).

Applying the triangle inequality again, with x1,θ, j = (s ′1, j , θ), where θ ∈6 so
that d6(θ2, θ) ∈ [0, d6(θ1, θ2)], we have

d j (x ′1, j , x ′2, j )≤ d j (x ′1, j , x1,θ, j )+ d j (x1,θ, j , x ′2, j )

≤ d6(θ1, θ)+
√
|s ′1, j − s ′2, j |

2
+ 25d6(θ2, θ)

2,

where we have used (18) in the last line. Since this is true for any θ ∈6 such that
d6(θ2, θ) ∈ [0, d6(θ1, θ2)] we find

d j (x ′1, j , x ′2, j )≤ d5-ET(x ′1, j , x ′2, j ).

Thus taking the limsup and applying (20) we have

(21) lim sup
j→∞

d j (x ′1, j , x ′2, j )≤ lim sup
j→∞

d5-ET(x ′1, j , x ′2, j )= d5-ET(x1, x2).
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So now we need only show

(22) lim inf
j→∞

d j (x ′1, j , x ′2, j )≥ d5-ET(x1, x2).

By (20) we need only show

(23) lim inf
j→∞

(
d j (x ′1, j , x ′2, j )− d5-ET(x ′1, j , x ′2, j )

)
≥ 0.

If s ′1, j = s ′2, j then

d j (x ′1, j , x ′2, j )≥ d6(θ1, θ2)= d5-ET(x ′1, j , x ′2, j ).

If s ′1, j 6= s ′2, j , then the L j shortest path, C j (t) = (r(t), θ(t)), from x ′1, j to x ′2, j
must pass from one valley over to the other, possibly passing through many valleys
in between. Observe that

(24) d j (x ′1, j , x ′2, j )= L j (C j )= L j (C j ∩ f −1(5))+ L j (C j \ f −1(5)).

The segments of C j which intersect f −1
j (5) lie in an product space warped by

the constant function 5 so

(25) L j (C j ∩ f −1(5))=
√

R2
j + 2522

j ,

where R j is the sum of changes in r on these segments and where 2 j is the sum of
distances in 6 between the theta values of the endpoints of these segments.

Let R0 = |s1 − s2| which is the total change in r along C j . By the definition
of δ j ,

2 jδ j = 2 j( 1
2

)2 j
→ 0.

Since we have at most 2 j intervals where f j < 5, we see that as

(26) lim
j→∞

R0− R j = 0,

the total change in r for the segments in C j \ f −1(5) is converging to 0.
Let 20 = d6(θ1, θ2). Then 20−2 j is the sum of distances in 6 between the

theta values of the endpoints of the segments in C j \ f −1(5). Since the warping
factors f j (r)≥ 1 everywhere, the distance between the endpoints of each segment
is ≥ distance in 6 between the theta values of the endpoints of the segment. Thus

(27) L j (C j \ f −1(5))≥20−2 j .

Combining this together with (24) and (25) we have

(28) d j (x ′1, j , x ′2, j )= L j (C j )≥
√

R2
j + 2522

j +20−2 j

≥ inf
2∈[0,d6(θ1,θ2)]

√
R2

j + 2522
+20−2.
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Since

(29) lim
j→∞

(
inf

2∈[0,d6(θ1,θ2)]

√
R2

j + 2522
+20−2

)
= lim

j→∞
d5-ET(x ′1, j , x ′2, j )

we are done by combining (28) and (29) which shows (23). �

Remark 3.13. If we take the isometric product of Example 3.12 with a standard
circle, N 3

j = N 2
j ×S1, 6 = S1, then we have a sequence of 3-manifolds satisfying

all the hypotheses of the scalar compactness conjecture of Gromov and Sormani
(see [Gromov 2018]), recently proved in the rotationally symmetric case by Park,
Tian, and Wang [Park et al. 2018],

Vol(N j )≤ 5 Vol(T3), Diam(N j )≤ 5 Diam(T3), minA(N j )≥minA(T3),

except for the scalar curvature bound. Therefore, this example demonstrates that
the conclusion of the scalar compactness conjecture, that the SWIF limit have
Euclidean tangent cones almost everywhere, requires the scalar curvature bound.
We note that the volume and diameter bound follow since f j ≤ 5 and the minA
bound follows since f j ≥ 1.

4. Proof of the main theorem

The goal of this section is to prove our main theorem, Theorem 1.1.
In this theorem, Mj = [r0, r1]× f j 6, where 6 is an n−1 dimensional manifold

including also Mj without boundary that have f j periodic with period r1− r0 as
in (1). We assume that the warping factors, f j ∈ C0([r0, r1]), satisfy the following:

0< f∞−
1
j
≤ f j (r)≤ K and f j (r)→ f∞(r) in L2,

where f∞ ∈ C0([r0, r1]).
The proof of Theorem 1.1 proceeds as follows. In Lemma 4.1 we use the C0

lower bound to show that

lim inf
j→∞

d j (p, q)≥ d∞(p, q) pointwise.

We use the L2 convergence of f j → f∞ in Lemmas 4.3 and 4.6, combined with
the estimate of Lemma 4.4, to show that the lengths of fixed curves with respect to
Mj and M∞ converge. We apply this result to a fixed geodesic with respect to g∞,
to prove that

lim sup
j→∞

d j (p, q)≤ d∞(p, q) pointwise.
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Thus in Proposition 4.8 we have the pointwise limit

lim
j→∞

d j (p, q)= d∞(p, q).

To complete the proof of uniform, GH and SWIF convergence using Theorem 2.4,
as is done in the examples in Section 3, we need uniform bounds on d j proven in
Lemma 2.3.

4A. Assuming a C0 lower bound. We have seen in Section 3 that in order to get
Gromov–Hausdorff convergence to agree with L2 convergence we will need a C0

lower bound on f j and so now we see the consequence of this assumption for the
distance between points.

Lemma 4.1. Let p, q ∈ [r0, r1]×6 and assume that

f j (r)≥ f∞−
1
j
> 0, Diam(Mj )≤ D.

Then

lim inf
j→∞

d j (p, q)≥ d∞(p, q)

and furthermore we find the uniform estimate

dg j (p, q)− dg∞(p, q)≥−

√
2 max[r0,r1]

√
f∞D

min[r0,r1] f j (r)
√

j
.

Proof. Let C j (t) = (r j (t), θ j (t)) be the absolutely continuous curve in Mj , pa-
rametrized so that |C j |g j = 1 a.e., realizing the distance between p and q. Then
compute

(30) dg j (p, q)=
∫ L j (C j )

0

√
r j (t)2+ f j (r j (t))2|θ ′j (t)|

2 dt

≥

∫ L j (C j )

0

√
r j (t)2+

(
f∞(r j (t))− 1

j

)2
|θ ′j (t)|

2 dt

=

∫ L j (C j )

0

(
r j (t)2+ f∞(r j (t))2|θ ′j (t)|

2

−
(
(2/j) f∞(r j (t))|θ ′j (t)|

2
− (1/j2)|θ ′j (t)|

2))1/2
dt

Now we use the inequality
√
|a− b| ≥ |

√
a −
√

b| ≥
√

a −
√

b in succession,
employing the fact that the last integrand in (30) is positive and the square roots
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that follow are of positive quantities by the assumptions of the lemma.

dg j (p, q)

≥

∫ L j (C j )

0

∣∣∣√r j (t)2+ f∞(r j (t))2|θ ′j (t)|
2
−

1
√

j |θ
′

j (t)|
√(

2 f∞(r j (t))− 1
j

)∣∣∣ dt

≥

∫ L j (C j )

0

√
r j (t)2+ f∞(r j (t))2|θ ′j (t)|

2 dt

−
1
√

j

∫ L j (C j )

0
|θ ′j (t)|

√(
2 f∞(r j (t))− 1

j

)
dt

≥ Lg∞(C j )−
1
√

j

∫ L j (C j )

0
|θ ′j (t)|

√(
2 f∞(r j (t))− 1

j

)
dt

Now we notice that√
f ′j (t)

2
+ f j (r j (t))2|θ ′j (t)|

2
= 1 a.e. ⇒ |θ ′j (t)| ≤

1
min f j

a.e.

which allows us to compute

dg j (p, q)≥ dg∞(p, q)−

√
2 max[r0,r1]

√
f∞D

min[r0,r1] f j (r)
√

j
,

where the diameter bound from the hypotheses is used to conclude that L j (C j )≤ D.
The desired result follows by taking limits. �

4B. L2 convergence and convergence of lengths. In this section we would like
to observe the consequence of L2 convergence of f j → f∞ for convergence of
lengths of curves and distances between points in Mj culminating in an estimate on
the pointwise limsup of the distance functions (Proposition 4.7).

We start by proving we have uniform bounds on the diameter.

Lemma 4.2. If ‖ f j − f∞‖L2 ≤ δ j and Mj are warped products as in (1) then

(31) Diam(Mj )≤ 2|r1− r0| +
(
‖ f∞‖C0 + δ j/

√
r1− r0

)
Diam(6)

Proof. Let p, q ∈ Mj . Recall that the distance between these points is the infimum
over lengths of all curves. For any r ∈ [r0, r1] we can take a first path from p
radially to the level r , then a second path around that level r , and then a third path
from that level to q . The first and third paths each have length ≤ |r1− r0|, and the
middle path has length bounded above by the diameter of the level. Thus we have

d j (p, q)≤ 2|r1− r0| + f j (r)Diam(6)

≤ 2|r1− r0| +
(

f∞(r)+ | f j (r)− f∞(r)|
)

Diam(6).
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Choosing an r such that

| f j (r)− f∞(r)|2 ≤
1

r1− r0

∫
| f j (s)− f∞(s)|2 ds

we have

| f j (r)− f∞(r)| ≤
‖ f j − f∞‖L2
√

r1− r0

and f∞(r)≤ ‖ f∞‖C0 . �

Recall that in warped product manifolds with continuous warping functions we
have absolutely continuous curves whose length achieves the distance between two
points (Remark 2.2).

We next consider the length of a fixed curve which is monotone in r .

Lemma 4.3. Fix an absolutely continuous curve C(t) = (r(t), θ(t)), t ∈ [0, 1],
which is monotone in r . If ‖ f j − f∞‖L2 ≤ δ = δ j and Mj are warped products as
in (1) then

|L j (C)− L∞(C)| ≤ (δ2
+ 4‖ f∞‖2L2)δ

1/22(C)

where

(32) 2(C)=
(∫ r(1)

r(0)
|θ ′(r)|2 dr

)1/2

.

Note also that

‖ f j + f∞‖2L2 ≤ (δ+ 2‖ f∞‖L2)2.

If C is not monotone in r but one knows it has at most N monotone subsegments
then we can sum up the segments applying this lemma to each subsegment.

Proof. Since C(t) = (r(t), θ(t)) is such that r ′(t) > 0 everywhere then we can
reparametrize so that r(t)= r . Now by comparing two lengths and taking advantage
of the inequality

√
|a− b| ≥ |

√
a−
√

b| we find

|L j (C)− L∞(C)| ≤
∫ r(1)

r(0)

∣∣∣√1+ f 2
j (r))θ

′(r)2−
√

1+ f 2
∞
(r)θ ′(r)2

∣∣∣ dr

≤

∫ r(1)

r(0)

√
| f 2

j (r)− f 2
∞
(r)||θ ′(r)| dr

≤

(∫ r(1)

r(0)
| f 2

j (r)− f 2
∞
(r)| dr

)1/2(∫ r(1)

r(0)
|θ ′(r)|2 dr

)1/2

,

where we used Holder’s inequality in the last line.
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Now we notice that

| f 2
j − f 2

∞
| = | f 2

j − f j f∞+ f j f∞− f 2
∞
|

= | f j ( f j − f∞)+ f∞( f j − f∞)|

= |( f j + f∞)( f j − f∞)| = | f j + f∞|| f j − f∞|.

Combining this with Hölder’s Inequality we obtain

|L j (C)− L∞(C)| ≤
(∫ r(1)

r(0)
| f j + f∞|2 dr

)1/4(∫ r(1)

r(0)
| f j − f∞|2 dr

)1/4

2(C).

Lastly, we notice that

‖ f j + f∞‖2L2 = ‖ f j − f∞+ 2 f∞‖L2

≤ (‖ f j − f∞‖L2 + 2‖ f∞‖L2)2 ≤ (δ+ 2‖ f∞‖L2)2

which gives us the desired uniform bound. �

Now that we have obtained a bound on fixed geodesics which are monotone in r
we would like to gain some control on the term 2(C) from Lemma 4.3 in the case
where C is a fixed geodesic with respect to the metric g j . We note that we will use
Lemma 4.4 only in the case where C is a fixed geodesic with respect to g∞ which
is monotone in r but we state it in more generality below since it could be useful
for future results.

Lemma 4.4. Let Mj be a warped product manifold as in (1). Let C j (t)=(r(t), θ(t))
be a unit speed absolutely continuous geodesic in Mj which is nondecreasing in r
and define

m j = min
r∈[r0,r1]

f j (r) > 0.

Then 2 of (32) satisfies:

2(C j )≤

√
n− 1L j (C j )

1/2

m j
.

Proof. We can estimate 2(C j ) by rewriting the line integral which defines 2(C j ):

2(C j )=

(∫ r(1)

r(0)
|Eθ ′(r)|2 dr

)1/2

=

(∫ L j (C j )

0
|Eθ ′(t)|2r ′(t) dt

)1/2

.

Now by the assumption that |C ′j |g j =

√

r ′(t)2+ f j (r(t))2|Eθ
′

j (t)|
2
= 1 a.e. and

r ′(t) > 0 we find that 0< r ′(t)≤ 1 which yields

2(C j )≤

(∫ L j (C j )

0
|Eθ ′(t)|2 dt

)1/2

.
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Note that |C ′j |g j =

√

r ′(t)2+ f j (r(t))2|Eθ
′

j (t)|
2
=1 a.e. implies that |Eθ ′j (t)|≤1/ f j

a.e. which yields the estimate

2(C j )≤

(∫ L j (C j )

0

1
f j (r(t))2

dt
)1/2

≤
L j (C j )

1/2

m j
. �

Corollary 4.5. If the length minimizing absolutely continuous geodesic between
p, q ∈ M with respect to g∞ is monotone in r and we let δ = ‖ f j − f∞‖L2 and
m∞ = min

r∈[r0,r1]
f∞(r) > 0 then we find the uniform estimate

dg j (p, q)− dg∞(p, q)≤ (δ2
+ 4‖ f∞‖2L2)δ

1/2
√

n Diam(M∞)
m∞

.

Proof. We note that by the fact that C is the length minimizing geodesic between
p, q ∈ M with respect to g∞ we find

dg j (p, q)− dg∞(p, q)≤ L j (C)− L∞(C).

Now if we combine Lemmas 4.2, 4.3 and 4.4 then we find

dg j (p, q)− dg∞(p, q)≤ (δ2
+ 4‖ f∞‖2L2)δ

1/2
√

n Diam(M∞)
m∞

,

where δ = ‖ f j − f∞‖L2 and m∞ = min
r∈[r0,r1]

f∞(r) > 0. �

The uniform control of Corollary 4.5 will be used in the proof of Theorem 1.1
below. Now we would like to control the length of geodesics with respect to g∞
which are constant in r .

Lemma 4.6. Let p, q ∈ [r0, r1] ×6 and assume that the absolutely continuous
geodesic C between p and q with respect to g∞ is parametrized as C = (r̂ , θ(t)),
t ∈ [0, 1], for some fixed r̂ ∈ [r0, r1]. If f j → f∞ in L2 then

lim sup
j→∞

dg j (p, q)≤ dg∞(p, q).

Moreover, we can find an approximating curve Cε
j between p and q so that

L j (Cε
j )≤ 4δεj + L∞(C)+ εdσ (θ(0), θ(1)),

where

δεj ≤
| f j − f∞|2L2

ε2 .

Proof. Since f j → f∞ in L2, if we define

S j
ε = {x ∈ [r0, r1] : | f j (x)− f∞(x)| ≥ ε}
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then we know that there exists a δ j > 0 such that |S j
ε | ≤ δ j , where δ j→ 0 as j→∞.

This follows since if |S j
ε | ≥ c > 0 then∫ π

−π

| f j − f∞|2 dr ≥
∫

S j
ε

| f j − f∞|2 dr ≥ cε2

which leads to a contradiction. In fact,

ε|Sεj | ≤
∫

Sεj

| f j − f∞| dr ≤ |Sεj |
1/2
(∫

Sεj

| f j − f∞|2 dr
)1/2

≤ |Sεj |
1/2
(∫ π

−π

| f j − f∞|2 dr
)1/2

,

which implies

δ j ≤
| f j − f∞|2L2

ε2 .

This implies that we can choose an r j ∈ (r̂ , r̂ + 2δ j ) or r j ∈ (r̂ − 2δ j , r̂) so that
| f j (r j )− f∞(r j )| ≤ ε and so by combining with Lemmas 3.2 and 3.6 we find a
curve Cε

j between p and q such that

dg j (p, q)≤ L j (Cε
j )

≤ 4δ j + f j (r j )dσ (θ(0), θ(1))

≤ 4δ j + f∞(r j )dσ (θ(0), θ(1))+ | f j (r j )− f∞(r j )|dσ (θ(0), θ(1)).

Now by taking limits as j→∞ and using that f∞ is continuous we find

lim sup
j→∞

dg j (p, q)≤ f∞(r̂)dσ (θ(0), θ(1))+ εdσ (θ(0), θ(1)).

Since this is true for all ε > 0 and dg∞(p, q) = f∞(r̂)dσ (θ(0), θ(1)) the desired
result follows. �

We now combine these lemmas into:

Proposition 4.7. If f j and f∞ are positive continuous functions, f j → f∞ in L2,
and Mj = M are warped products as in (1) then

lim sup
j→∞

d j (p, q)≤ d∞(p, q) pointwise.

Proof. Fix p and q in Mj = M . Let C(t) be a minimizing curve between p and q
with respect to g∞:

L∞(C)= d∞(p, q).

By Remark 2.2, C is an absolutely continuous curve. It can be broken down into
possibly infinitely many segments, each of which is either monotone in r or has
constant r component. Let C = {Cα

:α ∈ I }, where I is an indexing set, be the
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segments which are constant in r with endpoints (rα, θα1 ), (r
α, θα2 ) ∈ [r0, r1]×6

then we can estimate

L∞(C)≥
∑
α∈I

L∞(Cα)

=

∑
α∈I

f∞(rα)dσ (θα1 , θ
α
2 )≥

(
minr∈[r0,r1] f∞(r)

)∑
α∈I dσ (θα1 , θ

α
2 ),

and hence

(33)
∑
α∈I

dσ (θα1 , θ
α
2 )≤

Diam(M∞)(
minr∈[r0,r1] f∞(r)

) <∞.
Similarly, if we let C̃ = {C̃α

:α ∈ I } be the collection of segments of C which are
monotone in r , with endpoints (rα1 , θ

α
1 ), (r

α
2 , θ

α
2 ) ∈ [r0, r1]×6, then

L∞(C)≥
∑
α∈I

L∞(C̃α)=
∑
α∈I

∫ rα2

rα1

√
1+ f∞(r)2θ ′(r)2 dr

≥

∑
α∈I

∫ rα2

rα1

dr =
∑
α∈I

|rα1 − rα2 |,

which implies

(34)
∑
α∈I

|rα1 − rα2 | ≤ Diam(M∞).

So, by combining (33), (34), and Lemma 3.2 we find for any η > 0, we can choose
Iη ⊂ I , I \ Iη = K ∈ N, so that

(35)
∑
α∈Iη

L∞(C̃α)+
∑
α∈Iη

L∞(Cα)

≤

∑
α∈Iη

|rα1 − rα2 | + 2
(

max
r∈[r0,r1]

f∞(r)
)∑
α∈Iη

dσ (θα1 , θ
α
2 )≤ η

and hence by replacing all but finitely many subsegments of C with finitely many
taxi minimizing curves whose g∞ length is smaller than η we can obtain another
curve Cη such that

L∞(Cη)≤ L∞(C)− 2η.

This can be done so that Cη can be broken down into finitely many segments, each
of which is either monotone in r or has constant r component. By Lemma 4.6, for
each monotone segment Ck , k ∈ N, k ≤ K we can find an approximating curve,
Ck,ε

j , such that

(36) L j (C
k,ε
j )≤ 4δεj + L∞(Ck)+ εdσ (θ k

1 , θ
k
2 ),
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where δεj ≤ | f j − f∞|2L2/ε
2.

Then by Lemmas 4.3, 4.4 and 4.6 we can find a curve Cη,ε

j , ε > 0 between p
and q, by possibly adjusting the monotone segments as in (36), such that

(37) lim sup
j→∞

L j (C
η,ε

j )≤ L∞(C)− 2η+ ε
Diam(M∞)(

minr∈[r0,r1] f∞(r)
) .

Since (37) is true for all η, d j (p, q) ≤ L j (C
η,ε

j ) and L∞(C) = d∞(p, q) we
have

lim sup
j→∞

d j (p, q)≤ d∞(p, q)+ ε
Diam(M∞)(

minr∈[r0,r1] f∞(r)
) ,

which is true for all ε > 0 and hence the desired result follows. �

4C. Proof of Theorem 1.1. Recall that in the statement of Theorem 1.1 we have a
sequence of warping functions f j (r)≥ f∞(r)− 1

j and f j (r)→ f∞(r) in L2. We
will prove:

lim
j→∞

d j (p, q)= d∞(p, q)

uniformly by first showing it converges pointwise on a subsequence and then
applying Theorem 2.4 which implies uniform convergence, GH and F convergence
to the same space.

Proposition 4.8. Under the hypothesis of Theorem 1.1 we have pointwise conver-
gence of the distance functions:

lim
j→∞

d j (p, q)= d∞(p, q).

Proof. Let p, q ∈ [r0, r1]×6. Applying the C0 lower bound and Lemma 4.1 we
have

lim inf
j→∞

d j (p, q)≥ d∞(p, q).

Applying the L2 upper bound and Proposition 4.7 we also have

lim sup
j→∞

d j (p, q)≤ d∞(p, q).

Thus we have pointwise convergence. �

Proof of Theorem 1.1. By the assumption that 0< c≤ f∞− 1
j ≤ f j ≤ K we can use

Lemma 2.3 and choose λ=max(1/min(c, 1),max(1, K )) > 0 so that for j large
enough we find

λ≥
d j (p, q)
d1(p, q)

≥
1
λ
,

where d1 is the distance defined with warping factor 1.
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Now can apply Theorem 2.4 to conclude that there exists a length metric d ′
∞

and a subsequence d jk such that d jk converges uniformly to d ′
∞

, and hence GH and
SWIF converges as well. By the pointwise convergence proven in Proposition 4.8,
we know that d ′

∞
= d∞ and hence d jk must uniformly converge to d∞. Since this is

true for all the subsequences, we see that d j uniformly converges to d∞. Appealing
again to Theorem 2.4 we see it converges in the Gromov–Hausdorff and intrinsic
flat sense as well. �

5. Warping functions with two variables on tori

In this section we give a short exploration of more general warped product manifolds.
There are a wealth of new directions one might explore and this section demonstrates
how some of our techniques do extend easily. Here we prove the following theorem:

Theorem 5.1. Let g j = dx2
+ dy2

+ f j (x, y)2 dz2 be a metric on a torus Mj =

S1
×S1
× f j S1 with coordinates (x, y, z) ∈ [−π, π]3, f j ∈C0([−π, π]2). Assume

that

f j → f∞ = c > 0 in L2, 0< f∞−
1
j
≤ f j ≤ K <∞.

Then Mj converges uniformly to M∞ as well as

Mj
GH
−→ M∞, Mj

F
−→ M∞.

This theorem will be applied in upcoming joint work of a team of doctoral
students who are working with the first author: Lisandra Hernandez-Vazquez,
Davide Parise, Alec Payne, and Shengwen Wang. Various members of this team
which first began working together at the Fields Institute in the Summer of 2017
will explore further theorems in this direction using similar techniques.

The proof of this theorem will be similar to the proof of Theorem 1.1, however
we have some additional difficulties arising. The main difficulty is that f j → f∞
in L2([−π, π]2) does not imply that f j → f∞ on curves and hence we will not
be able to prove the corresponding results to Lemmas 4.3 and 4.4 for this setting.
Instead in Lemmas 5.4, 5.5, and 5.6 we will build approximating sequences of
curves to a geodesic with respect to g∞ and show lim sup j→∞ d j (p, q)≤ d∞(p, q).
The C0 control on f j works similarly to Section 4 and hence we are able to
show lim inf j→∞ d j (p, q) ≥ d∞(p, q) in Lemma 5.2. This will imply pointwise
convergence of distances which when combined with Theorem 2.4 will show
uniform, GH and SWIF convergence, similar to the examples in Section 3.

5A. A lower C0 bound. We now prove a lemma which shows the consequence of
a C0 lower bound which we have seen is important by the examples in Section 3.
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Lemma 5.2. Let p, q ∈ Mj and assume that

f j (x, y)≥ f∞(x, y)−
1
j
> 0 and Diam(Mj )≤ D.

Then
lim inf

j→∞
d j (p, q)≥ d∞(p, q)

Proof. Let C j (t) = (x j (t), y j (t), z j (t)) be the minimizing absolutely continuous
geodesic in Mj , parametrized so that |C ′j (t)|g j = 1 a.e., realizing the distance
between p and q . Then compute

g j (C ′j (t),C ′j (t))= x ′j (t)
2
+ y′j (t)

2
+ f j (x j (t), y j (t))2|z′j (t)|

2

≥ x ′j (t)
2
+ y′j (t)

2
+
(

f∞(x j (t), y j (t))− 1
j

)2
|z′j (t)|

2

= x ′j (t)
2
+ y′j (t)

2
+ f∞(x j (t), y j (t))2|z′j (t)|

2

−
(
(2/j) f∞(x j (t), y j (t))|z′j (t)|

2
− (1/j2)|z′j (t)|

2).
Note that the terms here are positive by the assumptions of the lemma, so that when
we take the square root we can apply the inequality√

|a− b| ≥ |
√

a−
√

b| ≥
√

a−
√

b,

before integrating to obtain

dg j (p, q)=
∫ L j (C j )

0

√
g j (C ′j (t),C ′j (t)) dt

≥

∫ L j (C j )

0

√
x ′j (t)

2
+ y′j (t)

2
+ f∞(x j (t), y j (t))2|z′j (t)|

2 dt

−

∫ L j (C j )

0

√
(2/j) f∞(x j (t), y j (t))|z′j (t)|

2
− (1/j2)|z′j (t)|

2 dt

≥ Lg∞(C j )−
1
√

j

∫ L j (C j )

0
|z′j (t)|

√(
2 f∞(x j (t), y j (t))− 1

j

)
dt

Now we notice that

|C ′j (t)|g j =

√
x ′j (t)

2
+ y′j (t)

2
+ f j (x j (t), y j (t))2|z′j (t)|

2
= 1 a.e.

⇒ |z′j (t)| ≤
1

f j (x j (t), y j (t))
a.e.

and hence we can then conclude that

dg j (p, q)≥ dg∞(p, q)−

√
2 max[−π,π ]2

√
f∞D

min[−π,π ]2 f j
√

j
.

The desired result follows by taking limits. �
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We now prove that we have uniform bounds on the diameter which was used in
Lemma 5.2:

Lemma 5.3. If ‖ f j − f∞‖L2 ≤ δ j and Mj are warped products as in Theorem 5.1
then

Diam(Mj )≤ 4
√

2π + 2π
(
‖ f∞‖C0 + δ j/(2π)

)
.

Proof. Let p, q ∈ Mj with p = (x1, y1, z1) and q = (x2, y2, z2). Recall that the
distance between these points is the infimum over lengths of all curves. For any
(x0, y0) ∈ [−π, π]

2 we can take a first path from p to (x0, y0, z1) which stays in a
plane parallel to the xy−plane, then a second path from (x0, y0, z1) to (x0, y0, z2)

parallel to the z axis, and then a third path from (x0, y0, z2) to (x2, y2, z2) which
stays in a plane parallel to the xy−plane. The first and third paths each have length
≤ 2
√

2π , and the middle path has length bounded above by 2π with respect to the
flat metric. Thus we have

d j (p, q)≤ 4
√

2π + 2π f j (x0, y0)

≤ 4
√

2π + 2π
(

f∞(x0, y0)+ | f j (x0, y0)− f∞(x0, y0)|
)
.

Choosing an (x0, y0) such that

| f j (x0, y0)− f∞(x0, y0)|
2
≤

1
4π2

∫ π

−π

∫ π

−π

| f j (x, y)− f∞(x, y)|2 dx dy

we have

| f j (x0, y0)− f∞(x0, y0)| ≤
‖ f j − f∞‖L2

2π

and f∞(x0, y0)≤ ‖ f∞‖C0 . �

5B. L2 convergence and convergence of distances. In this section we will build
sequences of curves whose length approximates the length of a fixed geodesic with
respect to g∞ whose warping function is a constant.

We start by approximating a geodesic which has constant z component which is
simple since g j agrees with g∞ in the x and y directions.

Lemma 5.4. Let p, q ∈ [−π, π]3 so that p = (x1, y1, z0) and q = (x2, y2, z0). If
f∞ = c > 0 then we have that

lim sup
j→∞

d j (p, q)≤ d∞(p, q).

Proof. Let γ be a minimal geodesic with respect to g∞ from p to q . Since g∞ is a
Euclidean metric it is a straight line segment:

γ (t)=
(
x1(1− t)+ x2t, y1(1− t)+ y2t, z0

)
.
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Note that we can choose coordinate so that this is the minimal geodesic with respect
to g∞. Then we can compute

d j (p, q)≤ L j (γ )=

∫ 1

0

√
(x2− x1)

2
+ (y2− y1)

2 dt = d∞(p, q),

since g j agrees with g∞ in the x and y directions, by which the result follows by
taking limits. �

We now construct a sequence of curves which approximates a fixed geodesic
with respect to g∞ which is constant in x and y.

Lemma 5.5. Assume that f j → f∞ = c > 0 in L2 and let p, q ∈ [−π, π]3 so that
p = (x0, y0, z1) and q = (x0, y0, z2) then we have that

lim sup
j→∞

d j (p, q)≤ d∞(p, q).

Proof. We claim that if

S j
ε =

{
(x, y) ∈ [−π, π]2 : | f j (x, y)− f∞(x, y)| ≥ ε

}
then we must have that |S j

ε | ≤ δ j , where δ j→ 0 as j→∞ (|S| represents Lebesgue
measure of S ⊂ [−π, π]2 with respect to the Euclidean metric). If the claim were
false then |S j

ε | ≥ C > 0 and∫ π

−π

∫ π

−π

| f j (x, y)− f∞(x, y)|2 dx dy ≥
∫

S j
ε

| f j (x, y)− f∞(x, y)|2 dA ≥ Cε2

which contradicts f j → f∞ in L2.
Define the set

T j
ε =

(
B((x0, y0), 4

√
δ j ) \ S j

ε

)
∩ [−π, π]2.

Since eventually
|B((x0, y0), 4

√

δ j )|

4
= 4πδ j > |S j

ε |,

we see that T j
ε is nonempty. Hence we can choose a (x j

ε , y j
ε ) ∈ T j

ε .
A minimal geodesic γ from p = (x0, y0, z1) to q = (x0, y0, z2) with respect to

g∞ is purely vertical:

γ (t)= (x0, y0, z0(1− t)+ z2t),

where the addition is mod 2π . Note that d∞(p, q)= c|z2− z1|. Let

p′ = (x j
ε , y j

ε , z1) and q ′ = (x j
ε , y j

ε , z2).

So d∞(p, p′) < 4
√
δ j and d∞(q, q ′) < 4

√
δ j . Also

d∞(p, q)= c|z2− z1| = d∞(p′, q ′).
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Figure 6. α′ = α j
x j approximates the curve γ between the points

p and q .

We can define a curve α j
ε as in Figure 6 which approximates γ . This curve

runs minimally with respect to g∞ from p to p′ and then minimally to q ′ and then
minimally to q as follows:

α j
ε (t)=


(x0(1− 3t)+ 3x j

ε t, y0(1− 3t)+ 3y j
ε t, z1), 0≤ t ≤ 1

3 ,

(x j
ε , y j

ε , z1(2− 3t)+ z2(3t − 1)), 1
3 ≤ t ≤ 2

3 ,

(x j
ε (3− 3t)+ x0(3t − 2), y j

ε (3− 3t))+ y0(3t − 2), z2),
2
3 ≤ t ≤ 1,

where the addition here is mod 2π .
Now we can compute

d j (p, q)≤ L j (α
j
ε )

=

∫ 1/3

0

√
|3x j

ε − 3x0|
2
+ |3y j

ε − 3y0|
2 dt+

∫ 2/3

1/3
|3z2−3z1| f j (x j

ε , y j
ε ) dt

+

∫ 1

2/3

√
|3x j

ε − 3x0|
2
+ |3y j

ε − 3y0|
2 dt.

Combining this with the definitions of (x j
ε , y j

ε ) ∈ T j
ε and using the continuity of

f∞ we find

d j (p, q)= 2
√
|x0− x j

ε |
2
+ |y0− y j

ε |
2
+ f j (x j

ε , y j
ε )|z2− z1|

≤ 16
√
δ j + | f j (x j

ε , y j
ε )− f∞(x j

ε , y j
ε )||z2− z1| + f∞(x j

ε , y j
ε )|z2− z1|

≤ 16
√
δ j + ε|z2− z1| + c|z2− z1|,
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where we are using the hypothesis that f∞ = c > 0.
Now by noticing that d∞(p, q)= c|z2− z1| and taking the limit as j→∞ we

find

lim sup
j→∞

d j (p, q)≤ ε|z1− z0| + c|z1− z0| = ε|z1− z0| + d∞(p, q)

and since this is true for all ε > 0 the result follows. �

We now construct a sequence of curves which approximates a fixed geodesic
with respect to g∞, which does not fall under the hypotheses of Lemmas 5.4 or 5.5.

Lemma 5.6. Assume that f j → f∞ = c > 0 in L2 and let p, q ∈ [−π, π]3 so that
p = (x1, y1, z1), q = (x2, y2, z2) and (x1, y1) 6= (x2, y2) then

lim sup
j→∞

d j (p, q)≤ d∞(p, q).

Proof. Without loss of generality we may assume that y1 6= y2. Let γ be the geodesic
with respect to g∞ which runs from p to q. Since g∞ is a Euclidean metric, we
can choose coordinates on S1

×S1
×S1 such that

γ (t)= (α(t), z1(1− t)+ z2t),

where the addition is mod 2π and

α(t)=
(
x1(1− t)+ x2t, y1(1− t)+ y2t

)
⊂ [−π, π]2.

Since g∞ = dx2
+ dy2

+ c2 dz2, we have

d∞(p, q)=
√
(x2− x1)

2
+ (y2− y1)

2.

We construct a family of geodesics parallel to this geodesic running from p′ =
(x ′1, y1, z1) to q ′= (x2+x ′1−x1, y2, z2) where x ′1 ∈ B(x1, 1)⊂ [−π, π], as follows:

γx ′1(t)= (α
′

x1
(t), z1(1− t)+ z2t),

where
αx ′1(t)=

(
x ′1(1− t)+ (x ′1+ x2− x1)t, y1(1− t)+ y2t

)
,

where the addition is mod 2π with values in [−π, π). Observe that α :(x ′, t)→(x, y)
defined by α(x ′, t)= αx ′(t) is

α(x ′, t)=
(
x ′+ (x2− x1)t, y1+ (y2− y1)t

)
so

(38) dx∧dy = (1dx ′+(x2− x1) dt)∧(0dx ′+(y2− y1) dt)= (y2− y1) dx ′∧dt.
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Since f j → f∞ in L2 we define

(39) f̄ j (x ′)=
∫
αx ′

| f j − f∞|2 dt.

We define the set

S j
ε =

{
x ′ ∈ [−π, π) : f̄ j (x ′)≥ ε

}
⊂ [−π, π),

and the set

W =
{
αx ′(t) : x ′ ∈ [−π, π) and t ∈ [0, 1]

}
.

By the definition of the line segments, αx ′1 , we have W ⊂ (−π, π]2.
Note that the set

T j
ε = (B(x1, 4δ j ) \ S j

ε )⊂ [−π, π]

is nonempty where δ j = |S
j
ε |. We claim δ j → 0 as j→∞. Indeed we have

ε|S j
ε | ≤

∫
x ′∈S j

ε

f̄ (x ′) dx ′≤
∫ π

x ′=−π
f̄ j (x ′) dx ′ =

∫ π

x ′=−π

∫
αx ′

| f j − f∞|2 dt dx ′.

Applying a change of variables as in (38), we have

δ j = (ε)
−1
∫ ∫

W
| f j − f∞|2|y2− y1|

−1 dy dx ′

≤ (ε)−1
|y2− y1|

−1
∫ π

−π

∫ π

−π

| f j − f∞|2 dy dx,

which converges to 0 by the hypothesis that f j → f∞ in L2.
Since T j

ε is nonempty, we can pick a x j ∈ T j
ε . We use this point to choose

(40) p′ = p′j = (x
j
ε , y j

ε , z1) and q ′ = q ′j = (x
j
ε , y j

ε , z2).

We can define a sequence of curves β j
x j as in Figure 7 which run minimally with

respect to g∞ from p to p′ and then minimally to q ′ and then minimally to q as
follows:

β j
x j
(t)=


(x1(1− 3t)+ 3x j t, y1, z1), 0≤ t ≤ 1

3 ,

γx j (3t − 1), 1
3 ≤ t ≤ 2

3 ,

((x j + x2− x1)(3− 3t)+ x2(3t − 2), y2, z2),
2
3 ≤ t ≤ 1.
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Figure 7. β ′ = β j
x j approximates the curve γ between the points

p and q .

The sequence of curves β j
x j (t) is the approximating sequence to γ which can be

used to estimate d j (p, q) as follows

d j (p, q)≤ L j (βx j )

=

∫ 1/3

0
|3x j − 3x1| dt ′+

∫ 2/3

1/3

√
|31x |2+ |31y|2+ |31z|2 f 2

j (αx j (3t ′− 1)) dt ′

+

∫ 1

2/3

√
|3x2− 3(x j + x2− x1)|

2 dt ′,

where 1x = |x2− x1|, 1y = |y2− y1|, and 1z = |z2− z1|. Integrating the first and
last term, and taking t = 3t ′− 1 we have

d j (p, q)≤
( 1

3 − 0
)
|3x j − 3x1| +

(
1− 2

3

)√
|3x2− 3x j − 3x2+ 3x1)|

2

+

∫ 1

0

√
|1x |2+ |1y|2+ |1z|2 f 2

j (αx j (t) dt

≤ |x j − x1| + |x j − x1| +

∫ 1

0

√
1x2
+1y2

+1z2 f 2
j (αx j (t

′)) dt

≤ 2|x j − x1| +

∫ 1

0

√
1x2
+1y2

+1z2 f 2
∞
+1z2( f 2

j (αx j (t))− f 2
∞
) dt

≤ 4δ j +

∫ 1

0

√
1x2
+1y2

+1z2 f 2
∞

dt +
∫ 1

0
1z
√

f 2
j (αx j (t))− f 2

∞
dt.
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Since g∞ is Euclidean, the middle term is d∞(p, q). Applying Hölder’s inequality
to the last term of yields

(41) d j (p, q)≤ 4δ j + d∞(p, q)+1z
(∫ 1

0
| f 2

j (αx j (t))− f 2
∞
| dt

)1/2

.

Recall that we chose x j ∈ T j
ε near x so that x j /∈ S j

ε . Thus (39) implies that∫
αx j

| f j − f∞|2 dt
∫ 1

0
| f j (αx j (t))− f∞|2 dt = f̄ j (x j ) < ε.

We can apply this to control the final term in (41) by factoring and the applying
Hölder’s inequality and the triangle inequality(∫

αx j

| f 2
j − f 2

∞
| dt

)1/2

≤

(∫
αx j

| f j − f∞|| f j + f∞| dt
)1/2

≤

(∫
αx j

| f j − f∞|2 dt
)1/4(∫

αx j

| f j + f∞|2 dt
)1/4

≤ ε1/4
(∫

αx j

| f j − f∞+ 2 f∞|2 dt
)1/4

≤ ε1/4
(∫

αx j

(| f j − f∞| + 2| f∞|)2 dt
)1/4

= ε1/4
(∫

αx j

| f j − f∞|2+ 4| f j − f∞| | f∞| + 4| f∞|2 dt
)1/4

≤ ε1/4
(
ε+ 4c

∫
αx j

| f j − f∞| dt + 4c2
)1/4

≤ ε1/4
(
ε+ 4c

(∫
αx j

| f j − f∞|2 dt
)1/2

+ 4c2
)1/4

≤ ε1/4
(
ε+ 4 c ε1/2

+ 4c2
)1/4

.

Substituting this into (41) we have

d j (p, q)≤ 4δ j + d∞(p, q)+1zε1/4(ε+ 4cε1/2
+ 4c2)1/4

.

Now by taking limits as j→∞ we find

lim sup
j→∞

d j (p, q)≤ d∞(p, q)+1zε1/4(ε+ 4cε1/2
+ 4c2)1/4

.
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Since this is true for all ε > 0 the lemma follows. �

5C. Proof of Theorem 5.1. In this section we finish the proof of Theorem 5.1,
which follows by the results of the last two subsections combined with Theorem 2.4.

Proof. Let p, q ∈ [−π, π]3. Then by Lemma 4.1 we have

(42) lim inf
j→∞

d j (p, q)≥ d∞(p, q).

By Lemmas 5.4, 5.5 or 5.6 we have

lim sup
j→∞

d j (p, q)≤ d∞(p, q).

So by combining with (42) we conclude

(43) lim
j→∞

d j (p, q)= d∞(p, q),

which gives pointwise convergence of distances.
Now by the assumption that 0< c− 1

j ≤ f j ≤ K we can apply Lemma 2.3 and
choose λ=max(1/min(c/2, 1),max(1, K )) > 0 so that for j chosen large enough
we find

λ≥
d j (p, q)
d1(p, q)

≥
1
λ
,

where d1 is the distance defined with warping factor 1.
Hence we can apply Theorem 2.4 to conclude that there exists a length metric d ′

∞

and a subsequence d jk such that d jk converges uniformly to d ′
∞

, and GH and SWIF
converges as well. By the pointwise convergence (43) we know that d∞ = d ′

∞
and

hence d jk must uniformly converge to d∞. Since this is true for all the subsequences,
we see that d j uniformly converges to d∞ and hence Gromov–Hausdorff and intrinsic
flat converges as well. �
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EXPLICIT FORMULAE AND DISCREPANCY ESTIMATES
FOR a-POINTS OF THE RIEMANN ZETA-FUNCTION

SIEGFRED BALUYOT AND STEVEN M. GONEK

For a fixed a 6= 0, an a-point of the Riemann zeta-function is a complex
number ρa = βa + iγa such that ζ(ρa) = a. Recently J. Steuding estimated
the sum ∑

0<γa≤T
βa>0

xρa

for a fixed x as T → ∞, and used this to prove that the ordinates γa are
uniformly distributed modulo 1. We provide uniform estimates for this sum
when x > 0 and 6= 1, and T > 1. Using this, we bound the discrepancy of the
sequence λγa when λ 6= 0. We also find explicit representations and bounds
for the Dirichlet coefficients of the series 1/(ζ(s)− a) and upper bounds for
the abscissa of absolute convergence of this series.

1. Introduction and Results

Let ζ(s) denote the Riemann zeta-function, where s = σ + i t is a complex variable.
As is usual, we shall denote zeros of the zeta-function by ρ = β + iγ . If a is
a nonzero complex number, an a-point of ζ(s) is a number ρa = βa + iγa such
that ζ(ρa) = a. That is, it is a zero of F(s) = ζ(s)− a. For basic results about
a-points we refer the reader to [Levinson 1975; Selberg 1992; Titchmarsh 1986]. In
particular, it is known that there exists a number n0(a) such that for each n ≥ n0(a)
there is an a-point very close to s =−2n, and there are at most finitely many other
a-points in σ ≤ 0. We call these the trivial a-points, and the remaining a-points
nontrivial. Since a Dirichlet series that is not identically zero has a right half-plane
free of zeros, the nontrivial a-points lie in a strip 0<σ < A, where A depends on a.
It was proved in the paper of Bohr, Landau, and Littlewood [Bohr et al. 1913] that
the number of these with 0< γa ≤ T is

(1-1) Na(T )=
∑

0<γa≤T
βa>0

1= T
2π

log T
2π
−

T
2π
+ Oa(log T )

Research of the authors was partially supported by National Science Foundation grant DMS 1200582.
MSC2010: 11M06, 11M26.
Keywords: Riemann zeta-function, a-points, uniform distribution, discrepancy.
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provided that a 6= 1; if a = 1 there is an additional term − log 2(T/2π) on the
right-hand side. The corresponding formula for the number of nontrivial zeros of
the zeta-function is

N (T )=
∑

0<γ≤T

1= T
2π

log T
2π
−

T
2π
+ O(log T ).

It was also proved in [Bohr et al. 1913] that if the Riemann hypothesis is true, the
a-points cluster about the line σ = 1

2 . Much later Levinson [1975] showed that
this holds unconditionally. A similar clustering result was proved for the zeros of
the zeta-function by Bohr and Landau [1914]. Despite these similarities, there is a
striking difference between the distribution of a-points and zeros: for each fixed
σ with 1

2 < σ ≤ 1 the number of a-points with βa > σ and 0 < γa ≤ T is � T ,
whereas ζ(s) has only o(T ) zeros in this region [Titchmarsh 1986].

Landau [1912] proved the remarkable formula∑
0<γ≤T

xρ =−3(x)
T

2π
+ O(log T ) (T →∞),

where x > 1 is fixed. Here3(x) is von Mangoldt’s function defined as3(n)= log p
if n = pk for some natural number k, and 3(x)= 0 for all other real x . A formula
for 0< x < 1 follows on replacing x by 1/x , multiplying the resulting sum by x ,
and observing that 1− ρ runs through the nontrivial zeros as ρ does. The two
x-ranges may be combined and stated as

(1-2)
∑

0<γ≤T

xρ =−
(
3(x)+ x3

(1
x

)) T
2π
+ O(log T ) (T →∞),

for any fixed positive x 6= 1. Recently, Steuding [2014, Theorem 6] proved an
analogous formula for a-points, namely,

(1-3)
∑

0<γa≤T

xρa =−

(
3a(x)+ x3

(1
x

)) T
2π
+ O(T 1/2+ε),

where x 6= 1 is fixed and positive and ε > 0 is arbitrarily small. When a 6= 1, 3a(n)
is defined for integers n ≥ 2 by means of the Dirichlet series

(1-4) −
ζ ′(s)
ζ(s)− a

=

∞∑
n=2

3a(n)
ns .

For other real x , 3a(x) = 0. When a = 1, 3a is defined for numbers m2r with
m an odd positive integer and r any integer by means of the generalized Dirichlet
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series

−
ζ ′(s)
ζ(s)− 1

=

∞∑
m=1
odd

∞∑
r=−∞

31(2r m)
(2r m)s

.

Here too 31(x)= 0 for other real x .
The implied constants in (1-2) and (1-3) are highly dependent on x . For example,

in the case of (1-2), Gonek [1985; 1993] proved that when x, T > 1∑
0<γ≤T

xρ =− T
2π
3(x)+ O(x log(2xT ) log log(3x))+ O

(
log x min

(
T, x
〈x〉

))
+ O

(
log(2T )min

(
T, 1

log x

))
,

where 〈x〉 denotes the distance from x to the nearest prime power other than x itself,
and the implied constants in the O-terms are absolute. An immediate corollary of
this is that for x, T > 1 we have∑
0<γ≤T

x−ρ =− T
2πx

3(x)+ O(log(2xT ) log log(3x))+ O
(

log x min
(T

x
,

1
〈x〉

))
+ O

(
log(2T )min

(T
x
,

1
x log x

))
.

Our first aim here is to prove analogues of these formulae for (1-3).
In stating our results it will be convenient to write

(1-5) β∗a = sup
ρa

βa

and
B = β∗a + ε,

where ε > 0 is arbitrary. Thus, the value of B may be different at different occur-
rences. As was mentioned above, there is a number A such that all βa < A, so β∗a
is finite. Furthermore, (see Theorem 11.6(C) of [Titchmarsh 1986]) we know that
for every δ > 0 the equation ζ(s)= a has solutions in the strip 1< σ < 1+ δ. Thus
β∗a > 1.

Theorem 1.1. Suppose a 6= 0, 1 is a fixed complex number and let x, T > 1. Then∑
0<γa≤T
βa>0

xρa =−
T

2π
3a(x)+ O

(
x B
(

1+min
{

T, x
〈x〉

}))
+ O

(
x B+1 log T

(
1+ 1

log x

))
+ O

( log T
x2

(
1+min

{
T,

1
log x

}))
.

The implied constants depend only on a and the value of ε in the definition of B.
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To estimate ∑
0<γa≤T
βa>0

xρa when 0< x < 1,

we consider ∑
0<γa≤T
βa>0

x−ρa with x > 1.

In this case we do not need to exclude a = 1.

Theorem 1.2. Let a 6= 0 and 0< θ < 1 be fixed. If T > 1 and 1< x ≤ T θ , then∑
0<γa≤T
βa>0

x−ρa =−
T

2πx
3(x)+O

( log T
log x

)
+O

(
log(2x)min

{T
x
,

1
〈x〉

})
+O(log4 T ).

It would be interesting to have a version of Theorem 1.1 when a = 1 also. This
looks possible but rather complicated and is not needed for the applications below.

Steuding [2014] used (1-3) to prove the interesting result that the fractional
parts of the sequence {λγa}γa>0 are uniformly distributed modulo 1, where λ is
any fixed nonzero real number.1 Our uniform versions of (1-3) allow us to prove a
discrepancy estimate for this sequence.

Theorem 1.3. Let a 6= 0 and let λ 6= 0 be a fixed real number. Then for T sufficiently
large we have

(1-6) sup
0≤α≤1

∣∣∣∣ 1
Na(T )

( ∑
0<γa≤T, βa>0
{λγa}≤α

1
)
−α

∣∣∣∣� 1
log log T

,

where {x} denotes the fractional part of the real number x.

The analogous problem for the zeros (i.e., the “case a = 0” of Theorem 1.3) has
been studied extensively. The interested reader is referred to the survey [Steuding
2014] for an informative discussion of this problem and related results.

As another application of Theorem 1.2 we prove

Theorem 1.4. Let

A(s)=
∑
n≤N

a(n)n−s,

1The statement of Theorem 6 in [Steuding 2014] is incorrect when a = 1 because in that case
−ζ ′(s)/(ζ(s)− 1) cannot be expressed as an ordinary Dirichlet series.
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where the a(n) are complex numbers such that |a(n)| � nε and N = T θ with T ≥ 2
and 0< θ < 1 fixed. Then for a 6= 0 we have∑

0<γa≤T
βa>0

A(ρa)=
T

2π

(
a(1) log T −

∑
2≤n≤N

a(n)3(n)
n

)
+ O(T ).

Specializing the Dirichlet polynomial A(s) leads to the following formulae.

Corollary 1.5. Let

M(s)=
∑
n≤N

µ(n)
ns and P(s)=

∑
n≤N

1
ns .

If N = T θ with 0< θ < 1 fixed and a 6= 0, then

(1-7)
∑

0<γa≤T
βa>0

M(ρa)= (1+ θ)
T

2π
log T + O(T )

and

(1-8)
∑

0<γa≤T
βa>0

P(ρa)= (1− θ)
T

2π
log T + O(T ).

These results seemed counterintuitive to us at first. To the extent that one expects
M(s) to approximate 1/ζ(s) and P(s) to approximate ζ(s) on average, one might
expect the first sum to be large and the second small when |a| is small, and expect
the reverse to be true when |a| is large. However, from the corollary we see that the
first sum is always larger than the second. The explanation seems to be that many
a-points are quite close to zeros of ζ(s). In fact, the same argument as in the proof
of the corollary shows that (1-7) and (1-8) hold with the ρa’s replaced by ρ’s.

Theorems 1.1 and 1.2 are proved by calculating the integrals

1
2π i

∫
R

x±s ζ ′(s)
ζ(s)− a

ds

over an appropriate rectangle R. The size of the coefficients of the Dirichlet series
for 1/(ζ(s)− a), and its abscissae of convergence and absolute convergence enter
into this analysis, so we shall also prove the following results. Although we do not
require as much detail as the next two theorems provide, we record them in the
hope that they may prove useful to others.

Theorem 1.6. For a 6= 0, 1 the coefficients of the Dirichlet series

1
ζ(s)− a

=

∞∑
n=1

ba(n)
ns
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are given by

ba(n)=


−
∑
∞

k=0 a−k−1dk(n) if |a|> 1,∑
∞

k=1 ak−1d−k(n) if 0< |a|< 1,

−
∑
∞

k=0(a− 1)−k−1ek(n) if |a| = 1, but a 6= 1.

Here dl(n) is the n-th Dirichlet coefficient of ζ(s)l and el(n) is the n-th Dirichlet
coefficient of (ζ(s)− 1)l . When a = 1 the series is the generalized Dirichlet series

1
ζ(s)− 1

=

∞∑
m=1
odd

∞∑
r=−∞

b1(m2r )

(m2r )s

with coefficients
b1(m2r )=

∑
l−k−1=r

k,l≥0

(−1)k fk(2lm),

where fk(n) is the n-th Dirichlet coefficient of (ζ(s)− 1− 2−s)k .

Theorem 1.7. Let a 6= 0. Define σ ∗ > 1 to be the unique solution to the equation

ζ(σ )= |a| if |a|> 1,

ζ(σ )= 1+ |1− a| if |a| = 1, a 6= 1,
ζ(2σ)
ζ(σ )

= |a| if |a|< 1,

ζ(σ )= 1+ 21−σ if a = 1.

Then the abscissa of absolute convergence σ of the series for 1/(ζ(s)− a) satisfies

σ ≤ σ ∗.

Remark. When a = 1, σ ∗ ≈ 2.4241.

Theorem 1.8. Let a 6=0, 1 and let σ0 be the abscissa of convergence of the Dirichlet
series

1
ζ(s)− a

=

∞∑
n=1

ba(n)
ns .

Then σ0 = β
∗
a , with β∗a as in (1-5), and

1< σ0 ≤ σ ≤ σ
∗.

Moreover, for every ε > 0
ba(n)� nβ

∗
a+ε.

This bound is sharp in the sense that

|ba(n)|> nβ
∗
a−ε

for infinitely many n.
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2. Proof of Theorem 1.1

In the following proof we shall appeal to Theorem 1.8 though it is proved later.
The functional equation for ζ(s) is

(2-1) ζ(s)= χ(s)ζ(1− s),

where, by Stirling’s formula,

(2-2) χ(s)=
( t

2π

)1/2−s
eiπ/4+i t

(
1+ O

(1
t

))
as t→∞ in any fixed vertical strip. From (3.11.8) of [Titchmarsh 1986], we have

|ζ(s)| � 1
log t

as t→∞ when σ ≥ 1− A/log t and, in particular, when σ ≥ 1. Thus, from (2-1)
and (2-2) we have

(2-3) |ζ(s)| � t1/2−σ

log t

as t→∞ in any fixed vertical strip with σ ≤ 0. We may therefore choose a number
T0 ≥ 2 such that |ζ(s)|> |a| for σ ≤ 0 and t ≥ T0, and also so that no γa equals T0.
With this T0, and any T > T0 with T 6= γa for any γa , consider the contour integral

I = 1
2π i

(∫ B+1+iT

B+1+iT0

+

∫
−2+iT

B+1+iT
+

∫
−2+iT0

−2+iT
+

∫ B+1+iT0

−2+iT0

)(
ζ ′(s)
ζ(s)− a

)
x s ds

= I1 + I2 + I3 + I4,

say. By the calculus of residues

I =
∑

T0<γa<T
βa>0

xρa .

To prove the theorem we estimate I1 through I4.
To estimate I1 we use the Dirichlet series expansion (1-4), which by Theorem 1.8

is absolutely convergent for σ = B+ 1, and integrate term-by-term. This leads to

(2-4) I1 =−

∞∑
n=2

3a(n)
( x

n

)B+1
(

1
2π

∫ T

T0

( x
n

)i t
dt
)

=−
T − T0

2π
3a(x)+ O

( ∞∑
n=2
n 6=x

|3a(n)|
nB+1 x B+1 min

{
T, 1
| log(x/n)|

})
.
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To estimate the sum in the error term note that |log(x/n)| � 1 for n ≤ x/2 or
n ≥ 2x . Thus the part of the sum with n ≤ x/2 or n ≥ 2x is

(2-5) �

∞∑
n=1

|3a(n)|
nB+1 x B+1

� x B+1.

The part with x/2< n < x is

�

∑
x/2<n<x

|3a(n)|min
{

T, 1
log(x/n)

}
=

∑
x/2<n<N

|3a(n)|min
{

T, 1
log(x/n)

}
+ |3a(N )|min

{
T, 1

log(x/N )

}
,

where N is the largest integer less than x . By Theorem 1.8, we have 3a(n)�ε nB .
Thus, since

log x
n
=− log

(
1− x−n

x

)
>

N−n
x

,

we see that∑
x/2<n<N

|3a(n)|min
{

T, 1
log x/n

}
≤ x

∑
x/2<n<N

|3a(n)|
N − n

�ε x N B log x �ε x B+1.

On the other hand, we have

|3a(N )|min
{

T, 1
log x/N

}
�ε N B min

{
T, x

x−N

}
� x B min

{
T, x
〈x〉

}
.

Hence the part with x/2< n < x is

�ε x B+1
+ x B min

{
T, x
〈x〉

}
.

A similar argument gives the same estimate for the part with x < n < 2x . Using
this and (2-5) in (2-4), we obtain

(2-6) I1 =−
T

2π
3a(x)+ Oε

(
x B+1

+ x B min
{

T, x
〈x〉

})
.

To estimate I2, we require the following lemma.

Lemma 2.1. There is a positive number Ra depending only on a such that for
R ≥ Ra we have

ζ ′(s)
ζ(s)− a

=

∑
|ρa−s|<R

1
s−ρa

+ OR(log t)

uniformly for −2≤ σ ≤ R− 2 and large t.
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Proof. Let f (s)= ζ(s)−a. If ra >β
∗
a is large enough, then for σ0≥ ra we will have

| f (σ0+ i t)| �σ0 1 for all large t . We will show how to determine such an ra later.
We apply Lemma α of §3.9 in [Titchmarsh 1986] with f (s)= ζ(s)−a, s0=σ0+iT ,
r = 4(σ0+ 2), and T large. By the Phragmén–Lindelöf theorem applied to ζ(s)
(see, for example, Chapter 5 of [Titchmarsh 1932]), we have f (s)= Or (T A) for
some constant A uniformly for |s− s0| ≤ r . Thus∣∣∣∣ f (s)

f (s0)

∣∣∣∣�r T A

uniformly for |s− s0| ≤ r . It now follows from [Titchmarsh 1986, Lemma α] that

ζ ′(s)
ζ(s)− a

=

∑
|ρa−s|≤r/4

1
s−ρa

+ Or (log T )

for |s− s0| ≤ r/4. If s = σ + iT and −2≤ σ ≤ 2σ0+2, then |s− s0| ≤ r/4 because
r = 4(σ0+ 2). This proves the lemma with Ra = 4(ra + 2) and R = r/4.

We now show how to choose an ra such that if σ0 ≥ ra then | f (σ0+ i t)| �σ0 1
for all large t . If a 6= 1, then |1− a| 6= 0. Hence, since limσ→1 ζ(σ )= 1, we may
choose a number σ1 so large that |1−a|> ζ(σ)−1 for σ ≥ σ1. If a= 1, we choose
σ1 = 4. In that case σ ≥ σ1 implies

∞∑
n=3

1
nσ
≤

∫
∞

2

1
uσ

dσ = 21−σ

σ−1
≤

2
3
·

1
2σ
,

which in turn implies that

|ζ(s)− 1| =
∣∣∣∣2−s
+

∞∑
n=3

n−s
∣∣∣∣≥ 2−σ/3.

We now set ra =max{σ1, β
∗
a + 1}. It then follows that if a 6= 1 and σ0 ≥ ra , then

| f (σ0+ i t)| = |ζ(σ0+ i t)− 1+ (1− a)| ≥ |1− a| − ζ(σ0)+ 1> 0.

On the other hand, if a = 1 and σ0 ≥ ra , then

| f (σ0+ i t)| = |ζ(σ0+ i t)− 1| ≥ 3−12−σ0 > 0.

This completes the proof. �

By Lemma 2.1,

I2 =
∑

|ρa−s|<Ra

1
2π i

∫
−2+iT

B+1+iT

x s

s−ρa
ds+ O

(
log T

∫ B+1

−2
xσ dσ

)
.
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The error term is

� log T x B+1

log x
.

To estimate the sum, note that by Cauchy’s integral theorem we may replace the line
segment of integration in each term by the semicircle above or below the segment
depending on whether ρa lies below or above that segment. Thus, the sum is

�

∑
|ρa−s|<R

x B+1.

By (1-1) the number of terms in the sum is O(log T ). Thus,

(2-7) I2� x B+1 log T
(

1+ 1
log x

)
.

To estimate I3 note that by our choice of T0, if σ =−2 and t ≥ T0, then

1
ζ(s)−a

=
1
ζ(s)

( 1
1−a/ζ(s)

)
=

1
ζ(s)

∞∑
k=0

( a
ζ(s)

)k
.

Thus

(2-8) I3 =
1

2π i

∫
−2+iT0

−2+iT
x s ζ
′(s)
ζ(s)

ds+ 1
2π i

∫
−2+iT0

−2+iT
x s ζ
′(s)
ζ(s)

∞∑
k=1

( a
ζ(s)

)k
ds.

From the logarithmic derivative of the functional equation for ζ(s) (for example,
see [Gonek 1993] or [Davenport 1980, pp. 73, 80, 81]) we have

(2-9) −
ζ ′(s)
ζ(s)
=
ζ ′(1− s)
ζ(1− s)

+ log t
2π
+ O

(1
t

)
in any half-strip A1 ≤ σ ≤ A2, t ≥ 1 that does not contain zeros of ζ(s). Thus, the
first integral on the right-hand side of (2-8) equals

x−2

2π

∫ T

T0

x i t ζ
′

ζ
(3− i t) dt + x−2

2π

∫ T

T0

x i t log t
2π

dt + O(x−2 log T ).

We insert the Dirichlet series for ζ ′/ζ into the first integral here and integrate
term-by-term, and in the second we integrate by parts. In this way we find that

(2-10) 1
2π i

∫
−2+iT0

−2+iT
x s ζ
′(s)
ζ(s)

ds�
log T

x2 +min
{T log T

x2 ,
log T

x2 log x

}
.

To estimate the second integral on the right-hand side of (2-8), note that by(2-3) we
have

ζ(−2+ i t)� t5/2

log t



EXPLICIT FORMULAE AND DISCREPANCY ESTIMATES FOR a-POINTS 57

for t ≥ T0. Also, by (2-9), we have

ζ ′(−2+ i t)
ζ(−2+ i t)

� log t

for t ≥ T0. Hence

1
2π i

∫
−2+iT0

−2+iT
x s ζ
′(s)
ζ(s)

∞∑
k=1

( a
ζ(s)

)k
ds� x−2

∫ T

T0

log2 t
t5/2 dt � x−2.

From this and (2-10) we obtain

(2-11) I3�
log T

x2 +min
{T log T

x2 ,
log T

x2 log x

}
.

Finally, ζ ′(s)/(ζ(s)− a) is bounded on [−2+ iT0, B+ 1+ iT0], so

I4� x B+1.

Combining this, (2-6), (2-7), and (2-11), we find that for T ≥ T0

(2-12)
∑

T0<γa<T
βa>0

xρa =−
T

2π
3a(x)+ Oε

(
x B+1

+ x B min
{

T, x
〈x〉

})
+ O

(
x B+1 log T

(
1+ 1

log x

))
+ O

( log T
x2 +

log T
x2 min

{
T, 1

log x

})
.

Recall that we have assumed T 6= γa for any γa . To remove this assumption,
observe that by (1-1), changing T by a bounded amount in (2-12) changes the value
of the sum on the left-hand side by at most O(x B log T ). This is clearly no more
than the resulting change on the right-hand side.

As we mentioned in the first paragraph of Section 1 all the nontrivial a-points lie
in a strip of the form 0< σ < A. There are at most a finite number of these with
0< γa ≤ T0, hence

(2-13)
∑

0<γa≤Y
βa>0

xρa � x B

uniformly for 1< Y ≤ T0. Taking Y = T0 and combining this with (2-12), we see
that we may extend the sum on the left-hand side of (2-12) to run over all ρa with
0< γa ≤ T and βa > 0. The resulting formula holds for T ≥ T0 ≥ 2. To see that
it also holds when T is between 1 and T0, note that (2-13) holds with Y = T , and
the right-hand side is bounded by the second error term on the right-hand side of
(2-12). This completes the proof of the Theorem 1.1.
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3. Proof of Theorem 1.2

Let a 6= 0 and suppose that x > 1. As in the proof of Theorem 1.1 (see below (2-3)),
we can choose a T0 ≥ 2 such that |ζ(s)|> |a| for σ ≤ 0, t ≥ T0, and such that no
γa equals T0. We also choose a T > T0 which is not equal to any γa . With σ ∗ as in
Theorem 1.7, we see by the calculus of residues that∑
T0<γa<T
βa>0

x−ρa =
1

2π i

(∫ σ ∗+1+iT

σ ∗+1+iT0

+

∫
−1/log(3x)+iT

σ ∗+1+iT

+

∫
−1/log(3x)+iT0

−1/log(3x)+iT
+

∫ σ ∗+1+iT0

−1/log(3x)+iT0

)(
ζ ′(s)
ζ(s)− a

)
x−s ds

= I1 + I2 + I3 + I4,

say.
To estimate I1 we first assume a 6= 1. Using the Dirichlet series expansion (1-4)

and integrating term-by-term, we obtain

I1 =−

∞∑
n=2

3a(n)
( 1

nx

)σ ∗+1
(

1
2π

∫ T

T0

( 1
nx

)i t
dt
)

� x−σ
∗
−1
∞∑

n=2

|3a(n)|
nσ ∗+1 log(nx)

<
1

xσ ∗+1 log x

∞∑
n=2

|3a(n)|
nσ ∗+1 �

1
xσ ∗+1 log x

.

Now assume a = 1. By (6-4) below we see that

I1 =

∫ σ ∗+1+iT

σ ∗+1+iT0

ζ ′(s)
ζ(s)− 1

x−s ds

=−

∫ σ ∗+1+iT

σ ∗+1+iT0

∞∑
ν=2

log ν
νs

∞∑
k=0

(−1)k2(k+1)s
∞∑

n=3k

fk(n)
ns x−s ds.

Note that by Theorem 1.7 the double series over k and n converges absolutely when
σ = σ ∗+ 1. Hence

I1 =−

∞∑
ν=2

∞∑
k=0

∞∑
n=3k

(log ν)(−1)k fk(n)
∫ σ ∗+1+iT

σ ∗+1+iT0

(2k+1

xnν

)s
ds

�

∞∑
ν=2

∞∑
k=0

∞∑
n=3k

(log ν) fk(n)
log(xnν/2k+1)

(2k+1

xnν

)σ ∗+1
.

This is absolutely convergent because

log
( xnν

2k+1

)
≥ log

(3k
·2

2k+1

)
= k log 3

2
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for k ≥ 1, while

log
( xnν

2

)
≥ log

( xn ·2
2

)
= log xn ≥ log x > 0

for k = 0. Thus

(3-1) I1�
1

xσ ∗+1 log x
,

which is the same as our estimate when a 6= 1.
To estimate I2 we use Lemma 2.1 to write

I2 =
∑

|ρa−s|<R

1
2π i

∫
−1/log(3x)+iT

σ ∗+1+iT

x−s

s−ρa
ds+ O

(
log T

∫ σ ∗+1

−1/log(3x)
x−σ dσ

)
.

The error term is

� log T
x1/log(3x)

log x
�

log T
log x

.

To bound the sum, note that by Cauchy’s integral theorem we may replace the path
of integration in each term by the semicircle above or below the path depending on
whether ρa lies below or above it. In this way we see that the sum is

�

∑
|ρa−s|<R

x1/log(3x)
�

∑
|ρa−s|<R

1� log T

by (1-1). Thus

(3-2) I2� log T
(

1+ 1
log x

)
.

Next we come to I3. Since |ζ(s)|> |a| when σ ≤ 0 and t ≥ T0, we have

1
ζ(s)− a

=
1
ζ(s)

( 1
1−a/ζ(s)

)
=

1
ζ(s)

∞∑
k=0

( a
ζ(s)

)k
.

Hence

I3 =
1

2π i

∫
−1/log(3x)+iT0

−1/log(3x)+iT
x−s ζ

′(s)
ζ(s)

ds

+
1

2π i

∫
−1/log(3x)+iT0

−1/log(3x)+iT
x−s ζ

′(s)
ζ(s)

∞∑
k=1

( a
ζ(s)

)k
ds

= I31+ I32,

say.
We first consider I32. By (3.11.7) of [Titchmarsh 1986] and (2-9) we have

(3-3)
ζ ′(s)
ζ(s)
� log t
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for σ ≤ 0 bounded and t ≥ T0. Using this and (2-3), we see that the terms in I32

with k > 1 contribute at most

(3-4) � a2
∫ T

T0

log3 t
t1+2/ log(3x) dt � log4 T .

By integration by parts, the term with k = 1 is

−
a

2π i

∫
−1/log(3x)+iT

−1/log(3x)+iT0

x−s ζ
′(s)
ζ 2(s)

ds

= a x−s

2π i ζ(s)

∣∣∣∣−1/log(3x)+iT

−1/log(3x)+iT0

+ a
log x
2π i

∫
−1/log(3x)+iT

−1/log(3x)+iT0

x−s

ζ(s)
ds.

By (2-3) the first term on the right-hand side is� T−1/2
0 log T0� 1. Hence,

(3-5) I3,2 = a
log x
2π i

∫
−1/log(3x)+iT

−1/log(3x)+iT0

x−s

ζ(s)
ds+ O(log4 T ).

Using the functional equation (2-1) in the integral and switching the order of
summation and integration (by absolute convergence), we see that

I3,2 = a
log x
2π i

∫
−1/log(3x)+iT

−1/log(3x)+iT0

x−s

χ(s)

( ∞∑
n=1

µ(n)
n1−s

)
ds+ O(log4 T )

= a log x
∞∑

n=1

µ(n)
n

(
1

2π i

∫
−1/log(3x)+iT

−1/log(3x)+iT0

( x
n

)−s 1
χ(s)

ds
)
+ O(log4 T ).

By (2-2), we next obtain

I3,2 =
ae−iπ/4

2π
x1/log 3x log x

×

∞∑
n=1

µ(n)
n1+1/ log(3x)

(∫ T

T0

( t
2π

)−1/2−1/log 3x
exp

(
i t log tn

2πex

)(
1+O

(1
t

))
dt
)

+O(log4 T ).

The O-term inside the integral contributes

� log 3x
∞∑

n=1

1
n1+1/ log(3x)

(∫ T

T0

t−3/2 dt
)
� T−1/2

0 log2(3x)� log2 T .

Thus

I3,2 =
ae−iπ/4

2π
x1/log 3x log x

×

∞∑
n=1

µ(n)
n1+1/ log(3x)

(∫ T

T0

( t
2π

)−1/2−1/log 3x
exp

(
i t log tn

2πex

)
dt
)
+O(log4 T ).
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We next split the interval of integration into dyadic intervals Ik = (T/2k+1, T/2k
]

with k = 0, 1, 2, . . . , K = [(log(T/T0)/ log 2)] − 1, plus the possible additional
interval IK+1 = [T0, T/2K+1

] ⊆ [T0, 2T0]. We then have

(3-6) I3,2 =
ae−iπ/4

2π
x1/log 3x log x

∞∑
n=1

µ(n)
n1+1/ log(3x)

(K+1∑
k=0

Ik(n)
)
+ O(log4 T )

=
ae−iπ/4

2π
x1/log 3x log x

K+1∑
k=0

( ∞∑
n=1

µ(n)
n1+1/ log(3x)Ik(n)

)
+ O(log4 T ),

where

(3-7) Ik(n)=
∫

Ik

( t
2π

)−1/2−1/log 3x
exp

(
i t log tn

2πex

)
dt.

To estimate this we apply the following minor modification of a lemma in [Gonek
1984].

Lemma 3.1. For large A and B with A < r ≤ B ≤ 2A,∫ B

A
exp

(
i t log

( t
re

))( t
2π

)a−1/2
dt = (2π)1−arae−ir+π i/4

+ O(E(r, A, B)),

where a is bounded and where

(3-8) E(r, A, B)= Aa−1/2
+

Aa+1/2

|A− r | + A1/2 +
Ba+1/2

|B− r | + B1/2 .

For r ≤ A or r > B,

(3-9)
∫ B

A
exp

(
i t log

( t
re

))( t
2π

)a−1/2
dt = O(E(r, A, B)).

For us the cruder bound E(r, A, B)� Aa suffices. Assuming that T0 is suffi-
ciently large (as we may) we then find that for k = 0, . . . , K ,

(3-10)
∞∑

n=1

µ(n)
n1+1/ log(3x)Ik(n)

�

∑
πx2k+1/T≤n<πx2k+2/T

1
n
+

∞∑
n=1

1
n1+1/ log(3x) E

(
2πx

n
,

T
2k+1 ,

T
2k

)

�

∑
n≤x

1
n
+

(
T
2k

)−1/log(3x) ∞∑
n=1

1
n1+1/ log(3x)

� log(3x)
((

T
2k

)−1/log(3x)

+ 1
)
.
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We similarly find that

∞∑
n=1

µ(n)
n1+1/ log(3x)IK+1(n)� log(3x).

Inserting these estimates in (3-6) and summing, we find that

I3,2� log2(3x)
K+1∑
k=0

((2k

T

)1/log(3x)
+ 1

)
+ log4 T

� log3(3x)
((2K

T

)1/log(3x)
+ K

)
+ log4 T

� log3(3x)
(( 1

T0

)1/log(3x)
+ log T

)
+ log4 T � log4 T .

To estimate I31, we use (2-9) to write

I31 =
1

2π i

∫
−1/log(3x)+iT

−1/log(3x)+iT0

x−s ζ
′

ζ
(1− s) ds

+

∫
−1/log(3x)+iT

−1/log(3x)+iT0

x−s log t
2π

ds+ O
(∫ T

T0

dt
t

)
.

Integrating by parts, we see that∫ T

T0

x−i t log t
2π

dt �
log T
log x

.

Hence

I31 =
1

2π i

∫
−1/log(3x)+iT

−1/log(3x)+iT0

x−s ζ
′

ζ
(1− s) ds+ O

( log T
log x

)
+ O(log T ).

The remaining integral equals

−
1
x

∞∑
n=2

3(n)
( x

n

)1+1/log(3x)
(

1
2π

∫ T

T0

( x
n

)−i t
dt
)

=−
T − T0

2πx
3(x)+ O

(
1
x

∞∑
n=2
n 6=x

3(n)
( x

n

)1+1/log(3x)
min

{
T, 1
| log(x/n)|

})
.

By Lemma 2 of [Gonek 1993] this equals

−
T − T0

2πx
3(x)+ O(log(2x) log log(3x))+ O

(
log(2x)min

{T
x
,

1
〈x〉

})
.
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Hence,

I3,1 =−
T

2πx
3(x)+ O(log(2x) log log(3x))+ O

(
log(2x)min

{T
x
,

1
〈x〉

})
+ O

( log T
log x

)
+ O(log T ).

Combining our estimates for I3,1 and I3,2, we obtain

(3-11) I3 =−
T

2πx
3(x)+ O(log(2x) log log(3x))+ O

(
log(2x)min

{T
x
,

1
〈x〉

})
+ O

( log T
log x

)
+ O(log4 T ).

Finally, since ζ ′(s)/(ζ(s)− a) is bounded on [−2+ iT0, σ
∗
+ 1+ iT0],

I4� x1/log(3x)
� 1.

It follows from this, (3-1), (3-2), and (3-11) that

(3-12)
∑

T0<γa<T
βa>0

x−ρa =−
T

2πx
3(x)+ O

( log T
log x

)
+ O

(
log(2x)min

{T
x
,

1
〈x〉

})
+ O(log4 T ).

To complete the proof of the theorem, we argue in much the same way as at
the end of the proof of Theorem 1.1. That is, we first remove the constraint that
no γa equals T and then note that we may extend the sum on the left-hand side of
(3-12) to include the a-points with 0< γa ≤ T0. Finally, it is easy to see that we
may replace our condition that T > T0 by T > 1.

4. Proof of Theorem 1.3

Levinson [1975] has shown that for δ > 0 and T sufficiently large (depending
on a), the number of a-points ρa = βa+ iγa with

∣∣βa−
1
2

∣∣> δ and T ≤ γa ≤ 2T is
O(δ−1T log log T ). Thus,∑

T<γa≤2T

∣∣βa −
1
2

∣∣= ∑
T<γa≤2T
|βa−1/2|>δ

∣∣βa −
1
2

∣∣+ ∑
T<γa≤2T
|βa−1/2|≤δ

∣∣βa −
1
2

∣∣
�

T log log T
δ

+ δNa(T ).

Taking δ = (log log T/ log T )1/2, we deduce that

(4-1)
∑

T<γa≤2T

∣∣βa −
1
2

∣∣� T
√

log T log log T .
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Since ey
− 1� |y|max{1, ey

} for any y > 0, we see that

|x−1/2
− x−βa | = x−1/2

|1− x1/2−βa | �
∣∣βa −

1
2

∣∣|log x |max{x−1/2, x−βa }.

By the remark after (2-3), there is a number T0 such that if γa ≥ T0, then βa > 0.
We may obviously also assume that T0 is so large that (4-1) holds for T ≥ T0. It
follows that if x > 1, then for these ρa we have x−βa < 1. Hence, for x > 1

|x−1/2
− x−βa | �

∣∣βa −
1
2

∣∣ log x .

This and (4-1) imply that∑
T<γa≤2T

x−1/2−iγa =

∑
T<γa≤2T

x−ρa + O
(
T log x

√
log T log log T

)
for x > 1. Replacing T by T

2 ,
T
4 ,

T
8 , . . . and summing, we see that∑

T0<γa≤T

x−1/2−iγa =

∑
T0<γa≤T

x−ρa + O
(
T log x

√
log T log log T

)
.

Now fix 0 < θ < 1 and assume that 1 < x ≤ T θ . From this and Theorem 1.2 we
find that

(4-2)
∑

T0<γa≤T

x−iγa =−
T

2π
√

x
3(x)+ O

(√
x log T

log x

)
+ O(
√

x log4 T )

+ O
(√

x log(2x)min
{T

x
,

1
〈x〉

})
+ O

(√
xT log x

√
log T log log T

)
.

By the Erdős–Turán inequality (see [Montgomery 1994, Chapter 1, Corol-
lary 1.1]), if K is a positive integer, λ 6= 0 is a real number, and [α, β] is a
subinterval of [0, 1], then

(4-3)
∣∣∣∣ ∑

T0<γa≤T
{λγa}∈[α,β]

1− (β −α)(Na(T )− Na(T0))

∣∣∣∣
≤

Na(T )
K + 1

+ 3
∑
k≤K

1
k

∣∣∣∣ ∑
T0<γa≤T

e(kλγa)

∣∣∣∣.
Without loss of generality we may assume that λ > 0. Taking x = exp(2πkλ) with
k a positive integer in (4-2), and then taking the complex conjugates of both sides
of the resulting equation, we find that

1
k

∑
T0<γa≤T

e(kλγa)�λ

T
eπkλ + eπkλT

√
log T log log T .



EXPLICIT FORMULAE AND DISCREPANCY ESTIMATES FOR a-POINTS 65

Inserting this into (4-3) and evaluating, we obtain∣∣∣∣ ∑
T0<γa≤T
{λγa}∈[α,β]

1− (β −α)(Na(T )− Na(T0))

∣∣∣∣
�

Na(T )
K
+ T K + eπKλT

√
log T log log T .

Note that including the terms (if any) with 0< γa ≤ T0, βa > 0, and {λγa} ∈ [α, β]

changes the left-hand side by at most O(1). If we now choose

K =
[ 1

2 − ε

πλ
(log log T )

]
,

we obtain ∣∣∣∣ 1
Na(T )

∑
0<γa≤T, βa>0
{λγa}∈[α,β]

1− (β −α)
∣∣∣∣� 1

log log T

for λ > 0 fixed, and uniformly for any subinterval [α, β] of [0, 1]. The estimate
(1-6) follows easily from this.

5. Proof of Theorem 1.4 and Corollary 1.5

By (1-1) and Theorem 1.2 with x = n an integer ≥ 2, we see that∑
0<γa≤T
βa>0

1
nρa
=−

T
2πn

3(n)+ O(log n)+ O(log4 T ).

Thus, since N = T θ with 0< θ < 1 fixed, we have

(5-1)
∑

0<γa≤T
βa>0

A(ρa)=
∑
n≤N

a(n)
∑

0<γa≤T
βa>0

n−ρa

= a(1)Na(T )+
∑

2≤n≤N

a(n)
(
−

T
2πn

3(n)+ O(log4 T )
)

=
T

2π

(
a(1) log T −

∑
2≤n≤N

a(n)3(n)
n

)
+ O(T θ+2ε).

This gives Theorem 1.4, assuming ε is so small that θ + 2ε ≤ 1.
To prove Corollary 1.5, first take A(s)= M(s) in (5-1), where

M(s)=
∑
n≤N

µ(n)n−s
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and N = T θ with 0< θ < 1 fixed. Then we find that∑
0<γa≤T
βa>0

M(ρa)=
T

2π

(
log T −

∑
2≤n≤N

µ(n)3(n)
n

)
+ O(T ).

The sum over n equals

−

∑
p≤N

log p
p
=− log N + O(1).

Thus, ∑
0<γa≤T
βa>0

M(ρa)=
T

2π
log T + θ T

2π
log T + O(T ),

which is the same as (1-7).
For P(s)=

∑
n≤N n−s , we similarly find that∑

0<γa≤T
βa>0

P(ρa)=
T

2π

(
log T −

∑
2≤n≤N

3(n)
n

)
+ O(T )

=
T

2π
(log T − log N )+ O(T ).

This gives (1-8).

6. Proof of Theorems 1.6 and 1.7

As in the previous sections we assume a 6= 0 is a fixed complex number. Throughout
this section we write

f (s)= ζ(s)− a.

As we shall show, when a 6= 1 and σ is sufficiently large, 1/ f (s) has a Dirichlet
series representation

1
f (s)
=

1
ζ(s)− a

=

∞∑
n=1

ba(n)
ns .

We shall also show that when a= 1 and σ is large, one has the generalized Dirichlet
series representation

(6-1)
1

f (s)
=

1
ζ(s)− 1

=

∞∑
m=1
odd

∞∑
r=−∞

b1(m2r )

(m2r )s
.

We denote the abscissa of convergence of 1/ f (s) by σ0 and its abscissa of absolute
convergence by σ . Both, of course, depend on a and, in general, neither is easy to
determine precisely. Theorem 1.6 gives explicit formulae for the coefficients ba(n)
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of f (s) and Theorem 1.7 gives upper bounds for σ . The two theorems are most
conveniently proved together for the various ranges of a.

First we consider the case when |a|> 1. Clearly ζ(σ ) decreases from∞ to 1 as
σ increases from 1 to∞. Hence ζ(σ )= |a| has a unique solution σ ∗ > 1, and for
σ > σ ∗ we have ζ(σ ) < ζ(σ ∗). Moreover, |ζ(s)| ≤ ζ(σ ) for σ > 1. Thus, when
σ > σ ∗

|ζ(s)| ≤ ζ(σ ) < ζ(σ ∗)= |a|.

Furthermore, for σ > σ ∗ we have

1
ζ(s)− a

=−
1
a

∞∑
k=0

(
ζ(s)

a

)k

=−
1
a

∞∑
k=0

1
ak

∞∑
n=1

dk(n)
ns .

The double sum, in fact, converges absolutely since dk(n) is positive and

−
1
|a|

∞∑
k=0

1
|a|k

∞∑
n=1

dk(n)
nσ
=

1
ζ(σ )− |a|

.

Thus, when |a|> 1 we have σ ≤ σ ∗ and

ba(n)=−
∞∑

k=0

dk(n)
ak+1 .

Remark. It is not difficult to see from the proof that when a > 1 is real, we in fact
have σ = σ ∗.

Next we consider the case 0< |a|< 1. For σ > 1

|ζ(s)| ≥
∏

p

(
1+ 1

pσ
)−1
=
ζ(2σ)
ζ(σ )

.

Since ζ(2σ)/ζ(σ ) increases from 0 to 1 as σ increases from 1 to ∞, there is a
unique solution σ ∗ > 1 of the equation ζ(2σ)/ζ(σ ) = |a|, and if σ > σ ∗, then
|ζ(s)| ≥ ζ(2σ)/ζ(σ ) > |a|. Thus, for σ > σ ∗

(6-2)
1

ζ(s)− a
=

∞∑
k=0

ak

ζ(s)k+1 =

∞∑
k=0

ak
∞∑

n=1

d−(k+1)(n)
ns .

For any prime power p j , we have d−(k+1)(p j )=
(k+1

j

)
(−1) j . Hence

∞∑
n=1

|d−(k+1)(n)|
nσ

=

∏
p

(k+1∑
j=0

(k+1
j

) 1
p jσ

)
=

(
ζ(σ )

ζ(2σ)

)k+1

.
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Therefore the double sum in (6-2) is absolutely convergent and has modulus

≤

∞∑
k=0

|a|k
(
ζ(σ )

ζ(2σ)

)k+1

=
ζ(σ )

ζ(2σ)
·

1
1− |a|ζ(σ )/ζ(2σ)

.

It follows that σ ≤ σ ∗ and that

ba(n)=
∞∑

k=1

ak−1d−k(n).

Suppose next that |a| = 1 but a 6= 1. If σ > 1

|ζ(s)− 1| ≤ ζ(σ )− 1,

and the right-hand side decreases from∞ to 0 as σ increases from 1 to∞. Thus,
there is a unique solution σ ∗ > 1 to the equation ζ(σ )− 1= |a− 1|. Moreover, if
σ > σ ∗, then |ζ(s)− 1|< ζ(σ ∗)− 1= |a− 1|. Hence, for σ > σ ∗,

|ζ(s)− 1|< |a− 1|.

We therefore see that

1
ζ(s)− a

=
1

(ζ(s)− 1)− (a− 1)
=−

∞∑
k=0

(ζ(s)− 1)k

(a− 1)k+1

=−

∞∑
k=0

1
(a− 1)k+1

∞∑
n=1

ek(n)
ns ,

where

(6-3) (ζ(s)− 1)k =
∞∑

n=1

ek(n)
ns (σ > 1).

We note that the ek(n)≥ 0, so for σ > σ ∗

∞∑
k=0

1
|a− 1|k+1

∞∑
n=1

ek(n)
nσ
=

∞∑
k=0

(ζ(σ )− 1)k

|a− 1|k+1 =
1

|a− 1| − (ζ(σ )− 1)
.

Thus σ ≤ σ ∗, where σ ∗ is the unique solution to ζ(σ )= 1+ |1− a| in σ > 1. We
also see that

ba(n)=−
∞∑

k=0

ek(n)
(a− 1)k+1 ,

where ek(n) is given by (6-3).
Finally, suppose that a = 1. Then for σ > 1

1
ζ(s)− 1

=
2s

1+
( 2

3

)s
+
( 2

4

)s
+ · · ·

.
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This time we let σ ∗ be the unique solution in σ > 1 of

1=
( 2

3

)σ
+
( 2

4

)σ
+ · · ·

or, equivalently, of

ζ(σ )= 1+ 21−σ .

Then if σ > σ ∗, ( 2
3

)σ
+
( 2

4

)σ
+ · · ·< 1

and we have

(6-4)
1

ζ(s)− 1
=

2s

1+
( 2

3

)s
+
( 2

4

)s
+ · · ·

=

∞∑
k=0

(−1)k2(k+1)s
(
ζ(s)− 1− 1

2s

)k

=

∞∑
k=0

(−1)k2(k+1)s
∞∑

n=3k

fk(n)
ns ,

where

(ζ(s)− 1− 2−s)k =

∞∑
n=3k

fk(n)
ns .

By our choice of σ ∗, the double series in (6-4) converges absolutely when σ > σ ∗.
Thus we have σ ≤ σ ∗, and (6-1) holds with coefficients given by

b1(m2r )=
∑

l−k−1=r
k,l≥0

(−1)k fk(2lm).

This completes our proof of Theorems 1.6 and 1.7.

7. Proof of Theorem 1.8

By a theorem of Landau [1933, Appendix, Satz 12], if

g(s)=
∞∑

n=1

an

ns

is convergent and nonzero for σ > α and a1 6= 0, then

1
g(s)
=

∞∑
n=1

bn

ns
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converges for σ > α. We apply this to the function g(s) = ζ(s)− a when a 6= 1
or 0. Let ρa = βa + iγa denote a typical zero of ζ(s)− a and let

β∗a = sup
ρa

βa,

as before. Then the series for 1/(ζ(s)− a) converges when σ > β∗a . In fact, β∗a
is the exact abscissa of convergence because 1/(ζ(s) − a) has a pole at every
zero ρa of ζ(s)− a and, therefore, the series cannot converge at ρa . Thus, we
have σ0 = β

∗
a ≤ σ . Next recall that β∗a > 1 (see just after (1-5)). From this and

Theorem 1.7 we see that for a 6= 0, 1,

1< σ0 = β
∗

a ≤ σ ≤ σ
∗.

Finally we turn to the growth of the coefficients ba(n). Since the terms |ba(n)/nσ |
must tend to zero when σ > β∗a , it is clear that for any ε > 0

ba(n)� nβ
∗
a+ε.

By a theorem of Bombieri and Ghosh [2011, Theorem 3] this upper bound is sharp
when a 6= 0, 1 in the sense that

|ba(n)|> nβ
∗
a−ε

for infinitely many n. This completes the proof of Theorem 1.8.
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DIFFEOLOGICAL VECTOR SPACES

J. DANIEL CHRISTENSEN AND ENXIN WU

We study the relationship between many natural conditions that one can
put on a diffeological vector space: being fine or projective, having enough
smooth (or smooth linear) functionals to separate points, having a diffeology
determined by the smooth linear functionals, having fine finite-dimensional
subspaces, and having a Hausdorff underlying topology. Our main result
is that the majority of the conditions fit into a total order. We also give
many examples in order to show which implications do not hold, and use
our results to study the homological algebra of diffeological vector spaces.

1. Introduction

Diffeological spaces are elegant generalizations of manifolds that include a variety
of singular spaces and infinite-dimensional spaces. Many vector spaces that arise
in applications are naturally equipped with a compatible structure of a diffeological
space. Examples include C∞(M,Rn) for a manifold (or even a diffeological
space) M, spaces of smooth or holomorphic sections of vector bundles, tangent
spaces of diffeological spaces (as defined in [Christensen and Wu 2016]), smooth
linear duals of all of these spaces, etc. Such objects are called diffeological vector
spaces and are the topic of this paper.

Diffeological vector spaces have been studied by Iglesias-Zemmour [2007; 2013].
He used them to define diffeological manifolds, and developed the theory of fine
diffeological vector spaces, a particularly well-behaved kind that forms the beginning
of our story. Kriegl and Michor [1997] studied topological vector spaces equipped
with a smooth structure, and their examples can be regarded as diffeological vector
spaces. Diffeological vector spaces were used in the study of tangent spaces of
diffeological spaces in [Vincent 2008] and [Christensen and Wu 2016]. Wu [2015]
investigated the homological algebra of all diffeological vector spaces and the
present paper builds heavily on this foundation.

The second author was partially supported by NNSF of China (No. 112530) and STU Scientific
Research Foundation for Talents (No. 760179).
MSC2010: primary 46S99; secondary 57P99.
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In this paper, we study some natural conditions that one can put on a diffeological
vector space, and show that the majority of them fit into a total order. In order
to state our results, we briefly introduce the conditions here, making use of some
background material summarized in Section 2.

Any vector space has a smallest diffeology making it into a diffeological vector
space. This is called the fine diffeology, and we write FV for the collection of vector
spaces with the fine diffeology. We write FFV for the collection of diffeological
vector spaces whose finite-dimensional subspaces (with the induced diffeology) are
all fine.

A diffeological vector space V is projective if for every linear subduction
f : W1 → W2 and every smooth linear map g : V → W2, there exists a smooth
linear map h : V → W1 such that g = f ◦ h. We write PV for the collection of
projective diffeological vector spaces.

A diffeological vector space V is in SD (resp. SV) if the smooth (resp. smooth
linear) functionals V →R separate points of V. That is, for each x and y in V with
x 6= y, such a functional f can be found so that f (x) 6= f (y).

Each diffeological space has a natural topology called the D-topology. We
write HT for the collection of diffeological vector spaces whose D-topologies are
Hausdorff.

The last letter of the abbreviation is V , D or T depending on whether the condition
depends on the structure as a diffeological vector space, a diffeological space, or a
topological space.

We now state the main results of the paper.

Theorem 1.1. We have the following chain of containments:

FV ⊂ PV ⊂ SV ⊆ SD ⊂ FFV and SD ⊂HT ,

where ⊂ indicates proper containment. Neither of HT and FFV contains the other.

We do not know whether the containments SV ⊆ SD and SD ⊆ FFV ∩HT are
proper.

The property of being finite-dimensional does not imply, nor is it implied by,
any of the properties considered above. However, under this assumption, most of
the properties agree.

Theorem 1.2. When restricted to finite-dimensional vector spaces, the collections
FV,PV,SV,SD and FFV agree.

Indeed, FV and FFV clearly agree for finite-dimensional spaces, so the con-
tainments must collapse to equalities. Note that we prove part of Theorem 1.2 (see
Theorem 3.19) on the way to proving Theorem 1.1.

The final property we consider is the following. Write DV for the collection of
diffeological vector spaces V such that a function p :Rn

→ V is smooth if and only
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if `◦ p :Rn
→R is smooth for each smooth linear functional ` : V →R. Except for

the inclusion FV ⊂ DV, the class DV is independent of all of the others we have
considered. However, under this assumption, we again find that many of the other
conditions agree.

Theorem 1.3. When restricted to V in DV, the collections SV,SD,FFV and HT
agree.

The proofs of the containments, and the examples showing that many inclusions
do not hold, are spread throughout Section 3. For example, we show FV ⊂ PV in
Example 3.7 and Proposition 3.8, PV⊂SV in Proposition 3.14 and Remark 3.15 (1),
SD ⊂HT in Proposition 3.16 and Example 3.18, HT * FFV in Example 3.18,
and both SD 6= FFV and FFV * HT in Proposition 3.23. That PV * DV is
Proposition 3.33, and the proof of Theorem 1.3 is in Proposition 3.31. The longest
argument, which is the proof that SD ⊆ FFV, is deferred until Section 5. Along
the way, we also prove other results, such as the fact that a diffeological vector
space V is fine if and only if every linear functional on V is smooth, and some
necessary conditions for diffeological vector spaces and free diffeological vector
spaces to be projective. In Section 4, we give some applications of our results to
the homological algebra of diffeological vector spaces. For example, we show that
every finite-dimensional subspace of a diffeological vector space in SV is a smooth
direct summand.

We are thankful to Chengjie Yu for the argument used in Case 1 of the proof
of Theorem 3.22 in Section 5 and to the referee for many comments that helped
improve the exposition.

2. Background and conventions

In this section, we briefly recall some background on diffeological spaces. For
further details, we recommend the standard textbook [Iglesias-Zemmour 2013]. For
a concise introduction to diffeological spaces, we recommend [Christensen et al.
2014], particularly Section 2 and the introduction to Section 3.

Definition 2.1 [Souriau 1984]. A diffeological space is a set X together with a
specified set of functions U→ X (called plots) for each open set U in Rn and each
n ∈ N, such that for all open subsets U ⊆ Rn and V ⊆ Rm :

(1) (covering) Every constant function U → X is a plot.

(2) (smooth compatibility) If U → X is a plot and V → U is smooth, then the
composite V →U → X is also a plot.

(3) (sheaf condition) If U =
⋃

i Ui is an open cover and U → X is a function
such that each restriction Ui → X is a plot, then U → X is a plot.
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A function f : X→ Y between diffeological spaces is smooth if for every plot
p :U → X of X, the composite f ◦ p is a plot of Y.

The category of diffeological spaces and smooth maps is complete and cocom-
plete. Given two diffeological spaces X and Y, we write C∞(X, Y ) for the set of
all smooth maps from X to Y. An isomorphism in the category of diffeological
spaces will be called a diffeomorphism.

Every manifold M is canonically a diffeological space with the plots taken to be
all smooth maps U → M in the usual sense. We call this the standard diffeology
on M. It is easy to see that smooth maps in the usual sense between manifolds
coincide with smooth maps between them with the standard diffeology.

For a diffeological space X with an equivalence relation∼, the quotient diffeology
on X/∼ consists of all functions U→ X/∼ that locally factor through the quotient
map X→ X/∼ via plots of X. A subduction is a map diffeomorphic to a quotient
map. That is, it is a map X → Y such that the plots in Y are the functions that
locally lift to X as plots in X.

For a diffeological space Y and a subset A of Y, the subdiffeology consists of
all functions U → A such that U → A ↪→ Y is a plot of Y. An induction is an
injective smooth map A→ Y such that a function U→ A is a plot of A if and only
if U → A→ Y is a plot of Y.

For diffeological spaces X and Y, the product diffeology on X × Y consists of
all functions U → X × Y whose components U → X and U → Y are plots of X
and Y, respectively.

The discrete diffeology on a set is the diffeology whose plots are the locally
constant functions. The indiscrete diffeology on a set is the diffeology in which
every function is a plot.

We can associate to every diffeological space the following topology:

Definition 2.2 [Iglesias-Zemmour 2007]. Let X be a diffeological space. A subset A
of X is D-open if p−1(A) is open in U for each plot p :U→ X. The collection of
D-open subsets of X forms a topology on X called the D-topology.

Definition 2.3. A diffeological vector space is a vector space V with a diffeology
such that addition V × V → V and scalar multiplication R× V → V are smooth.

Let V be a diffeological vector space. We write L∞(V,R) for the set of all
smooth linear maps V →R, and L(V,R) for the set of all linear maps V →R. We
write DVect for the category of diffeological vector spaces and smooth linear maps.

Conventions. Throughout this paper, we use the following conventions. Every
subset of a diffeological space is equipped with the subdiffeology and every product
is equipped with the product diffeology. Every vector space is over the field R of
real numbers, and every linear map is R-linear. By a subspace of a diffeological
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vector space, we mean a linear subspace with the subdiffeology. All manifolds are
smooth, finite-dimensional, Hausdorff, second countable and without boundary,
and are equipped with the standard diffeology.

3. Diffeological vector spaces

In this section, we study a variety of conditions that a diffeological vector space
can satisfy. Together, the results described here give the theorems stated in the
introduction. In addition, we present some auxiliary results, and give many examples
and counterexamples.

Fine diffeological vector spaces. In this subsection, we recall background on the
fine diffeology, and then give two new characterizations.

Given a vector space V, the set of all diffeologies on V each of which makes V
into a diffeological vector space, ordered by inclusion, is a complete lattice. This
follows from [Christensen and Wu 2016, Proposition 4.6], taking X to be a point.
The largest element in this lattice is the indiscrete diffeology, which is usually not
interesting. Another extreme has the following special name in the literature:

Definition 3.1. The fine diffeology on a vector space V is the smallest diffeology
on V making it into a diffeological vector space.

For example, the fine diffeology on Rn is the standard diffeology.

Remark 3.2. The fine diffeology is generated by the injective linear maps Rn
→ V ;

see [Iglesias-Zemmour 2013, 3.8]. That is, the plots of the fine diffeology are the
functions p :U→ V such that for each u ∈U , there are an open neighbourhood W
of u in U, an injective linear map i : Rn

→ V for some n ∈ N, and a smooth map
f :W → Rn such that p|W = i ◦ f .

One can show that if V is any diffeological vector space and p : W → V is
a plot that factors smoothly through some linear injection Rn

→ V, then every
factorization of p through a linear injection Rm

→ V is smooth. It follows that
every subspace of a fine diffeological vector space is fine; see [Wu 2015].

In fact, fineness of a diffeological vector space can be tested by smooth curves:

Proposition 3.3. A diffeological vector space V is fine if and only if for every plot
p : R→ V and every x ∈ R, there exist an open neighbourhood W of x in R, an
injective linear map i : Rn

→ V for some n ∈ N, and a smooth map f : W → Rn

such that p|W = i ◦ f .

Proof. (⇒) This follows from the description of the fine diffeology in Remark 3.2.
(⇐) Under the given assumptions, we will prove that V is fine. Let q :U→ V be

a plot and let u be a point in U. We first show that there is an open neighbourhood
W of u in U such that q|W lands in a finite-dimensional subspace of V. If not, then
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there exists a sequence ui in U converging to u such that {q(ui ) | i ∈ Z+} is linearly
independent in V. We may assume that the sequence ui converges fast to u; see
[Kriegl and Michor 1997, I.2.8]. By the special curve lemma [Kriegl and Michor
1997, I.2.8], there exists a smooth map f : R→ U such that f (1/ i) = ui and
f (0)=u. Then q◦ f :R→V is a plot which does not satisfy the hypothesis at x =0.

So let W be an open neighbourhood of u in U such that q|W factors as i ◦ g,
where i : Rm

→ V is a linear injection and g : W → Rm is a function. We will
prove that g is smooth. By Boman’s theorem (see, e.g., [Kriegl and Michor 1997,
Corollary 3.14]), it is enough to show that g ◦ r is smooth for every smooth curve
r : R→W. Since i ◦ g ◦ r is smooth, our assumption implies that it locally factors
smoothly through an injective linear map Rn

→ V. Then the last part of Remark 3.2
implies that g ◦ r is locally smooth, and therefore smooth, as required. �

Proposition 3.4. A diffeological vector space V is fine if and only if L∞(V,R)=

L(V,R), i.e., if and only if every linear functional is smooth.

Proof. This follows from the proof of [Wu 2015, Proposition 5.7]. We give a direct
proof here.

It is easy to check that if V is fine, then every linear functional is smooth.
To prove the converse, suppose that every linear functional V → R is smooth.

Let p :U → V be a plot and let u ∈U. First we must show that when restricted to
a neighbourhood of u, p lands in a finite-dimensional subspace of V. If not, then
there is a sequence {u j } converging to u such that the vectors p(u j ) are linearly
independent. Thus there is a linear functional l : V → R such that p(u j ) is sent
to 1 when j is odd and 0 when j is even. By assumption, l is smooth. But l ◦ p is
not continuous, contradicting the fact that p is a plot.

So now we know that p locally factors through an injective linear map i :Rn
→ V.

(Of course, n may depend on the neighbourhood.) For each 1≤ j ≤ n, there is a
linear map l j : V → R such that l j ◦ i is projection onto the j-th coordinate. Since
l j ◦ p is smooth, it follows that the local factorizations through Rn are smooth. Thus
V is fine. �

Projective diffeological vector spaces.
Definition 3.5. A diffeological vector space V is projective if for every linear
subduction f :W1→W2 and every smooth linear map g : V →W2, there exists a
smooth linear map h : V →W1 making the diagram

W1

f
��

V

h
>>

g
// W2

commute. We write PV for the collection of projective diffeological vector spaces.
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We now describe what will be a recurring example in this paper.

Definition 3.6. The free diffeological vector space generated by a diffeological
space X is the vector space F(X) with basis consisting of the elements of X and
with the smallest diffeology making it into a diffeological vector space and such
that the natural map X→ F(X) is smooth.

This has the universal property that for any diffeological vector space V, every
smooth map X→ V extends uniquely to a smooth linear map F(X)→ V. Also,
every plot in F(X) is locally of the form

u 7→
k∑

i=1

ri (u)[pi (u)]

for smooth functions ri :U→R and pi :U→ X, where for x ∈ X, [x] denotes the
corresponding basis vector in F(X). See [Wu 2015, Proposition 3.5] for details.

Example 3.7. By [Wu 2015, Corollary 6.4], when M is a manifold, F(M) is
projective. However, by [Wu 2015, Theorem 5.3], F(X) is fine if and only if X is
discrete. So not every projective diffeological vector space is fine.

Proposition 3.8 [Wu 2015, Corollary 6.3]. Every fine diffeological vector space is
projective.

Proof. This follows immediately from Proposition 3.4. One can take h to be k ◦ g,
where k is a linear section of f (which is not necessarily smooth). �

Projective diffeological vector spaces and the homological algebra of diffeological
vector spaces are studied further in [Wu 2015].

Separation of points.

Definition 3.9. Let X be a diffeological space. A set A of functions with domain X
is said to separate points if for any x, y ∈ X with x 6= y, there exists f ∈ A such
that f (x) 6= f (y). We say that the smooth functionals separate points if C∞(X,R)

separates points. We write SD′ for the collection of all such diffeological spaces X
and SD for the diffeological vector spaces whose underlying diffeological spaces
are in SD′. If V is a diffeological vector space, we say that the smooth linear
functionals separate points if L∞(V,R) separates points, and we write SV for the
collection of all such diffeological vector spaces V.

We establish basic properties of such diffeological vector spaces below, and show
that many familiar diffeological vector spaces have this property. Clearly, SV ⊆ SD.

Example 3.10. Every fine diffeological vector space is in SV, since the coordinate
functions with respect to any basis are smooth and linear. Every manifold is in SD′,
since the products of local coordinates with bump functions separate points (or by
Whitney’s embedding theorem).
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Proposition 3.11. (1) If W → V is a smooth linear injective map between diffeo-
logical vector spaces and V ∈ SV, then W ∈ SV. In particular, SV is closed
under taking subspaces.

(2) Let {Vi }i∈I be a set of diffeological vector spaces. Then
∏

i∈I Vi ∈ SV if and
only if each Vi ∈ SV.

(3) Let {Vi }i∈I be a set of diffeological vector spaces. Then
⊕

i∈I Vi ∈ SV if and
only if each Vi ∈ SV, where

⊕
i∈I Vi is the coproduct in DVect; see [Wu 2015,

Proposition 3.2].

Proof. This is straightforward. �

Proposition 3.12. If V ∈ SV and X is a diffeological space, then C∞(X, V ) ∈ SV.

Proof. This follows from the fact that every evaluation map C∞(X, V )→ V is
smooth and linear. �

Proposition 3.13. The following are equivalent:

(1) X ∈ SD′.
(2) F(X) ∈ SV.

(3) F(X) ∈ SD.

Proof. It is enough to prove (1)⇒ (2), since (2)⇒ (3)⇒ (1) are straightforward.
Let v ∈ F(X) be nonzero. It suffices to show that there is a smooth linear functional
F(X)→ R which is nonzero on v. Write v =

∑k
i=1 ri [xi ] with k ≥ 1, ri nonzero

for each i , and the xi distinct. Since C∞(X,R) separates points of X, there exists
f ∈ C∞(X,R) such that f (x1)= 1 and f (xi )= 0 for each i > 1. By the universal
property of F(X), f extends to a smooth linear map F(X)→ R which sends v
to r1, which is nonzero. �

Proposition 3.14. Every projective diffeological vector space is in SV.

Proof. By Example 3.10, every open subset U of a Euclidean space is in SD′. So
Proposition 3.13 implies that F(U ) is in SV. Corollary 6.15 of [Wu 2015] says that
every projective diffeological vector space is a retract of a coproduct of F(U )’s in
DVect. Therefore, it follows from Proposition 3.11 (3) and (1) that every projective
diffeological vector space is in SV. �

Remark 3.15. (1) Not every diffeological vector space in SV is projective. For
example, let V :=

∏
ω R be the product of countably many copies of R. By

Proposition 3.11 (2), V is in SV. But [Wu 2015, Example 4.3] shows that V is
not projective.

(2) SV is not closed under taking quotients in DVect. For example, F(π) :
F(R)→ F(Tα) is a linear subduction, where α is an irrational and

π : R→ Tα := R/(Z+αZ)
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is the projection to the 1-dimensional irrational torus. By Proposition 3.13, F(R) is
in SV, but F(Tα) is not in SV since Tα is not in SD′. In particular, the free diffeolog-
ical vector space F(Tα) is not projective, as observed in [Wu 2015, Example 4.3].

Here is an easy fact:

Proposition 3.16. The D-topology of every diffeological space in SD′ is Hausdorff.
In particular, SD ⊆HT .

Proof. This follows from the fact that every smooth map is continuous when both
domain and codomain are equipped with the D-topology. �

Corollary 3.17. If F(X) is projective, then X is Hausdorff.

Proof. If F(X) is projective, then it is in SD by Proposition 3.14, and so X is
in SD′ by Proposition 3.13. Thus X is Hausdorff, by Proposition 3.16. �

This gives another proof that free diffeological vector spaces are not always
projective. For example, if a set X with more than one point is equipped with the
indiscrete diffeology, then the D-topology on X is indiscrete as well, and hence
F(X) is not projective.

Example 3.18. The converse of Proposition 3.16 does not hold. Write C(R) for
the vector space R equipped with the continuous diffeology, so that a function
p :U → C(R) is a plot if and only if it is continuous; see [Christensen et al. 2014,
Section 3]. Then C(R) is a Hausdorff diffeological vector space, as the D-topology
on C(R) is the usual topology. But one can show that C∞(C(R),R) consists of con-
stant functions ([Christensen and Wu 2016, Example 3.15]), so C(R) is not in SD.

We will use the following result in the next subsection.

Theorem 3.19. Let V be a finite-dimensional diffeological vector space. Then the
following are equivalent:

(1) V is fine.

(2) V is projective.

(3) V is in SV.

Proof. By Propositions 3.8 and 3.14, (1) =⇒ (2) =⇒ (3), for all V. So it remains
to prove (3) =⇒ (1). Assume that V is finite-dimensional and in SV. Choose a
basis f1, . . . , fk for L∞(V,R), and use it to give a smooth linear map f : V → Rk.
Note that k ≤ dim V. Since V is in SV, f is injective, and hence surjective. The
diffeology on Rk is the fine diffeology, which is the smallest diffeology making it
into a diffeological vector space. The map f : V → Rk is a smooth linear bijection,
so the diffeology on V must be fine as well (and f must be a diffeomorphism). �

The implication (3) =⇒ (1) also follows from Proposition 3.4, since V in
SV implies that dim L(V,R) ≥ dim L∞(V,R) ≥ dim V = dim L(V,R), and so
L∞(V,R)= L(V,R).
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Diffeological vector spaces whose finite-dimensional subspaces are fine. Write
FFV for the collection of diffeological vector spaces whose finite-dimensional
subspaces are fine. One motivation for studying this collection is the following. In
[Christensen and Wu 2016], we defined a diffeology on Hector’s tangent spaces
[1995] which makes them into diffeological vector spaces. While they are not fine
in general, we know of no examples that are not in FFV.

As an example, one can show that
∏
ω R is in FFV. This also follows from the

next result, which is based on a suggestion of Y. Karshon.

Theorem 3.20. Every diffeological vector space in SV is in FFV.

This result is a special case of Theorem 3.22 below, but we provide a direct
proof, since it follows easily from earlier results.

Proof. Let W be a finite-dimensional subspace of V with V ∈ SV. W is in SV, by
Proposition 3.11 (1), and so by Theorem 3.19, W is fine. �

Remark 3.21. (1) Note that it is not in general true that every diffeological vector
space in SV is fine. For example,

∏
ω R is in SV by Remark 3.15 (1), but it is not

fine. In fact, [Wu 2015, Example 5.4] showed that there is a countable-dimensional
subspace of

∏
ω R which is not fine. Incidentally, it follows that

∏
ω R is not the

colimit in DVect of its finite-dimensional subspaces, since fine diffeological vector
spaces are closed under colimits; see [Wu 2015, Property 6 after Definition 5.2].

(2) When R is equipped with the continuous diffeology (see Example 3.18), it
is Hausdorff but is not in FFV. We will see in Proposition 3.23 that the reverse
inclusion also fails to hold.

The main result of this section is the following:

Theorem 3.22. Every diffeological vector space in SD is in FFV.

We defer the proof to Section 5.
Furthermore, we have the following result:

Proposition 3.23. There exists a diffeological vector space which is in FFV but
which is not Hausdorff. In particular, the containment of SD in FFV is proper.

Proof. Let V be the vector space with basis R, and for r ∈ R write [r ] for the
corresponding basis vector of V. Let f : R→ R be a bijection such that f −1(U )
is dense in R for every open neighbourhood U of 0 in R. Define p : R→ V by
p(x) = [ f (x)] and p̄ : R→ V by p̄(x) = [x]. Equip V with the vector space
diffeology generated by p and p̄. In other words, q :U → V is a plot if and only
if for every u0 ∈U there exist an open neighbourhood U ′ of u0 in U and finitely
many smooth functions αi , βi , α j , β̄ j :U ′→ R such that for any u ∈U ′,

(†) q(u)=
∑

i

αi (u) [ f (βi (u))] +
∑

j

α j (u) [β̄ j (u)].
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(In general, one should include terms with smooth multiples of arbitrary vectors
in V, but since β̄ j can be constant, this case is included in the above.) First we show
that the D-topology on V is not Hausdorff. Suppose that V0 and V1 are disjoint
D-open subsets of V containing [0] and [1], respectively. Then U0 := p̄−1(V0)

and U1 := p̄−1(V1) are open in R. Since p and p̄ are both bijections onto the
subset of basis vectors in V, it follows that p−1(V0) = f −1(U0) and p−1(V1) =

f −1(U1). Therefore, p−1(V0) is dense in R and so p−1(V1), which is contained in
the complement, must not be open in R, contradicting the assumption that V1 is
D-open. So V is not Hausdorff.

Next we show that V is in FFV. It suffices to show that for any finite subset
A⊆R, the subspace W spanned by A has the fine diffeology. So let q :U→ V be a
plot which lands in W. We must show that for each a ∈ A, the component qa of q is a
smooth function U→R. This is a local property, so we choose u0∈U and express q
in the form (†). It suffices to handle each sum in (†) separately, so we begin by
assuming that q only has terms involving f . Let A′ = f −1(A). By shrinking U ′ if
necessary, we can assume that: (1) for any b′ ∈ A′, if βi (u0) 6= b′, then βi (u) 6= b′

for all u ∈ U ′; and (2) if βi (u0) 6= β j (u0), then βi and β j have disjoint images.
Since f is a bijection, we can rephrase these conditions as: (1’) for any b ∈ A, if
f (βi (u0)) 6= b, then f (βi (u)) 6= b for all u ∈U ′; and (2’) if f (βi (u0)) 6= f (β j (u0)),
then f ◦βi and f ◦β j have disjoint images. Condition (1’) implies that for u ∈U ′,
qa(u) is the a-coefficient of ∑

f (βi (u0))=a

αi (u) [ f (βi (u))].

Since q(u) is in W, condition (2’) implies that for r ∈ R \ A, we must have

(�)
∑

f (βi (u0))=a, f (βi (u))=r

αi (u)= 0.

And condition (1’) implies that (�) also holds for r ∈ A\{a}, since the sum is empty
in that case. Therefore, qa(u) can be expressed as∑

f (βi (u0))=a

αi (u),

which is a smooth function of u ∈U ′.
The other sum in (†) is handled in a similar way, replacing f by the identity

function throughout.
Finally, Proposition 3.16 implies that V is not in SD, giving the last claim. �

Next we observe that if V is projective (and hence in SV and SD), it does not
follow that all countable-dimensional subspaces of V are fine. We will illustrate
this with V = F(R). By [Wu 2015, Corollary 6.4], F(R) is projective.
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Proposition 3.24. Let A be a subset of R, and let V be the subspace of F(R)
spanned by A. Then V is fine if and only if A has no accumulation point in R.

For example, F(R) is not fine. As a more interesting example,

A = {1/n | n = 1, 2, . . .}

spans a countable-dimensional subspace V of F(R) which is not fine. It will follow
from Proposition 3.25 that V is not free on any diffeological space.

Proof. (⇐) Let p :U → V be a plot, where U is open in some Rn. Since V is the
span of A, there exist unique functions ha :U → R such that

p(x)=
∑
a∈A

ha(x)[a].

Since A has no accumulation point in R, for each a in A there exists a smooth bump
function φa :R→R which takes the value 1 at a and 0 at every other element of A.
Associated to φa is a smooth linear map φ̃a : F(R)→R which sends [a] to 1 and all
other basis elements from A to 0. Then ha = φ̃a ◦ p, which shows that ha is smooth.

Next we show that locally p factors through the span of a finite subset of A. Fix
u ∈U. As V is a subspace of F(R), there is an open neighbourhood U ′ of u in U
such that

p(x)=
m∑

j=1

f j (x)[g j (x)]

for x ∈U ′, where f j and g j are smooth functions U ′→R. Shrinking U ′ if necessary,
we can assume that it is contained in a compact subset of U. It follows that the
image of each g j is contained in a compact subset of R and therefore intersects
only finitely many points of A. Since there are only finitely many g j ’s, p|U ′ factors
through the span of A′ for some finite subset A′ of A. That is, ha(x) = 0 for all
x ∈U ′ and all a ∈ A \ A′.

In summary, identifying the span of A′ with RA′, we have factored p|U ′ as
U ′→ RA′

→ V, where the first map is x 7→ (ha(x))a∈A′ and the second map sends
f : A′→ R to

∑
a∈A′ f (a)[a].

(⇒) Now we prove that if A has an accumulation point a0 in R, then V is not
fine. Pick a sequence (ai ) in A \ {a0} that converges fast to a0. Choose a smooth
function f :R→R such that f (x) 6= 0 for 1/(2n+1) < x < 1/2n for each n ∈ Z+,
and f (x)= 0 for all other x . Choose another smooth function g : R→ R such that
g(x) = an for 1/(2n+ 1) < x < 1/2n for each n ∈ Z+, with no constraints on g
otherwise. It will necessarily be the case that g(0)= a0, and such a smooth g exists
because the sequence was chosen to converge fast. Then the function p : R→ V
defined by p(x) = f (x)[g(x)] is smooth, but there is no open neighbourhood U
of 0 so that p|U factors through a finite-dimensional subspace of V. �
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On the other hand, we have:

Proposition 3.25. Let X be a diffeological space whose underlying set has cardi-
nality less than the cardinality of R. Then the following are equivalent:

(1) X is discrete.

(2) F(X) is fine.

(3) F(X) is projective.

(4) F(X) is in SV.

(5) F(X) is in SD.

(6) F(X) is Hausdorff.

Proof. That (1) =⇒ (2) is straightforward. The implications (2) =⇒ (3) =⇒ (4) and
(5) =⇒ (6) follow from Propositions 3.8, 3.14 and 3.16, while (4) =⇒ (5) is clear.
None of these use the assumption on the cardinality of X.

It remains to prove that (6) =⇒ (1). Since the natural injective map X→ F(X)
is smooth, it is also continuous when X and F(X) are both equipped with the
D-topology. Therefore, X is Hausdorff. We must show that the diffeology on X is
discrete. Let p :U → X be a plot from a connected open subset U of a Euclidean
space. We will show that p is constant. If not, then the image of p contains two
distinct points x, x ′ ∈ X which are connected by a continuous path q : [0, 1] → X.
The image of q is compact Hausdorff, and therefore normal. So by Urysohn’s
lemma, there is a continuous map l : Im(q)→ R which separates x and x ′. Hence,
the image of the composite l ◦ q : [0, 1] → Im(q)→ R has cardinality equal to the
cardinality of R, which is a contradiction, since Im(q)⊆ X has cardinality less than
the cardinality of R. �

Part of the above proof is based on the argument in [Hamkins 2015]. Note that
we have proved that every Hausdorff diffeological space with cardinality less than
the cardinality of R is discrete. The implication (2) =⇒ (1) is also proved in [Wu
2015, Theorem 5.3], without a constraint on the cardinality of X.

Diffeologies determined by smooth linear functionals.

Definition 3.26. The diffeology on a diffeological vector space V is determined by
its smooth linear functionals if p :U→V is a plot if and only if l◦p is smooth for ev-
ery l ∈ L∞(V,R). Write DV for the collection of all such diffeological vector spaces.

Note that any vector space with the indiscrete diffeology is in DV. It follows that
being in DV does not imply any of the other conditions we have studied.

Also note that every diffeological vector space V in DV is Frölicher: p :U→ V
is a plot if and only if f ◦ p is smooth for every f ∈ C∞(V,R). We do not know if
the converse holds.
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We will see in Proposition 3.31 that for diffeological vector spaces in DV, the
converse of Theorem 3.20 holds. For this, we need the following results.

Lemma 3.27. (1) If V is in DV and W is a subspace of V, then W is in DV.

(2) Let {Vi } be a set of diffeological vector spaces. Then each Vi is in DV if and
only if

∏
Vi is in DV.

Since the category DVect is an additive category, (2) also implies that DV is
closed under taking finite direct sums.

Proof. This is straightforward. �

Proposition 3.28. Let V be a diffeological vector space. Then V is in DV if and
only if V can be written as a direct sum V ∼=W0⊕W1 of diffeological vector spaces,
where W0 is indiscrete and W1 is in SV ∩DV.

Proof. Given V in DV, let W0 be
⋂

l∈L∞(V,R) ker(l) with the subdiffeology. Since
L∞(V,R) determines the diffeology on V, W0 is indiscrete. Let W1 be the quotient
V/W0, with the quotient diffeology. By Lemma 3.30, we have V ∼= W0⊕W1 as
diffeological vector spaces. If v+W0 is a nonzero element of W1, then v 6∈ W0,
so there is a smooth linear functional l : V → R such that l(v) 6= 0. This l factors
through W1, so it follows that W1 is in SV. By Lemma 3.27, we know that W1 ∈DV,
and hence W1 ∈ SV ∩DV.

The converse follows from Lemma 3.27 and the comment after Definition 3.26. �

Definition 3.29. Following [Wu 2015, Definition 3.15], a diagram

0−→W0
i
−→ V p

−→W1 −→ 0

of diffeological vector spaces is a short exact sequence of diffeological vector
spaces if it is a short exact sequence of vector spaces, i is an induction, and p is a
subduction.

Lemma 3.30. Let
0−→W0

i
−→ V p

−→W1 −→ 0

be a short exact sequence of diffeological vector spaces. If W0 is indiscrete, then
the sequence splits smoothly, so that V ∼=W0⊕W1 as diffeological vector spaces.

Proof. Let q : V → W0 be any linear function such that q ◦ i = 1W0 . Since W0

is indiscrete, q is smooth. Let k : V → V be the smooth linear map sending v to
v− i(q(v)). Then k ◦ i = 0, so k factors as j ◦ p, where j : W1→ V is smooth
and linear. The smooth bijection V → W0⊕W1 sending v to (q(v), p(v)) has a
smooth inverse sending (w0, w1) to i(w0)+ j (w1), so the claim follows. �

It follows that many properties of a diffeological vector space are equivalent in
this setting:
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Proposition 3.31. Let V be in DV. Then the following are equivalent:

(1) V is in SV.

(2) V is in SD.

(3) V is in FFV.

(4) D(V ) is Hausdorff.

(5) V has no nonzero indiscrete subspace.

Moreover, being in DV and satisfying one of these conditions is equivalent to being
a subspace of a product of copies of R.

Proof. Without any assumption on V, we have (1) =⇒ (2) =⇒ (3) and (2) =⇒ (4)
using Theorem 3.22 and Proposition 3.16. It is easy to see that (3) =⇒ (5) and
(4) =⇒ (5). By Proposition 3.28, (5) =⇒ (1) when V is in DV, and so we have
shown that the five conditions are equivalent for V ∈ DV.

For the last claim, a product of copies of R is in both SV and DV, and both are
closed under taking subspaces. Conversely, if V is in SV ∩DV, it is easy to check
that

V →
∏

L∞(V,R)

R

defined by v 7→ ( f (v)) f ∈L∞(V,R) is a linear induction, and hence V is a subspace
of a product of copies of R. �

Remark 3.32. (1) It is not true that every diffeological vector space is in DV. For
example, when R is equipped with the continuous diffeology (see Example 3.18),
all smooth linear functionals are zero, but the diffeology is not indiscrete.

(2) Other properties we have studied cannot be added to Proposition 3.31. For
example, we saw in Remark 3.15 (1) that

∏
ω R is in SV but is not fine or projective.

And it is easy to see that
∏
ω R is in DV.

It is not hard to show that every fine diffeological vector space is in DV. As a
final example, we will show that not every projective diffeological vector space
is in DV, and therefore that none of our other conditions on a diffeological vector
space V implies that V is in DV.

We will again use the diffeological vector space F(R), which is projective by
[Wu 2015, Corollary 6.4]. We now show that it is not in DV.

Proposition 3.33. The free diffeological vector space F(R) generated by R is not
in DV.
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Proof. Fix a nonzero smooth function φ : R→ R such that supp(φ) ⊂ (0, 1) and
|φ(x)| ≤ 1 for all x ∈ R. For each n ∈ Z+, define φn : R→ R by

φn(x)= φ

(
x − 1

n+1
1
n −

1
n+1

)
.

Finally, define g : R→ F(R) by

g(t)=
{

2−n φn(t)
∑n

i=1
[ 1

i

]
if 1

n+1 ≤ t < 1
n , for n > 0,

0 else.

Then g is not a plot of F(R), since locally around 0 ∈ R, g cannot be written as a
finite sum of fi (x)[hi (x)], where fi and hi are smooth functions with codomain R.
But for each l ∈ L∞(F(R),R),

l ◦ g(t)=
{

2−n φn(t)
∑n

i=1 l
([1

i

])
if 1

n+1 ≤ t < 1
n ,

0 else.

This is smooth, since the set
{
l
([1

i

])}
is bounded, using the smoothness of l. �

As an easy corollary, we have:

Corollary 3.34. F(R) is not a subspace of a product of copies of R.

4. Some applications

Recall that a diagram

0 // V1
f
// V2

g
// V3 // 0

is a short exact sequence of diffeological vector spaces if it is a short exact sequence
of vector spaces such that f is an induction and g is a subduction. We say that the
sequence splits smoothly if there exists a smooth linear map r : V2→ V1 such that
r ◦ f = 1V1 , or equivalently, if there exists a smooth linear map s : V3→ V2 such
that g ◦ s = 1V3 . In either case, V2 is smoothly isomorphic to V1 × V3; see [Wu
2015, Theorem 3.16].

Not every short exact sequence of diffeological vector spaces splits smoothly.
For example, if we write K for the subspace of C∞(R,R) consisting of the smooth
functions which are flat at 0, then K is not a smooth direct summand of C∞(R,R)

[Wu 2015, Example 4.3].
As a first application of the theory established so far, we can construct additional

short exact sequences of diffeological vector spaces which do not split smoothly:

Example 4.1. Let M be a manifold of positive dimension, and let A be a finite
subset of M. Write V for the subspace of F(M) spanned by the subset M \ A of M.
We claim that V is not a smooth direct summand of F(M).
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To see this, write W for the quotient diffeological vector space F(M)/V. Then, as
a vector space, W =

⊕
a∈A R. So we have a short exact sequence 0→V→ F(M)→

W → 0 in DVect. Suppose this sequence splits smoothly. By Example 3.7, F(M)
is projective, and therefore W is as well. By Proposition 3.14 and Theorem 3.20,
W is in FFV. Since W is finite-dimensional, it is fine. But the smooth map
M→ F(M)→W =

⊕
a∈A R sends each a ∈ A to a basis vector and other points

in M to 0, so it is not a smooth map in the usual sense. This contradicts the fact
that W is fine.

As a second application, we prove:

Theorem 4.2. Let V be in SV. Then every finite-dimensional subspace of V is a
smooth direct summand.

Proof. Let W be a finite-dimensional subspace of V ∈ SV. By Theorem 3.20, we
know that W has the fine diffeology. Moreover, since V is in SV, there is a smooth
linear injective map V →

∏
i∈I R for some index set I. Since

∏
i∈I R is in SV,

again by Theorem 3.20, we know that the composite W ↪→ V →
∏

i∈I R is an
induction, although the second map might not be an induction. So, we are left to
prove this statement for the case V =

∏
i∈I R.

Write dim(W )= m. By Gaussian elimination, there exist distinct i1, . . . , im ∈ I
such that the composite W ↪→ V =

∏
i∈I R→ Rm is an isomorphism of vector

spaces, where the second map is the projection onto the i1, . . . , im coordinates, and
hence smooth. Since both W and Rm have the fine diffeology, this isomorphism is
a diffeomorphism, and by composing with its inverse we obtain a smooth linear
map r : V →W such that the composite

W � � // V r
// W

is 1W. Therefore, W is a smooth direct summand of V. �

5. Proof of Theorem 3.22

Theorem 3.22. Every diffeological vector space in SD is in FFV.

Proof. If a diffeological vector space is in SD, then so are all of its subspaces. So it
suffices to show that every finite-dimensional diffeological vector space in SD is fine.

Write V for Rn with the structure of a diffeological vector space which is not
fine. We will use the word “smooth” (resp. “continuous”) to describe functions
R→ V and V → R which are smooth (resp. continuous) with respect to the usual
diffeology (resp. topology) on Rn. We use the word “plot” to describe functions
R→ V which are in the diffeology on V, and write f ∈ C∞(V,R) to describe
functions which are smooth with respect to this diffeology.
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By Proposition 3.3, there is a plot p : R→ V which is not smooth. Since plots
are closed under translation in the domain and codomain, we can assume without
loss of generality that p(0)= 0 and p is not smooth at 0 ∈ R. We will show that
this implies that V is not in SD.

Case 1: Suppose p is continuous at 0. Consider A :={∇ f (x)| f ∈C∞(V,R), x∈V }.
Then A is a subset of Rn.

We claim that A is a proper subset of Rn. If A is not proper, then there exist
( f1, a1), . . . , ( fn, an)∈C∞(V,R)×V such that∇ f1(a1), . . . ,∇ fn(an) are linearly
independent. Then gi : V → R defined by gi (x) = fi (x + ai ) is in C∞(V,R),
G := (g1, . . . , gn) : V → Rn is smooth, and the Jacobian J G(0) is invertible.
Therefore, by the inverse function theorem, G is a local diffeomorphism near 0 ∈ V.
Since p(0)= 0, p is continuous at 0 ∈ R, and G ◦ p is smooth, it follows that p
is smooth at 0, contradicting our assumption on p. So A is a proper subset.

By the same method of translation, one sees that A is a subspace of Rn. Hence,
there exists 0 6= v ∈ Rn such that v ⊥ A, which implies that f (x + tv)= f (x) for
every f ∈ C∞(V,R), x ∈ V and t ∈ R, i.e., V is not in SD.

Case 2: Suppose that p is not continuous at 0.

Case 2a: Suppose there exist k ∈ N and ε > 0 such that tk p(t) is bounded on
[−ε, ε]. Let k be the smallest such exponent and write q(t) := tk p(t), which is
also a plot. We claim that q is not smooth at 0. If k = 0, then q = p, which is
assumed to not be smooth at 0. If k > 0 and q ′(0) exists, then q(t)/t→ q ′(0) as
t→ 0, which implies that tk−1 p(t) is also bounded on [−ε, ε], contradicting the
minimality of k. So q is not smooth at 0.

If q is continuous at 0, then by Case 1, we are done.
So assume that q is not continuous at 0. Then, since q is bounded on [−ε, ε],

there exists a sequence ti converging to 0 such that q(ti ) converges to a nonzero v∈V.
If f is in C∞(V,R), then f ◦ q is smooth, so f (0) = f (q(0)) = f (q(lim ti )) =
lim f (q(ti ))= f (lim q(ti ))= f (v). Therefore, the functions in C∞(V,R) do not
separate points.

Case 2b: Suppose that Case 2a does not apply. Then for each k ∈ N, ε > 0 and
M > 0, there exists t ∈ [−ε, ε] such that ‖tk p(t)‖ > M. (Note that t 6= 0, since
p(0)= 0.) Using this for k = 0, choose t1 ∈ [−1, 1] such that ‖p(t1)‖> 1. Then,
for each integer k > 0, choose tk with |tk | ≤ |tk−1|/2 such that ‖tk

k p(tk)‖ > k. If
m ≤ k, then tk also satisfies ‖tm

k p(tk)‖> k ≥ m, since |tk | ≤ 1. Therefore, we can
restrict to a subsequence of the tk all having the same sign. To fix notation, assume
that each tk is positive. Then, for m ≤ k,

1
‖p(tk)‖

tm
k

<
1
k
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and so, for each m, the left-hand side goes to 0 as k → ∞. By Lemma 5.1,
there is a smooth curve c : R→ R such that c(tk) = 1/‖p(tk)‖. It follows that
q(t) := c(t)p(t) is a plot such that q(0)= 0 and ‖q(tk)‖ = 1 for each k. Therefore,
there is a subsequence converging to a nonzero v ∈ V, and the argument at the end
of Case 2a shows that C∞(V,R) does not separate points. �

Lemma 5.1 (extended special curve lemma). Let {xk} and {tk} be sequences in R

such that 0 < tk < tk−1/2 for each k and xk/tm
k → 0 as k→∞ for each m ∈ Z+.

Then there is a smooth function c : R→ R such that c(tk) = xk for each k and
c(t)= 0 for t < 0.

The proof closely follows [Kriegl and Michor 1997, page 18], and can easily be
generalized further.

Proof. Let φ :R→R be a smooth function such that φ(t)= 0 for t ≤ 0 and φ(t)= 1
for t ≥ 1. Define c : R→ R by

c(t)=


0 for t ≤ 0,

xk+1+φ

(
t − tk+1

tk − tk+1

)
(xk − xk+1) for tk+1 ≤ t ≤ tk,

x1 for t1 ≤ t .

The function c is smooth away from 0 and for tk+1 ≤ t ≤ tk we have

c(r)(t)= φ(r)
(

t − tk+1

tk − tk+1

)
1

(tk − tk+1)r
(xk − xk+1).

Since tk − tk+1 > tk/2> tk+1, the right-hand side goes to zero as t→ 0. Similarly,
c(r)(t)/t→ 0, which shows that each c(r+1)(0) exists and is 0. So c is smooth. �

We are indebted to Chengjie Yu for the argument used in Case 1 of Theorem 3.22.
After we completed Case 2, Yongjie Shi and Chengjie Yu proved this case in more
generality in [Shi and Yu 2017].
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393 in Geometry and topology of manifolds (Będlewo, Poland, 2005), edited by J. Kubarski et al.,
Banach Center Publ. 76, Polish Acad. Sci. Inst. Math., Warsaw, 2007. MR Zbl

[Iglesias-Zemmour 2013] P. Iglesias-Zemmour, Diffeology, Math. Surveys and Monographs 185,
Amer. Math. Sci., Providence, RI, 2013. MR Zbl

[Kriegl and Michor 1997] A. Kriegl and P. W. Michor, The convenient setting of global analysis,
Math. Surveys and Monographs 53, Amer. Math. Sci., Providence, RI, 1997. MR Zbl

[Shi and Yu 2017] Y. Shi and C. Yu, “Smooth compositions with a nonsmooth inner function”, J.
Math. Anal. Appl. 455:1 (2017), 52–57. MR Zbl

[Souriau 1984] J.-M. Souriau, “Groupes différentiels de physique mathématique”, pp. 73–119 in
South Rhone seminar on geometry, II (Lyon, 1983), edited by P. Dazord and N. Desolneux-Moulis,
Hermann, Paris, 1984. MR Zbl

[Vincent 2008] M. Vincent, Diffeological differential geometry, master’s thesis, University of Copen-
hagen, 2008, available at https://tinyurl.com/martinvincent-pdf.

[Wu 2015] E. Wu, “Homological algebra for diffeological vector spaces”, Homology Homotopy Appl.
17:1 (2015), 339–376. MR Zbl

Received May 6, 2017. Revised January 29, 2019.

J. DANIEL CHRISTENSEN

DEPARTMENT OF MATHEMATICS

UNIVERSITY OF WESTERN ONTARIO

LONDON ON
CANADA

jdc@uwo.ca

ENXIN WU

DEPARTMENT OF MATHEMATICS

SHANTOU UNIVERSITY

GUANGDONG

CHINA

exwu@stu.edu.cn

http://dx.doi.org/10.4064/bc76-0-17
http://msp.org/idx/mr/2346968
http://msp.org/idx/zbl/1115.58009
http://dx.doi.org/10.1090/surv/185
http://msp.org/idx/mr/3025051
http://msp.org/idx/zbl/1269.53003
http://dx.doi.org/10.1090/surv/053
http://msp.org/idx/mr/1471480
http://msp.org/idx/zbl/0889.58001
http://dx.doi.org/10.1016/j.jmaa.2017.05.028
http://msp.org/idx/mr/3665089
http://msp.org/idx/zbl/1370.26012
http://msp.org/idx/mr/753860
http://msp.org/idx/zbl/0541.58002
https://tinyurl.com/martinvincent-pdf
http://dx.doi.org/10.4310/HHA.2015.v17.n1.a17
http://msp.org/idx/mr/3350086
http://msp.org/idx/zbl/1318.18007
mailto:jdc@uwo.ca
mailto:exwu@stu.edu.cn


PACIFIC JOURNAL OF MATHEMATICS
Vol. 303, No. 1, 2019

dx.doi.org/10.2140/pjm.2019.303.93

DEGREE-ONE, MONOTONE SELF-MAPS OF THE
PONTRYAGIN SURFACE ARE NEAR-HOMEOMORPHISMS

ROBERT J. DAVERMAN AND THOMAS L. THICKSTUN

We prove that a self-map of the closed Pontryagin surface can be approxi-
mated by homeomorphisms if and only if it is monotone and has degree ±1.
This adds to a body of theorems, each of which characterizes for some space or
class of spaces those self-maps which are approximable by homeomorphisms.

1. Introduction

Given a topological space X , one can ask, “Which surjective self-maps of X are
near-homeomorphisms (i.e., approximable by homeomorphisms)?” For X either
an n-manifold (n = 2 [Daverman 1986, §25], n = 3 [Armentrout 1971] (in case
X is noncompact, this also depends on the solution to the 3-dimensional Poincaré
conjecture), n = 4 [Freedman and Quinn 1990], and n > 4 [Siebenmann 1972]) or
a Hilbert cube manifold [Chapman 1973], the answer is the cell-like self-maps. For
X an n-dimensional Menger manifold it is the U V n−1self-maps [Bestvina 1988].
This paper establishes a monotone approximation theorem (Theorem 2.2 here)
attesting that, for a (connected) Pontryagin surface P of [Mitchell et al. 1992], the
near-homeomorphisms are the self-maps which are monotone and have degree plus
or minus one.

Not surprisingly, the proof hinges on a shrinking argument, which appears in
Section 10 here. The crucial result toward this end, Corollary 10.5, promises
that decompositions induced over finite graphs in the target of the usual type of
map are shrinkable. That corollary combines with a homeomorphism extension
theorem for maps between Pontryagin disks to complete the proof of the monotone
approximation theorem. The section also contains a related theorem for maps
between Pontryagin disks that restrict to homeomorphisms between their boundaries.

To set up the shrinking argument a great deal of preliminary effort is required.
Most of that effort is directed toward the following intermediate result, called the
factor theorem: given a self-map f as in the hypothesis and a locally separating,
simple arc A in the Pontryagin surface P , the decomposition space X obtained
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from the decomposition of P whose elements are the point-preimages under f of
the points in A and singletons in P − f −1(A) is a Pontryagin surface. The factor
theorem is stated formally in Section 3; its proof appears at the end of Section 6,
based on a related result called the factor reduction theorem. The latter, in turn, is
proved in Section 7. Section 8 introduces the notion of a Pontryagin disk, which
is a compact subset of a Pontryagin surface that behaves much like a 2-disk in a
genuine surface. The main result of the section establishes a controlled equivalence
of Pontryagin disks; it has the useful corollary that all homeomorphisms between
the boundary curves of Pontryagin disks extend to homeomorphisms between the
Pontryagin disks themselves; that result is an essential component of the proof of the
monotone approximation theorem. Section 9 introduces the notion of Pontryagin
cellularity, a natural analog to the concept of cellularity in 2-manifolds, and a key
ingredient in the shrinking arguments.

Pontryagin surfaces and, in particular, Pontryagin disks were introduced by
Mitchell, Repovš, and Ščepin [Mitchell et al. 1992], building on a related con-
struction of Pontryagin [1930]. We define Pontryagin surfaces in the next section
in a slightly different way than they did, using decompositions into points and
figure-eights. Proposition 2.1 attests to the equivalence of this formulation with the
original treatment as controlled inverse limits of monotone maps between closed,
orientable surfaces. These objects have several interesting features. Connected
Pontryagin surfaces are homogeneous [Jakobsche 1991]. A loop L in a locally
compact, locally path-connected, locally homologically 1-connected metric space S
is null homologous (Borel–Moore homology with Z coefficients throughout) if and
only if it bounds a singular Pontryagin disk in S [Mitchell et al. 1992]. Any map of
a Pontryagin disk or Pontryagin surface into a generalized n-manifold, n > 4, can
be approximated arbitrarily closely by embeddings [Gu 2017].

Any monotone map between closed orientable surfaces must have absolute
degree one [Lacher 1977, §7], which might suggest that the degree-one hypothesis
in the statement of the monotone approximation theorem is redundant. It is not.
However, the construction of the relevant example is quite intricate and the authors
will present it in a separate article.

2. Terminology, notation, conventions, and statement of the main result

All maps of spaces will be continuous. A map is proper if the preimage of every
compact subset of the target is compact. A surjective map is monotone if every
point preimage is connected. A homotopy ft of a map f0 : X → Y is supported
in a subset U of Y if, for all t ∈ [0, 1] and x ∈ X − f −1

0 (U ), ft(x) = f0(x) and
ft( f −1

0 (U )) ⊆ U . A map f : (X, A) → (Y, B) is split if f −1(B) = A, and a
homotopy of such a split map is admissible if it is supported in Y − B. Given
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f : X → Y and B ⊂ Y , we say f is one-to-one, bijective, onto, etc. over B if
f | f −1(B) : f −1(B)→ B is one-to-one, bijective, onto, etc.

A space is nice if it is locally compact, locally path-connected, separable, and
metrizable (recall that any connected, nice space has an end-point compactification).
For a connected, nice space X we denote the one-point compactification, end-
point compactification, and space of ends by X̂ , X̂̂ , and e(X), respectively (by
convention, if X is compact, then X = X̂ = X̂̂ and e(X) = ∅). Note that if U is
an open, connected subset of a connected, nice space X , then the quotient space
X̂/(X̂ −U ) is homeomorphic to Û . We will often refer to the “quotient-map”
X̂ → Û , by which we mean the composition X̂ → X̂/(X̂ −U )→ Û (the maps
being those referred to above).

An exhaustion of a set X is a sequence {X i } of subsets of X satisfying X =
⋃

i X i

and, for all i , X i ⊆ X i+1.
We often refer to a collection E of pairwise-disjoint compacta in a nice space X

as a decomposition of X . This means the partition of X whose elements are the
elements of E together with all singletons, each of which is contained in no element
of E . This partition (or decomposition) is upper semicontinuous (and hence, the
associated decomposition space is metrizable) whenever the elements of E form a
null sequence with respect to some metric on X . Such a decomposition space will
be denoted as X/E .

Any space homeomorphic to the wedge of two circles is a figure-eight.

Definition. A connected, nice space P is a Pontryagin surface if there exists a
countable family E of pairwise-disjoint figure-eights in P such that E is null in P̂
and, for any cofinite subfamily D of E , the image of P under the decomposition map
P̂→ P̂/D is an orientable surface without boundary. Such a family E is a sufficient
family for P . (Observe that any closed orientable surface Q is a Pontryagin surface
and that any finite family of pairwise-disjoint figure-eights in Q is a sufficient
family if and only if it satisfies the following condition: for any element e of the
family, the quotient space Q/e is a surface). If, in addition, the image of P in P̂/E
is either planar or a 2-sphere, then E is a full family for P . A nice space is a
Pontryagin surface if each of its components is a Pontryagin surface, and a family E
of figure-eights in a Pontryagin surface is a sufficient family if the elements of E
in each component Y constitute a sufficient family for Y . A Pontryagin surface is
closed if it is compact; otherwise, it is open.

A subspace C of a Pontryagin surface X is P-negligible if X has a sufficient
family no element of which meets C . The manifold set of X , denoted M(X), is
{p ∈ X | p has a neighborhood homeomorphic to R2

}. X is rich if M(X) = ∅. It
should be noted that, unlike [Mitchell et al. 1992], in order to promote greater
generality and to accommodate some of our constructions, we do not assume all
Pontryagin surfaces have empty manifold set.
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A compact space D is a Pontryagin disk if it is homeomorphic to the closure
of some complementary component of a separating simple closed curve in a rich,
connected Pontryagin surface. (It is important to keep in mind that Pontryagin disks,
unlike Pontryagin surfaces, never contain open 2-disks.) Note that, by Corollary 3.2,
the frontier of a Pontryagin disk in a Pontryagin surface is P-negligible.

A compact 1-manifold A in a space X is locally separating if, given p ∈ A−∂A
and any neighborhood U of p, there exists a connected neighborhood V of p such
that V ⊂U , V ∩ A is connected, and V − A is not connected.

The Čech n-homology with G coefficients of a compact, metrizable space X
will be denoted Ȟn(X;G) (however, if G = Z, the coefficient group will not be
indicated).

A map f : X→Y of compact, metrizable spaces is an Ȟ2-isomorphism, monomor-
phism, etc. if it induces an isomorphism, monomorphism, etc. on Čech 2-homology.

A surjective map of closed, orientable surfaces is standard if it is bijective over
the complement of a finite subset F of the target and the preimage of each point
in F is a figure-eight.

A map f : X → Y of one compact, metrizable space onto another is a near-
homeomorphism if, given a metric ρ on Y and ε > 0, there exists a homeomorphism
h : X→ Y such that, for all x ∈ X , ρ( f (x), h(x)) < ε.

The following proposition provides, in effect, an alternate definition of “closed,
connected Pontryagin surface”.

Proposition 2.1. A space X is a closed, connected Pontryagin surface if and only if
it is the inverse limit of a sequence {pn : Rn+1→ Rn}

∞

n=1 of standard maps between
closed, connected, orientable surfaces such that if , for each n ∈ N, Fn denotes the
finite subset of Rn referred to in the definition of standard map, then, for all n 6= m,
pn,1(Fn)∩ F1 = pm,1(Fm)∩ pn,1(Fn)=∅ (where pn,1 = p1 ◦ p2 ◦ · · · ◦ pn−1).

Proof. (Only if) Suppose E = {e1, e2, . . .} is a sufficient family for X . Set En =

{en, en+1, . . .} and form the decomposition space Rn = X/En . Note that Rn =

Rn+1/en . Let pn : Rn+1→ Rn be the obvious map.

(If) Clearly

E = {e ⊂ X | there exist n ∈ N and x ∈ Fn such that p−1
∞,n(x)= e}

(where p∞,n denotes the projection of X to Rn) is a countable, pairwise-disjoint,
null family of figure-eights in X . To verify that it is sufficient, let E ′ be a cofinite sub-
family of E and denote F = E−E ′ and Fn ={e∈ E | e is a component of p−1

∞,n(Fn)}.
Choose N ∈ N such that F ⊂

⋃N
n=1 Fn . The decomposition space X/

⋃
∞

n=N+1 Fn

is RN whose decomposition space obtained from the decomposition {p∞,N (e) |
e ∈

⋃N
n=1 Fn} is R1. Apply the parenthetical observation in the above definition of

Pontryagin surface to complete the proof. �



DEGREE-ONE, MONOTONE SELF-MAPS OF THE PONTRYAGIN SURFACE 97

Definition. We have from Proposition 2.1 that if P is a closed, connected Pontryagin
surface, then Ȟ2(P)=Z and, for m ∈N, Ȟ2(P;Zm)=Zm . Given a map f : P→ Q
of closed, connected Pontryagin surfaces and choices OP and OQ of generators
of Ȟ2(P) and Ȟ2(Q) (but OP = OQ if P = Q), the degree of f is the integer n
such that the induced homomorphism on Čech 2-homology sends OP to nOQ . Note
that the absolute value of the degree is independent of the choice of generators. Our
interest focuses on maps of degree one, by which we really mean maps of absolute
degree one.

Theorem 2.2 (monotone approximation theorem). A map f : P → Q of closed,
connected, rich Pontryagin surfaces is a near-homeomorphism if and only if it is
monotone and has (absolute) degree one.

Proof of “only if”. That a near homeomorphism must be monotone follows from
the well known result [Kuratowski and Lacher 1969] that any uniformly convergent
sequence of monotone maps between compact, locally connected metric spaces
has a monotone limit. To show that f must have degree one, let p : Q → S2

be a map arising as the inverse limit of standard maps between closed orientable
surfaces and let f = limi→∞ hi where the {hi : P → Q} are homeomorphisms.
Then p ◦ f = limi→∞(p ◦ hi ).

Since S2 is an ANR there exists an integer k > 0 such that p ◦hk is homotopic to
p◦ f . Hence, deg(p◦ f )=deg(p)·deg( f )=deg(p)·deg(hk)=1. So deg( f )=1. �

Applying the Vietoris–Begle mapping theorem, we obtain:

Corollary 2.3. All cell-like maps between closed, connected, rich Pontryagin sur-
faces are near-homeomorphisms.

We adopt the following notational conventions. If A is a subset of a topological
space X , then Fr A and Int A will denote the frontier and interior of A in X . If
A is a manifold, then Å denotes A − ∂A. I = [−1,+1] ⊂ R (but we will also
consider I to be the set [−1,+1] × {0} in R2). S1

= the unit circle in R2. S2
=

the one-point compactification of R2 (so we can regard R2 as a subset of S2).
H = {(x, y) ∈ R2

| y ≥ 0}.

Remarks. Existence, uniqueness up to homeomorphism, and homogeneity of the
connected, closed, rich Pontryagin surface (denoted by P in these remarks) are well
known. However, it is worth noting that existence follows easily from Proposition 2.1
while uniqueness and homogeneity follow from Corollary 8.2 of this paper (we
leave this as an exercise). Note also that any self-map of P constructed as follows
is monotone and degree-one but not cell-like. Let E be a sufficient family for P and
F ⊂ E such that the image of E −F is dense in P/E (e.g., F is finite). It follows
that P/F is a rich Pontryagin surface, so the composition P

d
−→ P/F h

−→ P where
d is the decomposition map and h a homeomorphism is the desired map.
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Let S be a compact metric space, G an upper semicontinuous decomposition of S,
and π : S→ S/G the decomposition map. Then G is shrinkable if the following
condition, called the Bing shrinkability criterion, is satisfied: for each ε > 0 there
exists a homeomorphism h : S→ S such that each h(g) (g ∈ G) has diameter less
than ε, and π and πh are ε-close.

The notion of shrinkability was introduced by R. H. Bing [1952]. He exploited
it to provide an effective general method for determining the topological type of
certain decomposition spaces. R. D. Edwards [1980] gave an elegant proof for the
crucial compact case mentioned below; his proof also can be found in [Daverman
1986, Lemma 6.1].

Theorem 2.4. An upper semicontinuous decomposition G of a compact metric
space S is shrinkable if and only if the decomposition map π : S → S/G is a
near-homeomorphism.

Another setting in which upper semicontinuous decompositions arise involves
a proper map f : X → Y defined on a nice space X and a subset C of Y . The
decomposition G(C) of X induced over C is the partition consisting of the sets
{ f −1(c) | c ∈ C} and the singletons from X − f −1(C). Here G(C) is upper
semicontinuous (and X/G(C) is metrizable) whenever C is closed in Y .

Corollary 2.5. Let f : X → Y be a surjective mapping between compact metric
spaces and C a closed subset of Y . If the decomposition G(C) induced over C is
shrinkable, then f can be approximated, arbitrarily closely, by a surjective map
that is injective over C.

Proof. If θ : X→ X/G(C) is a homeomorphism very close to the decomposition
map π : X→ X/G(C), then F = f π−1θ is a map close to f which is 1-1 over C . �

3. The factor theorem

The theorem stated below is a key technical ingredient in the proof of the approxi-
mation theorem. Its proof occupies the following four sections.

Theorem 3.1 (the factor theorem). Suppose the commutative diagram

X

P Q

ψ

f

ϕ

of maps and spaces satisfies the following conditions:

(1) P and Q are closed, connected Pontryagin surfaces.

(2) All maps are surjective and f is both monotone and degree one.
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(3) There is a subspace A of Q which is either a locally separating simple arc
or a separating simple closed curve such that ϕ is injective over A and ψ is
injective over X −ϕ−1(A).

Then X is a Pontryagin surface and ϕ−1(A) is P-negligible in X.

Note. We will prove the factor theorem in detail only for the case in which A is an
arc. The proof for A a simple closed curve is essentially the same except for some
minor details which we leave to the reader.

Corollary 3.2. Any locally separating arc or separating simple closed curve in a
closed Pontryagin surface is P-negligible.

Proof. Let Q be the closed Pontryagin surface and apply the factor theorem to the
diagram

Q

Q Q

id

id

id

�

4. Sufficient families

In this brief section we state and prove some results and their consequences con-
cerning sufficient families. First we present some definitions and notation.

A family D of compacta in a locally compact space X is locally finite if, for any
compact subset C of X , the set {e ∈ D | e ∩C 6= ∅} is finite. If E is a family of
compacta in X and D ⊂ E , we say D is a locally cofinite subfamily of E if E −D is
locally finite. We denote, for a subset U of X , E(U )= {e ∈ E | e ⊂U }.

Observation. Any locally cofinite subfamily of a sufficient family is sufficient.

Proposition 4.1. Any open subset U of a Pontryagin surface P is a Pontryagin
surface. Furthermore, if E is a sufficient family for P , then E(U ) is a sufficient
family for U.

Proof. We can assume that U is connected. Let D be a locally cofinite subfamily
of E(U ). It will suffice to show that if V is an open, connected subset of U such
that V ⊂U and V is compact, then the image of V under the decomposition map
P̂→ P̂/D is a surface. Denote

F = {e ∈ E | e meets both P −U and V or e ⊂ V and e /∈ D}.

Note that F is finite and D ⊂ E −F . The image of V in P̂/D is sent homeomor-
phically by the obvious decomposition map onto its image in P̂/(E −F), which
must be a surface since E −F is sufficient for P . �
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Lemma 4.2. Suppose U is a Pontryagin surface with sufficient family D. If A is a
closed subset of U with A⊂ M(U ), then the family {e ∈D | e∩ A=∅} is sufficient
for U.

Proof. Verify that {e ∈ D | e ∩ A 6= ∅} is locally finite and apply the above
observation. �

Proposition 4.3. A connected, nice space U is a Pontryagin surface if and only if
Û̂ is a Pontryagin surface.

Proof. (If) This follows from the previous proposition.

(Only if) Let E be a sufficient family for U and let R denote the image of U under
the decomposition map d : Û̂ → Û̂/E . So R is an open, connected, orientable
surface whose end-point compactification is Û̂/E . From the classification theorem
for open surfaces [Richards 1963] we obtain a locally finite (in R) family D of
figure-eights in R such that R/D is planar and R is null in Û̂/E . By a standard
general position argument we can choose these figure-eights to avoid

⋃
e∈E d(e).

Then E ∪ {d−1(e) | e ∈ D} is a sufficient family for Û̂ . �

5. 2-coherence

This section includes a series of lemmas, propositions, and theorems to be used in
the proof of the factor theorem, most of which take as their hypotheses only certain
Čech-homological properties of Pontryagin surfaces. Any nice space having these
properties will be termed 2-coherent.

Definition. Suppose X is a connected, nice space and Ȟ2(X̂)= Z. A family U of
open, connected, nonempty subsets of X is a coherence family if, for any U ∈ U ,
the following conditions are satisfied:

(1) The quotient map X̂→ Û is an Ȟ2-isomorphism.

(2) For n∈N−{1}, Ȟ2(Û ;Zn)=Zn and the homomorphism Ȟ2(Û )→ Ȟ2(Û ;Zn)

(induced by the coefficient group epimorphism Z→ Zn) is an epimorphism.

(3) Any open, connected, nonempty subset of X is exhausted by elements of U .

Definition. A connected, nice space X with Ȟ2(X̂)=Z is 2-coherent if the class of
all open, connected, nonempty subsets of X is a coherence family. Among its other
benefits, 2-coherence characterizes the 2-manifolds within the class of 2-complexes.

A proper map f : X → Y of 2-coherent spaces has (absolute) degree one if
f̂ : X̂→ Ŷ induces an isomorphism on Čech 2-homology with Z coefficients.
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Observation. If U is a coherence family for X and V,U ∈ U with V ⊂U , then the
quotient map Û → V̂ is an Ȟ2-isomorphism. (To see this, apply Ȟ2 to the diagram

X̂ Û

V̂

where the maps are quotient maps.) Moreover, for n ∈ N− {1}, Ȟ2(Û ;Zn)→

Ȟ2(V̂ ;Zn) is an isomorphism. To see this consider the commutative diagram

Ȟ2(Û ) Ȟ2(V̂ )

Ȟ2(Û ;Zn) Ȟ2(V̂ ;Zn)

Lemma 5.1. If a connected nice space X with Ȟ2(X̂)= Z has a coherence family,
then it is 2-coherent.

Proof. Let V denote the coherence family and let U be an open, connected subset
of X . Let {Vi }

∞

i=1 be an exhaustion of U with Vi ∈ V for all i . To verify that (1) (in
the definition of coherence family) holds for U , apply the continuity axiom for Čech
homology to the diagram obtained by applying Ȟ2 to the following commutative
diagram of spaces and maps:

Û
...

V̂3

V̂2

X̂ V̂1

All maps are quotient maps. Note that Û = lim
←−−

(V̂1← V̂2← · · · ).
One obtains from the same diagram that Ȟ2(Û ;Zn) = Zn . To verify that

Ȟ2(Û )→ Ȟ2(Û ;Zn) is onto first note that, for all i , the composition Ȟ2(Û )→
Ȟ2(V̂i )→ Ȟ2(V̂i ;Zn) is onto (the first homomorphism is an isomorphism and the
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second is onto by hypothesis). Now consider the commutative diagram

Ȟ2(Û ;Zn)
...

Ȟ2(V̂2;Zn)

Ȟ2(Û ) Ȟ2(V̂1;Zn)

ρ

The “vertical” maps are isomorphisms and the others (with the possible exception
of ρ) are onto. Hence, ρ is onto. �

The proof of the following lemma is left to the reader.

Lemma 5.2. If C is a closed 0-dimensional subset of a compact, metrizable space
X , then the quotient map X→ X/C is an Ȟ2-isomorphism.

Proposition 5.3. A connected nice space U is 2-coherent if and only if Û̂ is 2-
coherent.

Proof. (If) This part is left to the reader.

(Only if) We claim that

V = {V ⊂ Û̂ | V is connected and open, and V ∩ e(U ) is compact}

is a coherence family. We verify only condition (1) in the definition of coherence
family and leave the rest to the reader. Consider the commutative diagram

Û̂ Û̂/(Û̂ − V )= V̂

Û V̂

where V ∈ V and the maps are the obvious quotient maps (the “vertical” map on
the right sends e(U ) ∩ V to V̂ − V ). Applying Ȟ2 to the diagram we have, by
hypothesis, that the bottom horizontal homomorphism is an isomorphism and the
vertical homomorphisms are isomorphisms by Lemma 5.2, so the top horizontal
homomorphism is an isomorphism. �

Proposition 5.4. Every connected Pontryagin surface is 2-coherent.
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Proof. Observe first that since the end-point compactification of a Pontryagin
surface is a Pontryagin surface (Proposition 4.3) and any open connected subset
of a 2-coherent space is 2-coherent, we can assume without loss of generality that
the Pontryagin surface P of the hypothesis is compact. Use Proposition 2.1 to
express P as the inverse limit of standard maps {pn : Rn+1→ Rn}

∞

n=1. We leave it to
the reader to verify that the following class of open sets is a coherence family for P :{

V | there exists a connected compact subsurface Mn of Rn such that

p∞,n is one-to-one over ∂Mn and V is the interior of p−1
∞,n(Mn)

}
. �

Lemma 5.5. The proper cell-like image of a 2-coherent space is 2-coherent.

Proof. Apply the Vietoris–Begle theorem. �

Lemma 5.6. Suppose X is a connected 2-coherent space. Then:

(1) X contains no locally separating point.

(2) X contains no separating, closed 0-dimensional subset.

(3) X contains no separating set which is the union of a simple arc and a closed
0-dimensional set.

(4) If X is separated by a set which is the union of a simple closed curve α and a
closed 0-dimensional set, then α separates X.

Proof. (1) Suppose U is a connected open set in X and p ∈U such that U −{p}
is not connected. Since U is 2-coherent we have that Û̂ is compact, 2-coherent,
and separated by p. Denote by C the closure of a component of Û̂ − {p} and
let D be the closure of the union of all other components of Û̂ − {p}. Then
Ȟ2(Û̂ )= Ȟ2(C)⊕ Ȟ2(D) and so one of the two summands must be trivial, which
is impossible by the 2-coherence of Û̂ .

(2) The proof is similar to that of (1).

(3) Suppose otherwise and let A denote the arc. By Lemma 5.5, X/A is 2-coherent
and is separated by a closed 0-dimensional set, which contradicts (2).

(4) Since X̂̂ is 2-coherent by Proposition 5.3 we can assume without loss that X
is compact. Denote the 0-dimensional set by C and suppose α does not separate X .
Denote U = X−α and note that, by connectivity of U , Û̂ is 2-coherent. Since X/α is
the one-point compactification of X−α we have the natural map ϕ : Û̂→ X/α (from
the end-point compactification of any nice space to the one-point compactification of
that space). Let x denote the image of α under the quotient map X→ X/α and note
that the map ϕ : (Û̂ , e(U )∪C)→ (X/α, {x}∪C) is split (by abuse of notation C is
considered to be a subset of both Û̂ and X/α). However, e(U )∪C cannot separate Û̂
by (2) and hence {x}∪C cannot separate X/α. But then α∪C cannot separate X . �
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Corollary 5.7. If X is compact and 2-coherent and A is a cell-like subset of X ,
then X − A has one end.

Proof. Otherwise, A would be a locally separating point in X/A (which is 2-
coherent by Lemma 5.5). �

Corollary 5.8. Suppose A is a separating simple closed curve in a compact 2-
coherent space X.

(1) If U is any component of X − A, then U =U ∪ A.

(2) A is locally separating.

Proof. (1) Suppose A 6⊂U . Then U∩A is contained in some arc α in A which would
make α a separating point in the quotient space X/α (which would be 2-coherent).

(2) Use (1). �

Lemma 5.9. Suppose X is a compact metrizable space, S is a simple closed curve
in X , and A and B are the closures in X of two distinct components of X − S. Then
the inclusion-induced homomorphism Ȟ2(A)⊕ Ȟ2(B)→ Ȟ2(X) is injective.

Proof. There exists a sequence of nerves {pn+1,n : (Xn+1, An+1, Bn+1, Sn+1)→

(Xn, An, Bn, Sn)}
∞

n=1 such that, for each n, Sn is a simple closed curve, An and
Bn are closed components of Xn − Sn , and for Z = X, A, B, or S, lim

←−−
{pn+1,n :

Zn+1→ Zn} is Z . Now conclude from a Mayer–Vietoris sequence that, for each n,
H2(An)⊕H2(Bn)→H2(Xn) is injective. Since the inverse limit of monomorphisms
is a monomorphism, the conclusion follows. �

Observation. If E is a compact subspace of a 2-coherent space X with E 6= X ,
then the inclusion-induced homomorphism Ȟ2(E;G)→ Ȟ2(X̂;G) (where G = Z

or Zn for some n ∈ N−{1}) is trivial.

Proof. Let U be a component of X− E and note that the composition Ȟ2(E;G)→
Ȟ2(X̂;G)→ Ȟ2(Û ;G) (induced by the obvious maps E→ X̂→ Û ) is trivial and
the second of the two homomorphisms is an isomorphism. �

Lemma 5.10. Suppose S is a separating simple closed curve in a compact 2-
coherent space X and U is a component of X − S. Then:

(1) Ȟ2(U )= 0.

(2) ∂∗ : Ȟ2(U , S)→ Ȟ1(S) is an isomorphism.

(3) X − S has two components.

Proof. (1) By Lemma 5.9 (where A =U ) we have Ȟ2(U )→ Ȟ2(X) is injective.
But, by the observation, it is also trivial.

(2) We have homomorphisms Ȟ2(Û )
ϕ
−→ Ȟ2(U , S)

∂∗
−→ Ȟ1(S) where ϕ is the inverse

of the isomorphism induced by the quotient map U →U/S = Û . Let α ∈ Ȟ2(Û )
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be a generator and denote β = (∂∗ ◦ ϕ)(α). We will show that β is a generator
of H1(S) (which we identify with Z). We can assume without loss of generality
that β ≥ 0. If β = 0, then ϕ(α) is in the image of Ȟ2(U )→ Ȟ2(U , S) and hence
Ȟ2(U ) is nontrivial (impossible by (1)). If β > 1, we have a nontrivial element
of Ȟ2(U ;Zβ) again violating (1) (note that nontriviality of the element follows
from the surjectivity of Ȟ2(Û )→ Ȟ2(Û ;Zβ)).

(3) Assume X − S has at least two components U1 and U2. If (X − S) 6=U1 ∪U2,
use (2) to argue that Ȟ2(U 1 ∪U 2) must be nontrivial, contradicting (1). �

Corollary 5.11. If X is a noncompact 2-coherent space and R is a separating
closed subset of X homeomorphic to R, then X − R has two components.

Proof. Let α denote the closure in X̂̂ of R. By Lemma 5.10 it will suffice to show
that α is a simple closed curve, but if α were an arc, then the 2-coherent space X̂̂/α
would contain a separating point. �

Definition. A simple arc A in a 2-coherent space X is 2-sided if, given any subarc α
of A, there exists a neighborhood V such that V∩A= α̊, V−A has two components,
and denoting the two components by V1 and V2, V 1∩V 2= α and Fr(V i )= V i−Vi

(i = 1, 2). (Such a neighborhood V of α̊ will be called dichotomous.)

Proposition 5.12. Any locally separating arc A in a 2-coherent space X is 2-sided.

Proof. By Corollary 5.11 it will suffice to show that Å separates some open
connected neighborhood of itself. We briefly outline the proof. Construct a family
U = {Un}n∈Z of open connected sets covering Å and satisfying the following
properties:

(1) For each n, Un − A is disconnected.

(2) For each n, Un ∩ A is an open subarc of A whose closure in A is disjoint from
∂A.

(3) Ui ∩U j 6=∅ if and only if |i − j | ≤ 1.

Now, by a Lebesgue number argument applied infinitely many times, we can
choose a second covering {Vm}m∈Z satisfying the same three properties and, in
addition, for |i − j | = 1, Vi ∪ V j is contained in some element of U . Prove by
induction on N ∈ N that

⋃N
m=−N Vm is separated by A. Then

⋃
m∈Z Vm is the

desired neighborhood. �

Observation. If A is a 2-sided simple arc in a 2-coherent space X , then any subarc
of A is also 2-sided. Also note that if U is a dichotomous neighborhood of Å and
V is a connected, open set with V ⊂U such that V ∩ A is connected, then V is a
dichotomous neighborhood of V ∩ A.

The following observation is used in the proof of Proposition 5.13. Its proof is
left to the reader.
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Observation. The absolute degree of a map of compact 2-coherent spaces is “de-
termined locally”; i.e., if f : X → Y is such a map and V is an open, nonnull,
connected subset of Y such that f −1(V ) is connected, then the absolute degree of f
is the same as the absolute degree of the one-point compactification of the map
f | : f −1(V )→ V .

Proposition 5.13 (degree-one proposition). If X is a compact 2-coherent space,
then a map f : X→ S2 has degree one if the following conditions are satisfied:

(1) f −1(S1) is the union of a simple closed curve A and a closed 0-dimensional
set and f |A : A→ S1 is bijective.

(2) For C either component of S2
− S1, f −1(C) 6=∅.

Proof. First note that since f −1(S1) separates X we have, by Lemma 5.6, that A
separates X and hence, by Lemma 5.10, that X − A has two components. Let U be
one of them and let D be that component of S2

− S1 which contains f (U ) (and
hence by condition (2) we have f −1(D)=U ). Consider the commutative diagram

Ȟ2(U , A) Ȟ1(A)

Ȟ2(D, S1) Ȟ1(S1)

∂∗

( f |U )∗ ( f |A)∗

∂∗

By Lemma 5.10, ( f |A)∗ ◦ ∂∗ is an isomorphism and ∂∗ at the bottom of the
diagram is obviously an isomorphism. Hence, ( f |U )∗ is an isomorphism. So the
map Ȟ2(U/A)→ Ȟ2(D/S1) (induced by f ) is also an isomorphism. To see this,
note that U/A = Û and apply the above observation. �

The rest of this section is devoted to the proof of the following theorem.

Theorem 5.14. If A is either a locally separating simple arc or a separating simple
closed curve in a compact 2-coherent space X , then there exists a split, degree-one
map f : (X, A)→ (S2, B) which is bijective over B, where B is either I or S1.

The principal ingredients in the proof are Proposition 5.13 and the strong gener-
alized Tietze extension theorem (SGTE) stated below.

Theorem 5.15 (SGTE). If A is a closed subset of a compact metrizable space X ,
then any map f : A→ Sn−1 (n ∈N) has a split extension g : (X, A)→ (Bn, Sn−1).
Furthermore, that extension is unique up to admissible homotopy.

Proof. The so-called generalized Tietze extension theorem guarantees an extension
h : (X, A)→ (Bn, Sn−1) (which however is not, in general, split). Define g as
follows. First choose a metric ρ for X and define a second metric ρ ′ by ρ ′(x, y)=
min{1, ρ(x, y)}. Now let g(x) = (1 − ρ ′(x, A)) · h(x) (where Bn is viewed as
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vectors of norm at most one in Rn , and the dot in the preceding equation indicates
scalar multiplication).

Now suppose that g0 and g1 are two such split extensions of f . Define ϕ :
(A×[0, 1])∪ (X ×{0, 1})→ (Sn−1

×[0, 1])∪ (Bn
×{0, 1}) by

ϕ(x, t)=
{
( f (x), t) if x ∈ A,
(gi (x), i) if x ∈ X and i ∈ {0, 1}.

The desired homotopy is a split extension of ϕ to

(X × I, (A× I )∪ (X ×{0, 1}))→ (Bn
× I, ∂(Bn

× I )). �

Proof of Theorem 5.14. We consider only the case in which A is an arc (the argument
for A a closed curve is similar and easier). By Proposition 5.12 we can choose
two dichotomous neighborhoods V and U of Å in X such that U ⊂ V ∪ ∂A.
Hence, if U1 and U2 are the components of U − A, we have that Fr U1 − A
and Fr U2 − A are disjoint (since they are in different components of V − A).
Let C1 and C2 denote Fr U1 − Å and Fr U2 − Å, respectively (note that Fr U =
C1 ∪C2 and C1 ∩C2 = ∂A). Let α : A→ I be any homeomorphism and apply the
SGTE (Theorem 5.15) to α|∂A : ∂A→ ∂ I to obtain a split map β : (C1, ∂A)→
(S1
∩ {(x1, x2) ∈ R2

⊂ S2
| x2 ≥ 0}, ∂ I ). Let B2

+
and B2

−
be the upper and lower

2-disks in B2 containing I in their boundaries. Apply the SGTE again to extend
α ∪β : Fr U1→ S2 to obtain a split map ϕ1 : (U 1,Fr U1)→ (B2

+
, ∂B2

+
). Similarly

we obtain ϕ2 : (U 2,Fr U2)→ (B2
−
, ∂B2

−
). We have ϕ1|A = ϕ2|A = α. Denote

ϕ = ϕ1∪ϕ2. Apply SGTE a final time to extend ϕ|Fr U : Fr U→ S2 to a split map
ψ : (X −U ,Fr U )→ (S2

− B̊2, ∂B2). Then ϕ ∪ψ is the desired map.
It remains only to verify that the degree of ϕ∪ψ is one. To see this, consider the

end-point compactification of the map ϕ|U :U→ B̊2 which we denote by η : Û̂→Q.
The target is a 2-sphere and the domain a 2-coherent space by Proposition 5.3. It
follows easily from the definition of 2-coherence that η and ϕ ∪ψ have the same
degree. Denote by L the closure of I̊ in Q (so L is a simple closed curve) and note
that η−1(L) is the union of a closed set of dimension zero and the closure of Å in Û̂
(which must be either a simple arc or a simple closed curve). Since η−1(L) must
separate Û̂ , we conclude from Lemma 5.6 that the closure of Å in Û̂ is a simple
closed curve. Apply the degree-one proposition to η to complete the proof. �

6. A reduction of the factor theorem

In this section we show that the following result, whose proof is deferred to Section 7,
implies the factor theorem. The crucial difference between the factor theorem and
this factor reduction theorem is that in the former the complement of the arc (in
the intermediate space) is an open Pontryagin surface whereas in the latter the
analogous space is a genuine surface.
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Theorem 6.1 (factor reduction theorem). Suppose Y is a compact, connected,
metrizable space, A is a closed subset of Y such that Y − A is an open surface, each
component of which is orientable, and f : (Y, A)→ (S2,C) is a split, surjective
map which is injective over C and such that one of the following conditions is
satisfied:

(1) C = I , A is 2-sided in Y , Y − A has one end (hence is connected), and
f |Y − A : Y − A→ S2

−C has degree one.

(2) C = S1, A is 2-sided in Y , and if R denotes either component of S2
−C , then

f −1(R) has one end and the map f | f −1(R) : f −1(R)→ R has degree one.

Then Y is a Pontryagin surface and A is P-negligible.

(Note that in what follows we will verify the conclusion only for the first of
the two conditions in the statement. The proof given the second condition is very
similar, though slightly easier at certain points, and is left to the reader.)

We introduce some terminology which will be used only in this section.

Definition. Suppose ψ : X → Z is a map of compact, metrizable spaces and U
is an open subset of Z such that ψ−1(U ) is a Pontryagin surface with a sufficient
family E which is null in X . If there exist D ⊂ E with D sufficient for ψ−1(U ) and
a homotopy of ψ supported in U to a map ψ ′ having a factorization

X Z

X/D

ψ ′

d α

(where d is the decomposition map), then we say α is a Euclideanization of ψ
over U using E . (Note that the existence of the factorization for ψ ′ is equivalent to
the condition that for all e ∈ D, ψ ′(e) is a singleton.)

Lemma 6.2. Suppose ψ : (Y,C)→ (B, ∂B) is a split map where B is a 2-disk, Y is
a compact, metrizable space, and ψ−1(B̊) is a Pontryagin surface with sufficient
family E which is null in Y . Then ψ has a Euclideanization over B̊ using E .

Proof. Let d : Y → Y/E be the decomposition map, and note that d is injective
over d(C). Apply the SGTE (Theorem 5.15) to ψ ◦ d−1

|d(C) : d(C)→ ∂B to
obtain a split map α : (Y/E, d(C))→ (B, ∂B). To obtain the homotopy, apply the
uniqueness provision of the SGTE to the maps ψ and α ◦ d �

Proposition 6.3. Suppose that X is a connected, compact, metrizable space, ϕ :
(X, A)→ (S2, I ) is a split surjective map which is one-to-one over I , X − A is an
open Pontryagin surface, and E is a sufficient family for X − A which is null in X.
Then ϕ has a Euclideanization over S2

− I using E .



DEGREE-ONE, MONOTONE SELF-MAPS OF THE PONTRYAGIN SURFACE 109

Proof. The idea is to choose two 2-disks in S2 such that the union of their interiors
is S2
− I and then Euclideanize the map over each of the 2-disks in succession.

Some care is required.
Choose three disks D, E , and F in S2 such that F ⊂ E ⊂ D and any two of the

disks have boundaries intersecting in I as shown below, where I is the horizontal
line segment and ∂D is the outermost simple closed curve:

From Proposition 4.1 we have that E(ϕ−1(D̊)) is sufficient for ϕ−1(D̊). Apply
Lemma 6.2 to the map

ϕ|(ϕ−1(D), ϕ−1(∂D)) : (ϕ−1(D), ϕ−1(∂D))→ (D, ∂D)

to obtain a Euclideanization α of that map using E(ϕ−1(D̊)). Let d : X →
X/E(ϕ−1(D̊)) be the decomposition map and denote D={d(e) | e∈ E−E(ϕ−1(D̊))
and d(e) ∈ α−1(S2

− E)}. By Lemma 4.2, D is a sufficient family for α−1(S2
− F)

(where in the application of that lemma we use U = α−1(S2
− I ), A= α−1(F− I ),

and B = α−1(E − I )). Now Euclideanize α over S2
− F using D. �

Proof that the factor reduction theorem implies the factor theorem. As usual we
consider only the case in which the set A⊂ Q in the hypothesis of the factor theorem
is a simple arc. Note at the outset that monotonicity of f implies monotonicity
of ϕ. As a result, ϕ−1(A) must be 2-sided in X . Set A′ = ϕ−1(A).

Let E be a sufficient family for P . Hence, E(P − f −1(A)) is sufficient for
P − f −1(A). Form E ′ = {ψ(e) | e ∈ E(P − f −1(A))} and note that E ′ is sufficient
for X − A′ (since the restriction of ψ to P − f −1(A) is 1-1) and is null in X . Here
ψ restricts to a homeomorphism

P − f −1(A)→ X −ϕ−1(A)= X − A′.

Hence, both the end-point and one-point compactifications of X − A′ have H̆2

isomorphic to Z. As f = ϕ ◦ψ has degree one, ϕ : (X, A′)→ (Q, A) must also
have degree one.

Use Theorem 5.14 to obtain a split, degree-one map α : (Q, A)→ (S2, I ). Its
composition with ϕ yields a degree-one map α ◦ϕ : (X, A′)→ (S2, I ).

Apply Proposition 6.3 to obtain a Euclideanization ϕ′ : X/D → S2 of α ◦ ϕ
over S2

− I using E ′. Let d : X → X/D = Y be the decomposition map and let
A∗ = d(A′). Note that degree ϕ′ = degree α ◦ ϕ = 1. We leave it to the reader
to verify that A∗ is 2-sided in Y (hint: use the fact that the image under d of a
dichotomous neighborhood of Å′ in X which is saturated with respect to D must
be a dichotomous neighborhood of A∗ in Y ).
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Consequently, the hypotheses of the factor reduction theorem are satisfied. From
it we conclude that Y is a Pontryagin surface and A∗ is P-negligible in Y . By a
standard general position argument, we can choose a sufficient family F for Y ,
each element of which is disjoint from A∗ ∪ {d(e) | e ∈ D}. It follows easily that
{d−1(e) | e ∈ F}∪D is a sufficient family for X , no element of which meets A′. �

7. Proof of the factor reduction theorem

We prove the factor reduction theorem (Theorem 6.1) by first producing a convergent
sequence of admissible homotopies, starting with the map of the hypothesis, which
progressively enlarge the 1-dimensional subspace of S2 over which the map is
bijective. The initial step (the “arc proposition”) is the most difficult. It produces an
admissible homotopy of the map of the hypothesis to a map which is bijective over
the union of C (either I or S1) and an arc meeting C in a preassigned point. In the
proofs of both the arc proposition and the subsequent factor reduction theorem, we
consider only the case C = I . We leave it to the reader to make the modifications
necessary for the case I = S1. In what follows recall that H denotes closed upper
half-space in R2.

Proposition 7.1 (arc proposition). Let f : (Y, A)→ (S2, I ) be a map as in the
hypothesis of the factor reduction theorem. Given ε > 0 and a ∈ (−1,+1) there
exists a homotopy of f to a map g supported in a neighborhood U ⊂ H for which
diam U < ε and U ∩ (R×{0})= {(a, 0)}, such that g is bijective over {a}× [0, r ]
for some r > 0.

Before proving the arc proposition we introduce some terminology and notation.
Suppose f : X → Y is a map of spaces and V ⊂ U are subsets of Y . The pair
(U, V ) is good for f (or merely good when no ambiguity can result) if f −1(V ) is
contained in a component of f −1(U ). If Y is a metric space, then the diameter of
the pair (U, V ) is the diameter of U . For a point p in a metric space (Y, ρ), B[p, ε]
will denote the closed ball of ρ-radius ε centered at p.

The proof of the arc proposition requires the following five lemmas. The proofs
of all but the last are left to the reader.

Lemma 7.2. Suppose f : X→ Y is a map from a compact nice space to a metric
space which is one-to-one over the singleton {p} in Y . Then given ε > 0 there exists
δ > 0 such that (B[p, ε], B[p, δ]) is good.

Lemma 7.3. Suppose X is a nice space and A ⊂ U ⊂ X with A compact and U
open and connected. Then there exists a compact, connected subset C of X with
A ⊂ C ⊂U.

Lemma 7.4. Suppose f : R→ Q is a proper, boundary-preserving map of surfaces
and (D1, D2) is a pair of 2-disks in Q satisfying the following:
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(1) D2 ⊂ D̊1 ⊂ D1 ⊂ Q̊.

(2) Both f −1(D1) and f −1(D2) are surfaces.

Then, if C denotes the union of the components of f −1(D1) meeting f −1(D2), there
exists a homotopy of f supported in any preassigned neighborhood of D1 to a
map g such that g−1(D2)= C.

Lemma 7.5. Any degree-one, split map ϕ : (Q, ∂Q)→ (B2, ∂B2) of a compact,
connected, orientable surface Q is admissibly homotopic to a map which is bijective
over a preassigned disk in B̊2.

Note. Lemma 7.5 follows easily from the classification theorem for compact,
orientable surfaces and is also an immediate consequence of the principal theorem
in [Epstein 1966].

Lemma 7.6. Suppose Q is a noncompact, one-ended, connected, orientable surface
such that ∂Q has one noncompact component, ϕ : (Q, ∂Q)→ (H, ∂H) is a proper,
degree-one, split map, and� is a collar on ∂H in H. Then ϕ is properly, admissibly
homotopic to a map which is bijective over H −�.

Proof. We will treat the case where Q has infinitely many boundary components
and infinitely many handles; strategies for dealing with the other possibilities can be
inferred from what we do in that slightly more complicated case. For definiteness
we assume that �=R×[0, 3] ⊂ H . The proof requires some care because ∂Q has
two ends while Q has only one.

Let S be the subset of Z determined as follows (and here we denote by L
the noncompact component of ∂Q). If there exists a real number b such that
ϕ(∂Q − L) ⊂ (b,+∞) ⊂ ∂H , then S = N; if there exists a number b′ such that
ϕ(∂Q− L) ⊂ (−∞, b′), then S = Z−N; otherwise, S = Z. Now for each n ∈ S
let Dn be a 2-disk in the interior of [n, n + 1] × [0, 1] and let En be a 2-disk in
the interior of [n, n + 1] × [2, 3]. Also for each n ∈ S, let Tn be a punctured
torus in [n, n + 1] × [2, 3] × [0, 1] with Tn ∩ H = ∂Tn = ∂En and let An be an
annulus in [n, n+ 1] × [0, 1] × [0, 1] with one component of ∂An equal to ∂Dn ,
∂An−∂Dn ⊂ (n, n+1)×{0}×(0, 1), and Ån ⊂ (n, n+1)×(0, 1)×(0, 1). Denote
Q′=

[
H−

⋃
n∈S(D̊n∪ E̊n)

]
∪
[⋃

n∈S(An∪Tn)
]
. Let 8 : Q′→ H be the restriction

to Q′ of the projection map H ×[0, 1] → H . Note that 8 is an admissible map.
By the classification theorem for noncompact surfaces [Prishlyak and Mischenko

2007; Richards 1963], there is a homeomorphism θ : Q → Q′. Modify θ , if
necessary, so that 8θ |L , ϕ|L : L → ∂H are properly homotopic. Then modify
further so that, for each compact component J of ∂Q, 8θ(J ) ⊂ [0,+∞) ⊂ ∂H
if and only if ϕ(J )⊂ [0,+∞). Now it follows that the straight line homotopy µt

is a proper homotopy between 8θ |∂Q, ϕ|∂Q : ∂Q→ ∂H (as maps to ∂H ). By
construction, 8θ is injective over H −�.
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Pass to the one-point compactifications Q̂, Ĥ , and ∂ Q̂ of Q, H , and ∂Q, re-
spectively (the third of these is an admitted abuse of notation), and observe that
Ĥ is a 2-cell. Name compactification points∞ and∞′ in Q̂ and Ĥ , respectively.
Let A ⊂ Q̂ × [0, 1] be the subset (Q̂ × {0, 1}) ∪ (∂ Q̂ × [0, 1]). Define a map
f : A→ Ĥ×[0, 1] as8θ on Q̂×0, ϕ on Q̂×1, and µt on ∂Q×[0, 1]⊂ ∂ Q̂×[0, 1],
and as the map (∞, t)→ (∞′, t) on∞×[0, 1]. Apply the SGTE (Theorem 5.15)
to extend f to a split map F : (Q̂ × [0, 1], A)→ (Ĥ × [0, 1], ∂(Ĥ × [0, 1])). A
restriction of F gives a proper homotopy between 8θ and ϕ. �

Proof of the arc proposition. Note first that we can assume that ε is small enough
so that f −1(B[(a, 0), ε]) is contained in a dichotomous neighborhood of Å. We
will also assume without loss of generality that f is transverse to all subsurfaces of
S2
− I constructed below. We denote, for a ∈ (−1,+1) and δ > r > 0, M(a, δ, r)=

B[(a, 0), δ] ∩ {(x, y) ∈ R2
| y ≥ r}.

Claim 1. Given a ∈ (−1,+1) and ε > 0 there exists δ ∈ (0, ε) such that for any
r < δ there exists s < r so that (M(a, ε, s),M(a, δ, r)) is good.

Proof. From Lemma 7.2 there exists δ > 0 such that (B[(a, 0), ε], B[(a, 0), δ])
is good. Since the preimages of these sets lie in a dichotomous neighborhood
of A− ∂A we can conclude that (B[(a, 0), ε] ∩ H̊ , B[(a, 0), δ] ∩ H̊) is also good.
Hence, (B[(a, 0), ε]∩ H̊ ,M(a, δ, r)) is good. To finish the proof of Claim 1, apply
Lemma 7.3 to conclude that, for some s > 0, (M(a, ε, s),M(a, δ, r)) is good. �

Now continuing with the proof of the arc proposition, choose decreasing se-
quences {δi }, {ri } in (0,+∞) converging to 0 and such that, for all i , δi+1>ri >δi+2.

Denote Ni =M(a, δi , ri ) and observe that, for all i , Ni∩Ni+1 is a disk, Ni∩N j =

∅ if |i − j | > 1, and lim(diam Ni ) = 0. From Claim 1 we can find (after, in
general, deleting the first K entries for some K ∈ N and reindexing) a sequence
{(εi , si )}

∞

i=1 of pairs of positive real numbers such that lim εi = 0 and, for all i ,
εi ≥ εi+1, εi > si , ri > si , and denoting Mi =M(a, εi , si ), the pair (Mi , Ni ) is good.
Denote by Y and Z the components of [−1,+1] × [0,+∞)−

⋃
i Mi containing

{(x, 0) | −1 < x < a} and {(x, 0) | a < x < 1}, respectively. Applying Claim 1
infinitely many times we can choose sequences {(Ai , Bi )} and {(Ci , Di )} of good
pairs of disks in Y̊ and Z̊ , respectively, satisfying the following conditions:

(1) For all i 6= j , Ai ∩ A j =∅ and Ci ∩C j =∅.

(2) Given ε > 0 there exists N ∈ N such that Ai ∪Ci ⊂ B[(a, 0), ε] whenever
i ≥ N .

Now by Lemmas 7.4 and 7.5, we can assume, without loss of generality, that for
all i , f is bijective over Bi ∪ Di .

Let R be a closed subset of H − I satisfying the following conditions:

(1) The closure of R in H is R ∪ {(a, 0)} and that closure is a disk.
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(2) For every i , ∂R meets each of Bi and Di transversely in an arc.

(3)
⋃

i Mi ⊂ R̊.

Denote Q= f −1(R). From bijectivity of f over
(⋃

i Bi
)
∪
(⋃

i Di
)

we conclude
that ∂Q has one noncompact component. Denote by Q0 that component of Q
containing the noncompact component of ∂Q. Then f |Q0 : Q0→ R has degree
one and is therefore surjective. So for all i , f (Q0) ∩ Ni 6= ∅ and hence, from
goodness of the pairs {(Mi , Ni )} we have f (Q − Q0) ∩

(⋃
∞

i=1 Ni
)
= ∅. Now,

because R−
⋃
∞

i=1 Ni is homeomorphic to R×[0, 1), all components of Q−Q0 can
be “eliminated” (i.e., in the image, “pushed out of” R) by an admissible homotopy
of f fixing f outside any preassigned neighborhood of Q−Q0 in X−A (the details
of this argument are left to the reader). So we have established the following claim.

Claim 2. We can assume without loss of generality that Q is connected.

We will show that we can also assume without loss of generality that Q has
one end which, by Lemma 7.6, will complete the proof of the arc proposition. To
establish this, let {Wn}

∞

n=1 be an exhaustion of R satisfying the following conditions,
where Zn denotes the closure in R of R−Wn:

(1) For all n, Wn is a disk such that Wn ∩ ∂R is an arc and Wn ⊂ Int Wn+1 (where
the interior is with respect to R).

(2) Given n there exists j such that

∂Wn ∩

( ∞⋃
i=1

Ni

)
= ∂Wn ∩ [N j − (N j+1 ∪ N j−1)]

and this set is an arc.

(3) If, for some n and i , Zn ∩ Ni 6=∅, then Mi ⊂ Zn−1.

Now, by an argument similar to that which established Claim 2, we can assume the
following without loss of generality: (∗) for all n, no component of f −1(Zn) is sent
by f into Zn−

(⋃
∞

i=1 Ni
)

(we leave this to the reader, but note first that the closure
of Zn−

(⋃
∞

i=1 Ni
)

in R has two components, each of which is homeomorphic to H ).
Now, for a given n, there must exist a component C of f −1(Zn) such that f |C :

C→ Zn has nonzero degree and is therefore surjective. If C ′ is another component of
f −1(Zn), we have by (∗) that, for some j ∈N, f (C ′)∩N j 6=∅. By condition (3) for
{Wn}we then have M j ⊂ Zn−1 and hence, by goodness of the pair (M j , N j ), we have
that C ′ ∪C is contained in a component of f −1(Zn−1). Hence, Q has one end. �

Notation. To avoid ambiguity in the sequel, the notation (a, b) (where a, b ∈ R)
will be used exclusively for open intervals in R. The map p2 :R

2
→R is projection

to the second coordinate.
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In the observations below (used in the proof of Lemma 7.7), R is a compact,
orientable surface with boundary.

Observation. (1) If two split maps from (R, ∂R) to (B2, ∂B2) are equal over
∂B2, then they are admissibly homotopic.

(2) If 0< a < b< 1 and ϕ : ∂R→ ∂([0, 1]2) is a map bijective over {0, 1}×[0, 1],
then ϕ extends to a split map from (R, ∂R) to ([0, 1]2, ∂([0, 1]2)) which is
bijective over [0, 1]× [a, b].

Proof. (1) The straight line homotopy between f and g is admissible.

(2) We leave this to the reader except noting that we can assume without loss
of generality that R is planar. To see this, first use the classification of compact
surfaces to show that R̊ contains a compact surface S such that R/S is a planar
surface. �

Lemma 7.7. Suppose R is a connected, orientable, noncompact surface having
one end. Also suppose that ϕ : (R, ∂R)→ (Q, ∂Q) is a proper, split map where
Q = [a, b]× (0, c] (for some a, b, c with a < b and c > 0) which is bijective over
{a, b}× (0, c]. Then there exists s < c such that for any t < s and 0< ε < c−t

2 there
is a proper, admissible homotopy of ϕ supported in (a, b)× (t, c) to a map which is
bijective over [a, b]× [t + ε, c− ε].

Addendum. There is a straightforward generalization of Lemma 7.7 which we
will need. In the hypothesis of that generalization connectivity of R is replaced by
the following: R has finitely many components only one of which is noncompact.
Then in the conclusion the number c is replaced by r with 0< r < c such that no
compact component of R meets ϕ−1([a, b]× (0, r ]).

We leave the full statement and proof of the generalization to the reader. In the
sequel, it will be understood that “Lemma 7.7 ” refers to this generalization.

Proof. By one-endedness of R we can choose s so that if t≤ s, then the image of only
one component of ϕ−1([a, b]×[t, c]) meets both components of [a, b]×{t, c}. Let
C denote that component. We can assume without loss of generality that the images
of all other components of ϕ−1([a, b]×[t, c]) are in [a, b]× ([t, t+ε)∪ (c−ε, c]).
We leave it to the reader to complete the proof using the above observations. �

Now for the remainder of the proof of the factor reduction theorem we adopt
the following notation: for a > 0 and n ∈ N, En =

{ k
2n

∣∣ k ∈ Z and
∣∣ k

2n

∣∣< 1
}
,

Mn = max En , W 〈n, a〉 = [−Mn,Mn] × (0, a], and Z〈n, a〉 = (En × (0, a]) ∪
([−Mn,Mn] × {a}); for b < 0, Z〈n, b〉 = {−Ex | Ex ∈ Z〈n,−b〉} (and similarly for
W 〈n, b〉).

We will show that, for some strictly decreasing sequence {an}
∞

n=1 converging to
zero, f is admissibly homotopic to a map which is bijective over

⋃
∞

k=1 Z〈k, ak〉.
We construct such a map as the limit of a sequence { fn}

∞

n=1 of split maps where, for
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each n, fn is bijective over
⋃n

k=1 Z〈k, ak〉 (for appropriately chosen {a1, a2, . . . , an})
and fn+1 is admissibly homotopic to fn . The following observation will be used to
ensure convergence of { fn}

∞

n=1.

Observation. A sequence {gn : (Y, A)→ (S2, I )}∞n=1 of admissible maps converges
to a map admissibly homotopic to g1 if , for each n > 1, gn−1 is homotopic to gn

by a homotopy supported in an open subset Un of S2
− I having finitely many

components and compact closure in S2
− I and satisfying the following: for all

n 6= m, Un ∩Um =∅, and

lim
n→∞

max{diam(C) | C is a component of Un} = 0.

Now, applying the arc proposition infinitely many times, construct a monotone
strictly decreasing sequence {bn}

∞

n=1 of real numbers converging to zero and a
map f0 admissibly homotopic to f and bijective over

⋃
∞

n=1 En × [0, bn]. The
map f0 is itself the limit of a sequence of maps each of which is obtained by an
application of the arc proposition to its predecessor. The above observation is used
to ensure convergence and to verify that the limit is admissibly homotopic to f .
The details are left to the reader.

Now given f0 we will construct f1, then briefly indicate the construction of f2.
The induction step in full generality we leave to the reader.

To construct f1, let F denote the closure in H − ∂H of one of the components
of W 〈1, b1〉− Z〈1, b1〉 (which is

[(
−

1
2 , 0

)
∪
(
0, 1

2

)]
× (0, b1)). Apply Lemma 7.7

to f0| f −1
0 (F) : f −1

0 (F)→ F for each choice of F . Choose the r and t (as in
Lemma 7.7) to be the same for both applications. We are free to choose r small
enough so that each of the two homotopies has support in an open rectangle whose
diameter is less than one. Let f1 be the map which results from the composition of
the two homotopies. From the conclusion of Lemma 7.7 we can choose a1 < b1

such that f1 is bijective over
[
−

1
2 ,

1
2

]
×{a1}.

Now to construct f2, apply Lemma 7.7 to each map f1| f −1
1 (F) : f −1

1 (F)→ F
where F =

[ k
22 ,

k+1
22

]
× (0, c2] where c2 = min{a1, b2} and k is an integer with

−3≤ k ≤ 2. Choose a common r and t for the six applications of the lemma and
furthermore choose r small enough so that each of the homotopies has support in
a rectangle of diameter one half and furthermore that support is disjoint from the
support of the previously constructed homotopy of f0 to f1. The composition of
the six homotopies is the homotopy from f1 to f2. The conclusion of Lemma 7.7
allows us to choose a2 < c1 such that f2 is bijective over Z〈1, a1〉 ∪ Z〈2, a2〉.

By “symmetry” we can now assume without loss of generality that the map f of
the hypothesis is bijective over

⋃
∞

n=1[Z〈n, an〉∪ Z〈n, bn〉] where {an} and {bn} are
monotone strictly decreasing and monotone strictly increasing, respectively, and
both sequences converge to zero. Note that the closure in S2 of

⋃
∞

n=1[W 〈n, an〉 ∪

W 〈n, bn〉] is a 2-disk and denote the closed complement of that 2-disk minus the
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endpoints of I by Q (it is homeomorphic to [−1,+1]×R). Denote R= f −1(Q). We
have that f |R : R→Q is a proper map of noncompact surfaces and f |∂R :∂R→∂Q
is bijective. Furthermore, it follows from one-endedness of Y−A that f |R : R→ Q
is bijective on ends. It follows from the classification theorem for noncompact
surfaces [Richards 1963; Prishlyak and Mischenko 2007] (and the special case
required here can also be proven by applying Lemma 7.7 infinitely many times) that
R can be constructed by first deleting the interiors of a proper family of pairwise-
disjoint 2-disks in R×[0, 1], none of which meets R×{0, 1}, and then attaching to
the boundary of each 2-disk a once-punctured torus. Denote by S the decomposition
space obtained from the decomposition of R whose only nondegenerate elements are
the punctured tori. Up to admissible homotopy fixing f |∂R, the map f |R : R→ Q
factors through a map g : S → Q whose end-point compactification is a split
boundary-to-boundary map of 2-disks. Hence, from the observation preceding
Lemma 7.7, that map is admissibly homotopic (fixing g(∂S) to a homeomorphism).
So we can assume without loss that the map f sends each punctured torus to a point
and is injective over the complement of the image of the union of all the punctured
tori. So we can easily choose a proper, split embedding (Z × [−1,+1],Z ×

{−1,+1})→ (Q, ∂Q) such that f is injective over the image of the embedding
(which we denote by E). So now we can assume without loss of generality that the
map f is bijective over I∪E∪

(⋃
∞

n=1[Z〈n, an〉∪Z〈n, bn〉]
)
, which we denote by Z .

Note that the closure of any component C of the complement of Z in S2 is a
2-disk and that f | f −1(C) : f −1(C)→C is a boundary-preserving map of compact,
connected orientable surfaces which is bijective over ∂C and hence is homotopic
(fixing f |∂ f −1(C)) to a standard map. It follows easily that Y is a Pontryagin
surface and A is P-negligible.

8. Pontryagin disks

Recall that a Pontryagin disk D is a compact, connected subset of a rich Pontryagin
surface P whose frontier relative to P is a simple closed curve. That curve is called
the boundary of D and is denoted ∂D. The subset D− ∂D is the interior of D,
written Int D. By Corollary 3.2 every Pontryagin disk D has a rich family E of
figure-eights, all of which lie in Int D; we shall assume that every sufficient family
for a Pontryagin disk used here has this property.

Theorem 8.1. Suppose D and D′ are Pontryagin disks equipped with sufficient
families E and E ′, respectively. Let S = D/E and S′ = D′/E ′ be the associated
decompositions and let d :D→ S and d ′ :D′→ S′ be the quotient maps. Let Z be a
closed subset of S such that Z ∩d(E)=∅, and let h : S→ S′ be a homeomorphism
such that h(Z)∩ d ′(E ′) = ∅. Then for any ε > 0 there exists a homeomorphism
H : D→ D′ such that hd and d ′H are ε-close and equal on d−1(Z).
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The proof of the above theorem, which occupies most of this section, is deferred.

Corollary 8.2. Every homeomorphism ψ : ∂D→ ∂D′ between the boundaries of
Pontryagin disks D,D′ extends to a homeomorphism 9 : D→ D′.

Proof. Let E and E ′ be full families for D and D′, respectively. Recall that by
convention no elements of E or E ′ meet ∂D or ∂D′. Let B = D/E and B ′ = D′/E ′

denote the usual decompositions and d :D→ B and d ′ :D′→ B ′ the quotient maps.
Since B and B ′ are 2-disks the homeomorphism d ′ ◦ψ ◦ (d|∂B)−1

: ∂B → ∂B ′

extends to a homeomorphism h : B→ B ′. Apply Theorem 8.1 with Z = ∂S. �

Corollary 8.3. Let J and J ∗ denote separating simple closed curves in closed, rich
Pontryagin surfaces P and P∗, respectively. Then any homeomorphism h : J → J ∗

can be extended to a homeomorphism H : P→ P∗.

Proof. Each of J and J ∗ bounds two Pontryagin disks in their respective Pontryagin
surfaces. Apply Corollary 8.2. �

Theorem 8.1 also supplies an affirmative answer to a question raised by D. Repovš
on several occasions back in the 1990s. The argument for Corollary 8.4 below also
yields that Cantor sets in connected rich Pontryagin surfaces are homogeneously
embedded.

Corollary 8.4. Suppose that D and D′ are Pontryagin disks and that K ⊂ Int D and
K ′ ⊂ Int D′ are Cantor sets. Then each homeomorphism h : ∂D∪ K → ∂D′ ∪ K ′

extends to a homeomorphism H : D→ D′.

Proof. Here K is P-negligible in Int D, so there exists a full collection E of figure-
eights for D, all of which lie in Int D−K . Similarly, there exists a full collection E ′

of figure-eights for D′, all of which lie in Int D′− K ′. Apply Theorem 8.1 using
the obvious decompositions. �

Definition. Let D, E , and d be as in Theorem 8.1. A utilitarian web W for S is a
finite collection {Bi } of 2-cells in S that cover S, whose boundaries miss d(E), and
for i 6= j , Bi ∩ B j is either empty or a connected subset of the boundary of each.
(A utilitarian web is a generalized triangulation.) We define utilitarian webs W on
appropriate quotients of closed Pontryagin surfaces similarly. We will refer to the
union of the boundaries as the 1-skeleton of W . We will call two such webs W,W ′

for S equivalent if there exists a homeomorphism h : S→ S that induces a bijection
from the cells of W to the cells of W ′.

The following is an immediate consequence of Theorem 8.1:

Corollary 8.5. Under the hypotheses of Theorem 8.1, let W be a utilitarian web
for S and let h : S→ S′ be a homeomorphism that carries the 1-skeleton T of W
into S′ − d ′(E ′). Then there exists a homeomorphism H : D → D′ such that
hd(t)= d ′H(t) for all t ∈ d−1(T )∪ ∂D.
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We state several definitions before returning to the proof of Theorem 8.1.

Definition. A PreP space X is a space equipped with two subspaces denoted E(X)
and C(X) satisfying the following: X is a compact, connected, orientable surface
with connected boundary; E(X) is the union of a finite family of pairwise-disjoint
figure-eights in X̊ such that, for each figure-eight e ∈ E(X), X/e is a surface; C(X)
is a countable dense subspace of X̊ disjoint from E(X).

A map f : X → Y of PreP spaces is a PreP map if it is standard and satisfies
{y ∈ Y | | f −1(y)| 6= 1} ⊆ C(Y ) and f (E(X)∪C(X)) = E(Y )∪C(Y ). Note that
compositions of PreP maps are PreP.

A diagram is a set D of surjective maps of compact metric spaces satisfying the
following conditions: the range of no element of D is the same space as its domain;
no two elements of D have both the same domain and the same range. A derived
map of a diagram D is a map which is the composition of elements of D such
that no element of D appears more than once in the factorization and the domain
and range of the composite map are different (subsequently, when we refer to a
“factorization” of a derived map, it will be understood that the factorization satisfies
this condition).

A modulus of continuity of a diagram is a function δ : (0,+∞)→ (0,+∞)
which is a modulus of continuity for every derived map of the diagram (i.e., given
a derived map f of the diagram, ε > 0, and points x and y in the domain of f
which are δ(ε)-close we have that f (x) and f (y) are ε-close). Note that any finite
diagram has a modulus of continuity.

A pair X
f
⇒

g
Y of derived maps of a diagram is allowable if f and g have

factorizations such that if A and B denote the sets of spaces appearing in the
factorizations of f and g, respectively, then A∩B = {X, Y }.

A diagram D is ε-commutative if the two maps of any allowable pair are ε-close.
An infinite diagram is asymptotically commutative if, given ε > 0, there exists a
finite subset DE of D such that D−DE is ε-commutative.

Observation. Given an inverse sequence {pn : Xn+1→ Xn}
∞

n=1 of surjective maps
of compact metrizable spaces with limit X∞, there exist metrics {ρn}

∞

n=1 for {Xn}
∞

n=1
and ρ∞ for X∞ so that, for any x, y∈ X∞, the sequence {ρn(p∞,n(x), p∞,n(y))}∞n=1
(where p∞,n : X∞→ Xn is the projection map) is strictly increasing and has limit
ρ∞(x, y). (We leave the proof to the reader.)

Definition. Diagrams of the following two forms will be referred to as type A and
type B diagrams if, in each case, the metrics in the vertical columns (which are
inverse sequences) satisfy the condition stated in the above observation:
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... (A)
...

Xn+1 X ′n+1

Xn X ′n

...
...

...

X2 X ′2

X1 X ′1

pn+1 p′n+1

pn p′n

fn

fn+1

f2

pn−1 p′n−1

p1 p′1

f1

... (B)
...

Xn+1 X ′n+1

Xn X ′n

...
...

...

X2 X ′2

X1 X ′1

pn+1 p′n+1

pn p′n

fn

fn+1

f2

pn−1 p′n−1

p1 p′1

f1

gn

g1

Lemma 8.6. Given an asymptotically commutative type A diagram D (with notation
as in the definition) there exists a map f∞ : X∞→ X ′

∞
having the following property:

for any ε > 0 there exists N ∈ N such that if n ≥ N , then p′
∞,n ◦ f∞ and fn ◦ p∞,n

are ε-close.

Proof. From asymptotic commutativity of D we have that, for any k ∈ N, the
sequence of maps {p′n,k ◦ fn ◦ p∞,n : X∞→ X ′k}n>k converges uniformly. Denoting
the limit by αk , we have that the diagram

X∞ X ′
∞

...
...

... X ′n

...

X ′k

αn

αk

commutes. The inverse limit is f∞. �
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Note. We will refer to the map f∞ in the conclusion of Lemma 8.6 as the limit of D.

Lemma 8.7. Suppose D is an asymptotically commutative type B diagram and let
f∞ and g∞ be the limits, respectively, of the two type A diagrams obtained when
the {gi } are deleted from D and when the { fi } are deleted from D. Then f∞ and g∞
are inverses.

Proof. To show that g∞ is a left inverse for f∞ it suffices to show, given ε > 0 and
a ∈ X∞, that (g∞ ◦ f∞)(a) is within ε of a. To see this, extract the subdiagram

X∞ X ′
∞

X ′n+1

Xn

f∞
g∞

p∞,n

p′
∞,n+1

gn

We can choose n large enough so that the following conditions are satisfied:

(1) There exists δ > 0 such that if E ⊂ Xn has diameter less than 2δ, then p−1
∞,n(E)

has diameter less than ε.

(2) The subdiagram is δ-commutative.

By condition (2), then (p∞,n ◦g∞◦ f∞)(a) is within δ of (gn ◦ p′
∞,n+1◦ f∞)(a) and

the latter is within δ of p∞,n(a). The desired inequality follows from condition (1).
The proof that f∞ is a left inverse for g∞ is similar. �

Lemma 8.8. Suppose X is a compact metric space, R is an open surface which
is an open subset of X , A and B are countable, dense subsets of R, and ε > 0.
Then there exists a split homeomorphism ϕ : (X, R)→ (X, R) supported in R and
ε-close to the identity such that ϕ(A)= B.

Proof. Brouwer [1913] and Fréchet [1910], independently, proved that Euclidean
space is countable dense homogeneous. This is a mild generalization of their result.
We provide some details for completeness.

The idea is to produce ϕ as a limit of a sequence ϕk : X → X supported in R.
For each k ≥ 1 we will determine a homeomorphism hk : X→ X supported in a
very small 2-disk 1k in R and then will set ϕk = hkϕk−1 (here ϕ0 = Identity).

List the elements {a1, a2, . . .} of A and likewise the elements {b1, b2, . . .} of B.
When k = 2m − 1, 1k will be centered at ϕk−1(am) and will contain no other

point of
ϕk−1({a1, a2, . . . , am−1})∪ {b1, b2, . . . , bm−1} ⊂ B.
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If ϕk−1(am) ∈ B. then hk will be the identity; otherwise, apply density of B to
obtain b j ∈ B ∩ Int1k and choose hk so hkϕk−1(am)= b j .

When k = 2m, 1k will be centered at ϕk−1(bm) and contain no other point of

ϕk−1({a1, a2, . . . , am})∪ {b1, b2, . . . , bm−1} ⊂ B.

If there exists a j ∈ A such that ϕk−1(a j )=bm , then hk will be the identity; otherwise,
apply density of A to obtain a j ∈ A∩ Int1k and choose hk so hkϕk−1(a j )= bm .

In short, at odd-numbered stages of the process, a point of A is shifted into B,
in orderly fashion, and at even-numbered stages a point of B is caused to be the
image of some point of A. Once such arrangements are made, no further adjustment
of those special points is allowed at later stages, so those arrangements persist to
the limit map ϕ. Eventually all points of A are moved into B and all from B are
covered.

Simply by choosing the 1k of diameter less than ε/2k , we can assure that the
sequence {ϕk} converges uniformly to a continuous function ϕ ε-close to the identity.
Furthermore, ϕ will restrict to the identity on X − R and will be surjective over X .

At any stage k>1 in this process, we can determine ηk−1>0 such that points of X
at least 1/k apart have image under ϕk−1 at least ηk−1 apart. Thus, by requiring 1k

to have diameter less than ηi/2k−i for i = 1, 2, . . . , k−1, we assure injectivity of ϕ.
As a result, ϕ is a split homeomorphism of (X, R) to itself. �

Lemma 8.9. Suppose f : X → X ′ and p : Y → X ′ are PreP maps such that
{x ∈ X ′ | | f −1(x)| 6= 1} ⊆ {x ∈ X ′ | |p−1(x)| 6= 1} and Z is a closed subset of X ′

disjoint from E(X ′)∪C(X ′). Then given ε′ > 0 there exists a PreP map g : Y → X
such that p and f ◦ g are ε′-close and equal over Z.

Proof. Denote {x1, x2, . . . , xn}= {x ∈ X ′ | |p−1(x)| 6= 1}. Let {Di }
n
i=1 be a pairwise-

disjoint family of 2-disks in X̊ ′ such that for each i

xi ∈ D̊i , diam Di < ε
′, ∂Di ∩ [E(X ′)∪C(X ′)∪ Z ] =∅.

Define g as follows. For x /∈
⋃n

i=1 p−1(D̊i ) we define g(x)= f −1(p(x)) (this can
be done since f is injective over the complement of

⋃
i D̊i ). For each i we define

αi = g|p−1(Di ) : p−1(Di )→ f −1(Di ) as follows. Note first that, for all i , p−1(Di )

is a disk with a handle and f −1(Di ) is either a disk with a handle or simply a disk.
In the first case choose a homeomorphism αi satisfying the following conditions:

(1) αi |p−1(∂Di )= f −1
◦ p|p−1(∂Di ).

(2) αi carries p−1(xi ) onto f −1(xi ).

(3) αi (C(Y )∩ p−1(Di ))= C(X)∩ f −1(Di ).

Note that (2) can be achieved since the figure-eight in a disk with a handle is unique
up to homeomorphism fixing the boundary and (3) can be achieved using Lemma 8.8.
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In the second case ( f −1(Di ) is a disk), just choose αi so that α−1
i ( f −1(xi )) =

p−1(xi ) and p−1(xi ) is the only nontrivial point preimage. Again Lemma 8.8
allows us to achieve condition (3) above. �

Lemma 8.10. Suppose D is a finite ε-commutative diagram, δ is a modulus of
continuity for D, and f : Z → Y and p : X → Y are maps in D such that X is
neither the domain nor codomain of any map in D other than p. If r > 0, ε′ ≤ δ(r),
and g : X → Z is a map not in D and such that f ◦ g is ε′-close to p, then the
diagram D∪ {g} is σ -commutative where σ =max{ε′, ε+ r}.

Proof. Suppose {ϕ,ψ} is an allowable pair in D ∪ {g}. If each of p, f , and g
is a factor of ϕ or a factor of ψ , then they must be the only factors in the two
factorizations and we are done by hypothesis. If neither of the factorizations of ϕ
and ψ include g, then {ϕ,ψ} is an allowable pair in D and again we are done. The
remaining possibility is that g and p are the initial factors of ϕ and ψ and f is a
factor of neither. We will show that, in this case, ϕ and ψ are (ε+ r)-close. We
can write ϕ = α ◦ g and ψ = β ◦ p where α and β are derived maps of D. Consider
the three maps β ◦ p, β ◦ f ◦ g, and α ◦ g. The first and second are r -close because
p and f ◦ g are ε′-close (and ε′ ≤ δ(r)). The second and third are ε-close since
the distance between them is the same as the distance between β ◦ f and α (an
allowable pair in D). The triangle inequality concludes the argument. �

Proof of Theorem 8.1. First note that we can assume (without loss of generality)
∂S ⊂ Z . Using Proposition 2.1 we write

D= X∞ = lim
←−−
{pn : Xn+1→ Xn}

∞

n=1,

D′ = X ′
∞
= lim
←−−
{p′n : X

′

n+1→ X ′n}
∞

n=1,

where X1 = S and X ′1 = S′. Furthermore, we can assume that the metrics for these
spaces satisfy the conditions stated in the observation following the definition of
ε-commutative. For each n ∈ N we set

C(Xn)= p∞,n({e ∈ E | |p∞,n(e)| = 1}),

E(Xn)= p∞,n({e ∈ E | |p∞,n(e)| 6= 1})

and similarly for C(X ′n) and E(X ′n). This makes the maps {pn} and {p′n} PreP.
Note also that d = p∞,1 and d ′ = p′

∞,1.
The following argument shows that h can be approximated by PreP maps and

hence we can assume without loss that it is PreP. Applying Lemma 8.8 to the pair
(X ′1, X ′1−h(Z)) and the subsets h(C(X1)) and C(X ′1) we obtain a homeomorphism
ϕ : X ′1→ X ′1 fixing h(Z) and throwing h(C(X1)) onto C(X ′1) and ε-close to the
identity for any preassigned ε. So ϕ◦h is PreP and arbitrarily close to h. We denote
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h = f1 and assume f1 is PreP. So we have an infinite diagram of PreP maps:

...
...

Xn+1 X ′n+1

Xn X ′n

...
...

X2 X ′2

S = X1 X ′1= S′

pn+1 p′n+1

pn p′n

pn−1 p′n−1

p1 p′1

f1

We will construct the infinite diagram of PreP maps (denoted D),

...
...

Xα(n+1) X ′β(n+1)

Xα(n) X ′β(n)

...
...

...

Xα(2) X ′β(2)

Xα(1) X ′β(1)

pα(n+1),α(n) p′
β(n+1),β(n)

fn

fn+1

f2

pα(2),α(1) p′
β(2),β(1)

f1

gn

g1

where α and β are increasing functions from N to N with α(1)= β(1)= 1.
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Before listing the properties which D will have, we adopt some notation: D(n)k
(for 1 ≤ k < n) will denote the finite subset of D consisting of all maps, each of
which is either fk , fn , or a map in D above fk and below fn; define Zn inductively
by Z1 = Z and Zn+1 = p−1

α(n+1),α(n)(Zn).
The diagram D will satisfy the following two conditions:

(1) For all n and 1≤ k < n, D(n)k is ε ·
[∑n

m=k
1

2m

]
-commutative.

(2) fn and gn are injective over fn(Zn) and Zn , respectively.

It follows immediately from the above properties that D is asymptotically com-
mutative and that the map f∞ provided by Lemma 8.6 and guaranteed to be a
homeomorphism by Lemma 8.7 will serve as the desired H .

The construction of D is accomplished by producing inductively the sequence
{D(n)1 }

∞

n=2 of subdiagrams. The construction of D(n+1)
1 from D(n)1 is carried out in

two stages. First β(n+1) and gn are chosen, then α(n+1) and fn+1. In each stage,
Lemma 8.9 is used to construct the desired map. The choices of ε′ (as in Lemma 8.9)
which will ensure the necessary approximate commutativity of D(n+1)

k (k < n) are
dictated by Lemma 8.10.

So in determining β(n+ 1) first note that given any finite subset S of C(X ′β(n))
there exists m ∈N with m > β(n) such that, for each x ∈ S, (p′m,β(n))

−1(x) is not a
singleton. Let β(n+1) be such an m for the set S = {x ∈C(X ′β(n)) | | f

−1
n (x)| 6= 1}.

This ensures that the maps fn and p′β(n+1),β(n) satisfy the hypothesis of Lemma 8.9
(where D(n)1 ∪ {p

′

β(n+1),β(n)} plays the role of D and Zn plays the role of Z in the
application of that lemma). For the ε′ we choose min

{
ε

2n+2 , δ0
(

ε
2n+2

)}
where δ0

is a modulus of continuity for D(n)1 ∪ {p
′

β(n+1),β(n)} (and hence also for D(n)k for
any k < n). The application of Lemma 8.9 produces the map gn and Lemma 8.10
guarantees that, for any k < n, D(n)k ∪ {p

′

β(n+1),β(n), gn} is ε ·
( 1

2 ·
1

2n+1 +
∑n

m=k
1

2m

)
-

commutative. Now to construct fn , first choose α(n+1) larger than α(n) and large
enough so that the maps gn and pα(n+1),α(n) satisfy the hypothesis of Lemma 8.9.

In preparing to apply Lemma 8.10 we choose r = ε/2n+2 and choose ε′ =
min{r, δ1(r)}, where δ1 is a modulus of continuity for D(n)1 ∪ {p

′

β(n+1),β(n), gn}.
Upon applying Lemma 8.9 we obtain the map fn+1. We conclude from Lemma 8.10
that, for k < n+ 1, D(n+1)

k is ε ·
( 1

2 ·
1

2n+1 +
1
2 ·

1
2n+1 +

∑n
m=k

1
2m

)
-commutative. �

9. Pontryagin cellularity

A compact subset of a Pontryagin surface is Pontryagin cellular if it can be expressed
as a nested intersection of Pontryagin disks D1,D2, . . . where Di+1⊂ Int Di for all i .

Pontryagin cellular subsets of Pontryagin surfaces have some features analogous
to those of cellular subsets of genuine surfaces.
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Proposition 9.1. Let C be a compact subset of a rich Pontryagin surface P. Then
the decomposition GC of P whose only nondegenerate element is C is shrinkable if
and only if C is Pontryagin cellular in P.

Proof. The forward implication follows immediately from [Daverman 1986, Propo-
sition 5.12]. For the reverse, given a neighborhood U of C , find a Pontryagin disk D

such that C ⊂ Int D ⊂ D ⊂ U . Let E be a full family of figure-eights for D and
let d : D→ B = D/E denote the quotient map to the resulting disk B. Cover B
with a utilitarian web of four disks B0, B1, B2, B3, as shown below, where B0 ⊂ B̊
contains d(C):

B0

B1 B2

B3

d(C)

Specify a homeomorphism h : B→ B that restricts to the identity on ∂B, that carries
B0 to a disk B ′0 whose preimage in P is small, and that sends each of the ∂Bi into
B−d(E). Then Corollary 8.5 promises a homeomorphism H :D→D that restricts
to the identity on ∂D and that carries d−1(B0) to the small set d−1(B ′0). Finally, H
extends to the rest of P via the identity to give a homeomorphism showing that GC

is shrinkable. �

Proposition 9.2. A compact subset C of a rich Pontryagin surface P is Pontryagin
cellular if and only if C is connected and P −C has an isolated end corresponding
to C.

Proof. The forward implication is routine. For the reverse, note that we can assume
P is compact (in view of Proposition 4.3) and connected. Then P/C is both the
one-point and end-point compactification of P −C . As such, it has a sufficient
family EC of figure-eights, each of which is contained in P−C . Name the quotient
map ψ : P→ P ′ = P/C and the decomposition map d ′ : P ′→ P ′/EC . Given any
open subset U of P containing C , one can find a small 2-disk neighborhood B of
the point d ′ψ(C) in P ′/EC whose frontier is a simple closed curve missing d ′(EC),
where B satisfies

C ⊂ (d ′ψ)−1(B̊)⊂ (d ′ψ)−1(B)⊂U.

Clearly (d ′ψ)−1(B) is a Pontryagin disk. Hence, C is Pontryagin cellular. �

The following observation is used in the proof of the corollary below (other
details of which are left to the reader).
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Observation. Suppose X and Y are connected, nice spaces and e is an isolated
end of Y . If f : X→ Y is a proper, surjective map which is monotone over some
neighborhood of e, then only one end of X is sent to e by f .

Proof. First note that we can assume without loss that e is the only end of Y (consider
f̂̂ | : X̂̂ − ( f̂̂ )−1(e)→ Ŷ̂ − {e}). Supposing that X has more than one end, there
exists a neighborhood W of∞ in X having at least two components which meet∞.
By one-endedness of Y we can find neighborhoods M and N of infinity such that f
is monotone over M , N ⊂ M̊ , M − N is connected, and f −1(M − N )⊂W . Hence,
f −1(M − N ) is not connected but f | : f −1(M − N )→ M − N is monotone, thus
contradicting the Vietoris–Begle mapping theorem. �

Corollary 9.3. Let f : P → Q be a proper, monotone map between Pontryagin
surfaces, with P a rich Pontryagin surface. Then each f −1(q), q ∈ Q, is Pontryagin
cellular.

10. Decompositions induced over 1-dimensional subsets
and proof of the monotone approximation theorem

The final section of this paper culminates in a proof of the monotone approximation
theorem. A key step involves showing how to approximate a given monotone map
by one that is injective over certain graphs in the target space.

Proposition 10.1. Suppose X and Y are compact metrizable spaces and C1,C2, . . .

are closed subsets of Y such that, for any surjective monotone map f : X → Y ,
each of the decompositions G(Ci ) induced by f over Ci is shrinkable. Then any
such map f can be approximated by a monotone map F that is 1-1 over

⋃
i Ci .

Moreover, if K is a closed subset of Y such that f is 1-1 over K and each of the
G(Ci ) can be shrunk keeping points over K fixed, then F can be obtained which
agrees with f over K .

Proof. This is a standard Baire category argument. In the complete metric space S

of all surjective, monotone maps X→ Y , the collection O j,n of maps f such that
diam f −1(c) < 1/n for all c ∈ C j is open, for the usual reasons, and is dense by
hypothesis. Any map from the dense subset

⋂
j,n O j,n is 1-1 over

⋃
j C j .

For the additional control over K , take F as above but form the complete metric
subspace of S consisting of monotone maps X→ Y that agree with f over K . �

Proposition 9.1, Corollary 9.3, and Proposition 10.1 combine to yield:

Corollary 10.2. Let f : P→Q be a monotone map between rich, closed Pontryagin
surfaces, Z a countable subset of Q, and K a closed subset of Q such that f is 1-1
over K . Then f can be approximated, arbitrarily closely, by a monotone map F
that is 1-1 over Z ∪ K and agrees with f over K .
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It might be worth mentioning that the next lemma does not show the decomposi-
tion under consideration to be shrinkable. The output is merely a homeomorphism
that carries decomposition elements to sets of small size — it is not subject to any
motion control. A closely related shrinkability result will be established in the
subsequent proposition using additional considerations.

Lemma 10.3. Suppose D is a Pontryagin disk, E is a full family of figure-eights
for D, d : D→ B = D/E is the decomposition map, and G is a monotone upper
semicontinuous decomposition of D such that the union NG of all nondegenerate
elements of G is a subset of Int D and the closure of d(NG) meets ∂B in at most
two points. Then for each ε > 0 there exists a homeomorphism Hε : D→ D such
that Hε restricts to the identity on ∂D and diam Hε(g) < ε for all g ∈ G.

Proof. Name the points z, z∗ of ∂B containing ∂B∩d(Cl NG) and let γ1, γ2 denote
the subarcs of ∂B bounded by these two points.

Identify a disk B1 ⊂ B − γ̊2 containing γ1 such that B̊1 contains the image
under d of every e ∈ E with diameter ε/6 or more. Identify another disk B2 ⊂ B
containing γ2 that meets B1 only at the points z and z∗. Cover the rest of B by a
chain of 2-cells β1, β2, . . . , β2k−1 such that βi and β j meet if and only if |i− j | ≤ 1,
the intersection of successive cells βi and βi+1 is an arc in the boundary of each,
z ∈ β1 and z∗ ∈ β2k−1, these βi together with B1, B2 form a utilitarian web for B,
and each d−1(βi ) has diameter less than ε/3. Furthermore, we can ensure that the
1-skeleton of this utilitarian web avoids the countable set d(E). See:

z

z∗

βk−1

βk

βk+1

β1

β2k−1

γ1 B1 B2 γ2

Now produce an equivalent utilitarian web (equivalent via a homeomorphism
fixing ∂B) in B involving 2-cells B ′1, B ′2, β

′

1, β
′

2, . . . , β
′

2k−1. Here B ′1, B ′2 should
lie very close to γ1, γ2, respectively, so as to miss d(NG). The β ′i , except for β ′1
and β ′2k−1, are contained in B̊. In the construction procedure β ′k should be chosen
first, and it should meet each of B ′1 and B ′2 in an arc. Next, β ′k−1 and β ′k+1 should
be chosen so that any d(g) (g ∈ G) that meets β ′k lives in β ′k−1∪β

′

k ∪β
′

k+1. (This is
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possible since, by upper semicontinuity and the hypothesis that d(NG)∩ ∂B =∅,
elements of G with image near z or z∗ are small.) That exposes the general strategy:
the 2-cells β ′k−2 and β ′k+2 should be chosen, respectively, so that any d(g) that meets
β ′k−1 but not β ′k is contained in β ′k−2∪β

′

k−1 and so that any d(g) that meets β ′k+1 but
not β ′k is contained in β ′k+1 ∪β

′

k+2. The cells β ′k−3, β
′

k+3, . . . should be chosen in
turn so that, ultimately, any d(g) (g nondegenerate) lies either in β ′k−1∪β

′

k∪β
′

k+1 or
in the union β ′i−1 ∪β

′

i of two successive β ′j . Specify a homeomorphism h : B→ B
taking B ′i to Bi and β ′j to β j and fixing points of ∂B. The homeomorphism Hε
provided by Corollary 8.5 keeps points of ∂D fixed and shrinks elements of G
to size less than ε, since the image of each nondegenerate g ∈ G lies in some ε
diameter set of the form d−1(β j ∪β j+1 ∪β j+2). �

Proposition 10.4. Let f : P→ Q be a degree-one, monotone map between rich,
closed Pontryagin surfaces and let A denote any locally separating arc or separating
simple closed curve in Q. Then f can be approximated, arbitrarily closely, by
monotone maps F that are 1-1 over A. Furthermore, the approximations F can be
chosen to equal f over any closed subset K of Q such that f is 1-1 over K .

Proof. We will treat only the case in which A is a locally separating arc in Q. The
proof for simple closed curves is similar, or can be obtained from the result for arcs
plus Proposition 10.1.

By Corollary 10.2 we can approximate f by another monotone map, which we
continue to call f , that is 1-1 over a countable, dense subset of A containing ∂A
and that agrees with the original f over K . Let G(A) denote the decomposition
of P induced by the modified f over A, and let p : P→ X = P/G(A) denote the
decomposition map. We show that G(A) is shrinkable fixing points of K .

By the factor theorem (Theorem 3.1) X is a Pontryagin surface and has a full
family E of figure-eights, each of which lives in X − p f −1(A). Let d : X→ X/E
denote the decomposition map associated with the decomposition of X into points
and these figure-eights.

Fix ε > 0. Note that d is 1-1 over A′ = dp f −1(A). Note also that the closure of
each component of A− K has endpoints in K ∪ ∂A over which f is one-to-one. It
follows easily that only a finite number of components of A− K have preimage
under f with diameter at least ε. We let γ denote one of those components. Since
we will perform the same operations near each of these components, we assume γ
is the only one.

Cover γ ′ = dp f −1(γ ) ⊂ A′ by a finite collection B1, . . . , Bm of 2-cells in
the surface X/E . These 2-cells should have pairwise-disjoint interiors and those
interiors should miss dp f −1(K ), each Bi should meet γ ′ in an arc whose interior
lies in Int Bi , and should be small enough to assure that d−1(Bi ) has diameter less
than ε. The collection should be arranged so that dp is 1-1 over each ∂Bi ∩ A′. As
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a consequence, each Di = (dp)−1(Bi ) and each D′i = f (dp)−1(Bi ) is a Pontryagin
disk, with ∂Di missing all the nondegenerate elements of G(A).

Now apply Lemma 10.3 m times, using the decomposition induced by f |Di :

Di→D′i on each Di , to obtain a homeomorphism Hε : P→ P that sends each Di to
itself, restricts to the identity on each ∂Di as well as outside

⋃
i Di , and sends every

nondegenerate g ∈ G(A) to a set of diameter less than ε. Note that, by construction
of the D′i , f and Hε are ε-close. Hence, Hε establishes that G(A) satisfies the
shrinkability criterion via shrinking homeomorphisms that reduce to the identity
over K .

As in the proof of Corollary 2.5, if θ : P→ P/G(A) is a homeomorphism very
close to p, then F = f p−1θ is a monotone map close to f which is 1-1 over A and
which agrees with f over K . �

Corollary 10.5. Let f : P → Q be a degree-one, monotone map between rich,
closed Pontryagin surfaces, let E be a sufficient family of figure-eights for Q, with
d : Q→ S = Q/E the quotient map, and let 0 denote the 1-skeleton of a utilitarian
web for S. Then f can be approximated, arbitrarily closely, by a monotone map F
that is 1-1 over d−1(0). Furthermore, if K is a closed subset of 0 such that f is
1-1 over K , then F can be chosen to be equal to f over K .

Proof. Specify locally separating arcs A1, . . . , Ak in 0 covering 0 and then employ
Propositions 10.4 and 10.1. �

Proof of the monotone approximation theorem (Theorem 2.2). Let f : P→ Q be a
degree-one, monotone map between closed, connected, rich Pontryagin surfaces.
Given ε > 0, specify a full family EQ of figure-eights for Q, and let E ′Q denote
the cofinite subcollection consisting of figure-eights of diameter less than ε/4. Let
dQ : Q→ S = Q/E ′Q be the associated quotient map to a closed surface S. Find a
utilitarian web W = {B1, . . . , Bm} in S with such small mesh that each (dQ)

−1(Bi )

has diameter less than ε/2.
Use Corollary 10.5 to obtain another monotone map F : P→ Q such that F is

1-1 over d−1
Q (0), where 0 is the 1-skeleton of W , and ρ(F, f ) < ε/2.

At this juncture Q has been split into m Pontryagin disks D′i = (dQ)
−1(Bi )

with pairwise-disjoint interiors, each of diameter less than ε/2. The map F lifts
them to Pontryagin disks Di = F−1(D′i ) in P , and F determines monotone maps
Fi = F |Di : Di → D′i that restrict to homeomorphisms ∂Di → ∂D′i . Corollary 8.2
promises the existence of homeomorphisms8i :Di→D′i that agree with Fi on ∂Di .
By construction of D′i each8i is ε/2-close to Fi . Hence,8=

⋃
i 8i :D=

⋃
i Di→

D′ =
⋃

i D′i is a homeomorphism which is ε/2-close to F and ε-close to f . �

Theorem 10.6. Let f : (D, ∂D)→ (D′, ∂D′) be a split monotone map between
Pontryagin disks and K ⊃ ∂D′ a closed subset of D′ such that f is 1-1 over K . Then
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f can be approximated, arbitrarily closely, by a homeomorphism 8 : D→ D′ such
that 8| f −1(K )= f | f −1(K ).

Proof. The only change to the proof of the monotone approximation theorem
required in the Pontryagin disks setting is that in applying Corollary 10.5 one
should obtain a monotone map F :D→D′ that is 1-1 over the 1-skeleton as before
and agrees with f over K . �
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DENOETHERIANIZING COHEN–MACAULAY RINGS

LÁSZLÓ FUCHS AND BRUCE OLBERDING

We introduce a new class of commutative nonnoetherian rings, called n-
subperfect rings, generalizing the almost perfect rings that have been stud-
ied recently by Fuchs and Salce. For an integer n ≥ 0, the ring R is said
to be n-subperfect if every maximal regular sequence in R has length n
and the total ring of quotients of R/I for any ideal I generated by a regular
sequence is a perfect ring in the sense of Bass. We define an extended Cohen–
Macaulay ring as a commutative ring R that has noetherian prime spec-
trum and each localization RM at a maximal ideal M is ht(M)-subperfect.
In the noetherian case, these are precisely the classical Cohen–Macaulay
rings. Several relevant properties are proved reminiscent of those shared
by Cohen–Macaulay rings.

1. Introduction

The Cohen–Macaulay rings play extremely important roles in most branches of
commutative algebra. They have a very rich, fast expanding theory and a wide
range of applications where the noetherian hypothesis is essential in most aspects.
Cohen–Macaulay rings R are usually defined in one of the following ways:

(a) R is a noetherian ring in which ideals generated by elements of regular se-
quences are unmixed (i.e., have no embedded primes).

(b) R is a noetherian ring such that the grade (the common length of maximal
regular sequences in I ) of every proper ideal I equals the height of I .

Several branches of the theory of noetherian rings are known to have natural
generalizations to the nonnoetherian case, but there is none that still shares more
than a few of the many useful properties of Cohen–Macaulay rings. As a matter of
fact, there have been several attempts for generalization, a few reached publication,
see [Glaz 1994; Hamilton 2004; Hamilton and Marley 2007; Asgharzadeh and Tousi
2009], but a trade-off for generalization of select properties to quite wide classes of
nonnoetherian rings has been the sacrifice of Cohen–Macaulay-like behavior in any
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Keywords: Perfect, subperfect, n-subperfect rings, regular sequence, unmixed, Cohen–Macaulay
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comprehensive fashion. The noetherian condition has never been replaced by any
with direct connection to the noetherian property. We believe that a generalization
that is closer to the noetherian condition might allow for new applications and
capture more features of Cohen–Macaulay rings than the generalizations in the
cited references.

In this note, we are looking for a kind of generalization that is very natural and is
as close to Cohen–Macaulay rings as possible, but general enough to be amenable
to various applications. We break tradition and choose a different approach: one
that does not adhere to any of the classical defining properties. Our strategy is
to rephrase the definition to one that does not explicitly require the noetherian
condition, to replace the condition that implies the noetherian character by a weaker
one, and after doing so, to use the modified definition as the base of generalization.

The following simple characterization of Cohen–Macaulay rings is crucial. To
underline its relevance and to draw more attention to this characterization, we
include the parallel one for Gorenstein rings though this will not be used in this
paper.

Theorem 1.1. For a commutative noetherian ring R, these are equivalent:

(i) R is Cohen–Macaulay;

(ii) for every ideal I of R generated by a regular sequence, the quotient ring of
R/I is artinian (i.e., 0-dimensional Cohen–Macaulay).

Similarly, R is Gorenstein if and only if , for every ideal I of R generated by a
regular sequence, the quotient ring of R/I is quasi-Frobenius (i.e., 0-dimensional
Gorenstein).

Proof. (i)⇒ (ii). Hypothesis (i) implies that the ideal I generated by a regular
sequence x1, . . . , xi in R is unmixed. Then the quotient ring Q(R/I ) of R/I is
semilocal noetherian and zero-dimensional, hence artinian.

(ii)⇒ (i). It suffices to prove that if (ii) holds, then every ideal I contains a regular
sequence of length ht(I ). We show that if x1, . . . , xt is a regular sequence in I
and t < ht(I ), then this sequence extends to a regular sequence in I of length
t + 1. Since the quotient ring Q(R/I ) is artinian, there are only finitely many
minimal prime ideals P1, . . . , Pm of (x1, . . . , xt)R, and each element of R not
prime to (x1, . . . , xt)R is contained in one of the Pj . As I/(x1, . . . , xt)R has
positive height, I 6⊆ Pj for any j , so I 6⊆ P1∪ · · ·∪ Pm by prime avoidance. Hence
there exists xt+1 ∈ I prime to (x1, . . . , xt)R, and so x1, . . . , xt , xt+1 is a regular
sequence in I .

To verify the second claim, recall a characterization of Gorenstein rings by Bass
[1963, Theorem, p. 9]; it shows that they are Cohen–Macaulay rings such that the
primary components of ideals I generated by regular sequences are irreducible, i.e.,
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not intersections of two larger ideals. This property is equivalent to saying that
the ring R/I (that is now a subdirect product of irreducible rings R/L with the
primary components L of I ; these L have different prime radicals) has no different,
isomorphic simple submodules in its socle. This property of the socle is inherited by
the (artinian) quotient ring Q(R/I ). By Lam [1999, Theorem 15.27], commutative
artinian rings with this property are QF rings. �

Using this observation as the point of departure, we follow our strategy, and
want to denoetherianize the artinian property. But nothing is simpler than that:
we just replace the descending chain condition on all ideals by the descending
chain condition on finitely generated ideals. We do not stop here, but recall that the
descending chain condition on finitely generated ideals is equivalent to the same
condition on principal ideals [Björk 1969, Theorem 2], and the latter condition
characterizes the perfect rings, introduced by Bass [1960]. In conclusion, we will
generalize Cohen–Macaulay rings by replacing “artinian” by “perfect.” More
precisely, for an integer n≥0, we will call a ring R (with maximal regular sequences
of lengths n) n-subperfect (n ≥ 0) if the ring of quotients of the ring R/I is perfect
for every proper ideal I generated by a regular sequence (and add right away
that a 0-subperfect ring is the same as a perfect ring in the sense of Bass). Our
nonnoetherian Cohen–Macaulay rings are the extended Cohen–Macaulay rings:
commutative rings R that have noetherian prime spectra and each localization RM

at a maximal ideal M is ht(M)-subperfect. In our discussion we will concentrate on
the n-subperfect case for a fixed n ≥ 0 (which is more general than the local case).

Asgharzadeh and Tousi [2009] review and compare the various nonnoetherian
generalizations of Cohen–Macaulay rings in the literature and add their own variants.
In a sense, our generalization lies properly between the classical Cohen–Macaulay
rings and their generalizations in the literature, at least as far as zero-dimensional
rings are concerned. In fact, a zero-dimensional ring is Cohen–Macaulay if and
only if it is artinian, while each of the generalizations listed in [Asgharzadeh and
Tousi 2009] includes all zero-dimensional rings in their versions of generalized
Cohen–Macaulay rings. In our generalization, in the class of zero-dimensional
rings only the perfect rings qualify. (A main difference is in the nilradical: T-
nilpotency is properly between being just nil and even nilpotent.) Furthermore,
every one-dimensional integral domain is included in all of the previously published
generalizations. For the Cohen–Macaulayness however, such domains ought to
have artinian factor rings modulo any nonzero ideal, while for our 1-subperfectness
these factors are required to be perfect rings. Being closer to the classical version,
our generalization is expected to share more analogous properties with Cohen–
Macaulay rings than the previous generalizations, yet capture fewer classes of rings.
To avoid confusion involving these different generalizations of Cohen–Macaulay
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rings, we assume implicitly in what follows that the term “Cohen–Macaulay ring”
always designates a noetherian Cohen–Macaulay ring.

Let us point out some relevant features of n-subperfect rings that support our
claim that this generalization has a number of properties that are fundamental for
Cohen–Macaulay rings in the noetherian setting. (Definitions are recalled later. In
the following list, n can be any nonnegative integer.)

• A ring R is n-subperfect if and only if its spectrum is noetherian and the
localizations RM are n-subperfect for all maximal ideals M (Corollary 4.6).

• A ring R is n-subperfect if and only if for each regular sequence x1, . . . , xi in
R (0< i ≤ n), the ring R/(x1, . . . , xi )R is (n− i)-subperfect (Proposition 3.2).

• An n-subperfect ring is catenary, equidimensional, and of Krull dimension n
(Corollary 3.6).

• Direct summand of a direct product of a finite number of n-subperfect rings is
n-subperfect (Corollary 4.8).

• A noetherian ring is Cohen–Macaulay if and only if it is an extended Cohen–
Macaulay ring as defined above (Corollary 4.4).

• The polynomial ring R[X1, . . . , Xn], or any of its Veronese subrings, is n-
subperfect if and only if R is a perfect ring (Theorems 6.2 and 8.3).

• The grade of a proper ideal I of an n-subperfect ring R (the length t of the
longest regular sequence contained in I ) is the smallest integer t such that
ExttR(R/I, R) 6= 0 (Theorem 3.7).

• If a finite group G operates on an n-subperfect ring R and its order is a unit
in R, then the set RG of ring elements fixed under G is an n-subperfect ring
(Corollary 5.2).

• The nilradical N of an n-subperfect ring R is T-nilpotent, and R/N is a Goldie
ring (Lemma 2.2, Theorem 5.3).

Our definition leaves ample room for specializations: additional conditions
might be added that are not strong enough to enforce the noetherian property, but
lead to more pleasant properties of the resulting generalizations (e.g., fixing the
injective dimension of the ring as in the Gorenstein case, coherency, or the h-local
property might be such a condition). Examples for n-subperfect rings that are not
Cohen–Macaulay are abundant; see Section 8.

Our main goal was to get acquainted with the fundamental properties of n-
subperfect rings that are analogous to well-known features of Cohen–Macaulay rings.
Working in the nonnoetherian situation and in the uncharted territory of subperfect
rings meant a challenge in several proofs. We focus our attention to n-subperfectness
(i.e., localizations at maximal ideals have the same Krull dimension n — this suffices
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to explore the general case) in order to avoid dealing with the complicated general
situation corresponding to global Cohen–Macaulay rings that would make the main
features less transparent. Occasionally, when it does not obscure the main ideas, we
work under the global analogue of Cohen-Macaulay rings; these are the regularly
subperfect rings defined in Section 2. (See Corollary 4.4.)

While perhaps less familiar in commutative algebra, perfect rings, the corner-
stone of our approach, appear throughout the literature on modules and associative
algebras. We review these rings briefly in the next section, but see, for example,
[Bass 1960; Lam 2001] for more background. Perfect rings were the leading
concept in the theories of almost perfect domains by Bazzoni and Salce [2003] and
their generalizations, the almost perfect rings, by Fuchs and Salce [2018]: these
rings become one-dimensional Cohen–Macaulay once the noetherian condition is
imposed. As an application of our approach, we obtain a well-developed Cohen–
Macaulay theory of regular sequences in polynomial rings over perfect rings. Thus,
while perfect rings help illuminate the workings of Cohen–Macaulay rings, Cohen–
Macaulay rings in turn might help shed new light on the class of perfect rings.

We will also establish a close connection with Goldie rings, another important
generalization of noetherian rings. It turns out that n-subperfect rings modulo their
T-nilpotent radicals are reduced Goldie rings, so Goldie rings appear naturally in the
buildup of our new rings. We have not explored this connection to draw conclusions
about the structure of n-subperfect rings. Neither have we investigated as yet the
possible denoetherianized Gorenstein version of our generalization where for ideals
I of R generated by regular sequences, the quotient rings of R/I are self-injective
perfect rings.

2. Definitions and notation

All rings considered here are commutative. We mean by a perfect ring a ring
over which flat modules are projective. Most of the following characterizations
of commutative perfect rings can be found in [Bass 1960, Theorem P; Lam 2001,
Theorems 23.20, 23.24]. Recall that a module M is semiartinian if every nonzero
epic image of M contains a simple submodule.

Lemma 2.1. The following are equivalent for a commutative ring R:

(a) R is a perfect ring.

(b) R satisfies the descending chain condition on principal ideals.

(c) R is a finite direct product of local rings whose maximal ideals N are T-
nilpotent (i.e., for every sequence y1, . . . , yn, . . . in N , there is an index m
such that y1 · · · ym = 0).

(d) R is semilocal and the localization RP is perfect for every maximal ideal P.
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(e) R is semilocal and semiartinian.

(f) the finitistic dimension Fdim(R) (supremum of finite projective dimensions of
R-modules) is 0.

(g) R-modules admit projective covers. �

We emphasize that “perfect modules and perfect ideals” as they are used, e.g.,
in [Bruns and Herzog 1998] have nothing to do with perfectness as defined in the
preceding lemma.

A ring R is subperfect if its total quotient ring Q(R) is perfect, i.e., it is an order
in a perfect ring. This is a most essential concept in this paper; it may be viewed as
a generalization of the notion of integral domain. All Cohen–Macaulay rings are
subperfect. Subperfect rings can be characterized as follows.

Lemma 2.2. For a commutative ring R, these are equivalent:

(i) R is subperfect.

(ii) R has only finitely many minimal prime ideals, every zero-divisor in R is
contained in a minimal prime ideal, and the nilradical N of R is T-nilpotent.

(iii) [Gupta 1970] R satisfies:

(a) the nilradical N of R is T-nilpotent,
(b) R/N is a (reduced) Goldie ring (i.e., it has finite uniform dimension and

satisfies the ascending chain condition on annihilators of subsets), and
(c) R satisfies the regularity condition: a regular coset of N can be represented

by a regular element of R. (Moreover, a regular coset of N consists of
regular elements of R.)

(iv) [Fuchs and Salce 2018, Lemma 5.5] The modules over the quotient ring Q(R)
are weak-injective as R-modules.

(v) [Fuchs and Salce 2018, Lemma 5.4] If M is an R-module of weak dimension
≤ 1, then Q(R)⊗R M is a Q(R)-projective module. �

Here an R-module M is said to be weak-injective if Ext1R(A,M) = 0 for all
R-modules A of weak-dimension ≤ 1 [Lee 2006]. The regularity condition with
respect to the nilradical was discussed by Small [1966]. His Theorem 2.13 states
that a commutative noetherian ring R satisfies this condition if and only if the
associated primes of the ideal (0) are the minimal primes of R. (A fourth condition
in [Gupta 1970] is automatically satisfied if the ring is commutative.)

It is useful to point out:

Lemma 2.3. Passing modulo a T-nilpotent ideal preserves subperfectness.

Proof. If I is a T-nilpotent ideal of a subperfect ring R, then by Lemma 2.2(iii) a
regular coset in R/I has a representative that is a regular element of R. Hence it
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follows that if Q denotes the quotient ring of R, then Q/I is the quotient ring of
R/I , which is a perfect ring. �

An ideal I of the commutative ring R is subperfect if Q(R/I ) is a perfect ring,
i.e., R/I is a subperfect ring. A regular sequence is subperfect if the ideal it
generates is subperfect. We use the conventions that regular sequences are proper
and that the empty sequence is considered a regular sequence. Thus the empty
sequence in R is subperfect if and only if R is subperfect.

For several results in Section 3, as well as in later arguments, we work with
regular sequences that are not necessarily subperfect. We say a ring R is regularly
subperfect if each regular sequence of R is subperfect. Thus a ring R is regularly
subperfect if and only if for each regular sequence x1, . . . , xi in R (including the
empty regular sequence), the ring R/(x1, . . . , xi )R is subperfect. In particular, a
necessary condition for R to be regularly subperfect is that R itself is subperfect.
For an integer n ≥ 0, the ring R is n-subperfect if R is regularly subperfect and
every maximal regular sequence has length n. As a consequence, R is 0-subperfect
if and only if R is perfect. This is because in a 0-subperfect ring every nonunit is a
zero-divisor, so Q(R)= R.

The 1-subperfect rings are “almost perfect rings” (the only difference is that
almost perfect rings might have localizations that are perfect rings). These rings
have been studied recently; see [Fuchs and Salce 2018; Fuchs 2019]. They were
defined as subperfect rings such that each factor ring modulo a regular ideal (i.e.,
an ideal containing a nonzero-divisor) is a perfect ring.

Lemma 2.4. Suppose R is a subperfect ring. The following are equivalent:

(α) R is almost perfect.

(β) Every nonzero torsion R-module contains a simple submodule.

(γ ) For every regular proper ideal I of R, R/I contains a simple module.

(δ) R is h-local and Q(R)/R is semiartinian. �

Moreover, almost perfect rings have a number of interesting characteristic prop-
erties that are new even for Cohen–Macaulay rings of Krull dimension 1. To wit,
we mention the following [Fuchs and Salce 2018; Fuchs 2019]. A subperfect ring
R is almost perfect if and only if either of the following conditions is satisfied (in
(iii) and (iv), envelopes and covers are understood to be part of a genuine cotorsion
pair):

(i) All flat R-modules are strongly flat (strongly flat means that it is a summand
of a module that is an extension of a free R-module by a direct sum of copies
of the ring of quotients Q of R).

(ii) R-modules of weak dimension ≤ 1 are of projective dimension ≤ 1.
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(iii) If R is local: every R-module M has a divisible envelope (i.e., a divisible
module containing M and being contained in every divisible module that
contains M).

(iv) Each R-module M admits a projective dimension 1 cover (i.e., a module of
projective dimension ≤ 1 along with a map α to M such that any map from a
module of projective dimension ≤ 1 to M factors through α, and no proper
summand has this property).

Next we recall some standard terminology. Let R be a ring (commutative), and R×

the set of regular (nonzero-divisor) elements of R. An element r of R \ I is prime
to an ideal I of R if whenever s ∈ R with rs ∈ I , then s ∈ I . The set S of elements
prime to I is a saturated multiplicatively closed set. The prime ideals of R that
contain I and are maximal with respect to not meeting S are the maximal prime
divisors of I . The prime ideals of R that are minimal with respect to containing
I are the minimal prime divisors of I . These ideals do not meet S. It follows
that the classical ring of quotients Q(R/I ) of R/I is RS/IS , and the maximal
ideals of Q(R/I ) are the extensions to Q(R/I ) of the maximal prime divisors of I .
Similarly, the minimal prime ideals of Q(R/I ) are the extensions of the minimal
prime divisors of I .

We say an ideal I of the ring R is unmixed if every maximal prime divisor of
I is also a minimal prime divisor of I ; equivalently, dim Q(R/I ) = 0. Thus, I
is unmixed if and only if every element of R not in a minimal prime divisor of I
is prime to I . In the case where R is noetherian, this agrees with the definition
of unmixed ideal given by Bruns and Herzog [1998, p. 59]. If R is noetherian,
Q(R/I ) is semilocal. However, since nonnoetherian rings are our main focus, in
our discussions Q(R/I ) need not be semilocal without additional assumptions on I .

We say that an ideal I of R is finitely unmixed if Q(R/I ) is a semilocal zero-
dimensional ring. A regular sequence of R is finitely unmixed if the ideal it generates
is finitely unmixed. Thus every subperfect regular sequence is finitely unmixed,
and every finitely unmixed regular sequence is unmixed.

For unexplained terminology we refer to [Matsumura 1986; Bruns and Herzog
1998].

3. Basic properties

Although the focus for most of the article is on n-subperfect rings, in this section
we prove several assertions in greater generality.

For an integer n ≥ 0, say that a ring R is n-unmixed if every regular sequence
of R extends to a maximal regular sequence of length n that is unmixed. Let C
be a class of zero-dimensional rings. We call a ring R is n-unmixed in C if every
regular sequence extends to a maximal regular sequence of length n and for every
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regular sequence x1, . . . , xi in R, we have Q(R/(x1, . . . , xi )R) ∈ C. Thus a ring
R is n-subperfect if and only if R is n-unmixed in the class C of perfect rings.

The property of being n-unmixed in a class C of zero-dimensional rings can be
inductively described, as in the next lemma.

Lemma 3.1. Let C be a class of zero-dimensional rings, and n ≥ 1. A ring R is
n-unmixed in C if and only if for each 0 < i ≤ n and for each regular sequence
x1, . . . , xi in R, the ring R/(x1, . . . , xi )R is (n−i)-unmixed in C.

Proof. Suppose R is n-unmixed in C, and let 0< i ≤ n. Since R is n-unmixed, every
regular sequence that begins with x1, . . . , xi extends to a maximal regular sequence
of length n. It follows that every maximal regular sequence in R/(x1, . . . , xi )R has
length n− i . Also, since every regular sequence in R is unmixed in C, so is every
regular sequence in R/(x1, . . . , xi )R. Thus, R/(x1, . . . , xi )R is (n−i)-unmixed
in C.

Conversely, suppose that for each 0 < i ≤ n and for each regular sequence
x1, . . . , xi in R, the ring R/(x1, . . . , xi )R is (n−i)-unmixed in C. Let x1, . . . , xi

be a regular sequence in R, and let j ≤ i . Then the zero ideal in R/(x1, . . . , x j )R
is by assumption unmixed in C, so Q(R/(x1, . . . , x j )R) ∈ C. Moreover, since
R/(x1, . . . , xi )R is (n−i)-unmixed, every maximal regular sequence in this ring
has length n − i . Thus every extension of x1, . . . , xi (0 < i ≤ n) to a maximal
regular sequence in R has length n. This proves R is n-unmixed in C. �

Proposition 3.2. Assume n ≥ 1. The ring R is n-subperfect if and only if , for
each regular sequence x1, . . . , xi (0 < i ≤ n) in R, the ring R/(x1, . . . , xi )R is
(n−i)-subperfect.

Proof. Apply Lemma 3.1 to the class C of perfect rings. �

We record the following corollary that also shows how n-perfectness can be
defined by induction on n.

Corollary 3.3. A ring R is n-subperfect (n ≥ 1) if and only if it is subperfect and
for each regular element x ∈ R, the ring R/x R is (n−1)-subperfect.

Proof. This is an immediate consequence of Proposition 3.2. �

The next lemma follows at once from Lemma 2.3.

Lemma 3.4. If I is a T-nilpotent ideal of an n-subperfect ring R, then the ring R/I
is also n-subperfect. �

The property of being n-unmixed also has strong consequences for the dimension
theory of the ring.

Proposition 3.5. Suppose n ≥ 0. If the ring R is n-unmixed, then dim R = n and
all maximal chains of prime ideals of R have the same length n.
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Proof. We first prove by induction on n that dim R = n. If n = 0, then the empty
regular sequence is unmixed, and so dim Q(R)= 0. In this case regular elements
are units, therefore we have R = Q(R). Thus, for n = 0, dim R = 0 and the claim
is clear.

Suppose that n> 0 and for each 0≤ i < n, every i-unmixed ring has dimension i .
We claim that dim R = n. Since R is n-unmixed with n > 0, we have dim R > 0.
Suppose that P0 ⊂ P1 ⊂ · · · ⊂ Pm is a chain of distinct prime ideals of R with
m > 0. Since R is n-unmixed with n > 0, we have R 6= Q(R) and dim Q(R)= 0.
Hence every ideal of R not contained in a minimal prime ideal is regular, so there
is a regular x ∈ P1. By Lemma 3.1, R/x R is (n−1)-unmixed. By the induction
hypothesis, dim R/x R = n−1. Since P1/x R ⊂ · · · ⊂ Pm/x R is a chain of distinct
prime ideals of R/x R and dim R/x R = n− 1, we conclude that m ≤ n. Thus no
chain of distinct prime ideals of R has length exceeding n, that is, dim R≤ n. To see
that n ≤ dim R, use the fact that R has a regular sequence of length n [Kaplansky
1970, Theorem 132]. Therefore, dim R = n.

Next we show that all maximal chains of prime ideals have the same length.
The proof is again by induction on n. If n = 0, then, as we have established,
dim R = 0. In this case the proposition is clear. Let n > 0, and suppose the claim
holds for all i < n. Let P0 ⊂ P1 ⊂ · · · ⊂ Pk and Q0 ⊂ Q1 ⊂ · · · ⊂ Qm be maximal
chains of distinct prime ideals in R. We claim k = m. Since the zero ideal of R
is unmixed, every nonminimal prime ideal of R is regular. Thus P1 and Q1 are
regular ideals of R, so there is an x ∈ R× in P1 ∩ Q1. By Lemma 3.1, R/x R is an
(n−1)-unmixed ring with maximal chains of prime ideals P1/x R ⊂ · · · ⊂ Pk/x R
and Q1/x R ⊂ · · · ⊂ Qm/x R. By the induction hypothesis on R/x R, we have
k−1=m−1, thus k =m. This means that all chains of maximal length in R have
the same length k. It follows that dim R = k, thus k = dim R = n. �

Corollary 3.6. For every n ≥ 0, an n-subperfect ring is catenary, equidimensional,
and has Krull dimension n. �

For an ideal I of a ring R, the I -depth of R is the smallest positive integer
t such that ExttR(R/I, R) 6= 0. If R is noetherian, then the I -depth of R is the
length of the longest regular sequence contained in I . Thus a noetherian ring R
is Cohen–Macaulay if and only if for each proper ideal I of R, the I -depth of R
is equal to the height of I . We show in Theorem 3.7 that this result holds more
generally for regularly subperfect rings.

Theorem 3.7. Let R be a regularly subperfect ring, I a proper ideal of R, and let
n ≥ 1. The following are equivalent:

(1) I has height n.

(2) Every maximal regular sequence in I has length n.
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(3) There exists a maximal regular sequence in I of length n.

(4) n =min{t : ExttR(R/I, R) 6= 0}.

Proof. We first prove the equivalence of (1), (2) and (3). Since the length of a
regular sequence in I is at most the height of I , it suffices to show that if x1, . . . , xt

is a regular sequence in I such that t < ht(I ), then x1, . . . , xt extends to a regular
sequence in I of length t + 1. Using the fact that Q(R/(x1, . . . , xt)R) is perfect
(rather than artinian), we can imitate the proof of Theorem 1.1 to establish the
existence of such a regular sequence. Then x1, . . . , xt , xt+1 is a regular sequence,
and the equivalence of (1), (2) and (3) follows.

To see that (4) implies (2), let x1, . . . , xt be a regular sequence in I , and J =
(x1, . . . , xt)R. By [Kaplansky 1970, p. 101],

ExttR(R/I, R)∼= HomR(R/I, R/J ).

Suppose t < n. By (4), HomR(R/I, R/J ) = 0, and hence there does not exist a
nonzero element of R/J annihilated by I . Since R is regularly subperfect, R/J is
subperfect. By Lemma 2.2 and prime avoidance, I/J is not contained in the set
of zero-divisors of R/J , and so x1, . . . , xt extends to a regular sequence of length
t+1. It follows from (4) that x1, . . . , xt extends to a regular sequence x1, . . . , xn of
length n. Since 0 6= ExtnR(R/I, R)∼= HomR(R/I, R/(x1, . . . , xn)R), the image of
I in R/J consists of zero-divisors. Thus x1, . . . , xn is a maximal regular sequence
in I .

Finally, to see that (3) implies (4), suppose x1, . . . , xn is a maximal regular
sequence in I , and let J = (x1, . . . , xn)R. (Since I has finite height, such a regular
sequence must exist.) Then the image of I in R/J consists of zero-divisors. We
first show that there is an element z ∈ R \ J such that z I ⊆ J .

By Lemma 2.1(c), Q := Q(R/J ) contains orthogonal idempotents e1, . . . , en

such that 1= e1+ · · ·+ en and, for each i , ei Q is a perfect local ring with identity
ei . For a maximal ideal P of Q containing I Q, there is i such that ei P is the
maximal ideal of ei Q. Since the ring ei Q is semiartinian by Lemma 2.1(e), there
exists y ∈ Q such that x = ei y 6= 0 and x P = 0. Hence x I Q = 0. From this it
follows that we can find z ∈ R \ J such that z I ⊆ J .

Define a homomorphism f : R/I → R/J by f (r + I ) = r z+ J for all r ∈ R.
Then f 6= 0, and so by the above isomorphism ExtnR(R/I, R) 6= 0. If t ≤ n satisfies
ExttR(R/I/R) 6= 0, then since (4) implies (3), x1, . . . , xt is a maximal regular
sequence in I . By the equivalence of (2) and (3), this yields t = n. �

Remark 3.8. From the proof of Theorem 3.7 it is evident that statements (1), (2)
and (3) remain equivalent if rather than assuming R is regularly subperfect we
assume only that every regular sequence is finitely unmixed.
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Corollary 3.9. Let n ≥ 0. A ring R is n-subperfect if and only if R is regularly
subperfect and each maximal ideal of R has height n.

Proof. If R is n-subperfect, then each maximal ideal of R has height n by
Corollary 3.6. Conversely, if R is regularly subperfect and each maximal ideal has
height n, then every maximal regular sequence in R has length n by Theorem 3.7. �

Hamilton and Marley [2007, Definition 4.1] define a ring R to be Cohen–
Macaulay if every “strong parameter sequence” on R is a regular sequence. The
notion of a strong parameter sequence, which is defined via homology and coho-
mology of appropriate Koszul complexes, is beyond the scope of our paper. We
observe next that regularly subperfect rings are Cohen–Macaulay in this sense.

Corollary 3.10. Every regularly subperfect ring is Cohen–Macaulay in the sense
of Hamilton and Marley.

Proof. Apply Theorem 3.7 and [Asgharzadeh and Tousi 2009, Theorem 3.4]. �

To verify that a local noetherian ring R of dimension d is Cohen–Macaulay,
it is enough to exhibit just one regular sequence of length d. By contrast, the
following example shows that in a local domain R of dimension d, the existence
of a subperfect regular sequence of length d is not sufficient to guarantee that the
domain is d-subperfect.

Example 3.11. Kabele [1971, Example 5] constructs a local domain R having the
ring S = k[[x, y, z]] as an integral extension, where k is a field of characteristic 2
with [k : k2

] =∞ and x, y, z are indeterminates for k. The ring R has the property
that x, y is not a regular sequence in R, but z R, (z, x)R and (z, x, y)R are distinct
prime ideals of R, thus R/z R, R/(z, x)R and R/(z, x, y)R are integral domains,
and hence z, x, y is a subperfect regular sequence in R. Moreover, dim R = 3 as
S has dimension 3 and is integral over R. Since x, y is not a regular sequence
and x is a nonzero-divisor in R, the image of y in R/x R is a zero-divisor. If R
is 3-subperfect, then R/x R is subperfect, so y is in a minimal prime ideal P of
x R. In this case, Corollary 3.6 implies that dim R/P = 2. Let P ′ be a prime ideal
of S lying over P . S is integral over R, so dim S/P ′ = dim R/P = 2 [Kaplansky
1970, Theorem 47, p. 31]. Since S is a catenary domain, this implies ht(P ′)= 1.
However, (x, y)S is a height 2 prime ideal of S contained in P ′, a contradiction.
Therefore, R is not 3-subperfect despite the fact that R has a length 3 maximal
regular sequence that is subperfect.

4. Localization and globalization

In this section we consider localization and globalization of the n-subperfect prop-
erty. In general, issues of localization involving regular sequences are complicated
by the fact that a regular sequence in a localization at a prime ideal need not be the
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image of a regular sequence in R. However, as we observe in the next lemma, this
problem can be circumvented for regularly subperfect rings.

Lemma 4.1. Let R be a regularly subperfect ring, P a prime ideal of R, and
let x1, . . . , xn be a regular sequence in RP . Then there is a regular sequence
y1, . . . , yn ∈ P such that

(x1, . . . , xi )RP = (y1, . . . , yi )RP for each i = 1, . . . , n.

Proof. Let I and J be the ideals of R defined by

I = {r ∈ R : (∃s ∈ R \ P) rs ∈ x1 R} and J = {r ∈ R : (∃s ∈ R \ P) rs ∈ x1 P}.

Then I RP = x1 RP and J RP = I P RP . Moreover, J ⊂ I is a proper inclusion, since
the image of x1 in RP is a nonzero-divisor. Q(R) is zero-dimensional and semilocal,
so R has finitely many minimal prime ideals P1, . . . , Pm such that the set of zero-
divisors in R is P1 ∪ · · · ∪ Pm . Since the image of x1 in RP is a nonzero-divisor,
I 6⊆ Pj for any j . By prime avoidance, there is y1 ∈ I such that y1 /∈ J∪P1∪· · ·∪Pm .
Since I RP is a principal ideal and the image of y1 in RP is not in J RP , Nakayama’s
lemma implies x1 RP = I RP = y1 RP . By the choice of y1, we have y1 ∈ R×.

Now suppose 1 < t ≤ n and there is a regular sequence y1, . . . , yt−1 with
(x1, . . . , xi)RP = (y1, . . . , yi )RP for each 1≤ i ≤ t−1. Then Q(R/(y1, . . . , yt−1)R)
is semilocal and zero-dimensional, so repeating the argument from the first paragraph
for the ring R/(y1, . . . , yt−1)R yields yt ∈ P such that y1, . . . , yt−1, yt is a regular
sequence in P and (y1, . . . , yt−1, yt)RP = (x1, . . . , xt−1, xt)RP . �

Theorem 4.2. Let R be a regularly subperfect ring. For each prime ideal P of R,
the ring RP is regularly subperfect.

Proof. Let P be a prime ideal of R. Since Q(R) is zero-dimensional, Q(RP) =

Q(R)R\P ; see [Lipman 1965, Proposition 1 and Corollary 1]. Thus Q(RP) is
perfect since Q(R) is, and so RP is subperfect. It follows that the localization of a
regularly subperfect ring at a prime ideal has the property that the empty regular
sequence is subperfect.

We now prove the theorem by induction on the length of regular sequences in RP .
Let n > 0, and suppose that for every regularly subperfect ring S and prime ideal L
of S, every regular sequence of length < n in SL is subperfect. Let x1, . . . , xn be
a sequence in R whose image in RP is a regular sequence. By Lemma 4.1 there
is y ∈ R× such that x1 RP = y RP . Since R/y R is regularly subperfect and the
image of the sequence x2, . . . , xn in RP/x1 RP = RP/y RP is a regular sequence of
length n−1, the induction hypothesis implies that RP/x1 RP is regularly subperfect.
Therefore, the image of the sequence x2, . . . , xn in RP/x1 RP is a subperfect regular
sequence, and hence so is the image of the sequence x1, x2, . . . , xn in RP . �
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Corollary 4.3. Let R be a regularly subperfect ring. If P is a prime ideal of finite
height n, then RP is n-subperfect.

Proof. This follows from Theorems 3.7 and 4.2. �

Corollary 4.4. The following are equivalent for a noetherian ring R.

(1) R is Cohen–Macaulay.

(2) R is regularly subperfect.

(3) RM is ht(M)-subperfect for each maximal ideal M of R.

Proof. To see that (1) implies (2), let x1, . . . , xn be a regular sequence in R. By the
unmixedness theorem [Bruns and Herzog 1998, Theorem 2.1.6, p. 59], x1, . . . , xn

is unmixed (as is the empty regular sequence). Since R is noetherian, the zero-
dimensional ring Q(R/(x1, . . . , xn R) is semilocal, hence artinian, hence perfect.
Consequently, the sequence x1, . . . , xn is subperfect.

That (2) implies (3) follows from Corollary 4.3. That (3) implies (1) is clear. �

A topological space is noetherian if its open sets satisfy the ascending chain
condition. It follows that every closed subset of a noetherian space is a union
of finitely many irreducible components. Thus, if R is a ring for which Spec(R)
is noetherian, then each proper ideal of R has but finitely many minimal prime
divisors.

Theorem 4.5. Let R be a ring of finite Krull dimension. Then R is regularly
subperfect if and only if Spec(R) is noetherian and RM is regularly subperfect for
each maximal ideal M of R.

Proof. Suppose R is regularly subperfect. By Theorem 4.2, RM is regularly
subperfect for each maximal ideal M of R. The proof that Spec(R) is noetherian
is by induction on dim R. If dim R = 0, then R is subperfect, hence perfect, since
the ideal (0) of R is generated by the empty regular sequence; thus Spec(R) is
noetherian in this case. Suppose dim R > 0, and for each 0 ≤ k < dim R every
k-dimensional regularly subperfect ring has a noetherian spectrum. Since R is
subperfect, R has only finitely many minimal prime ideals P1, . . . , Pm . Thus
Spec(R) is a finite union of the closed sets consisting of the prime ideals containing
a given minimal prime ideal Pj . To prove that Spec(R) is noetherian, we need only
verify that each of the spaces Spec(R/Pj ) is noetherian. A space is noetherian
if and only if it satisfies the descending chain condition on closed sets, therefore
we need only prove that every proper closed subset of Spec(R/Pj ) is noetherian.
Every proper closed subset of Spec(R/Pj ) is homeomorphic to a subspace of
Spec(R/(r R+ Pj )) for some r ∈ R \ Pj . Therefore, we treat only spectra of rings
of the latter form.
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Suppose r ∈ R \ Pj for some 1 ≤ j ≤ m, and choose p j ∈ R such that p j is
contained in exactly the minimal prime ideals of R that do not contain r . (This is
possible by prime avoidance and the fact that there are only finitely many minimal
prime ideals of R.) In particular, p j ∈ Pj . Evidently, r + p j /∈ P1 ∪ · · · ∪ Pm ,
so that r + p j ∈ R×. Thus R/(r + p j )R inherits from R the property that each
regular sequence is subperfect. By the induction hypothesis, Spec(R/(r + p j )R)
is a noetherian space. As a subspace of a noetherian space, Spec(R/(r R+ Pj )) is
noetherian. This completes the proof that Spec(R) is a noetherian space.

Conversely, suppose Spec(R) is noetherian, and RM is regularly subperfect for
each maximal ideal M of R. Let x1, . . . , xt be a (possibly empty) regular sequence
in R, and let I = (x1, . . . , xt)R. For each maximal ideal M containing I , the
images of x1, . . . , xt in RM form a regular sequence, so RM/I RM is subperfect
by assumption. We claim that Q(R/I ) is zero-dimensional. Let r, s ∈ R such that
rs ∈ I and r is not contained in any minimal prime ideal of I . It suffices to show
that s ∈ I . If M is any maximal ideal of R containing I , then since RM/I RM is
subperfect and r RM is not a subset of any minimal prime ideal of I RM , we have
s RM ⊆ I RM . Since this is true for each maximal ideal M containing I , we conclude
that s ∈ I . This proves that every zero-divisor in R/I is contained in a minimal
prime ideal of R/I . Therefore, Q(R/I ) is zero-dimensional.

Since Spec(R) is noetherian, I has only finitely many minimal prime ideals
P1, . . . , Pm , so Q(R/I ) is also semilocal. For each j , RPj /I RPj is T-nilpotent,
so it follows that Q(R/I ) has T-nilpotent nilradical, and hence Q(R/I ) is perfect.
This proves that every regular sequence in R (including the empty sequence) is
subperfect. �

Corollary 4.6. Assume n ≥ 0. A ring R is n-subperfect if and only if Spec(R) is
noetherian and RM is n-subperfect for each maximal ideal M of R.

Proof. Apply Corollary 3.9 and Theorem 4.5. �

Remark 4.7. The proofs of Lemma 4.1 and Theorems 4.2 and 4.5 show that in the
hypotheses of these results the property of being regularly subperfect can be replaced
by the more general condition that every regular sequence is finitely unmixed.

We record an immediate consequence of Corollary 4.6 along with the obvious
statement on the behavior of n-subperfectness under passing to summands.

Corollary 4.8. Every summand of a direct product of a finite number of n-subperfect
rings is n-subperfect. �

5. More on n-subperfect rings

We would like to point out several important properties that are shared by n-
subperfect rings with Cohen–Macaulay rings. The first of these properties, proved
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by Hochster and Eagan [1971] for Cohen–Macaulay rings, concerns descent of
the n-subperfect property to module direct summands and to rings of invariants of
n-subperfect rings.

Theorem 5.1. Let R be an n-subperfect ring for some n ≥ 0. If S is a subring of R
such that R is integral over S and S is a direct summand of R as an S-module, then
S is n-subperfect.

Proof. First we claim that S is subperfect. Every minimal prime ideal of S is
contracted from a minimal prime ideal of R. Since R is subperfect, there are but
finitely many minimal prime ideals of R, so there are only finitely many minimal
prime ideals of S. Moreover, every zero-divisor in R is an element of a minimal
prime ideal of the subperfect ring R, so the same holds for S. Since the nilradical
of S is contained in that of R, it is T-nilpotent. Consequently, S is subperfect.

The proof proceeds now by induction on n. Suppose n = 0, so that R is perfect.
Then dim R = 0, and since R is integral over S, we have dim S = 0. Since S is
subperfect, this implies S is perfect, i.e., 0-subperfect.

Now suppose n > 0 and that the claim holds for n− 1. If every nonzero-divisor
of S were a unit, then since S is subperfect, we would have dim S = 0. R is
integral over S, whence dim R = 0 would follow. However, R is n-subperfect, so
dim R = n > 0 by Corollary 3.6. Therefore, there exist regular sequences in S of
length > 0. Let s ∈ S× be a nonunit in S. Since S is a summand of R, it follows
that s R ∩ S = sS; see [Bruns and Herzog 1998, Lemma 6.4.4]. Thus S/sS can be
viewed as a direct summand of R/s R. Moreover, R/s R is integral over S/sS.

To see that s ∈ R×, suppose to the contrary that s is a zero-divisor in R. Since R is
subperfect, s is contained in a minimal prime ideal P0 of R. By Corollary 3.9, there
is a chain of distinct prime ideals P0 ⊂ P1 ⊂ · · · ⊂ Pn , with Pn a maximal ideal of
R. Since R is integral over S, the chain P0∩ S⊂ P1∩ S⊂ · · · ⊂ Pn∩ S has length n.
Again since R is integral over S, each chain of prime ideals of S has a chain of
prime ideals in R lying over it. Therefore, Corollary 3.9 implies that the length of
the longest chain of prime ideals in S is n. Consequently, P0∩ S is a minimal prime
ideal of R. However, s ∈ P0 ∩ S and s ∈ S×, a contradiction that implies s ∈ R×.

In view of s ∈ R×, we have R/s R is (n−1)-subperfect by Proposition 3.2. By
the induction hypothesis, S/sS is (n−1)-subperfect. Since this is the case for all
nonunits s ∈ S×, Corollary 3.3 implies S is n-subperfect, completing the induction.

�

Corollary 5.2. Assume G is a finite group acting on an n-subperfect ring R, and
the order of G is a unit in R. Then the set of invariants,

RG
= {r ∈ R : g(r)= r for all g ∈ G},

is again an n-subperfect ring.
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Proof. As in [Bruns and Herzog 1998, pp. 281–283], the hypotheses imply that RG

is a module direct summand of R and R is integral over RG . Thus we may apply
Theorem 5.1 to obtain the corollary. �

Lemma 2.2 makes it possible to get more information on n-subperfect rings once
we know more about Goldie rings.

A commutative reduced Goldie ring R is an order in a semisimple ring Q that is
the direct product of fields Q j ,

Q = Q1× · · ·× Qm

(see [Lam 1999, Proposition 11.22]). If X j =
∑

i 6= j Qi , then Pj = X j ∩ R ( j =
1, . . . ,m) is the set of minimal primes of R. Furthermore, each R/Pj is an integral
domain with Q j as quotient field. Recall that orders R, R′ in a ring Q are equivalent
if q R ⊆ R′ and q ′R′ ⊆ R for some units q, q ′ ∈ Q.

Theorem 5.3. A reduced n-subperfect ring R is a Goldie ring. It is a subdirect
product of a finite number of integral domains of Krull dimension n. This subdirect
product is equivalent to the direct product of the components.

Proof. Assume R is reduced and n-subperfect; in view of Lemma 2.2, it is a
Goldie ring. It has but a finite number of minimal prime ideals P1, . . . , Pm . From⋂

j Pj =0 it follows that R is a subdirect product of the integral domains Dj = R/Pj

(with quotient fields Q j ). It is clear that dim Dj = n for each j .
Choose elements x j ( j = 0, . . . ,m) such that x j ∈ Pi for all i 6= j , but x j /∈ Pj .

Then x =
∑

j x j ∈ R is a regular element, as it is not contained in any Pj . Therefore,

x = (x1+ P1, . . . , xm + Pm) ∈ D1⊕ · · ·⊕ Dm

is a unit in Q. Hence we conclude that R and R′ = D1⊕ · · ·⊕ Dm are equivalent
orders in Q. �

We observe that Theorem 5.3 holds also for the factor ring R/N of an n-subperfect
ring R modulo its nilradical N , though R/N need not be n-subperfect. Note that this
factor ring is restricted in size inasmuch as R/N must have finite uniform dimension.
On the other hand, Example 8.2 will show that the nilradicals of n-subperfect rings
can have arbitrarily large cardinalities.

We have failed to establish a stronger result in the preceding theorem (viz. that
the domains Dj are also n-subperfect), because passing modulo a minimal prime
ideal, regular sequences do not map in general upon regular sequences, though the
converse is true for all regularly subperfect rings as is shown by:

Lemma 5.4. Let R be a regularly subperfect ring, and let P be a minimal prime
ideal of R. Then for every regular sequence y1, . . . , yt in S = R/P , there is a
regular sequence x1, . . . , xt ∈ R such that (x1, . . . , xi )S = (y1, . . . , yi )S for all
i ≤ t .
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Proof. The proof is by induction on the length of the regular sequence. The
claim is clearly true for the empty regular sequence. Suppose that t ≥ 0 and the
claim is true for all regular sequences in S of length t . Let y1, . . . , yt , yt+1 be a
regular sequence in S. Then there is a regular sequence x1, . . . , xt in R such that
(x1, . . . , xt)S= (y1, . . . , yt)S. Since R/(x1, . . . , xt)R is subperfect, (x1, . . . , xt)R
has but a finite number of minimal prime ideals L1, . . . , Lk . Let zt+1 ∈ R such that
zt+1+ P = yt+1. We observe that P+ zt+1 R 6⊆ L i for any i . Indeed, if P ⊆ L i for
some i , then L i is a minimal prime ideal of (x1, . . . , xt)R+ P . In this case, since
y1, . . . , yt+1 is a regular sequence in S and (x1, . . . , xt)S = (y1, . . . , yt)S, it is
impossible to have yt+1 ∈ L i/P . Thus zt+1 /∈ L i which shows that P+ zt+1 R 6⊆ L i

for every i . By a version of prime avoidance [Kaplansky 1970, Theorem 124],
this implies there is p ∈ P such that zt+1− p /∈ L i for each i . Since L1, . . . , Lk

are the minimal prime ideals of (x1, . . . , xt)R and R/(x1, . . . , xt)R is subperfect,
it follows that x1, . . . , xt , xt+1 with xt+1 = zt+1 − p is a regular sequence in R
such that (x1, . . . , xt , xt+1)S = (y1, . . . , yt+1)S. This completes the induction and
shows that every ideal of S generated by a regular sequence is the image of an ideal
of R that is generated by a regular sequence. �

The next theorem shows that for regularly subperfect rings, ideals of the principal
class (i.e., ideals I generated by ht(I ) elements) behave like ideals in Cohen–
Macaulay rings.

Theorem 5.5. Let R be a regularly subperfect ring, and let I be an ideal of R
generated by t elements. The following are equivalent:

(1) I has height t .

(2) I has height at least t .

(3) I is generated by a regular sequence of length t.

Proof. That (1) implies (2) is clear, and that (3) implies (1) follows from Theorem 3.7.
To see that (2) implies (3), suppose ht(I )≥ t . If ht(I )= 0, then I is generated by the
empty regular sequence. The proof now proceeds by induction on ht(I ). Suppose
that in a regularly subperfect ring, every ideal I = (x1, . . . , xt)R of height at least
ht(I )−1 generated by ht(I )−1 elements is generated by a regular sequence of length
ht(I )− 1. As a subperfect ring, R admits only finitely many minimal prime ideals
P1, . . . , Pm . Prime avoidance and the fact that ht(I )>0 imply that I 6⊆ P1∪· · ·∪Pm .
By [Kaplansky 1970, Theorem 124, p. 90], there exist r2, . . . , rt ∈ R such that
x := x1+r2x2+· · ·+rt xt /∈ P1∪· · ·∪Pm . Since R is subperfect, x ∈ R×. Moreover,
I = (x, x2, . . . , xt)R. In order to apply the induction hypothesis, we consider next
the ring R/x R.

Let P be a minimal prime ideal of I such that ht(P)= ht(I ). By Theorem 4.2,
RP is ht(I )-subperfect, so Proposition 3.2 implies RP/x RP is (ht(I )−1)-subperfect.
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By Corollary 3.6, dim RP/x RP = ht(I )− 1, and so P/x R has height ht(I )− 1
in R/x R. Consequently, P/x R is a minimal prime ideal of I/x R of height ht(I )−1
in R/x R. Thus I/x R is an ideal of R/x R that is generated by t − 1 elements and
has height at least ht(I )− 1. By the induction hypothesis, I/x R is generated by a
regular sequence in R of length t − 1. Thus I is generated by a regular sequence of
length t . This proves that every ideal of R of height at least t generated by t elements
is generated by a regular sequence of length t . Consequently, (2) implies (3). �

6. Polynomial rings

We consider next polynomial rings S = R[X1, . . . , Xn] over a perfect ring R. The
proof of Theorem 6.2, which shows such rings are n-subperfect, depends on the
following lemma.

Lemma 6.1. Let S be a finitely generated algebra over a perfect ring R. For each
proper ideal I of S, the nilradical of S/I is T-nilpotent. If also dim Q(S/I ) = 0,
then S/I is subperfect.

Proof. Let I be a proper ideal of S. Then the nilradical of S/I is
√

I/I , so to show
that this nilradical is T-nilpotent, it suffices to show that for all a1, a2, a3, . . . ∈

√
I ,

there exists m > 0 such that a1a2 · · · am ∈ I . We claim first that there is k > 0 such
that (
√

I )k ⊆ I + J S, where J denotes the Jacobson radical of R. Since R/J is an
artinian ring (it is a product of finitely many fields) and S/J S is a finitely generated
R/J -algebra, the ring S/J S is noetherian. Thus the image of the ideal

√
I in S/J S

is finitely generated. Letting f1, . . . , ft ∈
√

I such that
√

I = ( f1, . . . , ft)S+ J S,
and choosing k > 0 such that ( f1, . . . , ft)

k S ⊆ I , we obtain (
√

I )k ⊆ I + J S.
For each i ≥ 0, we have aik+1aik+2 · · · aik+k ∈ I + J S, and so there is a finitely

generated ideal Ai ⊆ J such that aik+1aik+2 · · · aik+k ∈ I + Ai S. As a perfect ring,
R satisfies the descending chain condition on finitely generated ideals [Björk 1969,
Theorem 2], thus there is t > 0 such that A1 A2 · · · At = A1 A2 · · · At+1. Since
At+1 ⊆ J , Nakayama’s lemma implies A1 A2 · · · At = 0. It follows that

a1a2 · · · atk+k ∈ (I + A0S)(I + A1S) · · · (I + At S)⊆ I,

which proves the first assertion.
Now suppose dim Q(S/I ) = 0. Since R is perfect, Spec(R) is a finite, hence

noetherian, space. As a finitely generated algebra over a ring with noetherian
prime spectrum, S also has noetherian prime spectrum [Ohm and Pendleton 1968,
Theorem 2.5]. Hence I has but finitely many minimal prime divisors, and so, since
Q(S/I ) is zero-dimensional, it follows that Q(S/I ) is semilocal. The nilradical
of Q(S/I ) is T-nilpotent as it is extended from the T-nilpotent nilradical of S/I ;
hence Q(S/I ) is perfect. �
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We now prove the main theorem of this section. Statement (4) of Theorem 6.2,
which is a byproduct of our arguments involving polynomial rings, can be viewed
as a characterization of a perfect ring in terms of its multiplicative lattice of ideals.

Theorem 6.2. Let R denote a commutative ring, and let X1, . . . , Xn (n ≥ 1) be
indeterminates for R. Then the following are equivalent:

(1) R is perfect.

(2) R[X1, . . . , Xn] is n-subperfect.

(3) R is semilocal zero-dimensional and R[X1, . . . , Xn] is subperfect.

(4) R is semilocal zero-dimensional and for each sequence {Ii }
∞

i=1 of finitely
generated subideals of the Jacobson radical J of R there exists k > 0 such that
I1 I2 · · · Ik = 0.

Proof. Let S = R[X1, . . . , Xn], and let J denote the Jacobson radical (= the
nilradical) of R.

(1) ⇒ (4). Perfect rings are semilocal and zero-dimensional. Let {Ii }
∞

i=1 be a
sequence of finitely generated subideals of J . Since R is perfect, R satisfies the
descending chain condition on finitely generated ideals [Björk 1969, Theorem 2],
thus there is k> 0 such that I1 I2 · · · Ik = I1 I2 · · · Ik+1. Since Ik+1⊆ J , Nakayama’s
lemma implies I1 I2 · · · Ik = 0.

(4)⇒ (3). Let f1/g1, f2/g2, . . . be elements of the nilradical of Q(S), where each
fi ∈ S and each gi is a nonzero-divisor in S. Then f1, f2, . . . are in the nilradical
of S, which, since S is a polynomial ring, is the extension J S of the nilradical J
of R to S. The ideal Ii generated by the coefficients occurring in fi is contained
in the nilradical of R, so by assumption, there is k > 0 such that I1 I2 · · · Ik = 0.
Since f1 f2 · · · fk ∈ I1 I2 · · · Ik S, we have f1 f2 · · · fk = 0, thus the nilradical of
Q(S) is T-nilpotent. Furthermore, since R is zero-dimensional, so is Q(S) by
[Arapović 1983, Proposition 8]. Each prime ideal L in Q(S) contracts to one of
the prime ideals P in R. Since P Q(S)⊆ L is a prime ideal of Q(S) and Q(S) is
zero-dimensional, it follows that P Q(S)= L . Therefore, since R is semilocal, so is
Q(S). This shows that Q(S) is a zero-dimensional semilocal ring with T-nilpotent
nilradical; i.e., Q(S) is perfect.

(3) ⇒ (2). Suppose S is subperfect. Let f1, . . . , ft be a regular sequence in S,
and let I = ( f1, . . . , ft)S. Now R is zero-dimensional and semilocal and I is
generated by a regular sequence, therefore — as it is shown in [Olberding 2019] —
the ring Q(S/I ) is also zero-dimensional and semilocal. By Lemma 6.1, Q(S/I )
is a perfect ring, establishing the n-subperfectness of S.
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(2)⇒ (1). Since S is n-subperfect and X1, . . . , Xn is a maximal regular sequence
of S, S/(X1, . . . , Xn)R is a perfect ring. As a homomorphic image of this ring, R
is perfect. �

Let us point out that Coleman and Enochs [1971] prove that if the polynomial
rings R[X ] and R′[Y ]with single indeterminates are isomorphic, and if R is a perfect
ring, then R ∼= R′. It is an open problem if this holds for more indeterminates.

7. The finitistic dimension

The close relation of n-subperfect rings to Goldie rings makes it possible to derive
several interesting properties of n-subperfect rings. For details we refer to the
literature on Goldie rings, e.g., [Goodearl and Warfield 1989]. As an example we
mention that the ring of quotients of a reduced n-subperfect ring is its injective hull.

In view of [Sandomierski 1973], we are able to obtain interesting results on the
homological dimensions of n-subperfect rings. We show that in calculating the
projective (p.d.), injective (i.d.) and weak (w.d.) dimensions of modules over an
n-subperfect ring, only the “Goldie part” of the ring counts (see Lemma 2.2).

Let R be an n-subperfect ring with minimal prime ideals P1, . . . , Pm . Then
N = P1∩ · · ·∩ Pm is the nilradical of R; it is T-nilpotent. By Theorem 5.3, R/N is
a subdirect product of n-dimensional integral domains Dj = R/Pj ( j = 1, . . . ,m).
In the next theorem, Dj -modules are also regarded as R-modules in the natural way.

Theorem 7.1. Let R denote an n-subperfect ring, and let Dj be as before. Then an
R-module M satisfies p.d.R M ≤ k (k ≥ 0) if and only if Extk+1

R (M, X)= 0 for all
Dj -modules X for each j = 1, . . . ,m.

Proof. See Theorem 5.3 in [Sandomierski 1973]. �

Theorem 7.2. Let R be an n-subperfect ring, and R∗ = R/N. Then for an R-
module M we have for any k ≥ 0:

(a) p.d.R M ≤ k if and only if Extk+1
R (M, X)= 0 for all R∗-modules X.

(b) i.d.R M ≤ k if and only if Extk+1
R (R/L ,M)= 0 for all ideals L containing N.

(c) w.d.R M ≤ k if and only if TorR
k+1(R/L ,M)= 0 for all ideals L containing N.

Proof. See Theorems 5.2, 3.2, and 4.2, respectively, in [Sandomierski 1973]. �

Also, [Sandomierski 1973, Proposition 5.4] shows that for a flat R-module F ,
p.d.R F can be calculated as the maximum of the Dj -projective dimensions of the
flat Dj -modules F ⊗R Dj , taken for all j .

We would like to have information about the finitistic dimension Fdim(R) of
an n-subperfect ring R. An estimate is given by [Sandomierski 1973, Corollary 1,
Section 2] which we cite using the same notation as above.
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Theorem 7.3. For an n-subperfect ring R and for the integral domains Dj we have
the inequality

Fdim(R)≤max
j
{p.d.R Dj +Fdim(Dj )}. �

We recall (see, e.g., [Jensen 1972, Remarque, p. 44]) that for a Cohen–Macaulay
ring R, the finitistic dimension Fdim(R) is equal either to d or to d + 1 where
d = dim R. For n-subperfect rings we do not have such a precise estimate, but we
still have some information, see Theorem 7.5.

In the balance of this section, we will use the notation Pn(R) for the class of R-
modules whose projective dimensions are ≤ n, and Fn(R) for the class of modules
of weak dimensions ≤ n. We concentrate on the class F1(R) which is more relevant
to subperfectness than the class F0(R) of flat modules; see, e.g., Lemma 2.2(v).

Next, we verify a lemma (note that R-modules may be viewed as R-modules).

Lemma 7.4. Let R be any ring and R = R/r R with r ∈ R× a nonunit. Then

(1) if R is subperfect, then F1(R)⊆ F1(R);

(2) if both R and R are subperfect, then F1(R)⊆ Pm(R) for some m > 0 implies
F1(R)⊆ Pm−1(R).

Proof. We start observing that if R is a subperfect ring, then a module H satisfies
TorR

1 (H, Y )= 0 for all torsion-free Y if and only if H ∈ F1(R) (see [Fuchs 2019,
Theorem 4.1]); here Y torsion-free means that TorR

1 (R/t R, Y )= 0 for all t ∈ R×.
For any commutative ring R, TorR

1 (X, Y ) = 0 for all torsion-free Y implies that
X ∈ F1(R) (but not necessarily conversely).

Recall [Cartan and Eilenberg 1956, Chapter VI, Proposition 4.1.1] which states
that if an R-module Y satisfies TorR

k (R, Y )= 0 for all k > 0, then

(3) TorR
m(N , Y )∼= TorR

m(N , Y/rY )

holds for all m > 0 and for all R-modules N . The hypothesis holds if Y is a
torsion-free R-module: it holds for k = 1 by definition and for k > 1 in view of
p.d.R R = 1.

First, let s ∈ R be a divisor of r , and choose N ∼= R/s R. Then the left-hand
side Tor vanishes for all torsion-free Y and for m = 1, so it follows that Y/rY is a
torsion-free R-module.

(i) Assuming R is subperfect, let N ∈ F1(R) and Y a torsion-free R-module. The
right hand side of (3) vanishes for m = 1, so we can conclude that TorR

1 (N , Y )= 0.
This equality holds for all torsion-free R-modules Y , whence we obtain N ∈F1(R).

(ii) Assuming both R and R are subperfect, let again N ∈ F1(R). Part (i) implies
that N ∈ F1(R), so N ∈ Pm(R) by hypothesis. From a well-known Kaplansky
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formula for projective dimensions [Kaplansky 1970, Proposition 172] we obtain
that N ∈ Pm−1(R), as claimed. �

Theorem 7.5. If R is an n-subperfect ring, then Fdim(R)≥ n.

Proof. According to [Jensen 1972, Proposition 5.6], for any ring R, F0(R) ⊆
Pm−1(R) if m = Fdim(R)≥ 1. Hence we have F1(R)⊆Pm(R). On the other hand,
if R is n-subperfect, then Lemma 7.4 is applicable. Thus if F1(R)⊆ Pk(R) holds
for some k, then we have F1(R)⊆ Pk−1(R), and since R is n-subperfect, we can
continue with R in the role of R, etc. If k < n, then this process would lead us
down to P0, reaching a contradiction that over a subperfect ring of Krull dimension
> 0 modules of weak dimension ≤ 1 are projective. Consequently, the inclusion
F1(R)⊆ Pk(R) can hold only if k ≥ n. �

That we can have strict inequality in the preceding theorem is demonstrated by
the following example. Let S denote an almost perfect (i.e., 1-subperfect) domain;
it has finitistic dimension 1. If R is defined as in Example 8.1 as S⊕D with D 6= 0
a torsion-free divisible S-module, then p.d.R R/D is finite and > 1 (D is flat, but
not projective, so p.d.R D = 1), whence Fdim(R)≥ 2.

The following result shows that in Theorem 7.5 equality may occur for non-
Cohen–Macaulay rings as well.

Lemma 7.6. (i) Let R be any ring, and S = R[X ] the polynomial ring over R.
Then

F1(R)⊆ Pn(R) if and only if F1(S)⊆ Pn+1(S).

(ii) If R is a perfect ring, then for the polynomial ring S = R[X1, . . . , Xn] (which
is n-subperfect by Theorem 6.2) we have

F1(S)⊆ Pn(S), but F1(S)* Pn−1(S).

Proof. (i) To verify necessity, assume M is a module in F1(S). It is easy to see
that then M ∈ F1(R) as well, thus M ∈ Pn(R) follows by hypothesis. Hence
tensoring over R with R[X ], we obtain M[X ] ∈ Pn(S). It remains to refer to the
exact sequence 0→ M[X ] → M[X ] → M → 0 of S-modules to conclude that
M ∈ Pn+1(S).

Conversely, working toward contradiction, suppose there are an F ∈ F1(R) and
an H ∈ Mod-R such that Extn+2

R (F, H) 6= 0. Then also Extn+2
R (F, H [X ]) 6= 0.

Since TorR
k (F, S) = 0 for all k > 0, we have an isomorphism (see [Cartan and

Eilenberg 1956, Chapter VI, Proposition 4.1.3])

Extn+2
S (F ⊗R S, H [X ])∼= Extn+2

R (F, H [X ]) 6= 0.

Since F ⊗R S ∈ F1(S), this is in contradiction to F1(S)⊆ Pn+1(S).
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(ii) Noticing that F1(R) = P0(R) if R is perfect, the claim follows by a simple
calculation from (i). �

8. Examples

Our final section is devoted to various examples of n-subperfect rings. In the
first examples we use n-subperfect domains to construct n-subperfect rings with
nontrivial nilradicals. (For examples of nonnoetherian n-subperfect domains, we
refer to Example 8.12 and Theorem 8.13 below.)

Example 8.1. Let S denote an n-subperfect domain (n ≥ 1) with field of quotients
H . Let D be a torsion-free divisible S-module. Define the ring R as the idealization
of D, i.e., R = S⊕ D additively, and multiplication in R is given by the rule

(s1, d1)(s2, d2)= (s1s2, s1d2+ s2d1) (si ∈ S, di ∈ D).

It is clear that Q = (H, D) is the ring of quotients of R, and N = (0, D) is the
nilradical (nilpotent of exponent 2) of both R and Q. We claim that R is an
n-subperfect ring.

First we observe that an element r = (s, d) ∈ R is a zero-divisor if and only if
s= 0; this is easily seen by direct calculation using the torsion-freeness of D. Hence
criterion (iii) in Lemma 2.2 guarantees that R is a subperfect ring. Furthermore, for
any r = (s, d), we have r R = (sS, D) (the divisibility of D is relevant). Therefore,
we have an isomorphism R/r R ∼= S/sS for every regular r ∈ R (i.e., for every
nonzero s ∈ S). Hence we conclude that R/r R is (n−1)-subperfect for every
regular r (Corollary 3.3). By the same Corollary, we obtain the desired conclusion
for R.

Example 8.2. As before choose an n-subperfect (n ≥ 1) integral domain S. Let A
be any commutative S-algebra that is torsion-free and divisible as an S-module,
and B a torsion-free divisible S-module containing A. Our ring R is now the ring
of upper 3×3-triangular matrices of the form

α =

s a b
0 s a
0 0 s

 (s ∈ S, a ∈ A, b ∈ B).

It is straightforward to check that α ∈ R is a zero-divisor if and only if s = 0, and
that the principal ideal αR equals s R whenever s 6= 0. Fix any regular α0 ∈ R
(i.e., 0 6= s0 ∈ S in the diagonal), and consider the homomorphism φ : R→ S/s0S
given by α 7→ s+ s0S (α ∈ R). Then Kerφ = α0 R = s0 R leads to the isomorphism
R/α0 R ∼= S/s0S showing that R/α0 R is an (n−1)-subperfect ring for every regular
α0 ∈ R. To complete the proof that R is n-subperfect, it remains only to show that
R is subperfect. By Lemma 2.2(iii) it suffices to observe that the nilradical N of R
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is nilpotent of degree 3, and every regular coset mod N consists of regular elements
of R.

In order to obtain more general examples of similar kind, in the preceding
examples we can choose S as a finite direct sum of n-subperfect domains.

Let R be a perfect ring, and let S = R[X1, . . . , Xn]. By Corollary 5.2 and
Theorem 6.2, the ring of invariants SG of S is n-subperfect for each finite group G
acting on S whose order is a unit in R. As in the classical case in which R is a field,
more examples of n-subperfect rings can be obtained from S via Veronese subrings:
a Veronese subring T of S is an R-subalgebra of S generated by all monomials of
degree d for some fixed d > 0.

Theorem 8.3. Let R be a ring, and S = R[X1, . . . , Xn] a polynomial ring over R.
A Veronese subring of S is n-subperfect if and only if R is perfect.

Proof. Let T be a Veronese subring of S generated by the monomials of degree d.
Then T is an R-direct summand of S, and S is integral over T . If R is perfect, then
T is n-subperfect by Theorems 5.1 and 6.2. Conversely, suppose T is n-subperfect.
Then Xd

1 , . . . , Xd
n is a maximal regular sequence of T , so T/(Xd

1 , . . . , Xd
n )R is a

perfect ring. As a homomorphic image of this ring, R is perfect. �

Remark 8.4. Asgharzadeh, Dorreh and Tousi [Asgharzadeh et al. 2017] study
Cohen–Macaulay properties for Veronese, determinantal, and Grassmannian rings
in the context of polynomial rings in infinitely many variables.

Theorem 6.2 shows that if R is perfect, then the ring R[X1, . . . , Xn] is n-
subperfect. As the next example demonstrates, it need not be the case that for
a k-subperfect ring R, R[X1, . . . , Xn] is (n+k)-subperfect.

Example 8.5. Let F be a field, X, Y indeterminates, and K = F(X). Then the ring
R= F+Y K [[Y ]] is an almost perfect domain [Bazzoni and Salce 2003, Example 3.2].
The valuative dimension of R, that is, the maximum of the Krull dimensions of the
valuation rings of Q(R) that contain R, is 2. Thus dim R[X1, X2] = 4 by [Arnold
1969, Theorem 6]. Although R is 1-subperfect, R[X1, X2] is not 3-subperfect, since
by Corollary 3.6 the Krull dimension of a 3-subperfect ring is 3.

Example 8.6. An n-subperfect (n≥ 1) Prüfer domain is a Dedekind domain (hence
1-subperfect). First of all, a Prüfer domain R cannot have a regular sequence of
length greater than 1. Indeed, if x, y is a regular sequence in R, then x R∩y R= xy R.
If M is a maximal ideal containing x and y, then since RM is a valuation domain,
this implies x RM = xy RM or y RM = xy RM , contradicting that neither x nor y is
a unit in RM . Consequently, an n-subperfect Prüfer domain is an almost perfect
domain. But for modules over such domains, w.d.≤ 1 implies p.d.≤ 1 (see [Fuchs
and Salce 2018, Theorem 6.1]), thus any n-subperfect Prüfer domain — if not a
field — must be a Dedekind domain. Dedekind domains are trivially 1-subperfect.
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Our next source of examples involves the idealization of a module, as defined
in Example 8.1. For an R-module N , we denote by R ? N the idealization of N .
It is well known that if R is a Cohen–Macaulay ring and N is a maximal Cohen–
Macaulay module, then R ? N is a Cohen–Macaulay ring. In Corollary 8.8, we
prove the analogue of this statement for n-subperfect rings. This follows from a
more general lifting property of n-subperfectness:

Theorem 8.7. Let I be an ideal of the ring R such that I 2
= 0 and R/I is n-

subperfect for some n ≥ 0. If every (R/I )-regular sequence in R is also I -regular,
then R is n-subperfect.

Proof. First we show that R is subperfect. If N is the nilradical of R, then N/I is
the nilradical of the n-subperfect ring R/I , hence T-nilpotent. Therefore, N as an
extension of the nilpotent I by the T-nilpotent N/I is T-nilpotent. Suppose r + N
(r ∈ R) is a regular element in R/N ; then r + N/I is regular in (R/I )/(N/I ), so
Lemma 2.2(iii) shows that r + I is regular in R/I . Since r is (R/I )-regular, r is
I -regular by assumption. If r is both (R/I )-regular and I -regular, then it is regular
in R. From Lemma 2.2(iii) we conclude that R is subperfect.

We claim next that each r ∈ R× is (R/I )-regular. Since R/I is subperfect, there
are finitely many prime ideals P1, . . . , Pm of R that are minimal over I and whose
images in R/I contain every zero-divisor in R/I . Since I is in the nilradical of R,
these primes are also the minimal prime ideals of R. If r ∈ R×, then r /∈ P1∪· · ·∪Pm ,
so the image of r in R/I is not a zero-divisor. This shows that the regular elements
of R are (R/I )-regular.

We prove now using induction that R is n-subperfect. If n = 0, then R/I is
perfect and hence zero-dimensional. Since I 2

= 0, R is zero-dimensional. We have
established that R is subperfect, so from R = Q(R) we conclude that R is perfect.

Now let n > 0, and suppose the theorem has been proved for all k < n. We have
already shown that R is subperfect. We claim that A := R/r R is (n−1)-subperfect
for every r ∈ R×. By the induction hypothesis, it suffices to show

(i) (IA)2 = 0,

(ii) A/IA is (n−1)-subperfect, and

(iii) every A/IA-regular sequence in A is IA-regular.

It is clear that (IA)2 = 0. To verify (ii), we use the fact already established that if
r ∈ R×, then r + I is regular in R/I . Since R/I is n-subperfect, Proposition 3.2
implies R/(r R + I ) is (n−1)-subperfect. In view of the isomorphism A/IA ∼=
R/(r R+ I ), statement (ii) follows.

To verify (iii), suppose a1, . . . , at is an A/IA-regular sequence in A. If we write
ai = ri + r R, then r1, . . . , rt is an A/IA-regular sequence in R. Since r ∈ R× and
A/IA ∼= R/(r R + I ), we have that r, r1, . . . , rn is an R/I -regular sequence. By
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assumption, r, r1, . . . , rt is also an I -regular sequence, so r1, . . . , rt is an I/r I -
regular sequence. As established, every regular element of R is a regular element in
R/I . Thus I ∩r R= r I , and it follows that IA= (I+r R)/r R∼= I/(I ∩r R)= I/r I .
Since r1, . . . , rt is an (I/r I )-regular sequence in R, we conclude that a1, . . . , at is
an IA-regular sequence in A. Thus every A/IA-regular sequence in A is IA-regular.

Having verified (i), (ii) and (iii), we conclude from the induction hypothesis
that A = R/r R is (n−1)-subperfect. Since R is subperfect and R/r R is (n−1)-
subperfect for each r ∈ R×, Corollary 3.3 implies R is n-subperfect. �

Corollary 8.8. Let R be an n-subperfect ring, and let N be an R-module such that
every regular sequence in R extends to a regular sequence on N. Then R ? N is an
n-subperfect ring. �

Example 8.9. Corollary 8.8 implies that if R is a local Cohen–Macaulay ring, and
if N is a balanced big Cohen–Macaulay R-module, then R ? N is n-subperfect
for n = dim R. Choosing N to be an infinite rank free R-module, we obtain a
nonnoetherian n-subperfect ring R ? N .

More interesting choices are possible for N . For example if R is an excellent
local Cohen–Macaulay domain of positive characteristic and positive dimension,
and R+ is the integral closure of R in the algebraic closure of the quotient field
of R, then R ? R+ is a nonnoetherian n-subperfect ring, since R+ is a balanced big
Cohen–Macaulay module that is not finitely generated [Hochster and Huneke 1992,
Theorem 1.1].

Example 8.10. Let R be an n-subperfect ring and {X i : i ∈ I } a collection of
indeterminates for R. Let

S = R[X i : i ∈ I ]/(X i : i ∈ I )2.

The ideal N = (X i : i ∈ I )/(X i : i ∈ I )2 of S is nilpotent of index 2 and is a free
R-module with basis the images of the X i in N . As S ∼= R ? N , the ring S is a
special case of the construction in Example 8.9; therefore, S is n-subperfect. If the
index set I is infinite, then S is not noetherian.

So far, our nonnoetherian examples, at least for n> 1, have involved n-subperfect
rings with zero-divisors. Our next source of examples produces nonnoetherian
n-subperfect domains, albeit in a nontransparent way.

Theorem 8.11. Let S be a local Cohen–Macaulay domain such that Q(S) is sepa-
rably generated, and has positive characteristic and uncountable transcendence
degree over its prime subfield. If n := dim S ≥ 1, then there exists a nonnoetherian
n-subperfect subring R of S such that Q(R)= Q(S) and S is integral over R.

Proof. Let N be a free S-module of infinite rank. Applying [Olberding 2012,
Theorem 3.5] to S and N , we obtain a subring R of S such that R is “strongly
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twisted by N .” We omit the definition of this notion here, but we use the fact that
by [Olberding 2012, Theorems 4.1 and 4.6] this implies

(i) there is a subring A of R such that S/A is a torsion-free divisible A-module
and I ∩ A 6= 0 for each ideal I of S;

(ii) R has the same quotient field as S and S is an integral extension of R; and

(iii) there is a faithfully flat ring embedding f : R → S ? N such that for each
0 6= a ∈ A, the induced map fa : R/a R→ (S ?N )/a(S ?N ) is an isomorphism.

We show that the ring R/(x1, . . . , xt)R is subperfect for each nonempty regular
sequence x1, . . . , xt in R. Since f is faithfully flat, f (x1), . . . , f (xt) is a regular
sequence in T := S ? N . By Corollary 8.8, T is an n-subperfect ring. Thus
f (x1), . . . , f (xt) is a subperfect sequence in T . Since for each 0 6= a ∈ A, the map
fa is an isomorphism, we have T = f (R)+ f (a)T . By (i) and (ii), the fact that
S/R is a torsion R-module implies there is 0 6= a ∈ (x1, . . . , xt)R ∩ A. Hence

T = f (R)+ ( f (x1), . . . , f (xt))T .

Moreover, since f is faithfully flat, we have

( f (x1), . . . , f (xt))T ∩ f (R)= ( f (x1), . . . , f (xt)) f (R).

Therefore,

T/( f (x1), . . . , f (xt))T =
(

f (R)+ ( f (x1), . . . , f (xt))T
)
/( f (x1), . . . , f (xt))T

∼= f (R)/
(
( f (x1), . . . , f (xt))T ∩ f (R)

)
= f (R)/( f (x1), . . . , f (xt)) f (R)
∼= R/(x1, . . . , xt)R.

Consequently, since f (x1), . . . , f (xt) is a subperfect sequence in T , it follows that
x1, . . . , xt is a subperfect sequence in R. This proves that every regular sequence
in R is subperfect.

Finally, since S is integral over R and S is local, R is also local and has the
same Krull dimension as S. By Corollary 3.6, n = dim S = dim R. Taking into
account that every regular sequence in R is subperfect, Corollary 3.9 implies that
R is n-subperfect. By [Olberding 2012, Theorem 5.2], the fact that N is a free
S-module of infinite rank implies R is not noetherian. �

Example 8.12. Let p be a prime number, and let Fp denote the field with p elements.
Suppose k is a purely transcendental extension of Fp with uncountable transcendence
degree. Then S = k[X1, . . . , Xn](X1,...,Xn) is a local n-subperfect domain (in fact, a
Cohen–Macaulay ring) meeting the requirements of Theorem 8.11. Thus S contains
a nonnoetherian n-subperfect subring R having the same quotient field as S.
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Our final source of examples involves local Cohen–Macaulay rings that have a
coefficient field. The next theorem shows that restriction to a smaller coefficient
field can produce examples of nonnoetherian n-subperfect rings.

Theorem 8.13. Let S be a local Cohen–Macaulay ring containing a field F such
that S = F +M , where M is the maximal ideal of S. For each subfield k of F , the
local ring R = k + M is n-subperfect for n = dim S. The ring R is noetherian if
and only if F/k is a finite extension.

Proof. Evidently, R is a local ring with maximal ideal M . It is clear that every prime
ideal of S is a prime ideal of R. To verify the converse, let P be a nonmaximal prime
ideal of R. To show that P is in fact an ideal of S, let s ∈ S. Then s P ⊆ s M ⊆ R,
and also, (s P)M = P(s M) ⊆ P because s M ⊆ R. Since M 6⊆ P , we conclude
that s P ⊆ P , which proves that P is an ideal of S. To see that P is prime in S,
let x, y ∈ S with xy ∈ P . If one of x or y is a unit in S, then the other is in P .
Otherwise, if neither x nor y are units, then necessarily x, y ∈ M ⊆ R, and since P
is a prime ideal of R, one of x, y is in P . Thus P is a prime ideal of S, and this
shows that the prime ideals of R are precisely those of S.

We show now that R is n-subperfect, where n = dim S. By [Fontana et al. 1997,
Lemma 1.1.4, p. 5], Q(R)= Q(S), so R is a subperfect ring, since the total quotient
ring Q(S) of the Cohen–Macaulay ring S is artinian. Let x1, . . . , xt be a regular
sequence in R, and I = (x1, . . . , xt)R. We claim that R/I is a subperfect ring. The
height of I in R is at least t , and since R and S share the same prime ideals, the
height of I S is also at least t . Krull’s height theorem implies then that the height of
the t-generated ideal I S is t . Since S is a Cohen–Macaulay ring, the ideal I S is
unmixed. We use this to show next that Q(R/I ) is zero-dimensional.

To this end, we prove that every zero-divisor of R/I is contained in a minimal
prime ideal of R/I . Let x, y ∈ R such that xy ∈ I and y /∈ I . Suppose by way
of contradiction that x is not contained in any minimal prime ideal of I . Since I
and I S share the same minimal primes, the image of x in S/I S does not belong to
any minimal prime ideal of S/I S. However, I S is unmixed, so necessarily y ∈ I S.
Therefore, using the fact that S = F +M , we can write

y = α1x1+ · · ·+αt xt + z for α1, . . . , αt ∈ F and z ∈ (x1, . . . , xt)M.

Similarly, since xy ∈ I and R = k+M , we have

xy = β1x1+ · · ·+βt xt +w for β1, . . . , βt ∈ k and w ∈ (x1, . . . , xt)M.

Let i be the largest index such that at least one of αi , βi is not 0. Using the preceding
expressions for y and xy, we obtain

β1x1+ · · ·+βi xi +w = α1xx1+ · · ·+αi xxi + xz.
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Therefore,
(βi −αi x)xi ∈ (x1, . . . , xi−1)R.

Since βi − αi x ∈ k +M = R and x1, . . . , xi is a regular sequence in R, we have
βi − αi x ∈ (x1, . . . , xi−1)R. The fact that x is a nonunit in R implies βi ∈ M , so
βi = 0 and hence, by the choice of i , αi 6= 0. Since the prime ideals of S are the
same as the prime ideals of R,

√
(x1, . . . , xi−1)R is an ideal of S. Also, αi is a

unit in S and αi x ∈ (x1, . . . , xi−1)R, so x ∈
√
(x1, . . . , xi−1)R ⊆

√
I . However, x

was chosen not to be contained in any minimal prime ideal of I . This contradiction
implies that x must be in some minimal prime ideal of I , establishing that Q(R/I )
is a zero-dimensional ring. Since I and I S share the same minimal prime ideals, I
has only finitely many minimal primes, so Q(R/I ) is also semilocal.

It remains to show that the nilradical of R/I is T-nilpotent, and to prove this, it
suffices to show that some power of

√
I is contained in I . Since

√
I is a finitely

generated ideal of the noetherian ring S and
√

I =
√

I M , with I M an ideal of S,
there is t > 0 such that (

√
I )t ⊆ I M ⊆ I . Therefore, R/I is subperfect, which

completes the proof that every regular sequence in R is subperfect. Since R and S
share the same maximal ideal, Corollary 4.3 implies R is n-subperfect for n= dim S.
Finally, it is straightforward to check that R is noetherian if and only if F/k is a
finite field extension; see [Fontana et al. 1997, Proposition 1.1.7, p. 7]. �

Example 8.14. Let S = F[[X1, . . . , Xn]]/I , where F is a field, X1, . . . , Xn are in-
determinates for F , and I is an ideal such that S is Cohen–Macaulay. Theorem 8.13
implies that for each subfield k of F ,

R =
{

f + I ∈ S : f ∈ F[[X1, . . . , Xn]] and f (0, . . . , 0) ∈ k
}

is an n-subperfect ring.
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ORDINARY POINTS MOD p OF
GLn(R)-LOCALLY SYMMETRIC SPACES

MARK GORESKY AND YUNG SHENG TAI

Locally symmetric spaces for GLn(R) parametrize polarized complex abelian
varieties with real structure (antiholomorphic involution). We introduce a
mod p analog. We define an “antiholomorphic” involution (or “real struc-
ture”) on an ordinary abelian variety (defined over a finite field k) to be
an involution of the associated Deligne module (T, F, V ) that exchanges F
(the Frobenius) with V (the Verschiebung). The definition extends to include
principal polarizations and level structures. We show there are finitely many
isomorphism classes of such objects in each dimension, and give a formula for
this number that resembles the Kottwitz “counting formula” (for the number
of principally polarized abelian varieties over k), but the symplectic group in
the Kottwitz formula has been replaced by the general linear group.

1. Introduction

1.1. Let N ≥3 be an integer and let 0N ⊂Sp2n(Z) be the principal level N subgroup
consisting of elements that are congruent to the identity modulo N . The locally
symmetric space Y = 0N\Sp2n(R)/U (n) may be viewed as the set of complex
points of the moduli space An,[N ] of principally polarized complex n-dimensional
abelian varieties with level N structure. It admits the structure of a complex
algebraic variety and it has an incarnation “modulo p”, namely, the moduli space
An,[N ](k) of principally polarized abelian varieties (of dimension n with level N
structure) over a finite field k = Fq of characteristic p. The number of points in
An,[N ](k) was computed by R. Kottwitz [1990; 1992], proving a reformulation of
the conjecture of Langlands and Rapoport [1987], following earlier work on this
question by J. Milne, W. Waterhouse, R. Langlands, M. Rapoport and others.

For n ≥ 3 the locally symmetric space X = GLn(Z)\GLn(R)/O(n) does not
have a complex structure. Nevertheless in many ways this space behaves something
like an algebraic variety, perhaps most spectacularly illustrated by the success (see
[Harris et al. 2016; Harris and Taylor 2001; Patrikis and Taylor 2015; Barnet-Lamb
et al. 2014; Taylor 2008; Scholze 2015]) in associating Galois representations to

MSC2010: 11F99, 11G25, 14G35, 14K10.
Keywords: ordinary abelian variety, locally symmetric space, Kottwitz formula.

165

http://msp.org/pjm/
http://dx.doi.org/10.2140/pjm.2019.303-1
http://dx.doi.org/10.2140/pjm.2019.303.165


166 MARK GORESKY AND YUNG SHENG TAI

modular forms on X . This leads to the search for other ways in which the locally
symmetric space X behaves like the algebraic variety Y . Is it possible to make
sense of the points of X “modulo p”, and to provide a concrete description and
count for the points of X over the finite field Fq?

With appropriate level structures, finitely many copies of the space X sit inside Y
in a natural way. In [Goresky and Tai 2003a], we showed that the (principally
polarized) abelian varieties corresponding to points x ∈ X are precisely those which
admit a real structure, that is, an antiholomorphic involution. Therefore one might
hope to identify the finite field analog of X as a parameter space for principally
polarized abelian varieties over Fq equipped with an “antiholomorphic involution”,
whatever that means.

1.2. A hint is provided by the theory of complex multiplication. If a simple CM
abelian variety A has good reduction to a variety A over Fq then the Frobenius
morphism F has a lift to an element π ∈ EndQ(A). Complex conjugation takes π
to π̄ = qπ−1 (since π is a Weil q-number) which is a lift of the Verschiebung V .
Therefore if “complex conjugation” is to make sense on A it must switch F and V . Is
it possible to enlarge the collection of morphisms for abelian varieties over Fq so as
to allow for generalized morphisms that switch the Frobenius with the Verschiebung?

1.3. In this paper we show how to make sense of these notions for ordinary abelian
varieties over Fq using P. Deligne’s linear algebra description [1969] of the category
of ordinary abelian varieties as equivalent to the category of Deligne modules (T, F).
We define a real structure on (T, F) to be an involution τ : T → T that switches F
and V = q F−1. This simple, almost trivial definition leads to a wealth of interesting
structures. The definition extends naturally to include polarizations (using Howe’s
theorem [1995]) and level structures so we obtain a category of “real” polarized
Deligne modules. We show there are finitely many isomorphism classes of real
Deligne modules (T, F, τ ) (with principal polarization and level structure) over Fq ,
and we are able to count them. For n = 1 in Section 7.4, we find, asymptotically
C(p)q1/2 log q objects (for q an odd power of p). For general n we show that the
method of Kottwitz [1990; 1992] may be modified to give a formula, involving
adèlic orbital integrals at p and away from p, that closely resembles the finite adèlic
part of the (relative) trace formula.

1.4. Conceptually, the general formula (Section 10.5) may be described as follows.
By appropriate choice of coordinates it turns out that the Frobenius morphism F
for an ordinary abelian variety with real structure (that is, for a polarized Deligne
module with involution (T, F, τ )) may be expressed as a semisimple element

γ0 =

(
A B
C tA

)
∈ GSp2n(Q)

such that B,C are symmetric and A is self-adjoint with respect to the inner product
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defined by C , and is totally real1 with eigenvalues of absolute value <
√

q . It turns
out that the blocks A, B,C have elegant interpretations: the GLn(Q)-conjugacy
class of A determines the Q-isogeny class of (T, F, τ ), reflecting the equivalence
of conjugacy and stable conjugacy for GLn . Moreover, the congruence class of
C determines the Q-isogeny class of (T, F, τ ) within its Q-isogeny class (and B
is uniquely determined by A,C). The number of isomorphism classes within a
Q-isogeny class is given by an orbital integral.

1.5. Our formula differs from that of [Kottwitz 1990] in that the contribution “at p”
is an ordinary orbital integral as opposed to the twisted orbital integral that arises
in [Kottwitz 1990]. Kottwitz uses a special case of the fundamental lemma to
express the twisted integral in terms of (stable) ordinary integrals. In our case we
do the reverse: in [Goresky and Tai 2019] (which is not restricted to the “ordinary”
case), by comparing Zp-lattices with lattices over the Witt vectors, we show that
the contribution “at p” to our formula can also be expressed as a (single) twisted
orbital integral, which in turn can be interpreted as counting Dieudonné modules
with antiholomorphic involution.

1.6. Because we restrict to the “ordinary” case, most of the techniques of this paper
involve little more than linear algebra. In some sections, for completeness we have
provided proofs of results that are known to experts. As a byproduct, we obtain an el-
ementary re-proof of the “ordinary” part of the Kottwitz formula (see Theorem 10.2).
It is simpler than the general formula because it does not require the Kottwitz
invariant α(γ0; γ δ), and does not involve a twisted orbital integral, but we include it
because it provides a useful comparison with the formula in Section 10.5 in the “real”
case, in which the symplectic group has been replaced by the general linear group.

1.7. Notation. If E is an algebraic number field, we use OE to denote its full ring of
integers. Throughout this paper we fix a finite field k= Fq of characteristic p> 0. If
R is an integral domain and n≥ 1, the standard symplectic form ω0 : R2n

×R2n
→ R

is the bilinear map whose matrix is
( 0
−I

I
0

)
. The general symplectic group, which

we denote by G(R) = GSp2n(R), consists of elements A ∈ GL2n(R) such that
ω0(Ax, Ay) = λω0(x, y) for some λ ∈ R× in which case λ is a character, called
the multiplier. The standard involution (see Appendix B) on R2n is the map
τ0(x, y) = (−x, y). If g ∈ G(R), we set g̃ = τ0gτ−1

0 . The subgroup fixed under
this involution is denoted GL∗n(R) (see Section 5.4). The finite adèles of Q are
denoted A f . Let

A
p
f =

∏′

v 6=p,∞
Qp

denote the adèles away from p, let Ẑp
=
∏
v 6=p,∞ Zv so that Ẑ = Zp .̂Z

p. Let

1Meaning that its eigenvalues are totally real algebraic integers.
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KN ⊂ GSp2n(Z) and K 0
N ⊂ Sp2n(Z) denote the principal congruence subgroups of

level N and similarly

(1.7.1)
K̂ 0

N = ker(Sp2n(Ẑ)→ Sp2n(Z/MZ)),

K̂N = ker(GSp2n(Ẑ)→ GSp2n(Z/NZ))= K̂ p
N K p,

where K̂ p
N = GSp2n(Ẑ

p)∩ K̂N and K p = GSp2n(Zp). If S is a commutative ring
with 1 and C is a Z-linear abelian category, the associated category up to S-isogeny
([Deligne 1973; Kottwitz 1990]) is the category with the same objects but with
morphisms

HomS(A, B)= HomC(A, B)⊗Z S.

An S-isogeny is an isomorphism in this category, i.e, an invertible element in this set.

2. The complex case

2.1. We briefly recall several aspects of the theory of moduli of real abelian varieties,
which serve as a partial motivation for the results in this paper. Recall that a real
structure on a complex abelian variety A is an antiholomorphic involution of A.
It has been observed [Silhol 1982; Seppälä and Silhol 1989; Comessatti 1926;
Shimura 1975; Milne and Shih 1981; Adler 1979; Gross and Harris 1981; Goresky
and Tai 2003b] that principally polarized abelian varieties (of dimension n) with
real structure correspond to “real points” of the coarse moduli space

Y = Sp2n(Z)\hn

of all principally polarized abelian varieties, where hn is the Siegel upper halfspace.
On this variety, complex conjugation is induced from the mapping on hn that is
given by Z 7→ Z̃ =−Z̄ which is in turn induced from the “standard involution” τ0.

However, a given principally polarized abelian variety A may admit several
nonisomorphic real structures ([Silhol 1982]). Thus, the coarse moduli space of prin-
cipally polarized abelian varieties with real structure is not a subset of Y but rather,
it maps to Y by a finite mapping. This multiplicity may be removed by replacing Y
with the moduli space of principally polarized abelian varieties with a sufficiently
high level structure. More generally let K f ⊂Sp2n(A f ) be a compact open subgroup
of the finite adèlic points of Sp2n that is preserved by the involution τ0 and is
sufficiently small that K f ∩Sp2n(Q) is torsion free. (We use Sp rather than GSp for
expository purposes because the argument for GSp is similar but slightly messier.)
As in [Rohlfs 1978], the fixed points of the involution τ0 on double coset space

Y = Sp2n(Q)\Sp2n(A)/K f U (n)

are classified by classes2 in the nonabelian cohomology H 1(〈τ0〉, K f ).

2If x ∈Sp2n(A)maps to a fixed point in Y there exist γ ∈Sp2n(Q), k ∈ K f and m ∈ K∞ such that
x̃ = γ xkm; so x = γ̃ γ xkk̃mm̃. Then kk̃ = I since K f is sufficiently small, so k defines a 1-cocycle.
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Proposition 2.2 [Goresky and Tai 2003b]. Conjugation by τ0 on Sp2n passes to an
antiholomorphic involution η : Y → Y whose fixed point X is isomorphic to the
finite disjoint union,

X ∼=
∐

α∈H1(〈τ0〉,K f )

Xα

over cohomology classes α, where

Xα = GLn(Q)\GLn(A)/KαO(n)

is an arithmetic quotient of GLn(R) and Kα is a certain3 compact open subgroup
of GLn(A f ). If 4 | N and if K f = K̂ 0

N is the principal congruence subgroup of
Sp2n(Ẑ) of level N then Kα = K̂ ′N is independent of the cohomology class α, and X
may be identified with the parameter space (or coarse moduli space) of principally
polarized abelian varieties with real structure and level N structure. �

In this paper, by restricting to the case of ordinary abelian varieties, we make a
first attempt at finding a finite field analog of Proposition 2.2.

2.3. The Siegel space hn admits another interesting antiholomorphic involution. In
[Goresky and Tai 2003a] this involution is described on h2 whose fixed point set is
hyperbolic 3-space (cf. [Nygaard 1995]). After appropriate choice of level structure,
it passes to an involution of the moduli space Y whose fixed point set is a union
of arithmetic hyperbolic 3-manifolds which may be interpreted as constituting a
coarse moduli space for abelian varieties with “antiholomorphic multiplication” by
an order in an imaginary quadratic number field. A finite field analog for this result,
along the same lines as the rest of this paper, which applies to the case of ordinary
abelian varieties, is described in Section 12.

3. Deligne modules, polarizations and viable elements

3.1. Ordinary abelian varieties. Throughout this section we fix a finite field k=Fq

of characteristic p. Let A/k be a dimension n abelian variety. Recall that A is
ordinary if any of the following equivalent conditions is satisfied.

(1) If ·p : A(k̄)→ A(k̄) denotes the multiplication by p then its kernel has exactly
pn points.

(2) The local-local component of the p-divisible group A(p∞)= lim
←

A[pr
] is

trivial.

3The class α vanishes in H1(〈τ0〉,Sp2n(A f )) so there exists h ∈ Sp2n(A f ) such that α = [h−1h̃].
Then Kα = (h−1 K f h)∩ Sp2n(A f ) and right translation by h−1 maps GLn(Q)\GLn(A)/O(n).Kα
to Y .



170 MARK GORESKY AND YUNG SHENG TAI

(3) The middle coefficient of the characteristic polynomial h A of the Frobenius
endomorphism of A is not divisible by p.

(4) Exactly half of the roots of h A in Qp are p-adic units.

3.2. Recall the basic definitions of [Deligne 1969]. A Deligne module of rank 2n
over the field k = Fq of q elements is a pair (T, F) where T is a free Z-module
of dimension 2n and F : T → T is an endomorphism such that the following
conditions are satisfied:

(1) The mapping F is semisimple and all of its eigenvalues in C have magni-
tude
√

q .

(2) Exactly half of the eigenvalues of F in Qp are p-adic units and half of the
eigenvalues are divisible by q . (So ±

√
q is not an eigenvalue.)

(3) The middle coefficient of the characteristic polynomial of F is coprime to p.

(4) There exists an endomorphism V : T → T such that FV = V F = q .

A morphism (T, F)→ (T ′, F ′) of Deligne modules is a group homomorphism
φ : T → T ′ such that F ′φ = φF .

3.3. Let W (k) be the ring of (infinite) Witt vectors over k. Deligne [1969] chose
an embedding

(3.3.1) ε :W (k̄)→ C

(“once and for all”) which we henceforth refer to as Deligne’s embedding. By a the-
orem of Serre and Tate [Drinfeld 1976; Katz 1981; Messing 1972; Nori and Srinivas
1987], the ordinary abelian variety A has a canonical lift Ā over W (k) which, using
(3.3.1), gives rise to a complex variety AC over C. Let F ∈ Gal(k̄/k) denote the
Frobenius. The geometric action of F on A lifts to an automorphism FA on

T = TA = H1(AC,Z).

Theorem 3.4 [Deligne 1969]. The association A → (TA, FA), determined by
Deligne’s embedding (3.3.1), induces an equivalence of categories between the
category of n-dimensional ordinary abelian varieties over k = Fq and the category
of Deligne modules over k of rank 2n.

3.5. Endomorphism algebra and CM types. If A is an ordinary abelian variety
over the finite field k= Fq of characteristic p, then A is Q-isogenous A∼ A1×A2×

· · ·× Ar to a product of ordinary abelian varieties over k such that:

(1) For 1≤ i ≤ r , there exists a positive integer di and a simple ordinary abelian
variety Bi over k and a Q-isogeny Ai ∼ Bdi

i .

(2) HomQ(Bi , Bj )= 0 for i 6= j .
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The endomorphism algebra Ki = EndQ(Bi ) is a CM field (that is, an imaginary
quadratic extension of a maximal totally real subfield L i ) of degree [Ki : Q] =

2 dim(Bi ). It is the center of the algebra EndQ(Ai ) ∼= Mdi×di (Ki ). The center of
EndQ(A) is therefore isomorphic to the CM algebra (that is, the product of CM
fields) K = K1× · · ·× Kr .

A CM type 8i on Ki is a collection of embeddings φ : Ki → C, one from each
complex conjugate pair. It induces a real vector space isomorphism∏

φ∈8i

: Ki ⊗Q R→ C[Ki :Q]/2

which defines a complex structure on Ki ⊗Q R. A CM type on K is a collection
of nontrivial homomorphisms φ : K → C, one from each complex conjugate pair,
or equivalently, it is a choice of CM type for each Ki . Using Theorem 3.4 these
statements become the following.

If (T, F) is the Deligne module corresponding to A then there is a decomposition

TQ = T ⊗Z Q∼= T1,Q⊕ · · ·⊕ Tr,Q,

preserved by F , say F = F1⊕ · · ·⊕ Fr , and an isomorphism Q[F] ∼= K1× · · · Kr

of the center of EndQ(T, F)= EndF (T ⊗Q) with the CM algebra K . Then Ti,Q

is a vector space of dimension di over the CM field Ki =Q[Fi ]. A CM type for
Q[F] defines a complex structure on T ⊗R. The minimum polynomial of (T, F)
is the product of the minimum polynomials hi (x) of the (Ti,Q, Fi ). It is an ordinary
Weil q-polynomial (see Section A.1).

Deligne’s embedding ε :W (k̄)→C induces a valuation valp on Q⊂C extending
the p-adic valuation of W (k) (which explains the use of W (k̄) rather than W (k)).
This determines a canonical CM type for every Deligne module (and every CM
algebra), which we refer to as Deligne’s CM type as follows. If (T, F) is a Deligne
module, define

(3.5.1) 8ε = {φ :Q[F] → C | valp(φ(F)) > 0}.

Then8ε is a CM type for the CM algebra Q[F]. The resulting complex structure on
T ⊗Z R is the unique complex structure such that the action of F is complex linear
and such that valp(α)>0 for every eigenvalue α of F (see [Deligne 1969, p. 242]). It
agrees with the complex structure on T0 AC in the case when (T, F)= (TA, FA) is the
Deligne module associated to an ordinary abelian variety A. The complex structure
gives a Hodge structure on T0 AC which corresponds to an R homomorphism
S= ResC/R Gm→ GL(T ⊗R).

3.6. Let (T, F) be a Deligne module. We are grateful to the referee for pointing
out that not every CM type on Q[F] will arise as 8ε′ for different embeddings
ε′ :W (k̄)→C. Suppose as above that K =Q[F]∼= K1×· · ·×Kr is a decomposition
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into a product of CM fields, with the corresponding decomposition L = L1×· · · Lr

of maximal totally real subfields. Each p-adic place of L i splits in Ki but the
prime p may ramify in L i . A CM type arising from an embedding ε′ :W (k̄)→ C

will correspond to a choice, for each i and for each p-adic place in L i , of one of the
two places in Ki over it. Let us say that such a CM type is eligible. Thus the total
number of eligible CM types for Q[F] is 2s where s is the number of p-adic places
of L1×· · ·× Lr (whereas the full number of CM types is 2t where t =

∑
i [L i :Q]).

For Howe’s theorem (Section 3.9) and Sections 6–10, we consider only eligible
CM types on Q[F], and in fact, we use only Deligne’s CM type 8ε. For Howe’s
theorem, this is crucial. However the results in Sections 6–9 are “linear algebra”
statements that can be extended in a straightforward manner to include arbitrary
CM types using Section 3.8 and parts (b) and (c) of Existence Lemma 3.10.

3.7. Polarizations. For a complex n-dimensional abelian variety X , a polarization
may be considered to be a Hermitian form H = R+ iω defined on the (complex
n-dimensional) tangent space T0 X , meaning that ω is a (real-valued) symplectic
form on the underlying real vector space (T0 X)R such that the inner product

R(x, y)= ω(x,
√
−1.y)

is symmetric and positive definite. E. Howe [1995] defined the notion of a po-
larization of a Deligne module (T, F) in a similar way but the “positive definite”
condition requires a replacement for the notion of multiplication by

√
−1.

If 8 is any CM type on Q[F], we will say (following [Howe 1995]) that an
element ι ∈ Q[F] is 8-totally positive imaginary if φ(ι) is a positive multiple
of
√
−1 for all φ ∈ 8. A polarization ω of the Deligne module (T, F) that is

positive with respect to the CM type 8 is defined to be an alternating bilinear form
ω : T × T → Z such that

(0) ω(x, y)=−ω(y, x) for all x, y ∈ T,

(1) ω : TQ× TQ→Q is nondegenerate,

(2) ω(Fx, y)= ω(x, V y) for all x, y ∈ T,

and the following 8-positivity condition (see Section 3.11) holds:

(∗) The bilinear form R(x, y) = ω(x, ιy) is symmetric and positive definite for
some (and hence any) totally 8-positive imaginary element ι ∈Q[F].

Then we say that (T, F, ω) is a 8-positively polarized Deligne module. (See also
Section 3.11.)

Let us say that a symplectic form ω on a Deligne module (T, F) satisfying (1)
and (2) above is a polarization if there exists a CM type 8 on Q[F] such that ω is
a 8-positive polarization on (T, F). (Most of this paper involves Deligne modules
that are positively polarized with respect to Deligne’s CM type 8ε.)
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3.8. Suppose (T1, F1, ω1) is 81-positively polarized and that (T2, F2, ω2) is 82-
positively polarized, where 81,82 are CM types on Q[F1], Q[F2], respectively. If
g : (T1, F1)→ (T2, F2) is a morphism of Deligne modules that is compatible with
the polarizations (meaning that g∗(ω2)=ω1) then it also follows that g∗(82)=81.
Therefore we may speak of a morphism of polarized Deligne modules without
necessarily referring to the CM type. (See also Existence Lemma 3.10).

Let S be a commutative ring with 1. An S-isogeny of 8-positively polarized
Deligne modules φ : (T1, F1, ω1)→ (T2, F2, ω2) is defined to be an S-isogeny
(see Section 1.7) φ : (T1, F1)→ (T2, F2) for which there exists c ∈ S× such that
φ∗(ω2)= cω1, in which case c is called the multiplier of the isogeny φ. If S⊂R then
any S-isogeny of 8-positively polarized Deligne modules has positive multiplier.

3.9. Howe’s theorem. If (T, F) is a Deligne module then the dual Deligne module
(T̂ , F̂) is defined by T̂ = Hom(T,Z) and F̂(φ)(x)= φ(V x) for all φ ∈ T̂ .

Let A be an ordinary abelian variety with associated Deligne module (TA, FA) that
is determined by the embedding ε of (3.3.1). Then there is a canonical isomorphism
of Deligne modules, (T̂A, F̂A)∼= (TÂ, FÂ). Let ω : TA× TA→ Z be an alternating
bilinear form that satisfies conditions (1) and (2) of Section 3.7. It induces an
isomorphism

λ : (TA⊗Q, F)→ (T̂A⊗Q, F̂)

and hence an isogeny λA : A→ Â. Then [Howe 1995] proves that ω is positive with
respect to the CM type 8ε if and only if λA is a polarization of the abelian variety
A. Consequently, the equivalence of categories in Theorem 3.4 (which depends
on the choice of ε) extends to an equivalence between the category of polarized
n-dimensional abelian varieties over Fq with the category of8ε-positively polarized
Deligne modules (over Fq) of rank 2n.

Existence Lemma 3.10 (see also Existence Lemma 4.4).
(a) Let K =Q[π ] be a CM field and let 8 be a CM type for K . Then there exists
an integral symplectic form ω : OK ×OK → Z which satisfies the 8-positivity
condition (∗) of Section 3.7, that is, the bilinear form R(x, y)= ω(x, ιy) is positive
definite and symmetric, for any 8-totally positive imaginary element ι ∈ K . The
form ω may be chosen so that ω(ax, y) = ω(x, ā y) for any a ∈ K (where bar
denotes complex conjugation); hence ω(x̄, ȳ)=−ω(x, y). If π is an ordinary Weil
q-number4 then (OK , π, ω) is a 8-positively polarized Deligne module.

(b) Let (T, F) be a Deligne module. For any CM type 8 on Q[F], there exists a
8-positive polarization ω of (T, F); hence (T, F, ω) is a 8-positively polarized
Deligne module.

4meaning that Q[π ] has no real embeddings, that φ(π)φ̄(π) = q for each complex embedding
φ :Q[π ] → C, and that the middle coefficient of the characteristic polynomial of π is not divisible by
p; see Appendix A.
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(c) Suppose (T, F) is a Deligne module and suppose ω : T ×T→Z is a symplectic
form such that ω(Fx, y) = ω(x, V y). Then there exists a unique CM type 8 on
Q[F] such that ω is8-positive; hence (T, F, ω) is a8-positively polarized Deligne
module.

Proof. A polarization that is positive with respect to 8 and compatible with
complex conjugation is described in [Shimura and Taniyama 1961, §6.2] and
[Shimura 1998, §6.2]; see also [Milne 2005, Proposition 10.2, p. 335]; we repeat
the definition here. Let α ∈OK be totally 8-positive imaginary and for all x, y ∈ K
set

ωK (x, y)= TraceK/Q(αx .ȳ).

Then ωK :OK ×OK → Z is antisymmetric, the bilinear form R(x, y)=ωK (x, αy)
is symmetric and positive definite, ωK (πx, πy) = qωK (x, y), and ωK (x̄, ȳ) =
−ωK (x, y).

Part (b) follows from part (a) by decomposition into simple Deligne modules.
For part (c) we may also suppose (T, F) is Q-simple and ω : T × T → Z is

alternating and nondegenerate over Q with ω(Fx, y)= ω(x, V y). A choice of an
F-cyclic vector gives an isomorphism of Q[F]-modules, T⊗Q∼=Q[F]. Using this
isomorphism, the mapping x 7→ ω(x, 1) is Q-linear, so is given by TraceK/Q(αx)
for some uniquely determined α ∈ K . It follows that ᾱ =−α and

ω(x, y)= TraceK/Q(αx ȳ).

This element α determines a CM type8=8α for K : for any embedding K→C

the image of α is purely imaginary so there is a unique choice φ from each pair of
complex conjugate embeddings such that φ(α) is positive imaginary. It is easy to
check that ω is 8α-positive. For uniqueness, if β ∈Q[F] is any other element such
that (x, y)→ ω(x, βy) is symmetric and positive definite then β̄ =−β so φ(β) is
purely imaginary for every φ ∈8α. Moreover,

ω(x, βx)=
∑
φ∈8α

φ(αβ̄x x̄)+φ(αβ̄x x̄)= 2
∑
φ∈8α

φ(αβ̄x x̄) > 0

for all x ∈Q[F]×. This implies that φ(α)φ(β̄)=−φ(α)φ(β) > 0 for each φ ∈8α;
hence φ(β) is also positive imaginary, that is, 8α =8β . �

3.11. Viable elements. Let γ0 ∈ GSp2n(Q) be a semisimple element whose char-
acteristic polynomial is an ordinary Weil q-polynomial. If γ, γ0 ∈ GSp2n(Q) are
stably conjugate5 then conjugation defines a unique isomorphism Q[γ ] ∼=Q[γ0].
Let C ⊂ GSp2n(Q) be the stable conjugacy class of γ0 and let 8 be a CM type on
the CM algebra K = K (C)=Q[γ0]. An element γ ∈ C will be said to be8-viable if

5Meaning that there exists g ∈ GSp2n(Q) such that γ = g−1γ0g.
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the pair (γ, ω0) satisfies the following positivity condition (where ω0 is the standard
symplectic form on Q2n):

(∗∗) The bilinear form R(x, y) = ω0(x, ιy) is symmetric and positive definite
on Q2n for any totally 8-positive imaginary element ι ∈Q[γ ].

Proposition 3.12. (see also Existence Lemma 4.4.) Let C ⊂ GSp2n(Q) be a stable
conjugacy class of semisimple elements whose characteristic polynomial is an
ordinary Weil q polynomial and let 8 be a CM type on the associated CM algebra
K = K (C).

(1) An element γ ∈ C is8-viable if and only if there exists a8-positively polarized
Deligne module of the form (L , γ, ω0) for some lattice L ⊂Q2n .

(2) The set of 8-viable elements in C is nonempty and forms a unique Sp2n(R)-
conjugacy class6 within C.

Proof. For part (1), given a 8-viable element γ ∈ C, we may reduce to the case that
the characteristic polynomial of γ is irreducible and K =Q[γ ] is a CM field. We
need to construct a lattice L ⊂Q2n which is preserved by γ and by qγ−1, such that
the symplectic form ω0 take integer values on L .

Let v0 ∈Q2n be a cyclic vector for the action of γ , that is, a generator of Q2n

as a one-dimensional K = Q[γ ] module and let ψ : K → Q2n be the unique
K -equivariant mapping such that ψ(1)= v0.

Let ωK = ψ
∗(ω0). Then ωK (x, 1) is linear in x so it is given by TraceK/Q(αx)

for some unique element α ∈ K . It follows that ωK (x, y)= TraceK/Q(αx ȳ), that
ᾱ =−α and that α is totally 8-positive imaginary. If we change v0 to x .v0 (with
x ∈Q[γ ]) then α changes to x x̄α. It follows that we may choose v0 so that α ∈ K
is an algebraic integer. Therefore multiplication by α preserves OK so ωK is integer
valued on OK . Hence, we may take L = ψ(OK ).

For part (2), by Existence Lemma 3.10(c), there exists a 8-viable element γ0 ∈ C,
and there exists a 8-positively polarized Deligne module of the form (L0, γ0, ω0)

(where L0 ⊂Q2n). Now let γ ∈ C. We must show that γ is 8-viable if and only if
it is Sp2n(R)-conjugate to γ0.

First, suppose that γ is8-viable, and hence (L , γ, ω0) is a8-positively polarized
Deligne module, for some lattice L ⊂Q2n . Since γ, γ0 have the same characteristic
polynomial, there exists φ ∈GL2n(Q) with γ0= φ

−1γφ which therefore induces an
identification Q[γ ] ∼= Q[γ0]. So (φ−1(L), φ∗(γ ) = γ0, φ

∗(ω0)) is a 8-positively
polarized Deligne module. Choose c ∈Q, c > 0, such that cφ∗(ω0) takes integer
values on L0. Then cφ∗(ω0) is a second polarization of the Deligne module (L0, γ0).
By Lemma C.1 there is an R-isogeny ψ : (L0, γ0, ω0)→ (L0, γ0, cφ∗(ω0)) with
multiplier equal to 1, which implies that ψ∗φ∗(cω0) = ω0. Thus, conjugation

6Meaning the intersection of an Sp2n(R) conjugacy class with C.
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by φ ◦ψ takes γ0 to γ , and φ ◦ψ ∈ GSp2n(R) has multiplier c > 0. Therefore
conjugation by 1/

√
c φ ◦ψ ∈ Sp2n(R) also takes γ0 to γ . The converse is similar

(but easier). �

4. Real structures

Definition 4.1. Fix a Deligne module (T, F) over k = Fq of dimension 2n. A real
structure on (T, F) is a Z-linear homomorphism τ : T → T such that τ 2

= I and
such that τ Fτ−1

= V . A (real) morphism φ : (T, F, τ )→ (T ′, F ′, τ ′) of Deligne
modules with real structures is a group homomorphism φ : T → T ′ such that
φF = F ′φ and φτ = τ ′φ. A real structure τ is compatible with a polarization
ω : T × T → Z if, for all x, y ∈ T,

(4.1.1) ω(τ x, τ y)=−ω(x, y).

Let N ≥ 1 and assume p - N . A ( principal ) level N structure on (T, F) is an
isomorphism β : T/N T → (Z/NZ)2n such that β ◦ F = β where F = F (mod N ).
(If a level N structure exists, it implies that F ≡ I (mod N ), which places further
restrictions on N .) A level N structure is said to be compatible with a polarization
ω : T ×T → Z if β∗(ω)= ω̄0 is the reduction modulo N of the standard symplectic
form (see Section 1.7).

If (T, F, τ ) is a Deligne module with real structure then a level N structure β
on (T, F) is compatible with τ if β∗(τ ) = τ̄0 is the reduction modulo N of the
standard involution (see Section 1.7 and Section D.3). A necessary condition for
the existence of a level N structure that is compatible with τ is that p≡ 1 (mod N ),
which also implies that V ≡ I (mod N ); see Section 5.1.

4.2. In Theorem 7.1 we will prove (for q, N coprime) that there are finitely many
isomorphism classes of principally (8ε-positively) polarized Deligne modules
of rank 2n over Fq with real structure and with principal level N structure. In
Section 11.1 we add a few remarks concerning the fixed point lattice T τ (or “real
sublattice”) of a Deligne module (T, F) with real structure τ .

Lemma 4.3. The category of Deligne modules (resp. polarized Deligne modules)
with real structure, up to Q-isogeny is semisimple. If (T, F, τ ) is Q-simple then
either (a) TQ = T ⊗Q is a simple Q[F] module or (b) there exists a simple Q[F]
module W so that TQ

∼=W ⊕ τ(W ).

Proof. The proof is more or less standard. For the first statement, it suffices to
check complete reducibility. Let (T, F, τ ) be a Deligne module, and let (T1, F, τ )
be a submodule. Since F is semisimple the ring Q[F] is isomorphic to a product
of number fields. It follows that (T, F, τ ) decomposes into a sum of modules over
these constituent fields. So we may assume that Q[F] is a field. Set W = T⊗Q and
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let W1= T1⊗Q. Choose any decomposition of W into simple Q[F]-submodules so
that W1 is a summand. The resulting projection π :W →W1 is Q[F]-equivariant.
Let e = π + τπτ : W → W1. Then e is surjective (since its restriction to W1

coincides with multiplication by 2) and W ′1 := ker(e) is preserved by F and by τ .
Thus, the decomposition W =W1⊕W ′1 is preserved by F and by τ . For any choice
of lattice T ′1 ⊂W ′1 preserved by F and τ the module (T1⊕T ′1, F, τ ) is Q-isogenous
to (T, F, τ ). The statement about simple modules follows.

Similarly suppose (T, F, ω, τ ) is a Deligne module with real structure and 8-
positive polarization with respect to a choice8 of CM type on Q[F]. Let W =T⊗Q

and suppose that W1 ⊂W is a subspace preserved by F and by τ . Set F1 = F |W1.
It follows that

(1) the restriction of ω to W1 is nondegenerate and is 81-positive, where 81 is the
CM type on Q[F1] that is induced from 8,

(2) the subspace W2= {y ∈W | ω(w, y)= 0 for all w ∈W1} is also preserved by F
and by τ and it is 82-positively polarized by the restriction ω |W2 where 82 is the
CM type induced from 8 on Q[F2] (where F2 = F |W2), and

(3) the module W decomposes as an orthogonal sum W =W1⊕W2. �

Existence Lemma 4.4. The 8-positively polarized Deligne module (OK , π, ω)

defined in part (a) of Existence Lemma 3.10 admits a canonical real structure
given by complex conjugation. Statement (b) of Existence Lemma 3.10 remains
true if the Deligne module (T, F) is replaced by a Deligne module with real struc-
ture (T, F, τ ), in which case the resulting polarization ω is compatible with the
real structure. Statement (c) remains true if the Deligne module (T, F) has a
real structure.

Let C ⊂ GSp2n(Q) be a stable conjugacy class as in Proposition 3.12, and let
8 be a CM type on the CM algebra K = K (C). Let γ ∈ C be 8-viable and also q-
inversive (see Section 5). Then there exists a lattice L ⊂Q2n that is preserved by γ ,
qγ−1, and by the standard involution τ0 so that (L , γ, ω0, τ0) is a 8-positively
polarized Deligne module with real structure.

Proof. The first three statements are easy to verify. The last statement follows
from the same proof as that of Existence Lemma 3.10 and Proposition 3.12, using
Lemma 4.3 to reduce to the simple case. �

5. q-inversive elements

5.1. Let R be an integral domain. Let us say that an element γ ∈ GSp2n(R) is
q-inversive if it is semisimple, has multiplier q and if7

τ0γ τ
−1
0 = qγ−1,

7Compare the equation τ Fτ−1
= V of Definition 4.1.
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or equivalently if γ =
( A

C
B
tA

)
∈GSp2n(R) and B,C are symmetric, and A2

−BC=q I .
It follows that B tA= AB and C A= tAC . In Lemma 6.3 below, it is explained that
the endomorphism F of a polarized Deligne module with real structure may be
represented by a q-inversive element.

Lemma 5.2. Let γ =
( A

C
B
tA

)
∈ GSp2n(Q) be q-inversive. Then the following state-

ments are equivalent.

(1) The matrices A, B, and C are nonsingular.

(2) The element γ has no eigenvalues in the set {±
√

q,±
√
−q}.

If these properties hold then the matrix A is semisimple, and the characteristic
polynomial of A is h(2x), where h(x) is the real counterpart (see Section A.2)
to g(x), the characteristic polynomial of γ . If g(x) is also an ordinary Weil q-
polynomial then p - det(A) and every eigenvalue β of A satisfies

(5.2.1) |β|<
√

q.

Conversely, let A ∈ GLn(Q) be semisimple and suppose that its eigenvalues
β1, . . . , βn (not necessarily distinct) are totally real and that |βr |<

√
q for 1≤ r ≤n.

Then for any symmetric nonsingular matrix C ∈ GLn(Q) such that tAC = C A, the
element

(5.2.2) γ =

(
A (A2

− q I )C−1

C tA

)
∈ GSp2n(Q)

is q-inversive and its eigenvalues are the Weil q-numbers:

(5.2.3) αr = βr ±
√
β2

r − q, 1≤ r ≤ n.

Proof. These statements are direct consequences of the following observation: if
w =

( u
v

)
is an eigenvector of γ with eigenvalue λ then

(a) τ0(w)=
(
−u
v

)
is an eigenvector of γ with eigenvalue q/λ,

(b) u is an eigenvector of A with eigenvalue 1
2

(
λ+

q
λ

)
,

(c) v is an eigenvector of tA with eigenvalue 1
2

(
λ+

q
λ

)
. �

5.3. Joint signature. Let En(R) denote the set of pairs (A,C) where A ∈GLn(R)

is semisimple with all eigenvalues real, where C ∈GLn(R) is symmetric, and where
A is self adjoint with respect to the inner product 〈 · , · 〉C defined by C , that is,
tAC = C A. If β 6= µ are eigenvalues of A then the eigenspaces Vβ and Vµ are
orthogonal with respect to 〈 · , · 〉C . Therefore 〈 · , · 〉C decomposes as a direct sum
of bilinear forms

⊕
β∈Spec(A)〈 · , · 〉β with respect to the eigenspace decomposition

Rn
=
⊕

β∈Spec(A) Vβ where Spec(A)⊂ R denotes the spectrum of A. Define

sig(A;C)= {sig 〈 · , · 〉β}β∈Spec(A)
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to be the ordered collection of signatures of each of these bilinear forms. The
elements of sig(A;C) correspond to the class in the Galois cohomology set

H 1(C/R, Z A ∩ O(C))

of the centralizer of A intersected with the orthogonal group of C.
The group GLn(R) acts on En(R) by

X.(A,C)= (X AX−1, tX−1C X−1).

Two elements (A,C) and (A′,C ′) are in the same orbit if and only if A, A′ have the
same characteristic polynomial and sig(A,C)= sig(A′,C ′). In fact, the stabilizer
of A in GLn(R) is

∏
β∈Spec(A) GL(Vβ) and within each Vβ the congruence class8

of Cβ is determined by the signature of 〈 · , · 〉β .

5.4. Conjugacy of q-inversive elements. In this section we consider GLn versus
Sp2n conjugacy of q-inversive elements. Let L ⊃ Q be a field. The subgroup of
GSp2n(L) that is fixed under conjugation by the standard involution τ0 is denoted
GL∗n(L), and it is the image of the standard embedding

δ : L××GLn(L)→ GSp2n(L); δ(λ, x)=
(
λX 0
0 tX−1

)
.

(For λ = 1 we use the same notation δ : GLn→ Sp2n .) Say that two elements of
GSp2n are GL∗n (resp. GLn)-conjugate if the conjugating element lies in the image
of δ (resp. δ(1×GLn)). Then GL∗n-conjugation preserves q-inversive elements.

Proposition 5.5. Let γ1, γ2 ∈ GSp2n(Q) be q-inversive, say γi =
( Ai

Ci

Bi
tAi

)
. Then

γ1, γ2 are GSp2n(Q)-conjugate⇐⇒ A1, A2 are GLn(Q)-conjugate

⇐⇒ γ1, γ2 are GLn(Q)-conjugate

γ1, γ2 are Sp2n(R)-conjugate⇐⇒ γ1, γ2 are GLn(R)-conjugate

⇐⇒ A1, A2 are GLn(Q)-conjugate and
sig(A1;C1)= sig(A2;C2).

Proof. Conjugacy by GSp2n(Q) is the same as conjugacy by Sp2n(Q) and, among
semisimple elements, is determined by the characteristic polynomial. Lemma 5.2
gives that the characteristic polynomial of γi determines that of Ai and vice versa.
Conjugacy of semisimple rational matrices A1, A2 is determined by the character-
istic polynomial. This proves the first statement. Using GLn(Q) it is possible to
diagonalize Ai and to reduce Ci to the identity, which proves the second statement.

8Symmetric matrices S and T are congruent if there exists a matrix X so that T = X S tX .
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For the third implication (⇐), equality of the signatures guarantees the existence
of X ∈GLn(R) so that X.(A1,C1)= (A2,C2) ∈ En(R) as explained in Section 5.3.
Then γ1, γ2 are conjugate by

( X
0

0
tX−1

)
∈ Sp2n(R).

Now suppose that γ1, γ2 are Sp2n(R)-conjugate. Then A1, A2 are GLn(Q)-
conjugate since they have the same characteristic polynomial, so we need to show
that sig(A1;C1) = sig(A2;C2) or, equivalently, that γ1, γ2 are conjugate by an
element of δ(GLn(R)). As in Section 5.3, conjugating by elements of δ(GLn(R))

and by decomposing with respect to the eigenspace decompositions of A1, A2, we
may reduce to the case that A1 = A2 = λIn , and that C1,C2 are diagonal matrices
consisting of ±1.

So, let us assume that C1 = Ir consists of r copies of +1 and n− r copies of −1
along the diagonal, and that C2= Is . This determines B1= d Ir and B2= d Is where
d = λ2

− q. Assuming that γ1, γ2 are Sp2n(R)-conjugate, we need to prove that
r = s.

Suppose h =
( X

Z
Y
W

)
∈ Sp2n(R) and γ2 = hγ1h−1. Subtracting λI2n×2n from both

sides of this equation leaves

(5.5.1)
(

X Y
Z W

)(
0 d Ir

Ir 0

)
=

(
0 d Is

Is 0

)(
X Y
Z W

)
or W = Is X Ir and Z = d−1 IsY Ir . Let H = X + 1/

√
d Y Ir ∈ GL2n(C). Then

H Ir
tH̄ =

(
X +

1
√

d
Y Ir

)
Ir

t
(

X −
1
√

d
Y Ir

)
= Is

for the real part of this equation comes from X tW −Y tZ = I (see (B.1.3)) and the
imaginary part follows similarly because h ∈ Sp2n(R). But Ir and Is are Hermitian
matrices so this equation implies that their signatures are equal, that is, r = s. �

5.6. Let h(x) ∈ Z[x] be a real, ordinary Weil q-polynomial (see Appendix A);
that is:

(h1) h(0) is relatively prime to q .

(h2) The roots β1, β2, . . . , βn of h are totally real and |βi |< 2
√

q for 1≤ i ≤ n.

Let S(h) be the algebraic variety, defined over Q, consisting of all pairs (A0,C)
where A0,C ∈ GLn , where A0 is semisimple and its characteristic polynomial is
equal to h(2x), where C is symmetric and tA0C = C A0. As in Lemma 5.2, there is
a natural mapping

(5.6.1) θ : S(h)→ GSp2n, (A0,C) 7→
(

A0 B
C tA0

)
,

where B = (A2
0 − q I )C−1. The image θ(S(h)Q) of the set of rational elements

consists of all q-inversive elements whose characteristic polynomial is the ordinary
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Weil q-polynomial p(x) = xnh(x + q/x) (see Appendix A). The image of θ is
preserved by the action of GLn , which corresponds to the action

(5.6.2) X.(A0,C)= (X A0 X−1, tX−1C X−1)

for X ∈ GLn . In the notation of Lemma 5.2, the orbits of GLn(R) on S(h)R are
uniquely indexed by the values sig(A0;C)= {sig(Cβ)} of the signature of each of
the quadratic forms Cβ on the eigenspace Vβ , as β varies over the distinct roots
of h(x). By abuse of terminology we shall refer to the rational elements in the
GLn(R) orbit of (A0,C) ∈ S(h)Q as the “GLn(R)-orbit containing (A0,C)”.

5.7. Let (A0,C0)∈S(h)Q and set γ = θ(A0)∈GSp2n(Q) as in (5.6.1). The algebra
K = Q[γ ] is isomorphic to a product of CM fields (see Section 3.5). Fix a CM
type 8 for K .

Recall from Proposition 3.12 (resp. Existence Lemma 4.4) that in order for
the pair (γ, ω0) (resp. the triple (γ, ω0, τ0)) to give rise to a 8-polarized Deligne
module (resp. 8-polarized Deligne module with real structure), it is necessary and
sufficient that γ should be 8-viable.

Proposition 5.8. Fix h(x) and 8 as in Sections 5.6 and 5.7. For any semisimple
matrix A0 ∈ GLn(Q) with characteristic polynomial equal to h(2x) there exists
a symmetric nonsingular element C0 ∈ GLn(Q) so that (A0,C0) ∈ S(h)Q and
so that γ0 = θ(A0,C0) ∈ GSp2n(Q) is 8-viable. For every (A,C) ∈ S(h)Q the
corresponding element γ = θ(A,C) is 8-viable if and only if it is δ(GLn(R))-
conjugate to γ0.

Proof. Given A0 we need to prove the existence of C0∈GLn(Q) such that (A0,C0)∈

S(h) is 8-viable. By Existence Lemma 4.4 there is a 8-polarized Deligne module
with real structure (T, F, ω, τ ), whose characteristic polynomial is p(x). Use
Proposition B.4 to choose a basis h : T ⊗Q −→∼ Q2n so that h(T ) ⊂ Q2n is a
lattice, so that h∗(ω) = ω0 and that h∗(τ ) = τ0 in which case the mapping F
becomes a matrix γ =

( A
C

B
tA

)
. It follows that γ is viable and that the characteristic

polynomial of A is equal to that of A0. So there exists X ∈ GLn(Q) satisfying
A0 = X AX−1. Define C0 =

tX−1C X−1 so that (A0,C0) = X · (A,C). Then
γ0= θ(A0, B0)= δ(X)γ δ(X)−1 is q-inversive, its characteristic polynomial is p(x),
and by Proposition 3.12, it is viable.

For the second statement, γ is 8-viable if and only if it is Sp2n(R)-conjugate
to γ0, by Proposition 3.12. This holds if and only if it is δ(GLn(R))-conjugate to γ0,
by Proposition 5.5. �

5.9. Remark. In the notation of the preceding paragraph, γ = θ(A,C) is 8-viable
if and only if sig(A,C)= sig(A0,C0). If the roots of h(x) are distinct then the CM
field Q[γ ] has 2n different CM types, corresponding to the 2n possible values of
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sig(A,C) (that is, an ordered n-tuple of ±1). However, if h(x) has repeated roots
then there exist elements (A,C) ∈ S(h)Q such that γ = θ(A,C) is not viable for
any choice 8 of CM type on Q[γ ].

6. Q-isogeny classes

The first step in counting the number of (principally polarized) Deligne modules
(with or without real structure) is to identify the set of Q isogeny classes of such
modules, following the method of Kottwitz [1990]. Throughout this and subsequent
sections we shall only consider polarizations that are positive with respect to the
CM type 8ε as described in Section 3.7.

Lemma 6.1. For i = 1, 2, let (Ti , Fi ) be a Deligne module with (8ε-positive)
polarization ωi . Let pi be the characteristic polynomial of Fi . Then the following
statements are equivalent.

(1) The characteristic polynomials are equal: p1(x)= p2(x).

(2) The Deligne modules (T1, F1) and (T2, F2) are Q-isogenous.

(3) The Deligne modules (T1, F1) and (T2, F2) are Q-isogenous.

(4) The polarized Deligne modules (T1, F1, ω1) and (T2, F2, ω2) are Q-isogenous.

For i = 1, 2, suppose the polarized Deligne module (Ti , Fi , ωi ) admits a real
structure τi . Then (1), (2), (3), (4) are also equivalent to the following statements:

(5) The real Deligne modules (T1, F1, τ1) and (T2, F2, τ2) are Q-isogenous.

(6) The real Deligne modules (T1, F1, τ1) and (T2, F2, τ2) are Q-isogenous.

(7) The real polarized Deligne modules (T1, F1, ω1, τ1) and (T2, F2, ω2, τ2) are
Q-isogenous.

Proof. Clearly, (4)⇒(3)⇒(1) and (2)⇒(1). The implication (1)⇒(2) is a special
case of a theorem of Tate, but in our case it follows immediately from the exis-
tence of rational canonical form (see, for example, [Knapp 2006, p. 443]) that is,
by decomposing Ti ⊗Q into Fi -cyclic subspaces (i = 1, 2) and mapping cyclic
generators in T1 to corresponding cyclic generators in T2.

The proof that (2)⇒(4) is a special case from [Kottwitz 1990, p. 206], which
proceeds as follows. Given φ : (T1⊗Q, F1)→ (T2⊗Q, F2), define β ∈EndQ(T1, F1)

by ω1(βx, y)=ω2(φ(x), φ(y)). The Rosati involution (β 7→ β ′) is the adjoint with
respect to ω1 and it fixes β since

ω1(β
′x, y)= ω1(x, βy)=−ω1(βy, x)=−ω2(φ(y), φ(x))= ω1(βx, y).

By Lemma C.1 there exists α ∈ EndQ(T1, F1) such that β = α′α which gives

ω1(α
′αx, y)= ω1(αx, αy)= ω2(φ(x), φ(y)).
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Thus φ ◦ α−1
: (T1 ⊗Q, F1)→ (T2 ⊗Q, F2) is a Q-isogeny that preserves the

polarizations.
Now suppose that real structures τ1, τ2 are provided. It is clear that (7) implies

(6) and (4); also that (5)⇒(6)⇒(3). Now let us show (in the presence of τ1, τ2))
that (4)⇒(7). The involution τi ∈GSp(Ti , ωi ) has multiplier−1. So by Lemma B.2
and Proposition B.4 there exists ψi : Ti ⊗Q→ Q2n which takes the symplectic
form ωi to the standard symplectic form ω0, and which takes the involution τi to
the standard involution τ0. It therefore takes Fi to some γi ∈ GSp2n(Q) which is
q-inversive with respect to the standard involution τ0.

By part (4), there is a Q isogeny φ : (T1, F1, λ1)→ (T2, F2, λ2). This translates
into an element θ ∈ GSp2n(Q) such that γ2 = θ

−1γ1θ .
By Proposition 5.5 there exists an element 9 ∈GLn(Q) such that γ2 =9

−1γ19.
In other words, 9 corresponds to a Q-isogeny (T1, F1, λ1, τ1)→ (T2, F2, λ2, τ2).

Now let us show that (6)⇒(5). Let us suppose that (T1, F1, τ1) and (T2, F2, τ2)

are Q-isogenous. This implies that the characteristic polynomials p1(x) and p2(x)
of F1 and F2 (respectively) are equal. Moreover, the ±1 eigenspaces of τ1 have the
same dimension because T ⊗Qp decomposes as a direct sum of two subspaces that
are exchanged by τ1; see [Deligne 1969, §7]. Set V1 = T1⊗Q and V2 = T2⊗Q

and denote these eigenspace decompositions as

V1 ∼= V+1 ⊕ V−1 and V2 ∼= V+2 ⊕ V−2 .

First let us consider the case that the characteristic polynomial p1(x) of F1 is
irreducible. In this case every nonzero vector in V1 is a cyclic generator of V1.
Choose nonzero cyclic generators v ∈ V+1 and w ∈ V+2 , and define ψ : V → V2 by

ψ(Fr
1 v)= Fr

2w

for 1 ≤ r ≤ dim(T ). This mapping is well defined because F1 and F2 satisfy the
same characteristic polynomial. Clearly, ψ ◦ F1 = F2 ◦ψ . However we also claim
that ψ ◦ τ1 = τ2 ◦ψ . It suffices to check this on the cyclic basis which we do by
induction. By construction we have that ψτ1v = τ2ψv = τ2w so suppose we have
proven that ψτ1 Fm

1 v = τ2ψFm
1 v = τ2 Fm

2 w for all m ≤ r − 1. Then

ψτ1 Fr
1 v = ψτ1 F1τ

−1
1 τ1 Fr−1

1 v = qψF−1
1 τ1 Fr−1

1 v = q F−1
2 ψτ1 Fr−1

1 v

= q F−1
2 τ2ψFr−1

1 v = τ2 F2ψFr−1
1 v = τ2ψFr

1 v.

Thus we have constructed a Q isogeny between these two real Deligne modules.
If the characteristic polynomial p1(x) is reducible then Vi (i = 1, 2) may be

decomposed as a direct sum of Fi -cyclic subspaces, each of which is preserved by
the involution τi , thus reducing the problem to the case of irreducible characteristic
polynomial. �
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Proposition 6.2. Associating the characteristic polynomial to each Deligne module
induces a canonical one-to-one correspondence between

(a) the set of ordinary Weil q-polynomials p(x)∈Z[x] of degree 2n (see Appen-
dix A),

(b) the set of GSp2n(Q)-conjugacy classes of semisimple elements γ ∈ GSp2n(Q)

whose characteristic polynomial is an ordinary Weil q-polynomial,

(c) the set of Q-isogeny classes of Deligne modules (T, F),

(d) the set of Q-isogeny classes of (8ε-positively) polarized Deligne modules
(T, F, λ),

and a one-to-one correspondence between

(a′) the set of ordinary real Weil q-polynomials (see Appendix A) of degree n,

(b′) the set of GLn(Q)-conjugacy classes of semisimple elements A0 ∈ GLn(Q)

whose characteristic polynomial is h(2x) where h is an ordinary real Weil
q-polynomial,

(c′) the set of Q-isogeny classes of Deligne modules (T, F, τ ) with real structure,

(d′) the set of Q-isogeny classes of (8ε-positively) polarized Deligne modules
(T, F, ω, τ ) with real structure.

Proof. The correspondence (a)→(b) is given by Proposition A.5 (companion matrix
for the symplectic group) while (b)→(a) associates to γ its characteristic polynomial.
This correspondence is one-to-one since semisimple elements in GSp2n(Q) are
conjugate if and only if their characteristic polynomials are equal. Items (b) and (c)
are identified by the Honda–Tate theorem [Tate 1971], but can also be seen directly.
Given γ , one constructs a lattice T ⊂Q2n that is preserved by γ and by qγ−1 by con-
sidering one cyclic subspace at a time (see Lemma 4.3) and taking T to be the lattice
spanned by {γ mv0} and by {(qγ )mv0} where v0 is a cyclic vector. Lemma 6.1 may
be used to finish the proof that the correspondence is one-to-one. Items (c) and (d)
correspond by Existence Lemma 3.10 (existence of a polarization) and Lemma 6.1.

The correspondence (a′)↔(b′) is standard. For the correspondence (a′)→(c′),
each ordinary real Weil q-polynomial h(x) is the real counterpart of an ordinary
Weil q-polynomial p(x) by Appendix A. It suffices to consider the case that p(x)
is irreducible. Let π be a root of p(x) so that K =Q[π ] is a CM field. Set T =OK

(the full ring of integers), let F =π : T→ T be multiplication by π and let τ denote
complex conjugation. Then τ preserves OK and τ Fτ = q F−1 because ππ̄ = q.
Hence (T, F, π) is a Deligne module with real structure whose characteristic
polynomial is p(x). Lemma 6.1 says that this association (a′)→(c′) is one-to-one
and onto. A mapping (c′)→(d′) is given by Existence Lemma 4.4 (existence of a
polarization) and this mapping is one-to-one and onto by Lemma 6.1. �
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In order to “count” the number of real Deligne modules it is necessary to describe
them, up to isomorphism (rather than isogeny) in terms of algebraic groups as
follows.

Lemma 6.3. Let (T, F, ω, τ ) be a rank 2n Deligne module with 8ε-positive polar-
ization and real structure. Then it is isomorphic to one of the form

(L , γ, ω0, τ0),

where γ ∈GSp2n(Q) is q-inversive and its characteristic polynomial is an ordinary
Weil q-polynomial; where L ⊂ Q2n is a lattice that is preserved by γ , by qγ−1

and by τ0, and where the standard symplectic form ω0 takes integer values on L.
The group of self Q-isogenies of (T, F, ω) (resp. (T, F, ω, τ )) is isomorphic to the
centralizer Zγ (Q) in GSp2n(Q) (resp. in GL∗n(Q)). Every element φ ∈ Zγ (Q) has
positive multiplier c(φ) > 0.

If (T, F, ω, τ ) is principally polarized then it is isomorphic to a principally
polarized Deligne module of the form

(L0, γ, ω0, τ1),

where L0 = Z2n is the standard lattice, where τ1 ∈ GSp2n(Z) is an involution with
multiplier−1, where γ, qγ−1

∈GSp2n(Q)∩M2n×2n(Z) preserve the integral lattice
L0 and where τ1γ τ

−1
1 = qγ−1.

Proof. By Lemma B.2 and Proposition B.4 there is a basis φ :T⊗Q→Q2n of T⊗Q

so that ω becomes ω0 and so that τ becomes τ0. Take L = φ(T ) and γ = φFφ−1.
This induces an isomorphism Q[F] ∼=Q[γ ] preserving the CM type 8ε on each,
such that ω0 is 8ε-positive. The centralizer statements are clear. If φ ∈ Zγ (Q) and
if ι ∈Q[γ ] is a 8ε-totally positive imaginary element then

R(φ(x), φ(x))= ω0(φx, ιφx)= ω0(φx .φιx)

= c(φ)R(x, x) > 0.

If the original polarization ω of (T, F, τ ) is principal then Lemma B.2 provides an
isomorphism (T, ω) ∼= (L0, ω0) which takes F to some element γ and takes the
involution τ to some involution τ1, both of which preserve the lattice L0. �

7. Finiteness

Throughout this section, all polarizations are considered to be 8ε-positive. As in
Section 3, let Fq be a finite field of characteristic p > 0, fix N ≥ 1 not divisible
by p, and let n ≥ 1. We refer to Section D.3 for the definition of a level N structure.

Theorem 7.1. Assume q, N ≥ 1 are coprime. There are finitely many isomorphism
classes of principally (8ε-positively) polarized Deligne modules of rank 2n over Fq

with real structure and with principal level N structure.
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Proof. It follows from Proposition 6.2 that there are finitely many Q-isogeny classes
of (8ε-positively) polarized Deligne modules with real structure. Moreover, it is easy
to see that each isomorphism class (of principally polarized Deligne modules with
real structure) contains at most finitely many level N structures. So, for simplicity,
we may omit the level structure, and it suffices to show that each Q-isogeny class
(of 8ε-positively polarized Deligne modules with real structure) contains at most
finitely many isomorphism classes of principally polarized modules. Therefore,
let us fix a 8ε-positive principally polarized Deligne module with real structure,
which by Lemma 6.3 may be taken to be of the form (L0, γ, ω0, η0) where: η0 ∈

GSp2n(Z) is an involution with multiplier −1, where γ0 ∈ GSp2n(Q)∩M2n×2n(Z)

and its characteristic polynomial is an ordinary Weil q-polynomial, and where
η0γ0η

−1
0 = qγ−1

0 .
The group G ′=Sp2n acts on V=M2n×2n×M2n×2n by g.(γ,η)=(gγ g−1,gηg−1).

Let 0 = Sp2n(Z) be the arithmetic subgroup that preserves the lattice

L = M2n×2n(Z)×M2n×2n(Z)

of integral elements. It also preserves the set of pairs (γ, η) such that η ∈GSp2n(Z),
η2
= I , ηγ η−1

= qγ−1. Let v0 = (γ0, η0). We claim

(1) the orbit G ′
C
.v0 is closed in VC, and

(2) there is a natural injection from

(a) the set of isomorphism classes of principally polarized abelian varieties
with real structure within the Q-isogeny class of (T0, γ0, ω0, η0) to

(b) the set of 0-orbits in L ∩G ′
Q
.v0.

Using claim (1) we may apply Borel’s theorem9 [1969, §9.11] and conclude that
there are finitely many 0 orbits in L ∩G ′

Q
.v0 which implies, by claim (2), that there

are finitely many isomorphism classes.

Proof of claim (2). Consider a second principally polarized “real” Deligne module,
(L0, γ1, ω0, η1), within the same Q-isogeny class. By Proposition 6.2, a Q-isogeny
between these two Deligne modules is an element X ∈ GSp2n(Q) such that γ1 =

Xγ0 X−1 and η1 = Xη0 X−1. In particular this means that the pair (γ1, η1) is in the
orbit GSp2n(Q).v0, which coincides with the orbit G ′

Q
.v0 = Sp2n(Q).v0. Moreover,

such an isogeny X is an isomorphism (of principally polarized Deligne modules with
real structure) if and only if X and X−1 preserve the lattice L0 and the symplectic
form ω0, which is to say that X ∈ 0.

9Let M be a reductive algebraic group defined over Q and let 0 ⊂ MQ be an arithmetic subgroup.
Let MQ → GL(VQ) be a rational representation of M on some finite-dimensional rational vector
space. Let L ⊂ VQ be a lattice that is stable under 0. Let v0 ∈ V and suppose that the orbit MC.v0 is
closed in VC = VQ⊗C. Then L ∩MC.v0 consists of a finite number of orbits of 0.
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We remark that the mapping from (2a) to (2b) above is not necessarily surjective
for the following reason. The element γ0 is (8ε-)viable (see Section 3.11), that is,
it satisfies the “positivity” condition (∗) of Section 3.7, because it comes from a
polarized abelian variety. However, if (γ, η) ∈ L ∩G ′

Q
.v0 is arbitrary then γ may

fail to be 8ε-viable.

Proof of claim (1 ). Since γ0 and η0 are both semisimple, the conjugacy class

(G ′C.γ0)× (G ′C.η0)⊂ M2n×2n(C)×M2n×2n(C)

is closed [Humphreys 1975, §18.2]. We claim that the orbit G ′
C
.v0 coincides with

the closed subset

S =
{
(γ, τ ) ∈ (G ′C.γ0)× (G ′C.τ0)| τγ τ

−1
= qγ−1}.

Clearly, G ′
C
.v0 ⊂ S. If (γ, η) ∈ (G ′

C
.γ0)× (G ′C.η0) lies in the subset S then by

Proposition B.4, conjugating by an element of G ′
C

if necessary, we may arrange that
η = τ0 is the standard involution. Consequently, τ0γ τ

−1
0 = qγ−1, which is to say

that γ is q-inversive. By assumption, it is also G ′
C

-conjugate to γ0. According to
Proposition 5.5, G ′

C
-conjugacy of q-inversive elements coincides with δ(GLn(C))-

conjugacy. Thus there exists g ∈ δ(GLn(C)) such that (gγ g−1, gτ0g−1)= (γ0, τ0).
In summary, the element (γ, η) lies in the G ′

C
-orbit of (γ0, τ0). This concludes the

proof of Theorem 7.1. �

7.2. The case n = 1. Fix q = pm and let Fq denote the finite field with q ele-
ments. According to Proposition 6.2, the set of Q-isogeny classes of Deligne
modules (T, F) of rank 2 over Fq is determined by a quadratic ordinary Weil
q-number π , which we now fix. This means that π satisfies an equation

π2
+ Bπ + q = 0

where p - B. Let D = B2
− 4q. Then D ≡ 0, 1 (mod 4) and −4q < D < 0. The

pair {π, π̄} determines D and vice versa.
Isomorphism classes of polarized Deligne modules with real structure fall into or-

bits that are identified by certain cohomology classes as described in Proposition D.7
or, equivalently, identified by integral conjugacy classes of involutions as described
in Proposition D.2. For n= 1 there are two involutions (see Lemma B.5) to consider,
namely

τ0 =

(
−1 0
0 1

)
and τ1 =

(
−1 0
1 1

)
.

Proposition 7.3. Over the finite field Fq , the number of (real isomorphism classes
of ) principally polarized Deligne modules (T, F, λ, η) with real structure and
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rank 2, such that the eigenvalues of F are {π, π̄}, which correspond to the cohomol-
ogy class of the standard involution τ0 is{

σ0(−D/4) if D ≡ 0 (mod 4),
0 otherwise,

where σ0(m) denotes the number of positive divisors of m > 0. The number of
isomorphism classes which correspond to the cohomology class of τ1 is{

σ0(−D) if D ≡ 1 (mod 4),
σ ′0(−D/4) if D ≡ 0 (mod 4),

where σ ′0(m) denotes the number of ordered factorizations m=uv such that u, v >0
have the same parity.

Proof. According to Proposition 6.2 the isomorphism classes of principally polarized
Deligne modules with real structures correspond to q-inversive pairs (γ, η) where
the eigenvalues of γ ∈ GL2(Z) are π and π̄ . For the involution τ0, the pair (γ, τ0)

is q-inversive if γ =
(a

c
b
a

)
and det(γ ) = q. This implies that a = −B/2, so B is

even and D ≡ 0 (mod 4). Then bc = a2
− q = D/4 has a unique solution for every

(signed) divisor b of D/4. Half of these will be viable (see Section 3.11) so the
number of solutions is equal to the number of positive divisors of −D/4.

For the involution τ1, the pair (γ, τ1) is q-inversive if γ =
(a

c
b

a−b

)
. This implies

that D = B2
− 4q = b(b + 4c). Let us first consider the case that b is odd or

equivalently, that D≡ 1 (mod 4). For every divisor b | D we can solve for an integer
value of c so we conclude that the number of viable solutions in this case is equal
to σ0(−D). Next, suppose that b is even, say, b = 2b′. Then D is divisible by 4,
say, D = 4D′ and D′ = b′(b′+2c) is an ordered factorization of D′ with factors of
the same parity. So in this case the number of viable solutions is σ ′0(−D/4). �

7.4. It follows that the total number of real isomorphism classes over Fq , q = pm ,
corresponding to the trivial cohomology class, is N = 2

∑
1≤a≤q−1 σ0(q − a2), a

number whose asymptotics was determined by Ingham [1927] and Hooley [1958],

N ∼

{
6
π2 (
√

q(log(q))2+ 3 log 2 log q), m even,

C(p)
√

q log q, m odd.
.

7.5. For any totally positive imaginary integer α ∈ L = Q(π), the bilinear form
ω(x, y)=TraceL/Q(αx ȳ) is symplectic. If3⊂ L is a lattice then α may be chosen
so that the form ω takes integer values on 3. Modifying 3 by a homothety if
necessary, it can also be arranged that ω is a principal polarization, hence (3, π, ω)
is a principally polarized Deligne module. If complex conjugation on L =Q(π)

preserves 3 then it defines a real structure on this Deligne module.
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Proposition 7.6. The set of isomorphism classes of 8ε-positive principally polar-
ized Deligne modules (of rank 2) with real structure and with eigenvalues {π, π̄}
may be identified with the set of homothety classes of lattices 3 ⊂Q(π) that are
preserved by complex conjugation and by multiplication by π .

Proof. The most natural proof, which involves considerable checking, provides a
map back from lattices 3 to Deligne modules: Deligne’s CM type determines an
isomorphism 8 :Q(π)⊗R→ C. Then realize the elliptic curve C/8(3) as the
complex points of the canonical lift of an ordinary elliptic curve over Fq whose
associated Deligne module is (3, π). Then check that complex conjugation is
compatible with these constructions.

A simpler but less illuminating proof is simply to count the number of homothety
classes of lattices and to see this number coincides with that in Proposition 7.3. �

8. Q-isogeny classes within a Q isogeny class

8.1. Let us fix a (8ε-positively) polarized Deligne module with real structure,
(L1, γ1, ω0, τ0) where

γ1 =

(
A1 B1

C1
tA1

)
is q-inversive, ω0 is the standard symplectic form, τ0 is the standard involution, and
L1⊂Q2n is a lattice preserved by τ0, by γ1 and by qγ−1

1 , on which ω0 takes integer
values; see Lemma 6.3 . Let ZGLn(Q)(A1) denote the set of elements in GLn(Q)

that commute with A1.

Proposition 8.2. The association C 7→ γ =
( A1

C
B

tA1

)
, where B = (A1 − q I )C−1,

determines a one-to-one correspondence between

(1) the set of elements C ∈GLn(Q), one from each ZGLn(Q)(A1)-congruence class
of symmetric matrices such that tA1C = C A1 and sig(A1;C)= sig(A1;C1),

(2) the set of Q isogeny classes of real (8ε-positively) polarized Deligne modules
(T, F, λ, τ ) within the Q isogeny class of (L1, γ1, ω0, τ0),

(3) the set of GL∗n(Q)-conjugacy classes of elements γ ∈GSp2n(Q) such that γ, γ1

are conjugate by some element in GL∗n(R)⊂ Sp2n(R),

(4) the set elements of ker(H 1(Gal(Q/Q), I1)→ H 1(Gal(C/R), I1), )

where I1 denotes the group of self isogenies of (L1, γ1, ω0, τ0); that is,

(8.2.1) I1 = ZGL∗n (γ1)∼= ZGLn (A1)∩GO(C1),

where
GO(C1)= {X ∈ GLn |

tXC1 X = µC1 (there exists µ 6= 0)}

denotes the general orthogonal group defined by the symmetric matrix C1.
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Proof. To describe the correspondence (1)→(3), given C , set γ =
( A1

C
B

tA1

)
where

B = (A2
− q I )C−1. Since sig(A1;C)= sig(A1;C1), Proposition 5.5 implies that

γ and γ1 are conjugate by an element of δ(GLn(R))⊂ GL∗n(R).
Conversely, let γ =

( A
C

B
tA

)
∈ GSp2n(Q) be q-inversive and GL∗n(R)-conjugate

to γ1. Then A, A1 are conjugate by an element of GLn(R) so they are also conjugate
by some element Y ∈ GLn(Q). Replacing γ with δ(Y )γ δ(Y )−1 we may therefore
assume that A = A1. Proposition 5.5 then says that sig(A1;C)= sig(A1;C1). So
we have a one-to-one correspondence (1)↔(3).

For (2)→(3), let (L , γ, ω0, τ0) be a8ε-positively polarized Deligne module with
real structure that is Q-isogenous to (L1, γ1, ω0, τ0). Then γ1, γ2 are 8ε-viable so
by Proposition 3.12 they are also Sp2n(R)-conjugate. Proposition 5.5 says they are
GL∗n(R)-conjugate. A choice of Q isogeny φ : (L , γ, ω0, τ0)→ (L1, γ1, ω0, τ0) is
an element X ∈ GSp2n(Q) such that γ = Xγ1 X−1 and τ0 Xτ−1

0 = X , hence X ∈
GL∗n(Q). The isogeny φ is a Q-isogeny if and only if X ∈ GL∗n(Q).

For (3)→(2), start with the basepoint (L1, γ1, ω0, τ0) and choose any element
γ ∈ GSp2n(Q) that is GL∗n(R)-conjugate to γ1. Then

(8.2.2) γ = tγ1t−1
= hγ1h−1

for some t ∈ GL2n(Q) and some h ∈ GL∗n(R). The set

L ′ := (t L1)∩ (τ0t L1)⊂Q2n

is a lattice, so there exists an integer m such that ω0 takes integer values on L :=mL ′.
Then (L = mL ′, γ, ω0, τ0) is a polarized Deligne module with real structure in the
Q-isogeny class of (L1, γ2, ω0, τ0). The lattice L is preserved by τ0, by γ and by
qγ−1 from (8.2.2). The element γ is 8ε-viable by construction so the symplectic
form ω0 is a polarization on the Deligne module (L , γ ).

For (3)↔(4), the set H 1(Gal(Q/Q), I1) indexes the GL∗n(Q)-conjugacy classes
of elements γ within the GL∗n(Q)-conjugacy class of γ1. Such a class becomes
trivial in H 1(Gal(C/R), I1) if γ is GL∗n(R)-conjugate to γ1. The isomorphism
of (8.2.1) follows immediately from (5.6.2). �

There may be infinitely many Q-isogeny classes of polarized Deligne modules
with real structure within a given Q-isogeny class, but from Theorem 7.1, only
finitely many of these Q-isogeny classes contain principally polarized modules.

8.3. Let Z(γ1) denote the centralizer of γ1 in GSp2n . Removing the real structure
from the proof of Proposition 8.2 gives a one-to-one correspondence between (a) the
set of Q-isogeny classes of 8ε-positively polarized Deligne modules within the Q-
isogeny class of (L1, γ1, ω0), (b) the set of Sp2n(Q)-conjugacy classes of elements
γ ∈ GSp2n(Q) that are Sp2n(R)-conjugate to γ1, and (c) elements of

ker(H 1(Gal(Q/Q), Z(γ1))→ H 1(Gal(C/R), Z(γ1)).



ORDINARY POINTS MOD p OF GLn(R)-LOCALLY SYMMETRIC SPACES 191

9. Isomorphism classes within a Q-isogeny class

9.1. The category PN . In this section and in all subsequent sections we fix N ≥ 3,
not divisible by p. Fix n ≥ 1. Throughout this section we fix a 8ε-positively
polarized Deligne module (over Fq , of rank 2n) with real structure, which (by
Lemma 6.3) we may assume to be of the form (T0, γ, ω0, τ0) where T0 ⊂Q2n is
a lattice, γ ∈ GSp2n(Q) is a semisimple element whose characteristic polynomial
is an ordinary Weil q-polynomial, and where ω0 is the standard symplectic form
and τ0 is the standard involution.

Following the method of [Kottwitz 1990] we consider the category PN =

PN (T0, γ, ω0, τ0) (possibly empty) for which an object (T, F, ω, β, τ, φ) consists
of a (8ε positive) principally polarized Deligne module (T, F, ω, β, τ ) with real
structure τ and principal level N structure β (see Definition 4.1), and where
φ : (T, F, ω, τ )→ (T0, γ, ω0, τ0) is a Q-isogeny of polarized Deligne modules
with real structure, meaning φ : T ⊗Q−→∼ Q2n , φF = γφ, φ∗(ω0)= cω for some
c ∈Q×, and φτ = τ0φ. A morphism

ψ : (T, F, ω, β, τ, φ)→ (T ′, F ′, ω′, β ′, τ ′, φ′)

is a group homomorphism ψ : T ↪→ T ′ such that φ = φ′ψ (hence ψF = F ′ψ),
ω = ψ∗(ω′), β = β ′ ◦ψ, and ψτ = τ ′ψ .

Let X denote the set of isomorphism classes in this category. We obtain a natural
one-to-one correspondence between the set of isomorphism classes of principally
polarized Deligne modules with level N structure and real structure within the
Q-isogeny class of (T0, γ, ω0, τ0), and the quotient

(9.1.1) IQ\X,

where IQ= IQ(T0, γ, ω0, τ0) denotes the group of self Q-isogenies of (T0,γ,ω0,τ0).

9.2. Category of lattices. See Section 1.7 for the notation A
p
f , Ẑp, K̂N , K̂ 0

N , K p.
Denote by LN =LN (Q

2n, γ, ω0, τ0) the category for which an object is a pair (L , α)
where L ⊂ T0⊗Q is a lattice that is symplectic (up to homothety), is preserved by
γ , by qγ−1 and by τ0, and α : L/N L→ (Z/NZ)2n is a compatible level structure
(that is, τ̄0α = ατ̄0 and αγ = α), and there exists c ∈ Q× so that L∨ = cL and
α∗(cω0)= ω0.

A morphism (L , α)→ (L ′, α′) is an inclusion L ⊂ L ′ such that α′ | (L/N L)= α.
(Since L→ L ′ is an inclusion, it also commutes with γ and τ0, and it preserves the
symplectic form ω0.) In this category every isomorphism class contains a unique
object.

9.3. Adèlic lattices. Given γ ∈ GSp2n(Q) as above, let L̂N = L̂N (A
2n
f , γ, ω0, τ0)

be the category for which an object is a pair (L̂, α) consisting of a lattice L̂ ⊂ A2n
f
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(see Sections D.3, D.4, D.5) that is symplectic (up to homothety) and is preserved
by γ , by qγ−1 and by τ0, and a compatible level N structure α, that is:

τ0 L̂ = L̂, ατ̄0 = τ̄0α,(9.3.0)

γ L̂ ⊂ L̂, qγ−1 L̂ ⊂ L̂, α ◦ γ = α,(9.3.1)

L̂∨ = cL̂ and α∗(cω0)= ω0, (there exists c ∈Q×).(9.3.2)

A morphism in L̂N is an inclusion L̂⊂ M̂ that is compatible with the level structures.
As in [Kottwitz 1990] we have the following:

Proposition 9.4. The association

(T, F, ω, β, τ, φ) 7→ (L = φ(T ), α = β ◦φ−1) 7→

(
L̂ =

∏
v

L ⊗Zv, α

)
determines equivalences of categories PN −→

∼ LN −→
∼ L̂N .

Proof. Given (T, F, ω, β, φ), let L = φ(T ) and α = βφ−1. Then γ L = γφ(T )=
φ(FT )⊂ φ(T )= L and similarly qγ−1L ⊂ L . Since ω is a principal polarization
we obtain

T = T∨ = {u ∈ T ⊗Q | ω(u, v) ∈ Z for all v ∈ T }.

Since φ is a Q-isogeny with multiplier c ∈ Q× we have that ω0(φ(x), φ(y)) =
cω(x, y) for all x, y ∈ T ⊗Q so

L∨ = {u ∈ L ⊗Q | ω0(u, v) ∈ Z for all v ∈ L}

= (φ(T ))∨ = cφ(T∨)= cφ(T )= cL .

This implies that cω0 is integral-valued on L and hence

α∗(cω0)= β∗φ
∗(cω0)= β∗(ω)= ω0.

Hence the pair (L , α) is an object in LN (Q
2n, γ, ω0, τ0). If

ψ : (T, F, ω, φ)→ (T ′, F ′, ω′, φ′)

is a morphism in PN (T0, γ, ω0, τ0) then ψ(T )⊂ T ′ so L = φ(T )⊂ L ′ = φ(T ′) is
a morphism in LN (Q

2n, γ, ω0, τ0).
Conversely, given an object (L , α) in LN , that is, a lattice L⊂Q2n preserved by γ

and qγ−1 such that L∨= cL , and a principal level structure α : L/N L→ (Z/NZ)2n

such that α∗(cω0)= ω0, we obtain an object in PN ,

(T = L , F = γ | L , ω = cω0, β = α, φ = id)

such that T∨ = 1
c L∨ = L = T and such that β∗(ω)= α∗(cω0)= ω0. It follows that

PN → LN is an equivalence of categories. Finally, LN → L̂N is an equivalence of
categories by Lemma D.5. �



ORDINARY POINTS MOD p OF GLn(R)-LOCALLY SYMMETRIC SPACES 193

9.5. Lattices at p. Let γ ∈ GSp2n(Q) be a semisimple element whose character-
istic polynomial is an ordinary Weil q-polynomial. It induces a decomposition
Q2n

p
∼=W ′⊕W ′′ that is preserved by γ but exchanged by τ0, where the eigenvalues

of γ |W ′ are p-adic units and the eigenvalues of γ |W ′′ are nonunits [Deligne
1969, §7]. Define

(9.5.1) αq = αγ,q = I ′⊕ q I ′′

to be the identity on W ′ and multiplication by q on W ′′. The following lemma,
which is implicit in [Kottwitz 1990] will be used in Proposition 9.8 to count the
number of lattices in L̂N .

Lemma 9.6. Let γ ∈GSp2n(Q) be a semisimple element with multiplier equal to q.
Let L0,p = Z2n

p be the standard lattice in Q2n
p . Let g ∈ GSp2n(Qp) and let c denote

its multiplier. Let L p = g(L0,p). Then L∨p = c−1L p and the following statements
are equivalent:

(a) The lattice L p is preserved by γ and by qγ−1.

(b) The lattice L p satisfies q L p ⊂ γ L p ⊂ L p.

(c) g−1γ g ∈ K p Aq K p where K p = GSp2n(Zp) and Aq =
( I

0
0

q I

)
.

If the characteristic polynomial of γ is an ordinary Weil q-polynomial then condi-
tions (a), (b), (c) above are also equivalent to

(d) g−1α−1
q γ g ∈ K p.

Proof. Clearly (a) and (b) are equivalent, and also to q L p ⊂ qγ−1L p ⊂ L p. Hence

(b′) L p/γ L p ∼= γ
−1L p/L p ⊂ L p/q L p ∼= (Z/qZ)2n .

We now show that (b)⇒(c). Since det(γ )2 = q2n we know that |det(γ )| =
|L p/γ L p| = qn . Condition (b) implies that L p/γ L p consists of elements that
are killed by multiplication by q . Condition (b′) implies that L p/γ L p is free over
Z/qZ. Therefore,

(9.6.1) L0,p/(g−1γ g)L0,p ∼= L p/γ L p ∼= (Z/qZ)n.

By the theory of Smith normal form for the symplectic group (see [Spence 1972]
or [Andrianov 1987, Lemma 3.3.6]), we may write g−1γ g = u Dv where u, v ∈ K p

and D = diag(pr1, pr2, . . . , pr2n ) where r1 ≤ r2 ≤ · · · ≤ r2n . This, together with
(9.6.1) implies that r1 = · · · = rn = 0 and rn+1 = · · · = r2n = a; that is, D = Aq .
This proves that (b) implies (c).

Now we show (c) implies (a). Since K p Aq K p ⊂ M2n×2n(Zp), condition (c) im-
plies γ gL0,p⊂ gL0,p. Taking the inverse of condition (c) and multiplying by q gives

qg−1γ−1g ∈ K pq A−1
q K p ⊂ M2n×2n(Zp),

which implies that qγ−1L p ⊂ L p.
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Finally, if the characteristic polynomial of γ is an ordinary Weil q-polynomial
then (by [Deligne 1969]) the lattice L p decomposes into γ -invariant sublattices,
L p= L ′p⊕L ′′p such that γ | L ′p is invertible and γ | L ′′p is divisible by q , or γ L ′p= L ′p
and γ L ′′p ⊂ q L ′′p which, in light of (d) implies that γ L ′′p = q L ′′p. In summary,
α−1

q γ L p = L p, which is equivalent to (d). �

9.7. Counting real lattices. As explained in Section 9.1, we wish to count the
number of isomorphism classes of (8ε-positive) principally polarized Deligne
modules with level N structure and with real structure that are Q-isogenous to the
polarized Deligne module (T0, γ, ω0, τ0) that was fixed in Section 9.1. By (9.1.1)
and Proposition 9.4, this number is

|S(Q)\X |,

where X denotes the set of objects (L̂, α) in the category L̂N (A
2n
f , γ, ω0, τ0) of

Section 9.3 and where S(Q) denotes the group of (involution-preserving) Q-self
isogenies of (T0, γ, ω0, τ0). It may be identified with the centralizer

Sγ (Q)= {x ∈ GL∗n(Q) | γ x = xγ }.

(Note that γ /∈GL∗n(Q).) Following Proposition D.7, the GL∗n(A f )-orbit containing
a given object (L̂, α) is determined by its cohomology class

[L̂, α] ∈ H 1
= H 1(〈τ0〉, K̂ 0

N )

of (D.7.1). For simplicity, for the moment we assume that N is even: this implies
that the contributions from different cohomology classes are independent of the
cohomology class, as explained in the following paragraph.

Fix such a class [t] ∈ H 1, corresponding to some element t ∈ K̂ 0
N with t t̃ = 1. Let

X[t] = {(L̂, α) ∈ X | [(L̂, α)] = [t] ∈ H 1
}

denote the set of objects (L̂, α) whose associated cohomology class is [t]. We
wish to count the number of elements in the set Sγ (Q)\X t . Since N is even, the
cohomology class [t] vanishes in the cohomology of Sp2n(Ẑ), by Proposition D.9.
This means that t = g−1g̃ for some g ∈ Sp2n(Ẑ).

Let L̂0 = Ẑ2n and α0 : L̂/N L̂→ (Z/NZ)2n denote the standard lattice and the
standard level N structure. Then (gL̂0, α0◦g−1)∈RN is a lattice with real structure
and level N structure, whose cohomology class equals [t] ∈ H 1. Its isotropy group
under the action of GL∗n(A f ) is the principal congruence subgroup

0̂N = GL∗n(A f )∩ gK̂N g−1

= GL∗n(A f )∩ K̂N

(since K̂N is a normal subgroup of Sp2n(Ẑ)) and is independent of the class [t].
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Hence
X[t] ∼= 0̂N\GL∗n(A f )

is a finite-adèlic analog of the space XC described in Section 1.1. Choose the Haar
measure on GL∗n(A f ) that gives measure one to the group 0̂N .

With K̂N = K̂ p
N K p (see Section 1.7), define χ p to be the characteristic function

on GSp2n(A
p
f ) of K̂ p

N and define χp to be the characteristic function on GSp2n(Qp)

of K p. Let H = GL∗n .

Proposition 9.8. Suppose that N ≥ 3 is even and p - N. Then

|Sγ (Q)\X t | = vol(Sγ (Q)\Sγ (A f )) · I p
γ · Iγ,p,

where

(9.8.1) I p
γ =

∫
Sγ (A

p
f )\H(A

p
f )

χ p(x−1γ x) dx

and

Iγ,p =
∫

Sγ (Qp)\H(Qp)

χp(x−1α−1
q γ x) dx .

Here, αq = αγ,q is defined in (9.5.1).

Proof. By Proposition D.7 each (L̂, α) ∈ X[t] has the form xg.(L̂0, α0) for some

x = (x p, x p) ∈ GL∗n(A
p
f )×GL∗n(Qp)= GL∗n(A f ),

where t = g−1g̃ as above, with g ∈ Sp2n(Ẑ). Write L̂ = L p
× L p for its component

away from p and component at p, respectively, and similarly for g = g pgp. The
conditions (9.3.1) give γ x pg p L p

0 = x pg p L p
0 . Hence

(g p)−1(x p)−1γ x pg p
∈ K̂ p

N ,

which is normal in K p so, equivalently, χ p((x p)−1γ x p) = 1. Similarly, by
Lemma 9.6,

g−1
p x−1

p α−1
q γ x pgp ∈ K p or χp(x−1

p α−1
q γ x p)= 1.

In this way we have identified X̂[t] with the product X p
[t]× X p, where

X p
[t] = {x ∈ GL∗n(A

p
f )/0̂

p
N | x

−1γ x ∈ K̂ p
N },

X p = {x ∈ GL∗n(Qp)/GL∗n(Zp) | x−1α−1
q γ x ∈ K p}.

In summary,

|Sγ (Q)\X[t]| =
∫

Sγ (Q)\GL∗n(Af)

χ p(x−1γ x)χp(x−1α−1
q γ x) dx

= vol(Sγ (Q)\Sγ (A f )) · I p
γ · Iγ,p. �
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9.9. If N is odd (with N ≥ 3 and p - N ) then the formula must be modified
slightly. The pairs (L̂, α) appear in GL∗n(A f )-orbits X[t] corresponding to co-
homology classes [t] ∈ H 1(〈τ0〉, K̂ 0

N ) as before. However the class [t] vanishes
in H 1(〈τ0〉,Sp2n(A f )) (rather than in H 1(〈τ0〉,Sp2n(Ẑ)). Then t = g−1g̃ for
some g ∈ Sp2n(A f ) so the orbit X[t] is isomorphic to Ĵ[t]\GL∗n(A f ) where Ĵ[t] =
GL∗n(A f )∩ gK̂N g−1. Haar measure on GL∗n(A f ) should be chosen to give mea-
sure one to the set Ĵ[t], and the function χ p in (9.8.1) should be replaced by the
characteristic function [t]χ p on GSp2n(A

p
f ) of the set gK̂ p

N g−1.

9.10. Kottwitz integral. If we drop the involutions and real structures in the pre-
ceding sections then the same procedure as Proposition 9.4 identifies the number
of isomorphism classes of 8ε-positive principally polarized Deligne modules with
level N structure (N ≥ 3 and p - N ) that are Q-isogenous to (T0, γ, ω0) with the set
Zγ (Q)\Y where Y denotes the set of pairs (L̂, α) consisting of a lattice L̂ ⊂ A2n

f ,
symplectic up to homothety and preserved by γ and by qγ−1, and a level N
structure α. As in [Kottwitz 1990], this gives

|Zγ (Q)\Y | = vol(Zγ (Q)\Zγ (A f )) ·O p
γ ·Oγ,p,

where

(9.10.1) O p
γ =

∫
Zγ (A

p
f )\G(A

p
f )

f p(g−1γ g) dg

and

(9.10.2) Oγ,p=
∫

Zγ (Qp)\G(Qp)

f p(g−1γ g)dg=
∫

Zγ (Qp)\G(Qp)

χp(g−1α−1
q γ g)dg,

where f p is the characteristic function on G(Ap
f ) of K̂ p

N , and f p is the characteristic
function on G(Qp) of K p

( I
0

0
q I

)
K p; see Lemma 9.6 and Section 9.10.

10. The counting formula

10.1. Fix a finite field k = Fq with q elements, and characteristic p> 0. Let N ≥ 3
be a positive integer relatively prime to p. The theorem of Kottwitz specializes to:

Theorem 10.2 [Kottwitz 1990; 1992]. The number A(q) of principally polarized
ordinary abelian varieties with principal level N structure, over the field k = Fq ,
is finite and is equal to

(10.2.1)
∑
γ0

∑
γ∈C(γ0)

vol(Zγ (Q)\Zγ (A f )) ·O p
γ ·Oγ,p,

where O p
γ and Oγ,p are defined in (9.10.1) and (9.10.2).
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10.3. Explanation and proof. Rather than start with the general formula of [Kot-
twitz 1990] and figure out what it says in the case of ordinary abelian varieties,
we will follow the proof in [Kottwitz 1990], but apply it to Deligne modules; see
also [Achter and Gordon 2017; Clozel 1993]. As discussed in the introduction, the
result differs from the formula in [Kottwitz 1990] in two ways: (1) the invariant
α(γ0; γ, δ) does not appear in our formula and (2) the twisted orbital integral in
[Kottwitz 1990] (at p) is replaced by an ordinary orbital integral.

Recall Deligne’s embedding ε : W (k) → C. It determines a CM type 8ε
on the CM algebra Q[F] for every Deligne module (T, F). As described in
Section 3, Deligne constructs an equivalence of categories between the category
of 8ε-positively polarized Deligne modules and the category of polarized ordinary
abelian varieties over k, so we may count Deligne modules (that are 8ε-positively
polarized) rather than abelian varieties.

The proof of (10.2.1) now follows five remarkable pages (pp. 203–207) in
[Kottwitz 1990]. Roughly speaking, the first sum indexes the Q-isogeny classes, the
second sum indexes the Q-isogeny classes within a given Q-isogeny class, and the
orbital integrals count the number of isomorphism classes within a given Q-isogeny
class.

10.4. The first sum is over rational representatives γ0 ∈ GSp2n(Q), one from each
GSp2n(Q)-conjugacy class of semisimple elements such that the characteristic poly-
nomial of γ0 is an ordinary Weil q-polynomial (see Appendix A). Let C⊂GSp2n(Q)

denote the GSp2n(Q)-conjugacy class of γ0 within GSp2n(Q). The first sum could
equally well be considered as a sum over such conjugacy classes.

By Proposition 3.12, the set C ⊂ GSp2n(Q) contains elements that are viable
with respect to the CM type 8ε (see Section 3.11), and the set of such 8ε-viable
elements constitutes the intersection of C with a unique Sp2n(R) conjugacy class.
Therefore we may (and do) choose the representative γ0 ∈ C to be 8ε-viable.

By Proposition 6.2, the choice of conjugacy class C corresponds to a Q-isogeny
class of polarized Deligne modules. In fact, according to Lemma 6.3, since γ0 ∈ C is
8ε-viable, there exists a polarized Deligne module of the form (L1, γ0, ω0) where
L1 ⊂Q2n is a lattice such that

(a) L1 is preserved by γ0 and by qγ−1
0 and

(b) the standard symplectic form ω0 takes integral values on L1.

The next step is to decompose the set of 8ε-viable elements in C into GSp2n(Q)

conjugacy classes. Thus, the second sum is over representatives γ ∈ GSp2n(Q),
one from each GSp2n(Q)-conjugacy class of elements such that

(1) γ, γ0 are GSp2n(Q)-conjugate (i.e., γ ∈ C), and

(2) γ, γ0 are Sp2n(R)-conjugate (i.e., γ is 8ε-viable).
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Fix such an element γ . As explained in Section 8.3 (and Proposition 8.2) this
choice of γ for the second sum corresponds to the choice of a Q-isogeny class of
8ε-positively polarized Deligne modules within the Q-isogeny class of (L1, γ0, ω0).
The chosen element γ arises from some (not necessarily principally) 8ε-positively
polarized Deligne module, say, (T0, γ, ω0) where T0 ⊂ Q2n is a lattice that also
satisfies (a) and (b) above.

The set of isomorphism classes of 8ε-positive principally polarized Deligne
modules within the Q-isogeny class of (T0, γ, ω0) is identified, using Proposition 9.4
(see Section 9.10), with the quotient Zγ (Q)\Y , where Zγ (Q) is the centralizer of γ
in GSp2n(Q) and where Y denotes the set of pairs (L̂, α) consisting of a lattice
L̂ ⊂ A2n

f and a level N structure α, satisfying (9.3.1) and (9.3.2), that is, L̂ is a
lattice that is symplectic up to homothety (see Section D.4) and is preserved by γ
and by qγ−1, and the level structure is compatible with γ and with the symplectic
structure. Decomposing the lattice L̂ into its adèlic components gives a product
decomposition Y ∼= Y p

×Yp as described in Proposition 9.8 and Section 9.10. This
in turn leads to the product of orbital integrals in (10.2.1).

Although the second sum in (10.2.1) may have infinitely many terms, only finitely
many of the orbital integrals are nonzero. This is a consequence of Theorem 7.1,
or of the more general result in [Kottwitz 1986, Proposition 8.2]. This completes
the proof of Theorem 10.2. �

10.5. Counting real structures. Let τ0 be the standard involution on Qn
⊕Qn (see

Appendix B). For g ∈ GSp2n , let g̃ = τ0gτ−1
0 . Define H = GL∗n ∼= GL1×GLn to

be the fixed point subgroup of this action, as in Section 5.4. If γ ∈ GSp2n , denote
its H -centralizer by

Sγ = {x ∈ GL∗n | xγ = γ x}.

Assume the level N ≥ 3 is even (see Section 9.9) and not divisible by p. Let χ p

denote the characteristic function of K̂ p
N and let χp denote the characteristic function

of K p = GSp2n(Zp).

Theorem 10.6. The number of isomorphism classes of principally polarized ordi-
nary abelian varieties with real structure is finite and is equal to

(10.6.1)
∑
A0

∑
C

|Ĥ 1
| vol(Sγ (Q)\Sγ (A f ))

×

∫
Sγ (A f )\H(A f )

χ p(x−1γ x)χp(x−1α−1
q γ x) dx .

10.7. Explanation and proof. As in Theorem 10.2, the first sum indexes the Q-
isogeny classes, the second sum indexes Q-isogeny classes within a given Q-isogeny
class, and the orbital integrals count the number of isomorphism classes within a
Q-isogeny class.
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The first sum is over representatives, one from each GLn(Q)-conjugacy class
(which is the same as the GLn(Q) conjugacy class) of semisimple elements A0 ∈

GLn(Q) whose characteristic polynomial h(x)= b0+b1x+· · ·+xn
∈Z[x] satisfies

(see Appendix A)

(h1) b0 6= 0 and p - b0,

(h2) the roots β1, β2, . . . , βn of h are totally real and |βi |<
√

q for 1≤ i ≤ n.

By Proposition 6.2 the terms in this sum correspond to Q-isogeny classes of 8ε-
positively polarized Deligne modules with real structure.

Fix such an element A0 ∈ GLn(Q). By Proposition 5.8, there exist C0 such that
the element

γ0 =

(
A0 B0

C0
tA0

)
∈ GSp2n(Q),

(where B0 = (q I − A2
0)C
−1
0 ) is q-inversive (Section 5) and viable (Section 3.11)

with respect to the CM type 8ε. (Viability corresponds to an appropriate choice
of signature sig(A0;C0); see Proposition 5.8.) Then γ0 corresponds to some 8ε-
positively polarized Deligne module with real structure which (by Lemma 6.3)
may be taken to be of the form (L1, γ0, ω0, τ0) where L1 ⊂Q2n is a lattice that is
preserved by τ0 and by γ0 and qγ−1

0 .
The second sum in (10.6.1) is over representatives C ∈ GLn(Q), one from each

ZGLn(Q)(A0)-congruence class (Section 5.4) of matrices such that

(1) C is symmetric and nonsingular,

(2) A0C = C tA0,

(3) sig(A0;C)= sig(A0;C0) (see Section 5.4).

According to Proposition 8.2, the elements in this sum correspond to Q-isogeny
classes of 8ε-positively polarized Deligne modules with real structure that are
in the same Q-isogeny class as (L1, γ0, ω0, τ0). Let us fix such an element C
and let γ =

( A0
C

B
tA

)
be the corresponding element from Proposition 8.2 (where

B = (A2
0− q I )C−1). Then γ is q-inversive and viable and it corresponds to some

8ε-positively polarized Deligne module with real structure, say (T0, γ, ω0, τ0)

which we will use as a “basepoint” in the Q-isogeny class determined by A0, B.
(In fact, the first two sums may be replaced by a single sum over GLn(Q)-

conjugacy classes of semisimple elements γ ∈ GSp2n(Q) that are q-inversive,
whose characteristic polynomial is an ordinary Weil q-polynomial, and that are
8ε-viable.)

According to Proposition 9.4, the isomorphism classes of 8ε-positive principally
polarized Deligne modules with real structure and level N structure that are Q-
isogenous to (T0, γ, ω0, τ0) correspond to isomorphism classes of pairs (L̂, α)
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(consisting of a lattice L̂ ⊂ A2n
f and a level structure) that satisfy (9.3.0), (9.3.1)

and (9.3.2). In Proposition D.7 these lattices are divided into cohomology classes
[t] ∈ Ĥ 1

= H 1(〈τ0〉, K̂ 0
N ). Each cohomology class provides the same contribution,

which accounts for the factor of |Ĥ 1
|. The number of isomorphism classes of pairs

(L̂, α) corresponding to each cohomology class is proven, in Proposition 9.8, to
equal the value of the orbital integral in (10.6.1).

The second sum in (10.6.1) (that is, the sum over C) may have infinitely many
terms. However it follows from Theorem 7.1 that only finitely many of those terms
give a nonzero contribution to the sum. This completes the proof of (10.6.1).

11. Totally real lattice modules

11.1. Suppose (T, F, τ ) is a Deligne module of rank 2n over Fq with a real
structure. The fixed point set or “real sublattice” L = T τ has an interesting
endomorphism10 A = (F + V ) | L , in which case the characteristic polynomial of
A is h(2x) where h(x) is the real counterpart to the characteristic polynomial of F ;
see Section 5.1. Although it is not required for the rest of this paper, it is interesting
to examine these structures in more detail.

If α : T/N T → (Z/NZ)2n is a level N structure that is compatible with τ then
its restriction to the fixed point set β : L/N L→ (Z/NZ)n is a level N structure
on (L , A). Thus, the category of Deligne modules (resp. with level N structure)
fibers over a “totally real” category of lattices and endomorphisms (resp. with level
N structure):

Definition 11.2. A totally real lattice module (of rank n and norm q) is a pair (L , A)
where L is a free abelian group of rank n and A : L→ L is a semisimple endomor-
phism whose eigenvalues α are totally real algebraic integers with |ρ(α)| ≤

√
q for

every embedding ρ : Q[α] → R. The module (L , A) is ordinary if |ρ(α)| <
√

q
(for all eigenvalues α and all embeddings ρ) and det(A) is not divisible by p (see
Proposition A.3). A level N structure on (L , A) is an isomorphism

β : L/N L→ (Z/NZ)n

such that β ◦ A= β where A= A (mod N ). A polarization (resp. principal polariza-
tion) of (L , A) is a symmetric bilinear form R : L× L→ Z that is nonsingular over
Q (resp. over Z) such that Q[A] acts as an algebra of self adjoint operators on L⊗Q.

If h(x) is the characteristic polynomial of an ordinary totally real lattice module
then h(2x) is an ordinary real Weil q-polynomial (see Appendix A).

10In this section, our use of the letter A differs by a factor of 2 from our previous use in Section 5.1
in the matrix representation for F as γ =

( A
C

B
tA
)
∈ GSp2n(Q) to guarantee that the action of A

preserves the lattice L = T τ .
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Proposition 11.3. The association (T, F, τ ) 7→ (L = T τ , A = F + V ) defines
a functor from the category of Deligne modules with real structure to the cate-
gory of ordinary totally real lattice modules. It becomes an equivalence on the
corresponding categories up to Q-isogeny.

Proof. In both cases the Q-isogeny class is determined by the characteristic polyno-
mial of A (see Proposition 6.2 below), so the result follows from Proposition A.3. �

(Similarly, if (T, F, ω, τ ) is a 8ε-positively polarized Deligne module with real
structure then a choice of totally positive imaginary algebraic integer ι ∈ Q[F]
determines a positive definite symmetric bilinear form R(x, y) = ω(x, ιy) that
takes integer values on L = T τ such that Q[A] acts as an algebra of self adjoint
operators on L ⊗Q, thereby determining a polarized totally real lattice module
(L=T τ , A= F+V, R(x, y)). However this procedure does not give an equivalence
between the category of polarized Deligne modules and the category of polarized
totally real lattice modules.)

11.4. Let q = pr and fix n ≥ 1. Let A ∈ GLn(Q) be a semisimple endomorphism
whose determinant det(A) is not divisible by p, whose characteristic polynomial is
integral, with roots α that are totally real such that |ρ(α)|<

√
q for every embedding

ρ :Q[α] → R. Fix N ≥ 3 not divisible by p. Let f be the characteristic function
of the principal congruence subgroup of level N in GLn(A f ). Using arguments
that are similar (but simpler) than those in Section 10, we find that the number of
isomorphism classes of (ordinary) totally real lattice modules of rank n, norm q and
level N within the Q-isogeny class determined by A is equal to the orbital integral∫

Z A(A f )\GLn(A f )

f (x−1 Ax) dx .

12. Further questions

12.1. We do not know whether the count of the number of “real” polarized Deligne
modules has a rational zeta-function interpretation.

12.2. We do not know of a scheme-theoretic interpretation of antiholomorphic
involution that applies to abelian varieties, rather than to Deligne modules. Con-
sequently we do not know whether the notion of an antiholomorphic involution
makes sense for general abelian varieties over Fq . It would even be interesting to
understand the case of supersingular elliptic curves.

12.3. In [Goresky and Tai 2003a], we showed that certain arithmetic hyperbolic
3-manifolds (and more generally, certain arithmetic quotients of quaternionic Siegel
space) can be viewed as parametrizing abelian varieties with antiholomorphic
multiplication by the integers Od in a quadratic imaginary number field. It should
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be possible to mimic these constructions using Deligne modules. Define an antiholo-
morphic multiplication on a Deligne module (T, F) by an order O in a CM field E
to be a homomorphism O→ End(T ) such that each purely imaginary element
u ∈O acts in an antiholomorphic manner, that is, uF = V u. One could probably
count the number of isomorphism classes of principally polarized Deligne modules
with level structure and with antiholomorphic multiplication by O.

Appendix A: Weil polynomials and a real counterpart

A.1. Let π be an algebraic integer. It is totally real if ρ(π)∈R for every embedding
ρ : Q(π) → C. It is a Weil q-integer if |ρ(π)|2 = q for every embedding ρ :
Q(π)→ C. (In this case, the field Q(π) is either a CM field, which is the usual
case, or it is Q(

√
q), the latter case occurring if and only if π =±

√
q.) A Weil q-

polynomial is a monic polynomial p(x)∈Z[x] of even degree, all of whose roots are
Weil q-integers. Let us say that a Weil q-polynomial p(x)=

∑2n
i=0 ai x i is ordinary

if the middle coefficient an is nonzero and is coprime to q. This implies that half
of its roots in Qp are p-adic units and half of its roots are divisible by p; also that
x2
± q is not a factor of p(x), hence p(x) has no roots in the set {±

√
q,±
√
−q}.

The characteristic polynomial of Frobenius associated to an abelian variety B of
dimension n defined over the field Fq is a Weil q-polynomial. It is ordinary if and
only if the variety B is ordinary; see Section 3.

A monic polynomial p(x) ∈ Z[x] is totally real if all of its roots are totally real
algebraic integers. A real (resp. real ordinary) Weil q-polynomial of degree n is a
monic polynomial h(x) ∈ Z[x] such that the polynomial p(x)= xnh(x + q/x) is a
Weil q-polynomial (resp. an ordinary Weil q-polynomial). (See also [Howe and
Lauter 2003; Howe and Lauter 2012]).

A.2. Real counterpart. Let q ∈Q. Let us say that a monic polynomial

p(x)= x2n
+ a2n−1x2n−1

+ · · ·+ a0 ∈ C[x]

is q-palindromic if it has even degree and if an−r = qr an+r for 1 ≤ r ≤ n, or,
equivalently, if

q−nx2n p
(q

x

)
= p(x).

Thus p(x) is q-palindromic if and only if the following holds: for every root π
of p(x) the number qπ−1 is also a root of p(x). It is easy to see that every Weil
q-polynomial is q-palindromic but the converse is not generally true. Let

p(x)=
n∏

j=1

(x −αj )

(
x −

q
αj

)
=

2n∑
i=0

ai x i
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be a q-palindromic polynomial with no real roots. Define the associated real
counterpart

h(x)=
n∏

j=1

(
x −

(
αj +

q
αj

))
=

n∑
i=0

bi x i

or equivalently, p(x)= xnh(x + q/x).

Proposition A.3. Fix n, q ∈ Z with n > 0 and q > 0.

(1) Let p(x) =
∑2n

i=0 ai x i
∈ C[x] be q-palindromic with no real roots and let

h(x) =
∑n

j=0 bj x j
∈ C[x] be its real counterpart. Then p(x) ∈ Z[x] if and

only if h(x) ∈ Z[x].

(2) A q-palindromic polynomial p(x)∈Z[x] of even degree is a Weil q-polynomial
if and only if the corresponding polynomial h(x) is totally real.

(3) A totally real polynomial h(x) ∈ Z[x] is the real counterpart to a Weil q-
polynomial p(x) with no real roots if and only if the roots β1, β2, . . . , βn ∈ R

of h(x) satisfy |βi |< 2
√

q for i = 1, 2, . . . , n.

(4) A Weil q-polynomial p(x) ∈ Z[x] is ordinary if and only if the constant coeffi-
cient h(0)= b0 of the real counterpart is nonzero and is coprime to q. In this
case, p(x) is irreducible over Q if and only if h(x) is irreducible over Q.

Proof. It is clear that h ∈ Z[x] implies p ∈ Z[x]. Let p(x)=
∑2n

k=0 ak xk
∈ C[x] be

a q-palindromic polynomial with roots αi , q/αi for 1≤ i ≤ n. The real counterpart
is h(x)=

∑n
j=0 bj x j

=
∏n

i=1(x −βi ) where βi = αi + q/αi , hence

p(x)= xnh
(
x + q

x

)
=

n∑
j=0

bj

j∑
t=0

( j
t

)
q j−t xn− j+2t .

Set r = n− j + 2t . Then n− j ≤ r ≤ n+ j and r − (n− j) is even, hence

p(x)=
2n∑

r=0

ar xr
=

n∑
j=0

n+ j∑
r=n− j

Ar j bj xr ,

where

Ar j =

(
j

(r + j − n)/2

)
q

1
2 (n−r+ j)

provided that r + j − n is even and that n− j ≤ r ≤ n+ j , and Ar j = 0 otherwise.
Then An+s,s = 1 for all 1 ≤ s ≤ n, so the lower half An+∗,∗ of the matrix A is
nonsingular with determinant equal to 1. Let B be the inverse of the lower half
of A. It is an integral matrix and for all 1≤ k ≤ n,

bk =

n∑
s=0

Bksan+s ∈ Z

which proves the first part of the proposition.
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To verify statement (2), let p(x) be a Weil q-polynomial. If it has any real
roots then they must be of the form α =±

√
q so α+ q/α =±2

√
q which is real.

Every pair {α, q/α} of complex roots are necessarily complex conjugate hence
β=α+q/α is real. Since h(x) has integer coefficients this implies that every Galois
conjugate of β is also real, hence h(x) is a totally real polynomial. Conversely,
given p(x), if the associated polynomial h(x) is totally real then for each root
β = α+q/α of h(x), the corresponding pair of roots {α, q/α} are both real or else
they are complex conjugate, and if they are real then they are both equal to ±

√
q.

This implies that p(x) is a Weil q-polynomial.
For part (3) of the proposition, each root βi ∈ R of h(x) is a sum βi = αi +q/αi

of complex conjugate roots of p(x). Hence αi and q/αi are the two roots of the
quadratic equation

x2
−βi x + q = 0

which has real solutions if and only if β2
i − 4q ≥ 0. Thus, p(x) has no real roots if

and only if |βi |< 2
√

q for i = 1, 2, . . . , n.
For part (4), the polynomial p(x) is ordinary if and only if exactly one of each

pair of roots αi , q/αi is a p-adic unit, from which it follows that each βi =αi+q/αi

is a p-adic unit, hence the product b0 =
∏n

i=1 βi is a p-adic unit (and it is nonzero).
Conversely, if b0 is a p-adic unit then so is each βi so at least one of the elements in
each pair αi , q/αi is a unit. But in [Howe 1995; Deligne 1969] it is shown that this
implies that exactly one of each pair of roots is a p-adic unit, so p(x) is ordinary.
The irreducibility statement follows from the formula p(x)= xnh(x + q/x). �

Lemma A.4. Let γ ∈ GSp2n(Q) with multiplier q ∈ Q. Then the characteristic
polynomial p(x) of γ is q-palindromic.

Using the Jordan decomposition γ = γsγu into semisimple and unipotent factors,
it suffices to consider the case that γ is semisimple, so it can be diagonalized over Q,
γ =

( D
0

0
D′
)

where D and D′) are diagonal matrices with DD′ = q I and entries
d ′i = q/di . So p(x)=

∏n
i=1(x

2
− 2αi x + q) (where αi =

1
2(di+q/di )) is a product

of q-palindromic polynomials. �

Proposition A.5. Let p(x)=
∑2n

i=0 ai x i
∈Q[x] be a q-palindromic polynomial of

degree 2n with no roots in the set {±
√

q,±
√
−q}. Then there exists a q-inversive

element γ ∈ GSp2n(Q) with multiplier q , whose characteristic polynomial is p(x).
Moreover, γ may be chosen to be semisimple, in which case it is uniquely determined
up to conjugacy in GSp2n(Q) by its characteristic polynomial p(x).

Proof. Let λ1, . . . , λn, q/λ1, . . . , q/λn denote the roots of p(x). By assumption,
λj and q/λj are distinct and their sum is nonzero. Factor the polynomial

p(x)=
n∏

i=1

(x − λi )

(
x −

q
λi

)
=

n∏
i=1

(
x2
−

(
λi +

q
λi

)
x + q

)
,
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set αi =
1
2(λi + q/λi ) and define

h(x)=
n∏

i=1

(x −αi )=−h0− h1x − · · · − hn−1xn−1
+ xn.

(For convenience in this section, the signs of the coefficients of h(x) have been
modified from that of the preceding section.) The desired element is γ =

( A
C

B
tA

)
where the matrices A, B,C are defined as follows. The matrix A is the companion
matrix for the polynomial h(x), that is,

A =



0 0 0 · · · 0 h0

1 0 0 · · · 0 h1

0 1 0 · · · 0 h2

0 0 1 · · · 0 h3

· · ·

0 0 0 · · · 1 hn−1


.

It is nonsingular (but not necessarily semisimple unless the roots of h(x) are distinct).
Now define

B =



h0 0
h0 h1 0

h0 h1 h2 0
· · ·

h0 h1 h2 · · · hn−1 0
0 0 0 · · · 0 1


.

Then B is symmetric and nonsingular, and one checks directly that AB = B tA.
Define C= B−1(A2

−q I ) so that A2
−BC=q I . These conditions guarantee that γ ∈

GSp2n(Q), its multiplier is q , and it is q-inversive. Since the characteristic polyno-
mial of A is h(x), Lemma 5.2 implies that the characteristic polynomial of γ is p(x).

If the roots of p(x) are distinct then this element γ is semisimple. However
if p(x) has repeated roots it is necessary to proceed as follows. Factor h(x) =∏r

j=1 hm j
j (x) into its irreducible factors over Q. This corresponds to a factorization

p(x)=
∏r

j=1 pm j
j (x) into q-palindromic factors. Take A= diag(A×m1

1 , . . . , A×mr
r )

to be a block-diagonal matrix with m j copies of the matrix Aj . Then B,C will also
be block-diagonal matrices, and γ will be the corresponding product of q-inversive
symplectic matrices γj . It suffices to show that each nonzero γj is semisimple.
Since h j (x) is irreducible over Q, its roots are distinct, and the roots of pj (x) are
the solutions to x2

− 2αx + q = 0 where h j (α)= 0. If ±
√

q is not a root of h j (x)
then the roots of pj (x) are distinct, hence γj is semisimple. If ±

√
q is a root of

h j (x) then p(x) = (x −
√

q)2 or p(x) = (x2
− q)2 depending on whether or not
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√
q ∈Q. In the first case we may take Aj =

√
q and Bj =C j = 0 and in the second

case we may take Aj =
( 0

q
1
0

)
and Bj = C j = 0. �

B: The symplectic group and its involutions

B.1. Let R be a commutative ring (with 1) and let T be a free, finite-dimensional R
module. Let us say that an alternating form ω :T×T→ R is strongly nondegenerate,
if the induced mapping ω] : T → HomR(T, R) is an isomorphism.11 Denote
by GSp(T, ω) the set of g ∈ GL(T ) such that ω(gx, gy) = λω(x, y) for some
λ= λ(g)∈ R×. Then λ is a character of GSp(T, ω) and we say that g ∈GSp(T, ω)
has multiplier λ(g). The standard symplectic form on T = R2n is

(B.1.1) ω0(x, y)= tx J y where J =
(

0 I
−I 0

)
.

If ω :T×T→ R is a symplectic form then a symplectic basis of T is an isomorphism
8 : T → R2n which takes ω to the standard symplectic form ω0.

By abuse of notation we will write

GSp2n(R)= GSp(R2n, ω0)= GSp(R2n, J )

for the group of automorphisms of R2n that preserve the standard symplectic form.
If γ is in GSp2n(R) then so is tγ−1, hence tγ is also. In this case, expressing γ as
a block matrix γ =

( A
C

B
D

)
, the symplectic condition tγ Jγ = q J is equivalent to

either of the following:
tAC, tB D are symmetric and tAD− tC B = q I.(B.1.2)

A tB,C tD are symmetric and A tD− B tC = q I.(B.1.3)

Lemma B.2. Let R be a principal ideal domain and let ω : T ×T→R be a strongly
nondegenerate symplectic form. Then T admits a symplectic basis. If L ′, L ′′ ⊂ T
are Lagrangian submodules such that T = L ′⊕ L ′′ then the basis may be chosen so
that L ′ and L ′′ are spanned by basis elements.

Proof. Since ω is strongly nondegenerate there exist x1, y1 ∈ T so that ω(x1, y1)= 1.
Let T1 denote the span of x1, y1. Then T = T1⊕T⊥1 because T1∩(T1)

⊥
= 0 and for

v ∈ T we have that u = v−ω(v, y1)x1−ω(v, x1)y1 ∈ (T1)
⊥. So, T1 and T⊥1 are

projective, hence free, and ω is strongly nondegenerate on T1. If dim(T )= 2 we
are done, otherwise strong nondegeneracy implies that ω induces an isomorphism

T1⊕ T⊥1 ∼= Hom(T, R)∼= Hom(T1, R)⊕Hom(T⊥1 , R).

Then ω | T1 is also strongly nondegenerate so it has a symplectic basis by induction.

11If R is an integral domain then an alternating form B : T × T → R is weakly nondegenerate if
ω]⊗ K is an isomorphism, where K is the fraction field of R.
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If T = L ′⊕L ′′ is a decomposition into Lagrangian submodules, then the symplec-
tic form induces an isomorphism L ′′ ∼= HomR(L ′, R). Therefore an arbitrary basis
of L ′ together with the dual basis of L ′′ will constitute a symplectic basis for T . �

B.3. Let R be a commutative ring. The standard involution τ0 : R2n
→ R2n is

τ0 =
(
−In

0
0
In

)
. If g ∈ GSp2n(R), let g̃ = τ−1

0 gτ0; see Section 5.4.

Proposition B.4. Let R be a principal ideal domain containing 2−1. Let τ ∈
GSp2n(R) be an involution (τ 2

= I ) with multiplier −1. Then τ is Sp2n(R)-
conjugate to τ0.

Proof. Write T = R2n . The (standard) symplectic form ω0 induces an isomorphism

(B.4.1) T ∼= Hom(T, R), say, x 7→ x].

Let T+, T− be the ±1 eigenspaces of τ . Since 2−1
∈ R, any x ∈ T may be written

x =
x − τ(x)

2
+

x + τ(x)
2

∈ T−+ T+

so T = T− ⊕ T+. Therefore T−, T+ are projective, and hence free. Apply this
splitting to (B.4.1) to find

(B.4.2) 8 : T−⊕ T+→ Hom(T−, R)⊕Hom(T+, R).

Since ω0(τ x, τ y)=−ω0(x, y) it follows that 8(x, y)= (y], x]), so dim(T−)=
dim(T+)= n and we obtain an isomorphism T+ ∼= Hom(T−, R). With respect to a
basis of T1 and the corresponding dual basis of T+ the matrix of τ is

(
−I
0

0
I

)
. �

The proposition fails if the ring R does not contain 1
2 , in fact we have:

Lemma B.5. Let R be a Euclidean domain and let ω0 be the standard symplectic
form on R2n . Let τ ∈GSp2n(R) be an involution with multiplier equal to−1. Then τ
is Sp2n(R)-conjugate to an element (

I S
0 −I

)
,

where S is a symmetric matrix consisting of zeroes and ones which may be taken
to be one of the following: if rank(S) = r is odd then S =

( Ir
0

0
0

)
= Ir ⊕ 0n−r ; if r

is even then either S = Ir ⊕ 0n−r or S = H ⊕ H · · · ⊕ H ⊕ 0n−r where H =
( 0

1
1
0

)
appears r/2 times in the sum.

Proof. There exists a vector v ∈ Z2n that is primitive and has τ(v) = v. By a
lemma of Siegel (see [Freitag 1983, Satz A5.4]), there exists g ∈ Sp2n(R) such that
gv = e1 = (1, 0, . . . , 0).
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It follows that τ is Sp2n(R)-conjugate to a matrix
( A

C
B
D

)
where

A =
(

1 ∗
0 A1

)
, B =

(
∗ ∗

∗ B1

)
, C =

(
0 0
0 C1

)
, D =

(
−1 0
∗ D1

)
and where (

A1 B1

C1 D1

)
∈ GSp2n−2(R)

is an involution with multiplier equal to −1. By induction, the involution τ is
therefore conjugate to such an element where A1 = I , B1 is symmetric, C1 = 0
and D1 = −I . The condition τ 2

= I then implies that A = I , D = −I , C = 0
and B is symmetric. Conjugating τ by any element

( I
0

T
I

)
∈ Sp2n(R) (where T is

symmetric) we see that B can be modified by the addition of an even number to
any symmetric pair (bi j , b j i ) of its entries. Therefore, we may take B to consist of
zeroes and ones.

The problem may then be reduced to describing the list of possible symmetric
bilinear forms on a Z/(2) vector space V , which are described in [Lidl and Nieder-
reiter 1997, §6.2]. �

C: Positivity and R-isogeny

Lemma C.1. Let (T, F) be a Deligne module and let8 be a CM type on Q[F] (see
Section 3.7 ). Letω be a8-positive polarization of (T, F). Suppose β∈EndQ(T, F)
is a self isogeny that is fixed under the Rosati involution, that is, β ′ = β where
ω(β ′x, y)= ω(x, βy) for all x, y ∈ T ⊗Q. Then there exists α ∈ EndQ(T, F)⊗Q

such that β = α′α. If β ′ = β and β is positive definite then the element α may
be chosen to lie in EndQ(T, F)⊗ R. If ω1, ω2 are two 8-positive polarizations
of the same Deligne module (T, F) then there exists an R-isogeny (T, F, ω1)→

(T, F, ω2) with multiplier equal to 1.

Proof. (See also [Kottwitz 1990, p. 206].) As indicated in [Mumford 1970, p. 220],
the algebra EndQ(T, F)⊗R is isomorphic to a product of matrix algebras Md×d(C)

such that β ′ = tβ̄. Then β ′ = β implies that β is Hermitian so there exists a unitary
matrix U ∈Md×d(C)with β= tŪ DU where D is a diagonal matrix of real numbers.
Choose a square root

√
D ∈ Md×d(Q) and set α =

√
DU ∈ EndQ(T, F) ⊗ Q.

Then α′α = tŪ DU = β as claimed. Moreover, if β is positive definite then the
entries of D are positive real numbers so we may arrange that

√
D ∈ Md×d(R), so

α ∈ EndQ(T, F)×R as claimed.
For the last sentence in the lemma, let β ∈ EndQ(T, F) be the unique endomor-

phism so that ω2(x, y) = ω1(βx, y). Then β is fixed under the Rosati involution
for the polarization ω1 because

ω1(β
′x, y)= ω1(x, βy)=−ω1(βy, x)=−ω2(y, x)= ω2(x, y)= ω1(βx, y).
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Moreover, β is positive definite: if x ∈ T ⊗R is an eigenvector of β with eigen-
value t then

t R1(x, x)= R1(βx, x)= ω1(βx, ιx)= ω2(x, ιx)= R2(x, x) > 0

in the notation of Section 3.7. According to the first part of this lemma, there exists
α ∈ EndQ(T, F)⊗R such that β = α′α, or

ω2(x, y)= ω1(α
′αx, y)= ω1(αx, αy)

which says that α is an R-isogeny which takes ω1 to ω2 with multiplier equal to 1. �

D: Symplectic cohomology

D.1. Nonabelian cohomology. Let R be a commutative ring with 1. As defined in
Appendix B, the involution τ0 of Rn

×Rn is τ0(x, y)= (−x, y). Let 〈τ0〉= {1, τ0}∼=

Z/(2) denote the group generated by the involution τ0. For g ∈ Sp(2n, R) let
g̃= τ0gτ−1

0 . This defines an action of the group 〈τ0〉 on Sp(2n, R). Let 0⊂Sp2n(R)
be a subgroup that is preserved by this action (that is, 0̃ = 0). Recall that a 1-
cocycle for this action is a mapping f : 〈τ0〉→0 such that f (1)= I and f (τ0)= g
where gg̃ = I . We may write f = fg since the mapping f is determined by the
element g. Then two cocycles fg, fg′ are cohomologous if there exists h ∈ 0 such
that g′ = h−1gh̃ or equivalently, such that g′ = h̃gh−1. The set of cohomology
classes is denoted

H 1(〈τ0〉, 0).

If τ ∈ GSp2n(R) is another involution (meaning that τ 2
= I ) with multiplier

equal to −1 then g = ττ0 defines a cocycle since gg̃ = 1. One easily checks the
following.

Proposition D.2. Let 0 ⊆ Sp2n(R) be a subgroup that is normalized by τ0. The
mapping τ 7→ ττ0 determines a one-to-one correspondence between the set of
0-conjugacy classes of involutions (i.e., elements of order 2), τ ∈ 0.τ0 and the
cohomology set H 1(〈τ0〉, 0).

D.3. Lattices and level structures. If L ⊂ Q2n is a lattice, its symplectic dual is
the lattice

L∨ = {x ∈Q2n
| ω0(x, y) ∈ Z for all y ∈ L},

where ω0 is the standard symplectic form. A lattice L ⊂ Q2n is symplectic if
L∨ = L . A lattice L ⊂ Q2n is symplectic up to homothety if there exists c ∈ Q×

so that L∨ = cL . In this case the symplectic form b = cω0 is integer-valued and
strongly nondegenerate on L . A lattice L ⊂ Q2n is real if it is preserved by the
standard involution τ0, in which case write τL = τ0 | L .
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Fix N ≥1 and let L̄= L/N L . A level N structure on a lattice L is an isomorphism
α : L̄ → (Z/NZ)2n . A level N structure α is compatible with an integer-valued
symplectic form b : L × L → Z if α∗(b) = ω̄0 is the reduction modulo N of
the standard symplectic form ω0. A level N structure α : L̄ → L̄0 is real if it is
compatible with the standard involution, that is, if τ̄0α = ατ̄L : L̄→ L̄0.

D.4. Adèlic lattices. Let A f =
∏
′

v<∞Qv (the restricted direct product) denote
the finite adèles of Q and let Ẑ=

∏
p Zp. A Ẑ -lattice M̂ ⊂ A2n

f is a product
M̂ =

∏
v<∞ Mv of Zv-lattices Mv ⊂ Q2n

v with Mv = (Zv)
2n for almost all finite

places v. If M̂ =
∏
v<∞ Mv is a lattice, its symplectic dual is M̂∨ =

∏
v<∞ M∨v

where
(Mv)

∨
= {x ∈Q2n

v | ω0(x, y) ∈ Zv for all y ∈ Mv}.

The lattice M̂ is symplectic up to homothety if there exists c∈A×f such that M̂∨= cM̂ .
In this case, there exists c ∈ Q× (unique, up to multiplication by ±1) such that
M̂∨ = cM̂ , and the alternating form b = cω0 takes Ẑ values on M̂ . A lattice M̂ is
real if it is preserved by the standard involution τ0.

A level N structure on an adèlic lattice M̂ is an isomorphism

β : M̂/N M̂→ (Z/NZ)2n.

It is compatible with a Ẑ -valued symplectic form b : M̂ × M̂→ Ẑ if β∗(b)= ω̄0 is
the reduction modulo N of the standard symplectic form. It is real if it commutes
with the standard involution τ0. The following statement is standard, see for example
[Platonov and Rapinchuk 1994, Theorem 1.15]:

Lemma D.5. Let L ⊂Q2n be a Z-lattice and let Lv= L⊗Zv for each finite place v.
Then

• Lv = Z2n
v for almost all v <∞.

• L =
⋂
v<∞(Q

2n
∩ Lv).

• Given any collection of lattices Mv ⊂Q2n
v such that Mv = Z2n

v for almost all
v <∞, there exists a unique Z-lattice M ⊂Q2n such that Mv = M ⊗Zv for
all v <∞.

This correspondence is clearly compatible with symplectic structures, real struc-
tures and level structures.

D.6. The cohomology class of a symplectic lattice with “real” structure. Let L⊂
Q2n be a lattice, symplectic up to homothety (say, L∨ = cL where c ∈ Q), and
suppose that L is preserved by the standard involution τ0 :Q

2n
→Q2n , in which case

we refer to L as a “real” lattice. Let α : L/N L→ (Z/NZ)2n be a level N structure
that is compatible with the involution (meaning that α∗(τ̄ ) = τ̄0 is the standard
involution, where τ = τ0 | L , and where the bar denotes reduction modulo N ) and
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with the nondegenerate symplectic form b= cω0 on L (meaning that α∗(b)= ω̄0 is
the standard symplectic form on (Z/NZ)2n). By the strong approximation theorem,
the mapping

Sp2n(Z)→ Sp2n(Z/NZ)

is surjective. Together with the symplectic basis theorem (Lemma B.2) and the fact
that α is compatible with b= cω0, this implies that there exists g∈GSp2n(Q) so that
(L , α)= g.(L0, α0), where L0=Z2n is the standard lattice with its standard level N
structure α0 : L0/N L0→ (Z/NZ)2n . Both the lattice L and the level structure α are
compatible with the involution which implies that (L , α)= g.(L0, α0)= g̃.(L0, α0)

(where g̃ = τ0gτ−1
0 ). Therefore

t = g−1g̃ ∈ K 0
N ⊂ Sp2n(Q)

is a cocycle (with multiplier equal to 1) which lies in the principal congruence
subgroup

K 0
N = ker(Sp2n(Z)→ Sp2n(Z/NZ)).

Let [(L , α)] ∈ H 1(〈τ0〉, K 0
N ) denote the resulting cohomology class.

Similarly, an adèlic lattice L̂ , symplectic up to homothety, and preserved by
the involution τ0, together with a level N structure β, (compatible with the involu-
tion and with the corresponding symplectic form) determine a cohomology class
[(L̂, β)] ∈ H 1(〈τ0〉, K̂ 0

N ) where

K̂ 0
N = ker(Sp2n(Ẑ)→ Sp2n(Z/NZ)).

The following proposition is essentially the same as in [Rohlfs 1978].

Proposition D.7. The resulting cohomology classes [(L , α)] and [(L̂, β)] are well
defined. The mapping L 7→ L̂ =

∏
v(L ⊗Zv)) determines a one-to-one correspon-

dence between

(1) GL∗n(Q)-orbits in the set of such pairs (L , α) that are symplectic up to homo-
thety and compatible with the involution (as above),

(2) GL∗n(A f )-orbits in the set of such pairs (L̂, β) that are symplectic up to homo-
thety and compatible with the involution (as above),

(3) elements of the cohomology set

(D.7.1) H 1
:= H 1(〈τ0〉, K 0

N )
∼= H 1(〈τ0〉, K̂ 0

N ).

Proof. The cohomology class [(L , α)] is well defined: suppose that (L , α) =
h.(L0, α0) for some h ∈ GSp2n(Q). Since L is symplectic up to homothety, the
elements g, h have the same multiplier, hence u = g−1h ∈ K 0

N . Therefore the
cocycle h−1h̃ = u−1(g−1g̃)ũ is cohomologous to g−1g̃.
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Suppose (L ′, α′) = g′.(L0, α0) is another lattice with level N structure, with
the same cohomology class. Then (g′)−1g̃′ = u−1(g−1g̃)ũ for some u ∈ K 0

N
which implies that the element h = g′u−1g−1 is fixed under the involution. Hence
(L ′, α′)= h.(L , α) is in the same GL∗n(Q) orbit12 as (L , α).

Similar remarks apply to adèlic lattices. Finally, Lemma D.5 implies that the
cohomology sets (D.7.1) may be canonically identified. �

D.8. There is a simple relation between Propositions D.2 and D.7 which identifies
the cohomology class of a lattice with a conjugacy class of involutions, as follows.
Suppose (L , α) is a “real” symplectic (up to homothety) lattice with a level N
structure. Express (L , α)= g.(L0, α0) for some g ∈GSp2n(Q). Set τ = g−1τ0g =
h−1τ0h where h ∈Sp2n(Q). Then τ is an involution in K 0

N .τ0 because ττ0 preserves
(L0, α0), and the cohomology class of (L , α) coincides with the cohomology class
of τ . We remark, moreover, if the cohomology class [(L , α)] ∈ H 1(〈τ0〉, K 0

N ) is
trivial then the lattice L splits as a direct sum L = L+⊕ L− of ±1 eigenspaces
of τ and α determines a principal level N structure on each of the factors.

Proposition D.9. If R is an integral domain containing 1
2 , then H 1(〈τ0〉,Sp2n(R))

is trivial. If 2 | N the mapping H 1(〈τ0〉, K 0
N )→ H 1(〈τ0〉,Sp2n(Z)) is trivial. The

cohomology sets

(D.9.1) H 1(〈τ0〉,Sp2n(Z))
∼= H 1(〈τ0〉,Sp2n(Ẑ))

∼= H 1(〈τ0〉,Sp2n(Z2))

are isomorphic and have order (3n+ 1)/2 if n is odd, or (3n+ 2)/2 if n is even.

Proof. By Proposition D.2, cohomology classes in Sp2n(R) correspond to conjugacy
classes of involutions with multiplier−1. If 1

2 ∈ R then Proposition B.4 says there is
a unique such involution, hence the cohomology is trivial. For the second statement,
suppose N ≥ 2 is even. Suppose α ∈ Sp2n(〈τ0〉, K 0

N ) is a cocycle. Then ατ0

is an involution which, by Lemma B.5 implies that there exists h ∈ Sp2n(Z) so
that h−1αh̃ =

( I
0

B
I

)
where B is a symmetric matrix of zeroes and ones. It now

suffices to show that B = 0 which follows from the fact that α ≡ I (mod 2) and
that h−1h̃ ≡ I (mod 2), so B ≡ 0 (mod 2).

The cohomology set H 1(〈τ0〉,Sp2n(Z)) is finite because it may be identified with
Sp2n(Z)-conjugacy classes of involutions with multiplier −1 which, by Lemma B.5
corresponds to GLn(Z)-congruence classes of symmetric n×n matrices B consisting
of zeroes and ones. Summing over the possible ranks 0≤ r ≤ n for the matrix B,
with two possibilities when r is even and only one possibility when r is odd gives
(3n+ 1)/2 for n odd and (3n+ 2)/2 for n even; see [Lidl and Niederreiter 1997].
The equation (D.9.1) holds since 1

2 ∈ Zp for p odd. �

12So the orbit of (L , α) is isomorphic to 0(L ,α)\GL∗n(Q) where 0(L ,α) is the stabilizer of (L , α).
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REAL STRUCTURES ON POLARIZED DIEUDONNÉ MODULES

MARK GORESKY AND YUNG SHENG TAI

We define an “antiholomorphic involution” of a module M over the Dieudonné
ring E(k) of a finite field k with q = pa elements to be an involution τ : M → M
that switches the action of F a with that of V a. The definition extends to in-
clude quasi-polarizations of Dieudonné modules. Nontrivial examples exist.
The number of isomorphism classes of quasi-polarized Dieudonné modules
within a fixed isogeny class is shown to be given by a twisted orbital integral
over the general linear group. Earlier (Pacific J. Math. 303:1 (2019), 165–215)
we considered these notions in the case of ordinary abelian varieties over k, in
which case the contribution at p to the number of isomorphism classes within
an isogeny class was shown to be given by an ordinary orbital integral over
the general linear group. The definitions here are shown to be equivalent to
those in our previous paper and, as a consequence, the equality of the orbital
integrals of both types is proven.

1. Introduction

Locally symmetric spaces associated to the group GLn(R) for n ≥ 3 do not carry a
complex structure and do not admit an obvious reduction to characteristic p > 0.
However, it is known ([Adler 1979; Gross and Harris 1981; Comessatti 1925;
1926; Goresky and Tai 2003a; 2003b; Milne and Shih 1981; Shimura 1975; Silhol
1982; Seppälä and Silhol 1989]) that such locally symmetric spaces parametrize
real polarized abelian varieties (possibly with level structures). In an effort to
find a characteristic p analog for such moduli spaces in [Goresky and Tai 2019]
we introduced the notion of a real structure on an ordinary abelian variety A (or,
rather, on its associated Deligne module TA) defined over a finite field k: it is an
“antiholomorphic” involution, that is, a linear involution that switches the action
of the Frobenius and the Verschiebung. If A is the good, ordinary reduction of a
CM variety A/C defined over R then complex conjugation of A/C induces such
an involution on the Deligne module TA. Over a finite field there are finitely many
isomorphism classes of principally polarized ordinary abelian varieties with real
structure and the number of isomorphism classes is given ([Goresky and Tai 2019])
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Keywords: Dieudonné module, abelian variety, real structure.
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by a certain sum of orbital integrals over the general linear group GLn ×GL1. It is
expected that these (or similar) definitions make sense beyond the “ordinary” case.

In Section 3.2, we extend the notion of a “real structure” to the case of (not
necessarily ordinary) Dieudonné modules. We give examples (Section 3.3) to show
that real structures often exist, even on supersingular Dieudonné modules. Then
we show (Proposition 4.4) that the number of isomorphism classes of principally
polarized “real” Dieudonné modules within a single isogeny class is given by a
“twisted” orbital integral TO(δ) over the same general linear group GLn ×GL1.

We show that the constructions in this paper are compatible with those in [Goresky
and Tai 2019], which requires an explicit description (Proposition 6.8) of the
Dieudonné module (and its polarization) of an ordinary polarized abelian variety.
Then we use this description to show (Proposition 6.12) that a real structure in the
sense of [Goresky and Tai 2019] on an ordinary abelian variety determines a real
structure (in the sense of this paper) on its Dieudonné module. This last step is
not automatic: it requires a universal choice of involution on the Witt vectors, as
constructed in Appendix A.

The compatibility between these two notions of real structure leads to a simplifi-
cation of the twisted orbital integral TO(δ). The number of isomorphism classes of
“real” Deligne modules (over Zp) is given by an (ordinary) orbital integral O(γ ):
it is the component at p in the adèlic orbital integral of [Goresky and Tai 2019].
Using a linear algebra argument, we show (Section 7.5) that the orbital integral
O(γ ) (which counts Deligne modules with real structure) coincides with the twisted
orbital integral TO(δ) (which counts Dieudonné modules with real structure). This
equality of orbital integrals is reminiscent of the results in [Kottwitz 1992] (for the
symplectic group rather than the general linear group) in which the fundamental
lemma for Levi subgroups is used in order to evaluate stable sums of twisted orbital
integrals in terms of ordinary orbital integrals (and presumably a similar argument
would work in our case as well).

2. Notation and terminology

Throughout this paper we fix a finite field k = Fq (q = pa) of characteristic p.
Let W denote the Witt ring functor, so that W (k), W (k̄) are the rings of (infinite)
Witt vectors over k, k̄, respectively, with fraction fields K (k) = W (k)⊗Qp and
K (k̄)=W (k̄)⊗Qp, respectively. We may identify K (k) with the unique unramified
extension of Qp of degree a = [k : Fp]. Let W0(k̄) denote the maximal unramified
extension of W (k). We may identify W (k̄) with the completion of W0(k̄). Let
σ : W (k̄)→ W (k̄) be the lift of the Frobenius mapping σ : k̄ → k̄, σ(x) = x p

and let π = σ a be the topological generator for the Galois group Gal(k̄/k) ∼=
Gal(K (k̄)/K (k)). Fix an identification, Qp ∼= K (Fp) of the p-adic numbers with
the fraction field of the Witt vectors of the prime field.
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Let R be an integral domain with fraction field K. Let M be a free R-module of
rank 2n and V =M⊗K. An alternating bilinear form ω :M×M→ R is symplectic
if ω⊗K : V⊗V→ K is nondegenerate. It is strongly nondegenerate if the resulting
M→ HomR(M, R) is an isomorphism. It is symplectic up to homothety if there
exists c ∈ K× such that cω is strongly nondegenerate. The standard symplectic
form ω0 on R2n

× R2n is that whose matrix is J =
( 0
−I

I
0

)
. Set G = GSp2n and for

convenience denote

(2.0.1) 0p = G(Zp) and 0W = G(W (k)).

The standard involution τ0 : R2n
→ R2n is the linear map with matrix

(
−I
0

0
I

)
.

Conjugation by τ0, which we denote by

g 7→ g̃ = τ0gτ−1
0

defines an action of the group 〈τ0〉∼=Z/2Z on GSp2n . If 2∈K× the fixed subgroup is

(2.0.2) H = GL∗n =
{(

A 0
0 λ tA−1

)
∈ GSp2n

∣∣∣∣ A ∈ GLn; λ ∈ Gm

}
∼= GLn ×Gm .

If C is a Z-linear category then the associated category up to R isogeny is
the category C ⊗ R with the same objects but with morphisms HomC⊗R(x, y) =
HomC(x, y)⊗ R.

3. Dieudonné modules

3.1. Notation. Let E = E(k) denote the Cartier–Dieudonné ring, that is, the ring of
noncommutative W (k)-polynomials in two variables F,V, subject to the relations
F(wx)= σ(w)F(x), V(wx)= σ−1(w)V(x), and FV =VF = p, where w ∈W (k)
and x ∈ E . A Dieudonné module M is a module over the ring E(k) that is free and
finite rank over W (k).

The covariant Dieudonné functor (see, for example, [Chai et al. 2014, §B.3.5.6]
or [Goren 2002, p. 245] or [Pink 2005]) assigns to each p-divisible group

G = . . . ↪→� Gr ↪→� Gr+1↪→� . . .

a corresponding module M(G)= lim
←

M(Gr ) over the Dieudonné ring E .
A quasi-polarization (in the sense of [Moonen 2001; Oort 2001] and [Li and

Oort 1998, §5.9] following [Oda 1969, p. 101]) of a Dieudonné module M is
an alternating W (k)-bilinear form ω : M × M → W (k) such that ω ⊗ K (k) is
nondegenerate and ω(Fx, y) = σω(x,V y). (The use of “quasi” reflects the fact
that there is no p-adic counterpart to the “positivity” condition found in the definition
of a polarization for abelian varieties.) A K (k)-isogeny of polarized Dieudonné
modules (M, ω)→ (M ′, ω′) is an element φ ∈ HomE(M,M ′)⊗ K (k) such that
φ∗(ω′)= cω for some c ∈ K (k)×.
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3.2. Real structures. Let M be a Dieudonné module of finite rank over W (k) (with
k = Fq ; q = pa). Let ω be a quasi-polarization on M. Define a real structure on
(M, ω) to be a W (k)-linear mapping τp : M→ M such that for all x, y ∈ M,

(3.2.1) τ 2
p = I, τpF aτ−1

p = V a, ω(τpx, τp y)=−ω(x, y).

As in [Kottwitz 1990, §12] the action of F may be expressed as δσ for some
δ ∈ GSp(M ⊗ K (k), ω), so its norm

N (δ)= δσ (δ) · · · σ a−1(δ) ∈ GSp(M ⊗ K (k), ω)

coincides with the W (k)-linear action of F a. The second condition in (3.2.1) gives

τp N (δ)τ−1
p = q N (δ)−1.

3.3. Manin modules. Following [Manin 1963], let us define Dieudonné modules

Mr,s = E(k)/E(k)(Fr
+Vs)

for nonnegative integers r, s. If k̄ is an algebraic closure of k and if we extend
scalars to

E(k̄)=W (k̄)
[

1
p

]
⊗ E(k),

it is shown in [Manin 1963] that if gcd(r, s)=1, the resulting modules E(k̄)⊗E(k)Mr,s

are simple and they account for all the simple Dieudonné modules. Elements of
Mr,s may be represented by (noncommutative) polynomials

x =
s−1∑
i=1

a−iV i
+ a0+

r∑
j=1

a jF j

(with at ∈W (k) and with identifications F r
=−Vs).

In the following paragraphs we will show that the Manin modules Mr,s ⊕Ms,r

and the Manin modules Mr,r admit quasi-polarizations and real structures.
First suppose r 6= s. The elements {1,F j ,V i

} (1≤ j ≤ r; 1≤ i ≤ s−1) form a
basis of Mr,s over W (k). The module Ms,r admits a dual basis by setting

(F i )∨ = Vr−i, (V j )∨ = F s− j .

This gives rise to a W (k)-linear pairing T : Mr,s ×Ms,r →W (k) with

T (F i ,V j )=

{
1 if i + j = r,
0 otherwise,

T (V i ,F j )=

{
1 if i + j = s,
0 otherwise,

such that T (Fx, y)= σ(T (x,V y)). It follows that the alternating bilinear form

ω(x ⊕ y, x ′⊕ y′)= T (x, y′)− T (x ′, y)

defines a quasi-polarization on Mr,s⊕Ms,r . A real structure on this sum is defined by
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switching the factors and exchanging F with V. Explicitly, define τp :Mr,s→Ms,r by

τp

( s−1∑
i=1

a−iV i
+ a0+

r∑
j=1

a jF j
)
=

s−1∑
i=1

a−iF i
+ a0+

r∑
j=1

a jV j

and similarly for τp : Ms,r → Mr,s . Then τ 2
p = I and

τp(F(x ⊕ y))= σ 2V(τp(x ⊕ y))

which implies that τpF a
= V aτp. Finally, one verifies for x, y ∈ Mr,s and x ′, y′ ∈

Ms,r that
ω(τp(x ⊕ y), τp(x ′⊕ y′))=−ω(x ⊕ y, x ′⊕ y′).

Now suppose r = s. The Manin module

M ′r,r = E(k)/E(k)(F r
+V r )

is the Dieudonné module of a supersingular abelian variety. It has a W (k)-basis
consisting of {V i, F j, V 0

= F 0
= 1, Vr

=−F r
} with 1≤ i, j ≤ r − 1. It admits a

quasi-polarization which for 0≤ i, j ≤ r is well defined as

ω(V i ,F j )=

{
1 if i + j = r,
0 otherwise,

ω(F i ,V j )=

{
−1 if i + j = r,
0 otherwise.

Then ω(x, y) = −ω(y, x) and ω(Fx, y) = σω(x,V y) for all x, y ∈ M ′1,1. This
module admits a real structure by setting τp(tF i )= tV i for t ∈W (k) and 0≤ i ≤ r
(and in particular, τp(tF r )=−tF r ). It is easy to check that τp(F ax)= V aτp(x)
for all a ≥ 0 and all x ∈ M ′r,r .

3.4. In [Manin 1963] the isogenous module E(k)/E(k)(F r
−Vs) is used to replace

the module Mr,s . However the “+” sign in the preceding example is crucial.

4. Counting Dieudonné modules

As in (2.0.1) let 0W = G(W (k)) with the standard symplectic form ω0 =
( 0
−I

I
0

)
.

Let Ip =
( I

0
0
pI

)
. By the theory of Smith normal form for the symplectic group (see

[Spence 1972] or [Andrianov 1987, Lemma 3.3.6]), or by the Cartan decomposition
for p-adic groups, we have the following:

Lemma 4.1. Let L0=W (k)2n
⊂K (k)2n denote the standard lattice. Let L⊂K (k)2n

be a W (k)-lattice. Then L = hL0 for some h ∈ G(K (k)) and the following state-
ments are equivalent.

(1) pL0 ⊂ hL0 ⊂ L0.

(2) hL0 ⊂ L0, ph−1L0 ⊂ L0.

(3) h ∈ 0W Ip0W . �
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4.2. Assume p 6= 2. In this section we fix a Dieudonné module (M,F,V) with
a quasi-polarization ωM and a real structure τM : M → M. Then M is a free
module over W (k) of some even rank, say 2n. Let MQ = M ⊗ K (k). We wish to
understand the set X M of (real) isomorphism classes of principally (quasi-)polarized
Dieudonné modules that are K (k)-isogenous to M. In Proposition 4.4 below we
show that the cardinality |X M | is given by a twisted orbital integral over the group
H ∼= GLn ×GL1 of (2.0.2).

Following the method of [Kottwitz 1990] let XM denote the set of isomorphism
classes in the category CM whose objects consist of tuples (P, ωP , ψ, τP) where P
is a Dieudonné module, ωP is a principal quasi-polarization of P, where τP is a real
structure on P and where ψ ∈HomW (k)(P,M)⊗K (k) is a K (k) isogeny (meaning
that ψ ⊗ K (k) : PQ→ MQ is an isomorphism) that commutes with F, V, takes τP

to τM and satisfies ψ∗(ωM)= cωP for some c ∈ K (k)×. A morphism φ : P→ P ′

between left E(k) modules is in CM if it is compatible with ω up to scalars, and it
commutes with F,V and the involutions τP .τP ′ . So there is a natural identification

X M ∼= I (M)\XM ,

where I (M) denotes the group of K (k) self-isogenies of (M, ωM , τM).

4.3. The mapping (P, ωP , ψ, τP) 7→ L = ψ(P) determines an identification
between the set XM and the set of W (k)-lattices L ⊂ MQ that are preserved
by FM ,VM , τM and such that L is symplectic up to homothety meaning that L∨= cL
for some c ∈ K (k)×, where

L∨ = {x ∈ MQ | ωM(x, y) ∈W (k) for all y ∈ L}.

By [Goresky and Tai 2019, Proposition B.4] there exists a K (k)-linear iso-
morphism MQ → K (k)2n which takes the quasi-polarization ωM to the stan-
dard symplectic form ω0 and takes the involution τM to the standard involution
τ0=

(
−I 0
0 I

)
∈G(Z). From Section 3.2 the action of F ◦σ−1 becomes some element

δ ∈ G(K (k)) with multiplier p, that is well defined up to σ -conjugacy. The group
I (M) of self-isogenies becomes identified with the twisted centralizer (note that
δ /∈ H(K (k))):

Sδ(K (k))= {z ∈ H(K (k)) | z−1δσ (z)= δ}.

Normalize the Haar measure on H(K (k)) so that H(W (k)) has volume one.

Proposition 4.4. The choice of isomorphism MQ→ K (k)2n determines a one-to-
one correspondence between the set of lattices L ⊂MQ, symplectic up to homothety,
that are preserved by F,V, τM and the set

(4.4.1) {g ∈ H(K (k))/H(W (k)) | g−1δσ (g) ∈ 0W Ip0W }.
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Consequently the number of isomorphism classes

|X M | = |Sδ(K (k))\XM |

of principally quasi-polarized real Dieudonné modules within the K (k)-isogeny
class of M is given by the twisted orbital integral over H = GL∗n ,

(4.4.2) TO(δ)=
∫

Sδ(K )\H(K )
κW (g−1δσ (g)) dg,

where κW is the characteristic function of 0W Ip0W ⊂ G(K (k)).

Proof. Let L0 = W (k)2n
⊂ K (k)2n be the standard lattice. If L ⊂ K (k)2n is a

W (k)-lattice, symplectic up to homothety, then L = gL0 for some g ∈ G(K (k)). If
it is preserved by F,V then

(4.4.3) pL0 ⊂ g−1δσ (g)L0 ⊂ L0

which, by Lemma 4.1, is equivalent to g−1δσ (g) ∈ 0W Ip0W . (In the case of an
“ordinary” Dieudonné module, a simpler formula holds; see Proposition 7.3).

If the lattice L is also preserved by the involution τ0 then g−1gL0 = L0 so
that α = g−1g̃ is a 1-cocycle, defining a class in H 1(〈τ0〉,G(W (k))), which is
trivial by [Goresky and Tai 2019, Proposition B.4] since p 6= 2. Thus, there exists
h ∈G(W (k)) so that g−1g̃= h−1h̃, hence g′= gh−1

∈ H(K (k))=GL∗n(K (k)) and
L = g′L0. Thus we may assume that g ∈ H(K (k)), while elements of H(W (k))
act trivially on the homothety class of the lattice L0. If we normalize Haar measure
so that H(W (k)) has volume one then the number of such lattices is given by the
integral in (4.4.2). �

5. Deligne modules and ordinary abelian varieties

5.1. Recall from [Deligne 1969] that a Deligne module of rank 2n over the field
k = Fq of q elements is a pair (T, F) where T is a free Z-module of dimension 2n
and F : T → T is an endomorphism such that the following conditions are satisfied:

(1) The mapping F is semisimple and all of its eigenvalues in C have magnitude
√

q .

(2) Exactly half of the eigenvalues of F in Qp are p-adic units and half of the
eigenvalues are divisible by q .

(3) The middle coefficient of the characteristic polynomial of F is coprime to p.

(4) There exists an endomorphism V : T → T such that FV = V F = q .

A morphism (TA, FA)→ (TB, FB) of Deligne modules is a group homomorphism
φ : TA→ TB such that FBφ = φFA. A polarization ([Howe 1995]) of a Deligne
module (T, F) is a symplectic form ω : T ×T → Z (alternating and nondegenerate
over Q) such that ω(Fx, y) = ω(x, V y) for all x, y ∈ T, and such that the form
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R(x, y)= ω(x, ιy) is symmetric and positive definite, where ι is some (and hence,
any) totally positive imaginary element of Q[F] (see [Howe 1995, §4.7]).

5.2. Following [Deligne 1969], for the rest of this paper we fix an embedding

(5.2.1) ε :W (k̄)→ C.

By a theorem of Serre and Tate, [Drinfeld 1976; Katz 1981; Messing 1972; Nori
and Srinivas 1987] an ordinary abelian variety A/k has a canonical lift A over
W (k) which, using (5.2.1) gives rise to a complex variety AC over C (which
depends only on the restriction ε |W0(k̄) (see [Deligne 1969, p. 239]), which in
turn, is determined by ε |W (k)). Let π ∈ Gal(k̄/k) denote the Frobenius. The
corresponding morphism πA/k (which on the structure sheaf of A is given by the
k-linear ring endomorphism f 7→ f q) lifts to an automorphism FA on T = TA =

H1(AC,Z), and the pair (TA, FA) is a Deligne module.

Theorem 5.3 [Deligne 1969; Howe 1995]. The association A→ (TA, FA), deter-
mined by the embedding (5.2.1), induces an equivalence between the category of
n-dimensional ordinary abelian varieties (resp. polarized abelian varieties) over
k = Fq and the category of Deligne modules (resp. polarized Deligne modules)
over k, of rank 2n. �

5.4. In [Goresky and Tai 2019], we define a real structure on a polarized Deligne
module (T, F, ω) to be a group homomorphism τ : T → T such that

τ 2
= I, τ Fτ−1

= V, ω(τ x, τ y)=−ω(x, y).

The involution τ is a characteristic p analog of complex conjugation. There are
finitely many (“real”) isomorphism classes of principally polarized Deligne modules
(of dimension 2n over k = Fq) with real structure and principal level N structure,
and a formula for this number is given in [Goresky and Tai 2019]. There, we follow
the method of Kottwitz [1990] and show that the number of isomorphism classes
of principally polarized Deligne modules with real structure is finite and is given
by an adèlic orbital integral.

5.5. In order to conceptualize the contribution at p to this formula it is convenient to
define a Deligne module at p (over Fq , of rank 2n) to be a pair (Tp, Fp)where Tp is a
free Zp module of rank 2n and Fp : Tp→ Tp is a semisimple endomorphism whose
characteristic polynomial

∑2n
i=0 ai x i is q-palindromic,1 with middle coefficient

an a p-adic unit, half of whose roots in Qp are p-adic units and half of which
are divisible by p, such that there exists Vp : Tp → Tp with FpVp = Vp Fp = q.
(This implies that if λ is a root then so is q/λ.) A polarization of (Tp, Fp) is a

1Meaning that ai = qn−i a2n−i for 0≤ i ≤ n− 1.
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Zp-valued symplectic form ωp such that ω(Fpx, y)= ω(x, Vp y). (The “positivity
condition” does not make sense in this setting.) A real structure τp on (Tp, Fp, ωp)

is a symplectic involution of Tp with multiplier −1 that exchanges Fp and Vp. If
(T, F, ω, τ ) is a (real, polarized) Deligne module then tensoring with Zp gives a
(real, polarized) Deligne module at p.

5.6. The Tate module. Let (T, F) be a Deligne module over k = Fpa . From this
we define a Gal(k̄/k) module, for ` 6= p a (rational) prime,

T`(T )= T ⊗Z Z`

with Galois action determined by the rule that π ∈ Gal(k̄/k) acts by F ⊗ 1. A
polarization and/or a real structure on (T, F) induces one on T ⊗Z` in an obvious
way.

Let ` 6= p be prime. If A is an ordinary abelian variety with Tate module T`(A)
and Deligne module (TA, FA) then there is a natural isomorphism of Gal(k̄/k)
modules T`(A)∼= T`(TA)= TA⊗Z`.

6. The Dieudonné module of an ordinary variety

6.1. Let A be an ordinary abelian variety over k = Fpa . Denote by M(A) :=
M(A[p∞]) the covariant Dieudonné module associated to the p-divisible group
A[p∞]. In this section we explicitly construct this Dieudonné module M(A) (and
quasi-polarization) directly from the Deligne module (TA, FA) (and a polarization).
In fact, the Dieudonné module M(A) depends only on the associated Deligne
module (Tp = TA⊗Zp, Fp = FA⊗Zp) at p. Although this material is well known
to experts, we require specific equations for these modules that do not appear to be
in the literature.

Given a universal choice of involution τ̄ of the Witt vectors (as in Appendix A)
we show, in Section 6.11, that a real structure on (Tp, Fp) determines a real structure
on M(A).

6.2. Let (Tp, Fp) be a Deligne module at p, over k= Fpa . The same argument as in
[Deligne 1969] shows that the endomorphism Fp determines a unique decomposition

(6.2.1) Tp ∼= T ′⊕ T ′′

preserved by Fp and Vp, such that Fp is invertible on T ′ and is divisible by q on T ′′.
In fact, the module T ′⊗Qp is the sum of the eigenspaces of Fp whose eigenvalues
in Qp are p-adic units while T ′′⊗Qp is the sum of the eigenspaces of Fp whose
eigenvalues are divisible by p. For t = (t ′, t ′′) ∈ Tp set

(6.2.2) Aq(t ′, t ′′)= (t ′, qt ′′) and Ap(t ′, t ′′)= (t ′, pt ′′).
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Then Fp A−1
q = A−1

q Fp : Tp→ Tp is an isomorphism. Extend Fp and σ to Tp⊗W (k̄)
by Fp(t ⊗w)= Fp(t)⊗w and σ(t ⊗w)= t ⊗ σ(w).

6.3. The Dieudonné module of a Deligne module. For a Deligne module (Tp, Fp)

at p as above, define the covariant Dieudonné module M(Tp, Fp) (which we denote
simply by M(Tp)) to be the Gal(k̄/k)-invariant submodule of Tp ⊗W (k̄) where
π ∈ Gal(k̄/k) acts as

(6.3.1) π(t ⊗w)= A−1
q Fp(t)⊗ σ a(w),

so to be explicit,

(6.3.2) M(Tp)= {x ∈ Tp⊗W (k̄) | Fp(x)= Aqσ
−a(x)}

with actions F(t ⊗w)= p A−1
p (t)⊗ σ(w) and V(t ⊗w)= Ap(t)⊗ σ−1(w).

6.4. The mapping Aq preserves the splitting of Tp which gives a splitting M(Tp)=

M(T ′)⊕ M(T ′′). The operator F is σ -linear; it is invertible on M(T ′′) and it is
divisible by p on M(T ′). If α ∈ M(T ) then

Fp(α)= V a(α),

that is, the mapping Fp has been factored as Fp = V a. (The preceding paragraphs
may be dualized so as to define the contravariant Dieudonné modules N (T ) =
N (T ′)⊕N (T ′′) corresponding to the splitting (6.3.2), in which case the mapping Fp

is invertible on N (T ′), divisible by p on N (T ′′) and one has Fp = F a. Despite this
confusion we use the covariant Dieudonné module because the equations are a bit
simpler.)

Proposition 6.5. Let (Tp, Fp) be a Deligne module at p with Zp-rank equal to 2n.
Then its Dieudonné module M(Tp) is a free module over W (k) whose W (k)-rank
also equals 2n and in fact there exists a W (k)-basis of M(Tp) whose elements also
form a W (k̄) basis of Tp⊗W (k̄).

The proof will appear in Appendix B. The following lemma will be needed in
the proof of Proposition 7.3.

Lemma 6.6. Let (Tp, Fp) be a Deligne module at p. The operator σ(t ⊗w) =
t ⊗ σ(w) on Tp ⊗W (k̄) preserves the Dieudonné module M(Tp) ⊂ Tp ⊗W (k̄).
Suppose 3 ⊂ M(Tp)⊗Qp is a W (k)-lattice. Then the following statements are
equivalent.

(1) The lattice 3 is preserved by F and V.

(2) p3⊂ F3⊂3.

(3) p3⊂ V3⊂3.

(4) A−1
p V3=3.
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Such a lattice is also preserved by σ .

Proof. The equivalence of (1), (2), (3) is straightforward. (See also the related (4.4.3)
when 3 is symplectic). Such a lattice 3 is also preserved by Fp, Vp so by the
argument of [Deligne 1969] it decomposes as 3=3′⊕3′′ with 3′=MQ(Tp)

′
∩3

and 3′′ = MQ(Tp)
′′
∩3. Then V |3′ is invertible: Since Fp = V a is invertible

on3′ it follows that V is surjective on3′, and it is injective because it is injective on
MQ(Tp)

′. Similarly F |3′′ is invertible which implies (4). Conversely, suppose that
A−1

p V3=3. Then V3⊂ Ap3⊂3 and F3= pV−13= (p A−1
p )3⊂3. Finally,

the action of A−1
p V on M(Tp) coincides with that of σ−1, so (4) implies σ3=3. �

6.7. Let A/k be an ordinary abelian variety with Deligne module (TA, FA). The
associated finite group scheme A[pr

] = ker(·pr ) decomposes similarly into a
sum A′[pr

] ⊕ A′′[pr
] of an étale-local scheme and a local-étale scheme, with a

corresponding decomposition of the associated p-divisible group, A[p∞]= A′⊕A′′.
Over W (k̄) the finite étale group scheme A′[pr

] becomes constant so there is a
canonical isomorphism

(6.7.1) A′[pr
] ∼= p−r T ′A/T ′A.

Proposition 6.8. The isomorphism A′[pr
] ∼= p−r T ′A/T ′A induces an isomorphism

of covariant Dieudonné modules

M(A)∼= M(TA⊗Zp).

6.9. Proof of Proposition 6.8. The module M(TA⊗Zp)was defined in Section 6.3,
so we need to determine the Dieudonné module M(A) of the abelian variety A.
First let us show that

(6.9.1) M(A′)∼= (T ′A⊗W (k̄))Gal,

where the action of π = σ a
∈ Gal, of F and V is given by

(6.9.2)

π.(t ′⊗w)= FA(t ′)⊗ σ a(w),

F(t ′⊗w)= pt ′⊗ σ(w),

V(t ′⊗w)= t ′⊗ σ−1(w).

From (6.7.1), over W (k̄), the covariant Dieudonné module of the finite group
scheme A′[pr

] is:

(6.9.3) M(A′[pr
])= (p−r T ′A/T ′A)⊗Z W (k̄)∼= (T ′A/pr T ′A)⊗Z W (k̄)

with F(t ′⊗w)= pt ′⊗ σ(w); see [Demazure 1972, p. 68]. Then (see [Demazure
1972, p. 71] or [Chai et al. 2014, §B.3.5.9, p. 350]),

(6.9.4) M(A′)= lim
←

M(A′[pr
]).
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Therefore
M(A′)= (lim

←
(T ′A/pr T ′A)⊗W (k̄))Gal

∼=
(
lim
←

(
T ′A⊗W (k̄)/pr (T ′A⊗W (k̄))

))Gal

∼= (T ′A⊗W (k̄))Gal

with (étale) Galois action

(6.9.5) π(t ′⊗w)= π(t ′)⊗π(w)= FA(t ′)⊗ σ a(w).

Next, using double duality, we will show that M(A′′)∼= (T ′′A ⊗W (k̄))Gal where

(6.9.6)

π(t ′′⊗w)= q−1 FA(t ′′)⊗ σ a(w),

F(t ′′⊗w)= t ′′⊗ σ(w),

V(t ′′⊗w)= pt ′′⊗ σ−1(w).

Let B denote the ordinary abelian variety that is dual to A with Deligne module
(TB, FB) and corresponding p-divisible groups B ′, B ′′. Then B ′ is dual to A′′ (and
vice versa), hence it follows from (6.9.1) (see also [Chai et al. 2014, §B.3.5.9],
[Demazure 1972, p. 72] and [Howe 1995, Proposition 4.5]) that:

M(B ′)= T ′B ⊗Zp W (k̄),2

M(A′′)= HomW (k̄)(M(B
′),W (k̄)),3

T ′B = HomZp(T
′′

A ,Zp).
4

From this, we calculate that the isomorphism

9 : T ′′A ⊗W (k̄)→ HomW (k̄)(HomZp(T
′′

A ,Zp)⊗W (k̄),W (k̄))= M(A′′)

defined by
9t ′′⊗w(φ⊗ u)= φ(t ′′).wu

(for t ′′ ∈ T ′′A , for φ ∈ Hom(T ′′A ,Zp) and for w, u ∈W (k̄)) satisfies:

(π.9t ′′⊗w)(φ⊗ u)= σ a9t ′′⊗w(π
−1
B (φ⊗ u))

= σ a9t ′′⊗w(F−1
B φ⊗ σ−au)

= σ a((F−1
B φ)(t ′′).w.σ−au)

= φ(V−1
A (t ′′)).σ a(w).u)= (9V−1

A t ′′⊗σ a(w))(φ⊗ u).

2π(t ′⊗w)= FB(t ′)⊗ σ a(w), F(t ′⊗w)= pt ′⊗ σ(w).
3πAψ(m)= σ aψ(π−1

B (m)), Fψ(m)= σψ(V(m)).
4 FBφ(t ′)= φVA(t ′).
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Therefore π(t ′′⊗w)= V−1
A (t ′′)⊗ σ a(w)= q−1 FA(t ′′)⊗ σ a(w). Similarly,

(F .9t ′′⊗w)(φ⊗ u)=9t ′′⊗σ(w)(φ⊗ u),

hence F(t ′′⊗w)= t ′′⊗ σ(w), which proves (6.9.6). Since M(A′′)= (M(A′′))Gal,
this together with (6.9.1) verifies that M(A) satisfies the condition in (6.3.2) (with
Tp replaced by TA⊗Zp). �

Proposition 6.10. Let (Tp, Fp) be a Deligne module at p. Let ω : Tp × Tp→ Zp

be a symplectic form such that ω(Fx, y)= ω(x, V y) for all x, y ∈ Tp. Extending
scalars to W (k̄) then restricting to the Dieudonné module M(Tp) ⊂ Tp ⊗W (k̄)
gives a quasi-polarization

ωp : M(Tp)×M(Tp)→W (k)

of M(Tp). If the original form ω is nondegenerate up to homothety then the same is
true of the form ωp, with the same homothety constant.

Proof. The proof is a direct computation using the decomposition Tp ∼= T ′⊕T ′′. �

6.11. Real structures. Let (Tp, Fp) be a Deligne module at p, with a polarization
ω : Tp × Tp→ Zp. Let ωp denote the resulting quasi-polarization on the covariant
Dieudonné module M(Tp). Let τ : Tp→ Tp be a real structure on (Tp, Fp) that is
compatible with the polarization ω. Unfortunately, the mapping τ does not induce
an involution on the Dieudonné module M(Tp) without making a further choice.

Following Appendix A, choose and fix, once and for all, a continuous K (k)-
linear involution τ̄ : K (k̄)→ K (k̄) that preserves W (k̄), so that τ̄ σ a(w)= σ−a τ̄ (w).
Then the following construction provides a functor from the category of polarized
Deligne modules with real structure to the category of quasi-polarized Dieudonné
modules with real structure.

Proposition 6.12. With (Tp, Fp, ω, τ ) as above, the mapping

τp : Tp⊗W (k̄)→ Tp⊗W (k̄)

defined by τp(x ⊗w)= τ(x)⊗ τ̄ (w) is continuous and W (k)-linear. It preserves
the Dieudonné module M(Tp) and it satisfies τpF a

= V aτp and

(6.12.1) ωp(τpx, τp y)=−ωp(x, y) for all x, y ∈ M(Tp).

Proof. The mapping τ takes T ′ to T ′′ (and vice versa) because it exchanges the
eigenvalues of F and V. If x ′⊗w ∈ T ′⊗W (k̄) then

τpπ.(x ′⊗w)= τp(F(x ′)⊗ σ a(w))= V τ(x ′)⊗ σ−a τ̄ (w)

= π−1(τ (x ′)⊗ τ̄ (w))= π−1τp(x ′⊗w)
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which shows that τp takes M(T ′) to M(T ′′) (and vice versa). Similarly,

τpF a(x ′⊗w)= τp(x ′⊗ qσ a(w))= τ(x ′)⊗ qσ−a τ̄ (w)

= V a(τ (x ′)⊗ τ̄ (w))= V aτp(x ′⊗w).

Similar calculations apply to any element x ′′⊗w ∈ T ′′⊗W (k̄).
We now wish to verify (6.12.1). Let Y = Tp ⊗Q. It is possible to decompose

Y = Y1 ⊕ · · · ⊕ Yr into an orthogonal direct sum of simple Qp[F] modules that
are preserved by τ (see, for example, [Goresky and Tai 2019, Lemma 4.3]). This
induces a similar ωp-orthogonal decomposition of

M(Y )= M(Tp)⊗W (k) K (k)

into submodules Mi = M(Yi ) over the rational Dieudonné ring

AQ =A⊗ K (k)= K (k)[F, V ]/(relations),

each of which is preserved by τp. Since this is an orthogonal direct sum, it suffices
to consider a single factor, that is, we may assume that (Vp, Fp) is a simple Qp[F]-
module.

As in (6.2.1) the Qp vector space Y decomposes, Y = Y ′ ⊕ Y ′′ where the
eigenvalues of F | Y ′ are p-adic units and the eigenvalues of F | Y ′′ are divisible
by p. Then the same holds for the eigenvalues of F a on each of the factors of

M(Y )= M(Y ′)⊕M(Y ′′).

Moreover, these factors are cyclic F a-modules and τp switches the two factors. It is
possible to find a nonzero vector y′ ∈M(Y ′) so that y′ is F a-cyclic in M(Y ′) and so
that y′′= τp(y) is Fa-cyclic in M(Y ′′). It follows that y = y′⊕ y′′ is a cyclic vector
for M(Y ) which is fixed under τp, that is, τp(y)= y. We obtain a basis of M(Y ):

y, F a y, · · · , Fa(2n−1)y.

The symplectic form ωp is determined by its values ωp(y,Faj y) for 1≤ j ≤ 2n−1.
But

ωp(τp y, τpFaj y)= ωp(y, τpFajτp y)= q jωp(y,F−aj y)

= q j q− jωp(Faj y, y)=−ωp(y,Faj y). �

7. Comparing lattices in the ordinary case

7.1. A twisted orbital integral (4.4.2) “counts” (real, symplectic) lattices in a
Dieudonné module while an untwisted orbital integral counts (real, symplectic)
lattices in a Deligne module. In this section we show that such lattices are in natural
one-to-one correspondence. Let (Tp, Fp, ω, τ ) be a polarized Deligne module (at p)
with a real structure. By [Goresky and Tai 2019, Proposition B.4] there exists an
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isomorphism 8 : Tp ⊗Qp → Q2n
p which takes ω to the standard involution ω0

and takes τ to the standard involution τ0. It takes Fp to some element γ ∈ G(Qp)

and it takes the decomposition (6.2.1) to a decomposition Q2n
p = V ′⊕ V ′′ where

γ is invertible on V ′ and is divisible by q on V ′′. It also takes the operator Aq

of (6.2.2) to an element αq ∈ G(Q) in the centralizer Zγ (Q) such that αq |V ′ = I
and αq |V ′′ = q I.

The mapping 8=8⊗K (k̄) is compatible with the action (see Lemma 6.6) of σ ,
that is, 8(t ⊗ σ(w)) = σ8(t ⊗w), and it takes the rational Dieudonné module
MQ(Tp)= M(Tp)⊗Qp to the K (k)-vector space (see Section 6.3)

JQ(γ )= {x ∈ K (k̄)2n
| γ x = αqσ

−a(x)}.

In Corollary B.5 we construct a symplectic basis 9 of JQ(γ ) giving the diagram

(7.1.1)
Tp⊗Z K (k̄)

8- K (k̄)2n � 9⊗ K (k̄)
K (k̄)2n

MQ(Tp)

6
∼=- JQ(γ )

6

� 9
K (k)2n

6

The involution τp = τ ⊗ τ̄ in the first column becomes τ̄0 = τ0⊗ τ̄ in the second
and third columns. The mapping 9⊗ K (k̄) ∈ G(K (k̄)) satisfies 9̃ = τ̄09τ

−1
0 =9.

As in Sections 3.2 and 4.3, the operator Fσ−1 (in the first column) on MQ(Tp)

becomes (in the third column) multiplication by δ ∈ G(K (k)). Let u p =9αp9
−1.

Then δσ (w)=9−1 pα−1
p σ(9w) so δ = pu−1

p 9
−1σ(9) and its norm

N (δ)= δσ (δ) · · · σ a−1(δ)=9−1qα−1
q σ a(9)=9−1qγ−19

is G(K (k̄))-conjugate to qγ−1. Similarly, the action of Vσ becomes (in the third
column) multiplication by η=9−1αpσ

−1(9) whose norm is stably conjugate to γ .
Notations for these operators are summarized in Table 1.

T ⊗Zp T ⊗W (k̄)→ W (k̄)2n
←W (k̄)2n

MQ(T ) JQ(γ ) K (k)2n

Fp Fp γ 9−1γ9

Ap Ap αp u p

F pα−1
p σ δσ

V αpσ
−1 pσ−1δ−1

ω ωp ω0 ω0

τ τp = τ ⊗ τ̄ τ̄0 = τ0⊗ τ̄ τ̄0

Table 1. Notations for corresponding operators.
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7.2. For each Zp-lattice L ⊂ Tp⊗Qp that is preserved by Fp and Vp we obtain a
W (k)-lattice

3= (L ⊗W (k̄))Gal(k̄/k)
⊂ MQ(Tp)

where the Galois action is given by π.(t ⊗w)= F A−1
q (t)⊗ σ a(w) for t ∈ L and

w ∈ W (k̄) and where F is given by F(t ⊗ w) = p A−1
p (t)⊗ σ(w) from (6.9.2)

and (6.9.6).

Proposition 7.3. Suppose p 6= 2. This association L 7→ 3 induces a one-to-one
correspondence between

(A) the set of Zp-lattices L ⊂ Tp ⊗ Qp, symplectic up to homothety, that are
preserved by Fp, Vp and τ , and

(B) the set of W (k)-lattices 3 ⊂ MQ(T ), symplectic up to homothety, that are
preserved by F,V, τp.

The choice of basis 8 determines a one-to-one correspondence between (A) and

(C) the set {z ∈ H(Qp)/H(Zp) | z−1α−1
q γ z ∈ G(Zp)}

with H as in (2.0.2). The basis 9 determines a one to one correspondence between
(B) and

(D) the set {w ∈ H(K (k))/H(W (k)) | w−1 p−1u pδσ (w) ∈ 0W }.

Conjugation by 9 ∈ Sp2n(K (k̄)) takes the centralizer Zγ (Qp)⊂ H(Qp) isomor-
phically to the twisted centralizer

Sδ(K (k))= {w ∈ H(K (k)) | z−1δσ (z)= δ} ⊂ H(K (k)).

The correspondence (C)↔ (D) is equivariant with respect to the action of these
centralizers.

Proof. Using the symplectic isomorphism 8 (and 8) the set (A) may be identified
with

(A′) the set of Zp-lattices L ⊂Q2n
p , symplectic up to homothety (with respect to

the standard symplectic form ω0), preserved by the standard involution τ0 and
the mappings γ, qγ−1.

Step 1. Let us show that (A′)↔ (C). As in [Deligne 1969], the special properties
(Section 5.5) of γ determine a decomposition Q2n

p = V ′⊕V ′′ where γ is invertible
on V ′ and is divisible by q on V ′′. Then αq | V ′ = I and αq | V ′′ = q I. The same
holds for any lattice L ⊂Q2n

p = L ′⊕ L ′′ that is preserved by γ and by qγ−1. Such a
lattice L is also preserved by qγ−1 if and only if α−1

q γ : L→ L is an isomorphism.
Write L = gL0 for some g ∈ G(Qp). If L is also preserved by the involution τ

then g−1g̃L0= L0 (where g̃=τ0gτ−1
0 ) so g−1g̃ is a 1-cocycle for H1(〈τ0〉,Sp2n(Zp)),
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which is trivial (by [Goresky and Tai 2019, Proposition B.4], and using the fact
that p 6= 2). So there exists h ∈ Sp2n(Zp) such that h−1h̃ = g−1g̃, thus L = zL0

where z = gh−1
∈ GL∗n(Qp). Therefore we have that α−1

q γ zL0 = zL0 so that
z−1α−1

q γ z ∈ G(Zp). Replacing z by zt (for any t ∈ H(Zp) gives the same lattice
L = zt L0. This proves (C).

The correspondence (B) → (D) is similar (compare Proposition 4.4). By
Lemma 6.6, if a lattice 3 ⊂ MQ(T ) is preserved by F,V then it splits 3 =
3′⊕3′′; both factors are preserved by F,V; and p−1 ApF(3)=3. Translating
this into the third column of Table 1, we have a W (k)-lattice, w30 ⊂ K (k)2n

(where 30 =W (k)2n is the standard lattice) such that p−1u pδσ (w30)= w30 or
w−1 p−1u pδσ (w) ∈ G(W (k)), which is condition (D).

Step 2. Next, we claim the mapping L 7→3= L ⊗W (k̄) determines a correspon-
dence between the set (A′) and

(A′′) the set of W (k̄)-lattices 3 ⊂ K (k̄)2n, symplectic up to homothety, that are
preserved by γ, qγ−1, τ0, and σ .

Given 3 from (A′′) write 3= β30 for some β ∈G(K (k̄)), where 30 =W (k̄)2n

is the standard lattice. Then β−1σ(β) ∈ Sp2n(W (k̄)2n) is a 1-cocycle for the
Galois cohomology H 1(Gal(Fp/Fp),Sp2n(W (·))), that is, the cohomology which
forms an index set for the collection of all Fp-isomorphism classes of Fp-forms of
nondegenerate skew symmetric bilinear forms on W (k̄)2n, of which there is only
one, by [Milnor and Husemoller 1973, §3.5]. So it is trivial, which implies that
3= z30 for some z ∈G(Qp). (That is, β−1σ(β)= s−1σ(s) for some s ∈G(W (k̄));
take z = βs−1.)

The element z−1α−1
q γ z is in G(W (k̄)) and it is fixed under σ so it lies in G(Zp).

This implies α−1
q γ zL0 = zL0, hence L is preserved by γ and by qγ−1. Moreover,

3⊥ = c3 where c−1
∈Q×p is the multiplier of z, so the lattice 3 comes from the

lattice L = zZ2n
p and the homothety constant may be taken to lie in Q×p . Finally,

since τ0(3)=3, the same argument as in Step 1 implies that z may be chosen to
lie in H(Qp), hence the lattice L is also preserved by τ0.

Step 3. According to Section 6.3, the mapping 8 : Tp⊗ K (k̄)→ K (k̄)2n takes the
Dieudonné module M(Tp)⊗Qp to the module

JQ(γ )= {x ∈ K (k̄)2n
| γ x = αqσ

−a(x)}

on which the mappings F,V become the following (for which we use the same
symbols): F(x)= pα−1

p σ(x) and V(x)= αpσ
−1(x). Consider

(B′) the set of W (k)-lattices 3 ⊂ JQ(γ ), symplectic up to homothety, that are
preserved by F,V, τ0.
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We claim functors (A′′)↔ (B′) defined by

3 7→3=3∩JQ(γ )

3=3⊗W (k̄)←[3

define a one-to-one correspondence between lattices 3 of (A′′) and lattices 3
of (B′).

Given3 from the set (A′′), the set3=3∩JQ(γ ) is clearly preserved by F,V, τ0,
but we need to prove that it is a lattice. In fact, it is a free W (k)-module of maximal
rank, which follows from the same proof (Appendix B) as that of Proposition 6.5.

On the other hand, given a lattice 3 from the set B′ we obtain a lattice

3=3⊗W (k̄)⊂ K (k̄)2n.

It is clearly preserved by F, V, τ0. It follows from Lemma 6.6 that it is also
preserved by σ , so it is in the set A′′. We claim that 3∩ (JQ(γ )))=3. Choose a
W (k)-basis b1, b2, · · · , b2n ∈ Tp⊗ K (k̄) of 3. If v =

∑
i si bi ∈3∩ (JQ(γ )) with

si ∈W (k̄) then

v =
∑

i

si bi = γ
−1σ−aαq

∑
i

si bi =
∑

i

σ−a(si )γ
−1αqσ

−a(bi )=
∑

i

σ−a(si )bi

which implies that si ∈W (k). Therefore v ∈3.
In fact every lattice in the set (A′′) arises in this way: given3 let3=3∩JQ(γ ).

Then Proposition 6.5 implies that 3 admits a W (k) basis whose elements form a
W (k̄) basis of 3. So the inclusion 3→3 induces an isomorphism 3⊗W (k̄)∼=3.
This completes the verification of (A′′)↔ (B′).

Step 4. The correspondence between (B) and (B′) is straightforward.

Step 5. Suppose z ∈ Zγ (Qp). Then z preserves the eigenspace decomposition
Q2n

p = V ′⊕ V ′′ so it commutes with αp. Then w =9−1z9 ∈ Sδ because

wδσ(w)−1
=9−1 pα−1

p σ(9)= δ.

Conversely if w ∈ Sδ(K (k̄)), applying the norm gives wN (δ)w−1
= N (δ) so z =

9w9−1
∈ Zγ (K (k̄)). Moreover z commutes with αp (as above). Substituting δ =

9−1 pα−1
p σ(9) into the equationwδσ(w)−1

=w gives zσ(z)−1
=1, so z∈ Zγ (Qp).

The equivariance statement in Proposition 7.3 is easily verified. �

7.4. As in Lemma 4.1, the theory of Smith normal form (or rational canonical
form) gives a one-to-one correspondence between the set (A′) and

(C′) the set {g ∈ H(Qp)/H(Zp) | g−1γ g ∈ 0p Iq0p},

where 0p = G(Zp), and as in (4.4.1), an identification between (B′) and

(D′) the set {g ∈ H(K (k))/H(W (k)) | g−1δσ (g) ∈ 0W Ap0W }.
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7.5. Using the same procedure (due to [Kottwitz 1990]) as in Sections 4.2 and 4.3,
we may identify the set of isomorphism classes of principally polarized Deligne mod-
ules at p with real structure that are Qp-isogenous to (Tp, Fp, ω, τ )with the quotient

Y (Tp)= I (Tp)\Y(Tp),

where Y(Tp) denotes the set of Zp-lattices L ⊂ Tp ⊗Qp that are symplectic up
to homothety (that is, L∨ = cL for some c ∈Q×p ) and preserved by Fp, Vp, and τ
(that is, the set (A) of Proposition 7.3), and where I (Tp) denotes the group of self
isogenies of (Tp, Fp, ω, τ ).

So the correspondence (A) ↔ (C) ↔ (C)′ ↔ (B) ↔ (B)′ of Proposition 7.3
and 7.4 means that the number of such isomorphism classes

|Y (Tp)| = |Zγ (Qp)\Y(Tp)|

is given by any of the integrals∫
Zγ (Qp)\H(Qp)

χ(z−1α−1
q γ z) dz(C)

=

∫
Zγ (Qp)\H(Qp)

κ(g−1γ g) dg(C′)

=

∫
Sδ(K (k))\H(K (k))

χW (w
−1 p−1u pδσ (w)) dw(B)

=

∫
Sδ(K (k))\H(K (k))

κW (g−1δσ (g)) dg(B′)

where χ is the characteristic function on G(Qp) of 0p = G(Zp), χW is the charac-
teristic function of G(W (k)), κ is the characteristic function on G(Qp) of 0p Iq0p,
κW is the characteristic function on G(K (k)) of 0W Ip0W and where H =GL∗n ⊂G
(note that γ, δ /∈ H).

Appendix A: Involutions on the Witt vectors

A.1. Fix a finite field k of characteristic p > 0 having q = pa
= |k| elements.

Fix an algebraic closure k and let W (k), W (k) denote the ring of (infinite) Witt
vectors. These are lattices within the corresponding fraction fields, K (k) and K (k).
Let W0(k) be the valuation ring in the maximal unramified extension K0(k) of
Qp ⊂ K (k). We may canonically identify W (k) with the completion of W0(k).
Denote by π : k→ k the Frobenius π(x) = xq. It has a unique lift, which we
also denote by π : W (k)→ W (k), and the cyclic group 〈π〉 ∼= Z is dense in the
Galois group G =Gal(K0(k)/K (k))∼=Gal(k/k). If L ⊃ k is a finite extension, for
simplicity we write Gal(L/k) in place of Gal(K (L)/K (k)) and we write TraceL/k

for the trace W (L)→W (k).
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Proposition A.2. There exists a continuous W (k)-linear mapping τ̄ :W (k)→W (k)
such that:

(1) τ̄ 2
= I.

(2) τ̄π = π−1τ̄ .

(3) For any finite extension E/k, the mapping τ̄ preserves W (E)⊂W (k).

(4) For any finite extension L ⊃ E ⊃ k, the following diagrams commute:

W (L)
τ̄
- W (L) W (L)

τ̄
- W (L)

W (E)

TraceL/E

?

τ̄
- W (E)

TraceL/E

?
W (E)

6

τ̄
- W (E)

6

Such an involution will be referred to as an antialgebraic involution of the Witt
vectors.

Proof. Let E⊃k be a finite extension of degree r . Recall that an element θE ∈W (E)
is a normal basis generator if the collection θE , πθE , π

2θE , · · · , π
r−1θE forms a

basis of the lattice W (E) over W (k). By simplifying and extending the argument
in [Lenstra 1985], P. Lundström [1999] showed that there exists a compatible
collection {θE } of normal basis generators of W (E) over W (k), where E varies over
all finite extensions of k, and where “compatible” means that TraceL/E(θL)= θE

for any finite extension L ⊃ E ⊃ k. Let us fix, once and for all, such a collection
of generators. This is equivalent to fixing a “normal basis generator” θ of the free
rank one module

lim
←E

W (E)

over the group ring
W [[G]] = lim

←E
W (k)[Gal(E/k)].

For each finite extension E/k, define τE :W (E)→W (E) by

τE

( r−1∑
i=0

aiπ
iθE

)
:=

r−1∑
i=0

aiπ
−iθE =

r−1∑
i=0

aiπ
r−iθE ,

where a0, a1, · · · , ar−1 ∈ W (k). Then τ 2
E = I and τEπ = π

−1τE . We refer to τE

as an antialgebraic involution of W (E). The mapping τE is an isometry (hence,
continuous) because it takes units to units. To see this, suppose v ∈W (E) is a unit
and set τE(v)= pr u where u ∈W (E) is a unit. Then

v = τ 2
E(v)= prτE(u) ∈ pr W (E)

is a unit, hence r = 0.
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Next, we wish to show, for every finite extension L ⊃ E ⊃ k, that τL |W (E)= τE

(so that τE is well defined) and that τE ◦ TraceL/E = TraceL/E ◦τL . We have an
exact sequence

1→ Gal(L/E)→ Gal(L/k)→ Gal(E/k)→ 1.

For each h ∈ Gal(E/k) choose a lift ĥ ∈ Gal(L/k) so that

Gal(L/k)= {ĥg : h ∈ Gal(E/k), g ∈ Gal(L/E)}.

Let x =
∑

h∈Gal(E/k) ahhθE ∈W (E) where ah ∈W (k). Then

x =
∑

h∈Gal(E/k)

ahh
∑

g∈Gal(L/E)

gθL =
∑

h∈Gal(E/k)

ah

∑
g∈Gal(L/E)

ĥgθL

so that

τL(x)=
∑

h∈Gal(E/k)

ah

∑
g∈Gal(L/E)

ĥ−1g−1θL

=

∑
h∈Gal(E/k)

ah ĥ−1
∑

g∈Gal(L/E)

g−1θL =
∑

h∈Gal(E/k)

ahh−1θE = τE(x).

To verify that τE ◦TraceL/E(x)= TraceL/E ◦τL(x), it suffices to consider basis vec-
tors x= ĥgθL where g∈Gal(L/E) and h∈Gal(E/k). Then TraceL/E(x)=hθE and

TraceL/E(τL(x))=
∑

y∈Gal(L/E)

yĥ−1g−1θL = ĥ−1
∑

z∈Gal(L/E)

zθL

= h−1 Trace(θL)= τE TraceL/E (x).

It follows that the collection of involutions {τE } determines an involution

τ̄ :W0(k)→W0(k)

of the maximal unramified extension of W (k). It is a continuous isometry (so it
takes units to units) and it satisfies the conditions (1)–(4). Therefore it extends
uniquely and continuously to the completion W (k). �

Appendix B: Applications of Galois cohomology

B.1. Throughout this section let k be a finite field with an algebraic closure k̄ with
Galois group Gal=Gal(k̄/k). Let W (k) be the ring of Witt vectors over k. A bilinear
form on a free finite-dimensional W (k) module V is (strongly) nondegenerate
if it induces an isomorphism V → HomW (k)(V,W (k)). Let ω0 be the standard
symplectic form whose matrix is J =

( 0
−I

I
0

)
. In this section we recall some

standard facts and applications from Galois cohomology.

Proposition B.2. The Galois cohomology set H 1(Gal(k̄/k),GLn(W (k̄))) is trivial.
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Proof. The proof follows from [SGA 3 III 1970] Exp. XXIV, Prop. 8.1(ii) and
[Grothendieck 1968] Thm. 11.7 and Remark 11.8.3 although it takes some work to
translate these very general results of Grothendieck into this setting. �

Proposition B.3. The Galois cohomology set H 1(Gal(k̄/k),Sp2n(W (k̄)) is trivial.

Proof. The proof also follows from [SGA 3 III 1970] and [Grothendieck 1968] but
it also follows directly from Proposition B.2 as follows. There is a natural one-to-
one correspondence between the set of W (k)-isomorphism classes of (strongly)
nondegenerate alternating bilinear forms on W (k̄)2n and elements of

ker
(
H 1(Gal(k̄/k),Sp2n(W (k̄))

)
→ H 1(Gal(k̄/k),GL2n(W (k̄))

))
.

In fact, if {ξθ } is a 1-cocycle (with θ ∈Gal) which lies in this kernel then there exists
g ∈GL2n(W (k̄)) so that ξθ = θ(g)g−1 (for all θ ∈Gal). It may be used to twist the
standard symplectic form ω0 to give a new symplectic form with matrix B= tg Jg−1.
Then θ(B)= B so it defines a symplectic form on W (k)2n which is nondegenerate
over K (k) and also over W (k̄), which implies that it is nondegenerate over W (k),
i.e., strongly nondegenerate.

If R is a principal ideal domain, it is well known (see, for example, [Goresky and
Tai 2019, Lemma B.2]) that all strongly nondegenerate symplectic forms on R2n

are isomorphic over R. It follows that the above kernel contains a single element.
By Proposition B.2 above, this implies that H 1(Sp2n(W (k̄)) is trivial. �

Proposition B.4. Define an action of the group 〈τ0〉 ∼=Z/(2) on Sp2n(W (k)) where
the nontrivial element acts as conjugation by τ0 =

(
−I
0

0
I

)
. If char(k) 6= 2 then the

nonabelian cohomology set H 1(〈τ0〉,Sp2n(W (k)) is trivial.

Proof. This follows from the same method as [Goresky and Tai 2019, Proposi-
tions B.4 and D.2]: since W (k) is a principal ideal domain containing 1/2, every
involution of Sp2n(W (k)) with multiplier equal to −1 is conjugate to the standard
involution g̃ = τ0gτ−1

0 . The above nonabelian cohomology set counts the number
of conjugacy classes of such involutions. �

Corollary B.5. Let V be a finite-dimensional free W (k̄) module together with a
semilinear action of Gal(k̄/k). Let V Gal be the W (k)-module of Galois invariant
elements.

(1) The module V Gal is free over W (k) and there exists a W (k)-basis of V Gal

which is also a W (k̄)-basis of V.

(2) If ω is a (strongly nondegenerate) W (k̄)-valued symplectic form on V such that
ω(θx, θy)= θω(x, y) for all θ ∈ Gal(k̄/k) then ω restricts to a strongly non-
degenerate W (k)-valued symplectic form on V Gal and there exists a symplectic
W (k)-basis of V Gal that is also a symplectic W (k̄)-basis of V.
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(3) In addition to (2), if char(k) 6= 2, if τp : V→ V is an involution such that τpθ =

θ−1τp for all θ ∈ Gal(k̄/k) and ω(τpx, τp y)=−ω(x, y) then τp restricts to
an involution on V Gal and the symplectic basis {e1, · · · , en, e∗1, · · · , e∗n} of V Gal

may be chosen so that τp(ei )=−ei and τp(e∗i )= e∗i .

Proof. For part (1), let m = rank(V ). Since the conclusion holds in the case that
V =W (k̄)m it suffices to show that there exists a Gal(k̄/k)-equivariant isomorphism
V →W (k̄)m. Choose any W (k̄) isomorphism φ : V →W (k̄)m where m = dim(V ).
Then θ 7→ θ(φ)φ−1

∈ GLm(W (k̄)) is a 1-cocycle so it equals θ(B)B−1 for some
B ∈ GLm(W (k̄)) by Proposition B.2. It follows that the isomorphism

φ′ = B−1φ : V →W (k̄)m

is Galois equivariant.
For part (2), let m = 2n in the preceding argument. The conclusions of the

argument hold for the standard symplectic form ω0 on W (k̄)2n so it suffices to
construct a Gal(k̄/k)-equivariant symplectic isomorphism V →W (k̄)2n. The same
argument works: choose the original isomorphism φ : V→W (k̄)2n so as to take the
symplectic form ω to the standard symplectic form ω0. The same argument (using
Proposition B.3 this time) gives B ∈ Sp2n(W (k̄)) so the resulting isomorphism
φ′ = B−1φ : V →W (k̄)m is equivariant and symplectic.

For part (3), first use (2) to obtain a symplectic isomorphism φ : V Gal
→W (k)2n.

The conclusions of the argument hold for the standard involution τ0 so it suffices
to modify this isomorphism so as to be equivariant with respect to the involutions
τp and τ0. The same argument (using Proposition B.4 this time) also works: set
φ̃ = τ0φτ

−1
p . Then φ̃φ−1

∈ Sp2n(W (k)) is a 1-cocycle for the action of 〈τ0〉 and
since the cohomology vanishes, the mapping φ may be modified so as to become
equivariant with respect to the involutions. �
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SPECTRAHEDRAL REPRESENTATIONS
OF PLANE HYPERBOLIC CURVES

MARIO KUMMER, SIMONE NALDI AND DANIEL PLAUMANN

We describe a new method for constructing a spectrahedral representation
of the hyperbolicity region of a hyperbolic curve in the real projective plane.
As a consequence, we show that if the curve is smooth and defined over the
rational numbers, then there is a spectrahedral representation with rational
matrices. This generalizes a classical construction for determinantal repre-
sentations of plane curves due to Dixon and relies on the special properties
of real hyperbolic curves that interlace the given curve.

Introduction

Determinantal representations of plane curves are a classical topic in algebraic
geometry. Given a form f (i.e., a homogeneous polynomial) of degree d in three
variables with complex coefficients and a general form g of degree d−1, there exists
a d×d linear matrix M = x A+ y B+ zC such that f is the determinant of M and g
a principal minor of size d−1 (see for example [Dolgachev 2012, Chapter 4]). The
matrix M can be chosen to be symmetric if g is a contact curve, which means that
all intersection points between the curves defined by f and g have even multiplicity.
The construction of M from f and g is due to Dixon [1902] (following Hesse’s much
earlier study of the case d = 4). We refer to this construction as the Dixon process.

For real curves, the most interesting case for us is that of hyperbolic curves. The
smooth hyperbolic curves are precisely the curves whose real points contain a set
of bd/2c nested ovals in the real projective plane (plus a pseudoline if d is odd).
A form f ∈ R[x, y, z] is hyperbolic if and only if it possesses a real symmetric
determinantal representation f = det(M) such that M(e) = e1 A+ e2 B + e3C is
(positive or negative) definite for some point e∈P2(R). This is the Helton–Vinnikov
theorem, which confirmed a conjecture by Peter Lax [Helton and Vinnikov 2007].

The Helton–Vinnikov theorem received a lot of attention in the context of semi-
definite programming, which was also part of the original motivation: the set of

MSC2010: 14H50, 14P99, 52A10.
Keywords: real algebraic curves, determinantal representations, spectrahedra, linear matrix

inequalities.
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Figure 1. A quintic hyperbolic curve (blue), a quartic interlacer
(green), and the hyperbolicity region (green region).

points a ∈R3 for which the matrix M(a) is positive semidefinite is a spectrahedron

S(M)= {a ∈ R3
: M(a)� 0}.

It coincides with the hyperbolicity cone C( f, e) of f = det(M) in direction e, that is,
the closure of the connected component of {a ∈ R3

: f (a) 6= 0} containing e. This
is a convex cone in R3, whose image in P2 is the region enclosed by the convex
innermost oval of the curve (see Figure 1). A triple of real symmetric matrices
A, B,C is a spectrahedral representation of C( f, e) if M = x A+ y B+zC satisfies

C( f, e)= S(M).

It has been pointed out by several authors [Vinnikov 2012; Plaumann and Vinzant
2013] that the proof of the Helton–Vinnikov theorem becomes much simpler if
one requires the matrix M to be only hermitian, rather than real symmetric. In that
case, M can be constructed via the Dixon process starting from any interlacer of f ,
that is, any hyperbolic form g of degree d − 1 whose ovals are nested between
those of the curve defined by f (see Figure 1). One downside of this apparent
simplification is that the corresponding determinantal representation f = det(M)
with principal minor g is harder to construct explicitly, since one has to find the
intersection points of f and g, while this can be avoided if g is a contact curve. We
refer to [Vinnikov 2012] for a survey of these results.

In this paper, we study a modification of the Dixon process, which can be
described as follows: given a form f of degree d , hyperbolic with respect to e, and
an interlacer g of degree d−1, we construct a real symmetric matrix pencil M with
the properties that

• the determinant det(M) is divisible by f ,

• the principal minor det(M11) is divisible by g,

• the extra factors det(M)/ f and det(M11)/g are products of linear forms, and

• the spectrahedron defined by M coincides with C( f, e).

The extra factor in our spectrahedral representation of C( f, e) is an arrangement
of real lines, as in Figure 2. Informally speaking, these additional lines correct the
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Figure 2. The extra factor (dashed blue lines) giving the spectra-
hedral representation of the hyperbolicity region.

failure of g to be a contact curve by passing through the intersection points of g
with f that are not of even multiplicity.

The precise statement is Theorem 2.2. The size of M is at most quadratic in d.
Thus, while M may not be the smallest or simplest determinantal representation of
(some multiple of) f , it is easier to construct and may better reflect properties of the
hyperbolicity region C( f, e): as a corollary, we show that if f has coefficients in Q,
then C( f, e) can be represented by a linear matrix inequality with coefficients in Q

(Theorem 2.10). We may also view Theorem 2.2 in the context of the generalized
Lax conjecture, which states that every hyperbolicity region (in any dimension) is
spectrahedral. While various stronger forms of this conjecture have been disproved,
it remains open as stated. One obstacle for constructing symmetric determinantal
representations in higher dimensions is the nonexistence of contact interlacers for
general hyperbolic hypersurfaces. Since our generalized Dixon process does not re-
quire the interlacer to be contact, it is possible that a spectrahedral description of the
hyperbolicity cone could be constructed in a similar way, but this is currently purely
speculative. In Section 3 we point out how our construction is related to sum-of-
squares decompositions of Bézout matrices and the construction in [Kummer 2017].

Even in the original Dixon process for plane curves, details are somewhat subtle:
for the construction to succeed as stated, the curve defined by f must be smooth,
and the existence of a contact curve satisfying the required genericity assumption
(equivalent to the existence of a nonvanishing even theta characteristic) was not
rigorously established until somewhat later. Additionally, the case of singular curves
was, to our knowledge, only fully settled and explicitly stated by Beauville [2000].
Likewise, in our generalized Dixon process, we need to treat degenerate cases with
care and need some genericity assumptions.

Our generalized Dixon process has the additional feature that the size of the
matrix M decreases if the interlacer g has real contact points with f . In particular,
if g is an interlacer with only real intersection points, our statement reduces to
that of the Helton–Vinnikov theorem. This leads us to the study of interlacers
with real intersection (i.e., contact) points. Such interlacers are necessarily on the
boundary of the cone Int( f, e) of all interlacers of f . An extreme ray of that cone
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will necessarily have a certain number of real contact points (Lemma 1.3). However,
we do not know whether there always exists an interlacer with the maximal number
d(d − 1)/2 of real contact points. Even in the case d = 4, we only obtain a partial
answer to this question (see the subsection beginning on page 248). There remain
interesting (and easily stated) open questions concerning interlacing curves and the
geometry of the interlacer cone.

1. Extremal interlacers

Let f ∈ R[x, y, z] be homogeneous of degree d and hyperbolic with respect to
e= (0 : 0 : 1), with f (e) > 0. Let C =VC( f ) be the plane projective curve defined
by f . We denote by C( f, e) the closed hyperbolicity region of f with respect to e
in the real projective plane.

Definition 1.1. Let f, g ∈ R[t] be univariate polynomials with only real zeros
and with deg(g) = deg( f ) − 1. Let α1 ≤ · · · ≤ αd be the roots of f , and let
β1 ≤ · · · ≤ βd−1 be the roots of g. We say that g interlaces f if αi ≤ βi ≤ αi+1

holds for all i = 1, . . . , d−1. If all these inequalities are strict, we say that g strictly
interlaces f .

If f ∈ R[x, y, z] is hyperbolic with respect to e and g is homogeneous of degree
deg( f )− 1, we say that g interlaces f with respect to e if g(te + v) interlaces
f (te+ v) for every v ∈ R3. This implies that g is also hyperbolic with respect to e.

We say that g strictly interlaces f if g(te+v) strictly interlaces f (te+v) for every
v ∈ R3 not in Re.

With f as above, let g be any form in R[x, y, z] coprime to f . We say that an
intersection point p ∈ VC( f, g) is a contact point of g with f if the intersection
multiplicity multp( f, g) is even. If all intersection points are contact points, then
g is called a contact curve of f . A curve of real contact is a curve g for which
all real intersection points are contact points, without any assumption on nonreal
intersection points. Any interlacer is a curve of real contact.

Interlacers of f appear naturally in the context of determinantal representations
of f [Plaumann and Vinzant 2013; Kummer et al. 2015]. For example, if f =
det(x A+y B+zC) is a real symmetric and definite determinantal representation of f ,
then every principal (d−1)× (d−1) minor of x A+ y B+ zC is an interlacer of f
[Plaumann and Vinzant 2013, Theorem 3.3]. Furthermore, such a minor defines a
contact curve (see, e.g., [Plaumann and Vinzant 2013, Proposition 3.2]). Conversely,
given any interlacer of f that is also a contact curve, one can construct a definite
determinantal representation of f and therefore a spectrahedral representation of
its hyperbolicity region of size d × d. However, for computational purposes, it
is very difficult to actually find such an interlacer, even though its existence is
guaranteed by the Helton–Vinnikov theorem [2007]. In Section 2, we will introduce
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a method for constructing from an arbitrary interlacer a spectrahedral representation
of possibly larger size. We denote by

Int( f, e)= {g ∈ R[x, y, z]d−1 : g interlaces f and g(e) > 0}

the set of interlacers of f . It is shown in [Kummer et al. 2015, Corollary 2.7] that
this is a closed convex cone. Every boundary point of this cone has at least one
contact point. In order to find interlacers with many contact points, it is therefore
natural to consider extreme rays of this cone.

Definition 1.2. Let f be hyperbolic with respect to e. By an extremal interlacer
of f we mean an extreme ray of the cone Int( f, e).

The next lemma gives a lower bound on the number of real contact points of an
extremal interlacer.

Lemma 1.3. Assume that f defines a smooth curve of degree d. Any extremal
interlacer of f has at least ⌈

(d + 1)d − 2
4

⌉
real contact points with f , counted with multiplicity.

Proof. Let g be an extremal interlacer, and let k be the number of real contact
points of g. By definition, the real part of the divisor divC(g) is even, say 2D,
with D real and effective of degree k. The space V of forms h of degree d − 1
with divC(h)≥ 2D has dimension at least n = (d + 1)d/2− 2k and contains g. If
n > 1, then V contains another form h linearly independent of g. We conclude that
g± εh ∈ Int( f, e) for sufficiently small ε. Thus, g is not extremal. Therefore, we
must have n ≤ 1, which gives k ≥ ((d + 1)d − 2)/4. �

Remark 1.4. For smooth f , given any d − 1 real points on the curve, there is an
extremal interlacer touching the curve in (at least) the given points. Indeed, it is
clear from the above proof that it suffices to show that there is an interlacer passing
through these d − 1 points. The quadratic system of interlacers considered in
[Plaumann and Vinzant 2013, Definition 3.1] has dimension d , so we can prescribe
d − 1 points.

Remark 1.5. We do not know whether every hyperbolic curve possesses an irre-
ducible extremal interlacer. This is true if C is a smooth cubic: for any two distinct
points p and q on C , there is an extremal interlacing conic Q passing through
p and q, by the preceding remark. If Q is reducible, it must factor into the two
tangent lines to C at p and q. But Q is a contact curve by Lemma 1.3; hence, the
intersection point of the two tangents must lie on C . Clearly, this will not be the
case for a generic choice of p and q. This observation will be used at one point
later on. It does not seem clear how to generalize this argument to higher degrees.
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Figure 3. Quadrics touching hyperbolic quartics in real points.

The following table shows the expected number of real contact points of an
extremal interlacer compared with the number of points for a full contact curve:

d 2 3 4 5 6 · · ·

d((d + 1)d − 2)/4e 1 3 5 7 10 · · ·

d(d − 1)/2 1 3 6 10 15 · · ·

An interlacer can have many more real contact points than the estimate given
by Lemma 1.3, and we do not know whether there is always one with only real
intersection points.

Question 1.6. Does every hyperbolic plane curve have an interlacer that intersects
the curve only in real points?

Even without the interlacing condition, it seems to be unknown whether a real
curve always possesses a real contact curve with only real contact points. In the
case of plane quartic curves we have some partial answers to that question.

The case of quartics. Let C ⊆ P2 be a smooth hyperbolic quartic that has a real
bitangent touching C in only real points. We will show that in this case there is
a contact interlacer touching C only in real points. It suffices to show that there
is a conic touching both ovals in two real points. This, together with the above
bitangent, will be the desired totally real interlacer.

Assume that C(R) is contained in the affine chart z 6=0 (for smooth quartic curves
this is not a restriction). Let l ∈R[x, y]1 be a nonzero linear form. Maximizing and
minimizing l on the hyperbolicity region gives us two different linear polynomials
l1 and l2 that are parallel and whose zero sets are tangent to the inner oval at some
points p1 and p2 (see Figure 3).

Choose the signs such that both l1 and l2 are nonnegative on the inner oval. We
consider the pencil of conics whose zero sets pass through p1 and p2 such that the
tangent lines of the conics at p1 and p2 are defined by l1 and l2, respectively. This
pencil is given by qλ = g2

−λl1l2, λ ∈R, where g is the line spanned by p1 and p2.
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Figure 4. A hyperbolic quartic curve (in blue) and a cubic inter-
lacer (in green) with only real intersection points.

The zero set of qλ is completely contained in the interior of the outer oval for small
λ > 0. Label the two half spaces defined by g by 1 and 2, and let λi > 0 be the
smallest positive number such that the zero set of qλi intersects the outer oval in
the half space labeled by i . We observe that both qλi have three real contact points
with C . If λ1 = λ2, then we are done.

Now we let the linear form l, which we started with, vary continuously and we
also keep track of the labels of the half spaces in a continuous manner. The resulting
conic qλ1(l) depends continuously on l, and we note that qλ1(−l) = qλ2(l). Note
that one of the zero sets of qλ1(l) and of qλ1(−l) on C contains a pair of complex
conjugate points (the orange oval in Figure 3, left) whereas the other one contains
only real points of C (the red oval in Figure 3, left). Therefore, there must be a linear
form l0 such that qλ1(l0) has the desired properties (Figure 3, center and right).

If there is no bitangent touching the quartic in two real points, we do not know
whether there always exists an interlacer intersecting the curve in only real points.
The next example shows that this is at least sometimes the case.

Example 1.7. We consider the smooth plane quartic defined by

f = 1250000x4
− 1749500x3 y− 2250800x2 y2

− 4312500x2z2

+ 69260xy3
+ 786875xyz2

+ 88176y4
+ 1141000y2z2

+ 1687500z4.

Its real locus consists of two nested ovals both of which are convex (Figure 4),
meaning that there is no bitangent touching the curve in two real points. Nevertheless,
the interlacer given by

g = 500x3
− 800x2 y− 740xy2

− 625xz2
+ 176y3

+ 1000yz2

intersects the quartic curve only in real points. Indeed, its divisor is given by

4 · (4 : −5 : 0)+ 2 · (11 : 5 : 0)+ 2 · (1 : 5 : 0)+ 2 · (7 : 10 : −10)+ 2 · (7 : 10 : 10).

2. A generalized Dixon process

Given a real hyperbolic form f of degree d and an interlacer g of degree d− 1, we
wish to produce a real symmetric determinantal representation of f with a principal
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minor divisible by g. If g is a contact curve, this is achieved through the classical
Dixon process. We will extend the procedure in such a way that the resulting
representation will reflect any real contact points between f and g, relating to our
discussion of extremal curves of real contact in the previous section.

Let f be irreducible and hyperbolic with respect to e ∈ P2(R), and assume that
the plane curve VC( f ) is smooth. Let g be an interlacer of f with r real contact
points p1, . . . , pr , counted with multiplicities. Consider the d(d − 1)− 2r further
intersection points, which are nonreal and therefore come in complex conjugate
pairs, say q1, . . . , qs, q1, . . . , qs , so that d(d−1)= 2r +2s. For each i = 1, . . . , s
let `i be a linear form defining the unique (real) line joining qi and qi . We will
make the assumptions that

(G1) no three of the intersection points of f with g lie on a line,

(G2) no three of the `i pass through the same point, and

(G3) f does not vanish on any point where two of the `i intersect.

We begin by showing that such an interlacer always exists.

Lemma 2.1. There exists a strict interlacer for which the genericity assumptions
(G1), (G2), and (G3) are satisfied.

Proof. Every choice of k = 1
2 d(d + 1)− 1 points on the zero set of f that pose

linearly independent conditions on forms of degree d− 1 determines a unique such
form. The other zeros of this (d−1)-form on the zero set of f depend continuously
on the choice of the k points. By the general position theorem [Arbarello et al.
1985, Chapter III, §1], any neighborhood of the given interlacer contains a strict
interlacer g with the property that its zero set intersects the one of f in d(d − 1)
distinct points, any k of which pose linearly independent conditions on forms of
degree d−1. Then we can slightly perturb any subset of k points in this intersection,
and thus g, so that the number of triples of points in the intersection that lie on
a line decreases. Thus, we can find a strict interlacer of f with the property that
no three intersection points with the zero set of g lie on a line, so that genericity
condition (G1) is satisfied. By the same argument, we can satisfy condition (G3).

For condition (G2), we need to move six points spanning three of the lines. Thus,
the same argument applies, provided that k ≥ 6, which means d > 3. The case d ≤ 2
being trivial, we are left with condition (G2) for cubics (d = 3). In this case, we
argue as follows. Suppose there is no interlacing conic satisfying condition (G2).
Since the condition is Zariski-open, this would imply that condition (G2) is violated
for any conic, strictly interlacing or not. But Lemma 1.3 and the subsequent
Remark 1.5 imply that there exists an irreducible conic g touching f in three real
points. Considering g as the limit of forms all of whose intersection points with f
are simple, the assumption will imply that the three tangents to V(g) at the contact
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points meet in one point. But since g is irreducible of degree 2, this is impossible.
This contradiction shows the claim. �

Under these genericity assumptions, we will construct a symmetric linear de-
terminantal representation M of `1 · · · `s · f such that S(M) is the hyperbolicity
region of f . Furthermore, the interlacer g divides a principal minor of M . The
main result of this section is as follows.

Theorem 2.2. Let f be an irreducible form of degree d that is hyperbolic with
respect to e ∈ P2(R), and assume that the plane curve V( f ) is smooth. Let g be an
interlacer of f with r real contact points, counted with multiplicities, that satisfies
the genericity assumptions (G1), (G2), and (G3). Then there exists a symmetric
linear matrix pencil M of size

m =
d2
+ d − 2r

2

which is positive definite at e and such that C( f, e)= S(M). We can choose M in
such a way that g divides the principal minor M1,1 of M and det(M)/ f is a product
of m− d linear forms. Furthermore, each (m− 1)× (m− 1) minor M1l , 1≤ l ≤m,
of M is also divisible by the product of these m− d linear forms.

The proof will consist of an algorithm that produces the desired representation
given f and g.

We begin with some preliminaries. Given any two real ternary forms f, g of
degrees d and d ′, respectively, without common components, we denote by ( f.g)
the intersection cycle of f and g, consisting of the intersection points of the
curves V( f ) and V(g) in P2(C). It is a 0-cycle, i.e., an element of the free
abelian group over the points of P2(C). Explicitly, ( f.g) =

∑k
i=1 mi pi , with

V( f )∩V(g)={p1, . . . , pk} and mi positive integers, the intersection multiplicities.
By Bézout’s theorem, we have

∑k
i=1 mi = dd ′. Intersection cycles are additive,

i.e., (( f1 · f2).g)= ( f1.g)+ ( f2.g). Furthermore, there is a natural partial order on
0-cycles, by comparing coefficients. We need the following classical result from
the theory of plane curves, which we restate in the form we require.

Theorem 2.3 (Max Noether). Let f, g, h be real ternary forms. Assume that f is
irreducible and does not divide gh, and that the curve V( f )⊂ P2(C) is smooth. If
(h. f )≥ (g. f ), then there exist real forms a and b such that

h = a f + bg.

Proof. See [Fulton 1989, §5.5, Proposition 1]. �

Now let f and g be given as in the statement of Theorem 2.2, with intersection
points p1, . . . , pr , q1, . . . , qs, q1, . . . , qs as before, and let `i be the linear form
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defining the line between qi and qi , for i=1, . . . , s, under the genericity assumptions
(G1)–(G3).

Put h= `1 · · · `s , and consider the polynomial f h of degree (d2
+d−2r)/2=m,

which is hyperbolic with respect to e. Furthermore, since each line `i meets C in the
nonreal point qi , none of the lines pass through C( f, e), so that C( f h, e)=C( f, e).

It therefore suffices to construct a symmetric linear determinantal representation
of f h which is definite at e. This can be carried out with a modification of Dixon’s
method, which we now describe in several steps.

(1) Let V be the linear space of real forms of degree d−1 vanishing at p1, . . . , pr .
We have dim(V ) ≥ (d + 1)d/2− r = d + s, and we pick linearly independent
forms a1, . . . , ad+s ∈ V , with a1 = g. We introduce names for all the occurring
intersection points:

(a1. f )= (g. f )= 2
r∑

j=1

p j +

s∑
j=1

(q j + q j ),

(ai . f )=
r∑

j=1

p j +

r+2s∑
j=1

pi j for i ≥ 2,

(`i . f )= qi + qi +

d−2∑
j=1

ri j ,

(`i .` j )= si j for i 6= j .

(2) Fix k, l ∈ {2, . . . , d + s} with k ≤ l. We wish to find a real form bkl of degree
d + s− 1 such that

(2.4) bkl g− hakal ∈ ( f )

by applying Max Noether’s theorem: we compute the intersection cycles

(hakal . f )= 2
r∑

j=1

p j +

s∑
j=1

(q j + q j )+

s∑
j=1

d−2∑
j ′=1

r j j ′ +

r+2s∑
j=1

pk j +

r+2s∑
j=1

pl j ,

(g. f )= 2
r∑

j=1

p j +

s∑
j=1

(q j + q j )

and thus find bkl with

(bkl . f )=
s∑

j=1

d−2∑
j ′=1

r j j ′ +

r+2s∑
j=1

pk j +

r+2s∑
j=1

pl j .
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(3) Assume that k = l. Then we will produce a real form q of degree s− 1 such
that ckk := bkk + q f satisfies

(ckk .`i )= (b+ q f.`i )=

d−2∑
j=1

ri j +
∑
j 6=i

si j + 2tki

for some real point tki ∈ `ki , for all i = 1, . . . , s. To this end, we let `0 be a linear
form which does not vanish on any of the si j . Let hi j = (`0 · · · `s)/(`i` j ) and
αi j = −bkk(si j )/(hi j (si j ) f (si j )) for 1 ≤ i < j ≤ s. Note that hi j vanishes on all
smn except for si j . After replacing bkk by bkk +

∑
i, j αi j hi j f , we can thus assume

that bkk vanishes on all the si j .
Next, we consider

qα =
s∑

j=1

α j
`1 · · · `s

` j

with α1, . . . , αs ∈ R. The form qα satisfies qα(si j )= 0 for all j 6= i for any choice
of the α j . If we now take q = q̃ + qα, we find

(bkk + q f.`i )=

d−2∑
j=1

ri j +
∑
j 6=i

si j + ui + vi

with ui and vi depending on α. Restricting to `i we therefore get bkk + q f =
P · (b̃+αi f̃ ) where P is a nonzero polynomial whose roots are the ri j and si j , and
where b̃ and f̃ are polynomials of degree two. After possibly replacing αi by its
negative, we can assume that f̃ is strictly positive on `i since it has no real zeros
on `i . Therefore, we can choose αi in such a way that b̃+αi f̃ has a double zero
tki and that makes the product of bkk +q f and f · ((`1 · · · `s)/`i )`i (e) nonnegative
on `i . The reasons for the latter requirement will become clear in a later step.

(4) Similarly, if k < l, we can find a real form q of degree s− 1 such that ckl :=

bkl + q f satisfies

(ckl .`i )= (bkl + q f.`i )=

d−2∑
j=1

ri j +
∑
j 6=i

si j + tki + t ′ki

for some real point t ′ki ∈ `i . In fact, we even have that t ′ki = tli . Indeed, this follows
from (2.4) and the following lemma applied to each `i .

Lemma 2.5. Let f ∈ R[t] be a polynomial of degree two without real zeros. Let
a, b, c ∈ R[t] be polynomials of degree at most two such that a and c both have a
double zero, ac is nonnegative, and b vanishes at the zero of a. If ac = b2 mod f ,
then b vanishes at the zero of c as well.
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Proof. Let a = α(t − β)2, c = α′(t − β ′)2, and b = γ (t − β)(t − β ′′) for some
α, α′, β, β ′, β ′′, γ ∈ R with αα′ ≥ 0. We have by assumption

αα′(t −β)2(t −β ′)2 = γ 2(t −β)2(t −β ′′)2 mod f.

Since R[t]/( f ) is isomorphic to the field of complex numbers, it follows that

αα′(t −β ′)2 = γ 2(t −β ′′)2 mod f.

If γ 6= 0, then αα′> 0 and t−β ′=±
√
γ 2/(αα′)·(t−β ′′) mod f . Finally, it follows

that αα′= γ and that β ′=β ′′ because 1, t ∈R[t]/( f ) are R-linearly independent. �

If k > l, we let ckl = clk .

(5) We now put c1k = ck1 = hak and consider the matrix N with entries ckl , for
k, l = 1, . . . , d + s. By construction, the (2× 2)-minors

c11ckl − c1kc1l = hgckl − h2akal = h(gckl − hakal)

are divisible by f h. Since the first row of N is not divisible by f , it follows that
all (2×2)-minors of N are divisible by f . We need to show that all (2×2)-minors
cklck′l ′−ckl ′ck′l are also divisible by h. Let u be such a minor, and fix i ∈ {1, . . . , s}.
Note that u has degree 2d+2s−2 and vanishes (with multiplicities) on the 2d+2s−2
points 2

∑d−2
j=1 ri j , 2

∑
j 6=i si j , and (tki + tk′i + tli + tl ′i ) on `i , since both products

cklck′l ′ and ckl ′ck′l vanish at those points. Since u is divisible by f , it also vanishes
at qi + qi . Thus, u vanishes identically on `i for each i , which implies h | u.

(6) In this step we show that c22 interlaces f h. This can be done by proving that
c22 ·De( f h) is nonnegative on the zero set of f h [Kummer et al. 2015, Theorem 2.1].
Here De( f h) denotes the derivative of f h in direction e. We have

De( f h)= h ·De f + f ·
s∑

i=1

`i (e)
`1 · · · `s

`i
.

We can rewrite this modulo f and find

c22 ·De( f h)= c22 · h ·De f =
ha2

2

g
· h ·De f =

De f
g

h2a2
2 mod f

by (2.4). This is nonnegative on the zero set of f because both De f and g are
interlacers. On the other hand, modulo `i we obtain

c22 ·De( f h)= c22 · `i (e) ·
`1 · · · `s

`i
mod `i ,

which is nonnegative on the line defined by `i by the choices made in step (3).

(7) Now we proceed as in the usual Dixon process, referring to [Plaumann and
Vinzant 2013] for details. Since all (2×2)-minors of the (d+s)×(d+s)-matrix N
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are divisible by f h, its maximal minors are divisible by ( f h)d+s−2 (see for example
[Plaumann and Vinzant 2013, Lemma 4.7]). The signed maximal minors of N have
degree (d + s− 1)2 and are the entries of the adjugate matrix N adj. It follows that

M = ( f h)2−d−s
· N adj

has linear entries. Using the familiar identity N N adj
= det(N ) · Id+s , we conclude

det(M)= γ · f h

for some constant γ ∈ R. It remains to show that γ 6= 0. Suppose γ = 0; then
det(M) is identically zero and hence so is det(N ). In particular, the matrix N (e) is
singular. Let λ ∈ Rd+s be a nontrivial vector in the kernel of N (e), and consider
the polynomial g̃ = λt Nλ. It follows from the linear independence of the entries of
the first row of N that g̃ is not the zero polynomial [Plaumann and Vinzant 2013,
Lemma 4.8]. Since c22 interlaces f h by (6), so does g̃ [Plaumann and Vinzant 2013,
Theorem 3.3, (1)=⇒ (2)], contradicting g̃(e)= 0. That M(e) is definite also follows
from the fact that c22 interlaces f h, by [Plaumann and Vinzant 2013, Theorem 3.3,
(2)=⇒ (3)]. Note that the result in [Plaumann and Vinzant 2013] is stated only
for irreducible curves. However, the same argument will apply here, since c22 is
coprime to f h (unlike c11, which is divisible by h). Indeed, we have chosen c22 in
step (3) in such a way that it does not vanish entirely on any of the lines li . Thus,
c22 is coprime to h. Moreover, c22 is congruent to b22 modulo ( f ). Thus, if f
divided c22, it would also divide a2 by (2.4), which is not the case.

This finishes the construction of the determinantal representation M of f h.
Finally, we note that the spectrahedron S(M) coincides with the hyperbolicity
region C( f, e) of f . Since det(M)= f · `1 · · · `s , this simply amounts to the fact
that the lines `1, . . . , `s do not pass through C( f, e). Indeed, each ` j has two
nonreal intersection points with C , while lines passing through the hyperbolicity
region will meet C in only real points. This completes the proof of Theorem 2.2.

Remark 2.6. Clearly, the corank of the constructed matrix pencil M is at least
one at each point where f h vanishes. It can have corank more than one only at
singularities of f h, i.e., in our case the points where two components intersect.
Since the adjugate N = Madj vanishes identically at the points ri j and si j and
because these are ordinary nodes, the corank of M at these points is exactly two. On
the other hand, we have constructed N in such a way that it is not entirely zero at the
points q j and q j . Thus, M has corank one at these points. This shows in particular
that M is not equivalent to a block diagonal matrix with more than one block.

Remark 2.7. The vector space V in step (1) of our construction can be found
without computing all the real contact points p1, . . . , pr . Indeed, by genericity
assumption (G1) the qi , qi are all simple intersection points. Therefore, the pi can
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be computed as the singular locus of the zero-dimensional scheme cut out by f
and g via the Jacobian criterion.

Next we observe that the genericity assumption in the theorem, as well as the
smoothness assumption on f , can be dropped for strict interlacers by applying a
limit argument.

Corollary 2.8. Let f be a real form of degree d that is hyperbolic with respect
to e ∈ P2(R), and let g be a strict interlacer of f . Then there exists a symmetric
linear matrix pencil M of size (d2

+ d)/2 which is definite at e and such that
C( f, e)= S(M). We can choose M in such a way that g divides a principal minor
of M and det(M)/ f is a product of (d2

− d)/2 linear forms.

Proof. Let m = (d2
+d)/2. We may assume that f (e)= 1 and consider only monic

representations f = det(M), i.e., with M(e) = Im . The determinant map taking
a monic symmetric real linear matrix pencil of size m ×m to its determinant is
proper; hence, its image is closed (see for example [Plaumann and Vinzant 2013,
Lemma 3.4]). If g is a strict interlacer of f , the pair ( f, g) is in the closure of the set
of pairs ( f̃ , g̃), where f̃ is hyperbolic with respect to e, V( f̃ ) is smooth, and g̃ is a
strict interlacer of f̃ satisfying the genericity assumptions (G1)–(G3). Therefore,
there exists a sequence ( f̃n, g̃n) converging to ( f, g) together with representations
f̃n = det(M̃n) with g̃n dividing the first principal minor of M̃ and det(M̃)/ f̃ a
product of m − d linear forms, by Theorem 2.2. The sequence M̃n then has a
subsequence converging to a matrix pencil M , which is the desired determinantal
representation of f . �

Remark 2.9. The procedure of approximating a given hyperbolic form together
with an interlacer as in the proof above may be difficult to carry out in practice. How-
ever, the generalized Dixon process can often be applied (with small modifications
if needed) even when the genericity assumptions fail.

As a further consequence, we can prove the following rationality result.

Theorem 2.10. Let f ∈ Q[x, y, z]d be a polynomial hyperbolic with respect to
e ∈R3 whose real projective zero set is smooth. Then its hyperbolicity cone is of the
form

{(x, y, z) ∈ R3
: x A+ y B+ zC � 0}

where A, B,C are symmetric matrices with rational entries of size at most
(d+1

2

)
.

Proof. Let m ∈Q[x, y, z]ed−1 be the vector of all monomials of degree d − 1, and
let e =

(d+1
2

)
. The equation

(2.11) (x A+ y B+ zC) ·m = f · v
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poses linear conditions on the entries of the symmetric e × e matrices A, B,C
and on the entries of v ∈ Re. These linear conditions are defined over the rational
numbers.

We now apply the above construction to f with a strict interlacer g satisfying
the genericity assumptions (G1), (G2), and (G3) whose existence is guaranteed by
Lemma 2.1. The vector space V from step (1) is just the vector space of all ternary
forms of degree d−1, and the ai form a basis of V . Thus, we can find an invertible
matrix S ∈ GLe(R) that maps the vector a = (a1, . . . , aN )

t to the vector m of all
monomials of degree d − 1. In step (7) of our construction we have seen that there
is a matrix N such that our symmetric determinantal representation M of f · h
satisfies M · N = γ · f h · Ie. Moreover, the first column of N is h · a. Thus, we
have that M · a = γ · f · δ1. Now we get the identity

S−t M S−1
·m = γ · f · S−tδ1.

This is a solution over R to (2.11) with e0 A + e1 B + e2C positive definite and
det(x A+ y B + zC) = h · f where h is a product of linear forms whose zero set
does not intersect the hyperbolicity cone of f .

Since the rational solutions to (2.11) are dense in the solution set over the real num-
bers, we can find rational matrices A, B,C satisfying (2.11) with e0 A+ e1 B+ e2C
being positive definite, as well. Then det(x A+ y B+ zC) is not the zero polynomial
and is divisible by f , since the pencil has a nonzero kernel vector whenever f
vanishes at (x, y, z) by (2.11). If A, B,C are chosen close enough to our original
solution, the other factor of det(x A+ y B+ zC) will not intersect the hyperbolicity
cone of f either. �

Remark 2.12. One might be tempted to generalize Theorem 2.10 to singular f
using the determinantal representation det(M) = h · f , where h is a product of
linear forms, obtained in Corollary 2.8 by a limit argument. In order to make the
arguments from the preceding proof work, the first column of Madj would have to be
of the form h ·a where a is a vector whose entries span a subspace of R[x, y, z]d−1

that is defined over the rationals. It is not clear whether this is always the case.

The next example shows that the smallest size of a rational spectrahedral repre-
sentation is in general larger than the degree of the curve.

Example 2.13. Consider the univariate polynomial p = x3
−6x−3 ∈Q[x]. It has

three distinct real zeros but is irreducible over the rational numbers by Eisenstein’s
criterion. The plane elliptic curve defined by y2

= p(x) is hyperbolic. Its hyper-
bolicity cone has the following spectrahedral representation with rational 4× 4



258 MARIO KUMMER, SIMONE NALDI AND DANIEL PLAUMANN

Figure 5. Hyperbolic cubic (in blue), an interlacer touching in 2
real points (in green) and the linear factor (dashed in blue).

matrices:(x, y, z) ∈ R3
:


3z y −x − z −3x + z
y −x + 2z 0 −y

−x − z 0 z x + 4z
−3x + z −y x + 4z −x + 18z

� 0

.
This was obtained by applying our construction to the interlacer y2

+3xz+ z2 with
two real contact points (Figure 5).

It also has a 3× 3 spectrahedral representation with real matrices by the Helton–
Vinnikov theorem. It does, however, not have such a representation with rational
3× 3 matrices. Indeed, any such representation would yield a contact interlacer
defined over the rational numbers by taking some principal 2× 2 minor. This
interlacer would give rise to a divisor D defined over the rational numbers with 2D=
6P∞ where P∞ is the point of the curve at infinity. Thus, D−3P∞ would be an even
theta characteristic defined over the rationals. On the other hand, the three even theta
characteristics of the curve are given by Pi−P∞ for P1, P2, P3 the three intersection
points of the curve with the x-axis. These are clearly not defined over the rationals.

3. Bézout matrices

Let f, g ∈ R[t] be two univariate polynomials having degrees deg( f ) = d and
deg(g)= d − 1. The Bézout matrix of f and g is defined as follows. We write

f (s)g(t)− f (t)g(s)
s− t

=

d∑
i, j=1

bi j si−1t j−1

for some real numbers bi j . Then the Bézout matrix is defined as B( f, g)= (bi j )i j .
Note that B( f, g) is always a real symmetric matrix. The Bézout matrix can be
used to detect the properties of being real-rooted and interlacing.
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Theorem 3.1 (see, e.g., [Kreı̆n and Naı̆mark 1981, §2.2]). Let f, g ∈ R[t] be
univariate polynomials with d = deg( f ) = deg(g)+ 1. Then the following are
equivalent:

(i) the Bézout matrix B( f, g) is positive semidefinite and

(ii) the polynomial g interlaces f .

Furthermore, the Bézout matrix has full rank if and only if f and g have no common
zero.

In the multivariate case we can proceed analogously. Let f, g ∈R[x0, . . . , xn] be
homogeneous polynomials of degrees d and d − 1, respectively. We assume that f
and g do not vanish at e = (1, 0, . . . , 0). Then, writing x = (x1, . . . , xn), we have

f (s, x)g(t, x)− f (t, x)g(s, x)
s− t

=

d∑
i, j=1

bi j si−1t j−1

for some homogeneous polynomials bi j ∈ R[x1, . . . , xn] of degree 2d − (i + j).
Again, we define the Bézout matrix as B( f, g)= (bi j )i j . It follows from the above
theorem that B( f, g) is positive definite for every 0 6= x ∈ Rn if and only if f is
hyperbolic with respect to e and g is a strict interlacer of f .

Remark 3.2. The Bézout matrix B( f, g) is closely related to the Wronskian poly-
nomial W( f, g) = De f · g − f ·Deg. Namely, if we let w = (1, x0, . . . , xd−1

0 )t ,
then W( f, g)= wt

·B( f, g) ·w. Indeed, by the definition of the Bézout matrix the
right-hand side equals

lim
s→t

(
f (s, x)g(t, x)− f (t, x)g(s, x)

s− t

)
=W( f, g).

We also note that, for square-free polynomials f , the polynomial g of degree
deg( f )− 1 is uniquely determined by W( f, g).

We can use the Wronskian polynomial W( f, g) to describe the set Int( f, e) of
interlacers of f in direction e, which is a convex cone. By [Kummer et al. 2015,
Corollary 2.7], Int( f, e) can be represented as a linear image of a section of the
cone of positive polynomials of degree 2d − 2, where d = deg f :

Int( f, e)= {g ∈ R[x, y, z]d−1 :W( f, g)≥ 0}.

Whenever W( f, g) is a sum of squares, the cone Int( f, e) can be sampled by solving
a linear matrix inequality as shown in the following example.

Example 3.3. The cubic f = x3
+ 2x2 y − xy2

− 2y3
− xz2 is hyperbolic with

respect to e = (1, 0, 0), and C( f, e) is the green region in Figure 6.
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Figure 6. A cubic hyperbolic curve (in blue) with three interlacers,
one defined over Q (in dashed black) and two over an extension of
degree 4 (in green). The dashed blue line is the extra factor in the
determinantal representation.

Let g = x2
+ g110xy+ g101xz+ g020 y2

+ g011 yz+ g002z2 be a generic quadratic
form such that g(e)= 1. The Wronskian of f, g in direction e is the ternary quartic

W( f, g)= 2g110x3 y+2g110x2 y2
+2g110 y4

+2g101x3z+2g101x2 yz+2g101 y3z

+3g020x2 y2
+4g020xy3

−g020 y4
−g020 y2z2

+3g011x2 yz+4g011xy2z

−g011 y3z−g011 yz3
+3g002x2z2

+4g002xyz2
−g002 y2z2

−g002z4

+ x4
+ x2 y2

+ x2z2
+4xy3.

Let G = (Gi j ) be a symmetric 6× 6 matrix of unknowns, and consider the linear
system W( f, g)= mt

·G ·m, where m is the vector of monomials of degree 2 in
x, y, z. We obtain that G (the Gram matrix of W( f, g) [Powers and Wörmann
1998]) has the form

G =


1 g110 g101 G14 g101−G23+

3
2 g011 G16

g110 H22 G23 2g020+2 −G34+2g011 −G35+2g002

g101 G23 1+3g002−2G16 G34 G35 0
G14 2g020+2 G34 2g110−g020 g101−

1
2 g011 G46

H15 2g011−G34 G35 g101−
1
2 g011 −2G46−g020−g002 −

1
2 g011

G16 2g002−G35 0 G46 −
1
2 g011 −g002

 ,

where

H15 = g101−G23+
3
2 g011 and H22 = 3g020+ 2g110+ 1− 2G14.

Let p1 = (1, 1, 0) and p2 = (1,−1, 0). Interlacers in Int( f, e) vanishing in p1

and p2 can be computed through the quantified linear matrix inequality

(3.4) there exists Gi j : g(p1)= g(p2)= 0, G � 0.
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Solving (3.4) symbolically using [Henrion et al. 2019] yields the parametrization
of an interlacer g = x2

− y2
+ t · z2, where t is any of the two real roots t1, t2 of

q(t)= 49t4
− 20t3

+ 22t2
+ 12t + 1 (the green curves in Figure 6).

Since the matrices G corresponding to the two interlacers have rank two, the
corresponding Wronskian polynomials are sums of two squares. Choosing a rational
t1 < r < t2 gives a rational interlacer, for instance g = x2

− y2
−

1
5 z2.

As in Example 2.13, our construction yields rational 4×4 determinantal represen-
tations of f times a rational linear polynomial that can be built from the interlacer
g = x2

− y2
−

1
5 z2:

24
125 f · (2x − y)= det


5x + 10y −x − 2y −4z 2z
−x − 2y x 0 0
−4z 0 4x + 2y −2x − 4y
2z 0 −2x − 4y 4x + 2y

 .
The matrix on the right-hand side of the previous equality gives a spectrahedral
representation of C( f, e) (the green region in Figure 6).

In the following, we show how our construction gives a sum-of-squares decompo-
sition, i.e., a representation B( f, g)= St S for some (not necessarily square) matrix S
with polynomial entries, for any curve f hyperbolic with respect to (1, 0, 0) and
any strict interlacer g.

We have seen that there is a basis g1, . . . , gN of R[x, y, z]d−1 with g1 = g and
real symmetric matrices A, B,C of size N such that A is positive definite and

(3.5) (x A+ y B+ zC) · v = δ1 · f

where v = (g1, . . . , gN )
t and δ1 ∈ RN is the first unit vector. Let us write v =

h0xd−1
+ · · ·+ hd−1 for some hi ∈ R[y, z]Ni , and let S be the matrix with columns

hd , . . . , h0. We claim that B( f, g) = St AS. Indeed, by [Kummer 2017, §3], we
have that B( f, g̃) = St AS for some g̃ ∈ R[x, y, z]d−1. Furthermore, taking the
derivative of (3.5) yields

A · v+ (x A+ y B+ zC) ·Dev = δ1 ·De f.

Now it follows by multiplying with vt from the left and another application of (3.5)
that

vt
· A · v+ f · δt

1 ·Dev = v
t
· A · v+ vt

· (x A+ y B+ zC) ·Dev = v
t
· δ1 ·De f.

Thus, by Remark 3.2, applied with v = Sw, we find

W( f, g̃)= wt B( f, g̃)w = wt St ASw = vt
· δ1De f − f · δt

1Dev =W( f, g),

which implies g = g̃, again by Remark 3.2, since f is square-free.



262 MARIO KUMMER, SIMONE NALDI AND DANIEL PLAUMANN

Remark 3.6. It has been shown in [Kummer 2017] that a sum-of-squares rep-
resentation B( f, g) = St AS of a Bézout matrix of a hyperbolic polynomial f
with a positive definite matrix A as above gives rise to a definite determinantal
representation of some multiple of f . Now we have seen that for every strict
interlacer of a hyperbolic curve there is a sum-of-squares decomposition of the
corresponding Bézout matrix which even gives rise to a spectrahedral representation
of the hyperbolicity cone.
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DEFORMATIONS OF LINEAR LIE BRACKETS

PIER PAOLO LA PASTINA AND LUCA VITAGLIANO

A VB-algebroid is a vector bundle object in the category of Lie algebroids.
We attach to every VB-algebroid a differential graded Lie algebra and we
show that it controls deformations of the VB-algebroid structure. Several
examples and applications are discussed. This is the first in a series of pa-
pers devoted to deformations of vector bundles and related structures over
differentiable stacks.

Introduction

Lie algebroids are ubiquitous in differential geometry: they encompass several
algebraic and geometric structures such as Lie algebras, tangent bundles, foliations,
Poisson brackets, Lie algebra actions on manifolds and so on, and they are the infin-
itesimal counterparts of Lie groupoids. The notion of Lie algebroid appeared for the
first time in the work of Pradines [1967] and has become more and more important in
the last fifty years. In particular, deformations of Lie algebroids have been discussed
by Crainic and Moerdijk [2008], while deformations of Lie groupoids have been
studied very recently by Crainic, Mestre and Struchiner [Crainic et al. 2015].

VB-algebroids are vector bundle objects in the category of Lie algebroids
[Mackenzie 1998a; Gracia-Saz and Mehta 2010]. They emerge naturally in the
study of Lie algebroids. For instance, the tangent and the cotangent bundles of a
Lie algebroid are VB-algebroids. Additionally, VB-algebroids are generalizations
of ordinary representations of Lie algebroids: specifically they are equivalent to
2-term representations up to homotopy of Lie algebroids, hence to (special kinds of)
representations of Lie algebroids on graded vector bundles [Arias Abad and Crainic
2012; Gracia-Saz and Mehta 2010]. Finally, VB-algebroids are the infinitesimal
counterparts of VB-groupoids. The latter serve as models for vector bundles over
certain singular spaces: differentiable stacks [Behrend and Xu 2011]. Examples of
differentiable stacks are orbifolds, leaf spaces of foliations and orbit spaces of Lie
group actions.

This is the first in a series of papers devoted to deformations of vector bundles
over differentiable stacks and related deformation problems. A first step in this
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direction has been taken by del Hoyo and Ortiz [2016], who have shown that the
VB-cohomology of a VB-groupoid is actually VB-Morita invariant, i.e., it is an
invariant of the associated vector bundle of differentiable stacks. Notice that several
important geometric structures, like Riemannian metrics, symplectic forms, complex
structures, etc., can be seen as vector bundle maps. In order to study deformations
of the former, it is then useful to study deformations of vector bundles themselves
first. In this paper, we begin this program working at the infinitesimal level, i.e.,
studying deformations of VB-algebroids. More precisely, we study deformations
of VB-algebroid structures on double vector bundles. In the second paper of the
series we will study deformations of VB-groupoids and their behavior under the
Lie functor [La Pastina and Vitagliano 2019].

The paper is divided into two main sections. The first one presents the general
theory, and the second one discusses examples and applications. In turn, the first
section is divided into four subsections. In Section 1.1 we recall from [Crainic
and Moerdijk 2008] the differential graded Lie algebra (DGLA) controlling de-
formations of Lie algebroids. We also discuss gauge equivalent deformations,
something that is missing in the original discussion by Crainic and Moerdijk. In
Section 1.2 we recall the basics of VB-algebroids, in particular their description
in terms of graded manifolds. In Section 1.3 we discuss deformations of VB-
algebroids. Let (W ⇒ E; A ⇒ M) be a VB-algebroid. In particular W ⇒ E
is a Lie algebroid, so it has an associated deformation DGLA. We show that
deformations of (W ⇒ E; A ⇒ M) are controlled by the sub-DGLA of linear
cochains, originally introduced in [Esposito et al. 2016], that we call the linear
deformation complex, and we provide various equivalent descriptions of this object.
The most efficient one involves the homogeneity structure of W → A, i.e., the
action of the monoid R≥0 on the total space by fiber-wise homotheties: linear
deformation cochains are precisely those that are invariant under the action by
(nonzero) homotheties. It is clear that this action induces graded subalgebras of the
algebras of functions, differential forms and multivectors on the total space of a
vector bundle and can be used to define linear objects in these algebras, thus giving
a unified framework to the original definitions in [Bursztyn and Cabrera 2012]
and [Iglesias-Ponte et al. 2012]. We recall this briefly in the Appendix. Another
important description of the linear deformation complex is in terms of graded
geometry. It is well known that Lie algebroids are equivalent to DG-manifolds
concentrated in degree 0 and 1 and VB-algebroids are equivalent to vector bundles
in the category of such graded manifolds [Mehta 2006; Vaintrob 1997; Voronov
2012]. Moreover, it is (implicitly) shown in [Crainic and Moerdijk 2008] that the
deformation DGLA of a Lie algebroid A ⇒ M is isomorphic to the DGLA of
vector fields on A[1], giving an elegant and manageable interpretation. A similar
interpretation becomes very useful in the case of VB-algebroids.
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In Section 1.4 we show that it is possible to “linearize” deformation cochains
of the top algebroid W ⇒ E of a VB-algebroid (W ⇒ E; A⇒ M), adapting a
technique from [Cabrera and Drummond 2017]. The main consequence is that
the linear deformation cohomology is embedded, as a graded Lie algebra, in the
deformation cohomology of the top algebroid.

In the second section of the paper we present examples. We discuss in detail
particularly simple instances of VB-algebroids coming from linear algebra, namely
VB-algebras and LA-vector spaces (Sections 2.1 and 2.2 respectively). VB-algebras
are equivalent to Lie algebra representations, and our discussion encompasses the
classical theory of Nijenhuis and Richardson [1966; 1967a]. In Section 2.3, we
discuss deformations of the tangent and the cotangent VB-algebroids of a Lie alge-
broid. Partial connections along foliations and Lie algebra actions on vector bundles
can be also encoded by VB-algebroids and we study the associated deformation
complexes in Sections 2.4 and 2.5 respectively. We also discuss VB-algebroids
of type 1 in the classification of Gracia-Saz and Mehta [2010]. Their deformation
cohomology is canonically isomorphic to that of the base algebroid (Section 2.6).

We usually indicate with a bullet • the presence of a degree in a graded vec-
tor space. If V • is a graded vector space, its shift by one V [1]• is defined by
V [1]k = V k+1. We assume the reader is familiar with graded manifolds and the
graded geometry description of Lie algebroids. Here, we only recall that a graded
manifold is concentrated in degree k, . . . , k + l, if the degrees of its coordinates
range from k to k+ l and a DG-manifold is a graded manifold equipped with an
homological vector field. For instance, if A⇒ M is a Lie algebroid, then shifting
by one the degree of the fibers of the vector bundle A→ M, we get a DG-manifold
A[1], concentrated in degree 0 and 1, whose homological vector field is the de
Rham differential dA of A. Explicitly, the algebra of smooth functions on A[1] is

C∞(A[1])=�•A := 0(∧
•A∗).

The correspondence A A[1] establishes an equivalence between the category
of Lie algebroids and the category of DG-manifolds concentrated in degree 0 and 1
[Vaintrob 1997]. We stress that the graded manifold A[1] is obtained from A by
assigning a degree 1 to the linear fiber coordinates. We warn the unfamiliar reader
that, despite the notation, the shift A  A[1] is (related but) different from the
degree shift for a graded vector space discussed at the beginning of this paragraph.
The reader can find more details in [Mehta 2006] which is also our main reference
for graded geometry.

1. Deformations of VB-algebroids

1.1. Deformations of Lie algebroids. A Lie algebroid A⇒ M over a manifold M
is a vector bundle A→ M with a Lie bracket [−,−] on its space of sections 0(A)
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and a bundle map ρ : A→ TM, satisfying the Leibniz rule:

[α, fβ] = ρ(α)( f )β + f [α, β]

for all α, β ∈ 0(A), f ∈ C∞(M).
We briefly recall the deformation theory of Lie algebroids, originally due to

Crainic and Moerdijk [2008], adding some small details about equivalence of
deformations which are missing in the original treatment. We begin with a vector
bundle E→ M. Let k ≥ 0.

Definition 1.1.1. A multiderivation of E with k entries (and C∞(M)-multilinear
symbol), also called a k-derivation, is a skew-symmetric, R-k-linear map

c : 0(E)× · · ·×0(E)→ 0(E)

such that there exists a bundle map σc : ∧
k−1 E→ TM, the symbol of c, satisfying

the following Leibniz rule:

c(α1, . . . , αk−1, f αk)= σc(α1, . . . , αk−1)( f )αk + f c(α1, . . . , αk),

for all α1, . . . , αk ∈ 0(E), f ∈ C∞(M).

1-derivations are simply derivations, 2-derivations are called biderivations. The
space of derivations of E is denoted by D(E) (or D(E,M) if we want to insist
on the fact that the base of the vector bundle E is M). The space of k-derivations
is denoted Dk(E) (or Dk(E,M)). In particular, D1(E) = D(E). We also put
D0(E) = 0(E) and D•(E) =

⊕
k≥0 D

k(E). Then D•(E)[1], endowed with the
Gerstenhaber bracket J−,−K, is a graded Lie algebra. We recall that, for c1∈D

k(E),
and c2 ∈D

l(E), the Gerstenhaber product of c1 and c2 is the R-(k+ l − 1)-linear
map c1 ◦ c2 given by

(c1 ◦ c2)(α1, . . . , αk+l−1)

=

∑
τ∈Sl,k−1

(−1)τ c1(c2(ατ(1), . . . , ατ(l)), ατ(l+1), . . . , ατ(l+k−1))

for all α1, . . . , αk+l−1 ∈ 0(E), and the Gerstenhaber bracket is defined by

Jc1, c2K= (−1)(k−1)(l−1)c1 ◦ c2− c2 ◦ c1.

The graded Lie algebra D•(E)[1] first appeared in [Grabowska et al. 2003].
The group of vector bundle automorphisms of E acts naturally on multiderivations

of E . If φ : E→ E is an automorphism covering the diffeomorphism φM : M→ M,
then φ acts on sections of E (by pull-back) via the following formula:

φ∗α := φ−1
◦α ◦φM , α ∈ 0(E),
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and it acts on higher degree multiderivations via:

(φ∗c)(α1, . . . , αk) := φ
∗(c(φ−1∗α1, . . . , φ

−1∗αk))

for all α1, . . . , αk ∈ 0(E), c ∈ Dk(E). Moreover, φ acts in the obvious way on
sections of the dual bundle E∗. It is clear that

(1-1)

φ∗( f α)= φ∗M f ·φ∗α,

φ∗(c(α1, . . . , αk))= (φ
∗c)(φ∗α1, . . . , φ

∗αk),

φ∗M〈ϕ, α〉 = 〈φ
∗ϕ, φ∗α〉,

for all α, α1, . . . , αk ∈ 0(E), f ∈ C∞(M), and ϕ ∈ 0(E∗), where 〈−,−〉 :
E∗⊗ E → R is the duality pairing. Finally, φ acts on the exterior algebras of E
and E∗, and it also acts on vector bundle maps ∧•E→ TM in the obvious way.

A direct computation shows that the action of vector bundle automorphisms on
multiderivations does also respect the Gerstenhaber bracket, i.e.,

(1-2) φ∗Jc1, c2K= Jφ∗c1, φ
∗c2K

for all c1, c2 ∈D
•(E). Additionally,

(1-3) φ∗σc = σφ∗c

for all c ∈D•(E).
If A ⇒ M is a Lie algebroid, the Lie bracket bA = [−,−] on sections of A

is a biderivation and it contains the full information about A⇒ M. Additionally,
JbA, bAK= 0 as a consequence of the Jacobi identity. We summarize this remark
with the following:

Proposition 1.1.2. Lie algebroid structures on A→ M are in one-to-one corre-
spondence with Maurer–Cartan elements in the graded Lie algebra D•(A)[1], i.e.,
degree 1 elements b such that Jb, bK= 0.

Now, fix a Lie algebroid structure A⇒M on the vector bundle A→M, and let bA

be the Lie bracket on sections of A. Equipped with the Gerstenhaber bracket and
the interior derivation δ := JbA,−K, D•(A)[1] is a differential graded Lie algebra
(DGLA), denoted C •def(A) (or C •def(A,M) if we want to insist on the base manifold
being M) and called the deformation complex of A. The cohomology of C •def(A) is
denoted H •

def(A) (or H •

def(A,M)), and called the deformation cohomology of A.

Remark 1.1.3. Notice that we adopt a different convention from that of [Crainic and
Moerdijk 2008], where Ck

def(A) is the space of k-derivations. With that convention,
however, C •def(A) is a DGLA only up to a shift.
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The differential δ : C •def(A)→ C •+1
def (A) is given, on k-derivations, by

(1-4) δc(α1, . . . ,αk+1)=
∑

i

(−1)i+1
[αi ,c(α1, . . . , α̂i , . . . ,αk+1)]

+

∑
i< j

(−1)i+ j c([αi ,α j ],α1, . . . , α̂i , . . . , α̂ j , . . . ,αk+1).

Definition 1.1.4. A deformation of bA is any (other) Lie algebroid structure on the
vector bundle A→ M.

It is clear that b = bA+ c satisfies Jb, bK= 0 if and only if

δc+ 1
2Jc, cK= 0,

i.e., c is a (degree 1) solution of the Maurer–Cartan equation in the DGLA C •def(A).
Hence Proposition 1.1.2 can be rephrased saying that deformations of bA are in
one-to-one correspondence with Maurer–Cartan elements of C •def(A).

Now, let b0, b1 be deformations of bA. We say that b0 and b1 are equivalent
if there exists a fiber-wise linear isotopy taking b0 to b1, i.e., there is a smooth
path of vector bundle automorphisms φt : A→ A, t ∈ [0, 1], such that φ0 = idA

and φ∗1 b1 = b0. On the other hand, two Maurer–Cartan elements c0, c1 are gauge-
equivalent if they are interpolated by a smooth path of 1-cochains ct , and ct is a
solution of the following ODE:

(1-5) dct
dt
= δ1t + Jct ,1tK

for some smooth path of 0-cochains (i.e., derivations) 1t , t ∈ [0, 1].
Notice that (1-5) is equivalent to

(1-6) dbt
dt
= Jbt ,1tK,

where bt = bA+ ct .

Proposition 1.1.5. Let b0 = bA+ c0, b1 = bA+ c1 be deformations of bA. If b0, b1

are equivalent, then c0, c1 are gauge-equivalent. If M is compact, the converse is
also true.

Proof. Suppose that b0 and b1 are equivalent deformations, and let φt : A→ A be a
fiber-wise linear isotopy taking b0 to b1. Set bt = φ

−1
t
∗b0 = bA+ ct , and let 1t be

the infinitesimal generator of φt , i.e.,

(1-7) dφ∗t
dt
= φ∗t ◦1t .

Notice that

Jbt , btK= Jφ−1
t
∗b0, φ

−1
t
∗b0K= φ−1

t
∗Jb0, b0K= 0,
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so bt is a deformation of bA for all t . Moreover, φ∗t (bt(α, β))= b0(φ
∗
t α, φ

∗
t β) for

all α, β ∈ 0(A). Differentiating with respect to t , we obtain:

φ∗t

(
1t(bt(α, β))+

dbt

dt
(α, β)

)
= b0(φ

∗

t (1t(α)), φ
∗

t β)+ b0(φ
∗

t α, φ
∗

t (1t(β)))

= φ∗t (bt(1t(α), β)+ bt(α,1t(β))),

so
dbt

dt
(α, β)= bt(1t(α), β)+ bt(α,1t(β))−1t(bt(α, β)),

i.e., (1-6), hence (1-5), holds, as desired.
Conversely, suppose that M is compact and there exist a family of derivations 1t

and a family of 1-cochains bt such that (1-5) or, equivalently, (1-6) holds. Let X t be
the symbol of 1t . From compactness, X t is a complete time-dependent vector field
on M, i.e., it generates a complete flow (φM)t . The time dependent derivation 1t

generates a flow by vector bundle automorphisms φt : A→ A, covering the complete
flow (φM)t (and implicitly defined by the ODE (1-7)). By linearity, φt is a complete
flow itself. We want to show that

(1-8) φ∗t (bt(α, β))= b0(φ
∗

t α, φ
∗

t β), α, β ∈ 0(A).

For t = 0 this is obviously true and the derivatives of both sides are the same
because of (1-6). So we have (1-8), and, by taking t = 1, we conclude that φt is a
(fiber-wise linear) isotopy taking b0 to b1. �

Remark 1.1.6. An infinitesimal deformation of a Lie algebroid A ⇒ M is an
element c ∈ C1

def(A) such that δc = 0, i.e., a 1-cocycle in C •def(A). As usual in
deformation theory, this definition is motivated by the fact that, if ct is a smooth
path of Maurer–Cartan elements starting at 0, then (dct/dt)|t=0 is an infinites-
imal deformation of A. More generally, the cocycle condition δc = 0 is just
the linearization at c = 0 of the Maurer–Cartan equation. Hence, 1-cocycles in
C •def(A) can be seen as the (formal) tangent vectors to the variety of Maurer–Cartan
elements. Similarly, 1-coboundaries can be seen as tangent vectors to the gauge
orbit through 0. We conclude that H 1

def(A) is the formal tangent space to the moduli
space of deformations under gauge equivalence.

Remark 1.1.7. The deformation complex of a Lie algebroid has an efficient de-
scription in terms of graded geometry. In fact, graded geometry becomes very
useful when dealing with several issues related to VB-algebroids.

Let A⇒ M be a Lie algebroid and let (�•A = 0(∧
•A∗), dA) be its de Rham

complex (sometimes we will use�•A,M for A-forms, if we want to insist on M being
the base manifold). Cochains in �•A can be seen as functions on the DG-manifold
A[1] obtained from A shifting by one the fiber degree. The Q-structure on A[1] is
simply dA. Additionally, there is a canonical isomorphism C •def(A)∼= X(A[1])• of
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DGLAs, where X(A[1])• is the space of vector fields on the DG-manifold A[1] (in
other words, X(A[1])• is the space of (graded) derivations of �•A). With the graded
commutator and the adjoint operator [dA,−], X(A[1])• is indeed a DGLA. The
isomorphism C •def(A)→ X(A[1])•, c 7→ δc can be described explicitly as follows.
Let c ∈ Ck(A) and let σc be the symbol of c. Then δc ∈ X(A[1])• is the degree k
vector field that takes ω ∈�p

A, to δcω ∈�
k+p
A with

(1-9) δcω(α1, . . . ,αk+p)=
∑
τ∈Sk,p

(−1)τσc(ατ(1), . . . ,ατ(k))ω(ατ(k+1), . . . ,ατ(k+p))

−

∑
τ∈Sk+1,p−1

(−1)τω(c(ατ(1), . . . ,ατ(k+1)),ατ(k+2), . . . ,ατ(k+p)),

where Sl,m denotes (l,m)-unshuffles. Notice that c can be reconstructed from δc by
using formula (1-9) for p = 0, 1:

(1-10) δc f (α1, . . . , αk)= σc(α1, . . . , αk) f,

and

(1-11) δcϕ(α1, . . . , αk+1)=∑
i

(−1)k−iσc(α1, . . . , α̂i , . . . , αk+1)〈ϕ, αi 〉+ 〈ϕ, c(α1, . . . , αk+1)〉,

where f ∈ C∞(M), ϕ ∈�1
A = 0(A

∗), and α1, . . . , αk+1 ∈ 0(A).

1.2. Double vector bundles and VB-algebroids. In this section we recall the basic
definitions and properties of double vector bundles and VB-algebroids that will
be useful later. For all the necessary details about the homogeneity structure of
a vector bundle, including our notations, we refer to the Appendix, which we
recommend reading before continuing with the bulk of the paper. We only recall
here that, given a vector bundle E → M, the homogeneity structure of E is the
action h : R≥0 × E → E , (λ, e) 7→ hλe := λ · e, of nonnegative reals on E by
homotheties (fiber-wise multiplication by scalars).

Definition 1.2.1. A double vector bundle (DVB for short) is a vector bundle in the
category of vector bundles. More precisely, it is a commutative square

(1-12)
W

qW
��

p̃
// E

q
��

A
p
// M

where all four sides are vector bundles, the projection qW :W → A, the addition
+A :W ×A W →W, the multiplication λ ·A :W →W by any scalar λ ∈ R in the
fibers of W→ A and the zero section 0̃A

: A→W are vector bundle maps covering
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the projection q : E→ M, the addition + : E ×M E→ E , the scalar multiplication
λ · : E → E and the zero section 0E

: M→ E , respectively. The projection, the
addition, the scalar multiplication and the zero section of a vector bundle will be
called the structure maps. DVB (1-12) will be also denoted by (W → E; A→ M).

Notice that W is a vector bundle over E and over A, so it carries two homogeneity
structures. However, we will mainly use the latter and denote it simply by h. For
many more details on DVBs we refer to [Mackenzie 2005] and [Gracia-Saz and
Mehta 2010].

Let (W→ E; A→M) be a DVB. The manifold W will be called the total space.
Consider the submanifold

C := ker(W → E)∩ ker(W → A)⊂W.

In other words, elements of C are those projecting simultaneously on the (images
of the) zero sections of A and E (which are both diffeomorphic to M). The fiber-
wise operations of the vector bundles W → E and W → A coincide on C (see
[Mackenzie 2005]), so they define a (unique) vector bundle structure on C over M.
The vector bundle C→ M is called the core of (W → E; A→ M).

In the following, we denote by0(W, E) the space of sections of W→ E . Sections
of C→M can be naturally embedded into 0(W, E), via the map 0(C)→0(W, E),
χ 7→ χ , defined by:

(1-13) χ e = 0̃E
e +A χq(e), e ∈ E .

The image of the inclusion χ 7→ χ is, by definition, the space 0core(W, E) of core
sections of W → E .

There is another relevant class of sections of W → E : linear sections. We say
that a section of W→ E is a linear section if it is a vector bundle map covering some
section of A→ M. The space of linear sections of W → E is denoted 0lin(W, E).
We will usually denote by α̃, β̃, . . . the sections in 0lin(W, E). The C∞(E)-module
0(W, E) is spanned by 0core(W, E) and 0lin(W, E).

Linear and core sections of W → E can be efficiently characterized using the
homogeneity structure h. Namely, the following lemma holds.

Lemma 1.2.2. A section w ∈ 0(W, E) is

(1) linear if and only if h∗λw = w for every λ > 0;

(2) core if and only if h∗λw = λ
−1w for every λ > 0.

More generally, we say that a section w of W → E is of weight q if h∗λw = λ
qw

for every λ > 0. Using this terminology, linear sections are precisely sections of
weight 0 and core sections are sections of weight −1. It is easy to check that there
are no nonzero sections of W → E of weight less than −1.
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Remark 1.2.3. Let (W→ E; A→M) be a DVB, let C be its core and let W ∗A→ A
be the dual vector bundle of W → A. Then

W ∗A

��

// C∗

��

A // M

is a DVB, called the dual of W over A, whose core is E∗. We refer to [Mackenzie
2005] for the structure maps of the dual DVB.

Example 1.2.4. A distinguished example of a DVB is the tangent double of a
vector bundle. If E→ M is a vector bundle, then

TE

��

// E

��

TM // M

is a DVB with core canonically isomorphic to E . It is easy to see that linear sections
of TE → E are precisely linear vector fields (see the Appendix). Moreover, the
inclusion 0(E)→ 0core(TE→ E) is the classical vertical lift, identifying a section
of E with a fiber-wise constant vertical vector field on E itself. We will also call
core vector fields the core sections of TE→ E .

The dual of TE over E is

T ∗E

��

// E

��

E∗ // M

We now pass to VB-algebroids.

Definition 1.2.5. A VB-algebroid is a DVB as in (1-12), equipped with a Lie
algebroid structure W ⇒ E such that the anchor ρW :W → TE is a vector bundle
map covering a vector bundle map ρA : A→ TM and the Lie bracket [−,−]W on
sections of W → E satisfies

(1-14)

[0lin(W, E), 0lin(W, E)]W ⊂ 0lin(W, E),

[0lin(W, E), 0core(W, E)]W ⊂ 0core(W, E),

[0core(W, E), 0core(W, E)]W = 0.

Notice that, using the grading defined above, property (1-14) is equivalent to
asking that the Lie bracket on 0(W, E) is of weight 0. This can be made very precise
using the action of vector bundle automorphisms on multiderivations (see below).
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Remark 1.2.6. Let (W ⇒ E; A⇒ M) be a VB-algebroid with core C , and let
(W ∗→ C∗; A→ M) be its dual DVB. One can show that there is a canonical VB-
algebroid structure (W ∗A⇒C∗; A⇒ M) on the latter, called the dual VB-algebroid.
The dual VB-algebroid will appear only marginally in the sequel, so we do not dis-
cuss the details of this construction. For more information, see [Mackenzie 1998b].

Graded geometric description. There is a very useful description of VB-algebroids
in terms of graded geometry. We begin discussing linear vector fields on (the total
space of) a vector bundle E→M of graded manifolds. First we fix our notation. As
already mentioned, a section φ of the dual bundle E∗→M determines a fiber-wise
linear function `φ on E . As in the nongraded case, a section ε of E itself determines
a fiber-wise constant vector field ε↑ ∈ X(E)•, its vertical lift, uniquely defined by

ε↑(`φ) := (−)
|ε||φ|
〈φ, ε〉.

We denote by Xcore(E)• the space of core vector fields, i.e., fiber-wise constant
vertical vector fields on E . The correspondence ε 7→ ε↑ establishes a graded
C∞(M)•-module isomorphism 0(E)• ∼= Xcore(E)•. Now let X ∈ X(E)•. Then X is
linear if it preserves fiber-wise linear functions. Equivalently, X is linear if the
(graded) commutator [X,−] preserves fiber-wise constant vector fields. We denote
by Xlin(E)• the space of linear vector fields on E . Notice that linear vector fields
also preserve fiber-wise constant functions. Finally, similarly as in the nongraded
case, denote by D(E)• the space of graded derivations of E . There is a canonical iso-
morphism of graded Lie algebras and graded C∞(M)•-modules Xlin(E)•→D(E)•,
X 7→ DX , implicitly defined by (DXε)

↑
= [X, ε↑], for all ε ∈ 0(E)•.

Now, we have already recalled that Lie algebroids are equivalent to DG-manifolds
concentrated in degree 0 and 1. For VB-algebroids we have an analogous result
[Voronov 2012] that we now briefly explain. Recall that a DG-vector bundle is a vec-
tor bundle of graded manifolds E→M such that E and M are both DG-manifolds,
with homological vector fields QE and QM, respectively, and, additionally, QE
is linear, and projects onto QM. Equivalently E → M is a vector bundle of
graded manifolds, M is a DG-manifold, with homological vector field QM, E is
equipped with a homological derivation DE , i.e., a degree 1 derivation such that
[DE , DE ] = 0, and, additionally, the symbol of DE is precisely QM. For more
details about DG-vector bundles see, e.g., [Vitagliano 2016].

Finally, let (W→E; A→M) be a DVB. If we shift the degree in the fibers of both
W→ E and A→M (and use the functoriality of the shift) we get a vector bundle of
graded manifolds, denoted W [1]E→ A[1]. If (W⇒ E; A⇒M) is a VB-algebroid,
then W [1]E → A[1] is a DG-vector bundle concentrated in degree 0 and 1.

Theorem 1.2.7 (see [Voronov 2012]). The correspondence (W ⇒ E; A⇒ M) 
(W [1]E→ A[1]) establishes an equivalence between the category of VB-algebroids
and the category of DG-vector bundles concentrated in degree 0 and 1.
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1.3. The linear deformation complex of a VB-algebroid. In this subsection we
introduce the main object of this paper: the linear deformation complex of a VB-
algebroid, first introduced in [Esposito et al. 2016] (for different purposes). Actually,
the whole discussion in Section 1.1 extends to VB-algebroids. We skip most of the
proofs; they can be carried out in a very similar way as for plain Lie algebroids.

We begin with a DVB (W → E; A→ M). Denote by D•(W, E) the space of
multiderivations of the vector bundle W → E . As in Section 1.2, denote by h the
homogeneity structure of W → A. The action of h induces a grading on the space
of multiderivations.

Definition 1.3.1. A multiderivation c ∈D•(W, E) is homogeneous of weight q (or,
simply, of weight q) if h∗λc = λqc for every λ > 0. A multiderivation is linear if it
is of weight 0, and it is core if it is of weight −1.

We denote by D•q(W, E) the space of multiderivations of weight q, and by
D•lin(W, E) and D•core(W, E), respectively, the spaces of linear and core multi-
derivations.

As 0core(W, E) and 0lin(W, E) generate 0(W, E), a multiderivation is com-
pletely characterized by its action, and the action of its symbol, on linear and core
sections. From (1-1) and the fact that there are no nonzero sections of weight
less than −1, it then follows there are no nonzero multiderivations of weight less
than −1. Moreover:

Proposition 1.3.2. Let c be a k-derivation of W → E. Then c is linear if and only
if all the following conditions are satisfied:

(1) c(α̃1, . . . , α̃k) is a linear section,

(2) c(α̃1, . . . , α̃k−1, χ1) is a core section,

(3) c(α̃1, . . . , α̃k−i , χ1, . . . , χ i )= 0,

(4) σc(α̃1, . . . , α̃k−1) is a linear vector field,

(5) σc(α̃1, . . . , α̃k−2, χ1) is a core vector field,

(6) σc(α̃1, . . . , α̃k−i−1, χ1, . . . , χ i )= 0

for all linear sections α̃1, . . . , α̃k , all core sections χ1, . . . , χ i of W → E , and
all i ≥ 2.

Proof. This follows directly from Lemma 1.2.2; see also [Esposito et al. 2016]. �

In particular, a linear k-derivation is uniquely determined by its action on k linear
sections and on k − 1 linear sections and a core section, and by the action of its
symbol on k− 1 linear sections and on k− 2 linear sections and a core section; see
also [Esposito et al. 2016, Theorem 3.34].

It immediately follows from (1-2) that D•lin(W, E)[1] is a graded Lie subalgebra
of D•(W, E)[1]. The following proposition is then straightforward.
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Proposition 1.3.3. VB-algebroid structures on the DVB (W → E; A→ M) are in
one-to-one correspondence with Maurer–Cartan elements in D•lin(W, E)[1].

Fix a VB-algebroid structure (W⇒ E; A⇒M) on the DVB (W→ E; A→M),
and denote by bW the Lie bracket on sections of W → E . We also denote by
C •def(W, E) the deformation complex of the top algebroid W⇒ E . It is clear that bW

is a linear biderivation of W → E , i.e., bW ∈D
2
lin(W, E). Hence D•lin(W, E)[1] is

a sub-DGLA of C •def(W, E), denoted C •def,lin(W ), and called the linear deformation
complex of W ⇒ E . Its cohomology is denoted H •

def,lin(W ) and called the linear
deformation cohomology of (W ⇒ E; A⇒ M).

Definition 1.3.4. A linear deformation of bW (or simply a deformation, if this does
not lead to confusion) is a VB-algebroid structure on the DVB (W → E; A→ M).

Exactly as for Lie algebroids, Proposition 1.3.3 is equivalent to saying that
deformations of bW are in one-to-one correspondence with Maurer–Cartan elements
of C •def,lin(W ).

Let b0, b1 be linear deformations of bW . We say that b0 and b1 are equivalent if
there exists a DVB isotopy taking b0 to b1, i.e., a smooth path of DVB automor-
phisms φt : W → W, t ∈ [0, 1] such that φ0 = idW and φ∗1 b1 = b0. On the other
hand, two Maurer–Cartan elements c0, c1 in C •def,lin(W ) are gauge-equivalent if
they are interpolated by a smooth path of 1-cochains ct ∈ C •def,lin(W ), and ct is a
solution of the ODE

dct

dt
= δ1t + Jct ,1tK

for some smooth path of 0-cochains 1t ∈ C •def,lin(W ), t ∈ [0, 1]. Equivalently,

dbt

dt
= Jbt ,1tK,

where bt = bW + ct .

Proposition 1.3.5. Deformations of the VB-algebroid (W ⇒ E; A ⇒ M) are
controlled by the DGLA C •def,lin(W ) in the following sense. Let b0 = bW + c0, b1 =

bW + c1 be linear deformations of bW . If b0, b1 are equivalent, then c0, c1 are
gauge-equivalent. If M is compact, the converse is also true.

Proof. The proof is similar to that of Proposition 1.1.5, with linear derivations
replacing derivations and DVB automorphisms replacing vector bundle automor-
phisms. We only need to be careful when using the compactness hypothesis.
Recall from [Esposito et al. 2016] that a linear derivation generates a flow by DVB
automorphisms. In particular, if1t is a time-dependent linear derivation of W→ E ,
then its symbol X t = σ(1t) ∈ X(E) is a linear vector field, hence it generates a
flow by vector bundle automorphisms of E . From the compactness of M, it follows
that X t , hence the flow of 1t , is complete. �
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Remark 1.3.6. An infinitesimal deformation of (W ⇒ E; A⇒ M) is an element
c∈C1

def,lin(W ) such that δc= 0, i.e., c is a 1-cocycle in C •def,lin(W ). If ct is a smooth
path of Maurer–Cartan elements starting at 0, then (dct/dt)|t=0 is an infinitesimal
deformation of (W ⇒ E; A⇒ M). Similarly as for Lie algebroids, H 1

def,lin(W ) is
the formal tangent space to the moduli space of linear deformations under gauge
equivalence. It also follows from standard deformation theory arguments that
H 2

def,lin(W ) contains obstructions to the extension of an infinitesimal linear defor-
mation to a formal one. Finally, we interpret 0-degree deformation cohomologies.
It easily follows from the definition that 0-cocycles in C •def,lin(A) are infinitesimal
multiplicative (IM) derivations of (W ⇒ E; A⇒ M) i.e., derivations of W → E
generating a flow by VB-algebroid automorphisms [Esposito et al. 2016]. Among
those, 1-cocycles are inner IM derivations, i.e., IM derivations of the form [α̃,−] for
some linear section α̃ of W → E . So H 0

def,lin(W ) consists of outer IM derivations.
See [Esposito et al. 2016] for more details.

Alternative descriptions. Let (W⇒ E; A⇒M) be a VB-algebroid. Then W⇒ E is
a Lie algebroid. As in the graded geometric description section we denote by W [1]E
the DG-manifold obtained from W shifting by the degree in the fibers of W→ E . So
C •def(W )∼=X(W [1]E)•. Moreover, it is easy to see from (1-9) and Proposition 1.3.2
that a deformation cochain c ∈ C •def(W ) is linear if and only if the corresponding
vector field δc ∈X(W [1]E)• is a linear vector field with respect to the vector bundle
structure W [1]E → A[1]. So there is a canonical isomorphism of DGLAs

C •def,lin(W )∼= Xlin(W [1]E)•.

As linear vector fields are equivalent to derivations, we also get

(1-15) C •def,lin(W )∼=D(W [1]E , A[1])•

as DGLAs.

Deformations of A from linear deformations of W . There is a natural surjection
C •def,lin(W )→ C •def(A) which is easily described in the graded geometric picture:
it is just the projection

Xlin(W [1]E)•→ X(A[1])•

of linear vector fields on the base. Equivalently, it is the symbol map

σ :D(W [1]E , A[1])•→ X(A[1])•.

In particular, we get a short exact sequence of DGLAs

(1-16) 0→ End(W [1]E)•→ Xlin(W [1]E)•→ X(A[1])•→ 0,

where End(W [1]E)• is the space of (graded) endomorphisms of W [1]E → A[1].
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Equivalently, there is a short exact sequence

(1-17) 0→ End(W [1]E)•→ C •def,lin(W )→ C •def(A)→ 0.

Note that the sub-DGLA End(W [1]E)• controls deformations of (W⇒ E; A⇒M)
that fix A⇒ M , i.e., deformations of W that fix bA (the Lie algebroid structure
on A) identify with Maurer–Cartan elements in End(W [1]E)•. Finally, we obtain a
long exact sequence

(1-18) · · ·→H k(End(W [1]E))→H k
def,lin(W )→H k

def(A)→H k+1(End(W [1]E))→···

connecting the linear deformation cohomology of W with the deformation coho-
mology of A.

Remark 1.3.7. A description of the subcomplex End(W [1]E)• ⊂ Xlin(W [1]E)• is
not needed in terms of more classical data in this paper. However, we stress that
this description exists in analogy with [Esposito et al. 2016, Theorem 3.34].

Deformations of the dual VB-algebroid. We conclude this section by noting that
the linear deformation complex of a VB-algebroid is canonically isomorphic to
that of its dual. Let (W ⇒ E; A⇒ M) be a VB-algebroid with core C , and let
(W ∗A⇒ C∗; A⇒ M) be the dual VB-algebroid.

Theorem 1.3.8. There is a canonical isomorphism of DGLAs

C •def,lin(W )∼= C •def,lin(W
∗

A).

Proof. There is an easy proof exploiting graded geometry. We only sketch it, and
leave the straightforward details to the reader. So, first of all, it is easy to see, e.g.,
in local coordinates, that the vector bundles of graded manifolds W ∗A[1]C∗→ A[1]
and W [1]∗E → A[1] are actually isomorphic up to a shift in the degree of the fiber
coordinates. Additionally, derivations of a vector bundle of graded manifolds are
canonically isomorphic to that of

(1) its dual,

(2) any vector bundle obtained from it by a shift in the degree of the fibers.

We conclude that

C •def,lin(W )∼=D(W [1]E , A[1])• ∼=D(W [1]∗E , A[1])•

∼=D(W ∗[1]C∗, A[1])• ∼= C •def,lin(W
∗

A). �

1.4. From deformation cohomology to linear deformation cohomology. Let
(W⇒ E; A⇒M) be a VB-algebroid. We have shown that deformations of the VB-
algebroid structure are controlled by a sub-DGLA C •def,lin(W ) of the deformation
complex C •def(W ) of the top Lie algebroid W⇒ E . In the next section, we show that
the inclusion C •def,lin(W ) ↪→C •def(W ) induces an inclusion H •

def,lin(W ) ↪→ H •

def(W )
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in cohomology. In particular, given an infinitesimal linear deformation that is trivial
as infinitesimal deformation of the Lie algebroid W ⇒ A, i.e., it is connected to
the zero deformation by an infinitesimal isotopy of vector bundle maps, then it is
also trivial as infinitesimal linear deformation, i.e., it is also connected to the zero
deformation by an infinitesimal isotopy of DVB maps.

The key idea is adapting to the present setting the “homogenization trick” of
[Cabrera and Drummond 2017]. Let E → M be a vector bundle. In their paper,
Cabrera and Drummond consider the following natural projections from C∞(E) to
its C∞(M)-submodules C∞q (E) (of weight q homogeneous functions):

(1-19) prq : C
∞(E)→ C∞q (E), f 7→

1
q!

dq

dλq |λ=0h∗λ f.

Notice that prq( f ) is just the degree q part of the (fiber-wise) Taylor polynomial
of f . In the following, we adopt the notations from the Appendix and denote

(1-20)
core := pr0 : C

∞(E)→ C∞core(E), f 7→ fcore = h∗0 f,

lin := pr1 : C
∞(E)→ C∞lin(E), f 7→ flin =

d
dλ
|λ=0h∗λ f,

where C∞core(E) := C∞0 (E), and C∞lin(E) := C∞1 (M).
Formula (1-19) does not apply directly to multiderivations. To see why, let

(W → E, A→ M) be a DVB, let h be the homogeneity structure of W → A, and
let c ∈D•(W, E). Then the curve λ 7→ h∗λc is not defined in 0. Actually, λ= 0 is a
“pole of order 1” for h∗λc. More precisely, we have the following:

Proposition 1.4.1. The limit
lim
λ→0

λ · h∗λc

exists and defines a core multiderivation ccore.

Proof. The existence of the limit can be shown in coordinates. Also, for every µ 6= 0,

h∗µccore = h∗µ( lim
λ→0

λ · h∗λc)= lim
λ→0

λ · h∗µh∗λc = lim
λ→0

µ−1(λµ · h∗λµc)= µ−1ccore. �

The next proposition can be proved in the same way.

Proposition 1.4.2. The limit

lim
λ→0

(h∗λc− λ−1
· ccore)

exists and defines a linear multiderivation clin.

So far we have defined maps

(1-21)
core :D•(W, E)→D•core(W, E), c 7→ lim

λ→0
λ · h∗λc

lin :D•(W, E)→D•lin(W, E), c 7→ lim
λ→0

(h∗λc− λ−1
· ccore)

that split the inclusions in D•(W, E). We call the latter the linearization map.
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Remark 1.4.3. Once we have removed the singularity at 0, we can proceed as
in (1-19) and define the projections on homogeneous multiderivation of positive
weights q > 0:

prq :D
•(W, E)→D•q(W, E), c 7→

1
q!

dq

dλq |λ=0(h∗λc− λ−1
· ccore).

Now, let (W⇒ E, A⇒M) be a VB-algebroid. Then we have a linearization map

lin : C •def(W )→ C •def,lin(W ).

Theorem 1.4.4 (linearization of deformation cochains). The linearization map is a
cochain map splitting the inclusion C •def,lin(W ) ↪→C •def(W ). In particular there is a
direct sum decomposition

C •def(W )∼= C •def,lin(W )⊕ ker(lin)•.

of cochain complexes. Hence, the inclusion of linear deformation cochains into
deformation cochains induces an injection

(1-22) H •

def,lin(W ) ↪→ H •

def(W ).

Proof. We only have to prove that the linearization preserves the differential
δ = JbW ,−K (here, as usual bW is the Lie bracket on sections of W ⇒ E). Using
the fact that bW is linear, we have that δ commutes with h∗λ. From (1-4) it is obvious
that δ preserves limits. So

(δc)core = lim
λ→0

λ · h∗λ(δc)= lim
λ→0

λ · δ(h∗λc)= δ
(

lim
λ→0

λ · h∗λc
)
= δccore,

and

(δc)lin = lim
λ→0

(h∗λ(δc)− λ
−1δ(ccore))= δ

(
lim
λ→0

(h∗λc− λ−1
· ccore)

)
= δclin,

as desired. �

The inclusion (1-22) can be used to transfer vanishing results from deformation
cohomology of the Lie algebroid W ⇒ E to the linear deformation cohomology
of the VB-algebroid (W ⇒ E; A ⇒ M). For example, if H 0

def(W ) = 0, every
Lie algebroid derivation of W ⇒ E is inner, and hence every IM derivation of
the VB-algebroid W is inner. Similarly, if W ⇒ E has no nontrivial infinitesimal
deformations, so does (W ⇒ E; A⇒ M), and so on.

As a first example, consider a vector bundle E→ M. Then

TE

��

+3 E

��

TM +3 M

is a VB-algebroid.
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Proposition 1.4.5. The linear deformation cohomology of (TE ⇒ E; TM ⇒ M)
is trivial.

Proof. From Theorem 1.4.4, H •

def,lin(TE) embeds into the deformation cohomology
H •

def(TE) of the tangent algebroid TE ⇒ E which is trivial; see, for example,
[Crainic and Moerdijk 2008]. �

Other applications of Theorem 1.4.4 will be considered in Section 2.
Remember from Section 1.3 that a linear deformation cochain c ∈ Ck

def,lin(W ) is
completely determined by its action on k linear sections and on k−1 linear sections
and a core section, and the action of its symbol on k − 1 linear sections and on
k− 2 linear sections and a core section. We conclude this subsection providing a
slightly more explicit description of the linearization map (1-21) in terms of these
restricted actions.

Proposition 1.4.6. Let c ∈ Dk(W ; E). Then clin is completely determined by the
following identities:

(1) clin(α̃1, . . . , α̃k)= c(α̃1, . . . , α̃k)lin,

(2) clin(α̃1, . . . , α̃k−1, χ)= c(α̃1, . . . , α̃k−1, χ)core,

(3) σclin(α̃1, . . . , α̃k−1)= σc(α̃1, . . . , α̃k−1)lin,

(4) σclin(α̃1, . . . , α̃k−2, χ)= σc(α̃1, . . . , α̃k−2, χ)core

for all α̃1, . . . , α̃k ∈ 0lin(W, E), χ ∈ 0core(W, E).

Proof. We first compute

ccore(α̃1, . . . , α̃k)= lim
λ→0

λ · (h∗λc)(α̃1, . . . , α̃k)

= lim
λ→0

λ h∗λ(c(α̃1, . . . , α̃k))= c(α̃1, . . . , α̃k)core.

Then

clin(α̃1, . . . , α̃k)= lim
λ→0

(h∗λc− λ−1
· ccore)(α̃1, . . . , α̃k)

= lim
λ→0

(
h∗λ(c(α̃1, . . . , α̃k))− λ

−1c(α̃1, . . . , α̃k)core
)

= c(α̃1, . . . , α̃k)lin.

Identity (2) can be proved in a similar way. To prove (3) first notice that

σccore = σlimλ→0 λ·h∗λc = lim
λ→0

λ · σh∗λc = lim
λ→0

λ · h∗λσc,

where we used (1-3). Hence

σccore(α̃1, . . . , α̃k−1)= lim
λ→0

(λ · h∗λσc)(α̃1, . . . , α̃k−1)

= lim
λ→0

(λ · h∗λ(σc(α̃1, . . . , α̃k−1)))= σc(α̃1, . . . , α̃k−1)core.
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Similarly,
σclin = σlimλ→0(h∗λc−λ−1·ccore)

= lim
λ→0

σh∗λc−λ−1·ccore

= lim
λ→0

(h∗λσc− λ
−1σccore),

hence

σclin(α̃1, . . . , α̃k−1)= lim
λ→0

(
(h∗λσc)(α̃1, . . . , α̃k−1)− λ

−1σccore(α̃1, . . . , α̃k−1)
)

= lim
λ→0

(
h∗λ(σc(α̃1, . . . , α̃k−1))− λ

−1σc(α̃1, . . . , α̃k−1)core
)

= σc(α̃1, . . . , α̃k−1)lin.

Identity (4) can be proved in a similar way. �

2. Examples and applications

In this section we provide several examples. Examples in Sections 2.1, 2.4 and 2.5
parallel the analogous examples in [Crainic and Moerdijk 2008], connecting our
linear deformation cohomology to known cohomologies. Examples in Sections 2.2,
2.3 and 2.6 are specific to VB-algebroids.

2.1. VB-algebras. A VB-algebra is a vector bundle object in the category of Lie
algebras. In other words, it is a VB-algebroid of the form

h +3

��

{0}

��

g +3 {∗}

In particular, h and g are Lie algebras. Now, let C := ker(h→ g) be the core of
(h⇒ {0}; g⇒ {∗}). It easily follows from the definition of VB-algebroid that

• C is a representation of g, and

• h= gnC is the semidirect product Lie algebra,

• h= gnC→ g is the projection onto the first factor.

Let End C denote endomorphisms of the vector space C . In the present case, the
short exact sequence (1-16) reads

(2-1) 0→ C •(g,End C)→ C •def,lin(h)→ C •def(g)→ 0,

where C •(g,End C)=∧•g∗⊗End C is the Chevalley–Eilenberg complex of g with
coefficients in the induced representation End C , and C •def(g) = (∧

•g∗⊗ g)[1] is
the Chevalley–Eilenberg complex with coefficients in the adjoint representation.
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From the classical theory of Nijenhuis and Richardson [1966; 1967a; 1967b], the
latter controls deformations of g, while the former controls deformations of the
representation of g on C .

The sequence (2-1) has a natural splitting in the category of graded Lie algebras.
Namely, there is an obvious graded Lie algebra map

C •def(g)→ C •def,lin(h), c 7→ c̃

given by
c̃(v1+χ1, . . . , vk+1+χk+1) := c(v1, . . . , vk+1)

for all c∈Ck
def(g)=∧

k+1g∗⊗g, and all vi+χi ∈h=g⊕C , i=1, . . . , k+1. It is clear
that the inclusion C •def(g)→ C •def,lin(h) splits the projection C •def,lin(h)→ C •def(g).
Hence

(2-2) C •def,lin(h)
∼= C •(g,End C)⊕C •def(g).

as graded Lie algebras. However (2-2) is not a DGLA isomorphism. We now
describe the differential δ in C •def,lin(h) in terms of the splitting (2-2). First of all,
denote by θ : g→ EndC the action of g on C , and let

2 : ∧•g∗⊗ g→∧•g∗⊗End C,

be the map obtained from θ by extension of scalars. From the properties of the
action, 2 is actually a cochain map

2 : C •def(g)[−1] → C •(g,End C).

Finally, a direct computation reveals that the isomorphism (2-2) identifies the
differential in C •def,lin(h) with that of the mapping cone (denoted by Cone(2)):

(C •def,lin(h), δ)
∼= Cone(2)

as cochain complexes. Notice that the long exact cohomology sequence of the
mapping cone is just (1-18).

2.2. LA-vector spaces. An LA vector space is a Lie algebroid object in the category
of vector spaces. In other words, it is a VB-algebroid of the form

W +3

��

E

��

{0} +3 {∗}

In particular, W and E are vector spaces. Now, let C := ker(W → E) be the core
of (W ⇒ E; {0} ⇒ {∗}). It easily follows from the definition of VB-algebroid that
W identifies canonically with the direct sum C ⊕ E and all the structure maps are
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completely determined by a linear map ∂ :C→ E . Specifically, sections of W→ E
are the same as smooth maps E→ C , and given a basis (C I ) of C , the Lie bracket
on maps E→ C is given by

(2-3) [ f, g] = f I (∂C I )
↑g− g I (∂C I )

↑ f,

where f = f I C I and g = g I C I . It follows that the anchor ρ : W → TE is given
on sections by

(2-4) ρ( f )= f I (∂C I )
↑.

Linear deformations of (W ⇒ E; {0} ⇒ {∗}) are the same as deformations of ∂
as a linear map. Let us describe the linear deformation complex explicitly. As
the bottom Lie algebroid is trivial, C •def,lin(W ) consists of graded endomorphisms
End(C[1] ⊕ E)• of the graded vector space W [1]E = C[1] ⊕ E . From (2-3) and
(2-4) the differential δ in End(C[1]⊕ E)• is just the commutator with ∂ , meaning
that the deformation cohomology consists of homotopy classes of graded cochain
maps (C[1] ⊕ E, ∂)→ (C[1] ⊕ E, ∂). More explicitly, (End(C[1] ⊕ E)•, δ) is
concentrated in degrees −1, 0, 1. Namely, it is

0→ Hom(E,C)[1] δ0−→End(C)⊕End(E) δ1−→Hom(C, E)[−1] → 0,

where δ0 and δ1 are given by:

δ0φ = (φ ◦ ∂, ∂ ◦φ),

δ1(ψC , ψE)= ∂ ◦ψC −ψE ◦ ∂,

where φ ∈Hom(E,C), ψC ∈End(C) and ψE ∈End(E). We immediately conclude

H •

def,lin(W )= End(coker ∂ ⊕ ker ∂[1])•,

that is,
H−1

def,lin(W )= Hom(coker ∂, ker ∂),

H 0
def,lin(W )= End(coker ∂)⊕End(ker ∂),

H 1
def,lin(W )= Hom(ker ∂, coker ∂).

This shows, for instance, that infinitesimal deformations of a linear map ∂ : C→ E
are all trivial if and only if ∂ is injective or surjective, as expected.

2.3. Tangent and cotangent VB-algebroids. Let A⇒M be a Lie algebroid. Then
(TA⇒ TM; A⇒M) is a VB-algebroid, called the tangent VB-algebroid of A. The
structure maps of the Lie algebroid TA⇒ TM are defined as follows. First of all
recall that (TA→ TM; A→ M) is a DVB whose core is canonically isomorphic
to A itself. In particular, any section α of A determines a core section α of TA→TM.
A section α of A also determines a linear section Tα of TA→ TM : its tangent
map.
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Denote by τ : TM → M the projection. In the following, for a vector field
X ∈ X(M), we denote by X tan ∈ X(TM) its tangent lift. By definition, the flow
of X tan is obtained from the flow of X by taking the tangent diffeomorphisms.
Equivalently, X tan is the (linear) vector field on TM uniquely determined by

(2-5) X tan(`d f )= `d X ( f ) and X tan(τ
∗)= τ ∗X ( f )

for all f ∈C∞(M). Here `d f is the fiber-wise linear function on TM corresponding
to the 1-form d f (viewed as a section of the dual bundle T ∗M). Notice that (2-5)
can be used to define the tangent lift of vector fields on a graded manifold. This
will be useful below.

Now we come back to the tangent VB-algebroid (TA⇒ TM; A⇒ M). The
anchor ρTA : TA→ T TM is determined by

(2-6) ρTA(Tα)= ρ(α)tan, ρTA(α)= ρ(α)
↑,

and the bracket [−,−]TA in 0(TA, TM) is completely determined by:

(2-7) [Tα, Tβ]TA = T [α, β], [Tα, β]TA = [α, β], [α, β]TA = 0

for all α, β ∈ 0(A). The dual VB-algebroid (T ∗A⇒ A∗; A⇒ M) of the tangent
VB-algebroid is called the cotangent VB-algebroid. We want to discuss the linear
deformation cohomology of (TA⇒ TM; A⇒M) (hence of (T ∗A⇒ A∗; A⇒M)).
We use the graded geometric description. Deformation cochains of TA ⇒ TM
are vector fields on the graded manifold TA[1]TM obtained from TA shifting by
one the degree in the fibers of the vector bundle TA→ TM. Linear deformation
cochains are vector fields that are linear with respect to the vector bundle structure
TA[1]TM → A[1].

Lemma 2.3.1. Let T A[1] be the tangent bundle of A[1] and let τ : TA[1] → A[1]
be the projection. There is a canonical isomorphism of vector bundles of graded
manifolds

TA[1]TM
ι

//

%%

TA[1]

{{

A[1]

uniquely determined by the following condition:

(2-8) 〈ι∗`dω, Tα1 ∧ · · · ∧ Tαk〉 = `d〈ω,α1∧···∧αk〉

for all ω ∈ C∞(A[1])• = C •(A) of degree k, all sections α1, . . . , αk ∈ 0(A), and
all k. Additionally

(2-9) 〈ι∗`dω, Tα1 ∧ · · · ∧ Tαk−1 ∧αk〉 = τ
∗
〈ω, α1 ∧ · · · ∧αk〉.
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Formulas (2-8) and (2-9) require some explanations. The expression dω on the
left-hand side should be interpreted as a 1-form on A[1], the de Rham differential
of the function ω, and `dω is the associated fiber-wise linear function on T A[1].
The pull-back of `dω along ι∗ is a function on TA[1]TM , i.e., a C∞(TM)-valued,
skew-symmetric multilinear map on sections of TA→ TM. The Tα are the tangent
maps Tα : TM→ TA of the α : M→ A. In particular they are linear sections of
TA→ TM. The right-hand side of (2-8) is the fiber-wise linear function on TM
corresponding to the 1-form d〈ω, α1 ∧ · · · ∧ αk〉 on M. Here we interpret ω as a
skew-symmetric multilinear map on sections of A.

Proof of Lemma 2.3.1. Let (x i ) be coordinates on M, let (uα) be a local basis
of 0(A), and let (uα) be the associated fiber-wise linear coordinates on A. These
data determine coordinates (x i , ũα) on A[1] in the obvious way. In particular the x i

have degree 0 and the ũα have degree 1. We also consider standard coordinates
(x i , uα, ẋ i , u̇α) induced by (x i , uα) on TA. Notice that (uα, u̇α) are fiber-wise linear
coordinates with respect to the vector bundle structure TA→ TM. More precisely,
they are the fiber-wise linear coordinates associated to the local basis (T uα, ūα)
of 0(TA, TM). Next we denote by (x i , ẋ i , ũα, ˜̇uα) the induced coordinates on
TA[1]TM . They have degree 0, 0, 1, 1 respectively. We denote by (x i , ũα, X i , Ũα)

the standard coordinates on TA[1] induced by (x i , ũα). Define ι by putting

ι∗X i
= ẋ i and ι∗Ũα

= ˜̇uα.

A direct computation exploiting the appropriate transition maps reveals that ι is
globally well defined. Now we prove (2-8). We work in coordinates. Take a degree k
function ω = fα1···αk (x)ũ

α1 · · · ũαk on A[1]. A direct computation shows that

(2-10) ι∗`dω =
∂ fα1···αk

∂x i ũα1 · · · ũαk ẋ i
+ k fα1···αk ũα1 · · · ũαk−1 ˜̇uαk .

Now, let α1, . . . , αk ∈ 0(A), and a = 1, . . . , k. If αa is locally given by αa =

gαa (x)uα, then

Tαa =
∂gαa
∂x i ẋ i ūα + gαa T uα,

and, from (2-10),

〈ι∗`dω,Tα1 ∧ ·· · ∧ Tαk〉 = k!
(
∂ fα1···αk

∂x i gα1
1 · · ·g

αk
k + fα1···αk gα1

1 · · ·g
αk−1
k−1

∂gαk
k

∂x i

)
ẋ i

= k! ∂
∂x i ( fα1···αk gα1

1 · · ·g
αk
k )ẋ

i
= `d〈ω,α1∧···∧αk〉.

Identity (2-9) is proved in a similar way. To see that there is no other vector
bundle isomorphism ι : TA[1]TM → TA[1] with the same property (2-8) notice that
X i
= `dx i and Ũα

= `dũα . Now use (2-8) to show that ι∗X i
= ẋ i and ι∗Ũα

= ˜̇uα . �



288 PIER PAOLO LA PASTINA AND LUCA VITAGLIANO

In the following we will identify TA[1]TM with TA[1] via the isomorphism ι of
Lemma 2.3.1. Now, recall that C •def,lin(TA) = Xlin(TA[1])• fits in the short exact
sequence of DGLAs:

(2-11) 0→ End(TA[1])•→ Xlin(TA[1])•→ X(A[1])•→ 0.

The tangent lift

(2-12) tan : X(A[1])• ↪→ X(TA[1])•, X 7→ X tan

splits the sequence (2-11) in the category of DGLAs. As X(A[1])• = C •def(A), we
immediately have the following:

Proposition 2.3.2. For every Lie algebroid A⇒ M there is a direct sum decompo-
sition

H •

def,lin(TA)= H •

def,lin(T
∗A)= H •(End(TA[1]))⊕ H •

def(A).

In the last part of the subsection we describe the inclusion (2-12) in terms of
deformation cochains. This generalizes (2-6) and (2-7) to possibly higher cochains.
Using the canonical isomorphisms C •def,lin(TA) = Xlin(TA[1])•, and C •def(A) =
X(A[1])• we get an inclusion

tan : C •def(A) ↪→ C •def,lin(TA), c 7→ ctan.

Proposition 2.3.3. Let c ∈ Ck−1
def (A). Then ctan ∈ Ck−1

def,lin(TA) satisfies:

(1) ctan(Tα1, . . . , Tαk)= T c(α1, . . . , αk),

(2) ctan(Tα1, . . . , Tαk−1, αk)= c(α1, . . . , αk),

(3) σctan(Tα1, . . . , Tαk−1)= σc(α1, . . . , αk−1)tan,

(4) σctan(Tα1, . . . , Tαk−2, αk−1)= σc(α1, . . . , αk−1)
↑

for all α1, . . . , αk ∈ 0(A). Identities (1)–(4) (together with the fact that ctan is a
linear cochain) determine ctan completely.

Proof. We begin with (3). Recall that the tangent lift X tan of a vector field
X is completely determined by (2-5) (and this remains true in the graded set-
ting). So, let X ∈ X(A[1])• be the graded vector field corresponding to c (hence
X tan ∈X(TA[1]TM) is the graded vector field corresponding to ctan), let f ∈C∞(M)
and let α1, . . . , αk−1 ∈ 0(A). Using (1-10), compute

σctan(Tα1, . . . , Tαk−1)`d f = 〈X tan(`d f ), Tα1 ∧ · · · ∧ Tαk−1〉

= 〈`d(X ( f )), Tα1 ∧ · · · ∧ Tαk−1〉.

From (2-8),

〈`d(X ( f )), Tα1 ∧ · · · ∧ Tαk−1〉 = `d〈X ( f ),α1∧···∧αk−1〉 = `d(σc(α1,...,αk−1) f )

= σc(α1, . . . , αk−1)tan`d f .
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Since σctan(Tα1, . . . , Tαk−1) and σc(α1, . . . , αk−1)tan are both linear and project
onto σc(α1, . . . , αk−1), this is enough to conclude that σctan(Tα1, . . . , Tαk−1) =

σc(α1, . . . , αk−1)tan. Identity (4) can be proved in a similar way using (2-9) and

σc(α1, . . . , αk−1)
↑`d f = τ

∗
〈d f, σc(α1, . . . , αk−1)〉 = τ

∗(σc(α1, . . . , αk−1) f ).

We now prove (1). Both sides of the identity are linear sections of TA→ TM
and one can easily check in local coordinates that a linear section α̃ is completely
determined by pairings of the form 〈`dϕ, α̃〉. Here, ϕ is a section of A∗ → M
seen as a degree 1 function on A[1], dϕ is its de Rham differential, and `dϕ is
the associated degree 1 fiber-wise linear function on TA[1], which, in turn, can be
interpreted as a 1-form on the algebroid TA⇒ TM, as in Lemma 2.3.1.

So, take ϕ ∈ 0(A∗), c ∈ Ck−1
def (A), α1, . . . , αk ∈ 0(A), and compute

〈`dϕ,ctan(Tα1, . . . ,Tαk)〉

= 〈X tot(`dϕ),Tα1∧·· ·∧Tαk〉−
∑

i

(−)k−iσctan(Tα1, . . . , T̂αi , . . . ,Tαk)〈`dϕ,Tαi 〉

= 〈`d(X (ϕ)),Tα1∧·· ·∧Tαk〉−
∑

i

(−)k−iσc(α1, . . . , α̂i , . . . ,αk)tan`d〈ω,αi 〉

= `d〈X (ϕ),α1∧···∧αk〉−

∑
i

(−)k−i`d(σc(α1,...,α̂i ,...,αk)〈ω,αi 〉)

= `d〈ϕ,c(α1,...,αk)〉=〈`dϕ,T c(α1, . . . ,αk)〉,

where we used, in particular, (1-9), the first equality in (2-5), identity (3), and (2-8).
So (1) holds.

Identity (2) can be proved in a similar way using (1-9), both identities (2-5),
identity (4), and (2-9). We leave to the reader the straightforward details. �

Remark 2.3.4. Proposition 2.3.3 shows, in particular, that the Lie bracket bA

on 0(A) and the Lie bracket bTA in 0(TA, TM) are related by bTA = (bA)tan.

2.4. Partial connections. Let M be a manifold, D⊂ TM an involutive distribution,
and let F be the integral foliation of D. In particular D⇒ M is a Lie algebroid
with injective anchor. A flat (partial) D-connection ∇ in a vector bundle E→ M
defines a VB-algebroid

H

��

+3 E

��

D +3 M

where H ⊂ TE is the horizontal distribution determined by D. Notice that the core
of (H⇒ E; D⇒M) is trivial, and every VB-algebroid with injective (base) anchor
and trivial core arises in this way. Hence, (small) deformations of (H⇒ E; D⇒M)
are the same as simultaneous deformations of the foliation F and the flat partial
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connection ∇. We now discuss the linear deformation cohomology. Denote by
q : E→M the projection. First of all, the de Rham complex of D⇒M is the same
as leaf-wise differential forms �•(F) with the leaf-wise de Rham differential dF .
Hence, the deformation complex of D consists of derivations of �•(F) (the differ-
ential being the graded commutator with dF ). As the core of (H ⇒ E; D⇒ M)
is trivial, there is a canonical isomorphism H ∼= q∗D of vector bundles over E .
It easily follows that the linear deformation complex (C •def,lin(H), δ) consists of
derivations of the graded module�•(F, E) of E-valued, leaf-wise differential forms,
and the differential δ is the commutator with the (leaf-wise partial) connection
differential d∇F . The kernel of C •def,lin(H)→ C •def(D) consists of graded �•(F)-
linear endomorphisms of �•(F, E). The latter are the same as End E-valued
leaf-wise differential forms �•(F,End E), and the restricted differential is the
connection differential (corresponding to the induced connection in End E).

Now, denote by ν = TM/D the normal bundle to F. It is canonically equipped
with the Bott connection ∇Bott, and there is a deformation retraction, hence a quasi-
isomorphism, π : C •def(D)→ �•(F, ν) that maps a deformation cochain c to the
composition π(c) of the symbol σc :∧

•D→TM followed by the projection TM→ν.
A similar construction can be applied to linear deformation cochains. To see this,
first notice that derivations of E modulo covariant derivatives along ∇, D(E)/ im∇,
are sections of a vector bundle ν̃→M. Additionally, ν̃ is canonically equipped with
a flat partial connection, also called the Bott connection and denoted∇Bott, defined by

∇
Bott
X (1mod im∇)= [∇X ,1]mod im∇

for all 1 ∈D(E), and X ∈ 0(D). The symbol map σ :D(E)→ X(M) descends
to a surjective vector bundle map ν̃→ ν, intertwining the Bott connections. As
End E ∩ im∇ = 0, we have ker(ν̃→ ν)= End E . In other words, there is a short
exact sequence of vector bundles with partial connections:

0→ End E→ ν̃→ ν→ 0.

Now, we define a surjective cochain map π̃ : C •def,lin(H)→�•(F, ν̃). Let c̃ be a
linear deformation cochain. Its symbol σc̃ maps linear sections of H→ E to linear
vector field on E . As H ∼= q∗D, linear sections identify with plain sections of D.
Accordingly σc̃ can be seen as a D(E)-valued D-form. Take this point of view
and denote by π̃(c̃) : ∧•D→ ν̃ the composition of σc̃ followed by the projection
D(E)→ 0(ν̃).

Summarizing, we have the commutative diagram

0 // �•(F,End E) // C •def,lin(H) //

π̃

��

C •def(D) //

π

��

0

0 // �•(F,End E) // �•(F, ν̃) // �•(F, ν) // 0
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The rows are short exact sequences of DG-modules, and the vertical arrows are DG-
module surjections. Additionally, π is a quasi-isomorphism. Hence, it immediately
follows from the snake lemma and the five lemma that π̃ is a quasi-isomorphism as
well. We have thus proved the following:

Proposition 2.4.1. There is a canonical isomorphism of graded vector spaces
between the linear deformation cohomology of the VB-algebroid (H⇒ E; D⇒M),
and the leaf-wise cohomology with coefficients in ν̃:

H •

def,lin(H)= H •(F, ν̃).

2.5. Lie algebra actions on vector bundles. Let g be a (finite-dimensional, real)
Lie algebra acting on a vector bundle E → M by infinitesimal vector bundle
automorphisms. In particular g acts on M and there is an associated action Lie
algebroid gn M⇒ M. Additionally, g acts on the total space E by linear vector
fields. Equivalently, there is a Lie algebra homomorphism g→D(E) covering the
(infinitesimal) action g→ X(M). It follows that (gn E ⇒ E; gn M ⇒ M) is a
VB-algebroid. We want to discuss linear deformation cohomologies of gn E⇒ E .
We begin reviewing remarks by Crainic and Moerdijk [2008] on the deformation
cohomology of gn M ⇒ M providing a graded geometric interpretation. The
deformation complex C •def(gnM) consists of vector fields on (g×M)[1]=g[1]×M.
Denote by

πg : g[1]×M→ g[1]

the projection. Composition on the right with the pull-back

π∗g : C
∞(g[1])•→ C∞(g[1]×M)•

establishes a projection from vector fields on g[1]×M to πg-relative vector fields
Xrel(πg)

•, i.e., vector fields on g[1] with coefficients in functions on g[1]×M :

(2-13) X(g[1]×M)•→ Xrel(πg)
•, X 7→ X ◦π∗g .

The kernel of projection (2-13) consists of πg-vertical vector fields Xπg(g[1]×M)•.
Denote by dg ∈X(g[1]×M)• the homological vector field on g[1]×M. The graded
commutator δ := [dg,−] preserves πg-vertical vector fields. Hence there is a short
exact sequence of cochain complexes:

(2-14) 0→ Xπg(g[1]×M)•→ X(g[1]×M)•→ Xrel(πg)
•
→ 0.

Now, X(g[1] × M)• is exactly the deformation complex of g n M. Similarly,
Xrel(πg)

• is (canonically isomorphic to) the Chevalley–Eilenberg cochain complex
of g with coefficients in C∞(M)⊗g, the tensor product of C∞(M) and the adjoint
representation, up to a shift by 1. Following [Crainic and Moerdijk 2008], we
shortly denote this tensor product by gM . Finally, Xπg(g[1] ×M)• is canonically
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isomorphic to the Chevalley–Eilenberg cochain complex of g with coefficients in
X(M). So there is a short exact sequence of cochain complexes

0→ C •(g,X(M))→ C •def(gn M)→ C •+1(g, gM)→ 0,

and a long exact cohomology sequence

(2-15) · · ·→H k(g,X(M))→H k
def(gnM)→H k+1(g,gM)→H k+1(g,X(M))→···

We pass to gnE . The linear deformation complex C •def,lin(gnE) consists of linear
vector fields on g[1]×E . As above, we consider the projection π̃g : g[1]×E→ g[1].
Composition on the right with the pull-back π̃∗g establishes a projection:

Xlin(g[1]× E)•→ Xrel(πg)
•, X 7→ X ◦ π̃∗g

(beware, the range consists of πg-relative, not π̃g-relative, vector fields) whose
kernel consists of π̃g-vertical linear vector fields X

πg
lin(g[1] × E)•. Hence there is

a short exact sequence of cochain complexes:

(2-16) 0→ X
π̃g
lin(g[1]× E)•→ Xlin(g[1]× E)•→ Xrel(πg)

•
→ 0.

Using the projection Xlin(g[1]× E)•→ X(g[1]×M)•, we can combine sequences
(2-16) and (2-14) in an exact diagram

0

��

0

��

0 // End(g[1]× E)•

��

End(g[1]× E)• //

��

0

��

0 // X
π̃g
lin(g[1]× E)• //

��

Xlin(g[1]× E)• //

��

Xrel(πg)
• // 0

0 // Xπg(g[1]×M)• //

��

X(g[1]×M)• //

��

Xrel(πg)
• //

��

0

0 0 0

where, as usual, End(g[1]× E)• consists of graded endomorphisms of the vector
bundle g[1]×E→g[1]×M (covering the identity). Now, Xlin(g[1]×E)• is the linear
deformation complex of (gn E⇒ E; gn M⇒ M), and End(g[1]× E)• is canoni-
cally isomorphic to the Chevalley–Eilenberg cochain complex of g with coefficients
in End E , endomorphisms of E (covering the identity). Finally, Xπ̃glin(g[1] × E)•

is canonically isomorphic to the Chevalley–Eilenberg cochain complex of g with
coefficients in D(E). The isomorphism

C •(g,D(E))
∼=
−→X

π̃g
lin(g[1]× E)•

maps a cochain ω⊗1 to the vector field π̃∗g( fω)X1, where fω is the function on
g[1] corresponding to ω ∈ C •(g), and X1 is the unique π̃g-vertical vector field on
g[1]× E projecting on the linear vector field on E corresponding to derivation 1.
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We conclude that there is an exact diagram of cochain complexes

0

��

0

��

0 // C •(g,End E)

��

C •(g,End E) //

��

0

��

0 // C •(g,D(E)) //

��

C •def,lin(gn E) //

��

C •+1(g, gM) // 0

0 // C •(g,X(M)) //

��

C •def(gn M) //

��

C •+1(g, gM) //

��

0

0 0 0

This proves the following:

Proposition 2.5.1. Let g be a Lie algebra acting on a vector bundle E → M by
infinitesimal vector bundle automorphisms. The linear deformation cohomology of
the VB-algebroid (gn E⇒ E, gn M⇒ M) fits in the exact diagram

...

��

...

��

...

��

...

��

· · · // H k(g,EndE)

��

H k(g,EndE) //

��

0 //

��

H k+1(g,EndE) //

��

· · ·

· · · // H k(g,D(E)) //

��

H k
def,lin(gnE) //

��

H k+1(g,gM) // H k+1(g,D(E)) //

��

· · ·

· · · // H k(g,X(M)) //

��

H k
def(gnM) //

��

H k+1(g,gM) //

��

H k+1(g,X(M)) //

��

· · ·

· · · // H k+1(g,EndE)

��

H k+1(g,EndE) //

��

0 //

��

H k+2(g,EndE) //

��

· · ·

...
...

...
...

2.6. Type 1 VB-algebroids. Let (W⇒ E; A⇒M) be a VB-algebroid with core C .
The core-anchor of (W ⇒ E; A⇒ M) is the vector bundle map ∂ :C→ E defined
as follows. Let χ be a section of C , and let χ be the corresponding core section
of W → E . The anchor ρ :W → TE maps χ to a core vector field ρ(χ) on E . In
turn ρ(χ) is the vertical lift of a section ε of E . By definition, ∂χ = ε.

According to a definition by Gracia-Saz and Mehta [2010], a VB-algebroid is
type 1 (resp. type 0) if the core-anchor is an isomorphism (resp. is the zero map).
More generally, (W ⇒ E; A ⇒ M) is regular if the core-anchor has constant
rank. In this case (W ⇒ E; A⇒ M) is the direct sum of a type 1 and a type 0
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VB-algebroid, up to isomorphisms. So type 1 and type 0 VB-algebroids are the
building blocks of regular VB-algebroids. In this subsection we discuss linear
deformation cohomologies of type 1 VB-algebroids.

Let (W ⇒ E; A⇒ M) be a type 1 VB-algebroid, and denote by q : E → M
the projection. Gracia-Saz and Mehta [2010] show that (W ⇒ E; A ⇒ M) is
canonically isomorphic to the VB-algebroid (q !A⇒ E; A⇒ M). Here q !A⇒ E
is the pull-back Lie algebroid. Recall that its total space q !A is the fibered product
q !A := TE dq×ρ A. Hence, sections of q !A→ E are pairs (X, α), where X is a
vector field on E and α is a section of the pull-back bundle q∗A→ E , with the
additional property that dq(Xe)= ρ(αq(e)) for all e ∈ E . Then there exists a unique
Lie algebroid structure q !A⇒ E such that the anchor q !A→ TE is the projection
(X, α) 7→ X, and the Lie bracket is given by

[(X, q∗α), (Y, q∗β)] = ([X, Y ], q∗[α, β]),

on sections of the special form (X, q∗α), (X, q∗β), with α, β ∈ 0(A). Finally,
(q !A⇒ E; A⇒ M) is a VB-algebroid, and every VB-algebroid of type 1 arises in
this way (up to isomorphisms).

As E → M is a vector bundle, it has contractible fibers. So, according to
[Sparano and Vitagliano 2018], q !A⇒ E and A⇒ M share the same deforma-
tion cohomology. As an immediate consequence we get that the canonical map
C •def,lin(q

!A)→ C •def(A) induces an injection in cohomology. We want to show
that it is a quasi-isomorphism. To do this it is enough to prove that the kernel
End(q !A[1]E)• of C •def,lin(q

!A)→ C •def(A) is acyclic. We use graded geometry
again. So, consider the pull-back diagram

q !A //

��

TE

dq
��

A
ρ
// TM

All vertices are vector bundles, and shifting by one the degree in their fibers, we
get a pull-back diagram of DG-manifolds:

q !A[1]E //

q̃
��

T [1]E

dq
��

A[1]
ρ
// T [1]M

This shows, among other things, that there is a canonical isomorphism

End(q !A[1]E)• = C •(A)⊗�•(M) End(T [1]E)•

of DG-modules. From Proposition 1.4.5, exact sequence (1-16), and the fact that the
deformation cohomology of TM⇒ M is trivial, End(T [1]E)• is acyclic. Actually
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there is a canonical contracting homotopy h′ : End(T [1]E)• → End(T [1]E)•−1.
Indeed, there is a canonical contracting homotopy H : X(T [1]E)•→ X(T [1]E)•−1

restricting to both Xlin(T [1]E)• and End(T [1]E)• (see, e.g., [Vitagliano 2014;
Sparano and Vitagliano 2018], for a definition of H ). Then, h′ is simply the restric-
tion of H, and it is graded C •(A)-linear. Finally, we define a contracting homotopy

h : End(q !A[1]E)•→ End(q !A[1]E)•−1

by putting h(ω⊗8) := (−)ωω⊗h′(8) for all ω ∈C •(A), and all8∈End(T [1]E)•.
Summarizing, we have proved:

Proposition 2.6.1. Let (W ⇒ E; A ⇒ M) be a type 1 VB-algebroid. Then the
canonical surjection C •def,lin(W )→ C •def(A) is a quasi-isomorphism. In particular,
H •

def,lin(W )= H •

def(A).

In essence, deforming a type 1 VB-algebroid is the same as deforming its base
Lie algebroid.

Appendix: The homogeneity structure of a vector bundle

Here, for the reader’s convenience, we recall the well-known concepts of homo-
geneity structure of a vector bundle and of linear multivectors on its total space.
We make no claim of originality: these ideas appeared (probably for the first time)
in [Grabowski and Rotkiewicz 2009], [Iglesias-Ponte et al. 2012] and [Bursztyn
and Cabrera 2012], respectively. In the last two references, the reader can also find
the proof of (a version of) Proposition A.0.3. With respect to those references, we
will offer just a slightly different point of view, in order to make the presentation
consistent. Notations and conventions in this appendix are used throughout the
paper, sometimes without further comments.

Let E→ M be a vector bundle. The monoid R≥0 of nonnegative real numbers
acts on E by homotheties hλ : E → E (fiber-wise scalar multiplication). The
action h : R≥0 × E → E , e 7→ hλ(e), is called the homogeneity structure of E .
The homogeneity structure (together with the smooth structure) fully characterizes
the vector bundle structure [Grabowski and Rotkiewicz 2009]. In particular, it
determines the addition. This implies that every notion that involves the linear
structure of E can be expressed in terms of h only: for example, a smooth map
between the total spaces of two vector bundles is a bundle map if and only if it
commutes with the homogeneity structures.

The homogeneity structure isolates a distinguished subspace in the algebra X•(E)
of multivectors on the total space E of the vector bundle.
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Definition A.0.1. A multivector X ∈ X•(E) is (homogeneous) of weight q if and
only if

(A-1) h∗λX = λq X

for all λ > 0. The space of k-vector fields of weight q on E will be denoted Xk
q(E).

We denote simply by C∞q (E) := X0
q(E) the space of functions of weight q and by

Xq(E) := X1
q(E) the space of vector fields of weight q .

Clearly, for q ≥ 0, weight q functions coincide with functions on E that are
fiber-wise polynomial of degree q , while for q < 0 there are no nonzero functions
of weight q . In particular, weight-zero functions are fiber-wise constant functions,
i.e., pull-backs of functions on the base M. We refer to them as core functions and
we denote C∞core(E) := C∞0 (E).

The functorial properties of the pull-back imply that the grading defined by
the weight is natural with respect to all the usual operations on functions and
(multi)vector fields. From this remark, we easily see that there are no nonzero
k-vector fields of weight less than −k.

Definition A.0.2. A function on E is linear if it is of weight 1. More generally, a
k-vector field is linear if it is of weight 1− k. We denote by C∞lin(E), Xlin(E) and
X•lin(E) the spaces of linear functions, vector fields and multivectors, respectively.

Linear functions are precisely fiber-wise linear functions. The definition of linear
multivectors may sound a little strange, but it is motivated (among other things) by
the following proposition:

Proposition A.0.3. Let X ∈ Xk(E). The following conditions are equivalent:

(1) X is linear;

(2) X takes

(a) k linear functions to a linear function,
(b) k− 1 linear functions and a core function to a core function,
(c) k− i linear functions and i core functions to 0, for every i ≥ 2;

(3) If (x i ) are local coordinates on M and (uα) are linear fiber coordinates on E ,
X is locally of the form

(A-2) X = Xα1···αk−1i (x) ∂

∂uα1
∧·· ·∧

∂

∂uαk−1
∧
∂

∂x i+Xα1···αk
β (x)uβ ∂

∂uα1
∧·· ·∧

∂

∂uαk
.
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A MOD- p ARTIN–TATE CONJECTURE,
AND GENERALIZING THE HERBRAND–RIBET THEOREM

DIPENDRA PRASAD

We propose conjectures about the integrality properties of the values at s=0
of certain abelian L-functions of Q and totally real number fields. We also
propose a conjecture which generalizes the theorems of Herbrand and Ribet
for values at s = 0 of totally odd Artin L-functions of totally real number
fields. Various calculations, some of which are familiar to experts, are made
to provide examples.

1. Introduction

Following the natural instinct that when a group operates on a number field then
every term in the class number formula should factorize “compatibly” according to
the representation theory (both complex and modular) of the group, we are led — in
the spirit of Herbrand and Ribet’s theorem on the p-component of the class number
of Q(ζp)— to some natural questions about the p-part of the class group of any CM
Galois extension E of Q as a module for Gal(E/Q). The compatible factorization
of the class number formula is at the basis of Stark’s conjecture, where one is
mostly interested in factorizing the regulator term — whereas for us in this paper,
we put ourselves in a situation where the regulator term can be ignored, and it is the
factorization of the class number that we seek. All this is presumably part of various
“equivariant” conjectures in arithmetic-geometry, such as the “equivariant Tamagawa
number conjecture”, but the literature does not seem to address this question in
any precise way. In trying to formulate these questions, we are naturally led to
consider L(0, ρ), for ρ an Artin representation, in situations where this is known to
be nonzero and algebraic, and it is important for us to understand if this is p-integral
for a prime p of the ring of algebraic integers Z in C, which we call a mod-p
Artin–Tate conjecture. As an attentive reader will notice, the most innocuous term
in the class number formula, the number of roots of unity, plays an important role
for us — it, being the only term in the denominator, is responsible for all the poles!
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Let F be a number field contained in C with Q its algebraic closure in C. Let
ρ : Gal(Q/F)→ GLn(C) be an irreducible Galois representation with L(s, ρ) its
associated Artin L-function. According to a famous conjecture of Artin, L(s, ρ)
has an analytic continuation to an entire function on C unless ρ is the trivial
representation, in which case it has a unique pole at s = 1 which is simple.

More generally, let M be an irreducible motive over Q with L(s,M) its associated
L-function. According to Tate, L(s,M) has an analytic continuation to an entire
function on C unless M is a twisted Tate motive Q( j) with Q(1) the motive
associated to Gm . For the motive Q=Q(0), L(s,Q)= ζQ(s), the usual Riemann
zeta function, which has a unique pole at s = 1 which is simple.

This paper will deal with certain Artin representations ρ :Gal(Q/F)→GLn(C)

for which we will know a priori that L(0, ρ) is a nonzero algebraic number (in
particular, F will be totally real). It is then an important question to understand the
nature of the algebraic number L(0, ρ): to know if it is an algebraic integer, but if not,
what are its possible denominators. We think of the possible denominators in L(0, ρ),
as existence of poles for L(0, ρ), at the corresponding prime ideals of Z. It is thus
analogous to the conjectures of Artin and Tate, both in its aim — and as we will
see — in its formulation. Since we have chosen to understand L-values at 0 instead
of 1, which is where Artin and Tate conjectures are formulated, there is an “ugly”
twist by ωp — the action of Gal(Q/Q) on the p-th roots of unity — throughout the
paper, giving a natural character ωp : Gal(Q/Q)→ (Z/p)×, also a character of
Gal(Q/L) for L any algebraic extension of Q, as well as a character of Gal(L/Q) if
L is a Galois extension of Q containing p-th roots of unity; if there are no nontrivial
p-th roots of unity in L , we will define ωp to be the trivial character of Gal(L/Q).

We now fix some notation. We will fix an isomorphism of Qp with C where Qp

is a fixed algebraic closure of Qp, the field of p-adic numbers. This allows one to
define p, a prime ideal in Z, the integral closure of Z in C, over the prime ideal
generated by p in Z. The prime p will always be an odd prime in this paper.

All the finite-dimensional representations of finite groups in this paper will take
values in GLn(Qp), and therefore in GLn(C), as well as GLn(Zp). It thus makes
sense to talk of “reduction modulo p” of (complex) representations of finite groups.
These reduced representations are well defined up to semisimplification on vector
spaces over Fp (theorem of Brauer and Nesbitt); we denote the reduction modulo p

of representations as ρ→ ρ.
If F is a finite Galois extension of Q with Galois group G, then it is well known

that the zeta function ζF (s) can be factorized as

ζF (s)=
∏
ρ

L(s, ρ)dim ρ,

where ρ ranges over all the irreducible complex representations of G, and L(s, ρ)
denotes the Artin L-function associated to ρ.
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According to the class number formula, we have the power series expansion
of ζF (s) at s = 0 as

ζF (s)=−
h R
w

sr1+r2−1
+ higher-order terms,

where r1, r2, h, R, w are the standard invariants associated to F : r1 the number of
real embeddings, r2 the number of pairs of complex conjugate embeddings which
are not real, h the class number of F , R the regulator, and w the number of roots
of unity in F .

This paper considers ζE/ζF where E is a CM field with F its totally real subfield,
in which case r1+ r2 is the same for E as for F , and the regulators of E and F
too are the same except for a possible power of 2. Therefore, for c the complex
conjugation on C,

(ζE/ζF )(0)=
∏

ρ(c)=−1

L(0, ρ)dim ρ
=

hE/hF

wE/wF
,

where each L-value L(0, ρ) in the above expression is a nonzero algebraic number
by a theorem of Klingen and Siegel.

In this identity, observe that L-functions are associated to C-representations of
Gal(E/Q), whereas the class groups of E and F are finite Galois modules. Modulo
some details, we basically assert that for each odd prime p, each irreducible odd
C-representation ρ of Gal(E/Q) contributes a certain number of copies (depending
on p-adic valuation of L(0, ρ)) of ρ to the class group of E tensored with Fp modulo
the class group of F tensored with Fp (up to semisimplification). This is exactly
what happens for E =Q(ζp) by the theorems of Herbrand and Ribet, which is the
main motivating example for all that we do here, and this is what we will review next.

2. The Herbrand–Ribet theorem

In this section we recall the Herbrand–Ribet theorem from the point of view of this
paper. We refer to the original work of Ribet [1976] and to [Washington 1982] for
an exposition on the theorem together with a proof of Herbrand’s theorem.

There are actually two a priori important aspects of the Herbrand–Ribet theorem
dealing with the p-component of the class group for Q(ζp). First, as the Galois group
Gal(Q(ζp)/Q)= (Z/p)× is of order coprime to p, its action on the p-component
of the class group is semisimple, and therefore, the p-component of the class group
can be written as a direct sum of eigenspaces for the action of (Z/p)× on it. We do
not consider this aspect of the Herbrand–Ribet theorem to be important, and simply
consider semisimplification of representations of Galois groups on class groups to
be a good-enough substitute.
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The second — and more serious — aspect of the Herbrand–Ribet theorem is
that among the characters of Gal(Q(ζp)/Q) = (Z/p)×, only the odd characters,
i.e., characters χ : (Z/p)× → Q×p with χ(−1) = −1, present themselves — as
it is only for these that there is any result about the χ-eigencomponent in the
class group, and even among these, the Teichmüller character ωp : (Z/p)×→Q×p
plays a role different from other characters of (Z/p)×. (Note that earlier we have
used ωp for the action of Gal(Q/Q) on the p-th roots of unity, giving a natural
character ωp : Gal(Q/Q)→ (Z/p)×, as well as to its restriction to Gal(Q/L) for
L any algebraic extension of Q. Since Gal(Q(ζp)/Q) is canonically isomorphic to
(Z/p)×, the two roles that ωp will play throughout the paper are actually the same.)

To elaborate on the role of “odd” characters in the Herbrand–Ribet theorem,
observe that the class number formula

ζF (s)=−
h R
w

sr1+r2−1
+ higher-order terms

can be considered both for F =Q(ζp) as well as its maximal real subfield F+ =
Q(ζp)

+. It is known that [Washington 1982, Proposition 4.16],

R/R+ = 2(p−3)/2,

where R is the regulator for Q(ζp) and R+ is the regulator for Q(ζp)
+. We will

similarly denote h and h+ to be the order of the two class groups, with h− = h/h+,
an integer.

Dividing the class number formula of Q(ζp) by that of Q(ζp)
+, we find

(1)
∏

χ an odd character of (Z/p)×
L(0, χ)=

1
p
·

h
h+
· 2(p−3)/2,

the factor 1/p arising because there are 2p roots of unity in Q(ζp) and only 2
in Q(ζp)

+.
It is known that for χ an odd character of (Z/p)×, L(0, χ) is an algebraic number

which is given in terms of the generalized Bernoulli number B1,χ as

L(0, χ)=−B1,χ =−
1
p

a=p∑
a=1

aχ(a).

It is easy to see that pB1,ωp−2
p ≡ (p − 1) mod p since aωp−2

p (a) is the trivial
character of (Z/p)× whereas for all the other characters of (Z/p)×, L(0, χ) is not
only an algebraic number but is p-adic integral (Schur orthogonality!); all this is
clear by looking at the expression

L(0, χ)=−B1,χ =−
1
p

a=p∑
a=1

aχ(a).
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Rewrite (1) up to p-adic units as∏
χ an odd character of (Z/p)×

χ 6=ω
p−2
p =ω−1

p

L(0, χ)=
h

h+
,

where we note that both sides of the equality are p-adic integral elements; in fact,
since all characters χ : (Z/p)×→Q×p take values in Zp, for χ 6=ω−1

p , L(0, χ)∈Zp.
This, when interpreted — just an interpretation in the optics of this paper without
any suggestions for proof in either direction! — for each χ component on the two
sides of this equality, amounts to the theorem of Herbrand and Ribet which asserts
that p divides L(0, χ) = −B1,χ for χ an odd character of (Z/p)×, which is not
ω

p−2
p , if and only if the corresponding χ−1-eigencomponent of the class group of

Q(ζp) is nontrivial (note the χ−1, and not χ !). Furthermore, the character ωp does
not appear in the p-class group of Q(ζp). It can happen that L(0, χ) is divisible
by higher powers of p than 1, and one expects — this is not proven yet! — that in
such cases, the corresponding χ−1-eigencomponent of the class group of Q(ζp) is
Z/p(valp L(0,χ)), and in particular, it still has p-rank 1. (By [Mazur and Wiles 1984],
the χ−1-eigencomponent of the class group of Q(ζp) is of order p(valp L(0,χ)).)

The work of Ribet was to prove that if p | B1,χ , then the χ−1-eigencomponent
of the class group of Q(ζp) is nontrivial by constructing an unramified extension
of Q(ζp) by using a congruence between a holomorphic cusp form and an Eisenstein
series on GL2(AQ).

To be able to use the class number formula in other situations, we will need to
have the integrality of L(0, χ) for χ a character associated to the Galois group of a
number field, or even of L(0, ρ) for general irreducible representations ρ of the
Galois group of a number field, in more situations that we call a mod-p Artin–Tate
conjecture.

Let E be a CM number field which we assume is Galois over Q. Assume that
E contains pn-th roots of unity but no pn+1-th root of unity. Let F be the totally
real subfield of E with [E : F] = 2. Let G =Gal(E/Q) with −1 ∈ G, the complex
conjugation in G.

We have
ζE(s)=

∏
ρ

LQ(s, ρ)dim ρ,

ζF (s)=
∏

ρ(−1)=1
LQ(s, ρ)dim ρ,

(ζE/ζF )(s)=
∏

ρ(−1)=−1
LQ(s, ρ)dim ρ,

where all the products above are over irreducible representations ρ of G=Gal(E/Q)
with values in GLd(Qp).
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By the class number formula,

(2) h−(E)/pn
=

∏
ρ(−1)=−1

LQ(0, ρ)dim ρ .

By Corollary 6 below, there is an a ∈ Z×p with

(3) a/pn
=

∏
χ(−1)=−1

LQ(0, χ),

where χ are all the characters of Gal(Q(ζpn )/Q)= (Z/pn)× for which χ = ω−1
p .

Dividing (2) by (3), we have up to p-adic units

(4) h−(E)=
∏

ρ(−1)=−1,
ρ 6=χ

LQ(0, ρ)dim ρ

where the product on the right is taken over irreducible representations ρ of G =
Gal(E/Q) for which ρ(−1)=−1, and which are not cyclotomic characters of the
form χ : Gal(Q(ζpn )/Q)= (Z/pn)×→Q×p with χ = ω−1

p .
It is known that L(0, ρ) ∈Q× for ρ(−1)=−1. This is a simple consequence

of a theorem due to Klingen and Siegel that partial zeta functions of a totally real
number field take rational values at all nonpositive integers [Tate 1984]. (Note that
to prove L(0, ρ) ∈Q× for ρ(−1)=−1, it suffices by Brauer to prove it for abelian
CM extensions by a lemma of Serre [Tate 1984, Chapter III, Lemma 1.3].)

The left-hand side of (4) is integral, and we would like to suggest the same for
each term on the right-hand side of (4).

The following conjecture about L(0, ρ) extends the known integrality properties
of L(0, χ)=−B1,χ =−

1
p

∑a=p
a=1 aχ(a), encountered and used earlier. The formu-

lation of the conjecture also assumes known integrality properties about L(0, χ)
for χ : Gal(Q(ζn)/Q)= (Z/n)×→ C× discussed in the last section of this paper.

Conjecture 1 (mod-p analogue of the Artin–Tate conjecture). Let ρ :Gal(Q/Q)→
GLn(C) be an irreducible representation of Gal(Q/Q) with ρ(c) = −1 where
c is a complex conjugation in Gal(Q/Q). Then unless ρ is a one-dimensional
representation factoring through Gal(Q(ζpn )/Q) (for some prime p) with ρ the
reduction of ρ modulo p (the maximal ideal in Zp) being ρ = ω−1

p , L(0, ρ) ∈Q is
integral outside 2, i.e., L(0, ρ) ∈ Z

[1
2

]
.

We next recall the following theorem of Deligne and Ribet [1980], which could
be considered as a weaker version of Conjecture 1.

Theorem. Let k be a totally real number field, and let χ : Gal(Q/k)→ Q× be
a character of finite order with χ(c) = −1 where c is a complex conjugation
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in Gal(Q/k). Let w be the order of the group of roots of unity in E , the smallest
extension of k such that χ is trivial when restricted to Gal(Q/E). Then

wL(0, χ) ∈ Z.

In fact Conjecture 1 can be used to make precise the above theorem of Deligne–
Ribet as follows; the simple argument using the fact that the Artin L-function is
invariant under induction from Gal(Q/k) to Gal(Q/Q) will be left to the reader.

Conjecture 2. Let k be a totally real number field, and χ : A×k /k×→ Z×p a finite-
order character, with χ(c) = −1 where c is a complex conjugation in Gal(Q/k).
Then if L(0, χ) /∈ Zp,

(1) χ mod p is ω−1
p and

(2) χ is a character of A×k /k× associated to a character of the Galois group
Gal(k(ζq)/k) for some q which is a power of p.

Remark. In the examples that I know, which are for characters χ :Gal(Q/Q)→Q×p
with χ = ω−1

p (mod p), if L(0, χ) has a (mod-p) pole, the pole is of order 1; more
precisely, if L =Qp[χ(Gal(Qp/Qp))] is the subfield of Qp generated by the image
under χ of the decomposition group at p, then L(0, χ) is the inverse of a uniformizer
of this field L . It would be nice to know if this is the case for characters χ of
Gal(Q/k) for k arbitrary. This would be in the spirit of Artin’s classical conjecture
where the only possible poles of L(1, ρ), for ρ an irreducible representation of
Gal(Q/k), are simple.

3. Proposed generalization of Herbrand–Ribet for CM number fields

The Herbrand–Ribet theorem is about the relationship of L-values L(0, χ) with the
χ−1-eigencomponent of the class group of Q(ζp). In the last section, we proposed
a precise conjecture about integrality properties for the L values L(0, ρ). In this
section, we now propose their relationship to class groups.

We begin by introducing some notation involved in constructing in a functorial
way an elementary abelian p-group A[p] out of a finite abelian group A with

(1) p · A[p] = 0 and

(2) the cardinality of A[p] equals the cardinality of the p-Sylow subgroup of A.

We define A[p] to be the direct sum of the p-groups pi A/pi+1 A for i ≥ 0. If
A is a G-module, then naturally, A[p] too is a G-module. If A is a G-module,
then we let A[p]ss be the semisimplification of the corresponding G-module A[p]
over Fp.

Since according to the theorem of Klingen and Siegel, the value L(0, ρ) for an
odd representation ρ of Gal(Q/k), where k is a totally real number field, belongs to
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the algebraic number field generated by the character values of ρ, and since we are
trying to equate powers of p appearing on the two sides of the class number formula,
it will be important to consider only those representations ρ :Gal(Q/Q)→GLn(Qp)

which actually take values in Qunr
p , the maximal unramified extension of Qp. Ob-

serve that the Brauer group of Qunr
p is trivial, and thus, an irreducible representation

of a finite group is defined over Qunr
p if and only if its character is defined over Qunr

p .
If an irreducible representation π of a finite group is defined over Qp, one can take
the sum of the Galois conjugates πσ of π for σ ∈Gal(Qp/Q

unr
p ), to construct canon-

ically an irreducible representation, say 〈π〉 over Qunr
p . The representation π can be

reduced modulo p and the representation 〈π〉 modulo p, and the semisimplification
of these reductions are related by

〈π〉ss ∼= dπ ss,

where d is the number of distinct Galois conjugates of π under Gal(Qp/Q
unr
p ).

Let E be a Galois CM extension of a totally real number field k with F the
totally real subfield of E with [E : F] = 2, and G = Gal(E/k). Let c denote the
element of order 2 in the Galois group of E over F .

Let HE and HF denote the class groups of E and F , respectively. Observe that
the kernel of the natural map from HF to HE is a 2-group. (This follows from using
the norm mapping from HE to HF .) Therefore, since we are interested in p-primary
components for only odd primes p, HF can be considered to be a subgroup of HE ,
and the quotient HE/HF becomes a G-module of order hE/hF .

The following conjecture on the structure of the minus-part of the class group
of E (as a module for the Galois group G) is arrived at by considering the p-adic
valuations of the two sides of the class number formula

(ζE/ζF )(0)=
∏

ρ(c)=−1

L(0, ρ)dim ρ
=

∏
ρ(c)=−1

L(0, 〈ρ〉)dim ρ
=

hE

hF

1
wE

,

with E, F, k as above, and the first product taken over all irreducible representations
ρ of G = Gal(E/k) with values in GLn(Qp), whereas the second one is over all
irreducible representations 〈ρ〉 of G = Gal(E/k) with values in GLn(Q

unr
p ). Since

we are formulating the conjecture below based on equality of (p-adic valuations of)
numbers in the class number formula, it is not sensitive to the subtlety discussed
earlier about χ-eigencomponents in the class group of Q(µp) being cyclic or not;
all we care about is their order.

Conjecture 3. Let E be a CM, Galois extension of a totally real number field k,
with F the totally real subfield of E , and c ∈ Gal(E/F), the nontrivial element of
the Galois group. Let 〈ρ〉 : Gal(E/k)→ GLdn(Q

unr
p ) be an irreducible, odd (i.e.,

ρ(c)=−1) representation of Gal(E/k) associated to an irreducible representation
ρ : Gal(E/k)→ GLn(Qp) as above, with ρ the semisimplification of the reduction
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of ρ mod p for p an odd prime. Let ωp : Gal(E/k)→ (Z/p)× be the action of
Gal(E/k) on the p-th roots of unity in E (so ωp = 1 if ζp /∈ E). Then

HE/HF [p]ss
=

∑
〈ρ〉

vp(L(0, 〈ρ〉))ρ∨,

an equality of representations of Gal(E/k), except for the ωp-component (ρ∨ de-
notes the contragredient of ρ). Ifωp 6=1, we make no assertion on theωp-component
in HE/HF [p]ss, but if ωp = 1, there is no ωp-component inside HE/HF [p]ss.

Remark. For absolutely abelian fields, i.e., in the notation above, if E is an abelian
extension of Q, the conjecture above is known, and amounts to a conjecture of Gras
[1977] which, for p not dividing the order of the Galois group, is proved by Mazur
and Wiles [1984] as a consequence of their proof of the main conjecture, and for p
dividing the order of the Galois group it is due to Solomon [1990].

4. Integrality of abelian L-values for Q

The aim of this section is to prove certain results on integrality of L(0, χ) for
χ an odd Dirichlet character of Q which are first examples of all the integrality
conjectures made in this paper. Although these are all well known results, we have
decided to give our proofs.

Lemma 4. For integers m > 1 and n > 1, with (m, n) = 1, let χ = χ1 × χ2

be a primitive Dirichlet character on (Z/mnZ)× = (Z/mZ)× × (Z/nZ)× with
χ(−1)=−1. Then

L(0, χ)=−B1,χ =−
1

mn

mn∑
a=1

aχ(a)

is an algebraic integer, i.e., belongs to Z⊂Q.

Proof. Observe that B1,χ =
1

mn

∑mn
a=1 aχ(a) has a possible fraction by mn, and that

in this sum over a ∈ {1, 2, . . . ,mn}, if we instead sum over an arbitrary set A of
integers which have these residues mod mn, then 1

mn

∑
a∈A aχ(a) will differ from

B1,χ by an integral element (in Z). Since our aim is to prove that B1,χ is integral,
it suffices to prove that 1

mn

∑
a∈A aχ(a) is integral for some set of representatives

A ⊂ Z of residues mod mn.
For an integer a ∈ {1, 2, . . . ,m}, let a be an arbitrary integer whose reduction

mod m is a, and whose reduction mod n is 1. Similarly, for an integer b ∈
{1, 2, . . . , n}, let b be an arbitrary integer whose reduction mod n is b and whose
reduction mod m is 1. Clearly, the set of integers a · b represents — exactly once —
each residue class mod mn, and that a ·b as an element in Z goes to the pair (a, b)∈
Z/m×Z/n. (It is important to note that a · b as an element in Z is not congruent
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to ab mod mn, and therein lies a subtlety in the Chinese remainder theorem: there
is no simple inverse to the natural isomorphism: Z/mn→ Z/m×Z/n.)

By definition of the character χ , χ(a · b)= χ1(a)χ2(b). It follows that

(5)
1

mn

∑
abχ(a · b)−

[
1
m

m∑
a=1

aχ1(a)
]
·

[
1
n

n∑
b=1

bχ2(b)
]
∈ Z.

Since the character χ is odd, one of the characters, say χ2, is even (and χ1 is
odd).

Observe that

B1,χ2 =
1
n

n∑
b=1

bχ2(b)=
1
n

n∑
b=1

(n− b)χ2(b).

It follows that
2
n

n∑
b=1

bχ2(b)=
n∑

b=1

χ2(b)= 0,

where the last sum is zero because the character χ2 is assumed to be nontrivial.
Since

1
mn

∑
abχ(a · b)−

1
mn

mn∑
c=1

cχ(c) ∈ Z,

by (5), it follows that
1

mn

mn∑
c=1

cχ(c) ∈ Z,

as desired. �

Lemma 5. For p a prime, let χ be a primitive Dirichlet character on (Z/pnZ)×

with χ(−1) = −1. Write (Z/pnZ)× = (Z/pZ)× × (1+ pZ/1+ pnZ), and the
character χ as χ1×χ2 with respect to this decomposition. Then

L(0, χ)=−B1,χ =−
1
pn

pn∑
a=1

aχ(a)

is an algebraic integer, i.e., belongs to Z⊂Q if and only if χ1 6= ω
−1
p . Further, if

χ1 = ω
−1
p ,

L(0, χ)=−B1,χ =−
1
pn

pn∑
a=1

aχ(a)

is the inverse of a uniformizer in the local field Qp(B1,χ )=Qp(χ) which is a totally
ramified cyclic extension of Qp of degree equal to the order of χ2.
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Proof. Assuming that χ1 6= ω
−1
p , we prove that B1,χ belongs to Z⊂Q.

By an argument similar to the one used in the previous lemma, it can be checked
that

1
pn

pn∑
a=1

aχ(a)−
[

1
p

p∑
a=1

aχ1(a)
]
·

[
1

pn−1

pn−1∑
b=1

(1+ bp)χ2(1+ bp)
]
∈ Z.

If χ1 6= ω
−1
p , 1

p

∑p
a=1 aχ1(a) is easily seen to be integral. To prove the lemma,

it then suffices to prove that
[ 1

pn−1

∑pn−1

b=1 (1+ bp)χ2(1+ bp)
]

is integral.
Note the isomorphism of the additive group Zp with the multiplicative group

1+ pZp by the map n→ (1+ p)n ∈ 1+ pZp. Let χ2(1+ p)= α with α pn−1
= 1.

Then (the first and third equalities below are up to Z)

1
pn−1

pn−1∑
b=1

(1+ bp)χ2(1+ bp)=
1

pn−1

pn−1∑
c=1

(1+ p)cαc

=
1

pn−1

pn−1∑
c=1

[α(1+ p)]c

=
1

pn−1

1− [α(1+ p)]p
n−1

1−α(1+ p)

=
1

pn−1

[1− (1+ p)pn−1
]

[1−α(1+ p)]
.

Note that since α pn−1
= 1 either α = 1, or 1−α is a uniformizer in Qp(ζpd ) for

some d ≤ n− 1. Therefore, either −p = [1−α(1+ p)] if α = 1, or [1−α(1+ p)]
is a uniformizer in Qp(ζpd ). Finally, it suffices to observe that

(1+ p)pn−1
≡ 1 mod pn

;

hence, 1
pn−1

∑pn−1

b=1 (1+ bp)χ2(1+ bp) is integral.
If χ1=ω

−1
p , the same argument gives nonintegrality, and analyzing the proof gives

the last assertion in the statement of the lemma regarding B1,χ being a uniformizing
parameter in the local field Qp(B1,χ )=Qp(χ); we omit the details. �

Corollary 6. For p a prime, let χ be a Dirichlet character on (Z/pnZ)× with
χ(−1)=−1. Write (Z/pnZ)×= (Z/pZ)××(1+pZ/1+pnZ), and the character χ
as χ1×χ2 with respect to this decomposition. Then∏

χ=χ1×χ2
χ1=ω

−1
p

L(0, χ)

belongs to Qp, and has valuation −n as an element of Qp.
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The following proposition follows by putting the previous two lemmas together,
and making an argument similar to what went into the proof of these two lemmas.
We omit the details.

Proposition 7. Primitive odd Dirichlet characters χ : (Z/n)× → Z×p for which
L(0, χ) does not belong to Zp are exactly those for which

(1) n = pd and

(2) χ = ω−1
p mod p.

The following consequence of the proposition suggests that prudence is to be
exercised when discussing congruences of L-values for Artin representations which
are congruent.

Corollary 8. Let p, q be odd primes with p | (q − 1). For any character χ2 of
(Z/qZ)× of order p, define the character χ = ω−1

p × χ2 of (Z/pqZ)×. Then
although the characters ω−1

p and χ have the same reduction modulo p, L(0, ω−1
p )

is p-adically nonintegral whereas L(0, χ) is integral.

Question. Let χ : (Z/pdm)×→Z×p with (p,m)=1, m>1, be a primitive Dirichlet
character for which χ = ω−1

p mod p so that by Proposition 7, L(0, χ) is p-integral.
Is it possible to have L(0, χ)= 0 modulo p, the maximal ideal of Zp? Our proofs
in this section are “up to Z”, so good to detect integrality, but not good for questions
modulo p. The question is relevant to Conjecture 3 to see if the character ωp appears
in the class group H/H+ for E =Q(ζpd m); such a character is known not to appear
in the class group of H/H+ for E =Q(ζpd ).

5. Congruences and their failure for L-values

This paper considers integrality properties of certain Artin L-functions at 0. It
may seem most natural that if two such Artin representations ρ1, ρ2 : Gal(Q/k)→
GLn(Qp) have the same semisimplification mod p and do not contain the character
ω−1

p , then L(0, ρ1) and L(0, ρ2), which are in Zp by Conjecture 1, have the same
reduction mod p. This is not true even in the simplest case of Dirichlet characters
for Q. It is possible to fix this problem for abelian characters of Q, and more
generally for any totally real number field, which is what this section strives to do;
see Proposition 13. The recipe given in Proposition 13 immediately suggests itself
in the nonabelian case, but we have not spelled it out.

The problem that we find dealing with abelian characters χ1, χ2 is that they may
be congruent for some prime, but may have different conductors in which case it is
not the L-values L(0, χ1) and L(0, χ2)which are congruent, but a modified L-value,
say L f (0, χ), which gives the right congruence; these L-values are products of∏
℘(1−χ(℘)) with L(0, χ) where ℘ are all primes dividing either the conductor

of χ1 or of χ2.
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We begin with some elementary lemmas which go into congruences of L-values
at 0 of Dirichlet characters, and then we consider totally real number fields.

Lemma 9. Let V be a vector space over Q, and χ =χ f :Z/ f → V be any function
with the property that

∑ f
a=1 χ(a)= 0. Let χd f be the function on Z/d f obtained

from χ by composing with the natural map Z/d f → Z/ f . Then:

(1) L(0, χ) := 1
f

∑ f
a=1 aχ(a)= 1

d f

∑d f
a=1 aχd f (a) := L(0, χd f ).

(2) Let χ : (Z/ f )×→ C× be a primitive character of conductor f with χ 6= 1.
Then for any f | f ′,

1
f ′

f ′∑
a=1

(a, f ′)=1

aχ(a)=
∏
p| f ′
(1−χ(p))L(0, χ).

Proof. Observe that

d f∑
a=1

aχd f (a)=
f∑

a=1

d−1∑
i=0

(a+ i f )χd f (a+ i f )

=

f∑
a=1

d−1∑
i=0

(a+ i f )χ(a)

=

f∑
a=1

[
daχ(a)+

f d(d − 1)
2

χ(a)
]

= d
f∑

a=1

aχ(a),

where in the last step we have used that
∑ f

a=1 χ(a)= 0. The proof of part (1) of
the lemma follows.

The proof of part (2) will proceed in several steps, according to the value of f ′.
Observe first that if f and f ′ have the same prime divisors, then (a, f )= 1 if and
only (a, f ′)= 1. Therefore,

1
f ′

f ′∑
a=1

(a, f ′)=1

aχ(a)=
1
f ′

f ′∑
a=1

aχ f ′(a)=
1
f

f∑
a=1

aχ f (a),

where the second equality is a consequence of part (1) of the lemma. In this case,
i.e., when f and f ′ have the same prime divisors, for all p | f ′, χ(p)= 0. It follows
that

∏
p| f ′(1−χ(p))= 1, proving this case of part (2) of the lemma.
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Assume next that f ′ = f pm , m ≥ 1 and p a prime with ( f, p)= 1. In this case
note that (using the notation of L(0, χ f pm ) introduced in part (1) of the lemma),

L(0, χ f pm )=
1

f pm

f pm∑
a=1

(a, f pm)=1

aχ(a)+
1

f pm

f pm−1∑
i=1

(pi)χ f pm−1(pi)

=
1

f pm

f pm∑
a=1

(a, f pm)=1

aχ(a)+χ(p)L(0, χ f pm−1).

Since by part (1) of the lemma, L(0, χ f pm )= L(0, χ f pm−1), the proof of part (2)
follows in this case.

For general f ′= d f ′′, with f ′′ having the same prime divisors as f , and d having
prime divisors which are coprime to those of f , let d = pm1

1 · · · p
mr
r . We argue by

induction on r , thus assuming the result for dr−1 = pm1
1 · · · p

mr−1
r−1 , adding the prime

power pmr
r at the end which proves (2) for d = pm1

1 · · · p
mr
r using part (1), and part

of (2) just proved for prime powers (to be used for pmr
r ). �

Lemma 10. Let χ1, χ2 : (Z/ f )× → Z×p be two (not necessarily primitive) odd
characters. Consider χ1, χ2 as functions on Z/ f by declaring their values outside
of (Z/ f )× to be zero. Assume that the reductions mod ℘, χ1, χ2 : (Z/ f )×→ F×p ,
are the same. If p | f , assume that neither of the χ1, χ2 : (Z/ f )×→ F×p factors
through (Z/p)× → F×p to give ω−1

p where ωp is the natural map from (Z/p)×

to F×p . Then L f (0, χ1) :=
1
f

∑ f
a=1 aχ1(a) and L f (0, χ2) :=

1
f

∑ f
a=1 aχ2(a) are

in Zp, and have the same reduction to Fp.

Proof. By the hypothesis in the lemma, there is a b∈ (Z/ f )× such that [bχ1(b)−1]∈
Z×p , and hence also [bχ2(b)− 1] ∈ Z×p . Fix such a b ∈ (Z/ f )×.

For a ∈ {1, . . . , f }, write

ab = [ab] + λa f,

with [ab] ∈ {1, . . . , f }.
From the definition of L f (0, χ1),

bχ1(b)L f (0, χ1)=
1
f

f∑
a=1

abχ1(ab).

As b is invertible in Z/ f , a → [ab] is a bijection on {1, . . . , f }; therefore, the
above equation yields

(6) [bχ1(b)− 1]L f (0, χ1)=

f∑
a=1

λaχ1(ab).
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Similarly,

(7) [bχ2(b)− 1]L f (0, χ2)=

a= f∑
a=1

λaχ2(ab).

Since χ1, χ2 are congruent, the right-hand sides of (6) and (7) are the same in Fp,
and by the choice of b made in the beginning of the proof of the lemma, [bχ1(b)−1]
as well as [bχ2(b)− 1] are in F×p , and are the same; thus, it follows that L f (0, χ1)

and L f (0, χ2) are in Zp, and are the same in Fp. �

Proposition 11. Let f1, f2 be integers, and f any integer divisible by both f1, f2.
Suppose χ1 and χ2 are primitive odd Dirichlet characters of conductors f1 and f2

with values in Z×p , respectively. If p | f , assume that neither of the χ1, χ2 :

(Z/ f )×→F×p factor through (Z/p)×→F×p to giveω−1
p whereωp is the natural map

from (Z/p)× to F×p . Then L f (0, χ1) :=
1
f

∑ f
a=1 aχ1(a) (where χ1 is considered as

a function on Z/ f zero outside (Z/ f )×) has the value given by

L f (0, χ1)=
∏
p| f
(1−χ1(p)) · L(0, χ1)

and similarly for L f (0, χ2). Both L(0, χ1) and L(0, χ2) are Zp, and if χ1 and χ2

are congruent modulo the maximal ideal in Zp, so is the case for L f (0, χ1) and
L f (0, χ2).

Proof. L f (0, χ1) :=
1
f

∑ f
a=1 aχ1(a) has the value as asserted in the proposition by

part (2) of Lemma 9, and their congruence holds by Lemma 10. �

Corollary 12. If χ1 and χ2 have conductors f1 and f2 such that the prime divisors
of f1 and f2 are the same, then for f which is the least common multiple of f1

and f2, L f (0, χ1) = L(0, χ1) and L f (0, χ2) = L(0, χ2); hence, if χ1 and χ2 are
congruent, so are L(0, χ1) and L(0, χ2). On the other hand, suppose f1 = p,
f2 = pq , and χ2 = χ1×α : (Z/p)×× (Z/q)× = (Z/pq)×→ Z×p with α = 1; then

L pq(0, χ2)= L(0, χ2),

L pq(0, χ1)= (1−χ1(q))L(0, χ1).

Since L pq(0, χ1) and L pq(0, χ2) are congruent mod ℘, we find that if L(0, χ1) and
L(0, χ2) are not both zero mod ℘, they cannot be the same mod ℘ since (1−χ1(q))
cannot be 1 mod ℘.

Remark. The hypothesis that the reduction mod ℘ of χ : (Z/ f )×→ Z×p does not
factor through (Z/p)×→ F×p to give ω−1

p is stronger than what is required for p-
integrality of L(0, χ). For example, by Lemma 4, L(0, χ) is integral if the conductor
of χ has two distinct prime factors, say f = pq , with (Z/ f )× = (Z/p)×× (Z/q)×,
and χ = α × β. In Lemma 10 we would be excluding characters χ for which
α = ω−1

p , and β = 1.
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Here is the more general version of the previous proposition.

Proposition 13. Let k be a totally real number field with G=Gal(Q/k) its absolute
Galois group. For χ : G→ Z×p , a character of finite order of G, which is also to
be considered as a character of the group of ideals coprime to a nonzero ideal f
in k by class field theory (so f is divisible by the conductor of χ , but may not be the
conductor of χ ), let L(s, χ) be the “true” L-function associated to the character χ ,
and define L f(s, χ) by

L f(s, χ)=
∑
(a,f)=1

χ(a)

(Na)s
,

where Na denotes the norm of an integral ideal a in k. Then:

(1) L f(s, χ)=
∏
℘|f

(
1−

χ(℘)

(N℘)s

)
· L(s, χ).

(2) For any integral ideals c in k coprime to pf, integers k ≥ 1,

1c(1− k, χ)= (1−χ(c)Nck)L f(1− k, χ)

are in Zp.

(3) If χ1 and χ2 are two characters of G with values in Z×p with conductors
dividing f, such that neither of the two reductions χ1, χ2 : G → F×p is ω−1

p ,
then L f(0, χ1) and L f(0, χ2) are in Zp, and if χ1 and χ2 are congruent modulo
the maximal ideal in Zp, so is the case for L f(0, χ1) and L f(0, χ2).

Proof. Deligne and Ribet [1980, Theorem 0.4] (see also [Ribet 1979, Theorem 2.1,
Proposition 1.4]) prove integrality of 1c(1 − k, χ), as well as the congruence
between 1c(1− k, χ1) and 1c(1− k, χ2).

The final congruence between L f(0, χ1) and L f(0, χ2) follows as in Lemma 10
by choosing an integral ideal c coprime to pf such that (1−χ(c)Nc) is a unit in Zp

which follows just as in Lemma 10 for χ = χ1 (hence for χ = χ2 too), because
χ1 : G→ F×p is not ω−1

p (see in the beginning of [Ribet 1979, §2] how the “norm
map” under the identification of characters on ideals coprime to f to characters of G
becomes action of G on p-power roots of identity). �

The discussion in this section leads us to the following conjecture.

Conjecture 14. Let k be a totally real number field and p an odd prime. Let
ρ : Gal(Q/k) → GLn(Fp) be a set of semisimple modular representations of
the Galois group Gal(Q/k) with ρ(c) = −1, where c is a complex conjugation
in Gal(Q/k). Assume that the set of representations ρ considered are unramified
outside a fixed finite set of finite places S of k, and that ω⊗ ρ does not contain the
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trivial representation of Gal(Q/k) where ω is the action of Gal(Q/k) on the p-th
roots of unity. Then it is possible to define L S(0, ρ) ∈ Fp with

L S(0, ρ1+ ρ2)= L S(0, ρ1) · L S(0, ρ2),

for any two such representations ρ1 and ρ2, and such that, if ρ arises as the
semisimplification of reduction mod p of a representation ρ :Gal(Q/k)→GLn(Qp)

with ρ(c)=−1, where c is a complex conjugation in Gal(Q/k), then

L S(0, ρ)= L(0, ρ)/
∏
v∈S

L(0, ρv),

which belongs to Zp by Conjecture 1, has its reduction mod p to be L S(0, ρ).

The conjecture above requires that if two representations ρ1, ρ2 : Gal(Q/k)→
GLn(Qp) have the same semisimplification mod p, then L S(0, ρ1) and L S(0, ρ2)

are in Zp and have the same reduction mod p. By a well known theorem of Brauer,
a modular representation ρ can be lifted to a virtual representation

∑
niρi in

characteristic 0. However, since L(0, ρi ) may be zero mod p, for some i (for which
ni < 0), the theorem of Brauer does not guarantee that L S(0, ρ) can be defined.
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TRANSITIVE TOPOLOGICAL MARKOV CHAINS
OF GIVEN ENTROPY AND PERIOD

WITH OR WITHOUT MEASURE OF MAXIMAL ENTROPY

SYLVIE RUETTE

We show that, for every positive real number h and every positive integer p,
there exist oriented graphs G, G′ (with countably many vertices) that are
strongly connected, of period p, of Gurevich entropy h, and such that G is
positive recurrent (thus the topological Markov chain on G admits a mea-
sure of maximal entropy) and G′ is transient (thus the topological Markov
chain on G′ admits no measure of maximal entropy).

1. Vere-Jones classification of graphs

In this paper, all the graphs are oriented and have a finite or countable set of vertices,
and if u, v are two vertices, there is at most one arrow u→ v. A path of length n
in the graph G is a sequence of vertices (u0, u1, . . . , un) such that ui → ui+1 in G
for all i ∈ [[0, n− 1]]. This path is called a loop if u0 = un .

Definition 1. Let G be an oriented graph, and let u, v be two vertices in G. We
define the following quantities:

• pG
uv(n) is the number of paths (u0, u1, . . . , un) such that u0 = u and un = v;

Ruv(G) is the radius of convergence of the series
∑

pG
uv(n)z

n .

• f G
uv(n) is the number of paths (u0, u1, . . . , un) such that u0 = u, un = v, and

ui 6= v for all 0 < i < n; Luv(G) is the radius of convergence of the series∑
f G
uv(n)z

n .

Definition 2. Let G be an oriented graph and V its set of vertices. The graph G
is strongly connected if, for all u, v ∈ V , there exists a path from u to v in G.
The period of a strongly connected graph G is the greatest common divisor of
(pG

uu(n))u∈V, n≥0. The graph G is aperiodic if its period is 1.

Proposition 3 [Vere-Jones 1962]. Let G be an oriented graph. If G is strongly
connected, Ruv(G) does not depend on u and v; it is denoted by R(G).

MSC2010: primary 37B10; secondary 37B40.
Keywords: topological Markov chain, countable oriented graph, topological entropy.
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transient null positive
recurrent recurrent∑

n>0 f G
uu(n)R

n < 1 1 1∑
n>0 n f G

uu(n)R
n

≤+∞ +∞ <+∞∑
n≥0 pG

uv(n)R
n <+∞ +∞ +∞

limn→+∞ pG
uv(n)R

n 0 0 λuv > 0
R = Luu R = Luu R ≤ Luu

Table 1. Properties of the series associated to a transient, null
recurrent or positive recurrent graph G (G is strongly connected);
these properties do not depend on the vertices u, v.

If there is no confusion, R(G) and Luv(G) will be written R and Luv.
Vere-Jones [1962] gives a classification of strongly connected graphs as transient,

null recurrent, or positive recurrent. These definitions are lines 1 and 2 in Table 1.
The other lines of Table 1 state properties of the series

∑
pG

uv(n)z
n , which give

alternative definitions (lines 3 and 4 are in [Vere-Jones 1962], and the last line is
Proposition 4).

Proposition 4 [Salama 1992]. Let G be a strongly connected oriented graph. If G
is transient or null recurrent, then R = Luu for all vertices u. Equivalently, if there
exists a vertex u such that R < Luu , then G is positive recurrent.

2. Topological Markov chains and Gurevich entropy

Let G be an oriented graph and V its set of vertices. We define 0G as the set of
two-sided infinite paths in G, that is,

0G := {(vn)n∈Z | for all n ∈ Z, vn→ vn+1 in G} ⊂ V Z.

The map σ is the shift on 0G . The topological Markov chain on the graph G is the
dynamical system (0G, σ ).

The set V is endowed with the discrete topology, and 0G is endowed with the
induced topology of V Z. The space 0G is not compact unless G is finite.

The topological Markov chain (0G, σ ) is transitive if and only if the graph G is
strongly connected. It is topologically mixing if and only if the graph G is strongly
connected and aperiodic.

If G is a finite graph, 0G is compact and the topological entropy htop(0G, σ )

is well defined (see, e.g., [Denker et al. 1976] for the definition of the topological
entropy). If G is a countable graph, the Gurevich entropy [1969] of the graph G (or
of the topological Markov chain 0G) is given by

h(G) := sup{htop(0H , σ ) | H ⊂ G, H finite}.
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This entropy can also be computed in a combinatorial way, as the exponential
growth of the number of paths with fixed endpoints.

Proposition 5 [Gurevich 1970]. Let G be a strongly connected oriented graph.
Then for all vertices u, v,

h(G)= lim
n→+∞

1
n

log pG
uv(n)=− log R(G).

Moreover, the variational principle is still valid for topological Markov chains.

Theorem 6 [Gurevich 1969]. Let G be an oriented graph. Then

h(G)= sup{hµ(0G) | µ σ -invariant probability measure}.

In this variational principle, the supremum is not necessarily reached. The next
theorem gives a necessary and sufficient condition for the existence of a measure of
maximal entropy (that is, a probability measure µ such that h(G)= hµ(0G)) when
the graph is strongly connected.

Theorem 7 [Gurevich 1970]. Let G be a strongly connected oriented graph of finite
positive entropy. Then the topological Markov chain on G admits a measure of
maximal entropy if and only if the graph G is positive recurrent. Moreover, such a
measure is unique if it exists.

3. Construction of graphs of given entropy and given period
that are either positive recurrent or transient

Lemma 8. Let β ∈ (1,+∞). There exist a sequence of nonnegative integers
(a(n))n≥1 and positive constants c,M such that

• a(1)= 1,

•
∑

n≥1 a(n)(1/βn)= 1,

• for all n ≥ 2, c ·βn2
−n
≤ a(n2)≤ c ·βn2

−n
+M ,

• for all n ≥ 1, 0≤ a(n)≤ M if n is not a square.

These properties imply that the radius of convergence of
∑

n≥1 a(n)zn is L = 1/β
and that

∑
n≥1 na(n)Ln <+∞.

Proof. First we look for a constant c > 0 such that

(1)
1
β
+ c

∑
n≥2

βn2
−n 1
βn2 = 1.

We have ∑
n≥2

βn2
−n 1
βn2 =

∑
n≥2

β−n
=

1
β(β − 1)

.



320 SYLVIE RUETTE

Thus,

(1) ⇐⇒
1
β
+

c
β(β − 1)

= 1 ⇐⇒ c = (β − 1)2.

Since β > 1, the constant c := (β−1)2 is positive. We define the sequence (b(n))n≥1

by

• b(1) := 1,

• b(n2) := bcβn2
−n
c for all n ≥ 2,

• b(n) := 0 for all n ≥ 2 such that n is not a square.

Then ∑
n≥1

b(n)
1
βn ≤

1
β
+ c

∑
n≥2

βn2
−n 1
βn2 = 1.

We set δ := 1−
∑

n≥1 b(n)(1/βn)∈ [0, 1) and k := bβ2δc. Then k ≤ β2δ < k+1<
k+β, which implies that 0≤ δ−k/β2< 1/β. We write the β-expansion of δ−k/β2

(see, e.g., [Dajani and Kraaikamp 2002, p. 51] for the definition): there exist integers
d(n) ∈ {0, . . . , bβc} such that δ− k/β2

=
∑

n≥1 d(n)(1/βn). Moreover, d(1)= 0
because δ− k/β2 < 1/β. Thus, we can write

δ =
∑
n≥2

d ′(n)
1
βn

where d ′(2) := d(2)+ k and d ′(n) := d(n) for all n ≥ 3.
We set a(1) := b(1) and a(n) := b(n)+d ′(n) for all n ≥ 2. Let M := β+ k. We

then have

• a(1)= 1,

•
∑

n≥1 a(n)(1/βn)= 1,

• for all n ≥ 2, c ·βn2
−n
≤ a(n2)≤ c ·βn2

−n
+β ≤ c ·βn2

−n
+M ,

• 0≤ a(2)≤ β + k = M ,

• for all n ≥ 3, 0≤ a(n)≤ β ≤ M if n is not a square.

The radius of convergence L of
∑

n≥1 a(n)zn satisfies

− log L = lim sup
n→+∞

1
n

log a(n)= lim
n→+∞

1
n2 log a(n2)= logβ

because a(n2)∼ cβn2
−n.

Thus, L = 1/β. Moreover,∑
n≥1

na(n)
1
βn ≤M

∑
n≥1

n
1
βn +c

∑
n≥1

n2βn2
−n 1
βn2 =M

∑
n≥1

n
βn +c

∑
n≥1

n2

βn <+∞. �
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u

Figure 1. The graphs G(β) and G ′(β); the bold loop belongs to
G(β) and not to G ′(β), otherwise the two graphs coincide.

Lemma 9 [Ruette 2003, Lemma 2.4]. Let G be a strongly connected oriented graph
and u a vertex.

(i) R < Luu if and only if
∑

n≥1 f G
uu(n)L

n
uu > 1.

(ii) If G is recurrent, then R is the unique positive number x such that∑
n≥1

f G
uu(n)x

n
= 1.

Proof. For (i) and (ii), use Table 1 and the fact that F(x) =
∑

n≥1 f G
uu(n)x

n is
increasing for x ∈ [0,+∞). �

Proposition 10. Let β ∈ (1,+∞). There exist aperiodic strongly connected graphs
G ′(β)⊂ G(β) such that h(G(β))= h(G ′(β))= logβ, G(β) is positive recurrent,
and G ′(β) is transient.

Remark. Salama [1988, Theorem 3.9] proved the part of this proposition concern-
ing positive recurrent graphs.

Proof. This is a variant of the proof of [Ruette 2003, Example 2.9].
Let u be a vertex, and let (a(n))n≥1 be the sequence given by Lemma 8 for β.

The graph G(β) is composed of a(n) loops of length n based at the vertex u for all
n ≥ 1 (see Figure 1). More precisely, define the set of vertices of G(β) as

V := {u} ∪
+∞⋃
n=1

{v
n,i
k | i ∈ [[1, a(n)]], k ∈ [[1, n− 1]]},

where the vertices vn,i
k above are distinct. Let vn,i

0 = v
n,i
n = u for all i ∈ [[1, a(n)]].

There is an arrow v
n,i
k → v

n,i
k+1 for all k ∈ [[0, n−1]], i ∈ [[1, a(n)]], and n ≥ 2; there

is an arrow u→ u; and there is no other arrow in G(β). The graph G(β) is strongly
connected, and f G(β)

uu (n)= a(n) for all n ≥ 1.
By Lemma 8, the sequence (a(n))n≥1 is defined such that L = 1/β and

(2)
∑
n≥1

a(n)Ln
= 1,
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where L = Luu(G(β)) is the radius of convergence of the series
∑

a(n)zn . If G(β)
is transient, then R(G(β))= Luu(G(β)) by Proposition 4. But (2) contradicts the
definition of transient (see the first line of Table 1). Thus, G(β) is recurrent, and
R(G(β))= L by (2) and Lemma 9(ii). Moreover,∑

n≥1

na(n)Ln <+∞

by Lemma 8, and thus the graph G(β) is positive recurrent (see Table 1). By
Proposition 5, h(G(β))=− log R(G(β))= logβ.

The graph G ′(β) is obtained from G(β) by deleting a loop starting at u of length
n0 for some n0≥ 2 such that a(n0)≥ 1 (such an integer n0 exists because L <+∞).
Obviously one has Luu(G ′(β))= L and∑

n≥1

f G ′(β)
uu (n)Ln

= 1− Ln0 < 1.

Since R(G ′(β)) ≤ Luu(G ′(β)), this implies that G ′(β) is transient. Moreover,
R(G ′(β)) = Luu(G ′(β)) by Proposition 4, so R(G ′(β)) = R(G(β)), and hence
h(G ′(β))= h(G(β)) by Proposition 5. Finally, both G(β) and G ′(β) are of period 1
because of the arrow u→ u. �

Corollary 11. Let p be a positive integer and h ∈ (0,+∞). There exist strongly
connected graphs G,G ′ of period p such that h(G) = h(G ′) = h, G is positive
recurrent, and G ′ is transient.

Proof. For G, we start from the graph G(β) given by Proposition 10 with β = ehp.
Let V denote the set of vertices of G(β). The set of vertices of G is V × [[1, p]],
and the arrows in G are

• (v, i)→ (v, i + 1) if v ∈ V and i ∈ [[1, p− 1]],

• (v, p)→ (w, 1) if v,w ∈ V and v→ w is an arrow in G(β).

According to the properties of G(β), G is strongly connected, of period p, and
positive recurrent. Moreover, h(G)= (1/p)h(G(β))= (1/p) logβ = h.

For G ′, we do the same starting with G ′(β). �

According to Theorem 7, the graphs of Corollary 11 satisfy that the topological
Markov chain on G admits a measure of maximal entropy whereas the topological
Markov chain on G ′ admits no measure of maximal entropy; both are transitive, of
Gurevich entropy h, and supported by a graph of period p.
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RESTRICTED SUM FORMULA FOR
FINITE AND SYMMETRIC MULTIPLE ZETA VALUES

HIDEKI MURAHARA AND SHINGO SAITO

The sum formula for finite and symmetric multiple zeta values, established
by Wakabayashi and the authors, implies that if the weight and depth are
fixed and the specified component is required to be more than one, then the
values sum up to a rational multiple of the analogue of the Riemann zeta
value. We prove that the result remains true if we further demand that the
component should be more than two or that another component should also
be more than one.

1. Introduction

The multiple zeta values and multiple zeta-star values are the real numbers defined
by

ζ(k1, . . . , kr )=
∑

m1>···>mr≥1

1

mk1
1 · · ·m

kr
r
,

ζ ?(k1, . . . , kr )=
∑

m1≥···≥mr≥1

1

mk1
1 · · ·m

kr
r

for k1, . . . , kr ∈ Z≥1 with k1 ≥ 2. They are generalisations of the values of the
Riemann zeta function at positive integers, and they are known to have interesting
algebraic structures due to the many relations among them, the simplest being
ζ(2, 1)= ζ(3). See, for example, the book by Zhao [2016] for further details on
multiple zeta(-star) values.

The variants of multiple zeta values that we shall be looking at in this paper
are finite multiple zeta values ζA(k1, . . . , kr ) and symmetric multiple zeta values
ζS(k1, . . . , kr ) (the latter also known as symmetrised multiple zeta values and finite
real multiple zeta values), both introduced by Kaneko and Zagier [≥ 2019] (see
[Zhao 2016] for details). Set A =

∏
p Fp/

⊕
p Fp, where p runs over all primes.
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values, finite real multiple zeta values, sum formula, restricted sum formula.
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For k1, . . . , kr ∈ Z≥1, we define

ζA(k1, . . . , kr )=

( ∑
p>m1>···>mr≥1

1

mk1
1 · · ·m

kr
r

mod p
)

p
∈A,

ζ ?A(k1, . . . , kr )=

( ∑
p>m1≥···≥mr≥1

1

mk1
1 · · ·m

kr
r

mod p
)

p
∈A.

Let Z denote the Q-linear subspace of R spanned by the multiple zeta values. For
k1, . . . , kr ∈ Z≥1, we define

ζS(k1, . . . , kr )=

r∑
j=0

(−1)k1+···+k j ζ(k j , . . . , k1)ζ(k j+1, . . . , kr ) mod ζ(2) ∈ Z/ζ(2)Z,

ζ ?S(k1, . . . , kr )=

r∑
j=0

(−1)k1+···+k j ζ ?(k j , . . . , k1)ζ
?(k j+1, . . . , kr ) mod ζ(2) ∈ Z/ζ(2)Z,

where we set ζ(∅)= ζ ?(∅)= 1. The multiple zeta(-star) values that appear in the
definition of the symmetric multiple zeta(-star) values are the regularised values if
the first component is 1; although there are two ways of regularisation, called the
harmonic regularisation and the shuffle regularisation, it is known that the symmetric
multiple zeta values remain unchanged as elements of Z/ζ(2)Z no matter which
regularisation we use (see [Kaneko and Zagier ≥ 2019]).

Kaneko and Zagier [≥ 2019] made a striking conjecture that the finite multiple
zeta values and the symmetric multiple zeta values are isomorphic; more precisely,
if we let ZA denote the Q-linear subspace of A spanned by the finite multiple zeta
values, then ZA and Z/ζ(2)Z are isomorphic as Q-algebras via the correspondence
ζA(k1, . . . , kr )↔ ζS(k1, . . . , kr ). It means that ζA(k1, . . . , kr ) and ζS(k1, . . . , kr )

satisfy the same relations, and a notable example of such relations is the sum
formula (Theorem 1.1). In what follows, we use the letter F when it can be replaced
with either A or S; for example, by ζF (1)= 0 we mean that both ζA(1)= 0 and
ζS(1)= 0 are true. We write

ZF (k)=
{
(Bp−k/k mod p)p if F =A,
ζ(k) mod ζ(2) if F = S

for k ∈ Z≥2, where Bn denotes the n-th Bernoulli number. Note that it can be
verified rather easily that

ζF (k− 1, 1)= ZF (k) for k ∈ Z≥2,

so that (Bp−k/k mod p)p corresponds to ζ(k) mod ζ(2) via the above-mentioned
isomorphism ZA ∼= Z/ζ(2)Z .
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Theorem 1.1 [Saito and Wakabayashi 2015; Murahara 2016]. For k, r, i ∈ Z with
1≤ i ≤ r ≤ k− 1, we have∑

k1+···+kr=k
ki≥2

ζF (k1, . . . , kr )= (−1)r
∑

k1+···+kr=k
ki≥2

ζ ?F (k1, . . . , kr )

= (−1)i−1
((

k− 1
i − 1

)
+ (−1)r

(
k− 1
r − i

))
ZF (k).

The theorem implies that the sums belong to QZF (k). Our main theorem states
that similar sums also belong to QZF (k) if k is odd:

Theorem 1.2 (main theorem). Let k be an odd integer with k ≥ 3, and let r be an
integer with 1≤ r ≤ k− 2.

(1) For i ∈ Z with 1≤ i ≤ r , we have∑
k1+···+kr=k

ki≥3

ζF (k1, . . . , kr )= (−1)r
∑

k1+···+kr=k
ki≥3

ζ ?F (k1, . . . , kr ) ∈QZF (k).

(2) For distinct i, j ∈ Z with 1≤ i, j ≤ r , we have∑
k1+···+kr=k

ki ,k j≥2

ζF (k1, . . . , kr )= (−1)r
∑

k1+···+kr=k
ki ,k j≥2

ζ ?F (k1, . . . , kr ) ∈QZF (k).

The rational coefficients can be written explicitly, though in a rather complicated
manner, in terms of binomial coefficients (see Theorem 3.1 for the precise statement).

Remark 1.3. If k is even, then ZF (k)= 0 and numerical experiments suggest that
the sums are not always equal to 0.

2. Preliminary lemmas

This section will give a few preliminary lemmas that will be used to prove our main
theorem in the next section.

An index is a (possibly empty) sequence of positive integers. For an index
k = (k1, . . . , kr ), the number r is called its depth and k1+ · · ·+ kr its weight.

Proposition 2.1. If (k1, . . . , kr ) is a nonempty index, then∑
σ∈Sr

ζF (kσ(1), . . . , kσ(r))=
∑
σ∈Sr

ζ ?F (kσ(1), . . . , kσ(r))= 0,

where Sr denotes the symmetric group of order r .

Proof. Roughly speaking, the sums are zero because they can be written as poly-
nomials of the values ζF (k), which are all zero. For details, see [Hoffman 2015,
Theorem 2.3; Saito 2017, Proposition 2.7], for example. �
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We write {k}r for the r times repetition of k.

Corollary 2.2. For k, r ∈ Z≥1, we have

ζF ({k}r )= ζ ?F ({k}
r )= 0.

Proof. Apply Proposition 2.1 to (k1, . . . , kr )= ({k}r ). �

Definition 2.3. For each index k, write its components as sums of ones, and define
its Hoffman dual k∨ as the index obtained by swapping plus signs and commas.

Example 2.4. If k= (2, 1, 3)= (1+1, 1, 1+1+1), then k∨= (1, 1+1+1, 1, 1)=
(1, 3, 1, 1).

The following theorem, known as duality, was proved by Hoffman [2015] for
the F =A case and by Jarossay [2014] for the F = S case:

Theorem 2.5 [Hoffman 2015; Jarossay 2014]. If k is a nonempty index, then

ζ ?F (k
∨)=−ζ ?F (k).

For indices k and l of the same weight, we write k� l to mean that, writing their
components as sums of ones, we can obtain l from k by replacing some (possibly
none) of the plus signs with commas. For example, (2, 1, 3)= (1+1, 1, 1+1+1)�
(1, 1, 1, 1+ 1, 1)= (1, 1, 1, 2, 1).

Corollary 2.6. If k is a nonempty index of depth r , then

(−1)rζF (k)=
∑
l�k

ζF (l).

Proof. An easy combinatorial argument shows that this corollary is equivalent to
Theorem 2.5; see [Saito 2017, Corollary 2.15] for details. �

We adopt the standard convention for binomial coefficients that
(a

b

)
= 0 if a ∈Z≥0

and b ∈ Z \ {0, . . . , a}. For notational simplicity, we write[a
b

]
= (−1)b

(a
b

)
for a ∈ Z≥0 and b ∈ Z (not to be confused with the Stirling numbers of the first
kind). Then Theorem 1.1 can be rewritten as follows:

Theorem 2.7 (another form of Theorem 1.1). For k, r, i ∈ Z with 1≤ i ≤ r ≤ k−1,
we have ∑

k1+···+kr=k
ki≥2

ζF (k1, . . . , kr )= (−1)r
∑

k1+···+kr=k
ki≥2

ζ ?F (k1, . . . , kr )

=

([
k− 1
i − 1

]
−

[
k− 1
r − i

])
ZF (k).
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Lemma 2.8. For a, b ∈ Z≥0 with a+ b odd, we have

ζF ({1}a, 2, {1}b)=−
[

a+ b+ 2
a+ 1

]
ZF (a+ b+ 2)=

[
a+ b+ 2

b+ 1

]
ZF (a+ b+ 2).

Proof. Applying Theorem 2.7 to k = a+ b+ 2, r = a+ b+ 1, and i = a+ 1 gives

ζF ({1}a, 2, {1}b)=
([

a+ b+ 1
a

]
−

[
a+ b+ 1

b

])
ZF (a+ b+ 2),

and we have[
a+ b+ 1

a

]
−

[
a+ b+ 1

b

]
= (−1)a

(
a+ b+ 1

a

)
− (−1)b

(
a+ b+ 1

b

)
=−(−1)a+1

((
a+ b+ 1

a

)
+

(
a+ b+ 1

a+ 1

))
=−(−1)a+1

(
a+ b+ 2

a+ 1

)
=−

[
a+ b+ 2

a+ 1

]
.

By a similar reasoning, we also have[
a+ b+ 1

a

]
−

[
a+ b+ 1

b

]
=

[
a+ b+ 2

b+ 1

]
. �

Lemma 2.9. For a, b ∈ Z≥0 and c ∈ Z≥−1 with a+ b+ c odd, we have

ζF ({1}a, 2, {1}c, 2, {1}b)= 1
2

([a+b+c+4
a+1

]
−

[a+b+c+4
b+1

])
ZF (a+b+c+4),

where we understand that ζF ({1}a, 2, {1}−1, 2, {1}b)= ζF ({1}a, 3, {1}b).

Proof. Keeping Corollary 2.2 in mind, we apply Corollary 2.6 to

k = ({1}a, 2, {1}c, 2, {1}b)

to get

−ζF ({1}a, 2, {1}c, 2, {1}b)

= ζF ({1}a, 2, {1}c, 2, {1}b)+ ζF ({1}a, 2, {1}b+c+2)+ ζF ({1}a+c+2, 2, {1}b),

no matter whether c =−1 or c ≥ 0. This, together with Lemma 2.8, gives

ζF ({1}a, 2, {1}c, 2, {1}b)

=−
1
2

(
ζF ({1}a, 2, {1}b+c+2)+ ζF ({1}a+c+2, 2, {1}b)

)
=

1
2

([
a+ b+ c+ 4

a+ 1

]
−

[
a+ b+ c+ 4

b+ 1

])
ZF (a+ b+ c+ 4). �
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3. Proof of the main theorem

Throughout this section, let k be an odd integer with k ≥ 3, and let r , i , j be integers
with 1≤ i ≤ j ≤ r ≤ k− 2. Set

Ik,r,i, j =

{
{(k1, . . . , kr ) ∈ Zr

≥1 | ki ≥ 3} if i = j,
{(k1, . . . , kr ) ∈ Zr

≥1 | ki , k j ≥ 2} if i < j,
and write

Sk,r,i, j =
∑

k∈Ik,r,i, j

ζF (k), S?k,r,i, j =
∑

k∈Ik,r,i, j

ζ ?F (k).

For notational simplicity, we put i ′ = j − i + 1, i ′′ = r − j + 1, and k ′ = k− r − 2,
so that i + i ′+ i ′′+ k ′ = k.

The aim of this section is to prove the following theorem, from which Theorem 1.2
easily follows:

Theorem 3.1. We have

Sk,r,i, j = (−1)r S?k,r,i, j =
1
2 Nk,r,i, jZF (k),

where Nk,r,i, j is an integer given by

Nk,r,i, j = (k ′+ i+1)
([

k− 1
k ′+ i

]
−

[
k− 1
i − 1

])
− (k ′+ i ′′+1)

([
k− 1

k ′+ i ′′

]
−

[
k− 1
i ′′− 1

])
+ k

([
k− 2

k ′+ i − 1

]
−

[
k− 2
i − 2

]
−

[
k− 2

k ′+ i ′′− 1

]
+

[
k− 2
i ′′− 2

])
.

Proof that Sk,r,i, j = (−1)r S?
k,r,i, j . In this subsection, we shall prove that Sk,r,i, j =

(−1)r S?k,r,i, j (Lemma 3.4).

Proposition 3.2. If (k1, . . . , kr ) is an index, then

ζF (kr , . . . , k1)= (−1)k1+···+kr ζF (k1, . . . , kr ),

ζ ?F (kr , . . . , k1)= (−1)k1+···+kr ζ ?F (k1, . . . , kr ).

Proof. Easy from the definitions; see [Saito 2017, Proposition 2.6] for details. �

Proposition 3.3. If k = (k1, . . . , kr ) is a nonempty index, then
r∑

s=0

(−1)sζ ?F (ks, . . . , k1)ζF (ks+1, . . . , kr )= 0,

where we set ζF (∅)= ζ ?F (∅)= 1.

Proof. Well known; see [Saito 2017, Proposition 2.9] for the detailed proof. �

Lemma 3.4. We have
Sk,r,i, j = (−1)r S?k,r,i, j .
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Proof. Adding the equation in Proposition 3.3 for all (k1, . . . , kr ) ∈ Ik,r,i, j gives

r∑
s=0

(−1)s
∑

(k1,...,kr )∈Ik,r,i, j

ζ ?F (ks, . . . , k1)ζF (ks+1, . . . , kr )= 0,

whose left-hand side we shall write as
∑r

s=0(−1)s As for simplicity. Observe that
A0 = Sk,r,i, j and that

Ar =
∑

(k1,...,kr )∈Ik,r,i, j

ζ ?F (kr , . . . , k1)

=

∑
(k1,...,kr )∈Ik,r,i, j

(−1)k1+···+kr ζ ?F (k1, . . . , kr )

=−S?k,r,i, j

by Proposition 3.2 because k is odd. For s = j, . . . , r − 1, we have

As =

k∑
l=0

( ∑
(k1,...,ks)∈Il,s,i, j

ζ ?F (ks, . . . , k1)

)( ∑
ks+1+···+kr=k−l

ζF (ks+1, . . . , kr )

)
= 0

because of Proposition 2.1; we similarly have As = 0 for s = 1, . . . , i − 1. If i < j
and i ≤ s ≤ j − 1, then we have

As =

k∑
l=0

( ∑
k1+···+ks=l

ki≥2

ζ ?F (ks, . . . , k1)

)( ∑
ks+1+···+kr=k−l

k j≥2

ζF (ks+1, . . . , kr )

)

=

k∑
l=0

(
(−1)l

∑
k1+···+ks=l

ki≥2

ζ ?F (k1, . . . , ks)

)( ∑
ks+1+···+kr=k−l

k j≥2

ζF (ks+1, . . . , kr )

)

=

k∑
l=0

(−1)l+s
([

l − 1
i − 1

]
−

[
l − 1
s− i

])
ZF (l)

([
k− l − 1
j − s− 1

]
−

[
k− l − 1

r − j

])
ZF (k−l)

by Proposition 3.2 and Theorem 2.7; since k is odd, either l or k− l must be even
and so ZF (l)ZF (k− l)= 0 for all l = 0, . . . , k, from which it follows that As = 0.
Therefore we have Sk,r,i, j − (−1)r S?k,r,i, j = 0, and the lemma follows. �

Computation of Sk,r,i, j . In this subsection, we shall compute Sk,r,i, j (Lemma 3.9).
The main ingredient of the computation is the following Ohno type relation, con-
jectured by Kaneko [2017] and established by Oyama [2018]:
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Theorem 3.5 [Oyama 2018, Theorem 1.4]. Let k = (k1, . . . , kr ) be an index, and
write its Hoffman dual as k∨ = (k ′1, . . . , k ′r ′). Then for m ∈ Z≥0, we have

∑
e1+···+er=m

e1,...,er≥0

ζF (k1+ e1, . . . , kr + er )=
∑

e′1+···+e′r ′=m
e′1,...,e

′
r≥0

ζF ((k ′1+ e′1, . . . , k ′r ′ + e′r ′)
∨).

Lemma 3.6. We have

Sk,r,i, j =
∑

e′1+e′2+e′3=k′

e′1,e
′

2,e
′

3≥0

ζF ((i + e′1, i ′+ e′2, i ′′+ e′3)
∨).

Proof. Theorem 3.5 shows that if i = j , then

Sk,r,i, j =
∑

e1+···+er=k′
e1,...,er≥0

ζF (1+ e1, . . . , 1+ ei−1, 3+ ei , 1+ ei+1, . . . , 1+ er )

=

∑
e′1+e′2+e′3=k′

e′1,e
′

2,e
′

3≥0

ζF ((i + e′1, i ′+ e′2, i ′′+ e′3)
∨),

and that if i < j , then

Sk,r,i, j =
∑

e1+···+er=k′
e1,...,er≥0

ζF
(
1+ e1, . . . , 1+ ei−1, 2+ ei ,

1+ ei+1, . . . , 1+ e j−1, 2+ e j , 1+ e j+1, . . . , 1+ er
)

=

∑
e′1+e′2+e′3=k′

e′1,e
′

2,e
′

3≥0

ζF ((i + e′1, i ′+ e′2, i ′′+ e′3)
∨). �

Lemma 3.7. We have

Sk,r,i, j =
1
2

∑
e′1+e′2+e′3=k′

e′1,e
′

2,e
′

3≥0

([
k

i + e′1

]
−

[
k

i ′′+ e′3

])
ZF (k).

Proof. Using the same convention as in the statement of Lemma 2.9, we have

(i + e′1, i ′+ e′2, i ′′+ e′3)
∨
= ({1}i+e′1−1, 2, {1}i

′
+e′2−2, 2, {1}i

′′
+e′3−1),
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and so by Lemmas 2.9 and 3.6, we have

Sk,r,i, j =
∑

e′1+e′2+e′3=k′

e′1,e
′

2,e
′

3≥0

ζF ((i + e′1, i ′+ e′2, i ′′+ e′3)
∨)

=

∑
e′1+e′2+e′3=k′

e′1,e
′

2,e
′

3≥0

ζF ({1}i+e′1−1, 2, {1}i
′
+e′2−2, 2, {1}i

′′
+e′3−1)

=
1
2

∑
e′1+e′2+e′3=k′

e′1,e
′

2,e
′

3≥0

([
k

i + e′1

]
−

[
k

i ′′+ e′3

])
ZF (k). �

Lemma 3.8. We have∑
e′1+e′2+e′3=k′

e′1,e
′
2,e
′
3≥0

[
k

i+e′1

]
= (k ′+i+1)

([
k−1
k ′+i

]
−

[
k−1
i−1

])
+k
([

k−2
k ′+i−1

]
−

[
k−2
i−2

])
,

∑
e′1+e′2+e′3=k′

e′1,e
′
2,e
′
3≥0

[
k

i ′′+e′3

]
= (k ′+i ′′+1)

([
k−1

k ′+i ′′

]
−

[
k−1
i ′′−1

])
+k
([

k−2
k ′+i ′′−1

]
−

[
k−2
i ′′−2

])
.

Proof. By symmetry, we only need to show the first equality, which can be seen as
follows:∑
e′1+e′2+e′3=k′

e′1,e
′

2,e
′

3≥0

[
k

i + e′1

]

=

k′∑
e′1=0

(−1)i+e′1(k ′− e′1+ 1)
(

k
i + e′1

)

=

k′∑
e′1=0

(−1)i+e′1((k ′+ i + 1)− (i + e′1))
(

k
i + e′1

)

= (k ′+ i + 1)
k′∑

e′1=0

(−1)i+e′1

(
k

i + e′1

)
− k

k′∑
e′1=0

(−1)i+e′1

(
k− 1

i + e′1− 1

)

= (k ′+ i + 1)
k′∑

e′1=0

(
(−1)i+e′1

(
k− 1
i + e′1

)
− (−1)i+e′1−1

(
k− 1

i + e′1− 1

))

+ k
k′∑

e′1=0

(
(−1)i+e′1−1

(
k− 2

i + e′1− 1

)
− (−1)i+e′1−2

(
k− 2

i + e′1− 2

))
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= (k ′+ i + 1)
(
(−1)k

′
+i
(

k− 1
k ′+ i

)
− (−1)i−1

(
k− 1
i − 1

))
+ k

(
(−1)k

′
+i−1

(
k− 2

k ′+ i − 1

)
− (−1)i−2

(
k− 2
i − 2

))
= (k ′+ i + 1)

([
k− 1
k ′+ i

]
−

[
k− 1
i − 1

])
+ k

([
k− 2

k ′+ i − 1

]
−

[
k− 2
i − 2

])
. �

Lemma 3.9. We have
Sk,r,i, j =

1
2 Nk,r,i, jZF (k),

where Nk,r,i, j is an integer given by

Nk,r,i, j = (k ′+ i+1)
([

k− 1
k ′+ i

]
−

[
k− 1
i − 1

])
− (k ′+ i ′′+1)

([
k− 1

k ′+ i ′′

]
−

[
k− 1
i ′′− 1

])
+ k

([
k− 2

k ′+ i − 1

]
−

[
k− 2
i − 2

]
−

[
k− 2

k ′+ i ′′− 1

]
+

[
k− 2
i ′′− 2

])
.

Proof. Immediate from Lemmas 3.7 and 3.8. �

Lemmas 3.4 and 3.9 complete the proof of our main theorem (Theorem 3.1).
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FROBENIUS–SCHUR INDICATORS FOR NEAR-GROUP
AND HAAGERUP–IZUMI FUSION CATEGORIES

HENRY TUCKER

Dedicated to Susan Montgomery

Ng and Schauenburg generalized higher Frobenius–Schur indicators to piv-
otal fusion categories and showed that these indicators may be computed
utilizing the modular data of the Drinfel’d center of the given category. We
consider two classes of fusion categories generated by a single noninvertible
simple object: near groups, those fusion categories with one noninvertible
object, and Haagerup–Izumi categories, those with one noninvertible object
for every invertible object. Examples of both types arise as representations
of finite or quantum groups or as Jones standard invariants of finite-depth
Murray–von Neumann subfactors. We utilize the computations of the tube
algebras due to Izumi and to Evans and Gannon to obtain formulae for the
Frobenius–Schur indicators of objects in both of these families.

1. Introduction

Fusion categories appear in a wide variety of mathematics and physics. Their
objects have the properties of complex representations of finite groups; in particular,
they are semisimple and have duals and tensor products. Important examples of
fusion categories come from the representations of Drinfel’d–Jimbo quantum groups
and Jones standard invariants of Murray–von Neumann subfactors. From the point
of view of these examples fusion categories encode symmetry data in the quantum
setting in the same way that finite groups do in the classical setting. Classification
problems for these categories do not come without considerable difficulty; therefore,
it is of great interest to find and understand categorical invariants.

The classical Frobenius–Schur indicator for finite groups was introduced in
1906. It determines if and how a given group representation is self-dual. This
was generalized to the setting of semisimple Hopf algebras by Linchenko and
Montgomery [2000] and further to the setting of quasi-Hopf algebras [Mason and
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Keywords: tensor category, fusion rules, Frobenius–Schur indicator, Drinfel’d center, modular data,

Haagerup subfactor, Hopf algebras.
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Ng 2005; Ng and Schauenburg 2008] and to pivotal tensor categories [Ng and
Schauenburg 2007b].

The FS indicators are a complete invariant for the Tambara–Yamagami categories
[Basak and Johnson 2015]. These are the fusion categories having exactly one
noninvertible simple object ρ where HomC(ρ⊗ ρ, ρ)= 0. In the present paper we
consider the near-group categories: those with exactly one noninvertible simple
object ρ where dimC(HomC(ρ⊗ ρ, ρ))= m. (The Tambara–Yamagami categories
are near groups with m = 0.) We provide the required background on this in
Section 2.

Letting G be the group of invertible objects in our near-group category, we find
in Section 3 that for the near-group categories with m = |G| − 1 the indicators are
a complete invariant:

Corollary 3.3. The near-group categories with m = |G| − 1 are completely distin-
guished by their Frobenius–Schur indicators.

To make the computations here we utilize [Ng and Schauenburg 2007a, Theorem
4.1]: the Frobenius–Schur indicators of a spherical fusion category can be computed
using the ribbon structure of the Drinfel’d center of the category. A complete list of
near-group fusion categories in the case where m = |G| ≤ 13 was found in [Evans
and Gannon 2014]. In each of these examples the modular data for the Drinfel’d
centers are given by quadratic forms. From this we get in Section 4:

Theorem 4.8. In all known near-group categories with m = |G| the noninvertible
object has Frobenius–Schur indicators given by quadratic Gauss sums.

This theorem provides new evidence for [Evans and Gannon 2014, Conjecture 2]:
the modular data (matrix invariants from the braiding) of the centers of these near
groups are always given by quadratic forms. The form of the indicators strongly
suggests that these centers are formed from some “crossed product” construction
for modular categories. See also the “pasting” of modular data developed in [Evans
and Gannon 2011].

Finally, in Section 5, we observe a similar result which supports a similar
conjecture for the Haagerup–Izumi categories, which are a related family of singly
generated fusion categories having one noninvertible object for each invertible
object:

Theorem 5.4. All known Haagerup–Izumi categories have Frobenius–Schur indi-
cators given by quadratic Gauss sums.

2. Categorical invariants

Tensor categories are abelian monoidal categories (C,⊗,1) enriched over complex
vector spaces; see [Etingof et al. 2015] or [Bakalov and Kirillov 2001] for the
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specifics of these definitions. The Mac Lane strictness theorem allows us the
working assumption of strictness: the associativity natural isomorphism is the
identity morphism for every triple of objects. Thus, we may use diagrammatic
notation for the morphisms in these categories. Our notation is read from top to
bottom, tensor products are given by side-by-side concatenation, and 1 is not written
at all. For examples, the morphisms

idV : V → V, g : V →U ⊗W, f : 1→ V1⊗ · · ·⊗ Vn

are rendered in diagrammatic notation, respectively, as

V

V

V

g

U W

f

V1 · · · Vn

Composition of morphisms is given by stacking; for example, given morphisms
p : V →W and q :U → V , their composition is given by

U

q

V

p

W

=

U

p◦q

W

Categorifications of semisimple rings. Tensor categories should be thought of as
a categorification of the notion of a unital algebra. The abelian and monoidal
categorical structures are analogues of addition and multiplication, respectively.
This point of view asks an obvious question:

What are the tensor categories that categorify a given ring?

This question has produced several different interesting classification results for
semisimple tensor categories: those where every object is a direct sum of some
irreducible objects [Tambara and Yamagami 1998; Izumi 2001; Evans and Gannon
2014; 2017]. The set of (isomorphism classes) of the irreducible objects is denoted
Irr(C).

Here we consider fusion categories: these are semisimple tensor categories
(C,⊗,1) that are additionally:
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• finitely semisimple: |Irr(C)|<∞ and 1 ∈ Irr(C).
• rigid: objects V ∈ C have duals V ∗ ∈ C with corresponding maps evV :

V ∗⊗ V → 1 and dbV : 1→ V ⊗ V ∗. These are given, respectively, by the
diagrams

V ∗ V� � and � �
V V ∗

satisfying the relations

V� �
� �

V

=

V

V

and

V ∗ � �
� �

V ∗

=

V ∗

V ∗

These two requirements are meant to make the objects of C behave like group
representations. Indeed, the tensor category Rep(G) of complex representations of a
finite group G is the prototypical example of a fusion category: Maschke’s theorem
gives finite semisimplicity and the contragredient representation gives rigidity.

Now we make precise the notion of categorification. The Grothendieck ring K0(C)
of a fusion category C is the Z-based ring with basis Irr(C), multiplication given
by the tensor product in C, and addition given by the direct sum in C; that is, K0(C)
captures the ring structure of the category and forgets the morphisms. In the example
of Rep(G) it is the character ring R(G). We say that C categorifies a ring K if
K0(C)= K .

The simplest class of based rings to consider are the group rings ZG, which are
categorified precisely by the pointed fusion categories. These are the categories
VecωG of G-graded vector spaces where the associativity morphism for the tensor
product of three irreducible objects is given by a 3-cocycle ω ∈ Z3(G,C×). These
categories are classified to equivalence by the cohomology class of [ω]∈H 3(G,C×).
These facts are due to Mac Lane [Etingof et al. 2015, Proposition 4.10.3].

Here we will consider another level of complication, based rings with (only) one
noninvertible object:

Definition 2.1. Let G be a finite group. A fusion category C is a near group if its
Grothendieck ring is given by

K0(C)= NG(G,m) := Z[G ∪ {ρ}]

where multiplication is given by the group law and, where g ∈ G,

ρg = ρ = gρ and ρ2
= mρ+

∑
h∈G

h.
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Remark 2.2 [Evans and Gannon 2014, Theorem 2(a)]. When G is abelian the
multiplicity m is restricted to the values

• m = |G| − 1 or

• m = k|G| for some k ∈ N.

Consider the following important examples.

(1) The representation categories for the dihedral group of order 8 and the quater-
nion group of order 8 both categorify NG(Z/(2)×Z/(2), 0). These are exam-
ples of Tambara–Yamagami categories, which are the near groups with m = 0
[Tambara and Yamagami 1998].

(2) Rep(S3) and Rep(A4) categorify NG(Z/(2), 1) and NG(Z/(3), 2), respectively.
These are examples where m = |G| − 1.

(3) The principal even sectors of the D5 Murray–von Neumann subfactor also
categorify NG(Z/(2), 1).

(4) Rep(AGL1(Fq)) categorifies NG(Z/(q − 1), q − 2).

(5) The principal even sectors of the A4, E6, and Izumi–Xu subfactors categorify
NG(Z/(1), 1), NG(Z/(2), 2), and NG(Z/(3), 3), respectively.

Frobenius–Schur indicators. It is known that the Grothendieck ring and the asso-
ciativity natural isomorphism completely determine a fusion category up to monoidal
equivalence [Etingof et al. 2015, §§4.9–4.10]. The associativity data is encoded by
the 6j symbols, which are the matrix components of the linear maps induced by the
associativity natural isomorphism on triples of simple objects. Directly classifying
all 6j symbols having a given Grothendieck ring is difficult in general as it requires
finding solutions to large systems of nonlinear equations.

The near groups are spherical fusion categories. These are the fusion categories
equipped with a natural isomorphism of monoidal functors j : IdC −→∼ ( · )∗∗ (that
is, a pivotal structure) whose associated left and right quantum (or categorical)
trace functions agree for all objects V ∈ Irr(C) and morphisms f ∈ HomC(V, V ):

qtrr ( f ) :=

� �
f

V ∗

jV� �
=

� �
f

V ∗

j−1
V� �
=: qtrl( f ).

Note that these are complex numbers since we take V to be a simple object.
Since the traces agree we are able to define a quantum (or categorical) dimension
of objects V ∈ C by

qdim(V ) := qtr(idV )= qtrr (idV )= qtrl(idV ).
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The name spherical is motivated by imagining the strings in the morphism
diagrams to be inhabiting a sphere rather than a plane — this allows for the strands
on either side of the quantum traces to rotate around, giving the equality pictured
above in our planar diagrams.

For C a pivotal fusion category we can define a finer categorical invariant than
the Grothendieck ring:

Definition 2.3 [Ng and Schauenburg 2007b]. For V∈C we define the k-th Frobenius–
Schur indicator by the linear trace

νk(V )= Tr

E (k)V :

f

···

V V · · · V︸ ︷︷ ︸
n

7→

� �
f
	 ··· j−1

V

V · · · V V


with E (k)V a linear endomorphism of finite-dimensional vector space Hom(1, V⊗n)

taking V⊗n to be n-fold tensor product of V with all parentheses to the right.

The Tambara–Yamagami categories are an example of a fusion category family
where the Frobenius–Schur indicators are a finer invariant than the Grothendieck
ring [Ng and Schauenburg 2008]. In [Basak and Johnson 2015] it was shown that
the indicators are a complete invariant for the Tambara–Yamagami categories. That
is, the monoidal equivalence classes of fusion categories associated to the ring
NG(G, 0) are completely distinguished by their Frobenius–Schur indicators. We
give this property a name:

Definition 2.4. A ring K exhibits FS indicator rigidity if its categorifications can
all be distinguished by their Frobenius–Schur indicators.

The central question that motivates the present article is immediate:

What rings have FS indicator rigidity?

We will see in Corollary 3.3 that the near-group rings NG(G, |G| − 1) exhibit this
property.

Drinfel’d centers and modular data. The Drinfel’d center Z(C) of a spherical
fusion category C is modular [Müger 2003, Proposition 5.10]; that is, it is again
spherical with a nondegenerate braiding cV,W : V ⊗W → V ⊗W which is given
in diagrams by

cV,W =

V W

W V
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Combined with the spherical structure the braiding also endows the Drinfel’d center
with a ribbon structure, that is, a natural isomorphism θ of the identity functor
(satisfying some coherence axioms) given by

θV =

V��

	

j−1
V

V
Note that this is a scalar when V is a simple object.

Modular categories come with a projective representation of the modular group
called modular data. The representation is defined by sending the generators
s, t ∈ SL2(Z) to the S- and T -matrices

S =



� �� �
V W

� �� �


V,W∈Irr(C)

and T = Diag(θV )V∈Irr(C).

Most crucially, we can obtain the Frobenius–Schur indicators from the modular
data of the Drinfel’d center:

Theorem 2.5 [Ng and Schauenburg 2007a, Theorem 4.1]. Let C be a spherical
fusion category, and let F : Z(C)→ C be the forgetful functor. Then

νk(X)=
1

qdim(C)

∑
V∈Irr(Z(C))

θ k
V qdim(V ) dimC(HomC(F(V ), X))

where θV are the entries of the T -matrix for Z(C).

Izumi’s classification program. The classification parameters for the Tambara–
Yamagami categories were obtained by direct solution of the equations resulting
from the pentagon axiom for the associativity. This method is not feasible for more
complicated categories.

Masaki Izumi was able to extend this classification by using a fundamental
result due to Popa: every unitary (or C∗) fusion category tensor-generated by
one object can be embedded in the category of sectors of the hyperfinite type-III
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Murray–von Neumann subfactor R. Sectors are unitary equivalence classes of
endomorphisms of R; the tensor product of sectors is composition. Note that the 6j
symbols can be obtained from Izumi’s classification data; see [Suzuki and Wakui
2002] for the near-group category C with K0(C)= NG(Z/(3), 3) coming from the
E6 subfactor.

Izumi [2001] and Evans and Gannon [2014; 2017] have obtained the classification
parameters for the near-group families used in the sequel via this program; hence, our
fusion categories will be unitary. In particular, this means that a canonical spherical
structure can be chosen such that the quantum dimension and the Frobenius–Perron
dimension agree.

3. Frobenius–Schur indicators for near groups with m = |G| − 1

Let C be a fusion category such that K0(C)=NG(G, |G|−1). It is shown in [Evans
and Gannon 2014, Proposition 2] that such a fusion category can only exist if
G ∼= F×

|G|+1 is the multiplication group of a finite field. (So G is cyclic, and thus,
H 2(G,T)= 1.) Let p = char(F|G|+1).

Consider again the category Rep(AGL1(F|G|+1)). These provide the main exam-
ples of m = |G| − 1 near groups. In fact, by [Etingof et al. 2004, Corollary 7.4;
Evans and Gannon 2014, Proposition 5], these are the only fusion categories with
this Grothendieck ring unless |G| = 1, 2, 3, 7.

Indicators for C ' Rep(AGL1(Fq)). We may use classical methods to determine
the indicators for C that is tensor equivalent to the category of representations
of an affine general linear group of degree 1 over the finite field Fq . Recall that
θG

k (h)= |{g ∈ G | gk
= h}|.

Proposition 3.1. Suppose C is such that K0(C) = NG(G, |G| − 1) and |G| 6=
1, 2, 3, 7. Then C '⊗ Rep(AGL1(F|G|+1)) and

νk(ρ)= θ
G
k (e)− 1+ δ⌊ k

p
⌋
, k

p
.

Proof. Let |G| + 1 = q. Since AGL1(Fq) ∼= F+q o GL1(Fq) ∼= F+q o F×q we may
use Serre’s method of little groups [1977, §8.2, Proposition 25] to see that the
character ρ for the irreducible representation with degree > 1 is given by

ρ(a, b)=
δ1,b

q

∑
(x,y)∈AGL1(Fq )

η(y−1a)

for any nontrivial linear character η ∈ F̂+q .
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Now we may apply the classical formula for νk(ρ) [Isaacs 1976, Lemma 4.4]:

νk(ρ)=
1

q(q − 1)

∑
(a,b)∈FqoF×q

ρ((a, b)k)

=
1

q(q − 1)

∑
(a,b), bk=1

ρ((1+ b+ b2
+ · · ·+ bk−1)a, 1)

=
1

q(q − 1)

( ∑
(a,b), bk=1, b 6=1

ρ(0, 1)+
∑
n∈Fq

ρ(kn, 1)
)
.

Since ρ is a degree-(q−1) character, the left-hand sum in the last expression above
is equal to q(q − 1)(θ

F×q
k (1)− 1). The right-hand sum in the same expression is

equal to ∑
n∈Fq

∑
b∈F×q

η(b−1kn)=
{

q(q − 1) if p | k,
0 if p - k.

The p | k case is clear since then η(b−1kn) is identically 1. On the other hand,
η(b−1kn)= b ·η(kn) under the transpose of the left regular action of F×q

∼=GL1(Fq)

on F̂q ∼= Fq . Since (p, k)= 1 we have that

∑
n∈Fq

b · η(kn)=
∑
n∈Fq

b · η(n),

and since the action is faithful by definition, we know that b · η is not the trivial
representation for any b ∈ F×q . Hence, by orthogonality of characters the sum is 0.
The formula is now clear since the given Kronecker delta is 1 if p | k and is 0
otherwise. �

Indicators in general from modular data of Z(C). For |G| = 1, 3, 7 there is 1
additional monoidal equivalence class, and for |G| = 2 there are 2 additional
monoidal equivalence classes. The modular data for Drinfel’d centers of unitary
m = |G| − 1 near groups was computed in [Evans and Gannon 2014, Theorem 5].
We will appeal to Theorem 2.5 to compute the indicators for a general unitary
m = |G| − 1 near group.

Let ε ∈ Ĝ be the trivial character, and let F+
|G|+1 be the additive group of the

finite field. Excluding the case where |G| = 7 and s =−1 we have the following
data for the center Z(C):



346 HENRY TUCKER

X ∈ Irr(Z(C)) F(X) cX,· given by θX

Ag (g ∈ G) g 1 1
6

⊕
x∈G x 1 1

Bωg (g ∈ G) ρ+ g ω ∈ Ĝ \ {ε} ω(g)

Cψ (ψ ∈ F̂+
|G|+1) ρ ψ ∈ F̂+

|G|+1 ζ1ψ(1)

where the half-braiding for Cψ on occurrences of ρ in objects of Z(C) is a morphism

eCψ (ρ) ∈ HomC(ρ⊗ ρ, ρ⊗ ρ)∼= C|G|⊕Mm(C)

given by

eCψ (ρ)= ζ1ψ(1)
(⊕

k∈G

(−1)mk Idk

)
⊕[ζγ (ψ ◦ σ)(γ )δσ 2(γ )∗,µ Idρ]γ,µ.

For the case where |G| = 7 and s =−1 we have:

X ∈ Irr(Z(C)) F(X) cX,· given by θX

Ag (g ∈ G) g 1 1
6

⊕
x∈G x 1 1

Bωg (g ∈ G, ω ∈ Ĝ \ {ε}) ρ+ g ω ∈ Ĝ \ {ε} ω(g)
E1 ρ+ ρ 1 i
E2 ρ+ ρ 1 −i

With the preceding data in hand we may now apply Theorem 2.5 to see:

Theorem 3.2. Suppose that C is a unitary fusion category such that K0(C) =
NG(G, |G| − 1). Then the indicators for the noninvertible object ρ are given by:

(1) If |G| 6= 7 or s = 1, then

νk(ρ)= (θ
G
k (e)− 1)+ ζ1

kδ⌊ k
p
⌋
, k

p
.

(2) If |G| = 7 and s =−1, then

νk(ρ)= (θ
G
k (e)− 1)+ (−1)k/2δ⌊ k

2

⌋
, k2
.

Proof. (1) Suppose |G| 6= 7 or s = 1. Then we have

νk(ρ)=
1

qdim(C)

( ∑
g∈G

ω∈Ĝ\{ε}

θ k
Bωg

qdim(Bωg )+
∑

ψ∈F̂+
|G|+1

θ k
Cθ qdim(Cψ)

)

=
1

qdim(C)

(
(|G| + 1)

∑
g∈G

ω∈Ĝ\{ε}

ω(g)k + |G|ζ1
k
∑

ψ∈F̂+
|G|+1

ψ(1)k
)
.
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Consider the first summand. Since G is abelian we may choose an isomorphism
h 7→ χh from G→ Ĝ. Then we have∑

g∈G
ω∈Ĝ\{ε}

ω(g)k =
(∑

g∈G

∑
ω∈Ĝ

ω(g)k
)
−

(∑
g∈G

ε(g)k
)

=

(∑
g∈G

∑
h∈G

χh(g)k
)
− |G|

=

(
|G|

∑
h∈G

νk(χh)

)
− |G|

= |G|(θG
k (e)− 1).

Consider the second summand. Since F+n+1 is the additive group of a finite
field we have that n + 1 = pl for some prime p and positive integer l and that
F+n+1
∼= (Zp)

l as groups. Under this identification the multiplicative unit 1 ∈ F+n+1
is a direct sum of generators of the copies of Zp:

∑
ψ∈F̂+

|G|+1

ψ(1)k =
∑

ψ∈F̂+
|G|+1

ψ(k1)=
{

0 if k1 6= 0,
pl if k1= 0

=

{
0 if p - k,
|G| + 1 if p | k

= (|G| + 1)δ⌊ k
p
⌋
, k

p
.

(2) Now suppose that |G| = 7 and s =−1. Then

νk(ρ)=
1

qdim(C)

( ∑
g∈G

ω∈Ĝ\{ε}

θ k
Bωg

qdim(Bωg )+ 2
2∑

i=1

θ k
Et

qdim(Et)

)

= θG
k (e)− 1+

4|G|ik(1+ (−1)k)
|G| + |G|2

= θG
k (e)− 1+

ik(1+ (−1)k)
2

= θG
k (e)− 1+ (−1)k/2δ⌊ k

2

⌋
, k2
. �

Corollary 3.3. The near-group fusion ring NG(G, |G| − 1) exhibits Frobenius–
Schur indicator rigidity.

Proof. The statement is vacuous in all but the cases where |G| = 1, 2, 3, 7. We shall
consider them now.
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If |G|=1, 3, 7, then there is one additional tensor equivalence class corresponding
to s = −1. By [Evans and Gannon 2014, p. 41] if |G| + 1 is even (i.e., a power
of 2), then ζ 2

1 = s; hence, ν2(ρ)= s in each of these three cases.
If |G| = 2, then s = 1 but instead b=µ where µ is some third root of unity. The

two nontrivial possibilities for µ correspond to the two additional tensor equivalence
classes for this type. By [Evans and Gannon 2014, p. 42] if µ= exp

(
±

2π i
3

)
, then

ζ1 = exp
(
∓

2π i
3

)
; hence, ν3(ρ)= µ. �

4. Frobenius–Schur indicators for near groups with m = |G|

For the rest of this article the group operation in G will be written additively. This
will be a more convenient notation for working with bilinear and quadratic forms.

Metric groups and the Fourier transform. Shimizu observed that the Fourier trans-
form for finite groups appears when computing Frobenius–Shur indicators for fusion
categories [Shimizu 2011]. A finite abelian group G is isomorphic to its linear
dual Ĝ via a nondegenerate symmetric bicharacter 〈 · , · 〉 with the identification

G→ Ĝ,

g 7→ 〈g, · 〉.

Symmetric bicharacters 〈 · , · 〉 : G×G→ T are in one-to-one correspondence with
bilinear forms β : G×G→Q/Z via the exponential

〈g, h〉 = e2π iβ(g,h).

A quadratic form is a function q : G→Q/Z with q(−g)= q(g) such that

∂q(g, h) := q(g)+ q(h)− q(gh)

is a symmetric bilinear form. A pair (G, q) is called a premetric group. If the
bilinear form ∂q is nondegenerate, then it is called a metric group.

Remark 4.1. If |G| is odd, then the correspondence between quadratic forms and
bilinear forms given by ∂ is one-to-one. If |G| is even, then the correspondence is
|G/2G|-to-one.

Now, using the bicharacter 〈 · , · 〉we can define the Fourier transform for complex
function f : G→ C on finite abelian groups:

f̂ (g)=
1
√
|G|

∑
h∈G

〈g, h〉 f (h).

The Fourier transform of the exponent of a quadratic form q at the unit element of
the group defines a very important invariant of premetric groups:
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Definition 4.2. Let (G, q) be a premetric group. Then the Fourier transform of e2π iq

at 0 ∈ G defines the Gauss sum:

2(G, q)=
1
√
|G|

∑
g∈G

e2π iq(g).

The Gauss sum is multiplicative over the (obviously defined) orthogonal direct
product of metric groups:

2(G ⊥ G ′, q + q ′)=2(G, q)2(G ′, q ′).

(This identity is for metric groups; hence, the quadratic forms must all be nonde-
generate.)

Izumi’s classification of m=|G| near groups. Izumi completely classified unitary
near-group fusion categories with m = |G| and where H 2(G,C×) = 1 in [Izumi
2000; 2001; 2017].

Theorem 4.3 [Izumi 2001, Theorem 5.3]. Unitary fusion categories C such that
K0(C)=NG(G, |G|) and H 2(G,C×)= 1 are classified up to monoidal equivalence
by the group G, a metric group structure 〈 · , · 〉 on G, and the following complex
parameters:

(1) a : G → T such that a(g) = e2π iq(g) for a quadratic form q with 〈g, h〉 =
e2π i∂q(g,h), i.e.,

a(0)= 1, a(g)= a(−g),
a(g+ h)
a(g)a(h)

= 〈g, h〉.

(2) b : G→ C and c ∈ T such that

2(G, q)= â(0)=
1
c3 ,

b(g)= a(g)b(−g),

b̂(0)=
−c

qdim(ρ)
, b̂(g)= cb(g), |b̂(g)|2 =

1
|G|
−

δg,0

qdim(X)
,∑

x∈G

b(x + g)b(x + h)b(x)= 〈g, h〉b(g)b(h)−
c

qdim(ρ)
√
|G|

.

Two such fusion categories NG(G1, 〈 · , · 〉1, a1, b1, c1),NG(G2, 〈 · , · 〉2, a2, b2, c2)

are monoidally equivalent if and only if

c1 = c2

and there is an isomorphism of metric groups φ : (G1, 〈 · , · 〉1)→ (G2, 〈 · , · 〉2) such
that

a2 = a1 ◦φ and b2 = b1 ◦φ.
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Remark 4.4. If the requirement that H 2(G,C×)= 1 is relaxed, then a solution of
Izumi’s equations in Theorem 4.3 is sufficient to produce a near-group category
with the required K0 ring, but not necessary.

Indicators from modular data of Z(C). Izumi found the simple objects of Z(C)
along with their twists and half-braidings in [Izumi 2001, Theorem 6.8], which is
given as follows, where < is a chosen order on G:

X ∈ Irr(Z(C)) F(X) cX,· given by θX

Ag (g ∈ G) g 1 〈g, g〉
Bg (g ∈ G) ρ+ g 1 〈g, g〉
Cg,h (g < h ∈ G) ρ+ g+ h 1 〈g, h〉
E j for j = 1, . . . , 1

2 |G|(|G| + 3) ρ ω j

The ω j ∈µ∞⊆T are solutions to the system of equations (6.18)-(6.20) in [Izumi
2001, §6] parametrized by g ∈ G with coefficients given by the complex values
a(g), b(g), c ∈ C.

Proposition 4.5. Suppose C is unitary fusion category with Grothendieck ring
K0(C)= NG(G, |G|) and noninvertible object ρ. Let q be a quadratic form such
that 〈g, h〉 = e2π i∂q(g,h). Then the indicators for ρ are given by

νk(ρ)=
1
2θ

G
k (e)+

qdim(ρ)
qdim(C)

(√
|G|
2

2(G, 2kq)+
|G|(|G|+3)/2∑

j=1

ωk
j

)
.

Proof. Let dρ := qdim(ρ), and let < be an arbitrary ordering on the finite group G.
Again applying Theorem 2.5 we have

νk(ρ)=
1

qdim(C)

(
(1+ dρ)

∑
g∈G

θ k
Bg
+ (2+ dρ)

∑
g,h∈G
g<h

θ k
Cg,h
+ dρ

|G|(|G|+3)/2∑
j=1

θ k
E j

)

=
1

qdim(C)

(
dρ
2

∑
g∈G

〈g, g〉k +
2+ dρ

2

∑
g,h∈G

〈g, h〉k + dρ
∑

j

ωk
j

)
where the second equality is due to the symmetry of 〈 · , · 〉.

Now we consider the middle sum:∑
g,h∈G

〈g, h〉k =
∑
g∈G

∑
h∈G

〈g, hk
〉 = |G|

∑
g∈G

ν
groups
k (〈g, · 〉)= |G|θG

k (e).

The second equality is by definition of the Frobenius–Schur indicator for finite
groups (denoted νgroups

k ) [Isaacs 1976, (4.4)] and the third equality is by [Isaacs
1976, p. 49].
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Now let q be a quadratic form such that 〈g, h〉 = e2π i∂q(g,h), and consider the
first sum: ∑

g∈G

〈g, g〉k =
∑
g∈G

e2π i(2kq(g))
=
√
|G|2(G, 2kq).

Hence, the formula is now clear. �

Modular data for pointed modular categories. Recall that any pointed fusion cat-
egory is equivalent to VecωG for some [ω] ∈ H 3(G,C×). Now we consider pointed
modular categories. Since modular categories are also fusion categories they will
be equivalent as fusion categories to VecωG with G abelian. The braiding induces a
quadratic form cg,g = e2π iq(g), which gives G the structure of a metric group. Then
these categories are classified under braided equivalence up to isomorphism of
premetric groups. Note that in the case of odd-order groups if ω admits a braiding
it will be unique; the notational convention Vec(ω,c)G includes the braiding c. (This
is because the Eilenburg–Mac Lane abelian cohomology H 3

ab(G,C×) is isomorphic
to the group of quadratic forms on G [Eilenberg and Mac Lane 1953; 1954]. See
[Etingof et al. 2015, §8.4] for an outline of the proof in a more modern context.)

We now give the modular data for a pointed modular category. Define the bichar-
acter 〈g, h〉q := e2π i∂q(g,h). The modular data are given by the Weil representation
associated to the premetric group (G, q):

S = Sq
:=

1
√
|G|

(〈g, h〉q)g,h∈G, T = T q
:= (δg,he2π iq(g))g,h∈G .

Indicators when |G| is odd. When |G| is odd we have a one-to-one between
quadratic forms and bilinear forms given by the map q 7→ ∂q. Let q be the
quadratic form on G such that 〈g, h〉 = e2π i∂q(g,h). Then we define

NG(G, q, b, c) :=NG(G, 〈 · , · 〉q , e2π iq , b, c),

the corresponding near-group fusion category via the notation from Theorem 4.3.

Conjecture 4.6 [Evans and Gannon 2014, Conjecture 2]. Suppose |G| is odd. Then
there exists a metric group (G ′, q ′) of order |G| + 4 such that:

(1) Simple objects E j in the subsection starting on page 350 are indexed by g ∈ G
and x ∈ G ′ \ {e} where Eg,x = Eg,x−1 and

θEg,x = 〈g, g〉e2π i∂q ′(x).

(2) The modular data are given by the Kronecker product of the Weil representation
for (G, q)with another pair of modular data (S′, T ′) for a rank |G|+3 modular
category:

Sq,q ′
:= Sq

⊗ S′, T q,q ′
:= T q

⊗ T ′
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where we have

T ′ = Diag(1, 1, 〈g, g〉q , 〈x, x〉q ′)g∈G,x∈G ′ .

(See [Evans and Gannon 2014, Proposition 7] for the definition of S′.)

Remark 4.7. Evans and Gannon [2014] show that the conjecture is true for near
groups with |G| ≤ 13 odd.

Theorem 4.8. Suppose a unitary fusion category C with K0(C)= NG(G, |G|) and
|G| odd satisfies Conjecture 4.6. Then

νk(ρ)=
1
2θ

G
k (e)+

1
22(G, 2kq)2(G ′, 2kq ′).

Proof. Let N = (|G ′| − 1)/2, and enumerate G ′ as

G ′ = {e, x1, . . . , xN , x−1
1 , . . . , x−1

N }.

Let dρ := qdim(ρ) and 〈x, y〉q ′ := e2π i∂q(x,y). Starting with Proposition 4.5 we
have

νk(ρ)=
1
2θ

G
k (e)+

dρ
qdim(C)

(√
|G|
2

2(G, 2kq)+
∑
g∈G

1≤i≤N

〈g, g〉kq〈xi , xi 〉
k
q ′

)

=
1
2θ

G
k (e)+

dρ
√
|G|2(G, 2kq)
|G|(2+ dρ)

(
1
2 +

∑
1≤i≤N

〈xi , xi 〉
k
q ′

)

=
1
2θ

G
k (e)+

dρ
√
|G|2(G, 2kq)
|G|(2+ dρ)

( 1
2 +

1
2(2(G

′, 2kq ′)
√
|G| + 4− 1)

)
=

1
2θ

G
k (e)+

dρ
√
|G|
√
|G| + 4

2|G|(2+ dρ)
2(G, 2kq)2(G, 2kq ′),

and using the fact that d2
ρ = |G| + |G|dρ we have

dρ
√
|G|
√
|G| + 4

2|G|(2+ dρ)
=

dρ(2dρ − |G|)
2|G|(2+ d + ρ)

=
1
2

and then the formula for νk(ρ) is clear. �

As a corollary to the preceding theorem we obtain an easy and more natural
proof of [Evans and Gannon 2014, Proposition 7(b)]:

Corollary 4.9. The matrices (Sq,q ′, T q,q ′) are modular data for a near-group center
only if 2(G, 2q)2(G ′, 2q ′)=−1.

Proof. Suppose a near-group category C =NG(G, 〈 · , · 〉q , e2π iq , b, c) has a center
Z(C) with modular data given by (Sq,q ′, T q,q ′). Since the simple object ρ cannot
contain a copy of 1 we know that ν1(ρ)= 0. Therefore, by Theorem 4.8, we must
have 2(G, 2q)2(G ′, 2q ′)=−1. �
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Let
( p

q

)
be the Jacobi symbol.

Corollary 4.10. For |G| odd and k such that gcd(k, |G| · |G ′|)= 1 we have

νk(ρ)=
1
2

(
1−

(
k

|G| · |G ′|

))
.

Proof. Using the decomposition into irreducible metric groups given in [Wall 1963]
it is easy to see that

2(G, kq)2(G ′, kq ′)=
(

k
|G| · |G ′|

)
2(G, q)2(G ′, q ′).

See also [Basak and Johnson 2015, §3 and Lemma 3.2]. �

Corollary 4.11. 2(G ′, q ′)=−c3 where (G ′, q ′) is the metric group associated to
the center of NG(G, q, b, c).

Proof. We’ve seen in Theorem 4.3 that 2(G, q)= 1
c3 ; hence, the above follows by

the Corollary 4.9. �

The complete list of near-group categories with K0(C) = NG(G, |G|) for odd
|G| ≤ 13 was obtained in [Evans and Gannon 2014, Proposition 6] by finding
solutions to Izumi’s equations in Theorem 4.3. They also used Izumi’s methods
from [Izumi 2001, §6; 2017] to produce the modular data of their Drinfel’d centers;
see [Evans and Gannon 2014, §§4.3–4.4 and Table 2]. Collected below are the
modular data they found along with the Frobenius–Schur indicators of ρ for each
of these categories. Since |G| is odd, let q be the unique quadratic form associated
to the bicharacter 〈 · , · 〉 from the classification parameters.

The data uses the following notation:

• Column 1. C = NG(G, q, b, c)) with |G| odd as in the above notation. (For
clearer presentation, the parameters b and c will be given only if they are
necessary to establish in-equivalence.)

• Column 2. (G ′, q ′) is the metric group from the modular data of Z(C) from
Conjecture 4.6. Recall |G ′| = |G| + 4.

• ζk = exp
( 2π i

k

)
∈ T primitive k-th root of unity.

|G| = 3 (G ′, q ′) ν3(ρ) ν7(ρ)

NG(Z/(3), 1
3 g2, · , · ) (Z/(7), 1

7 g2) 3+i
√

3
2

1+i
√

7
2

NG(Z/(3),− 1
3 g2, · , · ) (Z/(7),−1

7 g2) 3−i
√

3
2

1−i
√

7
2
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|G| = 5 (G ′, q ′) ν3(ρ) ν5(ρ) ν9(ρ)

NG(Z/(5), 2
5 g2, · , ζ3) (Z/(9), 2

9 g2) 1+ ζ3
5+
√

5
2 −1

NG(Z/(5), 2
5 g2, · , ζ3) (Z/(9),−2

9 g2) 1+ ζ3
5+
√

5
2 −1

NG(Z/(5), 1
5 g2, · , 1) ((Z/(3))2, 1

3(g
2
+ h2)) −1 5−

√
5

2 2

|G| = 7 (G ′, q ′) ν7(ρ) ν11(ρ)

NG(Z/(7), 1
7 g2, · , · ) (Z/(11),− 2

11 g2) 7−i
√

7
2

1+i
√

11
2

NG(Z/(7),−1
7 g2, · , · ) (Z/(11), 2

11 g2) 7+i
√

7
2

1−i
√

11
2

|G| = 9 (G ′, q ′) ν3(ρ) ν9(ρ) ν13(ρ)

NG(Z/(9), 1
9 g2, · , · ) (Z/(13),− 2

13 g2) 1− ζ3 3 1+
√

13
2

NG(Z/(9),−1
9 g2, · , · ) (Z/(13), 2

13 g2) 1− ζ3 3 1+
√

13
2

NG((Z/(3))2, 1
3(g

2
− h2), · , · ) (Z/(13), 2

13 g2) 3 3 1+
√

13
2

|G| = 11 (G ′, q ′) ν3(ρ) ν5(ρ) ν11(ρ) ν15(ρ)

NG(Z/(11), 1
11 g2, · , ζ 7

12) (Z/(15), 2
15 g2) 1−i

√
3

2
1+
√

5
2

11−i
√

11
2

1+i
√

15
2

NG(Z/(11), 1
11 g2, · , ζ12) (Z/(15), 1

15 g2) 1+i
√

3
2

1−
√

5
2

11−i
√

11
2

1+i
√

15
2

NG(Z/(11),− 1
11 g2, · , ζ12) (Z/(15),− 1

15 g2) 1−i
√

3
2

1−
√

5
2

11+i
√

11
2

1−i
√

15
2

NG(Z/(11),− 1
11 g2, · , ζ 5

12) (Z/(15),− 2
15 g2) 1+i

√
3

2
1+
√

5
2

11+i
√

11
2

1−i
√

15
2

|G| = 13 (G ′, q ′) ν13(ρ) ν17(ρ)

NG(Z/(13), 1
13 g2, b1,−1) (Z/(17), 3

17 g2) 13−
√

13
2

1+
√

17
2

NG(Z/(13), 1
13 g2, b2,−1) (Z/(17), 3

17 g2) 13−
√

13
2

1+
√

17
2

NG(Z/(13), 2
13 g2, b3, 1) (Z/(17), 1

17 g2) 13+
√

13
2

1−
√

17
2

NG(Z/(13), 2
13 g2, b4, 1) (Z/(17), 1

17 g2) 13+
√

13
2

1−
√

17
2

Remark 4.12. See that for G=Z/(13)we have two pairs of inequivalent fusion cat-
egories with the same indicators; hence, the near-group fusion ring NG(Z/(13), 13)
does not have FS indicator rigidity. Note that the lesser odd order groups do exhibit
FS indicator rigidity.

5. Frobenius–Schur indicators for Haagerup–Izumi fusion categories

Near groups are examples of quadratic fusion categories: those tensor-generated by
a single noninvertible simple object ρ where the set of simple objects is given by

G ∪ {g⊗ ρ | g a coset representative in G/H}
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where H is some subgroup of G. Near groups correspond to H = G. On the other
end of the spectrum, the Haagerup–Izumi fusion categories correspond to H = {e}.

Definition 5.1. C is a Haagerup–Izumi fusion category if

K0(C)= HI(G) := Z[G ∪ {gρ | g ∈ G}]

where multiplication is given by the group law and

g(hρ)= (gh)ρ = (hρ)g−1,

(gρ)(hρ)= gh−1
+

∑
x∈G

xρ.

Classification and examples. The complete lists of Haagerup–Izumi categories
for G = Z/(3) and G = Z/(5) were found by Evans and Gannon [2017] without
assuming unitarity by generalizing Izumi’s methods to endomorphisms of Leavitt
algebras. These categories are classified up to isomorphism of the group G and the
parameters

• a sign ±,

• ω a third root of unity, and

• A ∈ M|G|(C) a complex matrix

all satisfying some relations given in [Evans and Gannon 2017, Theorem 1]. An
Haagerup–Izumi category with the above parameters will be denoted

HI(G,±, ω, A).

The notion of equivalence for the parameters is given in [Evans and Gannon 2017,
Theorem 2(b)]. In particular, the category is unitary if and only if both the sign is +
and A is hermitian [Evans and Gannon 2017, Theorem 2(c)].

The most important examples of HI categories are the Yang–Lee system of
sectors, which is the unique nonunitary such category with G the trivial group, and
the system of sectors for the Haagerup subfactor, which is a unitary HI category
with G = Z/(3).

Indicators when |G| is odd. When C is a Haagerup–Izumi fusion category the
modular data for the center Z(C) was computed by Evans and Gannon [2017, §6.3]
and is given as follows:
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X ∈ Irr(Z(C)) F(X) braiding θX

1 1 1 1
B 1+

∑
g∈G g⊗ ρ 1 1

Aψ = Aψ 21+
∑

g∈G g⊗ ρ ψ ∈ Ĝ \ {1} 1
C (h)
φ (h ∈ G+) h+ h−1

+
∑

g∈G g⊗ ρ φ ∈ Ĝ φ(h)
D j (1≤ j ≤ 1

2(|G|
2
+ 3))

∑
g∈G g⊗ ρ ζ j

In the preceding table G+ is defined by a partition G = G+ t {e} t G− where
(G+)−1

= G−, which is always possible since |G| is odd.
The ζ j are a solutions to a system of equations with coefficients given by±, ω, A.

These equations are (6.14) and (6.16)–(6.19) in [Evans and Gannon 2017, §6.2].
See [Evans and Gannon 2017, Proposition 2]. For G odd order they make another
conjecture:

Conjecture 5.2 [Evans and Gannon 2017, Conjecture 1]. Suppose |G| is odd. Then
there exists a metric group (H, q ′′) of order |G|2+ 4= 2m+ 1 such that the simple
objects D j are indexed by h ∈ H \ {e} where Dh = Dh−1 and

θDh = e2π imq ′′(h).

Remark 5.3. Evans and Gannon [2017, Theorem 3] show that the conjecture is
true for Haagerup–Izumi fusion categories with |G| = 1, 3, 5.

Theorem 5.4. Suppose C is a Haagerup–Izumi fusion category with |G| odd satis-
fying Conjecture 5.2. Then

νk(ρ)=
1
2θ

G
k (e)+

1
22(H, kmq ′′).

Proof. Let d = qdim(ρ) in the category C. Again by using Theorem 2.5

νk(ρ)=
1

qdim(C)

(
qdim(B)+

∑
ψ 6=ψ∈Ĝ

qdim(Aψ)

+

∑
e 6=h−1 6=h∈G

∑
φ∈Ĝ

θ k
Ch
φ

qdim(Ch
φ)+

∑
γ−1 6=γ∈H

θDγ
qdim(Dγ )

)
.

Letting |G| = 2n+ 1 and |H | = 2m+ 1 we may enumerate these odd order groups
as

G = {e, gi , g−1
i | 1≤ i ≤ n} and H = {e, h j , h−1

j | 1≤ j ≤ m},

which gives us

νk(ρ)=
1

qdim(C)

(
|G| + |G|d + |G|dn+ (2+ |G|d)

∑
gi ,φ

φ(gi )
k
+ |G|d

∑
h j∈H

ζ k
j

)
.
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By the same argument as in the proofs of Theorems 3.2 and 4.8 we can see∑
gi ,φ

φ(gi )
k
=
|G|
2
(θG

k (e)− 1).

Hence, using the expression for the center’s ribbon structure from Conjecture 5.2
and the fact that |H | = |G|2+ 4 and qdim(C)= 2|G| + d|G|2 we see

νk(ρ)=
|G|

qdim(C)

(
2+ |G|d

2
θG

k (e)+ d + dn−
|G|d

2
+ d

∑
h j∈H

e2π ikmq ′′(h j )

)

=
1
2θ

G
k (e)+

|G|
2 qdim(C)

(
2d + 2dn− |G|d + d(

√
|H |2(H, kmq ′′)− 1)

)
=

1
2θ

G
k (e)+

|G|d
√
|G|2+ 4

2 qdim(C)
2(H, kmq ′′)

=
1
2θ

G
k (e)+

1
22(H, kmq ′′). �

Now we collect in the tables below the values of the Frobenius–Schur indicators
for the Haagerup–Izumi categories constructed in [Evans and Gannon 2011]:

G = Z/(3) (H, q ′′) νk(ρ) ν3(ρ) ν13(ρ)

HI(Z/(3),+, 1, A1) (Z/(13), 1
13 g2) 1

2(1− (
1

13 k)) 1 1+
√

13
2

HI(Z/(3),+, 1, A2) (Z/(13), 1
13 g2) 1

2(1− (
1

13 k)) 1 1+
√

13
2

HI(Z/(3),−, 1, A3) (Z/(13), 2
13 g2) 1

2(1+ (
1

13 k)) 2 1+
√

13
2

HI(Z/(3),−, 1, A4) (Z/(13), 2
13 g2) 1

2(1+ (
1

13 k)) 2 1+
√

13
2

In the preceding table the integer k must be relatively prime to 3 · 13= 39.

G = Z/(5) (H, q ′′) νk(ρ) ν5(ρ) ν29(ρ)

HI(Z/(5),+, 1, A6) (Z/(29), 1
29 g2) 1

2(1− (
1

29 k)) 2 1+
√

29
2

HI(Z/(5),+, 1, A7) (Z/(29), 1
29 g2) 1

2(1− (
1

29 k)) 2 1+
√

29
2

HI(Z/(5),−, 1, A8) (Z/(29), 2
29 g2) 1

2(1+ (
1

29 k)) 3 1+
√

29
2

HI(Z/(5),−, 1, A9) (Z/(29), 2
29 g2) 1

2(1+ (
1

29 k)) 3 1+
√

29
2

In the preceding table the integer k must be relatively prime to 5 · 13= 65.

Remark 5.5. See that for each of Z/(3) and Z/(5)we have two pairs of inequivalent
fusion categories with the same indicators; hence, the Haagerup–Izumi fusion rings
do not have FS rigidity.

Note that in this case as well as the m = |G| = 13 near-group case the pairs
have centers with the same modular data (although it is not established whether the
centers are equivalent). In view of this we formulate the following conjecture.
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Conjecture 5.6. Two fusion categories with a given Grothendieck ring that are also
Morita equivalent cannot be distinguished by their Frobenius–Schur indicators.
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COMPACTNESS THEOREMS FOR
4-DIMENSIONAL GRADIENT RICCI SOLITONS

YONGJIA ZHANG

We prove compactness theorems for noncompact 4-dimensional shrinking
and steady gradient Ricci solitons, respectively, satisfying: (1) every bounded
open subset can be embedded in a closed 4-manifold with vanishing second
homology group, and (2) are strongly κ-noncollapsed on all scales with re-
spect to a uniform κ . These solitons are of interest because they are the only
ones that can arise as finite-time singularity models for a Ricci flow on a
closed 4-manifold with vanishing second homology group.

1. Introduction

Since the works of Cheeger and Gromov, compactness and precompactness theorems
have played a fundamental role in understanding the geometry and topology of
Riemannian manifolds. In the setting of the Ricci flow, Shi’s local derivative of
curvature estimates [1989] enabled Hamilton [1995a] to improve the convergence to
C∞-convergence of solutions. In dimension 3, in the setting of ancient noncollapsed
Ricci flow, this was remarkably strengthened by Perelman [2002] who proved that
the global curvature and bound follows from a curvature bound only at a single point.
In dimensions 4 and above, this is no longer possible because of the existence of
asymptotically conical singularity models, and in particular, asymptotically conical
shrinking gradient Ricci solitons. Besides the weakness of the hypotheses, one of
the strengths of Perelman’s compactness theorem is that it is indeed a compactness
result, not just a precompactness result. So the limit extracted from a subsequence
is in the same class of objects as the original sequence of objects, in Perelman’s
case, 3-dimensional ancient κ-solutions.

In this paper we consider 4-dimensional Ricci solitons satisfying a certain topolog-
ical condition which is of interest in the study of the Ricci flow on closed 4-manifolds
with vanishing second homology group, which include homotopy 4-spheres. In
singularity analysis of the Ricci flow in relation to developing a theory of Ricci flow
with surgery, one considers the case where the underlying manifold of the Ricci
shrinker is noncompact. In view of this, we seek a pointed compactness result.
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The large body of works by Munteanu and Wang on gradient Ricci solitons
[2011; 2012; 2014; 2015; 2016; 2017a] led them to conjecture that 4-dimensional
Ricci shrinkers may be classifiable. Indeed, this classification is completed under
the condition of nonnegative isotropic curvature, or nonnegative sectional curvature,
or nonnegative curvature operator; see [Li et al. 2018; Munteanu and Wang 2017b;
Naber 2010]. In the more general case, Munteanu and Wang have made substantial
progress towards their conjecture that such objects either are the quotients of splitting
Ricci shrinkers or are asymptotically conical Ricci shrinkers. In the most optimistic
version of their conjecture, one would expect that a generic Ricci flow with surgery
on a closed 4-manifold would only produce a quotient 2-surgery, a quotient 3-surgery,
or a smooth blow down, all in the case of a type I singularity. More conservatively,
one may not wish to rule out Ricci flat ALE spaces and cohomegeneity-one steady
gradient Ricci solitons forming generically as singularity models in dimension 4.
Returning to dimension 3, paradoxically Perelman’s theory of the space of non-
compact ancient κ-solutions with positive sectional curvature, which builds on
the work of Hamilton [1995b] and which is one of the deepest in the subject, is
about a space conjectured by Perelman to be only a single point, namely the Bryant
soliton. Brendle’s proof of the uniqueness of the Bryant soliton in the class of
nonflat 3-dimensional κ-noncollapsed steady Ricci solitons is also a deep result; see
[Brendle 2013]. For these reasons, one may expect that a 4-dimensional theory of
singularity models for Ricci flow may be related to the prototypical cases (perhaps
more so than in dimension 3), which are the shrinking and steady Ricci solitons.

A triple (Mn, g, f ), where (Mn, g) is a Riemannian manifold and f is a function
on Mn, is called a gradient Ricci soliton, if

Ric+∇2 f = λ
2

g,

where λ is a constant and when λ> 0, λ= 0 or λ< 0 the soliton is called shrinking,
steady or expanding, respectively. In this paper we focus on shrinking and steady gra-
dient Ricci solitons, or Ricci shrinkers and Ricci steadies for short, respectively. In
other words, we always let λ≥ 0. By scaling the metric and adding a constant to the
potential function f , a Ricci shrinker can always be normalized in the following way:

Ric+∇2 f = 1
2 g,(1-1)

|∇ f |2+ R = f,

and a non-Ricci-flat Ricci steady can be normalized in the following way:

Ric+∇2 f = 0,(1-2)
|∇ f |2+ R = 1.

Shrinking and steady gradient Ricci solitons are of great interest in the study of the
singularity formation for the Ricci flow. For instance, they arise as blow-up limits
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of finite-time singularities in Ricci flows; see [Enders et al. 2011; Gu and Zhu 2008;
Hamilton 1995b], and Ricci shrinkers are also blow-down limits of ancient solutions
with nonnegative curvature operator [Perelman 2002]. In this paper, we restrict our
attention to the shrinking and steady gradient Ricci solitons satisfying a topological
assumption, that is, every bounded open subset can be embedded in a closed 4-
manifold with vanishing second homology group. This condition was previously
considered by Bamler and Zhang [2017]. Besides that, we impose a uniform strong
noncollapsing assumption, which fortunately holds for singularity models; see
below. We define the following space of Ricci shrinkers and Ricci steadies.

Definition 1.1. Given κ > 0, M4(κ) is the collection of all the 4-dimensional
noncompact shrinking gradient Ricci solitons (M4, g, f, p), where p is the point
at which f attains its minimum, satisfying:

(a) (M4, g) is nonflat.

(b) Every bounded open subset of M4 can be embedded in a closed 4-manifold
N 4 with H2(N )= 0, where H2 is the second homology group with coefficients
in Z.

(c) (M4, g) is strongly κ-noncollapsed on all scales.

Definition 1.2. Given κ > 0, N 4(κ) is the collection of all the 4-dimensional
noncompact steady gradient Ricci solitons (M4, g, f, p), where p ∈ M is such that
f (p)= 0, satisfying:

(a) (M4, g) is nonflat.

(b) Every bounded open subset of M4 can be embedded in a closed 4-manifold
N 4 with H2(N )= 0, where H2 is the second homology group with coefficients
in Z.

(c) (M4, g) is strongly κ-noncollapsed on all scales.

Remarks: (1) In item (b) of Definition 1.1 and 1.2, one may simply assume that M4

can be embedded in N 4 and the same curvature estimates in Section 4 still hold.
However, our assumption is more natural in view of singularity models; see below
for more details.

(2) The closed 4-manifold N 4 mentioned in item (b) of both Definition 1.1 and 1.2
may depend on the soliton (M4, g, f, p) or even the open subset, we do not need to
assume that every soliton in M4(κ) or N 4(κ) satisfies this property for the same N 4.

(3) In Definition 1.1 the base point p is the always the minimum point of the
potential function f , whereas in Definition 1.2 the base point p can be fixed at any
point in M, since one can always replace f by f − f (p), and this does not affect
the normalization (1-2)
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(4) Since Ricci-flatness and strong noncollapsing condition implies ALE (Corol-
lary 8.86 in [Cheeger and Naber 2015]), by Theorem 6.1 such ALE manifold,
when regarded as Ricci steadies, cannot be included in N 4(κ). Henceforth, unless
otherwise stated, we always work on non-Ricci-flat Ricci steadies.

(5) There are only a few examples for simply connected 4-dimensional Ricci
shrinkers: S4, S2

× R2, S3
× R, S2

× S2, and the FIK shrinker (see [Feldman
et al. 2003]). Noncollapsed simply connected 4-dimensional Ricci steady has
more examples, except for the Bryant soliton [2005], there is a family of Ricci
steadies discovered by Appleton [2017]. However, Appleton’s solitons are not
κ-noncollapsed with respect to a uniform κ .

By strong noncollapsing we mean the following:

Definition 1.3. A Riemannian manifold (Mn, g) is strongly κ-noncollapsed on all
scales, where κ > 0, if the following holds. For all x ∈ M and r > 0, if R < r−2 on
B(x, r), then Vol(B(x, r))≥ κrn. Here we use R to denote the scalar curvature.

Our main theorems are the following:

Theorem 1.4. M4(κ) is compact in the smooth pointed Cheeger–Gromov sense,
where each (M4, g, f, p) ∈M4(κ) is normalized as in (1-1).

Theorem 1.5. N 4(κ) is precompact in the smooth pointed Cheeger–Gromov sense,
where each (M4, g, f, p) ∈N 4(κ) is normalized as in (1-2). Furthermore, for any
convergent sequence in N 4(κ), the limit is either the Euclidean space or still lies
in N 4(κ).

Here by saying that N 4(κ) is precompact we mean that for every sequence
{(M4

k , gk, fk, pk)}
∞

k=1 contained in N 4(κ), there exists a subsequence that converges
in the pointed smooth Cheeger–Gromov sense to a Ricci steady (M4

∞
, g∞, f∞, p∞);

by saying that M4(κ) is compact we mean that first of all it is precompact, and
furthermore, the limit of every convergent sequence in M4(κ) also lies in M4(κ).

A homotopy four-sphere, as a particular example, has vanishing second homology
group. When approaching the 4-dimensional smooth Poincaré conjecture using the
Ricci flow with surgery, the Ricci solitons that may arise in the analysis of the first
singularities, being the blow-up Cheeger–Gromov–Hamilton limit of the homotopy
four-sphere, satisfies the property that every open bounded subset can be embedded
in the original homotopy four-sphere. Furthermore, according to Perelman [2002],
every Ricci flow on closed manifold forming a finite-time singularity is strongly
κ-noncollapsed on some fixed finite positive scale, where κ > 0 depends only on
the initial data, the length of the time interval of the Ricci flow, and the scale (see
Theorem 6.74 in [Chow et al. 2007]). Thus any blow-up limit at the singular time
must be strongly κ-noncollapsed on all scales. Therefore, all Ricci shrinkers or
Ricci steadies that arise from such singularity analysis must lie in M4(κ) or N 4(κ),
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respectively. We hope that our result will be helpful to the finite-time singularity
analysis for the Ricci flow on 4-dimensional closed manifolds. We mention here
that Hamilton [1995b] classified finite-time singularities as type I and type II, while
Ricci shrinkers and Ricci steadies, being singularity models, are correspondent
to these two singularity types, respectively. It is known that the fixed-point blow-
up limit of a type I singularity is always a nonflat Ricci shrinker [Enders et al.
2011; Naber 2010], but it remains open whether a similar result is true for type II
singularities, that is, is the blow-up limit of a type II singularity, obtained by some
careful point picking, always a Ricci steady? Hamilton answered this question
positively under the assumption that the blow-up limit, obtained by some careful
point-picking, has nonnegative curvature operator; see [Hamilton 1993; 1995b].

Condition (b) in both Definition 1.1 and 1.2 plays a very important role in ruling
out the Ricci-flat limits. By the strong noncollapsing property, a Ricci-flat blow-
up limit of a Ricci flow at a finite-time singularity must have Euclidean volume
growth, and, according to Cheeger and Naber [2015], must be asymptotically locally
Euclidean (ALE for short), which cannot be embedded in any closed 4-manifold
with vanishing second homology group (see Corollary 5.8 in [Anderson 2010]; an
alternative proof by Richard Bamler is provided in Section 6). This idea gives a
uniform curvature growth estimate for every element in the space M4(κ) and a
uniform curvature bound for every element in the space N 4(κ); see Theorems 4.1
and 4.2 below, from which we obtain the compactness results. This argument is in
the spirit of Perelman’s bounded curvature at bounded distance result for κ-solutions
with nonnegative curvature operator (see section 11 of [Perelman 2002]). Perelman
also assumes a uniform κ , which is motivated by the reason that all these κ-solutions
arise from the same Ricci flow that forms a finite-time singularity. However, there
is always a universal κ for all the 3-dimensional κ-solutions that is not a shrinking
space form because of the classification of 3-dimensional Ricci shrinkers.

In their papers, Haslhofer and Müller [2011; 2015] have proved a compactness
theorem for 4-dimensional Ricci shrinkers, where they only assume a uniform lower
bound of the entropy, but where the limit could possibly be an orbifold shrinker. In
comparison, the strong noncollapsing assumption in our theorem is correspondent
to their bounded entropy assumption (indeed, it is clear that a uniform lower bound
of entropy implies κ-noncollapsing with respect to a universal κ; see [Carrillo
and Ni 2009; Yokota 2012], yet we do not know how it is related to our strong
noncollapsing assumption); in addition, we have a topological restriction. What is
novel in our work is that the orbifold Ricci shrinkers will never show up as limits.

From the proof of Theorem 1.4, we also get the following property of the
space M4(κ):

Corollary 1.6. There exist C1 > 0, C2 > 0, and C3 <∞ depending only on κ , such
that for every (M4, g, f, p) ∈M4(κ) the following hold:
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(a) R(p) > C1.

(b) R(x) > C2 f −1(x), for all x ∈ M.

(c) |π1(M)|< C3, where π1(M) is the fundamental group of M.

This paper is organized as follows. In Section 2 we collect some known results
for Ricci solitons, which are used in our arguments. In Section 3 we carry out
some a priori estimates. In Section 4 we prove curvature estimates for the Ricci
shrinkers in M4(κ) and for the Ricci steadies in N 4(κ). In Section 5 we prove
Theorems 1.4, 1.5, and Corollary 1.6. In Section 6 we provide an alternative proof
of Anderson’s theorem [2010].

2. Preliminaries

In this section we collect some well-known results that are used in our proof.
Notice that in this paper the Ricci soliton equations that we work with may not be
normalized as (1-1) or (1-2), since sometimes scaling is necessary. Hence we will
specify the Ricci soliton equations in every statement. We start with the following
differential equations for the geometric quantities on Ricci shrinkers and steadies.

Proposition 2.1. Let (M, g, f ) be a shrinking or steady gradient Ricci soliton
satisfying

Ric+∇2 f = λ
2

g,

where λ≥ 0. Then the following hold.

1 f R = λR− 2|Ric|2,(2-1)

1 f Ric= λRic+Rm ∗Ric,(2-2)

1 f Rm= λRm+Rm ∗Rm,(2-3)

1 f∇
k Rm= λ

(k
2
+ 1

)
∇

k Rm+
k∑

j=0

∇
j Rm ∗∇k− j Rm,(2-4)

where ∗ stands for some contraction and 1 f =1−〈∇ f,∇· 〉 is the f -Laplacian
operator.

Proof. Since every reference on these differential equations we can find deals only
with the case λ= 1 or λ= 0, we take (2-3) as an example to quickly sketch how
these formulae can be carried out; other equations can be proved in the same way.
Recall that the canonical form of a Ricci soliton g(t)= τ(t)ϕ∗t (g) evolves by the
Ricci flow (see Theorem 4.1 of [Chow et al. 2006]), where

τ(t)= 1− λt, d
dt
ϕt =

1
τ
∇ f ◦ϕt , ϕ0 = id.
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Taking Rm as a (4, 0)-tensor, we have Rm(g(t))=τ(t)Rm(ϕ∗t (g))=τ(t)ϕ
∗
t (Rm).

Hence by the standard curvature evolution equation (see Theorem 7.1 of [Hamilton
1982]) we have

1Rm+Rm ∗Rm=
∂

∂t

∣∣∣
t=0

Rm(g(t))=−λRm+L∇ f Rm,

where L stands for the Lie derivative. Let Y1, Y2, Y3, Y4 be four arbitrary vector
fields. Then

L∇ f Rm(Y1, Y2, Y3, Y4)=∇∇ f (Rm(Y1, Y2, Y3, Y4))−Rm(L∇ f Y1, Y2, Y3, Y4)

−Rm(Y1,L∇ f Y2, Y3, Y4)−Rm(Y1, Y2,L∇ f Y3, Y4)

−Rm(Y1, Y2, Y3,L∇ f Y4)

=∇∇ f Rm(Y1, Y2, Y3, Y4)+Rm(∇Y1∇ f, Y2, Y3, Y4)

+Rm(Y1,∇Y2∇ f, Y3, Y4)+Rm(Y1, Y2,∇Y3∇ f, Y4)

+Rm(Y1, Y2, Y3,∇Y4∇ f ).

Taking into account that ∇2 f = λ
2 g−Ric we obtain the conclusion. �

The following two propositions for the potential function growth rate and the
volume growth rate for Ricci shrinkers were proved by Cao and Zhou [2010], with
an observation of Munteanu [2009]. We use its sharpened version of Haslhofer and
Müller [2011]. Besides that, Munteanu and Wang [2014] proved a volume growth
estimate with an improved constant.

Proposition 2.2. Let (Mn, g, f ) be a noncompact shrinking gradient Ricci soliton
normalized as in (1-1). Let p be a point where f attains its minimum. Then the
following holds:

(2-5) 1
4(d(x, p)− 5n)2

+
≤ f (x)≤ 1

4(d(x, p)+
√

2n)2,

where u+ :=max{u, 0} denotes the positive part of a function.

Proposition 2.3. There exists C <∞ depending only on the dimension n, such that
under the same assumption of Proposition 2.2 the following holds:

(2-6) Vol(B(p, r))≤ Crn,

for all r > 0.

To locally estimate the Ricci curvature, we need the following local Sobolev
inequality, whose constant depends only on the local geometry.

Proposition 2.4. For all κ > 0, there exists C < ∞ and δ ∈ (0, 2), depending
only on κ and the dimension n ≥ 3 such that the following holds. Let (Mn, g) be
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a Riemannian manifold and x0 ∈ M, and assume that |Rm| ≤ 2 on B(x0, 2) and
Vol(B(x0, 2))≥ κ . Then

(2-7) ‖u‖L2n/(n−2) ≤ C‖∇u‖L2,

for all u ∈ C∞0 (B(x0, δ)).

Proof. This is a standard result; for the convenience of the readers we sketch the
proof. We follow the lines of reasoning of Lemma 3.2 of [Haslhofer and Müller
2011]. We need only to prove an L1 Sobolev inequality

(2-8) ‖u‖Ln/(n−1) ≤ C1‖∇u‖L1,

for all u ∈ C∞0 (B(x0, δ)), where δ and C1 depend only on κ and the dimension n.
Then (2-7) follows from (2-8). Indeed, C1 is equal to the isoperimetric constant
of B(x0, δ),

C1 = C I = sup |�|n/(n−1)/|∂�|,

where the supremum is taken over all the open sets � ⊂ B(x0, δ) with smooth
boundary. By a theorem of Croke [1980, Theorem 11], C I can be estimated by

C I ≤ C(n)ω−(n+1)/n,

where C(n) is a constant depending only on the dimension and ω is the visibility
angle defined by

ω = inf
y∈B(x0,δ)

|Uy|/|S
n−1
|,

where Uy = {v ∈ Ty B(x0, δ) : |v| = 1, the geodesic γv minimizes up to ∂B(x0, δ)}.
We restrict δ in

(
0, 1

2

)
and let y be an arbitrary point in B(x0, δ). Let

J (r, θ)dr ∧ dθ, J (r, θ)dr ∧ dθ

be the volume elements in terms of spherical normal coordinates around the point y
and in the hyperbolic space with constant sectional curvature −2, respectively. By
the relative volume comparison theorem, we have

c2κ −C3δ
n
≤ |B(x0, 1)| − |B(x0, δ)| ≤

∫
Uy

∫ 1+δ

0
J (r, θ) dr dθ

≤

∫
Uy

∫ 1+δ

0
J (r, θ) dr dθ ≤ C4|Uy|

( 3
2

)n
,

where c2, C3, and C4 are constants depending only on the dimension n. Taking δ =
(c2κ/(2C3))

1/n, we have that |Uy| is bounded from below by a constant depending
only on κ and the dimension n, for all y ∈ B(x0, δ), and the conclusion follows. �

We conclude this section with the following gap theorem of Yokota [2009; 2012],
which is used in the proof of Theorem 1.4 to show that the limit shrinker is nonflat.
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Proposition 2.5. There exists ε > 0 depending only on the dimension n such that
the following holds. Let (Mn, g, f ) be a shrinking gradient Ricci soliton, which is
normalized as in (1-1). If

1
(4π)n/2

∫
M

e− f dg > 1− ε,

then (Mn, g, f ) is the Gaussian shrinker, that is, (Mn, g) is the Euclidian space.

3. A priori estimates

The a priori estimates in this section hold for any dimension n ≥ 3. We start with a
localized derivative estimate for the Riemann curvature tensor.

Proposition 3.1. There exists C <∞ depending only on the dimension n such that
the following holds. Let (Mn, g, f ) be a shrinking or steady gradient Ricci soliton
such that

Ric+∇2 f = λ
2

g,

where λ≥0. Let x0∈M and r>0. If |Rm|≤r−2 and |∇ f |≤r−1 on B(x0, 2r), then

(3-1) |∇ Rm| ≤ Cr−3 on B(x0, r).

More generally, there exist Cl depending only on l ≥ 0 and the dimension n, such
that under the above assumptions, it holds that

(3-2) |∇
l Rm| ≤ Clr−2−l on B(x0, r).

Proof. The proof is a standard elliptic modification of Shi’s estimates [1989]. One
can also combine [Shi 1989] with the canonical form to obtain this result. For
the readers’ convenience we will give a proof for (3-1). The higher derivative
estimates (3-2) follow in a standard way by induction. We compute using (2-3)

1 f |Rm|2 = 2〈Rm,1 f Rm〉+ 2|∇ Rm|2

= 2|∇ Rm|2+ 2λ|Rm|2+Rm ∗Rm ∗Rm

≥ 2|∇ Rm|2−C1|Rm|3,

where C1 <∞ depends only on the dimension n. By (2-4), we have

1 f |∇ Rm|2 = 2〈∇ Rm,1 f∇ Rm〉+ 2|∇2 Rm|2

= 2|∇2 Rm|2+ 3λ|∇ Rm|2+Rm ∗∇ Rm ∗∇ Rm

≥ 2|∇2 Rm|2−C2|Rm||∇ Rm|2,

where C2 <∞ depends only on the dimension n.
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Defining u = (βr−4
+ |Rm|2)|∇ Rm|2, where β > 0 is a constant that we will

specify later, we have

1 f u = |∇ Rm|21 f |Rm|2+ (βr−4
+ |Rm|2)1 f |∇ Rm|2+ 2〈∇|Rm|2,∇|∇ Rm|2〉

≥ 2|∇ Rm|4−C1|∇ Rm|2|Rm|3

+ (βr−4
+ |Rm|2)(2|∇2 Rm|2−C2|Rm||∇ Rm|2)

− 8|∇ Rm| ·
∣∣∇|Rm|

∣∣ · |∇2 Rm| · |Rm|

≥ 2|∇ Rm|4−C1|∇ Rm|2|Rm|3

+ (βr−4
+ |Rm|2)(2|∇2 Rm|2−C2|Rm||∇ Rm|2)

−
1
2 |∇ Rm|4− 32|∇2 Rm|2|Rm|2,

where we have used Kato’s inequality as well as the Cauchy–Schwarz inequality.
Letting β = 16 and taking into account that |Rm| ≤ r−2 in B(x0, 2r), we have

1 f u ≥ 3
2 |∇ Rm|4−C3r−6

|∇ Rm|2 ≥ |∇ Rm|4−C4r−12,

where we have used the Cauchy–Schwarz inequality, and C3 and C4 are constants
depending only on n. By the definition of u we have |∇ Rm|4 ≥ (r8/289)u2; hence

(3-3) 1 f u ≥ c5r8u2
−C5r−12,

where c5 and C5 are constants depending only on n.
We let φ(x) = ϕ(d(x0, x)) be the cut-off function, where ϕ(s) = 0 for s ≥ 2r ,

ϕ(s)= 1 for s ∈ [0, r ], and

0≤ ϕ ≤ 1, −2r−1
≤ ϕ′(s)≤ 0, |ϕ′′(s)| ≤ 2r−2(3-4)

for all s ∈ [r, 2r ]. We compute

(3-5) 1 f (uφ2)=φ21 f u+u1 f φ
2
+2〈∇u,∇φ2

〉

≥ c5r8u2φ2
−C5r−12φ2

+2〈∇(uφ2),∇ logφ2
〉−8|∇φ|2u+u1 f φ

2.

The last two terms in (3-5) need to be estimated. We have

|∇φ|2 = ϕ′2|∇d|2 ≤ 4r−2,

and

1 f φ
2
= 2φ(ϕ′1 f d +ϕ′′|∇d|2)+ 2ϕ′2|∇d|2

= 2φ(ϕ′1d −ϕ′〈∇ f,∇d〉)+ 2φϕ′′|∇d|2+ 2ϕ′2|∇d|2

≥ 2
(
−

2(n− 1) coth (1)
r2 −

2
r2

)
−

4
r2 ≥−C6r−2,

where C6 is a positive constant depending only on the dimension n. In the above
derivation we have used |∇ f | ≤ r−1, the properties of ϕ (3-4), the Laplacian
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comparison theorem, and that ϕ′(s) = 0 for all s ∈ [0, r ]. Inserting the above
inequalities into (3-5), and defining G = uφ2, we have

(3-6) 1 f G ≥ c5r8 G2

φ2 −C5r−12φ2
+ 2〈∇G,∇ logφ2

〉−C7r−2 G
φ2 .

Let x1 ∈ B(x0, 2r) be a point where G attains its maximum. Taking into account
that 0≤ φ ≤ 1, it follows from (3-6) that

c5r8G(x1)
2
−C7r−2G(x1)−C5r−12

≤ 0,

which solves G(x1) ≤ C8r−10, where C7 and C8 depend only on n. Therefore
u(x)≤ C8r−10 on B(x0, r), where φ = 1 and G = u. It follows from the definition
of the function u that

|∇ Rm|2 ≤ Cr−6 on B(x0, r). �

The following proposition says that the smallness of the scalar curvature on a
ball implies the smallness of the Ricci curvature on a smaller ball. Our argument
is inspired by Theorem 3.2 in [Wang 2012]. The same idea was implemented in
[Bamler and Zhang 2017].

Proposition 3.2. For any κ > 0, there exists δ ∈ (0, 2) and C <∞, depending
only on κ and the dimension n, such that the following holds. Let (Mn, g, f ) be a
shrinking or steady gradient Ricci soliton such that

Ric+∇2 f = λ
2

g,

where λ≥ 0. Let x0 ∈ M and r ∈ (0, 1]. If

|Rm| ≤ 2, R ≤ r2, |∇ f | ≤ r on B(x0, 2) and Vol(B(x0, 2))≥ κ,

then

(3-7) |Ric| ≤ Cr on B
(

x0,
δ

2

)
.

Proof. We define a cut-off function that is similar to the one that we have used in
the proof of the last proposition. Let φ(x)= ϕ(d(x0, x)), where ϕ(s)= 0 for s ≥ 2,
ϕ(s)= 1 for s ∈ [0, 1], and

0≤ ϕ ≤ 1, −2≤ ϕ′(s)≤ 0, |ϕ′′(s)| ≤ 2,(3-8)

for s ∈ [1, 2]. Integrating (2-1) against φ, we have

2
∫
|Ric|2φ = λ

∫
Rφ−

∫
φ1R+

∫
〈∇ f,∇R〉φ

= λ

∫
Rφ−

∫
R1φ−

∫
φR1 f −

∫
R〈∇φ,∇ f 〉
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=

(
1− n

2

)
λ

∫
Rφ−

∫
R1φ+

∫
φR2
−

∫
R〈∇φ,∇ f 〉

≤ −

∫
R1φ+

∫
φR2
−

∫
R〈∇φ,∇ f 〉,

where we have used 1 f = n
2λ− R and Chen’s result [2009] that R ≥ 0 on a Ricci

shrinker or Ricci steady. By the Laplacian comparison theorem, the Bishop–Gromov
volume comparison theorem, and the property of φ (3-8), we have

−1φ ≤ C1, |〈∇φ,∇ f 〉| ≤ C2r, Vol(B(x0, 2))≤ C3,

where C1, C2, and C3 are positive constants depending only on the dimension n. It
then follows that ∫

|Ric|2φ ≤ C1C3r2
+C3r4

+C2C3r3,

and that
‖Ric‖L2(B(x0,δ)) ≤ C4r,

where C4 depends only on the dimension n, and δ ∈ (0, 2) is the positive number
given by Proposition 2.4 that depends only on κ and the dimension n.

We have the following inequality satisfied by |Ric|:

2|Ric|1 f |Ric| + 2
∣∣∇|Ric|

∣∣2 =1 f |Ric|2 = 2〈Ric,1 f Ric〉+ 2|∇ Ric|2

= 2λ|Ric|2+ 2|∇ Ric|2−Rm ∗Ric ∗Ric

≥ 2|∇ Ric|2−Rm ∗Ric ∗Ric .

Taking into account that |Rm|≤2 on B(x0, 2) and Kato’s inequality that
∣∣∇|Ric|

∣∣2≤
|∇ Ric|2, we have

(3-9) 1 f |Ric| ≥ −C5|Ric|,

where C5 depends on the dimension n. We use the local Sobolev inequality (2-7)
to apply the standard Moser iteration to the inequality (3-9). Notice that we need to
use |∇ f | ≤ r ≤ 1 when performing the iteration. Indeed, this is the only reason
why we have to put a restriction on the scale r . It follows that

sup
B(x0, δ/2)

|Ric| ≤ C6‖Ric‖L2(B(x,δ)) ≤ Cr,

where C depends only on κ and the dimension n. �

4. Curvature estimates

In this section we prove a bounded curvature at bounded distance theorem for
Ricci shrinkers in the space M4(κ) as well as a uniformly bounded curvature
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theorem for Ricci steadies in N 4(κ). These results are analogues to Perelman’s
bounded curvature at bounded distance result (see section 11 of [Perelman 2002]).
The fact that the Ricci-flat limit does not appear in our argument plays a role
as equally important as the fact that the asymptotic volume ratio equals zero in
Perelman’s argument. However, our results are somewhat weaker than Perelman’s.
In Theorem 4.1 we are only able to fix the base point where the potential function
attains its minimum (or wherever is at a bounded distance to it), while in Theorem 4.2
the curvature bound is at a fixed scale instead of a relative scale, that is, the curvature
bound is in terms of a fixed number instead of the curvature at an arbitrary base
point. The reason in analysis is the following: to implement results in Section 3
in an argument of contradiction, the curvature largeness should be characterized
by |∇ f |2. Suppose around a point the curvature is large in some relative sense
but small compared to |∇ f |2. Then the a priori estimates we have established
in Section 3 do not hold any more, since the assumption |∇ f | ≤ r ≤ 1 made in
Proposition 3.2 is no longer valid after scaling, and Moser iteration does not yield
a nice bound for the Ricci curvature as in (3-7). To give a geometric understanding
for the aforementioned weakness, we take an asymptotic conical shrinker as an
example: one could take a sequence of points tending to infinity in an asymptotically
conical Ricci shrinker, and the associated pointed limit is the asymptotic cone of
the Ricci shrinker. Since this asymptotic cone is singular at its vertex, we have
neither Perelman’s bounded curvature at bounded distance nor compactness.

Theorem 4.1. There exists C <∞ and D <∞ depending only on κ , such that the
following holds. Let (M4, g, f, p) ∈M4(κ) be normalized as in (1-1). Then

|Rm|(x)≤ C if x ∈ B(p, 200),

|Rm|
f
(x)≤ D if x /∈ B(p, 200).

Proof. We argue by contradiction. Suppose the statement is not true, then there
exist a sequence of counterexamples {(M4

k , fk, gk, pk)}
∞

k=1 ⊂M4(κ) normalized
as in (1-1), and xk ∈ Mk , such that for all k ≥ 1, either

(a) xk ∈ Bgk (pk, 200) and |Rmk |(xk)≥ k, or

(b) xk /∈ Bgk (pk, 200) and |Rmk |
fk
(xk)≥ k.

Notice that by (2-5), we have fk(x) ≥ 1000 whenever x /∈ B(pk, 200); hence
|Rmk |(xk)→∞.

The following standard point picking technique is due to Perelman [2002].

Claim 1. There exists Ak→∞ and yk ∈ Bgk (xk, 1), such that

(4-1) |Rmk |(x)≤ 2Qk for all x ∈ Bgk (yk, Ak Q−1/2
k )⊂ Bgk (xk, 2),

where Qk = |Rmk |(yk)≥ |Rmk |(xk).
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Proof. Denote Q(0)
k = |Rmk |(xk) and y(0)k = xk , let Ak =

1
100(Q

(0)
k )1/2→∞. We

start from y(0)k . Suppose that y( j)
k is chosen and cannot be taken as yk . Let

|Rmk |(y
( j)
k )= Q( j)

k . Then there exists y( j+1)
k ∈ Bgk (y

( j)
k , Ak(Q

( j)
k )−1/2), such that

Q( j+1)
k = |Rmk |(y

( j+1)
k )≥ 2Q( j)

k . Hence we have

distgk (y
(0)
k , y( j+1)

k )≤ Ak(Q
(0)
k )−1/2

+ Ak(Q
(1)
k )−1/2

+ · · ·+ Ak(Q
( j)
k )−1/2

≤ Ak(Q
(0)
k )−1/2

(
1+

1
√

2
+ · · ·+

(
1
√

2

) j

+ · · ·

)
≤

1
100
× 4,

and it follows that y( j)
k ∈ Bgk (xk, 1) for all j ≥ 0. This procedure must terminate

in finite steps since the manifold Mk is smooth; then the last element chosen by
this procedure can be taken as yk . �

Since for any k≥ 1 there can be only two cases (a) or (b), then either for infinitely
many k, (a) holds, or, for infinitely many k, (b) holds. By passing to a subsequence,
we need only to deal with the following two cases.

Case I. xk ∈ Bgk (pk, 200) and |Rmk |(xk)≥ k, for all k ≥ 1.

Case II. xk /∈ Bgk (pk, 200) and |Rmk |
fk
(xk)≥ k, for all k ≥ 1.

We first consider Case I. We use Claim 1 to find yk ∈ Bgk (xk, 1), Qk =

|Rmk |(yk)≥|Rmk |(xk)→∞, and Ak→∞ such that (4-1) holds. By (2-5) we have

Rk + |∇ fk |
2
= fk ≤ 105

on Bgk (yk, Ak Q−1/2
k )⊂ Bgk (pk, 202). We scale gk with the factor Qk and use the

notations with overlines to denote the scaled geometric quantities, that is, gk=Qk gk ,
Rmk = Rm(gk), etc. Then we have that

(4-2) Rick +∇
2 fk =

Q−1
k
2

gk,

and that

|Rmk | ≤ 2,(4-3)

Rk + |∇ fk |
2
≤

105

Qk
:= r2

k → 0,(4-4)

on Bgk (yk, Ak), and by Proposition 3.1 and Proposition 3.2 that

|∇ Rmk | ≤ C1,(4-5)

|Rick | ≤ C2rk,(4-6)

on Bgk (yk, Ak−2), where C1 is a constant depending only on the dimension n = 4,
and C2 is a constant depending only on the dimension n = 4 and κ > 0. We
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can apply (4-3), (4-5), and the strong κ-noncollapsing assumption to extract from
{(Bgk (yk, Ak − 2), gk, yk)}

∞

k=1 a subsequence that converges in the pointed C2,α

Cheeger–Gromov sense to a complete nonflat Riemannian manifold (M∞, g∞, y∞)
with |Rm∞|(x∞)= 1. By (4-6), (M∞, g∞) must be Ricci-flat and therefore has Eu-
clidean volume growth, since it is also strongly κ-noncollapsed. By Corollary 8.86
of [Cheeger and Naber 2015], (M∞, g∞) is asymptotically locally Euclidean (ALE).
By the definition of ALE, we have that outside a compact set M∞ is diffeomorphic
to a finite quotient of R4

\B(O, 1), it follows that there exists an open set U∞⊂M∞
containing the point y∞, such that U∞ is compact and that M∞ is diffeomorphic
to U∞. By the definition of the pointed Cheeger–Gromov convergence, U∞ can be
embedded in infinitely many elements of the sequence {(M4

k , fk, gk, pk)}
∞

k=1, and
the images of the embeddings are bounded open sets. Furthermore, every one in the
sequence of shrinkers satisfies (b) in Definition 1.1; it follows that U∞ can also be
embedded in a closed 4-manifold with vanishing second homology group, which
is a contradiction against Theorem 6.1.

Case II is almost the same as Case I. By the same point picking and scaling
method we also get (4-2), (4-3), (4-5), and (4-6). The only place where special care
should be taken is (4-4). Notice that by (2-5), we have that fk(x)≥ 1000 whenever
distgk (x, pk)≥ 198. Moreover, since |∇

√
fk | ≤

1
2 , we have√

fk(x)≤
√

fk(xk)+ 1≤
√

10
9 fk(xk),

for all x ∈ Bgk (yk, Ak Q−1/2
k )⊂ Bgk (xk, 2). It follows that

Rk + |∇ fk |
2
=

fk
Qk
≤

10
9

fk(xk)

|Rmk |(xk)
:= r2

k → 0,

on Bgk (yk, Ak). Therefore (4-4) also holds in Case II and we obtain the same
contradiction as in Case I. �

Theorem 4.2. There exists C <∞ depending only on κ , such that the following
holds. Let (M4, g, f, p) ∈N 4(κ) be normalized as in (1-2). Then it holds that

|Rm|(x)≤ C for all x ∈ M.

Proof. We argue by contradiction. Suppose the statement is not true; then there
exist a sequence of counterexamples {(M4

k , fk, gk, pk)}
∞

k=1 ⊂ N 4(κ) normalized
as in (1-2), such that supx∈Mk

|Rmk(x)| →∞. By shifting the base points pk and
replacing fk by fk − fk(pk), we may assume that for each k

Qk := |Rmk(pk)| ≥
1
2 sup

x∈Mk

|Rmk(x)| →∞.

Now we scale the sequence {(M4
k , fk, gk, pk)}

∞

k=1 by the factors Qk and use the
notations with overlines to denote the scaled quantities as before, that is, gk = Qk gk ,
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Rmk = Rm(gk), etc. Then we have

Rick +∇
2 fk = 0, |∇ fk |

2
+ Rk =

1
Qk
:= r2

k → 0,

|Rmk |(x)≤ 2 for all x ∈ M, |Rmk |(pk)= 1.

Recall that all (Mk, gk) are κ-noncollapsed on call scales with respect to a uniform
κ > 0. It then follows from Propositions 3.1 and 3.2 that there exists C <∞ and
Cl<∞ for each l ∈Z+, where C , κ and Cl’s depend only on the dimension, such that

|∇
lRmk | ≤ Cl, |Rick | ≤ Crk→ 0.

Hence, by the noncollapsing condition, we can extract from {(Mk, gk, pk)}
∞

k=1 a sub-
sequence that converges in the smooth pointed Cheeger–Gromov sense to a smooth
manifold (M∞, g∞, p∞). By the choice of pk’s, we have that |Rm∞|(p∞)= 1> 0,
hence g∞ is nonflat. Since |Rick | converges to 0 uniformly, we have that g∞ is Ricci
flat. Finally, since (M∞, g∞) is also strongly κ-noncollapsed on all scales, it has
Euclidean volume growth, and hence must be ALE by Corollary 8.86 in [Cheeger
and Naber 2015]. The rest of the proof now follows similarly from Theorem 4.1. �

5. Proof of the main theorems

Proof of Theorem 1.4. By Theorem 4.1, Proposition 3.1, and (2-5), we obtain locally
uniform bounds for the curvatures, the derivatives of the curvatures, and the potential
functions for any sequence in the space M4(κ). Applying the standard regularity
theorem to the elliptic equation 1 f = n

2 − R, we also obtain locally uniform
bounds for the derivatives of the potential functions. Hence we can extract from any
sequence contained in M4(κ) a subsequence that converges in the smooth pointed
Cheeger–Gromov sense to a shrinking gradient Ricci soliton, also normalized as
in (1-1). It remains to show that the limit Ricci shrinker is in M4(κ). Item (c) in
Definition 1.1 is obvious, we proceed to show (a) and (b).

We let {(Mk, gk, fk, pk)}
∞

k=1 ⊂M4(κ), all normalized as in (1-1), and we let
(M∞, g∞, f∞, p∞) be their limit Ricci shrinker in the smooth pointed Cheeger–
Gromov sense, also normalized as in (1-1). By the definition of Cheeger–Gromov
convergence, we have that every open bounded subset in (M∞, g∞) can be em-
bedded in infinitely many (Mk, gk)’s in the sequence, and the images of these
embeddings are also bounded open sets, and therefore can be embedded in closed
4-manifolds with vanishing second homology group. To show that (M∞, g∞) is
nonflat, we make the following observation.

Claim 2. Vol f (g∞)= lim
k→∞

Vol f (gk),

where Vol f is the f -volume defined by Vol f (g)=
∫

M e− f dg.
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Proof. By the uniform rapid decay of e− f (2-5) and the uniform volume growth
bound (2-6) we have that for any η > 0, there exists A0 < ∞ such that for all
A > A0 it holds that

Vol f (gk)− η <

∫
Bgk (pk ,A)

e− fk dgk ≤ Vol f (gk),

for every k ≥ 1. The conclusion follows from first taking k→∞, and then A→∞,
and finally η→ 0. �

By Proposition 2.5 and Claim 2 we have

Vol f (g∞)= lim
k→∞

Vol f (gk)≤ (4π)n/2(1− ε),

where ε > 0 is given by Proposition 2.5. Hence (M∞, g∞, f∞, p∞) is not flat,
because the f -volume of the Gaussian shrinker is (4π)n/2. This completes the proof
of Theorem 1.4. �

Proof of Theorem 1.5. Combining Theorem 4.2, the fact that |∇ f | ≤ 1 by (1-2),
and Proposition 3.1, we have that any curvature derivative is uniformly bounded
for all elements in N 4(κ). Furthermore, since

f (p)= 0, |∇ f | ≤ 1, |∇2 f | = |Ric| ≤ C(κ),

we have a uniform growth estimate for | f |, and we can derive uniform higher
derivative estimates for f by using the elliptic equation 1 f = −R. Taking into
account the noncollapsing condition, we immediately obtain the precompactness.
By the same argument as in the proof of Theorem 1.4, we have that every possible
limit of a convergent sequence in N 4(κ) must satisfy (b) and (c) in Definition 1.2.
Such a limit can be either nonflat, hence lies in N 4(κ), or, flat, hence must be the
Euclidean space because of its maximum volume growth by (c). This completes
the proof of the theorem. �

Proof of Corollary 1.6. To prove (a) we argue by contradiction. Suppose there
exists {(Mk, gk, fk, pk)}

∞

k=1 ⊂M4(κ) such that Rk(pk)→ 0. By Theorem 1.4
we can extract a subsequence that converges to a shrinking gradient Ricci soliton
(M∞, g∞, f∞, p∞) with R∞(p∞) = 0, which by Chen [2009] is flat; this is a
contradiction.

To prove (b), we recall that by the proof of Chow, Lu, and Yang [Chow et al.
2011], we only need a uniform upper bound for f and a uniform lower bound for R
on a sufficiently large ball, say B(p, 1000), where the former is given by (2-5) and
the latter is proved in the same way as for (a).

To prove (c), we claim that there exist c > 0, depending only on κ , such that
Vol f (g) > c for all (M, g, f, p) ∈M4(κ). Suppose this is not true. As in the proof
of (a), we can find a sequence of counterexamples converging to a Ricci shrinker
(M∞, g∞, f∞, p∞) with Vol f (g∞)= 0, which is a contradiction. Hence we have
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Vol f (g)∈ [c, (4π)n/2(1−ε)] for all (M, g, f, p)∈M4(κ). The conclusion follows
from [Wylie 2008] and [Chow and Lu 2016]. �

6. Excluding instantons by a topological condition

In this section we provide an alternative proof for Corollary 5.8 of [Anderson 2010].
This proof is based in essence altogether on the personal notes of Richard Bamler,
to whom we are indebted for graciously providing them. However, any mistakes
in transcription is solely due to the author. Forasmuch as Anderson’s result is of
fundamental importance to our main theorem, we include this section for the sake
of completeness to help the readers to follow some details.

Theorem 6.1. Let N be a smooth closed 4-dimensional manifold such that

(6-1) H2(N )= 0,

where H2 is the second homology group with coefficients in Z. Then there is no
open subset U ⊂ N with the property that U admits an Einstein ALE metric.

We split the proof into the following lemmas.

Lemma 6.2. Let N be the closed manifold in the statement of Theorem 6.1. Let
U ⊂ N be an connected open subset such that ∂U ∼= S3/0 and H1(U, ∂U ) = 0,
where 0 is a finite group. Then the following hold.

H1(∂U )= H1(U )⊕ H1(U ),(6-2)

H2(U )= 0.(6-3)

Proof. By Poincaré duality, we have

H 2(N ;Z)∼= H2(N )= 0.

By the universal coefficient theorem, we have

0= H 2(N ;Z)∼= Hom(H2(N ),Z)⊕Ext(H1(N ),Z),

which implies that H1(N ) is torsion free, so henceforth we may assume

(6-4) H1(N )∼= Zd ,

where d ≥ 0. By Poincaré duality and by the universal coefficient theorem, we have

H2(∂U )∼= H 1(∂U )∼= Hom(H1(∂U ),Z)= 0,

where the last equality is because H1(∂U ) is a finite abelian group and hence purely
torsion. Then we have the Mayer–Vietoris sequence

0= H2(∂U )→ H2(U )⊕ H2(N\U )→ H2(N )= 0,

from whence we obtain

(6-5) H2(U )= H2(N\U )= 0.
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On the other hand, we consider the long exact sequence

(6-6) 0= H2(U )→ H2(U, ∂U )→ H1(∂U )→ H1(U )→ H1(U, ∂U )= 0.

It follows that H1(U ) is purely torsion since the third homomorphism above is
surjective and H1(∂U ) is finite. Hence by the universal coefficient theorem and by
Poincaré–Lefschetz duality we have

H2(U, ∂U )∼= H 2(U )∼= Hom(H2(U ),Z)⊕Ext(H1(U ),Z)∼= H1(U ),

where the last isomorphism follows from the fact that H1(U ) is purely torsion
and (6-5). Hence (6-6) is simplified as

(6-7) 0→ H1(U )→ H1(∂U )→ H1(U )→ 0.

To see (6-7) splits, we consider the following Mayer–Vietoris sequence

0= H2(N )→ H1(∂U )→ H1(U )⊕ H1(N\U )→ H1(N )∼= Zd ,

where we have used (6-4). If we write H1(U )⊕ H1(N\U ) ∼= H1(U )⊕ T ⊕ Ze,
where T is the torsion part of H1(N\U ), since H1(∂U ) is purely torsion, we
have that the image of the second homomorphism in the above sequence is in
H1(U )⊕ T ⊕{0}, whose image under the third homomorphism is 0. Hence we can
simplify the above sequence as

0→ H1(∂U )→ H1(U )⊕ T → 0.

The inclusion H1(U ) ↪→ H1(U )⊕ T ∼= H1(∂U ) gives a homomorphism H1(U )→
H1(∂U ), whose composition with the third homomorphism in (6-7) is the identity
on H1(U ). It follows that (6-7) splits and we have completed the proof. �

Lemma 6.3. Let S3/0 be a round space form, where 0 is a finite group. If
H1(S

3/0) ∼= G ⊕ G, for some group G, then either 0 is the binary dihedral
group D∗n with n being even, or 0 is the binary icosahedral group with order 120.

Proof. We shall check every possible group 0.

(a) Lens space: In this case H1(S
3/0)∼=0=Zm with m≥ 2, which is not possible.

(b) Prism manifold: In this case the fundamental group has the presentation

〈x, y | xyx−1
= y−1, x2k

= yn
〉×Zm,

where k,m ≥ 1, n ≥ 2, and m is coprime to 2n. Its abelianization is

H1(S
3/0)∼= 〈x, y | y = y−1, x2k

= yn
〉×Zm,

where y2
= 1. We have that H1(S

3/0)∼= Z2×Z2k ×Zm in the case n is even, and
that H1(S

3/0) ∼= Z2k+1 ×Zm in the case n is odd. Since m is coprime to 2n, we
have that the only possible case is when m = 1, n is even, and k = 1.
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(c) Tetrahedral manifold: In this case we have

0 = 〈x, y, z | (xy)2 = x2
= y2, zxz−1

= y, zyz−1
= xy, z3k

= 1〉×Zm,

where k,m ≥ 1 and m is coprime to 6. Then we have

H1(S
3/0)∼= 〈x, y, z | x2

= y2
= 1, x = y, y = xy, z3k

= 1〉×Zm

= 〈x, z | x2
= 1, x = x2, z3k

= 1〉×Zm = Z3k ×Zm .

Since m is coprime to 6, this case is not possible.

(d) Octahedral manifold: In this case we have

0 = 〈x, y | (xy)2 = x3
= y4
〉×Zm,

where m is coprime to 6. Then we have

H1(S
3/0)∼= 〈x, y | x = y2

= x2
〉×Zm = Z2×Zm .

Since m is coprime to 6, this case is not possible.

(e) Icosahedral manifold: In this case we have

0 = 〈x, y | (xy)2 = x3
= x3 y5

〉×Zm,

where m is coprime to 30. Then we have

H1(S
3/0)∼= 〈x, y | x = y2, x2

= y3
〉×Zm

= 〈x, y | x = y2, x2
= y3, y = 1〉×Zm = Zm .

The only possibility is m = 1. �

We still need to consider the two cases when 0 is the binary dihedral group D∗2n
or the binary icosahedral group. In both cases 0 can be embedded in SU (2). Indeed,
it is well known that the binary dihedral, tetrahedral, octahedral, and icosahedral
groups are all finite subgroups of SU (2); see [Kronheimer 1989].

Lemma 6.4. Let S3/0 be the spherical space form with 0 < O(4) being either
the binary dihedral group D∗2n or the binary icosahedral group. Then there exists a
complex structure on R4 such that 0 < SU (2)

Lemma 6.5. Let (U, g) be an Einstein ALE space which is asymptotic to S3/0,
where 0 < SU (2) is isomorphic to the binary dihedral group D∗2n or to the binary
icosahedral group. Then b2(U )≥ 1.

Proof. Assume that b2(U )= 0. Then we have χ(U )= 1− b1(U )− b3(U )≤ 1 and
τ(U )= 0. Using the Chern–Gauss–Bonnet theorem and the Atiyah–Patodi–Singer
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index theorem, we have (see (4.4) and (4.5) in [Nakajima 1990])

1≥ χ(U )= 1
8π2

∫
U
|W |2 dg+ 1

|0|
,

0= τ(U )= 1
12π2

∫
U
(|W+|2− |W−|2) dg− ηS(S

3/0),

where ηS stands for the eta invariant. Hence we have

2
3
≥

2
12π2

∫
U
|W−|2 dg+ 2

3|0|
+ ηS(S

3/0),

which implies

ηS(S
3/0)≤

2
3

(
1− 1
|0|

)
<

2
3
.

On the other hand, by [Nakajima 1990], if 0 is the binary dihedral group D∗2n , we
have

ηS(S
3/0)=

2(2n+ 2)2− 8(2n+ 2)+ 9
6 · 2n

=
8n2
+ 1

12n
>

2
3
.

Similarly, if 0 is the binary icosahedral group, then we have

ηS(S
3/0)=

361
180

>
2
3
.

In either case we yield a contradiction. �

Proof of Theorem 6.1. Let N be the manifold in Theorem 6.1 and U ⊂ N be a
connected open subset that admits an Einstein ALE metric.

Claim 3. H1(U, ∂U )= 0.

Proof. Suppose the claim does not hold. We first show that the boundary ∂Ũ of
the universal cover Ũ has more than one component. Since ∂U is a deformation
retraction of its collar neighbourhood, by excision we have

H1(U/∂U, ∂U/∂U )= H1(U, ∂U ) 6= 0.

Hence we have π1(U/∂U ) 6= 0. Let γ0 be a loop in U/∂U based at ∂U/∂U that
is not null-homotopic. Lifting this loop to U by the quotient map q :U →U/∂U,
we obtain a curve γ in U, whose ends lie in ∂U. By using the universal covering
map p : Ũ →U, we can lift γ to γ̃ , a curve in Ũ whose ends lie in ∂Ũ . If ∂Ũ is
connected, since Ũ is simply connected, we have that γ̃ is homotopic to a curve that
lies in ∂Ũ . Composing this homotopy with q ◦ p we obtain a homotopy between γ0

with a point; this is a contradiction. Hence ∂Ũ has more than one component.
Next we observe that if U admits an Einstein ALE metric, then we can lift

this metric to Ũ , which has more than one end. By Cheeger–Gromoll’s splitting
theorem, Ũ splits as the product of a line and a Ricci flat 3-manifold; hence this
metric is flat, which is a contradiction. �
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We continue the proof of Theorem 6.1. By (6-3) we have that b2(U )= 0. On the
other hand, combining (6-2) and Lemma 6.3 we have that ∂U ∼= S3/0, where 0
is either the binary dihedral group D∗2n or the binary icosahedral group. It follows
from Lemma 6.5 that b2(U )≥ 1, and we obtain a contradiction. �
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