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DIFFEOLOGICAL VECTOR SPACES

J. DANIEL CHRISTENSEN AND ENXIN WU

We study the relationship between many natural conditions that one can
put on a diffeological vector space: being fine or projective, having enough
smooth (or smooth linear) functionals to separate points, having a diffeology
determined by the smooth linear functionals, having fine finite-dimensional
subspaces, and having a Hausdorff underlying topology. Our main result
is that the majority of the conditions fit into a total order. We also give
many examples in order to show which implications do not hold, and use
our results to study the homological algebra of diffeological vector spaces.

1. Introduction

Diffeological spaces are elegant generalizations of manifolds that include a variety
of singular spaces and infinite-dimensional spaces. Many vector spaces that arise
in applications are naturally equipped with a compatible structure of a diffeological
space. Examples include C∞(M,Rn) for a manifold (or even a diffeological
space) M, spaces of smooth or holomorphic sections of vector bundles, tangent
spaces of diffeological spaces (as defined in [Christensen and Wu 2016]), smooth
linear duals of all of these spaces, etc. Such objects are called diffeological vector
spaces and are the topic of this paper.

Diffeological vector spaces have been studied by Iglesias-Zemmour [2007; 2013].
He used them to define diffeological manifolds, and developed the theory of fine
diffeological vector spaces, a particularly well-behaved kind that forms the beginning
of our story. Kriegl and Michor [1997] studied topological vector spaces equipped
with a smooth structure, and their examples can be regarded as diffeological vector
spaces. Diffeological vector spaces were used in the study of tangent spaces of
diffeological spaces in [Vincent 2008] and [Christensen and Wu 2016]. Wu [2015]
investigated the homological algebra of all diffeological vector spaces and the
present paper builds heavily on this foundation.

The second author was partially supported by NNSF of China (No. 112530) and STU Scientific
Research Foundation for Talents (No. 760179).
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In this paper, we study some natural conditions that one can put on a diffeological
vector space, and show that the majority of them fit into a total order. In order
to state our results, we briefly introduce the conditions here, making use of some
background material summarized in Section 2.

Any vector space has a smallest diffeology making it into a diffeological vector
space. This is called the fine diffeology, and we write FV for the collection of vector
spaces with the fine diffeology. We write FFV for the collection of diffeological
vector spaces whose finite-dimensional subspaces (with the induced diffeology) are
all fine.

A diffeological vector space V is projective if for every linear subduction
f : W1 → W2 and every smooth linear map g : V → W2, there exists a smooth
linear map h : V → W1 such that g = f ◦ h. We write PV for the collection of
projective diffeological vector spaces.

A diffeological vector space V is in SD (resp. SV) if the smooth (resp. smooth
linear) functionals V →R separate points of V. That is, for each x and y in V with
x 6= y, such a functional f can be found so that f (x) 6= f (y).

Each diffeological space has a natural topology called the D-topology. We
write HT for the collection of diffeological vector spaces whose D-topologies are
Hausdorff.

The last letter of the abbreviation is V , D or T depending on whether the condition
depends on the structure as a diffeological vector space, a diffeological space, or a
topological space.

We now state the main results of the paper.

Theorem 1.1. We have the following chain of containments:

FV ⊂ PV ⊂ SV ⊆ SD ⊂ FFV and SD ⊂HT ,

where ⊂ indicates proper containment. Neither of HT and FFV contains the other.

We do not know whether the containments SV ⊆ SD and SD ⊆ FFV ∩HT are
proper.

The property of being finite-dimensional does not imply, nor is it implied by,
any of the properties considered above. However, under this assumption, most of
the properties agree.

Theorem 1.2. When restricted to finite-dimensional vector spaces, the collections
FV,PV,SV,SD and FFV agree.

Indeed, FV and FFV clearly agree for finite-dimensional spaces, so the con-
tainments must collapse to equalities. Note that we prove part of Theorem 1.2 (see
Theorem 3.19) on the way to proving Theorem 1.1.

The final property we consider is the following. Write DV for the collection of
diffeological vector spaces V such that a function p :Rn

→ V is smooth if and only
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if `◦ p :Rn
→R is smooth for each smooth linear functional ` : V →R. Except for

the inclusion FV ⊂ DV, the class DV is independent of all of the others we have
considered. However, under this assumption, we again find that many of the other
conditions agree.

Theorem 1.3. When restricted to V in DV, the collections SV,SD,FFV and HT
agree.

The proofs of the containments, and the examples showing that many inclusions
do not hold, are spread throughout Section 3. For example, we show FV ⊂ PV in
Example 3.7 and Proposition 3.8, PV⊂SV in Proposition 3.14 and Remark 3.15 (1),
SD ⊂HT in Proposition 3.16 and Example 3.18, HT * FFV in Example 3.18,
and both SD 6= FFV and FFV * HT in Proposition 3.23. That PV * DV is
Proposition 3.33, and the proof of Theorem 1.3 is in Proposition 3.31. The longest
argument, which is the proof that SD ⊆ FFV, is deferred until Section 5. Along
the way, we also prove other results, such as the fact that a diffeological vector
space V is fine if and only if every linear functional on V is smooth, and some
necessary conditions for diffeological vector spaces and free diffeological vector
spaces to be projective. In Section 4, we give some applications of our results to
the homological algebra of diffeological vector spaces. For example, we show that
every finite-dimensional subspace of a diffeological vector space in SV is a smooth
direct summand.

We are thankful to Chengjie Yu for the argument used in Case 1 of the proof
of Theorem 3.22 in Section 5 and to the referee for many comments that helped
improve the exposition.

2. Background and conventions

In this section, we briefly recall some background on diffeological spaces. For
further details, we recommend the standard textbook [Iglesias-Zemmour 2013]. For
a concise introduction to diffeological spaces, we recommend [Christensen et al.
2014], particularly Section 2 and the introduction to Section 3.

Definition 2.1 [Souriau 1984]. A diffeological space is a set X together with a
specified set of functions U→ X (called plots) for each open set U in Rn and each
n ∈ N, such that for all open subsets U ⊆ Rn and V ⊆ Rm :

(1) (covering) Every constant function U → X is a plot.

(2) (smooth compatibility) If U → X is a plot and V → U is smooth, then the
composite V →U → X is also a plot.

(3) (sheaf condition) If U =
⋃

i Ui is an open cover and U → X is a function
such that each restriction Ui → X is a plot, then U → X is a plot.
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A function f : X→ Y between diffeological spaces is smooth if for every plot
p :U → X of X, the composite f ◦ p is a plot of Y.

The category of diffeological spaces and smooth maps is complete and cocom-
plete. Given two diffeological spaces X and Y, we write C∞(X, Y ) for the set of
all smooth maps from X to Y. An isomorphism in the category of diffeological
spaces will be called a diffeomorphism.

Every manifold M is canonically a diffeological space with the plots taken to be
all smooth maps U → M in the usual sense. We call this the standard diffeology
on M. It is easy to see that smooth maps in the usual sense between manifolds
coincide with smooth maps between them with the standard diffeology.

For a diffeological space X with an equivalence relation∼, the quotient diffeology
on X/∼ consists of all functions U→ X/∼ that locally factor through the quotient
map X→ X/∼ via plots of X. A subduction is a map diffeomorphic to a quotient
map. That is, it is a map X → Y such that the plots in Y are the functions that
locally lift to X as plots in X.

For a diffeological space Y and a subset A of Y, the subdiffeology consists of
all functions U → A such that U → A ↪→ Y is a plot of Y. An induction is an
injective smooth map A→ Y such that a function U→ A is a plot of A if and only
if U → A→ Y is a plot of Y.

For diffeological spaces X and Y, the product diffeology on X × Y consists of
all functions U → X × Y whose components U → X and U → Y are plots of X
and Y, respectively.

The discrete diffeology on a set is the diffeology whose plots are the locally
constant functions. The indiscrete diffeology on a set is the diffeology in which
every function is a plot.

We can associate to every diffeological space the following topology:

Definition 2.2 [Iglesias-Zemmour 2007]. Let X be a diffeological space. A subset A
of X is D-open if p−1(A) is open in U for each plot p :U→ X. The collection of
D-open subsets of X forms a topology on X called the D-topology.

Definition 2.3. A diffeological vector space is a vector space V with a diffeology
such that addition V × V → V and scalar multiplication R× V → V are smooth.

Let V be a diffeological vector space. We write L∞(V,R) for the set of all
smooth linear maps V →R, and L(V,R) for the set of all linear maps V →R. We
write DVect for the category of diffeological vector spaces and smooth linear maps.

Conventions. Throughout this paper, we use the following conventions. Every
subset of a diffeological space is equipped with the subdiffeology and every product
is equipped with the product diffeology. Every vector space is over the field R of
real numbers, and every linear map is R-linear. By a subspace of a diffeological
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vector space, we mean a linear subspace with the subdiffeology. All manifolds are
smooth, finite-dimensional, Hausdorff, second countable and without boundary,
and are equipped with the standard diffeology.

3. Diffeological vector spaces

In this section, we study a variety of conditions that a diffeological vector space
can satisfy. Together, the results described here give the theorems stated in the
introduction. In addition, we present some auxiliary results, and give many examples
and counterexamples.

Fine diffeological vector spaces. In this subsection, we recall background on the
fine diffeology, and then give two new characterizations.

Given a vector space V, the set of all diffeologies on V each of which makes V
into a diffeological vector space, ordered by inclusion, is a complete lattice. This
follows from [Christensen and Wu 2016, Proposition 4.6], taking X to be a point.
The largest element in this lattice is the indiscrete diffeology, which is usually not
interesting. Another extreme has the following special name in the literature:

Definition 3.1. The fine diffeology on a vector space V is the smallest diffeology
on V making it into a diffeological vector space.

For example, the fine diffeology on Rn is the standard diffeology.

Remark 3.2. The fine diffeology is generated by the injective linear maps Rn
→ V ;

see [Iglesias-Zemmour 2013, 3.8]. That is, the plots of the fine diffeology are the
functions p :U→ V such that for each u ∈U , there are an open neighbourhood W
of u in U, an injective linear map i : Rn

→ V for some n ∈ N, and a smooth map
f :W → Rn such that p|W = i ◦ f .

One can show that if V is any diffeological vector space and p : W → V is
a plot that factors smoothly through some linear injection Rn

→ V, then every
factorization of p through a linear injection Rm

→ V is smooth. It follows that
every subspace of a fine diffeological vector space is fine; see [Wu 2015].

In fact, fineness of a diffeological vector space can be tested by smooth curves:

Proposition 3.3. A diffeological vector space V is fine if and only if for every plot
p : R→ V and every x ∈ R, there exist an open neighbourhood W of x in R, an
injective linear map i : Rn

→ V for some n ∈ N, and a smooth map f : W → Rn

such that p|W = i ◦ f .

Proof. (⇒) This follows from the description of the fine diffeology in Remark 3.2.
(⇐) Under the given assumptions, we will prove that V is fine. Let q :U→ V be

a plot and let u be a point in U. We first show that there is an open neighbourhood
W of u in U such that q|W lands in a finite-dimensional subspace of V. If not, then



78 J. DANIEL CHRISTENSEN AND ENXIN WU

there exists a sequence ui in U converging to u such that {q(ui ) | i ∈ Z+} is linearly
independent in V. We may assume that the sequence ui converges fast to u; see
[Kriegl and Michor 1997, I.2.8]. By the special curve lemma [Kriegl and Michor
1997, I.2.8], there exists a smooth map f : R→ U such that f (1/ i) = ui and
f (0)=u. Then q◦ f :R→V is a plot which does not satisfy the hypothesis at x =0.

So let W be an open neighbourhood of u in U such that q|W factors as i ◦ g,
where i : Rm

→ V is a linear injection and g : W → Rm is a function. We will
prove that g is smooth. By Boman’s theorem (see, e.g., [Kriegl and Michor 1997,
Corollary 3.14]), it is enough to show that g ◦ r is smooth for every smooth curve
r : R→W. Since i ◦ g ◦ r is smooth, our assumption implies that it locally factors
smoothly through an injective linear map Rn

→ V. Then the last part of Remark 3.2
implies that g ◦ r is locally smooth, and therefore smooth, as required. �

Proposition 3.4. A diffeological vector space V is fine if and only if L∞(V,R)=

L(V,R), i.e., if and only if every linear functional is smooth.

Proof. This follows from the proof of [Wu 2015, Proposition 5.7]. We give a direct
proof here.

It is easy to check that if V is fine, then every linear functional is smooth.
To prove the converse, suppose that every linear functional V → R is smooth.

Let p :U → V be a plot and let u ∈U. First we must show that when restricted to
a neighbourhood of u, p lands in a finite-dimensional subspace of V. If not, then
there is a sequence {u j } converging to u such that the vectors p(u j ) are linearly
independent. Thus there is a linear functional l : V → R such that p(u j ) is sent
to 1 when j is odd and 0 when j is even. By assumption, l is smooth. But l ◦ p is
not continuous, contradicting the fact that p is a plot.

So now we know that p locally factors through an injective linear map i :Rn
→ V.

(Of course, n may depend on the neighbourhood.) For each 1≤ j ≤ n, there is a
linear map l j : V → R such that l j ◦ i is projection onto the j-th coordinate. Since
l j ◦ p is smooth, it follows that the local factorizations through Rn are smooth. Thus
V is fine. �

Projective diffeological vector spaces.
Definition 3.5. A diffeological vector space V is projective if for every linear
subduction f :W1→W2 and every smooth linear map g : V →W2, there exists a
smooth linear map h : V →W1 making the diagram

W1

f
��

V

h
>>

g
// W2

commute. We write PV for the collection of projective diffeological vector spaces.
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We now describe what will be a recurring example in this paper.

Definition 3.6. The free diffeological vector space generated by a diffeological
space X is the vector space F(X) with basis consisting of the elements of X and
with the smallest diffeology making it into a diffeological vector space and such
that the natural map X→ F(X) is smooth.

This has the universal property that for any diffeological vector space V, every
smooth map X→ V extends uniquely to a smooth linear map F(X)→ V. Also,
every plot in F(X) is locally of the form

u 7→
k∑

i=1

ri (u)[pi (u)]

for smooth functions ri :U→R and pi :U→ X, where for x ∈ X, [x] denotes the
corresponding basis vector in F(X). See [Wu 2015, Proposition 3.5] for details.

Example 3.7. By [Wu 2015, Corollary 6.4], when M is a manifold, F(M) is
projective. However, by [Wu 2015, Theorem 5.3], F(X) is fine if and only if X is
discrete. So not every projective diffeological vector space is fine.

Proposition 3.8 [Wu 2015, Corollary 6.3]. Every fine diffeological vector space is
projective.

Proof. This follows immediately from Proposition 3.4. One can take h to be k ◦ g,
where k is a linear section of f (which is not necessarily smooth). �

Projective diffeological vector spaces and the homological algebra of diffeological
vector spaces are studied further in [Wu 2015].

Separation of points.

Definition 3.9. Let X be a diffeological space. A set A of functions with domain X
is said to separate points if for any x, y ∈ X with x 6= y, there exists f ∈ A such
that f (x) 6= f (y). We say that the smooth functionals separate points if C∞(X,R)

separates points. We write SD′ for the collection of all such diffeological spaces X
and SD for the diffeological vector spaces whose underlying diffeological spaces
are in SD′. If V is a diffeological vector space, we say that the smooth linear
functionals separate points if L∞(V,R) separates points, and we write SV for the
collection of all such diffeological vector spaces V.

We establish basic properties of such diffeological vector spaces below, and show
that many familiar diffeological vector spaces have this property. Clearly, SV ⊆ SD.

Example 3.10. Every fine diffeological vector space is in SV, since the coordinate
functions with respect to any basis are smooth and linear. Every manifold is in SD′,
since the products of local coordinates with bump functions separate points (or by
Whitney’s embedding theorem).
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Proposition 3.11. (1) If W → V is a smooth linear injective map between diffeo-
logical vector spaces and V ∈ SV, then W ∈ SV. In particular, SV is closed
under taking subspaces.

(2) Let {Vi }i∈I be a set of diffeological vector spaces. Then
∏

i∈I Vi ∈ SV if and
only if each Vi ∈ SV.

(3) Let {Vi }i∈I be a set of diffeological vector spaces. Then
⊕

i∈I Vi ∈ SV if and
only if each Vi ∈ SV, where

⊕
i∈I Vi is the coproduct in DVect; see [Wu 2015,

Proposition 3.2].

Proof. This is straightforward. �

Proposition 3.12. If V ∈ SV and X is a diffeological space, then C∞(X, V ) ∈ SV.

Proof. This follows from the fact that every evaluation map C∞(X, V )→ V is
smooth and linear. �

Proposition 3.13. The following are equivalent:

(1) X ∈ SD′.
(2) F(X) ∈ SV.

(3) F(X) ∈ SD.

Proof. It is enough to prove (1)⇒ (2), since (2)⇒ (3)⇒ (1) are straightforward.
Let v ∈ F(X) be nonzero. It suffices to show that there is a smooth linear functional
F(X)→ R which is nonzero on v. Write v =

∑k
i=1 ri [xi ] with k ≥ 1, ri nonzero

for each i , and the xi distinct. Since C∞(X,R) separates points of X, there exists
f ∈ C∞(X,R) such that f (x1)= 1 and f (xi )= 0 for each i > 1. By the universal
property of F(X), f extends to a smooth linear map F(X)→ R which sends v
to r1, which is nonzero. �

Proposition 3.14. Every projective diffeological vector space is in SV.

Proof. By Example 3.10, every open subset U of a Euclidean space is in SD′. So
Proposition 3.13 implies that F(U ) is in SV. Corollary 6.15 of [Wu 2015] says that
every projective diffeological vector space is a retract of a coproduct of F(U )’s in
DVect. Therefore, it follows from Proposition 3.11 (3) and (1) that every projective
diffeological vector space is in SV. �

Remark 3.15. (1) Not every diffeological vector space in SV is projective. For
example, let V :=

∏
ω R be the product of countably many copies of R. By

Proposition 3.11 (2), V is in SV. But [Wu 2015, Example 4.3] shows that V is
not projective.

(2) SV is not closed under taking quotients in DVect. For example, F(π) :
F(R)→ F(Tα) is a linear subduction, where α is an irrational and

π : R→ Tα := R/(Z+αZ)
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is the projection to the 1-dimensional irrational torus. By Proposition 3.13, F(R) is
in SV, but F(Tα) is not in SV since Tα is not in SD′. In particular, the free diffeolog-
ical vector space F(Tα) is not projective, as observed in [Wu 2015, Example 4.3].

Here is an easy fact:

Proposition 3.16. The D-topology of every diffeological space in SD′ is Hausdorff.
In particular, SD ⊆HT .

Proof. This follows from the fact that every smooth map is continuous when both
domain and codomain are equipped with the D-topology. �

Corollary 3.17. If F(X) is projective, then X is Hausdorff.

Proof. If F(X) is projective, then it is in SD by Proposition 3.14, and so X is
in SD′ by Proposition 3.13. Thus X is Hausdorff, by Proposition 3.16. �

This gives another proof that free diffeological vector spaces are not always
projective. For example, if a set X with more than one point is equipped with the
indiscrete diffeology, then the D-topology on X is indiscrete as well, and hence
F(X) is not projective.

Example 3.18. The converse of Proposition 3.16 does not hold. Write C(R) for
the vector space R equipped with the continuous diffeology, so that a function
p :U → C(R) is a plot if and only if it is continuous; see [Christensen et al. 2014,
Section 3]. Then C(R) is a Hausdorff diffeological vector space, as the D-topology
on C(R) is the usual topology. But one can show that C∞(C(R),R) consists of con-
stant functions ([Christensen and Wu 2016, Example 3.15]), so C(R) is not in SD.

We will use the following result in the next subsection.

Theorem 3.19. Let V be a finite-dimensional diffeological vector space. Then the
following are equivalent:

(1) V is fine.

(2) V is projective.

(3) V is in SV.

Proof. By Propositions 3.8 and 3.14, (1) =⇒ (2) =⇒ (3), for all V. So it remains
to prove (3) =⇒ (1). Assume that V is finite-dimensional and in SV. Choose a
basis f1, . . . , fk for L∞(V,R), and use it to give a smooth linear map f : V → Rk.
Note that k ≤ dim V. Since V is in SV, f is injective, and hence surjective. The
diffeology on Rk is the fine diffeology, which is the smallest diffeology making it
into a diffeological vector space. The map f : V → Rk is a smooth linear bijection,
so the diffeology on V must be fine as well (and f must be a diffeomorphism). �

The implication (3) =⇒ (1) also follows from Proposition 3.4, since V in
SV implies that dim L(V,R) ≥ dim L∞(V,R) ≥ dim V = dim L(V,R), and so
L∞(V,R)= L(V,R).
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Diffeological vector spaces whose finite-dimensional subspaces are fine. Write
FFV for the collection of diffeological vector spaces whose finite-dimensional
subspaces are fine. One motivation for studying this collection is the following. In
[Christensen and Wu 2016], we defined a diffeology on Hector’s tangent spaces
[1995] which makes them into diffeological vector spaces. While they are not fine
in general, we know of no examples that are not in FFV.

As an example, one can show that
∏
ω R is in FFV. This also follows from the

next result, which is based on a suggestion of Y. Karshon.

Theorem 3.20. Every diffeological vector space in SV is in FFV.

This result is a special case of Theorem 3.22 below, but we provide a direct
proof, since it follows easily from earlier results.

Proof. Let W be a finite-dimensional subspace of V with V ∈ SV. W is in SV, by
Proposition 3.11 (1), and so by Theorem 3.19, W is fine. �

Remark 3.21. (1) Note that it is not in general true that every diffeological vector
space in SV is fine. For example,

∏
ω R is in SV by Remark 3.15 (1), but it is not

fine. In fact, [Wu 2015, Example 5.4] showed that there is a countable-dimensional
subspace of

∏
ω R which is not fine. Incidentally, it follows that

∏
ω R is not the

colimit in DVect of its finite-dimensional subspaces, since fine diffeological vector
spaces are closed under colimits; see [Wu 2015, Property 6 after Definition 5.2].

(2) When R is equipped with the continuous diffeology (see Example 3.18), it
is Hausdorff but is not in FFV. We will see in Proposition 3.23 that the reverse
inclusion also fails to hold.

The main result of this section is the following:

Theorem 3.22. Every diffeological vector space in SD is in FFV.

We defer the proof to Section 5.
Furthermore, we have the following result:

Proposition 3.23. There exists a diffeological vector space which is in FFV but
which is not Hausdorff. In particular, the containment of SD in FFV is proper.

Proof. Let V be the vector space with basis R, and for r ∈ R write [r ] for the
corresponding basis vector of V. Let f : R→ R be a bijection such that f −1(U )
is dense in R for every open neighbourhood U of 0 in R. Define p : R→ V by
p(x) = [ f (x)] and p̄ : R→ V by p̄(x) = [x]. Equip V with the vector space
diffeology generated by p and p̄. In other words, q :U → V is a plot if and only
if for every u0 ∈U there exist an open neighbourhood U ′ of u0 in U and finitely
many smooth functions αi , βi , α j , β̄ j :U ′→ R such that for any u ∈U ′,

(†) q(u)=
∑

i

αi (u) [ f (βi (u))] +
∑

j

α j (u) [β̄ j (u)].
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(In general, one should include terms with smooth multiples of arbitrary vectors
in V, but since β̄ j can be constant, this case is included in the above.) First we show
that the D-topology on V is not Hausdorff. Suppose that V0 and V1 are disjoint
D-open subsets of V containing [0] and [1], respectively. Then U0 := p̄−1(V0)

and U1 := p̄−1(V1) are open in R. Since p and p̄ are both bijections onto the
subset of basis vectors in V, it follows that p−1(V0) = f −1(U0) and p−1(V1) =

f −1(U1). Therefore, p−1(V0) is dense in R and so p−1(V1), which is contained in
the complement, must not be open in R, contradicting the assumption that V1 is
D-open. So V is not Hausdorff.

Next we show that V is in FFV. It suffices to show that for any finite subset
A⊆R, the subspace W spanned by A has the fine diffeology. So let q :U→ V be a
plot which lands in W. We must show that for each a ∈ A, the component qa of q is a
smooth function U→R. This is a local property, so we choose u0∈U and express q
in the form (†). It suffices to handle each sum in (†) separately, so we begin by
assuming that q only has terms involving f . Let A′ = f −1(A). By shrinking U ′ if
necessary, we can assume that: (1) for any b′ ∈ A′, if βi (u0) 6= b′, then βi (u) 6= b′

for all u ∈ U ′; and (2) if βi (u0) 6= β j (u0), then βi and β j have disjoint images.
Since f is a bijection, we can rephrase these conditions as: (1’) for any b ∈ A, if
f (βi (u0)) 6= b, then f (βi (u)) 6= b for all u ∈U ′; and (2’) if f (βi (u0)) 6= f (β j (u0)),
then f ◦βi and f ◦β j have disjoint images. Condition (1’) implies that for u ∈U ′,
qa(u) is the a-coefficient of ∑

f (βi (u0))=a

αi (u) [ f (βi (u))].

Since q(u) is in W, condition (2’) implies that for r ∈ R \ A, we must have

(�)
∑

f (βi (u0))=a, f (βi (u))=r

αi (u)= 0.

And condition (1’) implies that (�) also holds for r ∈ A\{a}, since the sum is empty
in that case. Therefore, qa(u) can be expressed as∑

f (βi (u0))=a

αi (u),

which is a smooth function of u ∈U ′.
The other sum in (†) is handled in a similar way, replacing f by the identity

function throughout.
Finally, Proposition 3.16 implies that V is not in SD, giving the last claim. �

Next we observe that if V is projective (and hence in SV and SD), it does not
follow that all countable-dimensional subspaces of V are fine. We will illustrate
this with V = F(R). By [Wu 2015, Corollary 6.4], F(R) is projective.
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Proposition 3.24. Let A be a subset of R, and let V be the subspace of F(R)
spanned by A. Then V is fine if and only if A has no accumulation point in R.

For example, F(R) is not fine. As a more interesting example,

A = {1/n | n = 1, 2, . . .}

spans a countable-dimensional subspace V of F(R) which is not fine. It will follow
from Proposition 3.25 that V is not free on any diffeological space.

Proof. (⇐) Let p :U → V be a plot, where U is open in some Rn. Since V is the
span of A, there exist unique functions ha :U → R such that

p(x)=
∑
a∈A

ha(x)[a].

Since A has no accumulation point in R, for each a in A there exists a smooth bump
function φa :R→R which takes the value 1 at a and 0 at every other element of A.
Associated to φa is a smooth linear map φ̃a : F(R)→R which sends [a] to 1 and all
other basis elements from A to 0. Then ha = φ̃a ◦ p, which shows that ha is smooth.

Next we show that locally p factors through the span of a finite subset of A. Fix
u ∈U. As V is a subspace of F(R), there is an open neighbourhood U ′ of u in U
such that

p(x)=
m∑

j=1

f j (x)[g j (x)]

for x ∈U ′, where f j and g j are smooth functions U ′→R. Shrinking U ′ if necessary,
we can assume that it is contained in a compact subset of U. It follows that the
image of each g j is contained in a compact subset of R and therefore intersects
only finitely many points of A. Since there are only finitely many g j ’s, p|U ′ factors
through the span of A′ for some finite subset A′ of A. That is, ha(x) = 0 for all
x ∈U ′ and all a ∈ A \ A′.

In summary, identifying the span of A′ with RA′, we have factored p|U ′ as
U ′→ RA′

→ V, where the first map is x 7→ (ha(x))a∈A′ and the second map sends
f : A′→ R to

∑
a∈A′ f (a)[a].

(⇒) Now we prove that if A has an accumulation point a0 in R, then V is not
fine. Pick a sequence (ai ) in A \ {a0} that converges fast to a0. Choose a smooth
function f :R→R such that f (x) 6= 0 for 1/(2n+1) < x < 1/2n for each n ∈ Z+,
and f (x)= 0 for all other x . Choose another smooth function g : R→ R such that
g(x) = an for 1/(2n+ 1) < x < 1/2n for each n ∈ Z+, with no constraints on g
otherwise. It will necessarily be the case that g(0)= a0, and such a smooth g exists
because the sequence was chosen to converge fast. Then the function p : R→ V
defined by p(x) = f (x)[g(x)] is smooth, but there is no open neighbourhood U
of 0 so that p|U factors through a finite-dimensional subspace of V. �
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On the other hand, we have:

Proposition 3.25. Let X be a diffeological space whose underlying set has cardi-
nality less than the cardinality of R. Then the following are equivalent:

(1) X is discrete.

(2) F(X) is fine.

(3) F(X) is projective.

(4) F(X) is in SV.

(5) F(X) is in SD.

(6) F(X) is Hausdorff.

Proof. That (1) =⇒ (2) is straightforward. The implications (2) =⇒ (3) =⇒ (4) and
(5) =⇒ (6) follow from Propositions 3.8, 3.14 and 3.16, while (4) =⇒ (5) is clear.
None of these use the assumption on the cardinality of X.

It remains to prove that (6) =⇒ (1). Since the natural injective map X→ F(X)
is smooth, it is also continuous when X and F(X) are both equipped with the
D-topology. Therefore, X is Hausdorff. We must show that the diffeology on X is
discrete. Let p :U → X be a plot from a connected open subset U of a Euclidean
space. We will show that p is constant. If not, then the image of p contains two
distinct points x, x ′ ∈ X which are connected by a continuous path q : [0, 1] → X.
The image of q is compact Hausdorff, and therefore normal. So by Urysohn’s
lemma, there is a continuous map l : Im(q)→ R which separates x and x ′. Hence,
the image of the composite l ◦ q : [0, 1] → Im(q)→ R has cardinality equal to the
cardinality of R, which is a contradiction, since Im(q)⊆ X has cardinality less than
the cardinality of R. �

Part of the above proof is based on the argument in [Hamkins 2015]. Note that
we have proved that every Hausdorff diffeological space with cardinality less than
the cardinality of R is discrete. The implication (2) =⇒ (1) is also proved in [Wu
2015, Theorem 5.3], without a constraint on the cardinality of X.

Diffeologies determined by smooth linear functionals.

Definition 3.26. The diffeology on a diffeological vector space V is determined by
its smooth linear functionals if p :U→V is a plot if and only if l◦p is smooth for ev-
ery l ∈ L∞(V,R). Write DV for the collection of all such diffeological vector spaces.

Note that any vector space with the indiscrete diffeology is in DV. It follows that
being in DV does not imply any of the other conditions we have studied.

Also note that every diffeological vector space V in DV is Frölicher: p :U→ V
is a plot if and only if f ◦ p is smooth for every f ∈ C∞(V,R). We do not know if
the converse holds.
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We will see in Proposition 3.31 that for diffeological vector spaces in DV, the
converse of Theorem 3.20 holds. For this, we need the following results.

Lemma 3.27. (1) If V is in DV and W is a subspace of V, then W is in DV.

(2) Let {Vi } be a set of diffeological vector spaces. Then each Vi is in DV if and
only if

∏
Vi is in DV.

Since the category DVect is an additive category, (2) also implies that DV is
closed under taking finite direct sums.

Proof. This is straightforward. �

Proposition 3.28. Let V be a diffeological vector space. Then V is in DV if and
only if V can be written as a direct sum V ∼=W0⊕W1 of diffeological vector spaces,
where W0 is indiscrete and W1 is in SV ∩DV.

Proof. Given V in DV, let W0 be
⋂

l∈L∞(V,R) ker(l) with the subdiffeology. Since
L∞(V,R) determines the diffeology on V, W0 is indiscrete. Let W1 be the quotient
V/W0, with the quotient diffeology. By Lemma 3.30, we have V ∼= W0⊕W1 as
diffeological vector spaces. If v+W0 is a nonzero element of W1, then v 6∈ W0,
so there is a smooth linear functional l : V → R such that l(v) 6= 0. This l factors
through W1, so it follows that W1 is in SV. By Lemma 3.27, we know that W1 ∈DV,
and hence W1 ∈ SV ∩DV.

The converse follows from Lemma 3.27 and the comment after Definition 3.26. �

Definition 3.29. Following [Wu 2015, Definition 3.15], a diagram

0−→W0
i
−→ V p

−→W1 −→ 0

of diffeological vector spaces is a short exact sequence of diffeological vector
spaces if it is a short exact sequence of vector spaces, i is an induction, and p is a
subduction.

Lemma 3.30. Let
0−→W0

i
−→ V p

−→W1 −→ 0

be a short exact sequence of diffeological vector spaces. If W0 is indiscrete, then
the sequence splits smoothly, so that V ∼=W0⊕W1 as diffeological vector spaces.

Proof. Let q : V → W0 be any linear function such that q ◦ i = 1W0 . Since W0

is indiscrete, q is smooth. Let k : V → V be the smooth linear map sending v to
v− i(q(v)). Then k ◦ i = 0, so k factors as j ◦ p, where j : W1→ V is smooth
and linear. The smooth bijection V → W0⊕W1 sending v to (q(v), p(v)) has a
smooth inverse sending (w0, w1) to i(w0)+ j (w1), so the claim follows. �

It follows that many properties of a diffeological vector space are equivalent in
this setting:



DIFFEOLOGICAL VECTOR SPACES 87

Proposition 3.31. Let V be in DV. Then the following are equivalent:

(1) V is in SV.

(2) V is in SD.

(3) V is in FFV.

(4) D(V ) is Hausdorff.

(5) V has no nonzero indiscrete subspace.

Moreover, being in DV and satisfying one of these conditions is equivalent to being
a subspace of a product of copies of R.

Proof. Without any assumption on V, we have (1) =⇒ (2) =⇒ (3) and (2) =⇒ (4)
using Theorem 3.22 and Proposition 3.16. It is easy to see that (3) =⇒ (5) and
(4) =⇒ (5). By Proposition 3.28, (5) =⇒ (1) when V is in DV, and so we have
shown that the five conditions are equivalent for V ∈ DV.

For the last claim, a product of copies of R is in both SV and DV, and both are
closed under taking subspaces. Conversely, if V is in SV ∩DV, it is easy to check
that

V →
∏

L∞(V,R)

R

defined by v 7→ ( f (v)) f ∈L∞(V,R) is a linear induction, and hence V is a subspace
of a product of copies of R. �

Remark 3.32. (1) It is not true that every diffeological vector space is in DV. For
example, when R is equipped with the continuous diffeology (see Example 3.18),
all smooth linear functionals are zero, but the diffeology is not indiscrete.

(2) Other properties we have studied cannot be added to Proposition 3.31. For
example, we saw in Remark 3.15 (1) that

∏
ω R is in SV but is not fine or projective.

And it is easy to see that
∏
ω R is in DV.

It is not hard to show that every fine diffeological vector space is in DV. As a
final example, we will show that not every projective diffeological vector space
is in DV, and therefore that none of our other conditions on a diffeological vector
space V implies that V is in DV.

We will again use the diffeological vector space F(R), which is projective by
[Wu 2015, Corollary 6.4]. We now show that it is not in DV.

Proposition 3.33. The free diffeological vector space F(R) generated by R is not
in DV.
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Proof. Fix a nonzero smooth function φ : R→ R such that supp(φ) ⊂ (0, 1) and
|φ(x)| ≤ 1 for all x ∈ R. For each n ∈ Z+, define φn : R→ R by

φn(x)= φ

(
x − 1

n+1
1
n −

1
n+1

)
.

Finally, define g : R→ F(R) by

g(t)=
{

2−n φn(t)
∑n

i=1
[ 1

i

]
if 1

n+1 ≤ t < 1
n , for n > 0,

0 else.

Then g is not a plot of F(R), since locally around 0 ∈ R, g cannot be written as a
finite sum of fi (x)[hi (x)], where fi and hi are smooth functions with codomain R.
But for each l ∈ L∞(F(R),R),

l ◦ g(t)=
{

2−n φn(t)
∑n

i=1 l
([1

i

])
if 1

n+1 ≤ t < 1
n ,

0 else.

This is smooth, since the set
{
l
([1

i

])}
is bounded, using the smoothness of l. �

As an easy corollary, we have:

Corollary 3.34. F(R) is not a subspace of a product of copies of R.

4. Some applications

Recall that a diagram

0 // V1
f
// V2

g
// V3 // 0

is a short exact sequence of diffeological vector spaces if it is a short exact sequence
of vector spaces such that f is an induction and g is a subduction. We say that the
sequence splits smoothly if there exists a smooth linear map r : V2→ V1 such that
r ◦ f = 1V1 , or equivalently, if there exists a smooth linear map s : V3→ V2 such
that g ◦ s = 1V3 . In either case, V2 is smoothly isomorphic to V1 × V3; see [Wu
2015, Theorem 3.16].

Not every short exact sequence of diffeological vector spaces splits smoothly.
For example, if we write K for the subspace of C∞(R,R) consisting of the smooth
functions which are flat at 0, then K is not a smooth direct summand of C∞(R,R)

[Wu 2015, Example 4.3].
As a first application of the theory established so far, we can construct additional

short exact sequences of diffeological vector spaces which do not split smoothly:

Example 4.1. Let M be a manifold of positive dimension, and let A be a finite
subset of M. Write V for the subspace of F(M) spanned by the subset M \ A of M.
We claim that V is not a smooth direct summand of F(M).
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To see this, write W for the quotient diffeological vector space F(M)/V. Then, as
a vector space, W =

⊕
a∈A R. So we have a short exact sequence 0→V→ F(M)→

W → 0 in DVect. Suppose this sequence splits smoothly. By Example 3.7, F(M)
is projective, and therefore W is as well. By Proposition 3.14 and Theorem 3.20,
W is in FFV. Since W is finite-dimensional, it is fine. But the smooth map
M→ F(M)→W =

⊕
a∈A R sends each a ∈ A to a basis vector and other points

in M to 0, so it is not a smooth map in the usual sense. This contradicts the fact
that W is fine.

As a second application, we prove:

Theorem 4.2. Let V be in SV. Then every finite-dimensional subspace of V is a
smooth direct summand.

Proof. Let W be a finite-dimensional subspace of V ∈ SV. By Theorem 3.20, we
know that W has the fine diffeology. Moreover, since V is in SV, there is a smooth
linear injective map V →

∏
i∈I R for some index set I. Since

∏
i∈I R is in SV,

again by Theorem 3.20, we know that the composite W ↪→ V →
∏

i∈I R is an
induction, although the second map might not be an induction. So, we are left to
prove this statement for the case V =

∏
i∈I R.

Write dim(W )= m. By Gaussian elimination, there exist distinct i1, . . . , im ∈ I
such that the composite W ↪→ V =

∏
i∈I R→ Rm is an isomorphism of vector

spaces, where the second map is the projection onto the i1, . . . , im coordinates, and
hence smooth. Since both W and Rm have the fine diffeology, this isomorphism is
a diffeomorphism, and by composing with its inverse we obtain a smooth linear
map r : V →W such that the composite

W � � // V r
// W

is 1W. Therefore, W is a smooth direct summand of V. �

5. Proof of Theorem 3.22

Theorem 3.22. Every diffeological vector space in SD is in FFV.

Proof. If a diffeological vector space is in SD, then so are all of its subspaces. So it
suffices to show that every finite-dimensional diffeological vector space in SD is fine.

Write V for Rn with the structure of a diffeological vector space which is not
fine. We will use the word “smooth” (resp. “continuous”) to describe functions
R→ V and V → R which are smooth (resp. continuous) with respect to the usual
diffeology (resp. topology) on Rn. We use the word “plot” to describe functions
R→ V which are in the diffeology on V, and write f ∈ C∞(V,R) to describe
functions which are smooth with respect to this diffeology.
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By Proposition 3.3, there is a plot p : R→ V which is not smooth. Since plots
are closed under translation in the domain and codomain, we can assume without
loss of generality that p(0)= 0 and p is not smooth at 0 ∈ R. We will show that
this implies that V is not in SD.

Case 1: Suppose p is continuous at 0. Consider A :={∇ f (x)| f ∈C∞(V,R), x∈V }.
Then A is a subset of Rn.

We claim that A is a proper subset of Rn. If A is not proper, then there exist
( f1, a1), . . . , ( fn, an)∈C∞(V,R)×V such that∇ f1(a1), . . . ,∇ fn(an) are linearly
independent. Then gi : V → R defined by gi (x) = fi (x + ai ) is in C∞(V,R),
G := (g1, . . . , gn) : V → Rn is smooth, and the Jacobian J G(0) is invertible.
Therefore, by the inverse function theorem, G is a local diffeomorphism near 0 ∈ V.
Since p(0)= 0, p is continuous at 0 ∈ R, and G ◦ p is smooth, it follows that p
is smooth at 0, contradicting our assumption on p. So A is a proper subset.

By the same method of translation, one sees that A is a subspace of Rn. Hence,
there exists 0 6= v ∈ Rn such that v ⊥ A, which implies that f (x + tv)= f (x) for
every f ∈ C∞(V,R), x ∈ V and t ∈ R, i.e., V is not in SD.

Case 2: Suppose that p is not continuous at 0.

Case 2a: Suppose there exist k ∈ N and ε > 0 such that tk p(t) is bounded on
[−ε, ε]. Let k be the smallest such exponent and write q(t) := tk p(t), which is
also a plot. We claim that q is not smooth at 0. If k = 0, then q = p, which is
assumed to not be smooth at 0. If k > 0 and q ′(0) exists, then q(t)/t→ q ′(0) as
t→ 0, which implies that tk−1 p(t) is also bounded on [−ε, ε], contradicting the
minimality of k. So q is not smooth at 0.

If q is continuous at 0, then by Case 1, we are done.
So assume that q is not continuous at 0. Then, since q is bounded on [−ε, ε],

there exists a sequence ti converging to 0 such that q(ti ) converges to a nonzero v∈V.
If f is in C∞(V,R), then f ◦ q is smooth, so f (0) = f (q(0)) = f (q(lim ti )) =
lim f (q(ti ))= f (lim q(ti ))= f (v). Therefore, the functions in C∞(V,R) do not
separate points.

Case 2b: Suppose that Case 2a does not apply. Then for each k ∈ N, ε > 0 and
M > 0, there exists t ∈ [−ε, ε] such that ‖tk p(t)‖ > M. (Note that t 6= 0, since
p(0)= 0.) Using this for k = 0, choose t1 ∈ [−1, 1] such that ‖p(t1)‖> 1. Then,
for each integer k > 0, choose tk with |tk | ≤ |tk−1|/2 such that ‖tk

k p(tk)‖ > k. If
m ≤ k, then tk also satisfies ‖tm

k p(tk)‖> k ≥ m, since |tk | ≤ 1. Therefore, we can
restrict to a subsequence of the tk all having the same sign. To fix notation, assume
that each tk is positive. Then, for m ≤ k,

1
‖p(tk)‖

tm
k

<
1
k
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and so, for each m, the left-hand side goes to 0 as k → ∞. By Lemma 5.1,
there is a smooth curve c : R→ R such that c(tk) = 1/‖p(tk)‖. It follows that
q(t) := c(t)p(t) is a plot such that q(0)= 0 and ‖q(tk)‖ = 1 for each k. Therefore,
there is a subsequence converging to a nonzero v ∈ V, and the argument at the end
of Case 2a shows that C∞(V,R) does not separate points. �

Lemma 5.1 (extended special curve lemma). Let {xk} and {tk} be sequences in R

such that 0 < tk < tk−1/2 for each k and xk/tm
k → 0 as k→∞ for each m ∈ Z+.

Then there is a smooth function c : R→ R such that c(tk) = xk for each k and
c(t)= 0 for t < 0.

The proof closely follows [Kriegl and Michor 1997, page 18], and can easily be
generalized further.

Proof. Let φ :R→R be a smooth function such that φ(t)= 0 for t ≤ 0 and φ(t)= 1
for t ≥ 1. Define c : R→ R by

c(t)=


0 for t ≤ 0,

xk+1+φ

(
t − tk+1

tk − tk+1

)
(xk − xk+1) for tk+1 ≤ t ≤ tk,

x1 for t1 ≤ t .

The function c is smooth away from 0 and for tk+1 ≤ t ≤ tk we have

c(r)(t)= φ(r)
(

t − tk+1

tk − tk+1

)
1

(tk − tk+1)r
(xk − xk+1).

Since tk − tk+1 > tk/2> tk+1, the right-hand side goes to zero as t→ 0. Similarly,
c(r)(t)/t→ 0, which shows that each c(r+1)(0) exists and is 0. So c is smooth. �

We are indebted to Chengjie Yu for the argument used in Case 1 of Theorem 3.22.
After we completed Case 2, Yongjie Shi and Chengjie Yu proved this case in more
generality in [Shi and Yu 2017].
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