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DEGREE-ONE, MONOTONE SELF-MAPS OF THE
PONTRYAGIN SURFACE ARE NEAR-HOMEOMORPHISMS

ROBERT J. DAVERMAN AND THOMAS L. THICKSTUN

We prove that a self-map of the closed Pontryagin surface can be approxi-
mated by homeomorphisms if and only if it is monotone and has degree ±1.
This adds to a body of theorems, each of which characterizes for some space or
class of spaces those self-maps which are approximable by homeomorphisms.

1. Introduction

Given a topological space X , one can ask, “Which surjective self-maps of X are
near-homeomorphisms (i.e., approximable by homeomorphisms)?” For X either
an n-manifold (n = 2 [Daverman 1986, §25], n = 3 [Armentrout 1971] (in case
X is noncompact, this also depends on the solution to the 3-dimensional Poincaré
conjecture), n = 4 [Freedman and Quinn 1990], and n > 4 [Siebenmann 1972]) or
a Hilbert cube manifold [Chapman 1973], the answer is the cell-like self-maps. For
X an n-dimensional Menger manifold it is the U V n−1self-maps [Bestvina 1988].
This paper establishes a monotone approximation theorem (Theorem 2.2 here)
attesting that, for a (connected) Pontryagin surface P of [Mitchell et al. 1992], the
near-homeomorphisms are the self-maps which are monotone and have degree plus
or minus one.

Not surprisingly, the proof hinges on a shrinking argument, which appears in
Section 10 here. The crucial result toward this end, Corollary 10.5, promises
that decompositions induced over finite graphs in the target of the usual type of
map are shrinkable. That corollary combines with a homeomorphism extension
theorem for maps between Pontryagin disks to complete the proof of the monotone
approximation theorem. The section also contains a related theorem for maps
between Pontryagin disks that restrict to homeomorphisms between their boundaries.

To set up the shrinking argument a great deal of preliminary effort is required.
Most of that effort is directed toward the following intermediate result, called the
factor theorem: given a self-map f as in the hypothesis and a locally separating,
simple arc A in the Pontryagin surface P , the decomposition space X obtained
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from the decomposition of P whose elements are the point-preimages under f of
the points in A and singletons in P − f −1(A) is a Pontryagin surface. The factor
theorem is stated formally in Section 3; its proof appears at the end of Section 6,
based on a related result called the factor reduction theorem. The latter, in turn, is
proved in Section 7. Section 8 introduces the notion of a Pontryagin disk, which
is a compact subset of a Pontryagin surface that behaves much like a 2-disk in a
genuine surface. The main result of the section establishes a controlled equivalence
of Pontryagin disks; it has the useful corollary that all homeomorphisms between
the boundary curves of Pontryagin disks extend to homeomorphisms between the
Pontryagin disks themselves; that result is an essential component of the proof of the
monotone approximation theorem. Section 9 introduces the notion of Pontryagin
cellularity, a natural analog to the concept of cellularity in 2-manifolds, and a key
ingredient in the shrinking arguments.

Pontryagin surfaces and, in particular, Pontryagin disks were introduced by
Mitchell, Repovš, and Ščepin [Mitchell et al. 1992], building on a related con-
struction of Pontryagin [1930]. We define Pontryagin surfaces in the next section
in a slightly different way than they did, using decompositions into points and
figure-eights. Proposition 2.1 attests to the equivalence of this formulation with the
original treatment as controlled inverse limits of monotone maps between closed,
orientable surfaces. These objects have several interesting features. Connected
Pontryagin surfaces are homogeneous [Jakobsche 1991]. A loop L in a locally
compact, locally path-connected, locally homologically 1-connected metric space S
is null homologous (Borel–Moore homology with Z coefficients throughout) if and
only if it bounds a singular Pontryagin disk in S [Mitchell et al. 1992]. Any map of
a Pontryagin disk or Pontryagin surface into a generalized n-manifold, n > 4, can
be approximated arbitrarily closely by embeddings [Gu 2017].

Any monotone map between closed orientable surfaces must have absolute
degree one [Lacher 1977, §7], which might suggest that the degree-one hypothesis
in the statement of the monotone approximation theorem is redundant. It is not.
However, the construction of the relevant example is quite intricate and the authors
will present it in a separate article.

2. Terminology, notation, conventions, and statement of the main result

All maps of spaces will be continuous. A map is proper if the preimage of every
compact subset of the target is compact. A surjective map is monotone if every
point preimage is connected. A homotopy ft of a map f0 : X → Y is supported
in a subset U of Y if, for all t ∈ [0, 1] and x ∈ X − f −1

0 (U ), ft(x) = f0(x) and
ft( f −1

0 (U )) ⊆ U . A map f : (X, A) → (Y, B) is split if f −1(B) = A, and a
homotopy of such a split map is admissible if it is supported in Y − B. Given
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f : X → Y and B ⊂ Y , we say f is one-to-one, bijective, onto, etc. over B if
f | f −1(B) : f −1(B)→ B is one-to-one, bijective, onto, etc.

A space is nice if it is locally compact, locally path-connected, separable, and
metrizable (recall that any connected, nice space has an end-point compactification).
For a connected, nice space X we denote the one-point compactification, end-
point compactification, and space of ends by X̂ , X̂̂ , and e(X), respectively (by
convention, if X is compact, then X = X̂ = X̂̂ and e(X) = ∅). Note that if U is
an open, connected subset of a connected, nice space X , then the quotient space
X̂/(X̂ −U ) is homeomorphic to Û . We will often refer to the “quotient-map”
X̂ → Û , by which we mean the composition X̂ → X̂/(X̂ −U )→ Û (the maps
being those referred to above).

An exhaustion of a set X is a sequence {X i } of subsets of X satisfying X =
⋃

i X i

and, for all i , X i ⊆ X i+1.
We often refer to a collection E of pairwise-disjoint compacta in a nice space X

as a decomposition of X . This means the partition of X whose elements are the
elements of E together with all singletons, each of which is contained in no element
of E . This partition (or decomposition) is upper semicontinuous (and hence, the
associated decomposition space is metrizable) whenever the elements of E form a
null sequence with respect to some metric on X . Such a decomposition space will
be denoted as X/E .

Any space homeomorphic to the wedge of two circles is a figure-eight.

Definition. A connected, nice space P is a Pontryagin surface if there exists a
countable family E of pairwise-disjoint figure-eights in P such that E is null in P̂
and, for any cofinite subfamily D of E , the image of P under the decomposition map
P̂→ P̂/D is an orientable surface without boundary. Such a family E is a sufficient
family for P . (Observe that any closed orientable surface Q is a Pontryagin surface
and that any finite family of pairwise-disjoint figure-eights in Q is a sufficient
family if and only if it satisfies the following condition: for any element e of the
family, the quotient space Q/e is a surface). If, in addition, the image of P in P̂/E
is either planar or a 2-sphere, then E is a full family for P . A nice space is a
Pontryagin surface if each of its components is a Pontryagin surface, and a family E
of figure-eights in a Pontryagin surface is a sufficient family if the elements of E
in each component Y constitute a sufficient family for Y . A Pontryagin surface is
closed if it is compact; otherwise, it is open.

A subspace C of a Pontryagin surface X is P-negligible if X has a sufficient
family no element of which meets C . The manifold set of X , denoted M(X), is
{p ∈ X | p has a neighborhood homeomorphic to R2

}. X is rich if M(X) = ∅. It
should be noted that, unlike [Mitchell et al. 1992], in order to promote greater
generality and to accommodate some of our constructions, we do not assume all
Pontryagin surfaces have empty manifold set.
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A compact space D is a Pontryagin disk if it is homeomorphic to the closure
of some complementary component of a separating simple closed curve in a rich,
connected Pontryagin surface. (It is important to keep in mind that Pontryagin disks,
unlike Pontryagin surfaces, never contain open 2-disks.) Note that, by Corollary 3.2,
the frontier of a Pontryagin disk in a Pontryagin surface is P-negligible.

A compact 1-manifold A in a space X is locally separating if, given p ∈ A−∂A
and any neighborhood U of p, there exists a connected neighborhood V of p such
that V ⊂U , V ∩ A is connected, and V − A is not connected.

The Čech n-homology with G coefficients of a compact, metrizable space X
will be denoted Ȟn(X;G) (however, if G = Z, the coefficient group will not be
indicated).

A map f : X→Y of compact, metrizable spaces is an Ȟ2-isomorphism, monomor-
phism, etc. if it induces an isomorphism, monomorphism, etc. on Čech 2-homology.

A surjective map of closed, orientable surfaces is standard if it is bijective over
the complement of a finite subset F of the target and the preimage of each point
in F is a figure-eight.

A map f : X → Y of one compact, metrizable space onto another is a near-
homeomorphism if, given a metric ρ on Y and ε > 0, there exists a homeomorphism
h : X→ Y such that, for all x ∈ X , ρ( f (x), h(x)) < ε.

The following proposition provides, in effect, an alternate definition of “closed,
connected Pontryagin surface”.

Proposition 2.1. A space X is a closed, connected Pontryagin surface if and only if
it is the inverse limit of a sequence {pn : Rn+1→ Rn}

∞

n=1 of standard maps between
closed, connected, orientable surfaces such that if , for each n ∈ N, Fn denotes the
finite subset of Rn referred to in the definition of standard map, then, for all n 6= m,
pn,1(Fn)∩ F1 = pm,1(Fm)∩ pn,1(Fn)=∅ (where pn,1 = p1 ◦ p2 ◦ · · · ◦ pn−1).

Proof. (Only if) Suppose E = {e1, e2, . . .} is a sufficient family for X . Set En =

{en, en+1, . . .} and form the decomposition space Rn = X/En . Note that Rn =

Rn+1/en . Let pn : Rn+1→ Rn be the obvious map.

(If) Clearly

E = {e ⊂ X | there exist n ∈ N and x ∈ Fn such that p−1
∞,n(x)= e}

(where p∞,n denotes the projection of X to Rn) is a countable, pairwise-disjoint,
null family of figure-eights in X . To verify that it is sufficient, let E ′ be a cofinite sub-
family of E and denote F = E−E ′ and Fn ={e∈ E | e is a component of p−1

∞,n(Fn)}.
Choose N ∈ N such that F ⊂

⋃N
n=1 Fn . The decomposition space X/

⋃
∞

n=N+1 Fn

is RN whose decomposition space obtained from the decomposition {p∞,N (e) |
e ∈

⋃N
n=1 Fn} is R1. Apply the parenthetical observation in the above definition of

Pontryagin surface to complete the proof. �



DEGREE-ONE, MONOTONE SELF-MAPS OF THE PONTRYAGIN SURFACE 97

Definition. We have from Proposition 2.1 that if P is a closed, connected Pontryagin
surface, then Ȟ2(P)=Z and, for m ∈N, Ȟ2(P;Zm)=Zm . Given a map f : P→ Q
of closed, connected Pontryagin surfaces and choices OP and OQ of generators
of Ȟ2(P) and Ȟ2(Q) (but OP = OQ if P = Q), the degree of f is the integer n
such that the induced homomorphism on Čech 2-homology sends OP to nOQ . Note
that the absolute value of the degree is independent of the choice of generators. Our
interest focuses on maps of degree one, by which we really mean maps of absolute
degree one.

Theorem 2.2 (monotone approximation theorem). A map f : P → Q of closed,
connected, rich Pontryagin surfaces is a near-homeomorphism if and only if it is
monotone and has (absolute) degree one.

Proof of “only if”. That a near homeomorphism must be monotone follows from
the well known result [Kuratowski and Lacher 1969] that any uniformly convergent
sequence of monotone maps between compact, locally connected metric spaces
has a monotone limit. To show that f must have degree one, let p : Q → S2

be a map arising as the inverse limit of standard maps between closed orientable
surfaces and let f = limi→∞ hi where the {hi : P → Q} are homeomorphisms.
Then p ◦ f = limi→∞(p ◦ hi ).

Since S2 is an ANR there exists an integer k > 0 such that p ◦hk is homotopic to
p◦ f . Hence, deg(p◦ f )=deg(p)·deg( f )=deg(p)·deg(hk)=1. So deg( f )=1. �

Applying the Vietoris–Begle mapping theorem, we obtain:

Corollary 2.3. All cell-like maps between closed, connected, rich Pontryagin sur-
faces are near-homeomorphisms.

We adopt the following notational conventions. If A is a subset of a topological
space X , then Fr A and Int A will denote the frontier and interior of A in X . If
A is a manifold, then Å denotes A − ∂A. I = [−1,+1] ⊂ R (but we will also
consider I to be the set [−1,+1] × {0} in R2). S1

= the unit circle in R2. S2
=

the one-point compactification of R2 (so we can regard R2 as a subset of S2).
H = {(x, y) ∈ R2

| y ≥ 0}.

Remarks. Existence, uniqueness up to homeomorphism, and homogeneity of the
connected, closed, rich Pontryagin surface (denoted by P in these remarks) are well
known. However, it is worth noting that existence follows easily from Proposition 2.1
while uniqueness and homogeneity follow from Corollary 8.2 of this paper (we
leave this as an exercise). Note also that any self-map of P constructed as follows
is monotone and degree-one but not cell-like. Let E be a sufficient family for P and
F ⊂ E such that the image of E −F is dense in P/E (e.g., F is finite). It follows
that P/F is a rich Pontryagin surface, so the composition P

d
−→ P/F h

−→ P where
d is the decomposition map and h a homeomorphism is the desired map.
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Let S be a compact metric space, G an upper semicontinuous decomposition of S,
and π : S→ S/G the decomposition map. Then G is shrinkable if the following
condition, called the Bing shrinkability criterion, is satisfied: for each ε > 0 there
exists a homeomorphism h : S→ S such that each h(g) (g ∈ G) has diameter less
than ε, and π and πh are ε-close.

The notion of shrinkability was introduced by R. H. Bing [1952]. He exploited
it to provide an effective general method for determining the topological type of
certain decomposition spaces. R. D. Edwards [1980] gave an elegant proof for the
crucial compact case mentioned below; his proof also can be found in [Daverman
1986, Lemma 6.1].

Theorem 2.4. An upper semicontinuous decomposition G of a compact metric
space S is shrinkable if and only if the decomposition map π : S → S/G is a
near-homeomorphism.

Another setting in which upper semicontinuous decompositions arise involves
a proper map f : X → Y defined on a nice space X and a subset C of Y . The
decomposition G(C) of X induced over C is the partition consisting of the sets
{ f −1(c) | c ∈ C} and the singletons from X − f −1(C). Here G(C) is upper
semicontinuous (and X/G(C) is metrizable) whenever C is closed in Y .

Corollary 2.5. Let f : X → Y be a surjective mapping between compact metric
spaces and C a closed subset of Y . If the decomposition G(C) induced over C is
shrinkable, then f can be approximated, arbitrarily closely, by a surjective map
that is injective over C.

Proof. If θ : X→ X/G(C) is a homeomorphism very close to the decomposition
map π : X→ X/G(C), then F = f π−1θ is a map close to f which is 1-1 over C . �

3. The factor theorem

The theorem stated below is a key technical ingredient in the proof of the approxi-
mation theorem. Its proof occupies the following four sections.

Theorem 3.1 (the factor theorem). Suppose the commutative diagram

X

P Q

ψ

f

ϕ

of maps and spaces satisfies the following conditions:

(1) P and Q are closed, connected Pontryagin surfaces.

(2) All maps are surjective and f is both monotone and degree one.
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(3) There is a subspace A of Q which is either a locally separating simple arc
or a separating simple closed curve such that ϕ is injective over A and ψ is
injective over X −ϕ−1(A).

Then X is a Pontryagin surface and ϕ−1(A) is P-negligible in X.

Note. We will prove the factor theorem in detail only for the case in which A is an
arc. The proof for A a simple closed curve is essentially the same except for some
minor details which we leave to the reader.

Corollary 3.2. Any locally separating arc or separating simple closed curve in a
closed Pontryagin surface is P-negligible.

Proof. Let Q be the closed Pontryagin surface and apply the factor theorem to the
diagram

Q

Q Q

id

id

id

�

4. Sufficient families

In this brief section we state and prove some results and their consequences con-
cerning sufficient families. First we present some definitions and notation.

A family D of compacta in a locally compact space X is locally finite if, for any
compact subset C of X , the set {e ∈ D | e ∩C 6= ∅} is finite. If E is a family of
compacta in X and D ⊂ E , we say D is a locally cofinite subfamily of E if E −D is
locally finite. We denote, for a subset U of X , E(U )= {e ∈ E | e ⊂U }.

Observation. Any locally cofinite subfamily of a sufficient family is sufficient.

Proposition 4.1. Any open subset U of a Pontryagin surface P is a Pontryagin
surface. Furthermore, if E is a sufficient family for P , then E(U ) is a sufficient
family for U.

Proof. We can assume that U is connected. Let D be a locally cofinite subfamily
of E(U ). It will suffice to show that if V is an open, connected subset of U such
that V ⊂U and V is compact, then the image of V under the decomposition map
P̂→ P̂/D is a surface. Denote

F = {e ∈ E | e meets both P −U and V or e ⊂ V and e /∈ D}.

Note that F is finite and D ⊂ E −F . The image of V in P̂/D is sent homeomor-
phically by the obvious decomposition map onto its image in P̂/(E −F), which
must be a surface since E −F is sufficient for P . �
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Lemma 4.2. Suppose U is a Pontryagin surface with sufficient family D. If A is a
closed subset of U with A⊂ M(U ), then the family {e ∈D | e∩ A=∅} is sufficient
for U.

Proof. Verify that {e ∈ D | e ∩ A 6= ∅} is locally finite and apply the above
observation. �

Proposition 4.3. A connected, nice space U is a Pontryagin surface if and only if
Û̂ is a Pontryagin surface.

Proof. (If) This follows from the previous proposition.

(Only if) Let E be a sufficient family for U and let R denote the image of U under
the decomposition map d : Û̂ → Û̂/E . So R is an open, connected, orientable
surface whose end-point compactification is Û̂/E . From the classification theorem
for open surfaces [Richards 1963] we obtain a locally finite (in R) family D of
figure-eights in R such that R/D is planar and R is null in Û̂/E . By a standard
general position argument we can choose these figure-eights to avoid

⋃
e∈E d(e).

Then E ∪ {d−1(e) | e ∈ D} is a sufficient family for Û̂ . �

5. 2-coherence

This section includes a series of lemmas, propositions, and theorems to be used in
the proof of the factor theorem, most of which take as their hypotheses only certain
Čech-homological properties of Pontryagin surfaces. Any nice space having these
properties will be termed 2-coherent.

Definition. Suppose X is a connected, nice space and Ȟ2(X̂)= Z. A family U of
open, connected, nonempty subsets of X is a coherence family if, for any U ∈ U ,
the following conditions are satisfied:

(1) The quotient map X̂→ Û is an Ȟ2-isomorphism.

(2) For n∈N−{1}, Ȟ2(Û ;Zn)=Zn and the homomorphism Ȟ2(Û )→ Ȟ2(Û ;Zn)

(induced by the coefficient group epimorphism Z→ Zn) is an epimorphism.

(3) Any open, connected, nonempty subset of X is exhausted by elements of U .

Definition. A connected, nice space X with Ȟ2(X̂)=Z is 2-coherent if the class of
all open, connected, nonempty subsets of X is a coherence family. Among its other
benefits, 2-coherence characterizes the 2-manifolds within the class of 2-complexes.

A proper map f : X → Y of 2-coherent spaces has (absolute) degree one if
f̂ : X̂→ Ŷ induces an isomorphism on Čech 2-homology with Z coefficients.
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Observation. If U is a coherence family for X and V,U ∈ U with V ⊂U , then the
quotient map Û → V̂ is an Ȟ2-isomorphism. (To see this, apply Ȟ2 to the diagram

X̂ Û

V̂

where the maps are quotient maps.) Moreover, for n ∈ N− {1}, Ȟ2(Û ;Zn)→

Ȟ2(V̂ ;Zn) is an isomorphism. To see this consider the commutative diagram

Ȟ2(Û ) Ȟ2(V̂ )

Ȟ2(Û ;Zn) Ȟ2(V̂ ;Zn)

Lemma 5.1. If a connected nice space X with Ȟ2(X̂)= Z has a coherence family,
then it is 2-coherent.

Proof. Let V denote the coherence family and let U be an open, connected subset
of X . Let {Vi }

∞

i=1 be an exhaustion of U with Vi ∈ V for all i . To verify that (1) (in
the definition of coherence family) holds for U , apply the continuity axiom for Čech
homology to the diagram obtained by applying Ȟ2 to the following commutative
diagram of spaces and maps:

Û
...

V̂3

V̂2

X̂ V̂1

All maps are quotient maps. Note that Û = lim
←−−

(V̂1← V̂2← · · · ).
One obtains from the same diagram that Ȟ2(Û ;Zn) = Zn . To verify that

Ȟ2(Û )→ Ȟ2(Û ;Zn) is onto first note that, for all i , the composition Ȟ2(Û )→
Ȟ2(V̂i )→ Ȟ2(V̂i ;Zn) is onto (the first homomorphism is an isomorphism and the
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second is onto by hypothesis). Now consider the commutative diagram

Ȟ2(Û ;Zn)
...

Ȟ2(V̂2;Zn)

Ȟ2(Û ) Ȟ2(V̂1;Zn)

ρ

The “vertical” maps are isomorphisms and the others (with the possible exception
of ρ) are onto. Hence, ρ is onto. �

The proof of the following lemma is left to the reader.

Lemma 5.2. If C is a closed 0-dimensional subset of a compact, metrizable space
X , then the quotient map X→ X/C is an Ȟ2-isomorphism.

Proposition 5.3. A connected nice space U is 2-coherent if and only if Û̂ is 2-
coherent.

Proof. (If) This part is left to the reader.

(Only if) We claim that

V = {V ⊂ Û̂ | V is connected and open, and V ∩ e(U ) is compact}

is a coherence family. We verify only condition (1) in the definition of coherence
family and leave the rest to the reader. Consider the commutative diagram

Û̂ Û̂/(Û̂ − V )= V̂

Û V̂

where V ∈ V and the maps are the obvious quotient maps (the “vertical” map on
the right sends e(U ) ∩ V to V̂ − V ). Applying Ȟ2 to the diagram we have, by
hypothesis, that the bottom horizontal homomorphism is an isomorphism and the
vertical homomorphisms are isomorphisms by Lemma 5.2, so the top horizontal
homomorphism is an isomorphism. �

Proposition 5.4. Every connected Pontryagin surface is 2-coherent.



DEGREE-ONE, MONOTONE SELF-MAPS OF THE PONTRYAGIN SURFACE 103

Proof. Observe first that since the end-point compactification of a Pontryagin
surface is a Pontryagin surface (Proposition 4.3) and any open connected subset
of a 2-coherent space is 2-coherent, we can assume without loss of generality that
the Pontryagin surface P of the hypothesis is compact. Use Proposition 2.1 to
express P as the inverse limit of standard maps {pn : Rn+1→ Rn}

∞

n=1. We leave it to
the reader to verify that the following class of open sets is a coherence family for P :{

V | there exists a connected compact subsurface Mn of Rn such that

p∞,n is one-to-one over ∂Mn and V is the interior of p−1
∞,n(Mn)

}
. �

Lemma 5.5. The proper cell-like image of a 2-coherent space is 2-coherent.

Proof. Apply the Vietoris–Begle theorem. �

Lemma 5.6. Suppose X is a connected 2-coherent space. Then:

(1) X contains no locally separating point.

(2) X contains no separating, closed 0-dimensional subset.

(3) X contains no separating set which is the union of a simple arc and a closed
0-dimensional set.

(4) If X is separated by a set which is the union of a simple closed curve α and a
closed 0-dimensional set, then α separates X.

Proof. (1) Suppose U is a connected open set in X and p ∈U such that U −{p}
is not connected. Since U is 2-coherent we have that Û̂ is compact, 2-coherent,
and separated by p. Denote by C the closure of a component of Û̂ − {p} and
let D be the closure of the union of all other components of Û̂ − {p}. Then
Ȟ2(Û̂ )= Ȟ2(C)⊕ Ȟ2(D) and so one of the two summands must be trivial, which
is impossible by the 2-coherence of Û̂ .

(2) The proof is similar to that of (1).

(3) Suppose otherwise and let A denote the arc. By Lemma 5.5, X/A is 2-coherent
and is separated by a closed 0-dimensional set, which contradicts (2).

(4) Since X̂̂ is 2-coherent by Proposition 5.3 we can assume without loss that X
is compact. Denote the 0-dimensional set by C and suppose α does not separate X .
Denote U = X−α and note that, by connectivity of U , Û̂ is 2-coherent. Since X/α is
the one-point compactification of X−α we have the natural map ϕ : Û̂→ X/α (from
the end-point compactification of any nice space to the one-point compactification of
that space). Let x denote the image of α under the quotient map X→ X/α and note
that the map ϕ : (Û̂ , e(U )∪C)→ (X/α, {x}∪C) is split (by abuse of notation C is
considered to be a subset of both Û̂ and X/α). However, e(U )∪C cannot separate Û̂
by (2) and hence {x}∪C cannot separate X/α. But then α∪C cannot separate X . �
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Corollary 5.7. If X is compact and 2-coherent and A is a cell-like subset of X ,
then X − A has one end.

Proof. Otherwise, A would be a locally separating point in X/A (which is 2-
coherent by Lemma 5.5). �

Corollary 5.8. Suppose A is a separating simple closed curve in a compact 2-
coherent space X.

(1) If U is any component of X − A, then U =U ∪ A.

(2) A is locally separating.

Proof. (1) Suppose A 6⊂U . Then U∩A is contained in some arc α in A which would
make α a separating point in the quotient space X/α (which would be 2-coherent).

(2) Use (1). �

Lemma 5.9. Suppose X is a compact metrizable space, S is a simple closed curve
in X , and A and B are the closures in X of two distinct components of X − S. Then
the inclusion-induced homomorphism Ȟ2(A)⊕ Ȟ2(B)→ Ȟ2(X) is injective.

Proof. There exists a sequence of nerves {pn+1,n : (Xn+1, An+1, Bn+1, Sn+1)→

(Xn, An, Bn, Sn)}
∞

n=1 such that, for each n, Sn is a simple closed curve, An and
Bn are closed components of Xn − Sn , and for Z = X, A, B, or S, lim

←−−
{pn+1,n :

Zn+1→ Zn} is Z . Now conclude from a Mayer–Vietoris sequence that, for each n,
H2(An)⊕H2(Bn)→H2(Xn) is injective. Since the inverse limit of monomorphisms
is a monomorphism, the conclusion follows. �

Observation. If E is a compact subspace of a 2-coherent space X with E 6= X ,
then the inclusion-induced homomorphism Ȟ2(E;G)→ Ȟ2(X̂;G) (where G = Z

or Zn for some n ∈ N−{1}) is trivial.

Proof. Let U be a component of X− E and note that the composition Ȟ2(E;G)→
Ȟ2(X̂;G)→ Ȟ2(Û ;G) (induced by the obvious maps E→ X̂→ Û ) is trivial and
the second of the two homomorphisms is an isomorphism. �

Lemma 5.10. Suppose S is a separating simple closed curve in a compact 2-
coherent space X and U is a component of X − S. Then:

(1) Ȟ2(U )= 0.

(2) ∂∗ : Ȟ2(U , S)→ Ȟ1(S) is an isomorphism.

(3) X − S has two components.

Proof. (1) By Lemma 5.9 (where A =U ) we have Ȟ2(U )→ Ȟ2(X) is injective.
But, by the observation, it is also trivial.

(2) We have homomorphisms Ȟ2(Û )
ϕ
−→ Ȟ2(U , S)

∂∗
−→ Ȟ1(S) where ϕ is the inverse

of the isomorphism induced by the quotient map U →U/S = Û . Let α ∈ Ȟ2(Û )
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be a generator and denote β = (∂∗ ◦ ϕ)(α). We will show that β is a generator
of H1(S) (which we identify with Z). We can assume without loss of generality
that β ≥ 0. If β = 0, then ϕ(α) is in the image of Ȟ2(U )→ Ȟ2(U , S) and hence
Ȟ2(U ) is nontrivial (impossible by (1)). If β > 1, we have a nontrivial element
of Ȟ2(U ;Zβ) again violating (1) (note that nontriviality of the element follows
from the surjectivity of Ȟ2(Û )→ Ȟ2(Û ;Zβ)).

(3) Assume X − S has at least two components U1 and U2. If (X − S) 6=U1 ∪U2,
use (2) to argue that Ȟ2(U 1 ∪U 2) must be nontrivial, contradicting (1). �

Corollary 5.11. If X is a noncompact 2-coherent space and R is a separating
closed subset of X homeomorphic to R, then X − R has two components.

Proof. Let α denote the closure in X̂̂ of R. By Lemma 5.10 it will suffice to show
that α is a simple closed curve, but if α were an arc, then the 2-coherent space X̂̂/α
would contain a separating point. �

Definition. A simple arc A in a 2-coherent space X is 2-sided if, given any subarc α
of A, there exists a neighborhood V such that V∩A= α̊, V−A has two components,
and denoting the two components by V1 and V2, V 1∩V 2= α and Fr(V i )= V i−Vi

(i = 1, 2). (Such a neighborhood V of α̊ will be called dichotomous.)

Proposition 5.12. Any locally separating arc A in a 2-coherent space X is 2-sided.

Proof. By Corollary 5.11 it will suffice to show that Å separates some open
connected neighborhood of itself. We briefly outline the proof. Construct a family
U = {Un}n∈Z of open connected sets covering Å and satisfying the following
properties:

(1) For each n, Un − A is disconnected.

(2) For each n, Un ∩ A is an open subarc of A whose closure in A is disjoint from
∂A.

(3) Ui ∩U j 6=∅ if and only if |i − j | ≤ 1.

Now, by a Lebesgue number argument applied infinitely many times, we can
choose a second covering {Vm}m∈Z satisfying the same three properties and, in
addition, for |i − j | = 1, Vi ∪ V j is contained in some element of U . Prove by
induction on N ∈ N that

⋃N
m=−N Vm is separated by A. Then

⋃
m∈Z Vm is the

desired neighborhood. �

Observation. If A is a 2-sided simple arc in a 2-coherent space X , then any subarc
of A is also 2-sided. Also note that if U is a dichotomous neighborhood of Å and
V is a connected, open set with V ⊂U such that V ∩ A is connected, then V is a
dichotomous neighborhood of V ∩ A.

The following observation is used in the proof of Proposition 5.13. Its proof is
left to the reader.
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Observation. The absolute degree of a map of compact 2-coherent spaces is “de-
termined locally”; i.e., if f : X → Y is such a map and V is an open, nonnull,
connected subset of Y such that f −1(V ) is connected, then the absolute degree of f
is the same as the absolute degree of the one-point compactification of the map
f | : f −1(V )→ V .

Proposition 5.13 (degree-one proposition). If X is a compact 2-coherent space,
then a map f : X→ S2 has degree one if the following conditions are satisfied:

(1) f −1(S1) is the union of a simple closed curve A and a closed 0-dimensional
set and f |A : A→ S1 is bijective.

(2) For C either component of S2
− S1, f −1(C) 6=∅.

Proof. First note that since f −1(S1) separates X we have, by Lemma 5.6, that A
separates X and hence, by Lemma 5.10, that X − A has two components. Let U be
one of them and let D be that component of S2

− S1 which contains f (U ) (and
hence by condition (2) we have f −1(D)=U ). Consider the commutative diagram

Ȟ2(U , A) Ȟ1(A)

Ȟ2(D, S1) Ȟ1(S1)

∂∗

( f |U )∗ ( f |A)∗

∂∗

By Lemma 5.10, ( f |A)∗ ◦ ∂∗ is an isomorphism and ∂∗ at the bottom of the
diagram is obviously an isomorphism. Hence, ( f |U )∗ is an isomorphism. So the
map Ȟ2(U/A)→ Ȟ2(D/S1) (induced by f ) is also an isomorphism. To see this,
note that U/A = Û and apply the above observation. �

The rest of this section is devoted to the proof of the following theorem.

Theorem 5.14. If A is either a locally separating simple arc or a separating simple
closed curve in a compact 2-coherent space X , then there exists a split, degree-one
map f : (X, A)→ (S2, B) which is bijective over B, where B is either I or S1.

The principal ingredients in the proof are Proposition 5.13 and the strong gener-
alized Tietze extension theorem (SGTE) stated below.

Theorem 5.15 (SGTE). If A is a closed subset of a compact metrizable space X ,
then any map f : A→ Sn−1 (n ∈N) has a split extension g : (X, A)→ (Bn, Sn−1).
Furthermore, that extension is unique up to admissible homotopy.

Proof. The so-called generalized Tietze extension theorem guarantees an extension
h : (X, A)→ (Bn, Sn−1) (which however is not, in general, split). Define g as
follows. First choose a metric ρ for X and define a second metric ρ ′ by ρ ′(x, y)=
min{1, ρ(x, y)}. Now let g(x) = (1 − ρ ′(x, A)) · h(x) (where Bn is viewed as
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vectors of norm at most one in Rn , and the dot in the preceding equation indicates
scalar multiplication).

Now suppose that g0 and g1 are two such split extensions of f . Define ϕ :
(A×[0, 1])∪ (X ×{0, 1})→ (Sn−1

×[0, 1])∪ (Bn
×{0, 1}) by

ϕ(x, t)=
{
( f (x), t) if x ∈ A,
(gi (x), i) if x ∈ X and i ∈ {0, 1}.

The desired homotopy is a split extension of ϕ to

(X × I, (A× I )∪ (X ×{0, 1}))→ (Bn
× I, ∂(Bn

× I )). �

Proof of Theorem 5.14. We consider only the case in which A is an arc (the argument
for A a closed curve is similar and easier). By Proposition 5.12 we can choose
two dichotomous neighborhoods V and U of Å in X such that U ⊂ V ∪ ∂A.
Hence, if U1 and U2 are the components of U − A, we have that Fr U1 − A
and Fr U2 − A are disjoint (since they are in different components of V − A).
Let C1 and C2 denote Fr U1 − Å and Fr U2 − Å, respectively (note that Fr U =
C1 ∪C2 and C1 ∩C2 = ∂A). Let α : A→ I be any homeomorphism and apply the
SGTE (Theorem 5.15) to α|∂A : ∂A→ ∂ I to obtain a split map β : (C1, ∂A)→
(S1
∩ {(x1, x2) ∈ R2

⊂ S2
| x2 ≥ 0}, ∂ I ). Let B2

+
and B2

−
be the upper and lower

2-disks in B2 containing I in their boundaries. Apply the SGTE again to extend
α ∪β : Fr U1→ S2 to obtain a split map ϕ1 : (U 1,Fr U1)→ (B2

+
, ∂B2

+
). Similarly

we obtain ϕ2 : (U 2,Fr U2)→ (B2
−
, ∂B2

−
). We have ϕ1|A = ϕ2|A = α. Denote

ϕ = ϕ1∪ϕ2. Apply SGTE a final time to extend ϕ|Fr U : Fr U→ S2 to a split map
ψ : (X −U ,Fr U )→ (S2

− B̊2, ∂B2). Then ϕ ∪ψ is the desired map.
It remains only to verify that the degree of ϕ∪ψ is one. To see this, consider the

end-point compactification of the map ϕ|U :U→ B̊2 which we denote by η : Û̂→Q.
The target is a 2-sphere and the domain a 2-coherent space by Proposition 5.3. It
follows easily from the definition of 2-coherence that η and ϕ ∪ψ have the same
degree. Denote by L the closure of I̊ in Q (so L is a simple closed curve) and note
that η−1(L) is the union of a closed set of dimension zero and the closure of Å in Û̂
(which must be either a simple arc or a simple closed curve). Since η−1(L) must
separate Û̂ , we conclude from Lemma 5.6 that the closure of Å in Û̂ is a simple
closed curve. Apply the degree-one proposition to η to complete the proof. �

6. A reduction of the factor theorem

In this section we show that the following result, whose proof is deferred to Section 7,
implies the factor theorem. The crucial difference between the factor theorem and
this factor reduction theorem is that in the former the complement of the arc (in
the intermediate space) is an open Pontryagin surface whereas in the latter the
analogous space is a genuine surface.
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Theorem 6.1 (factor reduction theorem). Suppose Y is a compact, connected,
metrizable space, A is a closed subset of Y such that Y − A is an open surface, each
component of which is orientable, and f : (Y, A)→ (S2,C) is a split, surjective
map which is injective over C and such that one of the following conditions is
satisfied:

(1) C = I , A is 2-sided in Y , Y − A has one end (hence is connected), and
f |Y − A : Y − A→ S2

−C has degree one.

(2) C = S1, A is 2-sided in Y , and if R denotes either component of S2
−C , then

f −1(R) has one end and the map f | f −1(R) : f −1(R)→ R has degree one.

Then Y is a Pontryagin surface and A is P-negligible.

(Note that in what follows we will verify the conclusion only for the first of
the two conditions in the statement. The proof given the second condition is very
similar, though slightly easier at certain points, and is left to the reader.)

We introduce some terminology which will be used only in this section.

Definition. Suppose ψ : X → Z is a map of compact, metrizable spaces and U
is an open subset of Z such that ψ−1(U ) is a Pontryagin surface with a sufficient
family E which is null in X . If there exist D ⊂ E with D sufficient for ψ−1(U ) and
a homotopy of ψ supported in U to a map ψ ′ having a factorization

X Z

X/D

ψ ′

d α

(where d is the decomposition map), then we say α is a Euclideanization of ψ
over U using E . (Note that the existence of the factorization for ψ ′ is equivalent to
the condition that for all e ∈ D, ψ ′(e) is a singleton.)

Lemma 6.2. Suppose ψ : (Y,C)→ (B, ∂B) is a split map where B is a 2-disk, Y is
a compact, metrizable space, and ψ−1(B̊) is a Pontryagin surface with sufficient
family E which is null in Y . Then ψ has a Euclideanization over B̊ using E .

Proof. Let d : Y → Y/E be the decomposition map, and note that d is injective
over d(C). Apply the SGTE (Theorem 5.15) to ψ ◦ d−1

|d(C) : d(C)→ ∂B to
obtain a split map α : (Y/E, d(C))→ (B, ∂B). To obtain the homotopy, apply the
uniqueness provision of the SGTE to the maps ψ and α ◦ d �

Proposition 6.3. Suppose that X is a connected, compact, metrizable space, ϕ :
(X, A)→ (S2, I ) is a split surjective map which is one-to-one over I , X − A is an
open Pontryagin surface, and E is a sufficient family for X − A which is null in X.
Then ϕ has a Euclideanization over S2

− I using E .
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Proof. The idea is to choose two 2-disks in S2 such that the union of their interiors
is S2
− I and then Euclideanize the map over each of the 2-disks in succession.

Some care is required.
Choose three disks D, E , and F in S2 such that F ⊂ E ⊂ D and any two of the

disks have boundaries intersecting in I as shown below, where I is the horizontal
line segment and ∂D is the outermost simple closed curve:

From Proposition 4.1 we have that E(ϕ−1(D̊)) is sufficient for ϕ−1(D̊). Apply
Lemma 6.2 to the map

ϕ|(ϕ−1(D), ϕ−1(∂D)) : (ϕ−1(D), ϕ−1(∂D))→ (D, ∂D)

to obtain a Euclideanization α of that map using E(ϕ−1(D̊)). Let d : X →
X/E(ϕ−1(D̊)) be the decomposition map and denote D={d(e) | e∈ E−E(ϕ−1(D̊))
and d(e) ∈ α−1(S2

− E)}. By Lemma 4.2, D is a sufficient family for α−1(S2
− F)

(where in the application of that lemma we use U = α−1(S2
− I ), A= α−1(F− I ),

and B = α−1(E − I )). Now Euclideanize α over S2
− F using D. �

Proof that the factor reduction theorem implies the factor theorem. As usual we
consider only the case in which the set A⊂ Q in the hypothesis of the factor theorem
is a simple arc. Note at the outset that monotonicity of f implies monotonicity
of ϕ. As a result, ϕ−1(A) must be 2-sided in X . Set A′ = ϕ−1(A).

Let E be a sufficient family for P . Hence, E(P − f −1(A)) is sufficient for
P − f −1(A). Form E ′ = {ψ(e) | e ∈ E(P − f −1(A))} and note that E ′ is sufficient
for X − A′ (since the restriction of ψ to P − f −1(A) is 1-1) and is null in X . Here
ψ restricts to a homeomorphism

P − f −1(A)→ X −ϕ−1(A)= X − A′.

Hence, both the end-point and one-point compactifications of X − A′ have H̆2

isomorphic to Z. As f = ϕ ◦ψ has degree one, ϕ : (X, A′)→ (Q, A) must also
have degree one.

Use Theorem 5.14 to obtain a split, degree-one map α : (Q, A)→ (S2, I ). Its
composition with ϕ yields a degree-one map α ◦ϕ : (X, A′)→ (S2, I ).

Apply Proposition 6.3 to obtain a Euclideanization ϕ′ : X/D → S2 of α ◦ ϕ
over S2

− I using E ′. Let d : X → X/D = Y be the decomposition map and let
A∗ = d(A′). Note that degree ϕ′ = degree α ◦ ϕ = 1. We leave it to the reader
to verify that A∗ is 2-sided in Y (hint: use the fact that the image under d of a
dichotomous neighborhood of Å′ in X which is saturated with respect to D must
be a dichotomous neighborhood of A∗ in Y ).
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Consequently, the hypotheses of the factor reduction theorem are satisfied. From
it we conclude that Y is a Pontryagin surface and A∗ is P-negligible in Y . By a
standard general position argument, we can choose a sufficient family F for Y ,
each element of which is disjoint from A∗ ∪ {d(e) | e ∈ D}. It follows easily that
{d−1(e) | e ∈ F}∪D is a sufficient family for X , no element of which meets A′. �

7. Proof of the factor reduction theorem

We prove the factor reduction theorem (Theorem 6.1) by first producing a convergent
sequence of admissible homotopies, starting with the map of the hypothesis, which
progressively enlarge the 1-dimensional subspace of S2 over which the map is
bijective. The initial step (the “arc proposition”) is the most difficult. It produces an
admissible homotopy of the map of the hypothesis to a map which is bijective over
the union of C (either I or S1) and an arc meeting C in a preassigned point. In the
proofs of both the arc proposition and the subsequent factor reduction theorem, we
consider only the case C = I . We leave it to the reader to make the modifications
necessary for the case I = S1. In what follows recall that H denotes closed upper
half-space in R2.

Proposition 7.1 (arc proposition). Let f : (Y, A)→ (S2, I ) be a map as in the
hypothesis of the factor reduction theorem. Given ε > 0 and a ∈ (−1,+1) there
exists a homotopy of f to a map g supported in a neighborhood U ⊂ H for which
diam U < ε and U ∩ (R×{0})= {(a, 0)}, such that g is bijective over {a}× [0, r ]
for some r > 0.

Before proving the arc proposition we introduce some terminology and notation.
Suppose f : X → Y is a map of spaces and V ⊂ U are subsets of Y . The pair
(U, V ) is good for f (or merely good when no ambiguity can result) if f −1(V ) is
contained in a component of f −1(U ). If Y is a metric space, then the diameter of
the pair (U, V ) is the diameter of U . For a point p in a metric space (Y, ρ), B[p, ε]
will denote the closed ball of ρ-radius ε centered at p.

The proof of the arc proposition requires the following five lemmas. The proofs
of all but the last are left to the reader.

Lemma 7.2. Suppose f : X→ Y is a map from a compact nice space to a metric
space which is one-to-one over the singleton {p} in Y . Then given ε > 0 there exists
δ > 0 such that (B[p, ε], B[p, δ]) is good.

Lemma 7.3. Suppose X is a nice space and A ⊂ U ⊂ X with A compact and U
open and connected. Then there exists a compact, connected subset C of X with
A ⊂ C ⊂U.

Lemma 7.4. Suppose f : R→ Q is a proper, boundary-preserving map of surfaces
and (D1, D2) is a pair of 2-disks in Q satisfying the following:
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(1) D2 ⊂ D̊1 ⊂ D1 ⊂ Q̊.

(2) Both f −1(D1) and f −1(D2) are surfaces.

Then, if C denotes the union of the components of f −1(D1) meeting f −1(D2), there
exists a homotopy of f supported in any preassigned neighborhood of D1 to a
map g such that g−1(D2)= C.

Lemma 7.5. Any degree-one, split map ϕ : (Q, ∂Q)→ (B2, ∂B2) of a compact,
connected, orientable surface Q is admissibly homotopic to a map which is bijective
over a preassigned disk in B̊2.

Note. Lemma 7.5 follows easily from the classification theorem for compact,
orientable surfaces and is also an immediate consequence of the principal theorem
in [Epstein 1966].

Lemma 7.6. Suppose Q is a noncompact, one-ended, connected, orientable surface
such that ∂Q has one noncompact component, ϕ : (Q, ∂Q)→ (H, ∂H) is a proper,
degree-one, split map, and� is a collar on ∂H in H. Then ϕ is properly, admissibly
homotopic to a map which is bijective over H −�.

Proof. We will treat the case where Q has infinitely many boundary components
and infinitely many handles; strategies for dealing with the other possibilities can be
inferred from what we do in that slightly more complicated case. For definiteness
we assume that �=R×[0, 3] ⊂ H . The proof requires some care because ∂Q has
two ends while Q has only one.

Let S be the subset of Z determined as follows (and here we denote by L
the noncompact component of ∂Q). If there exists a real number b such that
ϕ(∂Q − L) ⊂ (b,+∞) ⊂ ∂H , then S = N; if there exists a number b′ such that
ϕ(∂Q− L) ⊂ (−∞, b′), then S = Z−N; otherwise, S = Z. Now for each n ∈ S
let Dn be a 2-disk in the interior of [n, n + 1] × [0, 1] and let En be a 2-disk in
the interior of [n, n + 1] × [2, 3]. Also for each n ∈ S, let Tn be a punctured
torus in [n, n + 1] × [2, 3] × [0, 1] with Tn ∩ H = ∂Tn = ∂En and let An be an
annulus in [n, n+ 1] × [0, 1] × [0, 1] with one component of ∂An equal to ∂Dn ,
∂An−∂Dn ⊂ (n, n+1)×{0}×(0, 1), and Ån ⊂ (n, n+1)×(0, 1)×(0, 1). Denote
Q′=

[
H−

⋃
n∈S(D̊n∪ E̊n)

]
∪
[⋃

n∈S(An∪Tn)
]
. Let 8 : Q′→ H be the restriction

to Q′ of the projection map H ×[0, 1] → H . Note that 8 is an admissible map.
By the classification theorem for noncompact surfaces [Prishlyak and Mischenko

2007; Richards 1963], there is a homeomorphism θ : Q → Q′. Modify θ , if
necessary, so that 8θ |L , ϕ|L : L → ∂H are properly homotopic. Then modify
further so that, for each compact component J of ∂Q, 8θ(J ) ⊂ [0,+∞) ⊂ ∂H
if and only if ϕ(J )⊂ [0,+∞). Now it follows that the straight line homotopy µt

is a proper homotopy between 8θ |∂Q, ϕ|∂Q : ∂Q→ ∂H (as maps to ∂H ). By
construction, 8θ is injective over H −�.
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Pass to the one-point compactifications Q̂, Ĥ , and ∂ Q̂ of Q, H , and ∂Q, re-
spectively (the third of these is an admitted abuse of notation), and observe that
Ĥ is a 2-cell. Name compactification points∞ and∞′ in Q̂ and Ĥ , respectively.
Let A ⊂ Q̂ × [0, 1] be the subset (Q̂ × {0, 1}) ∪ (∂ Q̂ × [0, 1]). Define a map
f : A→ Ĥ×[0, 1] as8θ on Q̂×0, ϕ on Q̂×1, and µt on ∂Q×[0, 1]⊂ ∂ Q̂×[0, 1],
and as the map (∞, t)→ (∞′, t) on∞×[0, 1]. Apply the SGTE (Theorem 5.15)
to extend f to a split map F : (Q̂ × [0, 1], A)→ (Ĥ × [0, 1], ∂(Ĥ × [0, 1])). A
restriction of F gives a proper homotopy between 8θ and ϕ. �

Proof of the arc proposition. Note first that we can assume that ε is small enough
so that f −1(B[(a, 0), ε]) is contained in a dichotomous neighborhood of Å. We
will also assume without loss of generality that f is transverse to all subsurfaces of
S2
− I constructed below. We denote, for a ∈ (−1,+1) and δ > r > 0, M(a, δ, r)=

B[(a, 0), δ] ∩ {(x, y) ∈ R2
| y ≥ r}.

Claim 1. Given a ∈ (−1,+1) and ε > 0 there exists δ ∈ (0, ε) such that for any
r < δ there exists s < r so that (M(a, ε, s),M(a, δ, r)) is good.

Proof. From Lemma 7.2 there exists δ > 0 such that (B[(a, 0), ε], B[(a, 0), δ])
is good. Since the preimages of these sets lie in a dichotomous neighborhood
of A− ∂A we can conclude that (B[(a, 0), ε] ∩ H̊ , B[(a, 0), δ] ∩ H̊) is also good.
Hence, (B[(a, 0), ε]∩ H̊ ,M(a, δ, r)) is good. To finish the proof of Claim 1, apply
Lemma 7.3 to conclude that, for some s > 0, (M(a, ε, s),M(a, δ, r)) is good. �

Now continuing with the proof of the arc proposition, choose decreasing se-
quences {δi }, {ri } in (0,+∞) converging to 0 and such that, for all i , δi+1>ri >δi+2.

Denote Ni =M(a, δi , ri ) and observe that, for all i , Ni∩Ni+1 is a disk, Ni∩N j =

∅ if |i − j | > 1, and lim(diam Ni ) = 0. From Claim 1 we can find (after, in
general, deleting the first K entries for some K ∈ N and reindexing) a sequence
{(εi , si )}

∞

i=1 of pairs of positive real numbers such that lim εi = 0 and, for all i ,
εi ≥ εi+1, εi > si , ri > si , and denoting Mi =M(a, εi , si ), the pair (Mi , Ni ) is good.
Denote by Y and Z the components of [−1,+1] × [0,+∞)−

⋃
i Mi containing

{(x, 0) | −1 < x < a} and {(x, 0) | a < x < 1}, respectively. Applying Claim 1
infinitely many times we can choose sequences {(Ai , Bi )} and {(Ci , Di )} of good
pairs of disks in Y̊ and Z̊ , respectively, satisfying the following conditions:

(1) For all i 6= j , Ai ∩ A j =∅ and Ci ∩C j =∅.

(2) Given ε > 0 there exists N ∈ N such that Ai ∪Ci ⊂ B[(a, 0), ε] whenever
i ≥ N .

Now by Lemmas 7.4 and 7.5, we can assume, without loss of generality, that for
all i , f is bijective over Bi ∪ Di .

Let R be a closed subset of H − I satisfying the following conditions:

(1) The closure of R in H is R ∪ {(a, 0)} and that closure is a disk.
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(2) For every i , ∂R meets each of Bi and Di transversely in an arc.

(3)
⋃

i Mi ⊂ R̊.

Denote Q= f −1(R). From bijectivity of f over
(⋃

i Bi
)
∪
(⋃

i Di
)

we conclude
that ∂Q has one noncompact component. Denote by Q0 that component of Q
containing the noncompact component of ∂Q. Then f |Q0 : Q0→ R has degree
one and is therefore surjective. So for all i , f (Q0) ∩ Ni 6= ∅ and hence, from
goodness of the pairs {(Mi , Ni )} we have f (Q − Q0) ∩

(⋃
∞

i=1 Ni
)
= ∅. Now,

because R−
⋃
∞

i=1 Ni is homeomorphic to R×[0, 1), all components of Q−Q0 can
be “eliminated” (i.e., in the image, “pushed out of” R) by an admissible homotopy
of f fixing f outside any preassigned neighborhood of Q−Q0 in X−A (the details
of this argument are left to the reader). So we have established the following claim.

Claim 2. We can assume without loss of generality that Q is connected.

We will show that we can also assume without loss of generality that Q has
one end which, by Lemma 7.6, will complete the proof of the arc proposition. To
establish this, let {Wn}

∞

n=1 be an exhaustion of R satisfying the following conditions,
where Zn denotes the closure in R of R−Wn:

(1) For all n, Wn is a disk such that Wn ∩ ∂R is an arc and Wn ⊂ Int Wn+1 (where
the interior is with respect to R).

(2) Given n there exists j such that

∂Wn ∩

( ∞⋃
i=1

Ni

)
= ∂Wn ∩ [N j − (N j+1 ∪ N j−1)]

and this set is an arc.

(3) If, for some n and i , Zn ∩ Ni 6=∅, then Mi ⊂ Zn−1.

Now, by an argument similar to that which established Claim 2, we can assume the
following without loss of generality: (∗) for all n, no component of f −1(Zn) is sent
by f into Zn−

(⋃
∞

i=1 Ni
)

(we leave this to the reader, but note first that the closure
of Zn−

(⋃
∞

i=1 Ni
)

in R has two components, each of which is homeomorphic to H ).
Now, for a given n, there must exist a component C of f −1(Zn) such that f |C :

C→ Zn has nonzero degree and is therefore surjective. If C ′ is another component of
f −1(Zn), we have by (∗) that, for some j ∈N, f (C ′)∩N j 6=∅. By condition (3) for
{Wn}we then have M j ⊂ Zn−1 and hence, by goodness of the pair (M j , N j ), we have
that C ′ ∪C is contained in a component of f −1(Zn−1). Hence, Q has one end. �

Notation. To avoid ambiguity in the sequel, the notation (a, b) (where a, b ∈ R)
will be used exclusively for open intervals in R. The map p2 :R

2
→R is projection

to the second coordinate.
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In the observations below (used in the proof of Lemma 7.7), R is a compact,
orientable surface with boundary.

Observation. (1) If two split maps from (R, ∂R) to (B2, ∂B2) are equal over
∂B2, then they are admissibly homotopic.

(2) If 0< a < b< 1 and ϕ : ∂R→ ∂([0, 1]2) is a map bijective over {0, 1}×[0, 1],
then ϕ extends to a split map from (R, ∂R) to ([0, 1]2, ∂([0, 1]2)) which is
bijective over [0, 1]× [a, b].

Proof. (1) The straight line homotopy between f and g is admissible.

(2) We leave this to the reader except noting that we can assume without loss
of generality that R is planar. To see this, first use the classification of compact
surfaces to show that R̊ contains a compact surface S such that R/S is a planar
surface. �

Lemma 7.7. Suppose R is a connected, orientable, noncompact surface having
one end. Also suppose that ϕ : (R, ∂R)→ (Q, ∂Q) is a proper, split map where
Q = [a, b]× (0, c] (for some a, b, c with a < b and c > 0) which is bijective over
{a, b}× (0, c]. Then there exists s < c such that for any t < s and 0< ε < c−t

2 there
is a proper, admissible homotopy of ϕ supported in (a, b)× (t, c) to a map which is
bijective over [a, b]× [t + ε, c− ε].

Addendum. There is a straightforward generalization of Lemma 7.7 which we
will need. In the hypothesis of that generalization connectivity of R is replaced by
the following: R has finitely many components only one of which is noncompact.
Then in the conclusion the number c is replaced by r with 0< r < c such that no
compact component of R meets ϕ−1([a, b]× (0, r ]).

We leave the full statement and proof of the generalization to the reader. In the
sequel, it will be understood that “Lemma 7.7 ” refers to this generalization.

Proof. By one-endedness of R we can choose s so that if t≤ s, then the image of only
one component of ϕ−1([a, b]×[t, c]) meets both components of [a, b]×{t, c}. Let
C denote that component. We can assume without loss of generality that the images
of all other components of ϕ−1([a, b]×[t, c]) are in [a, b]× ([t, t+ε)∪ (c−ε, c]).
We leave it to the reader to complete the proof using the above observations. �

Now for the remainder of the proof of the factor reduction theorem we adopt
the following notation: for a > 0 and n ∈ N, En =

{ k
2n

∣∣ k ∈ Z and
∣∣ k

2n

∣∣< 1
}
,

Mn = max En , W 〈n, a〉 = [−Mn,Mn] × (0, a], and Z〈n, a〉 = (En × (0, a]) ∪
([−Mn,Mn] × {a}); for b < 0, Z〈n, b〉 = {−Ex | Ex ∈ Z〈n,−b〉} (and similarly for
W 〈n, b〉).

We will show that, for some strictly decreasing sequence {an}
∞

n=1 converging to
zero, f is admissibly homotopic to a map which is bijective over

⋃
∞

k=1 Z〈k, ak〉.
We construct such a map as the limit of a sequence { fn}

∞

n=1 of split maps where, for
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each n, fn is bijective over
⋃n

k=1 Z〈k, ak〉 (for appropriately chosen {a1, a2, . . . , an})
and fn+1 is admissibly homotopic to fn . The following observation will be used to
ensure convergence of { fn}

∞

n=1.

Observation. A sequence {gn : (Y, A)→ (S2, I )}∞n=1 of admissible maps converges
to a map admissibly homotopic to g1 if , for each n > 1, gn−1 is homotopic to gn

by a homotopy supported in an open subset Un of S2
− I having finitely many

components and compact closure in S2
− I and satisfying the following: for all

n 6= m, Un ∩Um =∅, and

lim
n→∞

max{diam(C) | C is a component of Un} = 0.

Now, applying the arc proposition infinitely many times, construct a monotone
strictly decreasing sequence {bn}

∞

n=1 of real numbers converging to zero and a
map f0 admissibly homotopic to f and bijective over

⋃
∞

n=1 En × [0, bn]. The
map f0 is itself the limit of a sequence of maps each of which is obtained by an
application of the arc proposition to its predecessor. The above observation is used
to ensure convergence and to verify that the limit is admissibly homotopic to f .
The details are left to the reader.

Now given f0 we will construct f1, then briefly indicate the construction of f2.
The induction step in full generality we leave to the reader.

To construct f1, let F denote the closure in H − ∂H of one of the components
of W 〈1, b1〉− Z〈1, b1〉 (which is

[(
−

1
2 , 0

)
∪
(
0, 1

2

)]
× (0, b1)). Apply Lemma 7.7

to f0| f −1
0 (F) : f −1

0 (F)→ F for each choice of F . Choose the r and t (as in
Lemma 7.7) to be the same for both applications. We are free to choose r small
enough so that each of the two homotopies has support in an open rectangle whose
diameter is less than one. Let f1 be the map which results from the composition of
the two homotopies. From the conclusion of Lemma 7.7 we can choose a1 < b1

such that f1 is bijective over
[
−

1
2 ,

1
2

]
×{a1}.

Now to construct f2, apply Lemma 7.7 to each map f1| f −1
1 (F) : f −1

1 (F)→ F
where F =

[ k
22 ,

k+1
22

]
× (0, c2] where c2 = min{a1, b2} and k is an integer with

−3≤ k ≤ 2. Choose a common r and t for the six applications of the lemma and
furthermore choose r small enough so that each of the homotopies has support in
a rectangle of diameter one half and furthermore that support is disjoint from the
support of the previously constructed homotopy of f0 to f1. The composition of
the six homotopies is the homotopy from f1 to f2. The conclusion of Lemma 7.7
allows us to choose a2 < c1 such that f2 is bijective over Z〈1, a1〉 ∪ Z〈2, a2〉.

By “symmetry” we can now assume without loss of generality that the map f of
the hypothesis is bijective over

⋃
∞

n=1[Z〈n, an〉∪ Z〈n, bn〉] where {an} and {bn} are
monotone strictly decreasing and monotone strictly increasing, respectively, and
both sequences converge to zero. Note that the closure in S2 of

⋃
∞

n=1[W 〈n, an〉 ∪

W 〈n, bn〉] is a 2-disk and denote the closed complement of that 2-disk minus the
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endpoints of I by Q (it is homeomorphic to [−1,+1]×R). Denote R= f −1(Q). We
have that f |R : R→Q is a proper map of noncompact surfaces and f |∂R :∂R→∂Q
is bijective. Furthermore, it follows from one-endedness of Y−A that f |R : R→ Q
is bijective on ends. It follows from the classification theorem for noncompact
surfaces [Richards 1963; Prishlyak and Mischenko 2007] (and the special case
required here can also be proven by applying Lemma 7.7 infinitely many times) that
R can be constructed by first deleting the interiors of a proper family of pairwise-
disjoint 2-disks in R×[0, 1], none of which meets R×{0, 1}, and then attaching to
the boundary of each 2-disk a once-punctured torus. Denote by S the decomposition
space obtained from the decomposition of R whose only nondegenerate elements are
the punctured tori. Up to admissible homotopy fixing f |∂R, the map f |R : R→ Q
factors through a map g : S → Q whose end-point compactification is a split
boundary-to-boundary map of 2-disks. Hence, from the observation preceding
Lemma 7.7, that map is admissibly homotopic (fixing g(∂S) to a homeomorphism).
So we can assume without loss that the map f sends each punctured torus to a point
and is injective over the complement of the image of the union of all the punctured
tori. So we can easily choose a proper, split embedding (Z × [−1,+1],Z ×

{−1,+1})→ (Q, ∂Q) such that f is injective over the image of the embedding
(which we denote by E). So now we can assume without loss of generality that the
map f is bijective over I∪E∪

(⋃
∞

n=1[Z〈n, an〉∪Z〈n, bn〉]
)
, which we denote by Z .

Note that the closure of any component C of the complement of Z in S2 is a
2-disk and that f | f −1(C) : f −1(C)→C is a boundary-preserving map of compact,
connected orientable surfaces which is bijective over ∂C and hence is homotopic
(fixing f |∂ f −1(C)) to a standard map. It follows easily that Y is a Pontryagin
surface and A is P-negligible.

8. Pontryagin disks

Recall that a Pontryagin disk D is a compact, connected subset of a rich Pontryagin
surface P whose frontier relative to P is a simple closed curve. That curve is called
the boundary of D and is denoted ∂D. The subset D− ∂D is the interior of D,
written Int D. By Corollary 3.2 every Pontryagin disk D has a rich family E of
figure-eights, all of which lie in Int D; we shall assume that every sufficient family
for a Pontryagin disk used here has this property.

Theorem 8.1. Suppose D and D′ are Pontryagin disks equipped with sufficient
families E and E ′, respectively. Let S = D/E and S′ = D′/E ′ be the associated
decompositions and let d :D→ S and d ′ :D′→ S′ be the quotient maps. Let Z be a
closed subset of S such that Z ∩d(E)=∅, and let h : S→ S′ be a homeomorphism
such that h(Z)∩ d ′(E ′) = ∅. Then for any ε > 0 there exists a homeomorphism
H : D→ D′ such that hd and d ′H are ε-close and equal on d−1(Z).
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The proof of the above theorem, which occupies most of this section, is deferred.

Corollary 8.2. Every homeomorphism ψ : ∂D→ ∂D′ between the boundaries of
Pontryagin disks D,D′ extends to a homeomorphism 9 : D→ D′.

Proof. Let E and E ′ be full families for D and D′, respectively. Recall that by
convention no elements of E or E ′ meet ∂D or ∂D′. Let B = D/E and B ′ = D′/E ′

denote the usual decompositions and d :D→ B and d ′ :D′→ B ′ the quotient maps.
Since B and B ′ are 2-disks the homeomorphism d ′ ◦ψ ◦ (d|∂B)−1

: ∂B → ∂B ′

extends to a homeomorphism h : B→ B ′. Apply Theorem 8.1 with Z = ∂S. �

Corollary 8.3. Let J and J ∗ denote separating simple closed curves in closed, rich
Pontryagin surfaces P and P∗, respectively. Then any homeomorphism h : J → J ∗

can be extended to a homeomorphism H : P→ P∗.

Proof. Each of J and J ∗ bounds two Pontryagin disks in their respective Pontryagin
surfaces. Apply Corollary 8.2. �

Theorem 8.1 also supplies an affirmative answer to a question raised by D. Repovš
on several occasions back in the 1990s. The argument for Corollary 8.4 below also
yields that Cantor sets in connected rich Pontryagin surfaces are homogeneously
embedded.

Corollary 8.4. Suppose that D and D′ are Pontryagin disks and that K ⊂ Int D and
K ′ ⊂ Int D′ are Cantor sets. Then each homeomorphism h : ∂D∪ K → ∂D′ ∪ K ′

extends to a homeomorphism H : D→ D′.

Proof. Here K is P-negligible in Int D, so there exists a full collection E of figure-
eights for D, all of which lie in Int D−K . Similarly, there exists a full collection E ′

of figure-eights for D′, all of which lie in Int D′− K ′. Apply Theorem 8.1 using
the obvious decompositions. �

Definition. Let D, E , and d be as in Theorem 8.1. A utilitarian web W for S is a
finite collection {Bi } of 2-cells in S that cover S, whose boundaries miss d(E), and
for i 6= j , Bi ∩ B j is either empty or a connected subset of the boundary of each.
(A utilitarian web is a generalized triangulation.) We define utilitarian webs W on
appropriate quotients of closed Pontryagin surfaces similarly. We will refer to the
union of the boundaries as the 1-skeleton of W . We will call two such webs W,W ′

for S equivalent if there exists a homeomorphism h : S→ S that induces a bijection
from the cells of W to the cells of W ′.

The following is an immediate consequence of Theorem 8.1:

Corollary 8.5. Under the hypotheses of Theorem 8.1, let W be a utilitarian web
for S and let h : S→ S′ be a homeomorphism that carries the 1-skeleton T of W
into S′ − d ′(E ′). Then there exists a homeomorphism H : D → D′ such that
hd(t)= d ′H(t) for all t ∈ d−1(T )∪ ∂D.
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We state several definitions before returning to the proof of Theorem 8.1.

Definition. A PreP space X is a space equipped with two subspaces denoted E(X)
and C(X) satisfying the following: X is a compact, connected, orientable surface
with connected boundary; E(X) is the union of a finite family of pairwise-disjoint
figure-eights in X̊ such that, for each figure-eight e ∈ E(X), X/e is a surface; C(X)
is a countable dense subspace of X̊ disjoint from E(X).

A map f : X → Y of PreP spaces is a PreP map if it is standard and satisfies
{y ∈ Y | | f −1(y)| 6= 1} ⊆ C(Y ) and f (E(X)∪C(X)) = E(Y )∪C(Y ). Note that
compositions of PreP maps are PreP.

A diagram is a set D of surjective maps of compact metric spaces satisfying the
following conditions: the range of no element of D is the same space as its domain;
no two elements of D have both the same domain and the same range. A derived
map of a diagram D is a map which is the composition of elements of D such
that no element of D appears more than once in the factorization and the domain
and range of the composite map are different (subsequently, when we refer to a
“factorization” of a derived map, it will be understood that the factorization satisfies
this condition).

A modulus of continuity of a diagram is a function δ : (0,+∞)→ (0,+∞)
which is a modulus of continuity for every derived map of the diagram (i.e., given
a derived map f of the diagram, ε > 0, and points x and y in the domain of f
which are δ(ε)-close we have that f (x) and f (y) are ε-close). Note that any finite
diagram has a modulus of continuity.

A pair X
f
⇒

g
Y of derived maps of a diagram is allowable if f and g have

factorizations such that if A and B denote the sets of spaces appearing in the
factorizations of f and g, respectively, then A∩B = {X, Y }.

A diagram D is ε-commutative if the two maps of any allowable pair are ε-close.
An infinite diagram is asymptotically commutative if, given ε > 0, there exists a
finite subset DE of D such that D−DE is ε-commutative.

Observation. Given an inverse sequence {pn : Xn+1→ Xn}
∞

n=1 of surjective maps
of compact metrizable spaces with limit X∞, there exist metrics {ρn}

∞

n=1 for {Xn}
∞

n=1
and ρ∞ for X∞ so that, for any x, y∈ X∞, the sequence {ρn(p∞,n(x), p∞,n(y))}∞n=1
(where p∞,n : X∞→ Xn is the projection map) is strictly increasing and has limit
ρ∞(x, y). (We leave the proof to the reader.)

Definition. Diagrams of the following two forms will be referred to as type A and
type B diagrams if, in each case, the metrics in the vertical columns (which are
inverse sequences) satisfy the condition stated in the above observation:
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... (A)
...

Xn+1 X ′n+1

Xn X ′n

...
...

...

X2 X ′2

X1 X ′1

pn+1 p′n+1

pn p′n

fn

fn+1

f2

pn−1 p′n−1

p1 p′1

f1

... (B)
...

Xn+1 X ′n+1

Xn X ′n

...
...

...

X2 X ′2

X1 X ′1

pn+1 p′n+1

pn p′n

fn

fn+1

f2

pn−1 p′n−1

p1 p′1

f1

gn

g1

Lemma 8.6. Given an asymptotically commutative type A diagram D (with notation
as in the definition) there exists a map f∞ : X∞→ X ′

∞
having the following property:

for any ε > 0 there exists N ∈ N such that if n ≥ N , then p′
∞,n ◦ f∞ and fn ◦ p∞,n

are ε-close.

Proof. From asymptotic commutativity of D we have that, for any k ∈ N, the
sequence of maps {p′n,k ◦ fn ◦ p∞,n : X∞→ X ′k}n>k converges uniformly. Denoting
the limit by αk , we have that the diagram

X∞ X ′
∞

...
...

... X ′n

...

X ′k

αn

αk

commutes. The inverse limit is f∞. �
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Note. We will refer to the map f∞ in the conclusion of Lemma 8.6 as the limit of D.

Lemma 8.7. Suppose D is an asymptotically commutative type B diagram and let
f∞ and g∞ be the limits, respectively, of the two type A diagrams obtained when
the {gi } are deleted from D and when the { fi } are deleted from D. Then f∞ and g∞
are inverses.

Proof. To show that g∞ is a left inverse for f∞ it suffices to show, given ε > 0 and
a ∈ X∞, that (g∞ ◦ f∞)(a) is within ε of a. To see this, extract the subdiagram

X∞ X ′
∞

X ′n+1

Xn

f∞
g∞

p∞,n

p′
∞,n+1

gn

We can choose n large enough so that the following conditions are satisfied:

(1) There exists δ > 0 such that if E ⊂ Xn has diameter less than 2δ, then p−1
∞,n(E)

has diameter less than ε.

(2) The subdiagram is δ-commutative.

By condition (2), then (p∞,n ◦g∞◦ f∞)(a) is within δ of (gn ◦ p′
∞,n+1◦ f∞)(a) and

the latter is within δ of p∞,n(a). The desired inequality follows from condition (1).
The proof that f∞ is a left inverse for g∞ is similar. �

Lemma 8.8. Suppose X is a compact metric space, R is an open surface which
is an open subset of X , A and B are countable, dense subsets of R, and ε > 0.
Then there exists a split homeomorphism ϕ : (X, R)→ (X, R) supported in R and
ε-close to the identity such that ϕ(A)= B.

Proof. Brouwer [1913] and Fréchet [1910], independently, proved that Euclidean
space is countable dense homogeneous. This is a mild generalization of their result.
We provide some details for completeness.

The idea is to produce ϕ as a limit of a sequence ϕk : X → X supported in R.
For each k ≥ 1 we will determine a homeomorphism hk : X→ X supported in a
very small 2-disk 1k in R and then will set ϕk = hkϕk−1 (here ϕ0 = Identity).

List the elements {a1, a2, . . .} of A and likewise the elements {b1, b2, . . .} of B.
When k = 2m − 1, 1k will be centered at ϕk−1(am) and will contain no other

point of
ϕk−1({a1, a2, . . . , am−1})∪ {b1, b2, . . . , bm−1} ⊂ B.
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If ϕk−1(am) ∈ B. then hk will be the identity; otherwise, apply density of B to
obtain b j ∈ B ∩ Int1k and choose hk so hkϕk−1(am)= b j .

When k = 2m, 1k will be centered at ϕk−1(bm) and contain no other point of

ϕk−1({a1, a2, . . . , am})∪ {b1, b2, . . . , bm−1} ⊂ B.

If there exists a j ∈ A such that ϕk−1(a j )=bm , then hk will be the identity; otherwise,
apply density of A to obtain a j ∈ A∩ Int1k and choose hk so hkϕk−1(a j )= bm .

In short, at odd-numbered stages of the process, a point of A is shifted into B,
in orderly fashion, and at even-numbered stages a point of B is caused to be the
image of some point of A. Once such arrangements are made, no further adjustment
of those special points is allowed at later stages, so those arrangements persist to
the limit map ϕ. Eventually all points of A are moved into B and all from B are
covered.

Simply by choosing the 1k of diameter less than ε/2k , we can assure that the
sequence {ϕk} converges uniformly to a continuous function ϕ ε-close to the identity.
Furthermore, ϕ will restrict to the identity on X − R and will be surjective over X .

At any stage k>1 in this process, we can determine ηk−1>0 such that points of X
at least 1/k apart have image under ϕk−1 at least ηk−1 apart. Thus, by requiring 1k

to have diameter less than ηi/2k−i for i = 1, 2, . . . , k−1, we assure injectivity of ϕ.
As a result, ϕ is a split homeomorphism of (X, R) to itself. �

Lemma 8.9. Suppose f : X → X ′ and p : Y → X ′ are PreP maps such that
{x ∈ X ′ | | f −1(x)| 6= 1} ⊆ {x ∈ X ′ | |p−1(x)| 6= 1} and Z is a closed subset of X ′

disjoint from E(X ′)∪C(X ′). Then given ε′ > 0 there exists a PreP map g : Y → X
such that p and f ◦ g are ε′-close and equal over Z.

Proof. Denote {x1, x2, . . . , xn}= {x ∈ X ′ | |p−1(x)| 6= 1}. Let {Di }
n
i=1 be a pairwise-

disjoint family of 2-disks in X̊ ′ such that for each i

xi ∈ D̊i , diam Di < ε
′, ∂Di ∩ [E(X ′)∪C(X ′)∪ Z ] =∅.

Define g as follows. For x /∈
⋃n

i=1 p−1(D̊i ) we define g(x)= f −1(p(x)) (this can
be done since f is injective over the complement of

⋃
i D̊i ). For each i we define

αi = g|p−1(Di ) : p−1(Di )→ f −1(Di ) as follows. Note first that, for all i , p−1(Di )

is a disk with a handle and f −1(Di ) is either a disk with a handle or simply a disk.
In the first case choose a homeomorphism αi satisfying the following conditions:

(1) αi |p−1(∂Di )= f −1
◦ p|p−1(∂Di ).

(2) αi carries p−1(xi ) onto f −1(xi ).

(3) αi (C(Y )∩ p−1(Di ))= C(X)∩ f −1(Di ).

Note that (2) can be achieved since the figure-eight in a disk with a handle is unique
up to homeomorphism fixing the boundary and (3) can be achieved using Lemma 8.8.
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In the second case ( f −1(Di ) is a disk), just choose αi so that α−1
i ( f −1(xi )) =

p−1(xi ) and p−1(xi ) is the only nontrivial point preimage. Again Lemma 8.8
allows us to achieve condition (3) above. �

Lemma 8.10. Suppose D is a finite ε-commutative diagram, δ is a modulus of
continuity for D, and f : Z → Y and p : X → Y are maps in D such that X is
neither the domain nor codomain of any map in D other than p. If r > 0, ε′ ≤ δ(r),
and g : X → Z is a map not in D and such that f ◦ g is ε′-close to p, then the
diagram D∪ {g} is σ -commutative where σ =max{ε′, ε+ r}.

Proof. Suppose {ϕ,ψ} is an allowable pair in D ∪ {g}. If each of p, f , and g
is a factor of ϕ or a factor of ψ , then they must be the only factors in the two
factorizations and we are done by hypothesis. If neither of the factorizations of ϕ
and ψ include g, then {ϕ,ψ} is an allowable pair in D and again we are done. The
remaining possibility is that g and p are the initial factors of ϕ and ψ and f is a
factor of neither. We will show that, in this case, ϕ and ψ are (ε+ r)-close. We
can write ϕ = α ◦ g and ψ = β ◦ p where α and β are derived maps of D. Consider
the three maps β ◦ p, β ◦ f ◦ g, and α ◦ g. The first and second are r -close because
p and f ◦ g are ε′-close (and ε′ ≤ δ(r)). The second and third are ε-close since
the distance between them is the same as the distance between β ◦ f and α (an
allowable pair in D). The triangle inequality concludes the argument. �

Proof of Theorem 8.1. First note that we can assume (without loss of generality)
∂S ⊂ Z . Using Proposition 2.1 we write

D= X∞ = lim
←−−
{pn : Xn+1→ Xn}

∞

n=1,

D′ = X ′
∞
= lim
←−−
{p′n : X

′

n+1→ X ′n}
∞

n=1,

where X1 = S and X ′1 = S′. Furthermore, we can assume that the metrics for these
spaces satisfy the conditions stated in the observation following the definition of
ε-commutative. For each n ∈ N we set

C(Xn)= p∞,n({e ∈ E | |p∞,n(e)| = 1}),

E(Xn)= p∞,n({e ∈ E | |p∞,n(e)| 6= 1})

and similarly for C(X ′n) and E(X ′n). This makes the maps {pn} and {p′n} PreP.
Note also that d = p∞,1 and d ′ = p′

∞,1.
The following argument shows that h can be approximated by PreP maps and

hence we can assume without loss that it is PreP. Applying Lemma 8.8 to the pair
(X ′1, X ′1−h(Z)) and the subsets h(C(X1)) and C(X ′1) we obtain a homeomorphism
ϕ : X ′1→ X ′1 fixing h(Z) and throwing h(C(X1)) onto C(X ′1) and ε-close to the
identity for any preassigned ε. So ϕ◦h is PreP and arbitrarily close to h. We denote
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h = f1 and assume f1 is PreP. So we have an infinite diagram of PreP maps:

...
...

Xn+1 X ′n+1

Xn X ′n

...
...

X2 X ′2

S = X1 X ′1= S′

pn+1 p′n+1

pn p′n

pn−1 p′n−1

p1 p′1

f1

We will construct the infinite diagram of PreP maps (denoted D),

...
...

Xα(n+1) X ′β(n+1)

Xα(n) X ′β(n)

...
...

...

Xα(2) X ′β(2)

Xα(1) X ′β(1)

pα(n+1),α(n) p′
β(n+1),β(n)

fn

fn+1

f2

pα(2),α(1) p′
β(2),β(1)

f1

gn

g1

where α and β are increasing functions from N to N with α(1)= β(1)= 1.
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Before listing the properties which D will have, we adopt some notation: D(n)k
(for 1 ≤ k < n) will denote the finite subset of D consisting of all maps, each of
which is either fk , fn , or a map in D above fk and below fn; define Zn inductively
by Z1 = Z and Zn+1 = p−1

α(n+1),α(n)(Zn).
The diagram D will satisfy the following two conditions:

(1) For all n and 1≤ k < n, D(n)k is ε ·
[∑n

m=k
1

2m

]
-commutative.

(2) fn and gn are injective over fn(Zn) and Zn , respectively.

It follows immediately from the above properties that D is asymptotically com-
mutative and that the map f∞ provided by Lemma 8.6 and guaranteed to be a
homeomorphism by Lemma 8.7 will serve as the desired H .

The construction of D is accomplished by producing inductively the sequence
{D(n)1 }

∞

n=2 of subdiagrams. The construction of D(n+1)
1 from D(n)1 is carried out in

two stages. First β(n+1) and gn are chosen, then α(n+1) and fn+1. In each stage,
Lemma 8.9 is used to construct the desired map. The choices of ε′ (as in Lemma 8.9)
which will ensure the necessary approximate commutativity of D(n+1)

k (k < n) are
dictated by Lemma 8.10.

So in determining β(n+ 1) first note that given any finite subset S of C(X ′β(n))
there exists m ∈N with m > β(n) such that, for each x ∈ S, (p′m,β(n))

−1(x) is not a
singleton. Let β(n+1) be such an m for the set S = {x ∈C(X ′β(n)) | | f

−1
n (x)| 6= 1}.

This ensures that the maps fn and p′β(n+1),β(n) satisfy the hypothesis of Lemma 8.9
(where D(n)1 ∪ {p

′

β(n+1),β(n)} plays the role of D and Zn plays the role of Z in the
application of that lemma). For the ε′ we choose min

{
ε

2n+2 , δ0
(

ε
2n+2

)}
where δ0

is a modulus of continuity for D(n)1 ∪ {p
′

β(n+1),β(n)} (and hence also for D(n)k for
any k < n). The application of Lemma 8.9 produces the map gn and Lemma 8.10
guarantees that, for any k < n, D(n)k ∪ {p

′

β(n+1),β(n), gn} is ε ·
( 1

2 ·
1

2n+1 +
∑n

m=k
1

2m

)
-

commutative. Now to construct fn , first choose α(n+1) larger than α(n) and large
enough so that the maps gn and pα(n+1),α(n) satisfy the hypothesis of Lemma 8.9.

In preparing to apply Lemma 8.10 we choose r = ε/2n+2 and choose ε′ =
min{r, δ1(r)}, where δ1 is a modulus of continuity for D(n)1 ∪ {p

′

β(n+1),β(n), gn}.
Upon applying Lemma 8.9 we obtain the map fn+1. We conclude from Lemma 8.10
that, for k < n+ 1, D(n+1)

k is ε ·
( 1

2 ·
1

2n+1 +
1
2 ·

1
2n+1 +

∑n
m=k

1
2m

)
-commutative. �

9. Pontryagin cellularity

A compact subset of a Pontryagin surface is Pontryagin cellular if it can be expressed
as a nested intersection of Pontryagin disks D1,D2, . . . where Di+1⊂ Int Di for all i .

Pontryagin cellular subsets of Pontryagin surfaces have some features analogous
to those of cellular subsets of genuine surfaces.
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Proposition 9.1. Let C be a compact subset of a rich Pontryagin surface P. Then
the decomposition GC of P whose only nondegenerate element is C is shrinkable if
and only if C is Pontryagin cellular in P.

Proof. The forward implication follows immediately from [Daverman 1986, Propo-
sition 5.12]. For the reverse, given a neighborhood U of C , find a Pontryagin disk D

such that C ⊂ Int D ⊂ D ⊂ U . Let E be a full family of figure-eights for D and
let d : D→ B = D/E denote the quotient map to the resulting disk B. Cover B
with a utilitarian web of four disks B0, B1, B2, B3, as shown below, where B0 ⊂ B̊
contains d(C):

B0

B1 B2

B3

d(C)

Specify a homeomorphism h : B→ B that restricts to the identity on ∂B, that carries
B0 to a disk B ′0 whose preimage in P is small, and that sends each of the ∂Bi into
B−d(E). Then Corollary 8.5 promises a homeomorphism H :D→D that restricts
to the identity on ∂D and that carries d−1(B0) to the small set d−1(B ′0). Finally, H
extends to the rest of P via the identity to give a homeomorphism showing that GC

is shrinkable. �

Proposition 9.2. A compact subset C of a rich Pontryagin surface P is Pontryagin
cellular if and only if C is connected and P −C has an isolated end corresponding
to C.

Proof. The forward implication is routine. For the reverse, note that we can assume
P is compact (in view of Proposition 4.3) and connected. Then P/C is both the
one-point and end-point compactification of P −C . As such, it has a sufficient
family EC of figure-eights, each of which is contained in P−C . Name the quotient
map ψ : P→ P ′ = P/C and the decomposition map d ′ : P ′→ P ′/EC . Given any
open subset U of P containing C , one can find a small 2-disk neighborhood B of
the point d ′ψ(C) in P ′/EC whose frontier is a simple closed curve missing d ′(EC),
where B satisfies

C ⊂ (d ′ψ)−1(B̊)⊂ (d ′ψ)−1(B)⊂U.

Clearly (d ′ψ)−1(B) is a Pontryagin disk. Hence, C is Pontryagin cellular. �

The following observation is used in the proof of the corollary below (other
details of which are left to the reader).
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Observation. Suppose X and Y are connected, nice spaces and e is an isolated
end of Y . If f : X→ Y is a proper, surjective map which is monotone over some
neighborhood of e, then only one end of X is sent to e by f .

Proof. First note that we can assume without loss that e is the only end of Y (consider
f̂̂ | : X̂̂ − ( f̂̂ )−1(e)→ Ŷ̂ − {e}). Supposing that X has more than one end, there
exists a neighborhood W of∞ in X having at least two components which meet∞.
By one-endedness of Y we can find neighborhoods M and N of infinity such that f
is monotone over M , N ⊂ M̊ , M − N is connected, and f −1(M − N )⊂W . Hence,
f −1(M − N ) is not connected but f | : f −1(M − N )→ M − N is monotone, thus
contradicting the Vietoris–Begle mapping theorem. �

Corollary 9.3. Let f : P → Q be a proper, monotone map between Pontryagin
surfaces, with P a rich Pontryagin surface. Then each f −1(q), q ∈ Q, is Pontryagin
cellular.

10. Decompositions induced over 1-dimensional subsets
and proof of the monotone approximation theorem

The final section of this paper culminates in a proof of the monotone approximation
theorem. A key step involves showing how to approximate a given monotone map
by one that is injective over certain graphs in the target space.

Proposition 10.1. Suppose X and Y are compact metrizable spaces and C1,C2, . . .

are closed subsets of Y such that, for any surjective monotone map f : X → Y ,
each of the decompositions G(Ci ) induced by f over Ci is shrinkable. Then any
such map f can be approximated by a monotone map F that is 1-1 over

⋃
i Ci .

Moreover, if K is a closed subset of Y such that f is 1-1 over K and each of the
G(Ci ) can be shrunk keeping points over K fixed, then F can be obtained which
agrees with f over K .

Proof. This is a standard Baire category argument. In the complete metric space S

of all surjective, monotone maps X→ Y , the collection O j,n of maps f such that
diam f −1(c) < 1/n for all c ∈ C j is open, for the usual reasons, and is dense by
hypothesis. Any map from the dense subset

⋂
j,n O j,n is 1-1 over

⋃
j C j .

For the additional control over K , take F as above but form the complete metric
subspace of S consisting of monotone maps X→ Y that agree with f over K . �

Proposition 9.1, Corollary 9.3, and Proposition 10.1 combine to yield:

Corollary 10.2. Let f : P→Q be a monotone map between rich, closed Pontryagin
surfaces, Z a countable subset of Q, and K a closed subset of Q such that f is 1-1
over K . Then f can be approximated, arbitrarily closely, by a monotone map F
that is 1-1 over Z ∪ K and agrees with f over K .
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It might be worth mentioning that the next lemma does not show the decomposi-
tion under consideration to be shrinkable. The output is merely a homeomorphism
that carries decomposition elements to sets of small size — it is not subject to any
motion control. A closely related shrinkability result will be established in the
subsequent proposition using additional considerations.

Lemma 10.3. Suppose D is a Pontryagin disk, E is a full family of figure-eights
for D, d : D→ B = D/E is the decomposition map, and G is a monotone upper
semicontinuous decomposition of D such that the union NG of all nondegenerate
elements of G is a subset of Int D and the closure of d(NG) meets ∂B in at most
two points. Then for each ε > 0 there exists a homeomorphism Hε : D→ D such
that Hε restricts to the identity on ∂D and diam Hε(g) < ε for all g ∈ G.

Proof. Name the points z, z∗ of ∂B containing ∂B∩d(Cl NG) and let γ1, γ2 denote
the subarcs of ∂B bounded by these two points.

Identify a disk B1 ⊂ B − γ̊2 containing γ1 such that B̊1 contains the image
under d of every e ∈ E with diameter ε/6 or more. Identify another disk B2 ⊂ B
containing γ2 that meets B1 only at the points z and z∗. Cover the rest of B by a
chain of 2-cells β1, β2, . . . , β2k−1 such that βi and β j meet if and only if |i− j | ≤ 1,
the intersection of successive cells βi and βi+1 is an arc in the boundary of each,
z ∈ β1 and z∗ ∈ β2k−1, these βi together with B1, B2 form a utilitarian web for B,
and each d−1(βi ) has diameter less than ε/3. Furthermore, we can ensure that the
1-skeleton of this utilitarian web avoids the countable set d(E). See:

z

z∗

βk−1

βk

βk+1

β1

β2k−1

γ1 B1 B2 γ2

Now produce an equivalent utilitarian web (equivalent via a homeomorphism
fixing ∂B) in B involving 2-cells B ′1, B ′2, β

′

1, β
′

2, . . . , β
′

2k−1. Here B ′1, B ′2 should
lie very close to γ1, γ2, respectively, so as to miss d(NG). The β ′i , except for β ′1
and β ′2k−1, are contained in B̊. In the construction procedure β ′k should be chosen
first, and it should meet each of B ′1 and B ′2 in an arc. Next, β ′k−1 and β ′k+1 should
be chosen so that any d(g) (g ∈ G) that meets β ′k lives in β ′k−1∪β

′

k ∪β
′

k+1. (This is
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possible since, by upper semicontinuity and the hypothesis that d(NG)∩ ∂B =∅,
elements of G with image near z or z∗ are small.) That exposes the general strategy:
the 2-cells β ′k−2 and β ′k+2 should be chosen, respectively, so that any d(g) that meets
β ′k−1 but not β ′k is contained in β ′k−2∪β

′

k−1 and so that any d(g) that meets β ′k+1 but
not β ′k is contained in β ′k+1 ∪β

′

k+2. The cells β ′k−3, β
′

k+3, . . . should be chosen in
turn so that, ultimately, any d(g) (g nondegenerate) lies either in β ′k−1∪β

′

k∪β
′

k+1 or
in the union β ′i−1 ∪β

′

i of two successive β ′j . Specify a homeomorphism h : B→ B
taking B ′i to Bi and β ′j to β j and fixing points of ∂B. The homeomorphism Hε
provided by Corollary 8.5 keeps points of ∂D fixed and shrinks elements of G
to size less than ε, since the image of each nondegenerate g ∈ G lies in some ε
diameter set of the form d−1(β j ∪β j+1 ∪β j+2). �

Proposition 10.4. Let f : P→ Q be a degree-one, monotone map between rich,
closed Pontryagin surfaces and let A denote any locally separating arc or separating
simple closed curve in Q. Then f can be approximated, arbitrarily closely, by
monotone maps F that are 1-1 over A. Furthermore, the approximations F can be
chosen to equal f over any closed subset K of Q such that f is 1-1 over K .

Proof. We will treat only the case in which A is a locally separating arc in Q. The
proof for simple closed curves is similar, or can be obtained from the result for arcs
plus Proposition 10.1.

By Corollary 10.2 we can approximate f by another monotone map, which we
continue to call f , that is 1-1 over a countable, dense subset of A containing ∂A
and that agrees with the original f over K . Let G(A) denote the decomposition
of P induced by the modified f over A, and let p : P→ X = P/G(A) denote the
decomposition map. We show that G(A) is shrinkable fixing points of K .

By the factor theorem (Theorem 3.1) X is a Pontryagin surface and has a full
family E of figure-eights, each of which lives in X − p f −1(A). Let d : X→ X/E
denote the decomposition map associated with the decomposition of X into points
and these figure-eights.

Fix ε > 0. Note that d is 1-1 over A′ = dp f −1(A). Note also that the closure of
each component of A− K has endpoints in K ∪ ∂A over which f is one-to-one. It
follows easily that only a finite number of components of A− K have preimage
under f with diameter at least ε. We let γ denote one of those components. Since
we will perform the same operations near each of these components, we assume γ
is the only one.

Cover γ ′ = dp f −1(γ ) ⊂ A′ by a finite collection B1, . . . , Bm of 2-cells in
the surface X/E . These 2-cells should have pairwise-disjoint interiors and those
interiors should miss dp f −1(K ), each Bi should meet γ ′ in an arc whose interior
lies in Int Bi , and should be small enough to assure that d−1(Bi ) has diameter less
than ε. The collection should be arranged so that dp is 1-1 over each ∂Bi ∩ A′. As
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a consequence, each Di = (dp)−1(Bi ) and each D′i = f (dp)−1(Bi ) is a Pontryagin
disk, with ∂Di missing all the nondegenerate elements of G(A).

Now apply Lemma 10.3 m times, using the decomposition induced by f |Di :

Di→D′i on each Di , to obtain a homeomorphism Hε : P→ P that sends each Di to
itself, restricts to the identity on each ∂Di as well as outside

⋃
i Di , and sends every

nondegenerate g ∈ G(A) to a set of diameter less than ε. Note that, by construction
of the D′i , f and Hε are ε-close. Hence, Hε establishes that G(A) satisfies the
shrinkability criterion via shrinking homeomorphisms that reduce to the identity
over K .

As in the proof of Corollary 2.5, if θ : P→ P/G(A) is a homeomorphism very
close to p, then F = f p−1θ is a monotone map close to f which is 1-1 over A and
which agrees with f over K . �

Corollary 10.5. Let f : P → Q be a degree-one, monotone map between rich,
closed Pontryagin surfaces, let E be a sufficient family of figure-eights for Q, with
d : Q→ S = Q/E the quotient map, and let 0 denote the 1-skeleton of a utilitarian
web for S. Then f can be approximated, arbitrarily closely, by a monotone map F
that is 1-1 over d−1(0). Furthermore, if K is a closed subset of 0 such that f is
1-1 over K , then F can be chosen to be equal to f over K .

Proof. Specify locally separating arcs A1, . . . , Ak in 0 covering 0 and then employ
Propositions 10.4 and 10.1. �

Proof of the monotone approximation theorem (Theorem 2.2). Let f : P→ Q be a
degree-one, monotone map between closed, connected, rich Pontryagin surfaces.
Given ε > 0, specify a full family EQ of figure-eights for Q, and let E ′Q denote
the cofinite subcollection consisting of figure-eights of diameter less than ε/4. Let
dQ : Q→ S = Q/E ′Q be the associated quotient map to a closed surface S. Find a
utilitarian web W = {B1, . . . , Bm} in S with such small mesh that each (dQ)

−1(Bi )

has diameter less than ε/2.
Use Corollary 10.5 to obtain another monotone map F : P→ Q such that F is

1-1 over d−1
Q (0), where 0 is the 1-skeleton of W , and ρ(F, f ) < ε/2.

At this juncture Q has been split into m Pontryagin disks D′i = (dQ)
−1(Bi )

with pairwise-disjoint interiors, each of diameter less than ε/2. The map F lifts
them to Pontryagin disks Di = F−1(D′i ) in P , and F determines monotone maps
Fi = F |Di : Di → D′i that restrict to homeomorphisms ∂Di → ∂D′i . Corollary 8.2
promises the existence of homeomorphisms8i :Di→D′i that agree with Fi on ∂Di .
By construction of D′i each8i is ε/2-close to Fi . Hence,8=

⋃
i 8i :D=

⋃
i Di→

D′ =
⋃

i D′i is a homeomorphism which is ε/2-close to F and ε-close to f . �

Theorem 10.6. Let f : (D, ∂D)→ (D′, ∂D′) be a split monotone map between
Pontryagin disks and K ⊃ ∂D′ a closed subset of D′ such that f is 1-1 over K . Then
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f can be approximated, arbitrarily closely, by a homeomorphism 8 : D→ D′ such
that 8| f −1(K )= f | f −1(K ).

Proof. The only change to the proof of the monotone approximation theorem
required in the Pontryagin disks setting is that in applying Corollary 10.5 one
should obtain a monotone map F :D→D′ that is 1-1 over the 1-skeleton as before
and agrees with f over K . �
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