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REAL STRUCTURES ON POLARIZED DIEUDONNÉ MODULES

MARK GORESKY AND YUNG SHENG TAI

We define an “antiholomorphic involution” of a module M over the Dieudonné
ring E(k) of a finite field k with q = pa elements to be an involution τ : M → M
that switches the action of F a with that of V a. The definition extends to in-
clude quasi-polarizations of Dieudonné modules. Nontrivial examples exist.
The number of isomorphism classes of quasi-polarized Dieudonné modules
within a fixed isogeny class is shown to be given by a twisted orbital integral
over the general linear group. Earlier (Pacific J. Math. 303:1 (2019), 165–215)
we considered these notions in the case of ordinary abelian varieties over k, in
which case the contribution at p to the number of isomorphism classes within
an isogeny class was shown to be given by an ordinary orbital integral over
the general linear group. The definitions here are shown to be equivalent to
those in our previous paper and, as a consequence, the equality of the orbital
integrals of both types is proven.

1. Introduction

Locally symmetric spaces associated to the group GLn(R) for n ≥ 3 do not carry a
complex structure and do not admit an obvious reduction to characteristic p > 0.
However, it is known ([Adler 1979; Gross and Harris 1981; Comessatti 1925;
1926; Goresky and Tai 2003a; 2003b; Milne and Shih 1981; Shimura 1975; Silhol
1982; Seppälä and Silhol 1989]) that such locally symmetric spaces parametrize
real polarized abelian varieties (possibly with level structures). In an effort to
find a characteristic p analog for such moduli spaces in [Goresky and Tai 2019]
we introduced the notion of a real structure on an ordinary abelian variety A (or,
rather, on its associated Deligne module TA) defined over a finite field k: it is an
“antiholomorphic” involution, that is, a linear involution that switches the action
of the Frobenius and the Verschiebung. If A is the good, ordinary reduction of a
CM variety A/C defined over R then complex conjugation of A/C induces such
an involution on the Deligne module TA. Over a finite field there are finitely many
isomorphism classes of principally polarized ordinary abelian varieties with real
structure and the number of isomorphism classes is given ([Goresky and Tai 2019])
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by a certain sum of orbital integrals over the general linear group GLn ×GL1. It is
expected that these (or similar) definitions make sense beyond the “ordinary” case.

In Section 3.2, we extend the notion of a “real structure” to the case of (not
necessarily ordinary) Dieudonné modules. We give examples (Section 3.3) to show
that real structures often exist, even on supersingular Dieudonné modules. Then
we show (Proposition 4.4) that the number of isomorphism classes of principally
polarized “real” Dieudonné modules within a single isogeny class is given by a
“twisted” orbital integral TO(δ) over the same general linear group GLn ×GL1.

We show that the constructions in this paper are compatible with those in [Goresky
and Tai 2019], which requires an explicit description (Proposition 6.8) of the
Dieudonné module (and its polarization) of an ordinary polarized abelian variety.
Then we use this description to show (Proposition 6.12) that a real structure in the
sense of [Goresky and Tai 2019] on an ordinary abelian variety determines a real
structure (in the sense of this paper) on its Dieudonné module. This last step is
not automatic: it requires a universal choice of involution on the Witt vectors, as
constructed in Appendix A.

The compatibility between these two notions of real structure leads to a simplifi-
cation of the twisted orbital integral TO(δ). The number of isomorphism classes of
“real” Deligne modules (over Zp) is given by an (ordinary) orbital integral O(γ ):
it is the component at p in the adèlic orbital integral of [Goresky and Tai 2019].
Using a linear algebra argument, we show (Section 7.5) that the orbital integral
O(γ ) (which counts Deligne modules with real structure) coincides with the twisted
orbital integral TO(δ) (which counts Dieudonné modules with real structure). This
equality of orbital integrals is reminiscent of the results in [Kottwitz 1992] (for the
symplectic group rather than the general linear group) in which the fundamental
lemma for Levi subgroups is used in order to evaluate stable sums of twisted orbital
integrals in terms of ordinary orbital integrals (and presumably a similar argument
would work in our case as well).

2. Notation and terminology

Throughout this paper we fix a finite field k = Fq (q = pa) of characteristic p.
Let W denote the Witt ring functor, so that W (k), W (k̄) are the rings of (infinite)
Witt vectors over k, k̄, respectively, with fraction fields K (k) = W (k)⊗Qp and
K (k̄)=W (k̄)⊗Qp, respectively. We may identify K (k) with the unique unramified
extension of Qp of degree a = [k : Fp]. Let W0(k̄) denote the maximal unramified
extension of W (k). We may identify W (k̄) with the completion of W0(k̄). Let
σ : W (k̄)→ W (k̄) be the lift of the Frobenius mapping σ : k̄ → k̄, σ(x) = x p

and let π = σ a be the topological generator for the Galois group Gal(k̄/k) ∼=
Gal(K (k̄)/K (k)). Fix an identification, Qp ∼= K (Fp) of the p-adic numbers with
the fraction field of the Witt vectors of the prime field.
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Let R be an integral domain with fraction field K. Let M be a free R-module of
rank 2n and V =M⊗K. An alternating bilinear form ω :M×M→ R is symplectic
if ω⊗K : V⊗V→ K is nondegenerate. It is strongly nondegenerate if the resulting
M→ HomR(M, R) is an isomorphism. It is symplectic up to homothety if there
exists c ∈ K× such that cω is strongly nondegenerate. The standard symplectic
form ω0 on R2n

× R2n is that whose matrix is J =
( 0
−I

I
0

)
. Set G = GSp2n and for

convenience denote

(2.0.1) 0p = G(Zp) and 0W = G(W (k)).

The standard involution τ0 : R2n
→ R2n is the linear map with matrix

(
−I
0

0
I

)
.

Conjugation by τ0, which we denote by

g 7→ g̃ = τ0gτ−1
0

defines an action of the group 〈τ0〉∼=Z/2Z on GSp2n . If 2∈K× the fixed subgroup is

(2.0.2) H = GL∗n =
{(

A 0
0 λ tA−1

)
∈ GSp2n

∣∣∣∣ A ∈ GLn; λ ∈ Gm

}
∼= GLn ×Gm .

If C is a Z-linear category then the associated category up to R isogeny is
the category C ⊗ R with the same objects but with morphisms HomC⊗R(x, y) =
HomC(x, y)⊗ R.

3. Dieudonné modules

3.1. Notation. Let E = E(k) denote the Cartier–Dieudonné ring, that is, the ring of
noncommutative W (k)-polynomials in two variables F,V, subject to the relations
F(wx)= σ(w)F(x), V(wx)= σ−1(w)V(x), and FV =VF = p, where w ∈W (k)
and x ∈ E . A Dieudonné module M is a module over the ring E(k) that is free and
finite rank over W (k).

The covariant Dieudonné functor (see, for example, [Chai et al. 2014, §B.3.5.6]
or [Goren 2002, p. 245] or [Pink 2005]) assigns to each p-divisible group

G = . . . ↪→� Gr ↪→� Gr+1↪→� . . .

a corresponding module M(G)= lim
←

M(Gr ) over the Dieudonné ring E .
A quasi-polarization (in the sense of [Moonen 2001; Oort 2001] and [Li and

Oort 1998, §5.9] following [Oda 1969, p. 101]) of a Dieudonné module M is
an alternating W (k)-bilinear form ω : M × M → W (k) such that ω ⊗ K (k) is
nondegenerate and ω(Fx, y) = σω(x,V y). (The use of “quasi” reflects the fact
that there is no p-adic counterpart to the “positivity” condition found in the definition
of a polarization for abelian varieties.) A K (k)-isogeny of polarized Dieudonné
modules (M, ω)→ (M ′, ω′) is an element φ ∈ HomE(M,M ′)⊗ K (k) such that
φ∗(ω′)= cω for some c ∈ K (k)×.
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3.2. Real structures. Let M be a Dieudonné module of finite rank over W (k) (with
k = Fq ; q = pa). Let ω be a quasi-polarization on M. Define a real structure on
(M, ω) to be a W (k)-linear mapping τp : M→ M such that for all x, y ∈ M,

(3.2.1) τ 2
p = I, τpF aτ−1

p = V a, ω(τpx, τp y)=−ω(x, y).

As in [Kottwitz 1990, §12] the action of F may be expressed as δσ for some
δ ∈ GSp(M ⊗ K (k), ω), so its norm

N (δ)= δσ (δ) · · · σ a−1(δ) ∈ GSp(M ⊗ K (k), ω)

coincides with the W (k)-linear action of F a. The second condition in (3.2.1) gives

τp N (δ)τ−1
p = q N (δ)−1.

3.3. Manin modules. Following [Manin 1963], let us define Dieudonné modules

Mr,s = E(k)/E(k)(Fr
+Vs)

for nonnegative integers r, s. If k̄ is an algebraic closure of k and if we extend
scalars to

E(k̄)=W (k̄)
[

1
p

]
⊗ E(k),

it is shown in [Manin 1963] that if gcd(r, s)=1, the resulting modules E(k̄)⊗E(k)Mr,s

are simple and they account for all the simple Dieudonné modules. Elements of
Mr,s may be represented by (noncommutative) polynomials

x =
s−1∑
i=1

a−iV i
+ a0+

r∑
j=1

a jF j

(with at ∈W (k) and with identifications F r
=−Vs).

In the following paragraphs we will show that the Manin modules Mr,s ⊕Ms,r

and the Manin modules Mr,r admit quasi-polarizations and real structures.
First suppose r 6= s. The elements {1,F j ,V i

} (1≤ j ≤ r; 1≤ i ≤ s−1) form a
basis of Mr,s over W (k). The module Ms,r admits a dual basis by setting

(F i )∨ = Vr−i, (V j )∨ = F s− j .

This gives rise to a W (k)-linear pairing T : Mr,s ×Ms,r →W (k) with

T (F i ,V j )=

{
1 if i + j = r,
0 otherwise,

T (V i ,F j )=

{
1 if i + j = s,
0 otherwise,

such that T (Fx, y)= σ(T (x,V y)). It follows that the alternating bilinear form

ω(x ⊕ y, x ′⊕ y′)= T (x, y′)− T (x ′, y)

defines a quasi-polarization on Mr,s⊕Ms,r . A real structure on this sum is defined by
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switching the factors and exchanging F with V. Explicitly, define τp :Mr,s→Ms,r by

τp

( s−1∑
i=1

a−iV i
+ a0+

r∑
j=1

a jF j
)
=

s−1∑
i=1

a−iF i
+ a0+

r∑
j=1

a jV j

and similarly for τp : Ms,r → Mr,s . Then τ 2
p = I and

τp(F(x ⊕ y))= σ 2V(τp(x ⊕ y))

which implies that τpF a
= V aτp. Finally, one verifies for x, y ∈ Mr,s and x ′, y′ ∈

Ms,r that
ω(τp(x ⊕ y), τp(x ′⊕ y′))=−ω(x ⊕ y, x ′⊕ y′).

Now suppose r = s. The Manin module

M ′r,r = E(k)/E(k)(F r
+V r )

is the Dieudonné module of a supersingular abelian variety. It has a W (k)-basis
consisting of {V i, F j, V 0

= F 0
= 1, Vr

=−F r
} with 1≤ i, j ≤ r − 1. It admits a

quasi-polarization which for 0≤ i, j ≤ r is well defined as

ω(V i ,F j )=

{
1 if i + j = r,
0 otherwise,

ω(F i ,V j )=

{
−1 if i + j = r,
0 otherwise.

Then ω(x, y) = −ω(y, x) and ω(Fx, y) = σω(x,V y) for all x, y ∈ M ′1,1. This
module admits a real structure by setting τp(tF i )= tV i for t ∈W (k) and 0≤ i ≤ r
(and in particular, τp(tF r )=−tF r ). It is easy to check that τp(F ax)= V aτp(x)
for all a ≥ 0 and all x ∈ M ′r,r .

3.4. In [Manin 1963] the isogenous module E(k)/E(k)(F r
−Vs) is used to replace

the module Mr,s . However the “+” sign in the preceding example is crucial.

4. Counting Dieudonné modules

As in (2.0.1) let 0W = G(W (k)) with the standard symplectic form ω0 =
( 0
−I

I
0

)
.

Let Ip =
( I

0
0
pI

)
. By the theory of Smith normal form for the symplectic group (see

[Spence 1972] or [Andrianov 1987, Lemma 3.3.6]), or by the Cartan decomposition
for p-adic groups, we have the following:

Lemma 4.1. Let L0=W (k)2n
⊂K (k)2n denote the standard lattice. Let L⊂K (k)2n

be a W (k)-lattice. Then L = hL0 for some h ∈ G(K (k)) and the following state-
ments are equivalent.

(1) pL0 ⊂ hL0 ⊂ L0.

(2) hL0 ⊂ L0, ph−1L0 ⊂ L0.

(3) h ∈ 0W Ip0W . �
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4.2. Assume p 6= 2. In this section we fix a Dieudonné module (M,F,V) with
a quasi-polarization ωM and a real structure τM : M → M. Then M is a free
module over W (k) of some even rank, say 2n. Let MQ = M ⊗ K (k). We wish to
understand the set X M of (real) isomorphism classes of principally (quasi-)polarized
Dieudonné modules that are K (k)-isogenous to M. In Proposition 4.4 below we
show that the cardinality |X M | is given by a twisted orbital integral over the group
H ∼= GLn ×GL1 of (2.0.2).

Following the method of [Kottwitz 1990] let XM denote the set of isomorphism
classes in the category CM whose objects consist of tuples (P, ωP , ψ, τP) where P
is a Dieudonné module, ωP is a principal quasi-polarization of P, where τP is a real
structure on P and where ψ ∈HomW (k)(P,M)⊗K (k) is a K (k) isogeny (meaning
that ψ ⊗ K (k) : PQ→ MQ is an isomorphism) that commutes with F, V, takes τP

to τM and satisfies ψ∗(ωM)= cωP for some c ∈ K (k)×. A morphism φ : P→ P ′

between left E(k) modules is in CM if it is compatible with ω up to scalars, and it
commutes with F,V and the involutions τP .τP ′ . So there is a natural identification

X M ∼= I (M)\XM ,

where I (M) denotes the group of K (k) self-isogenies of (M, ωM , τM).

4.3. The mapping (P, ωP , ψ, τP) 7→ L = ψ(P) determines an identification
between the set XM and the set of W (k)-lattices L ⊂ MQ that are preserved
by FM ,VM , τM and such that L is symplectic up to homothety meaning that L∨= cL
for some c ∈ K (k)×, where

L∨ = {x ∈ MQ | ωM(x, y) ∈W (k) for all y ∈ L}.

By [Goresky and Tai 2019, Proposition B.4] there exists a K (k)-linear iso-
morphism MQ → K (k)2n which takes the quasi-polarization ωM to the stan-
dard symplectic form ω0 and takes the involution τM to the standard involution
τ0=

(
−I 0
0 I

)
∈G(Z). From Section 3.2 the action of F ◦σ−1 becomes some element

δ ∈ G(K (k)) with multiplier p, that is well defined up to σ -conjugacy. The group
I (M) of self-isogenies becomes identified with the twisted centralizer (note that
δ /∈ H(K (k))):

Sδ(K (k))= {z ∈ H(K (k)) | z−1δσ (z)= δ}.

Normalize the Haar measure on H(K (k)) so that H(W (k)) has volume one.

Proposition 4.4. The choice of isomorphism MQ→ K (k)2n determines a one-to-
one correspondence between the set of lattices L ⊂MQ, symplectic up to homothety,
that are preserved by F,V, τM and the set

(4.4.1) {g ∈ H(K (k))/H(W (k)) | g−1δσ (g) ∈ 0W Ip0W }.
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Consequently the number of isomorphism classes

|X M | = |Sδ(K (k))\XM |

of principally quasi-polarized real Dieudonné modules within the K (k)-isogeny
class of M is given by the twisted orbital integral over H = GL∗n ,

(4.4.2) TO(δ)=
∫

Sδ(K )\H(K )
κW (g−1δσ (g)) dg,

where κW is the characteristic function of 0W Ip0W ⊂ G(K (k)).

Proof. Let L0 = W (k)2n
⊂ K (k)2n be the standard lattice. If L ⊂ K (k)2n is a

W (k)-lattice, symplectic up to homothety, then L = gL0 for some g ∈ G(K (k)). If
it is preserved by F,V then

(4.4.3) pL0 ⊂ g−1δσ (g)L0 ⊂ L0

which, by Lemma 4.1, is equivalent to g−1δσ (g) ∈ 0W Ip0W . (In the case of an
“ordinary” Dieudonné module, a simpler formula holds; see Proposition 7.3).

If the lattice L is also preserved by the involution τ0 then g−1gL0 = L0 so
that α = g−1g̃ is a 1-cocycle, defining a class in H 1(〈τ0〉,G(W (k))), which is
trivial by [Goresky and Tai 2019, Proposition B.4] since p 6= 2. Thus, there exists
h ∈G(W (k)) so that g−1g̃= h−1h̃, hence g′= gh−1

∈ H(K (k))=GL∗n(K (k)) and
L = g′L0. Thus we may assume that g ∈ H(K (k)), while elements of H(W (k))
act trivially on the homothety class of the lattice L0. If we normalize Haar measure
so that H(W (k)) has volume one then the number of such lattices is given by the
integral in (4.4.2). �

5. Deligne modules and ordinary abelian varieties

5.1. Recall from [Deligne 1969] that a Deligne module of rank 2n over the field
k = Fq of q elements is a pair (T, F) where T is a free Z-module of dimension 2n
and F : T → T is an endomorphism such that the following conditions are satisfied:

(1) The mapping F is semisimple and all of its eigenvalues in C have magnitude
√

q .

(2) Exactly half of the eigenvalues of F in Qp are p-adic units and half of the
eigenvalues are divisible by q .

(3) The middle coefficient of the characteristic polynomial of F is coprime to p.

(4) There exists an endomorphism V : T → T such that FV = V F = q .

A morphism (TA, FA)→ (TB, FB) of Deligne modules is a group homomorphism
φ : TA→ TB such that FBφ = φFA. A polarization ([Howe 1995]) of a Deligne
module (T, F) is a symplectic form ω : T ×T → Z (alternating and nondegenerate
over Q) such that ω(Fx, y) = ω(x, V y) for all x, y ∈ T, and such that the form
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R(x, y)= ω(x, ιy) is symmetric and positive definite, where ι is some (and hence,
any) totally positive imaginary element of Q[F] (see [Howe 1995, §4.7]).

5.2. Following [Deligne 1969], for the rest of this paper we fix an embedding

(5.2.1) ε :W (k̄)→ C.

By a theorem of Serre and Tate, [Drinfeld 1976; Katz 1981; Messing 1972; Nori
and Srinivas 1987] an ordinary abelian variety A/k has a canonical lift A over
W (k) which, using (5.2.1) gives rise to a complex variety AC over C (which
depends only on the restriction ε |W0(k̄) (see [Deligne 1969, p. 239]), which in
turn, is determined by ε |W (k)). Let π ∈ Gal(k̄/k) denote the Frobenius. The
corresponding morphism πA/k (which on the structure sheaf of A is given by the
k-linear ring endomorphism f 7→ f q) lifts to an automorphism FA on T = TA =

H1(AC,Z), and the pair (TA, FA) is a Deligne module.

Theorem 5.3 [Deligne 1969; Howe 1995]. The association A→ (TA, FA), deter-
mined by the embedding (5.2.1), induces an equivalence between the category of
n-dimensional ordinary abelian varieties (resp. polarized abelian varieties) over
k = Fq and the category of Deligne modules (resp. polarized Deligne modules)
over k, of rank 2n. �

5.4. In [Goresky and Tai 2019], we define a real structure on a polarized Deligne
module (T, F, ω) to be a group homomorphism τ : T → T such that

τ 2
= I, τ Fτ−1

= V, ω(τ x, τ y)=−ω(x, y).

The involution τ is a characteristic p analog of complex conjugation. There are
finitely many (“real”) isomorphism classes of principally polarized Deligne modules
(of dimension 2n over k = Fq) with real structure and principal level N structure,
and a formula for this number is given in [Goresky and Tai 2019]. There, we follow
the method of Kottwitz [1990] and show that the number of isomorphism classes
of principally polarized Deligne modules with real structure is finite and is given
by an adèlic orbital integral.

5.5. In order to conceptualize the contribution at p to this formula it is convenient to
define a Deligne module at p (over Fq , of rank 2n) to be a pair (Tp, Fp)where Tp is a
free Zp module of rank 2n and Fp : Tp→ Tp is a semisimple endomorphism whose
characteristic polynomial

∑2n
i=0 ai x i is q-palindromic,1 with middle coefficient

an a p-adic unit, half of whose roots in Qp are p-adic units and half of which
are divisible by p, such that there exists Vp : Tp → Tp with FpVp = Vp Fp = q.
(This implies that if λ is a root then so is q/λ.) A polarization of (Tp, Fp) is a

1Meaning that ai = qn−i a2n−i for 0≤ i ≤ n− 1.
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Zp-valued symplectic form ωp such that ω(Fpx, y)= ω(x, Vp y). (The “positivity
condition” does not make sense in this setting.) A real structure τp on (Tp, Fp, ωp)

is a symplectic involution of Tp with multiplier −1 that exchanges Fp and Vp. If
(T, F, ω, τ ) is a (real, polarized) Deligne module then tensoring with Zp gives a
(real, polarized) Deligne module at p.

5.6. The Tate module. Let (T, F) be a Deligne module over k = Fpa . From this
we define a Gal(k̄/k) module, for ` 6= p a (rational) prime,

T`(T )= T ⊗Z Z`

with Galois action determined by the rule that π ∈ Gal(k̄/k) acts by F ⊗ 1. A
polarization and/or a real structure on (T, F) induces one on T ⊗Z` in an obvious
way.

Let ` 6= p be prime. If A is an ordinary abelian variety with Tate module T`(A)
and Deligne module (TA, FA) then there is a natural isomorphism of Gal(k̄/k)
modules T`(A)∼= T`(TA)= TA⊗Z`.

6. The Dieudonné module of an ordinary variety

6.1. Let A be an ordinary abelian variety over k = Fpa . Denote by M(A) :=
M(A[p∞]) the covariant Dieudonné module associated to the p-divisible group
A[p∞]. In this section we explicitly construct this Dieudonné module M(A) (and
quasi-polarization) directly from the Deligne module (TA, FA) (and a polarization).
In fact, the Dieudonné module M(A) depends only on the associated Deligne
module (Tp = TA⊗Zp, Fp = FA⊗Zp) at p. Although this material is well known
to experts, we require specific equations for these modules that do not appear to be
in the literature.

Given a universal choice of involution τ̄ of the Witt vectors (as in Appendix A)
we show, in Section 6.11, that a real structure on (Tp, Fp) determines a real structure
on M(A).

6.2. Let (Tp, Fp) be a Deligne module at p, over k= Fpa . The same argument as in
[Deligne 1969] shows that the endomorphism Fp determines a unique decomposition

(6.2.1) Tp ∼= T ′⊕ T ′′

preserved by Fp and Vp, such that Fp is invertible on T ′ and is divisible by q on T ′′.
In fact, the module T ′⊗Qp is the sum of the eigenspaces of Fp whose eigenvalues
in Qp are p-adic units while T ′′⊗Qp is the sum of the eigenspaces of Fp whose
eigenvalues are divisible by p. For t = (t ′, t ′′) ∈ Tp set

(6.2.2) Aq(t ′, t ′′)= (t ′, qt ′′) and Ap(t ′, t ′′)= (t ′, pt ′′).
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Then Fp A−1
q = A−1

q Fp : Tp→ Tp is an isomorphism. Extend Fp and σ to Tp⊗W (k̄)
by Fp(t ⊗w)= Fp(t)⊗w and σ(t ⊗w)= t ⊗ σ(w).

6.3. The Dieudonné module of a Deligne module. For a Deligne module (Tp, Fp)

at p as above, define the covariant Dieudonné module M(Tp, Fp) (which we denote
simply by M(Tp)) to be the Gal(k̄/k)-invariant submodule of Tp ⊗W (k̄) where
π ∈ Gal(k̄/k) acts as

(6.3.1) π(t ⊗w)= A−1
q Fp(t)⊗ σ a(w),

so to be explicit,

(6.3.2) M(Tp)= {x ∈ Tp⊗W (k̄) | Fp(x)= Aqσ
−a(x)}

with actions F(t ⊗w)= p A−1
p (t)⊗ σ(w) and V(t ⊗w)= Ap(t)⊗ σ−1(w).

6.4. The mapping Aq preserves the splitting of Tp which gives a splitting M(Tp)=

M(T ′)⊕ M(T ′′). The operator F is σ -linear; it is invertible on M(T ′′) and it is
divisible by p on M(T ′). If α ∈ M(T ) then

Fp(α)= V a(α),

that is, the mapping Fp has been factored as Fp = V a. (The preceding paragraphs
may be dualized so as to define the contravariant Dieudonné modules N (T ) =
N (T ′)⊕N (T ′′) corresponding to the splitting (6.3.2), in which case the mapping Fp

is invertible on N (T ′), divisible by p on N (T ′′) and one has Fp = F a. Despite this
confusion we use the covariant Dieudonné module because the equations are a bit
simpler.)

Proposition 6.5. Let (Tp, Fp) be a Deligne module at p with Zp-rank equal to 2n.
Then its Dieudonné module M(Tp) is a free module over W (k) whose W (k)-rank
also equals 2n and in fact there exists a W (k)-basis of M(Tp) whose elements also
form a W (k̄) basis of Tp⊗W (k̄).

The proof will appear in Appendix B. The following lemma will be needed in
the proof of Proposition 7.3.

Lemma 6.6. Let (Tp, Fp) be a Deligne module at p. The operator σ(t ⊗w) =
t ⊗ σ(w) on Tp ⊗W (k̄) preserves the Dieudonné module M(Tp) ⊂ Tp ⊗W (k̄).
Suppose 3 ⊂ M(Tp)⊗Qp is a W (k)-lattice. Then the following statements are
equivalent.

(1) The lattice 3 is preserved by F and V.

(2) p3⊂ F3⊂3.

(3) p3⊂ V3⊂3.

(4) A−1
p V3=3.
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Such a lattice is also preserved by σ .

Proof. The equivalence of (1), (2), (3) is straightforward. (See also the related (4.4.3)
when 3 is symplectic). Such a lattice 3 is also preserved by Fp, Vp so by the
argument of [Deligne 1969] it decomposes as 3=3′⊕3′′ with 3′=MQ(Tp)

′
∩3

and 3′′ = MQ(Tp)
′′
∩3. Then V |3′ is invertible: Since Fp = V a is invertible

on3′ it follows that V is surjective on3′, and it is injective because it is injective on
MQ(Tp)

′. Similarly F |3′′ is invertible which implies (4). Conversely, suppose that
A−1

p V3=3. Then V3⊂ Ap3⊂3 and F3= pV−13= (p A−1
p )3⊂3. Finally,

the action of A−1
p V on M(Tp) coincides with that of σ−1, so (4) implies σ3=3. �

6.7. Let A/k be an ordinary abelian variety with Deligne module (TA, FA). The
associated finite group scheme A[pr

] = ker(·pr ) decomposes similarly into a
sum A′[pr

] ⊕ A′′[pr
] of an étale-local scheme and a local-étale scheme, with a

corresponding decomposition of the associated p-divisible group, A[p∞]= A′⊕A′′.
Over W (k̄) the finite étale group scheme A′[pr

] becomes constant so there is a
canonical isomorphism

(6.7.1) A′[pr
] ∼= p−r T ′A/T ′A.

Proposition 6.8. The isomorphism A′[pr
] ∼= p−r T ′A/T ′A induces an isomorphism

of covariant Dieudonné modules

M(A)∼= M(TA⊗Zp).

6.9. Proof of Proposition 6.8. The module M(TA⊗Zp)was defined in Section 6.3,
so we need to determine the Dieudonné module M(A) of the abelian variety A.
First let us show that

(6.9.1) M(A′)∼= (T ′A⊗W (k̄))Gal,

where the action of π = σ a
∈ Gal, of F and V is given by

(6.9.2)

π.(t ′⊗w)= FA(t ′)⊗ σ a(w),

F(t ′⊗w)= pt ′⊗ σ(w),

V(t ′⊗w)= t ′⊗ σ−1(w).

From (6.7.1), over W (k̄), the covariant Dieudonné module of the finite group
scheme A′[pr

] is:

(6.9.3) M(A′[pr
])= (p−r T ′A/T ′A)⊗Z W (k̄)∼= (T ′A/pr T ′A)⊗Z W (k̄)

with F(t ′⊗w)= pt ′⊗ σ(w); see [Demazure 1972, p. 68]. Then (see [Demazure
1972, p. 71] or [Chai et al. 2014, §B.3.5.9, p. 350]),

(6.9.4) M(A′)= lim
←

M(A′[pr
]).
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Therefore
M(A′)= (lim

←
(T ′A/pr T ′A)⊗W (k̄))Gal

∼=
(
lim
←

(
T ′A⊗W (k̄)/pr (T ′A⊗W (k̄))

))Gal

∼= (T ′A⊗W (k̄))Gal

with (étale) Galois action

(6.9.5) π(t ′⊗w)= π(t ′)⊗π(w)= FA(t ′)⊗ σ a(w).

Next, using double duality, we will show that M(A′′)∼= (T ′′A ⊗W (k̄))Gal where

(6.9.6)

π(t ′′⊗w)= q−1 FA(t ′′)⊗ σ a(w),

F(t ′′⊗w)= t ′′⊗ σ(w),

V(t ′′⊗w)= pt ′′⊗ σ−1(w).

Let B denote the ordinary abelian variety that is dual to A with Deligne module
(TB, FB) and corresponding p-divisible groups B ′, B ′′. Then B ′ is dual to A′′ (and
vice versa), hence it follows from (6.9.1) (see also [Chai et al. 2014, §B.3.5.9],
[Demazure 1972, p. 72] and [Howe 1995, Proposition 4.5]) that:

M(B ′)= T ′B ⊗Zp W (k̄),2

M(A′′)= HomW (k̄)(M(B
′),W (k̄)),3

T ′B = HomZp(T
′′

A ,Zp).
4

From this, we calculate that the isomorphism

9 : T ′′A ⊗W (k̄)→ HomW (k̄)(HomZp(T
′′

A ,Zp)⊗W (k̄),W (k̄))= M(A′′)

defined by
9t ′′⊗w(φ⊗ u)= φ(t ′′).wu

(for t ′′ ∈ T ′′A , for φ ∈ Hom(T ′′A ,Zp) and for w, u ∈W (k̄)) satisfies:

(π.9t ′′⊗w)(φ⊗ u)= σ a9t ′′⊗w(π
−1
B (φ⊗ u))

= σ a9t ′′⊗w(F−1
B φ⊗ σ−au)

= σ a((F−1
B φ)(t ′′).w.σ−au)

= φ(V−1
A (t ′′)).σ a(w).u)= (9V−1

A t ′′⊗σ a(w))(φ⊗ u).

2π(t ′⊗w)= FB(t ′)⊗ σ a(w), F(t ′⊗w)= pt ′⊗ σ(w).
3πAψ(m)= σ aψ(π−1

B (m)), Fψ(m)= σψ(V(m)).
4 FBφ(t ′)= φVA(t ′).
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Therefore π(t ′′⊗w)= V−1
A (t ′′)⊗ σ a(w)= q−1 FA(t ′′)⊗ σ a(w). Similarly,

(F .9t ′′⊗w)(φ⊗ u)=9t ′′⊗σ(w)(φ⊗ u),

hence F(t ′′⊗w)= t ′′⊗ σ(w), which proves (6.9.6). Since M(A′′)= (M(A′′))Gal,
this together with (6.9.1) verifies that M(A) satisfies the condition in (6.3.2) (with
Tp replaced by TA⊗Zp). �

Proposition 6.10. Let (Tp, Fp) be a Deligne module at p. Let ω : Tp × Tp→ Zp

be a symplectic form such that ω(Fx, y)= ω(x, V y) for all x, y ∈ Tp. Extending
scalars to W (k̄) then restricting to the Dieudonné module M(Tp) ⊂ Tp ⊗W (k̄)
gives a quasi-polarization

ωp : M(Tp)×M(Tp)→W (k)

of M(Tp). If the original form ω is nondegenerate up to homothety then the same is
true of the form ωp, with the same homothety constant.

Proof. The proof is a direct computation using the decomposition Tp ∼= T ′⊕T ′′. �

6.11. Real structures. Let (Tp, Fp) be a Deligne module at p, with a polarization
ω : Tp × Tp→ Zp. Let ωp denote the resulting quasi-polarization on the covariant
Dieudonné module M(Tp). Let τ : Tp→ Tp be a real structure on (Tp, Fp) that is
compatible with the polarization ω. Unfortunately, the mapping τ does not induce
an involution on the Dieudonné module M(Tp) without making a further choice.

Following Appendix A, choose and fix, once and for all, a continuous K (k)-
linear involution τ̄ : K (k̄)→ K (k̄) that preserves W (k̄), so that τ̄ σ a(w)= σ−a τ̄ (w).
Then the following construction provides a functor from the category of polarized
Deligne modules with real structure to the category of quasi-polarized Dieudonné
modules with real structure.

Proposition 6.12. With (Tp, Fp, ω, τ ) as above, the mapping

τp : Tp⊗W (k̄)→ Tp⊗W (k̄)

defined by τp(x ⊗w)= τ(x)⊗ τ̄ (w) is continuous and W (k)-linear. It preserves
the Dieudonné module M(Tp) and it satisfies τpF a

= V aτp and

(6.12.1) ωp(τpx, τp y)=−ωp(x, y) for all x, y ∈ M(Tp).

Proof. The mapping τ takes T ′ to T ′′ (and vice versa) because it exchanges the
eigenvalues of F and V. If x ′⊗w ∈ T ′⊗W (k̄) then

τpπ.(x ′⊗w)= τp(F(x ′)⊗ σ a(w))= V τ(x ′)⊗ σ−a τ̄ (w)

= π−1(τ (x ′)⊗ τ̄ (w))= π−1τp(x ′⊗w)
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which shows that τp takes M(T ′) to M(T ′′) (and vice versa). Similarly,

τpF a(x ′⊗w)= τp(x ′⊗ qσ a(w))= τ(x ′)⊗ qσ−a τ̄ (w)

= V a(τ (x ′)⊗ τ̄ (w))= V aτp(x ′⊗w).

Similar calculations apply to any element x ′′⊗w ∈ T ′′⊗W (k̄).
We now wish to verify (6.12.1). Let Y = Tp ⊗Q. It is possible to decompose

Y = Y1 ⊕ · · · ⊕ Yr into an orthogonal direct sum of simple Qp[F] modules that
are preserved by τ (see, for example, [Goresky and Tai 2019, Lemma 4.3]). This
induces a similar ωp-orthogonal decomposition of

M(Y )= M(Tp)⊗W (k) K (k)

into submodules Mi = M(Yi ) over the rational Dieudonné ring

AQ =A⊗ K (k)= K (k)[F, V ]/(relations),

each of which is preserved by τp. Since this is an orthogonal direct sum, it suffices
to consider a single factor, that is, we may assume that (Vp, Fp) is a simple Qp[F]-
module.

As in (6.2.1) the Qp vector space Y decomposes, Y = Y ′ ⊕ Y ′′ where the
eigenvalues of F | Y ′ are p-adic units and the eigenvalues of F | Y ′′ are divisible
by p. Then the same holds for the eigenvalues of F a on each of the factors of

M(Y )= M(Y ′)⊕M(Y ′′).

Moreover, these factors are cyclic F a-modules and τp switches the two factors. It is
possible to find a nonzero vector y′ ∈M(Y ′) so that y′ is F a-cyclic in M(Y ′) and so
that y′′= τp(y) is Fa-cyclic in M(Y ′′). It follows that y = y′⊕ y′′ is a cyclic vector
for M(Y ) which is fixed under τp, that is, τp(y)= y. We obtain a basis of M(Y ):

y, F a y, · · · , Fa(2n−1)y.

The symplectic form ωp is determined by its values ωp(y,Faj y) for 1≤ j ≤ 2n−1.
But

ωp(τp y, τpFaj y)= ωp(y, τpFajτp y)= q jωp(y,F−aj y)

= q j q− jωp(Faj y, y)=−ωp(y,Faj y). �

7. Comparing lattices in the ordinary case

7.1. A twisted orbital integral (4.4.2) “counts” (real, symplectic) lattices in a
Dieudonné module while an untwisted orbital integral counts (real, symplectic)
lattices in a Deligne module. In this section we show that such lattices are in natural
one-to-one correspondence. Let (Tp, Fp, ω, τ ) be a polarized Deligne module (at p)
with a real structure. By [Goresky and Tai 2019, Proposition B.4] there exists an
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isomorphism 8 : Tp ⊗Qp → Q2n
p which takes ω to the standard involution ω0

and takes τ to the standard involution τ0. It takes Fp to some element γ ∈ G(Qp)

and it takes the decomposition (6.2.1) to a decomposition Q2n
p = V ′⊕ V ′′ where

γ is invertible on V ′ and is divisible by q on V ′′. It also takes the operator Aq

of (6.2.2) to an element αq ∈ G(Q) in the centralizer Zγ (Q) such that αq |V ′ = I
and αq |V ′′ = q I.

The mapping 8=8⊗K (k̄) is compatible with the action (see Lemma 6.6) of σ ,
that is, 8(t ⊗ σ(w)) = σ8(t ⊗w), and it takes the rational Dieudonné module
MQ(Tp)= M(Tp)⊗Qp to the K (k)-vector space (see Section 6.3)

JQ(γ )= {x ∈ K (k̄)2n
| γ x = αqσ

−a(x)}.

In Corollary B.5 we construct a symplectic basis 9 of JQ(γ ) giving the diagram

(7.1.1)
Tp⊗Z K (k̄)

8- K (k̄)2n � 9⊗ K (k̄)
K (k̄)2n

MQ(Tp)

6
∼=- JQ(γ )

6

� 9
K (k)2n

6

The involution τp = τ ⊗ τ̄ in the first column becomes τ̄0 = τ0⊗ τ̄ in the second
and third columns. The mapping 9⊗ K (k̄) ∈ G(K (k̄)) satisfies 9̃ = τ̄09τ

−1
0 =9.

As in Sections 3.2 and 4.3, the operator Fσ−1 (in the first column) on MQ(Tp)

becomes (in the third column) multiplication by δ ∈ G(K (k)). Let u p =9αp9
−1.

Then δσ (w)=9−1 pα−1
p σ(9w) so δ = pu−1

p 9
−1σ(9) and its norm

N (δ)= δσ (δ) · · · σ a−1(δ)=9−1qα−1
q σ a(9)=9−1qγ−19

is G(K (k̄))-conjugate to qγ−1. Similarly, the action of Vσ becomes (in the third
column) multiplication by η=9−1αpσ

−1(9) whose norm is stably conjugate to γ .
Notations for these operators are summarized in Table 1.

T ⊗Zp T ⊗W (k̄)→ W (k̄)2n
←W (k̄)2n

MQ(T ) JQ(γ ) K (k)2n

Fp Fp γ 9−1γ9

Ap Ap αp u p

F pα−1
p σ δσ

V αpσ
−1 pσ−1δ−1

ω ωp ω0 ω0

τ τp = τ ⊗ τ̄ τ̄0 = τ0⊗ τ̄ τ̄0

Table 1. Notations for corresponding operators.
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7.2. For each Zp-lattice L ⊂ Tp⊗Qp that is preserved by Fp and Vp we obtain a
W (k)-lattice

3= (L ⊗W (k̄))Gal(k̄/k)
⊂ MQ(Tp)

where the Galois action is given by π.(t ⊗w)= F A−1
q (t)⊗ σ a(w) for t ∈ L and

w ∈ W (k̄) and where F is given by F(t ⊗ w) = p A−1
p (t)⊗ σ(w) from (6.9.2)

and (6.9.6).

Proposition 7.3. Suppose p 6= 2. This association L 7→ 3 induces a one-to-one
correspondence between

(A) the set of Zp-lattices L ⊂ Tp ⊗ Qp, symplectic up to homothety, that are
preserved by Fp, Vp and τ , and

(B) the set of W (k)-lattices 3 ⊂ MQ(T ), symplectic up to homothety, that are
preserved by F,V, τp.

The choice of basis 8 determines a one-to-one correspondence between (A) and

(C) the set {z ∈ H(Qp)/H(Zp) | z−1α−1
q γ z ∈ G(Zp)}

with H as in (2.0.2). The basis 9 determines a one to one correspondence between
(B) and

(D) the set {w ∈ H(K (k))/H(W (k)) | w−1 p−1u pδσ (w) ∈ 0W }.

Conjugation by 9 ∈ Sp2n(K (k̄)) takes the centralizer Zγ (Qp)⊂ H(Qp) isomor-
phically to the twisted centralizer

Sδ(K (k))= {w ∈ H(K (k)) | z−1δσ (z)= δ} ⊂ H(K (k)).

The correspondence (C)↔ (D) is equivariant with respect to the action of these
centralizers.

Proof. Using the symplectic isomorphism 8 (and 8) the set (A) may be identified
with

(A′) the set of Zp-lattices L ⊂Q2n
p , symplectic up to homothety (with respect to

the standard symplectic form ω0), preserved by the standard involution τ0 and
the mappings γ, qγ−1.

Step 1. Let us show that (A′)↔ (C). As in [Deligne 1969], the special properties
(Section 5.5) of γ determine a decomposition Q2n

p = V ′⊕V ′′ where γ is invertible
on V ′ and is divisible by q on V ′′. Then αq | V ′ = I and αq | V ′′ = q I. The same
holds for any lattice L ⊂Q2n

p = L ′⊕ L ′′ that is preserved by γ and by qγ−1. Such a
lattice L is also preserved by qγ−1 if and only if α−1

q γ : L→ L is an isomorphism.
Write L = gL0 for some g ∈ G(Qp). If L is also preserved by the involution τ

then g−1g̃L0= L0 (where g̃=τ0gτ−1
0 ) so g−1g̃ is a 1-cocycle for H1(〈τ0〉,Sp2n(Zp)),
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which is trivial (by [Goresky and Tai 2019, Proposition B.4], and using the fact
that p 6= 2). So there exists h ∈ Sp2n(Zp) such that h−1h̃ = g−1g̃, thus L = zL0

where z = gh−1
∈ GL∗n(Qp). Therefore we have that α−1

q γ zL0 = zL0 so that
z−1α−1

q γ z ∈ G(Zp). Replacing z by zt (for any t ∈ H(Zp) gives the same lattice
L = zt L0. This proves (C).

The correspondence (B) → (D) is similar (compare Proposition 4.4). By
Lemma 6.6, if a lattice 3 ⊂ MQ(T ) is preserved by F,V then it splits 3 =
3′⊕3′′; both factors are preserved by F,V; and p−1 ApF(3)=3. Translating
this into the third column of Table 1, we have a W (k)-lattice, w30 ⊂ K (k)2n

(where 30 =W (k)2n is the standard lattice) such that p−1u pδσ (w30)= w30 or
w−1 p−1u pδσ (w) ∈ G(W (k)), which is condition (D).

Step 2. Next, we claim the mapping L 7→3= L ⊗W (k̄) determines a correspon-
dence between the set (A′) and

(A′′) the set of W (k̄)-lattices 3 ⊂ K (k̄)2n, symplectic up to homothety, that are
preserved by γ, qγ−1, τ0, and σ .

Given 3 from (A′′) write 3= β30 for some β ∈G(K (k̄)), where 30 =W (k̄)2n

is the standard lattice. Then β−1σ(β) ∈ Sp2n(W (k̄)2n) is a 1-cocycle for the
Galois cohomology H 1(Gal(Fp/Fp),Sp2n(W (·))), that is, the cohomology which
forms an index set for the collection of all Fp-isomorphism classes of Fp-forms of
nondegenerate skew symmetric bilinear forms on W (k̄)2n, of which there is only
one, by [Milnor and Husemoller 1973, §3.5]. So it is trivial, which implies that
3= z30 for some z ∈G(Qp). (That is, β−1σ(β)= s−1σ(s) for some s ∈G(W (k̄));
take z = βs−1.)

The element z−1α−1
q γ z is in G(W (k̄)) and it is fixed under σ so it lies in G(Zp).

This implies α−1
q γ zL0 = zL0, hence L is preserved by γ and by qγ−1. Moreover,

3⊥ = c3 where c−1
∈Q×p is the multiplier of z, so the lattice 3 comes from the

lattice L = zZ2n
p and the homothety constant may be taken to lie in Q×p . Finally,

since τ0(3)=3, the same argument as in Step 1 implies that z may be chosen to
lie in H(Qp), hence the lattice L is also preserved by τ0.

Step 3. According to Section 6.3, the mapping 8 : Tp⊗ K (k̄)→ K (k̄)2n takes the
Dieudonné module M(Tp)⊗Qp to the module

JQ(γ )= {x ∈ K (k̄)2n
| γ x = αqσ

−a(x)}

on which the mappings F,V become the following (for which we use the same
symbols): F(x)= pα−1

p σ(x) and V(x)= αpσ
−1(x). Consider

(B′) the set of W (k)-lattices 3 ⊂ JQ(γ ), symplectic up to homothety, that are
preserved by F,V, τ0.
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We claim functors (A′′)↔ (B′) defined by

3 7→3=3∩JQ(γ )

3=3⊗W (k̄)← [3

define a one-to-one correspondence between lattices 3 of (A′′) and lattices 3
of (B′).

Given3 from the set (A′′), the set3=3∩JQ(γ ) is clearly preserved by F,V, τ0,
but we need to prove that it is a lattice. In fact, it is a free W (k)-module of maximal
rank, which follows from the same proof (Appendix B) as that of Proposition 6.5.

On the other hand, given a lattice 3 from the set B′ we obtain a lattice

3=3⊗W (k̄)⊂ K (k̄)2n.

It is clearly preserved by F, V, τ0. It follows from Lemma 6.6 that it is also
preserved by σ , so it is in the set A′′. We claim that 3∩ (JQ(γ )))=3. Choose a
W (k)-basis b1, b2, · · · , b2n ∈ Tp⊗ K (k̄) of 3. If v =

∑
i si bi ∈3∩ (JQ(γ )) with

si ∈W (k̄) then

v =
∑

i

si bi = γ
−1σ−aαq

∑
i

si bi =
∑

i

σ−a(si )γ
−1αqσ

−a(bi )=
∑

i

σ−a(si )bi

which implies that si ∈W (k). Therefore v ∈3.
In fact every lattice in the set (A′′) arises in this way: given3 let3=3∩JQ(γ ).

Then Proposition 6.5 implies that 3 admits a W (k) basis whose elements form a
W (k̄) basis of 3. So the inclusion 3→3 induces an isomorphism 3⊗W (k̄)∼=3.
This completes the verification of (A′′)↔ (B′).

Step 4. The correspondence between (B) and (B′) is straightforward.

Step 5. Suppose z ∈ Zγ (Qp). Then z preserves the eigenspace decomposition
Q2n

p = V ′⊕ V ′′ so it commutes with αp. Then w =9−1z9 ∈ Sδ because

wδσ(w)−1
=9−1 pα−1

p σ(9)= δ.

Conversely if w ∈ Sδ(K (k̄)), applying the norm gives wN (δ)w−1
= N (δ) so z =

9w9−1
∈ Zγ (K (k̄)). Moreover z commutes with αp (as above). Substituting δ =

9−1 pα−1
p σ(9) into the equationwδσ(w)−1

=w gives zσ(z)−1
=1, so z∈ Zγ (Qp).

The equivariance statement in Proposition 7.3 is easily verified. �

7.4. As in Lemma 4.1, the theory of Smith normal form (or rational canonical
form) gives a one-to-one correspondence between the set (A′) and

(C′) the set {g ∈ H(Qp)/H(Zp) | g−1γ g ∈ 0p Iq0p},

where 0p = G(Zp), and as in (4.4.1), an identification between (B′) and

(D′) the set {g ∈ H(K (k))/H(W (k)) | g−1δσ (g) ∈ 0W Ap0W }.
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7.5. Using the same procedure (due to [Kottwitz 1990]) as in Sections 4.2 and 4.3,
we may identify the set of isomorphism classes of principally polarized Deligne mod-
ules at p with real structure that are Qp-isogenous to (Tp, Fp, ω, τ )with the quotient

Y (Tp)= I (Tp)\Y(Tp),

where Y(Tp) denotes the set of Zp-lattices L ⊂ Tp ⊗Qp that are symplectic up
to homothety (that is, L∨ = cL for some c ∈Q×p ) and preserved by Fp, Vp, and τ
(that is, the set (A) of Proposition 7.3), and where I (Tp) denotes the group of self
isogenies of (Tp, Fp, ω, τ ).

So the correspondence (A) ↔ (C) ↔ (C)′ ↔ (B) ↔ (B)′ of Proposition 7.3
and 7.4 means that the number of such isomorphism classes

|Y (Tp)| = |Zγ (Qp)\Y(Tp)|

is given by any of the integrals∫
Zγ (Qp)\H(Qp)

χ(z−1α−1
q γ z) dz(C)

=

∫
Zγ (Qp)\H(Qp)

κ(g−1γ g) dg(C′)

=

∫
Sδ(K (k))\H(K (k))

χW (w
−1 p−1u pδσ (w)) dw(B)

=

∫
Sδ(K (k))\H(K (k))

κW (g−1δσ (g)) dg(B′)

where χ is the characteristic function on G(Qp) of 0p = G(Zp), χW is the charac-
teristic function of G(W (k)), κ is the characteristic function on G(Qp) of 0p Iq0p,
κW is the characteristic function on G(K (k)) of 0W Ip0W and where H =GL∗n ⊂G
(note that γ, δ /∈ H).

Appendix A: Involutions on the Witt vectors

A.1. Fix a finite field k of characteristic p > 0 having q = pa
= |k| elements.

Fix an algebraic closure k and let W (k), W (k) denote the ring of (infinite) Witt
vectors. These are lattices within the corresponding fraction fields, K (k) and K (k).
Let W0(k) be the valuation ring in the maximal unramified extension K0(k) of
Qp ⊂ K (k). We may canonically identify W (k) with the completion of W0(k).
Denote by π : k→ k the Frobenius π(x) = xq. It has a unique lift, which we
also denote by π : W (k)→ W (k), and the cyclic group 〈π〉 ∼= Z is dense in the
Galois group G =Gal(K0(k)/K (k))∼=Gal(k/k). If L ⊃ k is a finite extension, for
simplicity we write Gal(L/k) in place of Gal(K (L)/K (k)) and we write TraceL/k

for the trace W (L)→W (k).
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Proposition A.2. There exists a continuous W (k)-linear mapping τ̄ :W (k)→W (k)
such that:

(1) τ̄ 2
= I.

(2) τ̄π = π−1τ̄ .

(3) For any finite extension E/k, the mapping τ̄ preserves W (E)⊂W (k).

(4) For any finite extension L ⊃ E ⊃ k, the following diagrams commute:

W (L)
τ̄
- W (L) W (L)

τ̄
- W (L)

W (E)

TraceL/E

?

τ̄
- W (E)

TraceL/E

?
W (E)

6

τ̄
- W (E)

6

Such an involution will be referred to as an antialgebraic involution of the Witt
vectors.

Proof. Let E⊃k be a finite extension of degree r . Recall that an element θE ∈W (E)
is a normal basis generator if the collection θE , πθE , π

2θE , · · · , π
r−1θE forms a

basis of the lattice W (E) over W (k). By simplifying and extending the argument
in [Lenstra 1985], P. Lundström [1999] showed that there exists a compatible
collection {θE } of normal basis generators of W (E) over W (k), where E varies over
all finite extensions of k, and where “compatible” means that TraceL/E(θL)= θE

for any finite extension L ⊃ E ⊃ k. Let us fix, once and for all, such a collection
of generators. This is equivalent to fixing a “normal basis generator” θ of the free
rank one module

lim
←E

W (E)

over the group ring
W [[G]] = lim

←E
W (k)[Gal(E/k)].

For each finite extension E/k, define τE :W (E)→W (E) by

τE

( r−1∑
i=0

aiπ
iθE

)
:=

r−1∑
i=0

aiπ
−iθE =

r−1∑
i=0

aiπ
r−iθE ,

where a0, a1, · · · , ar−1 ∈ W (k). Then τ 2
E = I and τEπ = π

−1τE . We refer to τE

as an antialgebraic involution of W (E). The mapping τE is an isometry (hence,
continuous) because it takes units to units. To see this, suppose v ∈W (E) is a unit
and set τE(v)= pr u where u ∈W (E) is a unit. Then

v = τ 2
E(v)= prτE(u) ∈ pr W (E)

is a unit, hence r = 0.
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Next, we wish to show, for every finite extension L ⊃ E ⊃ k, that τL |W (E)= τE

(so that τE is well defined) and that τE ◦ TraceL/E = TraceL/E ◦τL . We have an
exact sequence

1→ Gal(L/E)→ Gal(L/k)→ Gal(E/k)→ 1.

For each h ∈ Gal(E/k) choose a lift ĥ ∈ Gal(L/k) so that

Gal(L/k)= {ĥg : h ∈ Gal(E/k), g ∈ Gal(L/E)}.

Let x =
∑

h∈Gal(E/k) ahhθE ∈W (E) where ah ∈W (k). Then

x =
∑

h∈Gal(E/k)

ahh
∑

g∈Gal(L/E)

gθL =
∑

h∈Gal(E/k)

ah

∑
g∈Gal(L/E)

ĥgθL

so that

τL(x)=
∑

h∈Gal(E/k)

ah

∑
g∈Gal(L/E)

ĥ−1g−1θL

=

∑
h∈Gal(E/k)

ah ĥ−1
∑

g∈Gal(L/E)

g−1θL =
∑

h∈Gal(E/k)

ahh−1θE = τE(x).

To verify that τE ◦TraceL/E(x)= TraceL/E ◦τL(x), it suffices to consider basis vec-
tors x= ĥgθL where g∈Gal(L/E) and h∈Gal(E/k). Then TraceL/E(x)=hθE and

TraceL/E(τL(x))=
∑

y∈Gal(L/E)

yĥ−1g−1θL = ĥ−1
∑

z∈Gal(L/E)

zθL

= h−1 Trace(θL)= τE TraceL/E (x).

It follows that the collection of involutions {τE } determines an involution

τ̄ :W0(k)→W0(k)

of the maximal unramified extension of W (k). It is a continuous isometry (so it
takes units to units) and it satisfies the conditions (1)–(4). Therefore it extends
uniquely and continuously to the completion W (k). �

Appendix B: Applications of Galois cohomology

B.1. Throughout this section let k be a finite field with an algebraic closure k̄ with
Galois group Gal=Gal(k̄/k). Let W (k) be the ring of Witt vectors over k. A bilinear
form on a free finite-dimensional W (k) module V is (strongly) nondegenerate
if it induces an isomorphism V → HomW (k)(V,W (k)). Let ω0 be the standard
symplectic form whose matrix is J =

( 0
−I

I
0

)
. In this section we recall some

standard facts and applications from Galois cohomology.

Proposition B.2. The Galois cohomology set H 1(Gal(k̄/k),GLn(W (k̄))) is trivial.
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Proof. The proof follows from [SGA 3 III 1970] Exp. XXIV, Prop. 8.1(ii) and
[Grothendieck 1968] Thm. 11.7 and Remark 11.8.3 although it takes some work to
translate these very general results of Grothendieck into this setting. �

Proposition B.3. The Galois cohomology set H 1(Gal(k̄/k),Sp2n(W (k̄)) is trivial.

Proof. The proof also follows from [SGA 3 III 1970] and [Grothendieck 1968] but
it also follows directly from Proposition B.2 as follows. There is a natural one-to-
one correspondence between the set of W (k)-isomorphism classes of (strongly)
nondegenerate alternating bilinear forms on W (k̄)2n and elements of

ker
(
H 1(Gal(k̄/k),Sp2n(W (k̄))

)
→ H 1(Gal(k̄/k),GL2n(W (k̄))

))
.

In fact, if {ξθ } is a 1-cocycle (with θ ∈Gal) which lies in this kernel then there exists
g ∈GL2n(W (k̄)) so that ξθ = θ(g)g−1 (for all θ ∈Gal). It may be used to twist the
standard symplectic form ω0 to give a new symplectic form with matrix B= tg Jg−1.
Then θ(B)= B so it defines a symplectic form on W (k)2n which is nondegenerate
over K (k) and also over W (k̄), which implies that it is nondegenerate over W (k),
i.e., strongly nondegenerate.

If R is a principal ideal domain, it is well known (see, for example, [Goresky and
Tai 2019, Lemma B.2]) that all strongly nondegenerate symplectic forms on R2n

are isomorphic over R. It follows that the above kernel contains a single element.
By Proposition B.2 above, this implies that H 1(Sp2n(W (k̄)) is trivial. �

Proposition B.4. Define an action of the group 〈τ0〉 ∼=Z/(2) on Sp2n(W (k)) where
the nontrivial element acts as conjugation by τ0 =

(
−I
0

0
I

)
. If char(k) 6= 2 then the

nonabelian cohomology set H 1(〈τ0〉,Sp2n(W (k)) is trivial.

Proof. This follows from the same method as [Goresky and Tai 2019, Proposi-
tions B.4 and D.2]: since W (k) is a principal ideal domain containing 1/2, every
involution of Sp2n(W (k)) with multiplier equal to −1 is conjugate to the standard
involution g̃ = τ0gτ−1

0 . The above nonabelian cohomology set counts the number
of conjugacy classes of such involutions. �

Corollary B.5. Let V be a finite-dimensional free W (k̄) module together with a
semilinear action of Gal(k̄/k). Let V Gal be the W (k)-module of Galois invariant
elements.

(1) The module V Gal is free over W (k) and there exists a W (k)-basis of V Gal

which is also a W (k̄)-basis of V.

(2) If ω is a (strongly nondegenerate) W (k̄)-valued symplectic form on V such that
ω(θx, θy)= θω(x, y) for all θ ∈ Gal(k̄/k) then ω restricts to a strongly non-
degenerate W (k)-valued symplectic form on V Gal and there exists a symplectic
W (k)-basis of V Gal that is also a symplectic W (k̄)-basis of V.



REAL STRUCTURES ON POLARIZED DIEUDONNÉ MODULES 239

(3) In addition to (2), if char(k) 6= 2, if τp : V→ V is an involution such that τpθ =

θ−1τp for all θ ∈ Gal(k̄/k) and ω(τpx, τp y)=−ω(x, y) then τp restricts to
an involution on V Gal and the symplectic basis {e1, · · · , en, e∗1, · · · , e∗n} of V Gal

may be chosen so that τp(ei )=−ei and τp(e∗i )= e∗i .

Proof. For part (1), let m = rank(V ). Since the conclusion holds in the case that
V =W (k̄)m it suffices to show that there exists a Gal(k̄/k)-equivariant isomorphism
V →W (k̄)m. Choose any W (k̄) isomorphism φ : V →W (k̄)m where m = dim(V ).
Then θ 7→ θ(φ)φ−1

∈ GLm(W (k̄)) is a 1-cocycle so it equals θ(B)B−1 for some
B ∈ GLm(W (k̄)) by Proposition B.2. It follows that the isomorphism

φ′ = B−1φ : V →W (k̄)m

is Galois equivariant.
For part (2), let m = 2n in the preceding argument. The conclusions of the

argument hold for the standard symplectic form ω0 on W (k̄)2n so it suffices to
construct a Gal(k̄/k)-equivariant symplectic isomorphism V →W (k̄)2n. The same
argument works: choose the original isomorphism φ : V→W (k̄)2n so as to take the
symplectic form ω to the standard symplectic form ω0. The same argument (using
Proposition B.3 this time) gives B ∈ Sp2n(W (k̄)) so the resulting isomorphism
φ′ = B−1φ : V →W (k̄)m is equivariant and symplectic.

For part (3), first use (2) to obtain a symplectic isomorphism φ : V Gal
→W (k)2n.

The conclusions of the argument hold for the standard involution τ0 so it suffices
to modify this isomorphism so as to be equivariant with respect to the involutions
τp and τ0. The same argument (using Proposition B.4 this time) also works: set
φ̃ = τ0φτ

−1
p . Then φ̃φ−1

∈ Sp2n(W (k)) is a 1-cocycle for the action of 〈τ0〉 and
since the cohomology vanishes, the mapping φ may be modified so as to become
equivariant with respect to the involutions. �

Acknowledgements

We thank Gopal Prasad for providing us with references for the Galois cohomology
proof of Proposition B.2. We are grateful to an anonymous referee for carefully
reading this paper and for offering many valuable suggestions and corrections. We
thank our copy editor Fintan Hegarty for his meticulous proofreading and help with
the formatting of this paper. An earlier version of this paper is included in [Goresky
and Tai 2017].

References

[Adler 1979] A. Adler, “Antiholomorphic involutions of analytic families of abelian varieties”, Trans.
Amer. Math. Soc. 254 (1979), 69–94. MR Zbl

[Andrianov 1987] A. N. Andrianov, Quadratic forms and Hecke operators, Grundlehren der Math.
Wissenschaften 286, Springer, 1987. MR Zbl

http://dx.doi.org/10.2307/1998259
http://msp.org/idx/mr/539908
http://msp.org/idx/zbl/0423.14024
http://dx.doi.org/10.1007/978-3-642-70341-6
http://msp.org/idx/mr/884891
http://msp.org/idx/zbl/0613.10023


240 MARK GORESKY AND YUNG SHENG TAI

[Chai et al. 2014] C.-L. Chai, B. Conrad, and F. Oort, Complex multiplication and lifting problems,
Math. Surveys and Monogr. 195, Amer. Math. Soc., Providence, RI, 2014. MR Zbl

[Comessatti 1925] A. Comessatti, “Sulle varietà abeliane reali, I”, Ann. Mat. Pura Appl. 2:1 (1925),
67–106. MR Zbl

[Comessatti 1926] A. Comessatti, “Sulle varietà abeliane reali, II”, Ann. Mat. Pura Appl. 3:1 (1926),
27–71. MR Zbl

[Deligne 1969] P. Deligne, “Variétés abéliennes ordinaires sur un corps fini”, Invent. Math. 8 (1969),
238–243. MR Zbl

[Demazure 1972] M. Demazure, Lectures on p-divisible groups, Lecture Notes in Math. 302, Springer,
1972. MR Zbl

[Drinfeld 1976] V. G. Drinfeld, “Coverings of p-adic symmetric domains”, Funkcional. Anal. i
Priložen. 10:2 (1976), 29–40. In Russian; translated in Funct. Anal. Appl. 10:2 (1976), 107–115.
MR

[Goren 2002] E. Z. Goren, Lectures on Hilbert modular varieties and modular forms, CRM Monogr.
Series 14, Amer. Math. Soc., Providence, RI, 2002. MR Zbl

[Goresky and Tai 2003a] M. Goresky and Y. S. Tai, “Anti-holomorphic multiplication and a real
algebraic modular variety”, J. Differential Geom. 65:3 (2003), 513–560. MR Zbl

[Goresky and Tai 2003b] M. Goresky and Y. S. Tai, “The moduli space of real abelian varieties with
level structure”, Compos. Math. 139:1 (2003), 1–27. MR Zbl

[Goresky and Tai 2017] M. Goresky and Y. S. Tai, “Real structures on ordinary abelian varieties”,
preprint, 2017. arXiv

[Goresky and Tai 2019] M. Goresky and Y. S. Tai, “Ordinary points mod p of GLn(R)-locally
symmetric spaces”, Pacific J. Math 303:1 (2019), 165–215.

[Gross and Harris 1981] B. H. Gross and J. Harris, “Real algebraic curves”, Ann. Sci. École Norm.
Sup. (4) 14:2 (1981), 157–182. MR Zbl

[Grothendieck 1968] A. Grothendieck, “Le groupe de Brauer, III: Exemples et compléments”,
pp. 88–188 in Dix exposés sur la cohomologie des schémas, edited by A. Grothendieck and N. H.
Kuiper, Adv. Stud. Pure Math. 3, North-Holland, Amsterdam, 1968. MR Zbl

[Howe 1995] E. W. Howe, “Principally polarized ordinary abelian varieties over finite fields”, Trans.
Amer. Math. Soc. 347:7 (1995), 2361–2401. MR Zbl

[Katz 1981] N. Katz, “Serre–Tate local moduli”, pp. 138–202 in Surfaces algébriques (Orsay, France,
1976–1978), edited by J. Giraud et al., Lecture Notes in Math. 868, Springer, 1981. MR Zbl

[Kottwitz 1990] R. E. Kottwitz, “Shimura varieties and λ-adic representations”, pp. 161–209 in
Automorphic forms, Shimura varieties, and L-functions, I (Ann Arbor, MI, 1988), edited by L. Clozel
and J. S. Milne, Perspect. Math. 10, Academic Press, Boston, 1990. MR Zbl

[Kottwitz 1992] R. E. Kottwitz, “Points on some Shimura varieties over finite fields”, J. Amer. Math.
Soc. 5:2 (1992), 373–444. MR Zbl

[Lenstra 1985] H. W. Lenstra, Jr., “A normal basis theorem for infinite Galois extensions”, Nederl.
Akad. Wetensch. Indag. Math. 47:2 (1985), 221–228. MR Zbl

[Li and Oort 1998] K.-Z. Li and F. Oort, Moduli of supersingular abelian varieties, Lecture Notes in
Math. 1680, Springer, 1998. MR Zbl

[Lundström 1999] P. Lundström, “Normal bases for infinite Galois ring extensions”, Colloq. Math.
79:2 (1999), 235–240. MR Zbl

[Manin 1963] Y. I. Manin, “Theory of commutative formal groups over fields of finite characteristic”,
Uspehi Mat. Nauk 18:6 (1963), 3–90. In Russian; translated in Russ. Math. Surv. 18 (1963), 1–83.
MR Zbl

https://bookstore.ams.org/surv-195/
http://msp.org/idx/mr/3137398
http://msp.org/idx/zbl/1298.14001
http://dx.doi.org/10.1007/BF02409932
http://msp.org/idx/mr/1553074
http://msp.org/idx/zbl/51.0294.02
http://dx.doi.org/10.1007/BF02418645
http://msp.org/idx/mr/1553085
http://msp.org/idx/zbl/50.0641.01
http://dx.doi.org/10.1007/BF01406076
http://msp.org/idx/mr/0254059
http://msp.org/idx/zbl/0179.26201
http://dx.doi.org/10.1007/BFb0060741
http://msp.org/idx/mr/0344261
http://msp.org/idx/zbl/0247.14010
http://mi.mathnet.ru/eng/faa2147
https://link.springer.com/article/10.1007%2FBF01077936
http://msp.org/idx/mr/0422290
https://bookstore.ams.org/crmm-14/
http://msp.org/idx/mr/1863355
http://msp.org/idx/zbl/0986.11037
http://dx.doi.org/10.4310/jdg/1434052758
http://dx.doi.org/10.4310/jdg/1434052758
http://msp.org/idx/mr/2064430
http://msp.org/idx/zbl/1142.11040
http://dx.doi.org/10.1023/B:COMP.0000005079.56232.e3
http://dx.doi.org/10.1023/B:COMP.0000005079.56232.e3
http://msp.org/idx/mr/2024963
http://msp.org/idx/zbl/1046.14022
http://msp.org/idx/arx/1701.07742
http://dx.doi.org/10.2140/pjm.2019.303.165
http://dx.doi.org/10.2140/pjm.2019.303.165
http://dx.doi.org/10.24033/asens.1401
http://msp.org/idx/mr/631748
http://msp.org/idx/zbl/0533.14011
http://msp.org/idx/mr/244271
http://msp.org/idx/zbl/0198.25901
http://dx.doi.org/10.2307/2154828
http://msp.org/idx/mr/1297531
http://msp.org/idx/zbl/0859.14016
http://dx.doi.org/10.1007/BFb0090648
http://msp.org/idx/mr/638600
http://msp.org/idx/zbl/0477.14007
http://msp.org/idx/mr/1044820
http://msp.org/idx/zbl/0743.14019
http://dx.doi.org/10.2307/2152772
http://msp.org/idx/mr/1124982
http://msp.org/idx/zbl/0796.14014
http://dx.doi.org/10.1016/1385-7258(85)90009-5
http://msp.org/idx/mr/799082
http://msp.org/idx/zbl/0569.12013
http://dx.doi.org/10.1007/BFb0095931
http://msp.org/idx/mr/1611305
http://msp.org/idx/zbl/0920.14021
http://dx.doi.org/10.4064/cm-79-2-235-240
http://msp.org/idx/mr/1670276
http://msp.org/idx/zbl/0927.13010
http://mi.mathnet.ru/eng/umn6440
http://dx.doi.org/10.1070/RM1963v018n06ABEH001142
http://msp.org/idx/mr/0157972
http://msp.org/idx/zbl/0128.15603


REAL STRUCTURES ON POLARIZED DIEUDONNÉ MODULES 241

[Messing 1972] W. Messing, The crystals associated to Barsotti–Tate groups: with applications to
abelian schemes, Lecture Notes in Math. 264, Springer, 1972. MR Zbl

[Milne and Shih 1981] J. S. Milne and K.-y. Shih, “The action of complex conjugation on a Shimura
variety”, Ann. of Math. (2) 113:3 (1981), 569–599. MR Zbl

[Milnor and Husemoller 1973] J. Milnor and D. Husemoller, Symmetric bilinear forms, Ergeb. Math.
Grenzgeb. 73, Springer, 1973. MR Zbl

[Moonen 2001] B. Moonen, “Group schemes with additional structures and Weyl group cosets”,
pp. 255–298 in Moduli of abelian varieties (Texel, Netherlands, 1999), edited by C. Faber et al.,
Progr. Math. 195, Birkhäuser, Basel, 2001. MR Zbl

[Nori and Srinivas 1987] M. V. Nori and V. Srinivas, “Canonical liftings”, (1987). Appendix to
V. B. Mehta and V. Srinivas, “Varieties in positive characteristic with trivial tangent bundle”, Compos.
Math. 64:2 (1987), 191–212. MR Zbl

[Oda 1969] T. Oda, “The first de Rham cohomology group and Dieudonné modules”, Ann. Sci. École
Norm. Sup. (4) 2:1 (1969), 63–135. MR Zbl

[Oort 2001] F. Oort, “A stratification of a moduli space of abelian varieties”, pp. 345–416 in Moduli of
abelian varieties (Texel, Netherlands, 1999), edited by C. Faber et al., Progr. Math. 195, Birkhäuser,
Basel, 2001. MR Zbl

[Pink 2005] R. Pink, “Finite group schemes”, lecture notes, ETH Zürich, 2005, available at https://
tinyurl.com/pinkschemes.

[Seppälä and Silhol 1989] M. Seppälä and R. Silhol, “Moduli spaces for real algebraic curves and
real abelian varieties”, Math. Z. 201:2 (1989), 151–165. MR Zbl

[SGA 3 III 1970] M. Demazure and A. Grothendieck, Schémas en groupes, Tome III: Structure des
schémas en groupes réductifs, Exposés XIX–XXVI (Séminaire de Géométrie Algébrique du Bois
Marie 1962–1964), Lecture Notes in Math. 153, Springer, 1970. MR Zbl

[Shimura 1975] G. Shimura, “On the real points of an arithmetic quotient of a bounded symmetric
domain”, Math. Ann. 215 (1975), 135–164. MR Zbl

[Silhol 1982] R. Silhol, “Real abelian varieties and the theory of Comessatti”, Math. Z. 181:3 (1982),
345–364. MR Zbl

[Spence 1972] E. Spence, “m-symplectic matrices”, Trans. Amer. Math. Soc. 170 (1972), 447–457.
MR Zbl

Received August 22, 2018. Revised October 27, 2018.

MARK GORESKY

SCHOOL OF MATHEMATICS

INSTITUTE FOR ADVANCED STUDY

PRINCETON, NJ
UNITED STATES

goresky@ias.edu

YUNG SHENG TAI

DEPARTMENT OF MATHEMATICS

HAVERFORD COLLEGE

HAVERFORD, PA
UNITED STATES

ystai@comcast.net

http://dx.doi.org/10.1007/BFb0058301
http://dx.doi.org/10.1007/BFb0058301
http://msp.org/idx/mr/0347836
http://msp.org/idx/zbl/0243.14013
http://dx.doi.org/10.2307/2006998
http://dx.doi.org/10.2307/2006998
http://msp.org/idx/mr/621017
http://msp.org/idx/zbl/0043.14014
http://dx.doi.org/10.1007/978-3-642-88330-9
http://msp.org/idx/mr/0506372
http://msp.org/idx/zbl/0292.10016
http://dx.doi.org/10.1007/978-3-0348-8303-0_10
http://msp.org/idx/mr/1827024
http://msp.org/idx/zbl/1084.14523
http://www.numdam.org/item?id=CM_1987__64_2_191_0
http://www.numdam.org/item?id=CM_1987__64_2_191_0
http://msp.org/idx/mr/916481
http://msp.org/idx/zbl/0639.14024
http://dx.doi.org/10.24033/asens.1175
http://msp.org/idx/mr/0241435
http://msp.org/idx/zbl/0175.47901
http://dx.doi.org/10.1007/978-3-0348-8303-0_13
http://msp.org/idx/mr/1827027
http://msp.org/idx/zbl/1052.14047
https://tinyurl.com/pinkschemes
http://dx.doi.org/10.1007/BF01160673
http://dx.doi.org/10.1007/BF01160673
http://msp.org/idx/mr/997218
http://msp.org/idx/zbl/0645.14012
http://www.msri.org/publications/books/sga/sga/pdf/sga3-3.pdf
http://www.msri.org/publications/books/sga/sga/pdf/sga3-3.pdf
http://msp.org/idx/mr/0274460
http://msp.org/idx/zbl/0212.52810
http://dx.doi.org/10.1007/BF01432692
http://dx.doi.org/10.1007/BF01432692
http://msp.org/idx/mr/0572971
http://msp.org/idx/zbl/0394.14007
http://dx.doi.org/10.1007/BF01161982
http://msp.org/idx/mr/678890
http://msp.org/idx/zbl/0492.14015
http://dx.doi.org/10.2307/1996321
http://msp.org/idx/mr/0311684
http://msp.org/idx/zbl/0281.15007
mailto:goresky@ias.edu
mailto:ystai@comcast.net


PACIFIC JOURNAL OF MATHEMATICS
Founded in 1951 by E. F. Beckenbach (1906–1982) and F. Wolf (1904–1989)

msp.org/pjm

EDITORS

Don Blasius (Managing Editor)
Department of Mathematics

University of California
Los Angeles, CA 90095-1555

blasius@math.ucla.edu

Matthias Aschenbrenner
Department of Mathematics

University of California
Los Angeles, CA 90095-1555

matthias@math.ucla.edu

Daryl Cooper
Department of Mathematics

University of California
Santa Barbara, CA 93106-3080

cooper@math.ucsb.edu

Jiang-Hua Lu
Department of Mathematics

The University of Hong Kong
Pokfulam Rd., Hong Kong

jhlu@maths.hku.hk

Paul Balmer
Department of Mathematics

University of California
Los Angeles, CA 90095-1555

balmer@math.ucla.edu

Wee Teck Gan
Mathematics Department

National University of Singapore
Singapore 119076

matgwt@nus.edu.sg

Sorin Popa
Department of Mathematics

University of California
Los Angeles, CA 90095-1555

popa@math.ucla.edu

Paul Yang
Department of Mathematics

Princeton University
Princeton NJ 08544-1000
yang@math.princeton.edu

Vyjayanthi Chari
Department of Mathematics

University of California
Riverside, CA 92521-0135

chari@math.ucr.edu

Kefeng Liu
Department of Mathematics

University of California
Los Angeles, CA 90095-1555

liu@math.ucla.edu

Jie Qing
Department of Mathematics

University of California
Santa Cruz, CA 95064

qing@cats.ucsc.edu

PRODUCTION
Silvio Levy, Scientific Editor, production@msp.org

SUPPORTING INSTITUTIONS

ACADEMIA SINICA, TAIPEI

CALIFORNIA INST. OF TECHNOLOGY

INST. DE MATEMÁTICA PURA E APLICADA

KEIO UNIVERSITY

MATH. SCIENCES RESEARCH INSTITUTE

NEW MEXICO STATE UNIV.
OREGON STATE UNIV.

STANFORD UNIVERSITY

UNIV. OF BRITISH COLUMBIA

UNIV. OF CALIFORNIA, BERKELEY

UNIV. OF CALIFORNIA, DAVIS

UNIV. OF CALIFORNIA, LOS ANGELES

UNIV. OF CALIFORNIA, RIVERSIDE

UNIV. OF CALIFORNIA, SAN DIEGO

UNIV. OF CALIF., SANTA BARBARA

UNIV. OF CALIF., SANTA CRUZ

UNIV. OF MONTANA

UNIV. OF OREGON

UNIV. OF SOUTHERN CALIFORNIA

UNIV. OF UTAH

UNIV. OF WASHINGTON

WASHINGTON STATE UNIVERSITY

These supporting institutions contribute to the cost of publication of this Journal, but they are not owners or publishers and have no
responsibility for its contents or policies.

See inside back cover or msp.org/pjm for submission instructions.

The subscription price for 2019 is US $490/year for the electronic version, and $665/year for print and electronic.
Subscriptions, requests for back issues and changes of subscriber address should be sent to Pacific Journal of Mathematics, P.O. Box
4163, Berkeley, CA 94704-0163, U.S.A. The Pacific Journal of Mathematics is indexed by Mathematical Reviews, Zentralblatt MATH,
PASCAL CNRS Index, Referativnyi Zhurnal, Current Mathematical Publications and Web of Knowledge (Science Citation Index).

The Pacific Journal of Mathematics (ISSN 1945-5844 electronic, 0030-8730 printed) at the University of California, c/o Department
of Mathematics, 798 Evans Hall #3840, Berkeley, CA 94720-3840, is published twelve times a year. Periodical rate postage paid at
Berkeley, CA 94704, and additional mailing offices. POSTMASTER: send address changes to Pacific Journal of Mathematics, P.O.
Box 4163, Berkeley, CA 94704-0163.

PJM peer review and production are managed by EditFLOW® from Mathematical Sciences Publishers.

PUBLISHED BY

mathematical sciences publishers
nonprofit scientific publishing

http://msp.org/
© 2019 Mathematical Sciences Publishers

http://msp.org/pjm/
mailto:blasius@math.ucla.edu
mailto:matthias@math.ucla.edu
mailto:cooper@math.ucsb.edu
mailto:jhlu@maths.hku.hk
mailto:balmer@math.ucla.edu
mailto:matgwt@nus.edu.sg
mailto:popa@math.ucla.edu
mailto:yang@math.princeton.edu
mailto:chari@math.ucr.edu
mailto:liu@math.ucla.edu
mailto:qing@cats.ucsc.edu
mailto:production@msp.org
http://msp.org/pjm/
http://www.ams.org/mathscinet
http://www.emis.de/ZMATH/
http://www.viniti.ru/math_new.html
http://www.ams.org/bookstore-getitem/item=cmp
http://apps.isiknowledge.com
http://msp.org/
http://msp.org/


PACIFIC JOURNAL OF MATHEMATICS

Volume 303 No. 1 November 2019

1Contrasting various notions of convergence in geometric analysis
BRIAN ALLEN and CHRISTINA SORMANI

47Explicit formulae and discrepancy estimates for a-points of the Riemann
zeta-function

SIEGFRED BALUYOT and STEVEN M. GONEK

73Diffeological vector spaces
J. DANIEL CHRISTENSEN and ENXIN WU

93Degree-one, monotone self-maps of the Pontryagin surface are
near-homeomorphisms

ROBERT J. DAVERMAN and THOMAS L. THICKSTUN

133Denoetherianizing Cohen–Macaulay rings
LÁSZLÓ FUCHS and BRUCE OLBERDING

165Ordinary points mod p of GLn(R)-locally symmetric spaces
MARK GORESKY and YUNG SHENG TAI

217Real structures on polarized Dieudonné modules
MARK GORESKY and YUNG SHENG TAI

243Spectrahedral representations of plane hyperbolic curves
MARIO KUMMER, SIMONE NALDI and DANIEL PLAUMANN

265Deformations of linear Lie brackets
PIER PAOLO LA PASTINA and LUCA VITAGLIANO

299A mod-p Artin–Tate conjecture, and generalizing the Herbrand–Ribet theorem
DIPENDRA PRASAD

317Transitive topological Markov chains of given entropy and period with or without
measure of maximal entropy

SYLVIE RUETTE

325Restricted sum formula for finite and symmetric multiple zeta values
HIDEKI MURAHARA and SHINGO SAITO

337Frobenius–Schur indicators for near-group and Haagerup–Izumi fusion categories
HENRY TUCKER

361Compactness theorems for 4-dimensional gradient Ricci solitons
YONGJIA ZHANG

Pacific
JournalofM

athem
atics

2019
Vol.303,N

o.1


	1. Introduction
	2. Notation and terminology
	3. Dieudonné modules
	3.1. Notation
	3.2. Real structures
	3.3. Manin modules
	3.4. 

	4. Counting Dieudonné modules
	4.2. 
	4.3. 

	5. Deligne modules and ordinary abelian varieties
	5.1. 
	5.2. 
	5.4. 
	5.5. 
	5.6. The Tate module

	6. The Dieudonné module of an ordinary variety
	6.1. 
	6.2. 
	6.3. The Dieudonné module of a Deligne module
	6.4. 
	6.7. 
	6.9. Proof of 0=subsection.521=Proposition 6.8
	6.11. Real structures

	7. Comparing lattices in the ordinary case
	7.1. 
	7.2. 
	7.4. 
	7.5. 

	Appendix A. Involutions on the Witt vectors
	A.1. 

	Appendix B. Applications of Galois cohomology
	B.1. 

	Acknowledgements
	References
	
	

