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SPECTRAHEDRAL REPRESENTATIONS
OF PLANE HYPERBOLIC CURVES

MARIO KUMMER, SIMONE NALDI AND DANIEL PLAUMANN

We describe a new method for constructing a spectrahedral representation
of the hyperbolicity region of a hyperbolic curve in the real projective plane.
As a consequence, we show that if the curve is smooth and defined over the
rational numbers, then there is a spectrahedral representation with rational
matrices. This generalizes a classical construction for determinantal repre-
sentations of plane curves due to Dixon and relies on the special properties
of real hyperbolic curves that interlace the given curve.

Introduction

Determinantal representations of plane curves are a classical topic in algebraic
geometry. Given a form f (i.e., a homogeneous polynomial) of degree d in three
variables with complex coefficients and a general form g of degree d−1, there exists
a d×d linear matrix M = x A+ y B+ zC such that f is the determinant of M and g
a principal minor of size d−1 (see for example [Dolgachev 2012, Chapter 4]). The
matrix M can be chosen to be symmetric if g is a contact curve, which means that
all intersection points between the curves defined by f and g have even multiplicity.
The construction of M from f and g is due to Dixon [1902] (following Hesse’s much
earlier study of the case d = 4). We refer to this construction as the Dixon process.

For real curves, the most interesting case for us is that of hyperbolic curves. The
smooth hyperbolic curves are precisely the curves whose real points contain a set
of bd/2c nested ovals in the real projective plane (plus a pseudoline if d is odd).
A form f ∈ R[x, y, z] is hyperbolic if and only if it possesses a real symmetric
determinantal representation f = det(M) such that M(e) = e1 A+ e2 B + e3C is
(positive or negative) definite for some point e∈P2(R). This is the Helton–Vinnikov
theorem, which confirmed a conjecture by Peter Lax [Helton and Vinnikov 2007].

The Helton–Vinnikov theorem received a lot of attention in the context of semi-
definite programming, which was also part of the original motivation: the set of
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Figure 1. A quintic hyperbolic curve (blue), a quartic interlacer
(green), and the hyperbolicity region (green region).

points a ∈R3 for which the matrix M(a) is positive semidefinite is a spectrahedron

S(M)= {a ∈ R3
: M(a)� 0}.

It coincides with the hyperbolicity cone C( f, e) of f = det(M) in direction e, that is,
the closure of the connected component of {a ∈ R3

: f (a) 6= 0} containing e. This
is a convex cone in R3, whose image in P2 is the region enclosed by the convex
innermost oval of the curve (see Figure 1). A triple of real symmetric matrices
A, B,C is a spectrahedral representation of C( f, e) if M = x A+ y B+zC satisfies

C( f, e)= S(M).

It has been pointed out by several authors [Vinnikov 2012; Plaumann and Vinzant
2013] that the proof of the Helton–Vinnikov theorem becomes much simpler if
one requires the matrix M to be only hermitian, rather than real symmetric. In that
case, M can be constructed via the Dixon process starting from any interlacer of f ,
that is, any hyperbolic form g of degree d − 1 whose ovals are nested between
those of the curve defined by f (see Figure 1). One downside of this apparent
simplification is that the corresponding determinantal representation f = det(M)
with principal minor g is harder to construct explicitly, since one has to find the
intersection points of f and g, while this can be avoided if g is a contact curve. We
refer to [Vinnikov 2012] for a survey of these results.

In this paper, we study a modification of the Dixon process, which can be
described as follows: given a form f of degree d , hyperbolic with respect to e, and
an interlacer g of degree d−1, we construct a real symmetric matrix pencil M with
the properties that

• the determinant det(M) is divisible by f ,

• the principal minor det(M11) is divisible by g,

• the extra factors det(M)/ f and det(M11)/g are products of linear forms, and

• the spectrahedron defined by M coincides with C( f, e).

The extra factor in our spectrahedral representation of C( f, e) is an arrangement
of real lines, as in Figure 2. Informally speaking, these additional lines correct the
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Figure 2. The extra factor (dashed blue lines) giving the spectra-
hedral representation of the hyperbolicity region.

failure of g to be a contact curve by passing through the intersection points of g
with f that are not of even multiplicity.

The precise statement is Theorem 2.2. The size of M is at most quadratic in d.
Thus, while M may not be the smallest or simplest determinantal representation of
(some multiple of) f , it is easier to construct and may better reflect properties of the
hyperbolicity region C( f, e): as a corollary, we show that if f has coefficients in Q,
then C( f, e) can be represented by a linear matrix inequality with coefficients in Q

(Theorem 2.10). We may also view Theorem 2.2 in the context of the generalized
Lax conjecture, which states that every hyperbolicity region (in any dimension) is
spectrahedral. While various stronger forms of this conjecture have been disproved,
it remains open as stated. One obstacle for constructing symmetric determinantal
representations in higher dimensions is the nonexistence of contact interlacers for
general hyperbolic hypersurfaces. Since our generalized Dixon process does not re-
quire the interlacer to be contact, it is possible that a spectrahedral description of the
hyperbolicity cone could be constructed in a similar way, but this is currently purely
speculative. In Section 3 we point out how our construction is related to sum-of-
squares decompositions of Bézout matrices and the construction in [Kummer 2017].

Even in the original Dixon process for plane curves, details are somewhat subtle:
for the construction to succeed as stated, the curve defined by f must be smooth,
and the existence of a contact curve satisfying the required genericity assumption
(equivalent to the existence of a nonvanishing even theta characteristic) was not
rigorously established until somewhat later. Additionally, the case of singular curves
was, to our knowledge, only fully settled and explicitly stated by Beauville [2000].
Likewise, in our generalized Dixon process, we need to treat degenerate cases with
care and need some genericity assumptions.

Our generalized Dixon process has the additional feature that the size of the
matrix M decreases if the interlacer g has real contact points with f . In particular,
if g is an interlacer with only real intersection points, our statement reduces to
that of the Helton–Vinnikov theorem. This leads us to the study of interlacers
with real intersection (i.e., contact) points. Such interlacers are necessarily on the
boundary of the cone Int( f, e) of all interlacers of f . An extreme ray of that cone
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will necessarily have a certain number of real contact points (Lemma 1.3). However,
we do not know whether there always exists an interlacer with the maximal number
d(d − 1)/2 of real contact points. Even in the case d = 4, we only obtain a partial
answer to this question (see the subsection beginning on page 248). There remain
interesting (and easily stated) open questions concerning interlacing curves and the
geometry of the interlacer cone.

1. Extremal interlacers

Let f ∈ R[x, y, z] be homogeneous of degree d and hyperbolic with respect to
e= (0 : 0 : 1), with f (e) > 0. Let C =VC( f ) be the plane projective curve defined
by f . We denote by C( f, e) the closed hyperbolicity region of f with respect to e
in the real projective plane.

Definition 1.1. Let f, g ∈ R[t] be univariate polynomials with only real zeros
and with deg(g) = deg( f ) − 1. Let α1 ≤ · · · ≤ αd be the roots of f , and let
β1 ≤ · · · ≤ βd−1 be the roots of g. We say that g interlaces f if αi ≤ βi ≤ αi+1

holds for all i = 1, . . . , d−1. If all these inequalities are strict, we say that g strictly
interlaces f .

If f ∈ R[x, y, z] is hyperbolic with respect to e and g is homogeneous of degree
deg( f )− 1, we say that g interlaces f with respect to e if g(te + v) interlaces
f (te+ v) for every v ∈ R3. This implies that g is also hyperbolic with respect to e.

We say that g strictly interlaces f if g(te+v) strictly interlaces f (te+v) for every
v ∈ R3 not in Re.

With f as above, let g be any form in R[x, y, z] coprime to f . We say that an
intersection point p ∈ VC( f, g) is a contact point of g with f if the intersection
multiplicity multp( f, g) is even. If all intersection points are contact points, then
g is called a contact curve of f . A curve of real contact is a curve g for which
all real intersection points are contact points, without any assumption on nonreal
intersection points. Any interlacer is a curve of real contact.

Interlacers of f appear naturally in the context of determinantal representations
of f [Plaumann and Vinzant 2013; Kummer et al. 2015]. For example, if f =
det(x A+y B+zC) is a real symmetric and definite determinantal representation of f ,
then every principal (d−1)× (d−1) minor of x A+ y B+ zC is an interlacer of f
[Plaumann and Vinzant 2013, Theorem 3.3]. Furthermore, such a minor defines a
contact curve (see, e.g., [Plaumann and Vinzant 2013, Proposition 3.2]). Conversely,
given any interlacer of f that is also a contact curve, one can construct a definite
determinantal representation of f and therefore a spectrahedral representation of
its hyperbolicity region of size d × d. However, for computational purposes, it
is very difficult to actually find such an interlacer, even though its existence is
guaranteed by the Helton–Vinnikov theorem [2007]. In Section 2, we will introduce
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a method for constructing from an arbitrary interlacer a spectrahedral representation
of possibly larger size. We denote by

Int( f, e)= {g ∈ R[x, y, z]d−1 : g interlaces f and g(e) > 0}

the set of interlacers of f . It is shown in [Kummer et al. 2015, Corollary 2.7] that
this is a closed convex cone. Every boundary point of this cone has at least one
contact point. In order to find interlacers with many contact points, it is therefore
natural to consider extreme rays of this cone.

Definition 1.2. Let f be hyperbolic with respect to e. By an extremal interlacer
of f we mean an extreme ray of the cone Int( f, e).

The next lemma gives a lower bound on the number of real contact points of an
extremal interlacer.

Lemma 1.3. Assume that f defines a smooth curve of degree d. Any extremal
interlacer of f has at least ⌈

(d + 1)d − 2
4

⌉
real contact points with f , counted with multiplicity.

Proof. Let g be an extremal interlacer, and let k be the number of real contact
points of g. By definition, the real part of the divisor divC(g) is even, say 2D,
with D real and effective of degree k. The space V of forms h of degree d − 1
with divC(h)≥ 2D has dimension at least n = (d + 1)d/2− 2k and contains g. If
n > 1, then V contains another form h linearly independent of g. We conclude that
g± εh ∈ Int( f, e) for sufficiently small ε. Thus, g is not extremal. Therefore, we
must have n ≤ 1, which gives k ≥ ((d + 1)d − 2)/4. �

Remark 1.4. For smooth f , given any d − 1 real points on the curve, there is an
extremal interlacer touching the curve in (at least) the given points. Indeed, it is
clear from the above proof that it suffices to show that there is an interlacer passing
through these d − 1 points. The quadratic system of interlacers considered in
[Plaumann and Vinzant 2013, Definition 3.1] has dimension d , so we can prescribe
d − 1 points.

Remark 1.5. We do not know whether every hyperbolic curve possesses an irre-
ducible extremal interlacer. This is true if C is a smooth cubic: for any two distinct
points p and q on C , there is an extremal interlacing conic Q passing through
p and q, by the preceding remark. If Q is reducible, it must factor into the two
tangent lines to C at p and q . But Q is a contact curve by Lemma 1.3; hence, the
intersection point of the two tangents must lie on C . Clearly, this will not be the
case for a generic choice of p and q. This observation will be used at one point
later on. It does not seem clear how to generalize this argument to higher degrees.
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Figure 3. Quadrics touching hyperbolic quartics in real points.

The following table shows the expected number of real contact points of an
extremal interlacer compared with the number of points for a full contact curve:

d 2 3 4 5 6 · · ·

d((d + 1)d − 2)/4e 1 3 5 7 10 · · ·

d(d − 1)/2 1 3 6 10 15 · · ·

An interlacer can have many more real contact points than the estimate given
by Lemma 1.3, and we do not know whether there is always one with only real
intersection points.

Question 1.6. Does every hyperbolic plane curve have an interlacer that intersects
the curve only in real points?

Even without the interlacing condition, it seems to be unknown whether a real
curve always possesses a real contact curve with only real contact points. In the
case of plane quartic curves we have some partial answers to that question.

The case of quartics. Let C ⊆ P2 be a smooth hyperbolic quartic that has a real
bitangent touching C in only real points. We will show that in this case there is
a contact interlacer touching C only in real points. It suffices to show that there
is a conic touching both ovals in two real points. This, together with the above
bitangent, will be the desired totally real interlacer.

Assume that C(R) is contained in the affine chart z 6=0 (for smooth quartic curves
this is not a restriction). Let l ∈R[x, y]1 be a nonzero linear form. Maximizing and
minimizing l on the hyperbolicity region gives us two different linear polynomials
l1 and l2 that are parallel and whose zero sets are tangent to the inner oval at some
points p1 and p2 (see Figure 3).

Choose the signs such that both l1 and l2 are nonnegative on the inner oval. We
consider the pencil of conics whose zero sets pass through p1 and p2 such that the
tangent lines of the conics at p1 and p2 are defined by l1 and l2, respectively. This
pencil is given by qλ = g2

−λl1l2, λ ∈R, where g is the line spanned by p1 and p2.
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Figure 4. A hyperbolic quartic curve (in blue) and a cubic inter-
lacer (in green) with only real intersection points.

The zero set of qλ is completely contained in the interior of the outer oval for small
λ > 0. Label the two half spaces defined by g by 1 and 2, and let λi > 0 be the
smallest positive number such that the zero set of qλi intersects the outer oval in
the half space labeled by i . We observe that both qλi have three real contact points
with C . If λ1 = λ2, then we are done.

Now we let the linear form l, which we started with, vary continuously and we
also keep track of the labels of the half spaces in a continuous manner. The resulting
conic qλ1(l) depends continuously on l, and we note that qλ1(−l) = qλ2(l). Note
that one of the zero sets of qλ1(l) and of qλ1(−l) on C contains a pair of complex
conjugate points (the orange oval in Figure 3, left) whereas the other one contains
only real points of C (the red oval in Figure 3, left). Therefore, there must be a linear
form l0 such that qλ1(l0) has the desired properties (Figure 3, center and right).

If there is no bitangent touching the quartic in two real points, we do not know
whether there always exists an interlacer intersecting the curve in only real points.
The next example shows that this is at least sometimes the case.

Example 1.7. We consider the smooth plane quartic defined by

f = 1250000x4
− 1749500x3 y− 2250800x2 y2

− 4312500x2z2

+ 69260xy3
+ 786875xyz2

+ 88176y4
+ 1141000y2z2

+ 1687500z4.

Its real locus consists of two nested ovals both of which are convex (Figure 4),
meaning that there is no bitangent touching the curve in two real points. Nevertheless,
the interlacer given by

g = 500x3
− 800x2 y− 740xy2

− 625xz2
+ 176y3

+ 1000yz2

intersects the quartic curve only in real points. Indeed, its divisor is given by

4 · (4 : −5 : 0)+ 2 · (11 : 5 : 0)+ 2 · (1 : 5 : 0)+ 2 · (7 : 10 : −10)+ 2 · (7 : 10 : 10).

2. A generalized Dixon process

Given a real hyperbolic form f of degree d and an interlacer g of degree d− 1, we
wish to produce a real symmetric determinantal representation of f with a principal
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minor divisible by g. If g is a contact curve, this is achieved through the classical
Dixon process. We will extend the procedure in such a way that the resulting
representation will reflect any real contact points between f and g, relating to our
discussion of extremal curves of real contact in the previous section.

Let f be irreducible and hyperbolic with respect to e ∈ P2(R), and assume that
the plane curve VC( f ) is smooth. Let g be an interlacer of f with r real contact
points p1, . . . , pr , counted with multiplicities. Consider the d(d − 1)− 2r further
intersection points, which are nonreal and therefore come in complex conjugate
pairs, say q1, . . . , qs, q1, . . . , qs , so that d(d−1)= 2r +2s. For each i = 1, . . . , s
let `i be a linear form defining the unique (real) line joining qi and qi . We will
make the assumptions that

(G1) no three of the intersection points of f with g lie on a line,

(G2) no three of the `i pass through the same point, and

(G3) f does not vanish on any point where two of the `i intersect.

We begin by showing that such an interlacer always exists.

Lemma 2.1. There exists a strict interlacer for which the genericity assumptions
(G1), (G2), and (G3) are satisfied.

Proof. Every choice of k = 1
2 d(d + 1)− 1 points on the zero set of f that pose

linearly independent conditions on forms of degree d − 1 determines a unique such
form. The other zeros of this (d−1)-form on the zero set of f depend continuously
on the choice of the k points. By the general position theorem [Arbarello et al.
1985, Chapter III, §1], any neighborhood of the given interlacer contains a strict
interlacer g with the property that its zero set intersects the one of f in d(d − 1)
distinct points, any k of which pose linearly independent conditions on forms of
degree d−1. Then we can slightly perturb any subset of k points in this intersection,
and thus g, so that the number of triples of points in the intersection that lie on
a line decreases. Thus, we can find a strict interlacer of f with the property that
no three intersection points with the zero set of g lie on a line, so that genericity
condition (G1) is satisfied. By the same argument, we can satisfy condition (G3).

For condition (G2), we need to move six points spanning three of the lines. Thus,
the same argument applies, provided that k ≥ 6, which means d > 3. The case d ≤ 2
being trivial, we are left with condition (G2) for cubics (d = 3). In this case, we
argue as follows. Suppose there is no interlacing conic satisfying condition (G2).
Since the condition is Zariski-open, this would imply that condition (G2) is violated
for any conic, strictly interlacing or not. But Lemma 1.3 and the subsequent
Remark 1.5 imply that there exists an irreducible conic g touching f in three real
points. Considering g as the limit of forms all of whose intersection points with f
are simple, the assumption will imply that the three tangents to V(g) at the contact
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points meet in one point. But since g is irreducible of degree 2, this is impossible.
This contradiction shows the claim. �

Under these genericity assumptions, we will construct a symmetric linear de-
terminantal representation M of `1 · · · `s · f such that S(M) is the hyperbolicity
region of f . Furthermore, the interlacer g divides a principal minor of M . The
main result of this section is as follows.

Theorem 2.2. Let f be an irreducible form of degree d that is hyperbolic with
respect to e ∈ P2(R), and assume that the plane curve V( f ) is smooth. Let g be an
interlacer of f with r real contact points, counted with multiplicities, that satisfies
the genericity assumptions (G1), (G2), and (G3). Then there exists a symmetric
linear matrix pencil M of size

m =
d2
+ d − 2r

2

which is positive definite at e and such that C( f, e)= S(M). We can choose M in
such a way that g divides the principal minor M1,1 of M and det(M)/ f is a product
of m− d linear forms. Furthermore, each (m− 1)× (m− 1) minor M1l , 1≤ l ≤m,
of M is also divisible by the product of these m− d linear forms.

The proof will consist of an algorithm that produces the desired representation
given f and g.

We begin with some preliminaries. Given any two real ternary forms f, g of
degrees d and d ′, respectively, without common components, we denote by ( f.g)
the intersection cycle of f and g, consisting of the intersection points of the
curves V( f ) and V(g) in P2(C). It is a 0-cycle, i.e., an element of the free
abelian group over the points of P2(C). Explicitly, ( f.g) =

∑k
i=1 mi pi , with

V( f )∩V(g)={p1, . . . , pk} and mi positive integers, the intersection multiplicities.
By Bézout’s theorem, we have

∑k
i=1 mi = dd ′. Intersection cycles are additive,

i.e., (( f1 · f2).g)= ( f1.g)+ ( f2.g). Furthermore, there is a natural partial order on
0-cycles, by comparing coefficients. We need the following classical result from
the theory of plane curves, which we restate in the form we require.

Theorem 2.3 (Max Noether). Let f, g, h be real ternary forms. Assume that f is
irreducible and does not divide gh, and that the curve V( f )⊂ P2(C) is smooth. If
(h. f )≥ (g. f ), then there exist real forms a and b such that

h = a f + bg.

Proof. See [Fulton 1989, §5.5, Proposition 1]. �

Now let f and g be given as in the statement of Theorem 2.2, with intersection
points p1, . . . , pr , q1, . . . , qs, q1, . . . , qs as before, and let `i be the linear form
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defining the line between qi and qi , for i=1, . . . , s, under the genericity assumptions
(G1)–(G3).

Put h= `1 · · · `s , and consider the polynomial f h of degree (d2
+d−2r)/2=m,

which is hyperbolic with respect to e. Furthermore, since each line `i meets C in the
nonreal point qi , none of the lines pass through C( f, e), so that C( f h, e)=C( f, e).

It therefore suffices to construct a symmetric linear determinantal representation
of f h which is definite at e. This can be carried out with a modification of Dixon’s
method, which we now describe in several steps.

(1) Let V be the linear space of real forms of degree d−1 vanishing at p1, . . . , pr .
We have dim(V ) ≥ (d + 1)d/2− r = d + s, and we pick linearly independent
forms a1, . . . , ad+s ∈ V , with a1 = g. We introduce names for all the occurring
intersection points:

(a1. f )= (g. f )= 2
r∑

j=1

p j +

s∑
j=1

(q j + q j ),

(ai . f )=
r∑

j=1

p j +

r+2s∑
j=1

pi j for i ≥ 2,

(`i . f )= qi + qi +

d−2∑
j=1

ri j ,

(`i .` j )= si j for i 6= j .

(2) Fix k, l ∈ {2, . . . , d + s} with k ≤ l. We wish to find a real form bkl of degree
d + s− 1 such that

(2.4) bkl g− hakal ∈ ( f )

by applying Max Noether’s theorem: we compute the intersection cycles

(hakal . f )= 2
r∑

j=1

p j +

s∑
j=1

(q j + q j )+

s∑
j=1

d−2∑
j ′=1

r j j ′ +

r+2s∑
j=1

pk j +

r+2s∑
j=1

pl j ,

(g. f )= 2
r∑

j=1

p j +

s∑
j=1

(q j + q j )

and thus find bkl with

(bkl . f )=
s∑

j=1

d−2∑
j ′=1

r j j ′ +

r+2s∑
j=1

pk j +

r+2s∑
j=1

pl j .
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(3) Assume that k = l. Then we will produce a real form q of degree s− 1 such
that ckk := bkk + q f satisfies

(ckk .`i )= (b+ q f.`i )=

d−2∑
j=1

ri j +
∑
j 6=i

si j + 2tki

for some real point tki ∈ `ki , for all i = 1, . . . , s. To this end, we let `0 be a linear
form which does not vanish on any of the si j . Let hi j = (`0 · · · `s)/(`i` j ) and
αi j = −bkk(si j )/(hi j (si j ) f (si j )) for 1 ≤ i < j ≤ s. Note that hi j vanishes on all
smn except for si j . After replacing bkk by bkk +

∑
i, j αi j hi j f , we can thus assume

that bkk vanishes on all the si j .
Next, we consider

qα =
s∑

j=1

α j
`1 · · · `s

` j

with α1, . . . , αs ∈ R. The form qα satisfies qα(si j )= 0 for all j 6= i for any choice
of the α j . If we now take q = q̃ + qα, we find

(bkk + q f.`i )=

d−2∑
j=1

ri j +
∑
j 6=i

si j + ui + vi

with ui and vi depending on α. Restricting to `i we therefore get bkk + q f =
P · (b̃+αi f̃ ) where P is a nonzero polynomial whose roots are the ri j and si j , and
where b̃ and f̃ are polynomials of degree two. After possibly replacing αi by its
negative, we can assume that f̃ is strictly positive on `i since it has no real zeros
on `i . Therefore, we can choose αi in such a way that b̃+αi f̃ has a double zero
tki and that makes the product of bkk +q f and f · ((`1 · · · `s)/`i )`i (e) nonnegative
on `i . The reasons for the latter requirement will become clear in a later step.

(4) Similarly, if k < l, we can find a real form q of degree s− 1 such that ckl :=

bkl + q f satisfies

(ckl .`i )= (bkl + q f.`i )=

d−2∑
j=1

ri j +
∑
j 6=i

si j + tki + t ′ki

for some real point t ′ki ∈ `i . In fact, we even have that t ′ki = tli . Indeed, this follows
from (2.4) and the following lemma applied to each `i .

Lemma 2.5. Let f ∈ R[t] be a polynomial of degree two without real zeros. Let
a, b, c ∈ R[t] be polynomials of degree at most two such that a and c both have a
double zero, ac is nonnegative, and b vanishes at the zero of a. If ac = b2 mod f ,
then b vanishes at the zero of c as well.
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Proof. Let a = α(t − β)2, c = α′(t − β ′)2, and b = γ (t − β)(t − β ′′) for some
α, α′, β, β ′, β ′′, γ ∈ R with αα′ ≥ 0. We have by assumption

αα′(t −β)2(t −β ′)2 = γ 2(t −β)2(t −β ′′)2 mod f.

Since R[t]/( f ) is isomorphic to the field of complex numbers, it follows that

αα′(t −β ′)2 = γ 2(t −β ′′)2 mod f.

If γ 6= 0, then αα′> 0 and t−β ′=±
√
γ 2/(αα′)·(t−β ′′) mod f . Finally, it follows

that αα′= γ and that β ′=β ′′ because 1, t ∈R[t]/( f ) are R-linearly independent. �

If k > l, we let ckl = clk .

(5) We now put c1k = ck1 = hak and consider the matrix N with entries ckl , for
k, l = 1, . . . , d + s. By construction, the (2× 2)-minors

c11ckl − c1kc1l = hgckl − h2akal = h(gckl − hakal)

are divisible by f h. Since the first row of N is not divisible by f , it follows that
all (2×2)-minors of N are divisible by f . We need to show that all (2×2)-minors
cklck′l ′−ckl ′ck′l are also divisible by h. Let u be such a minor, and fix i ∈ {1, . . . , s}.
Note that u has degree 2d+2s−2 and vanishes (with multiplicities) on the 2d+2s−2
points 2

∑d−2
j=1 ri j , 2

∑
j 6=i si j , and (tki + tk′i + tli + tl ′i ) on `i , since both products

cklck′l ′ and ckl ′ck′l vanish at those points. Since u is divisible by f , it also vanishes
at qi + qi . Thus, u vanishes identically on `i for each i , which implies h | u.

(6) In this step we show that c22 interlaces f h. This can be done by proving that
c22 ·De( f h) is nonnegative on the zero set of f h [Kummer et al. 2015, Theorem 2.1].
Here De( f h) denotes the derivative of f h in direction e. We have

De( f h)= h ·De f + f ·
s∑

i=1

`i (e)
`1 · · · `s

`i
.

We can rewrite this modulo f and find

c22 ·De( f h)= c22 · h ·De f =
ha2

2

g
· h ·De f =

De f
g

h2a2
2 mod f

by (2.4). This is nonnegative on the zero set of f because both De f and g are
interlacers. On the other hand, modulo `i we obtain

c22 ·De( f h)= c22 · `i (e) ·
`1 · · · `s

`i
mod `i ,

which is nonnegative on the line defined by `i by the choices made in step (3).

(7) Now we proceed as in the usual Dixon process, referring to [Plaumann and
Vinzant 2013] for details. Since all (2×2)-minors of the (d+s)×(d+s)-matrix N
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are divisible by f h, its maximal minors are divisible by ( f h)d+s−2 (see for example
[Plaumann and Vinzant 2013, Lemma 4.7]). The signed maximal minors of N have
degree (d + s− 1)2 and are the entries of the adjugate matrix N adj. It follows that

M = ( f h)2−d−s
· N adj

has linear entries. Using the familiar identity N N adj
= det(N ) · Id+s , we conclude

det(M)= γ · f h

for some constant γ ∈ R. It remains to show that γ 6= 0. Suppose γ = 0; then
det(M) is identically zero and hence so is det(N ). In particular, the matrix N (e) is
singular. Let λ ∈ Rd+s be a nontrivial vector in the kernel of N (e), and consider
the polynomial g̃ = λt Nλ. It follows from the linear independence of the entries of
the first row of N that g̃ is not the zero polynomial [Plaumann and Vinzant 2013,
Lemma 4.8]. Since c22 interlaces f h by (6), so does g̃ [Plaumann and Vinzant 2013,
Theorem 3.3, (1)=⇒ (2)], contradicting g̃(e)= 0. That M(e) is definite also follows
from the fact that c22 interlaces f h, by [Plaumann and Vinzant 2013, Theorem 3.3,
(2)=⇒ (3)]. Note that the result in [Plaumann and Vinzant 2013] is stated only
for irreducible curves. However, the same argument will apply here, since c22 is
coprime to f h (unlike c11, which is divisible by h). Indeed, we have chosen c22 in
step (3) in such a way that it does not vanish entirely on any of the lines li . Thus,
c22 is coprime to h. Moreover, c22 is congruent to b22 modulo ( f ). Thus, if f
divided c22, it would also divide a2 by (2.4), which is not the case.

This finishes the construction of the determinantal representation M of f h.
Finally, we note that the spectrahedron S(M) coincides with the hyperbolicity
region C( f, e) of f . Since det(M)= f · `1 · · · `s , this simply amounts to the fact
that the lines `1, . . . , `s do not pass through C( f, e). Indeed, each ` j has two
nonreal intersection points with C , while lines passing through the hyperbolicity
region will meet C in only real points. This completes the proof of Theorem 2.2.

Remark 2.6. Clearly, the corank of the constructed matrix pencil M is at least
one at each point where f h vanishes. It can have corank more than one only at
singularities of f h, i.e., in our case the points where two components intersect.
Since the adjugate N = Madj vanishes identically at the points ri j and si j and
because these are ordinary nodes, the corank of M at these points is exactly two. On
the other hand, we have constructed N in such a way that it is not entirely zero at the
points q j and q j . Thus, M has corank one at these points. This shows in particular
that M is not equivalent to a block diagonal matrix with more than one block.

Remark 2.7. The vector space V in step (1) of our construction can be found
without computing all the real contact points p1, . . . , pr . Indeed, by genericity
assumption (G1) the qi , qi are all simple intersection points. Therefore, the pi can
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be computed as the singular locus of the zero-dimensional scheme cut out by f
and g via the Jacobian criterion.

Next we observe that the genericity assumption in the theorem, as well as the
smoothness assumption on f , can be dropped for strict interlacers by applying a
limit argument.

Corollary 2.8. Let f be a real form of degree d that is hyperbolic with respect
to e ∈ P2(R), and let g be a strict interlacer of f . Then there exists a symmetric
linear matrix pencil M of size (d2

+ d)/2 which is definite at e and such that
C( f, e)= S(M). We can choose M in such a way that g divides a principal minor
of M and det(M)/ f is a product of (d2

− d)/2 linear forms.

Proof. Let m = (d2
+d)/2. We may assume that f (e)= 1 and consider only monic

representations f = det(M), i.e., with M(e) = Im . The determinant map taking
a monic symmetric real linear matrix pencil of size m ×m to its determinant is
proper; hence, its image is closed (see for example [Plaumann and Vinzant 2013,
Lemma 3.4]). If g is a strict interlacer of f , the pair ( f, g) is in the closure of the set
of pairs ( f̃ , g̃), where f̃ is hyperbolic with respect to e, V( f̃ ) is smooth, and g̃ is a
strict interlacer of f̃ satisfying the genericity assumptions (G1)–(G3). Therefore,
there exists a sequence ( f̃n, g̃n) converging to ( f, g) together with representations
f̃n = det(M̃n) with g̃n dividing the first principal minor of M̃ and det(M̃)/ f̃ a
product of m − d linear forms, by Theorem 2.2. The sequence M̃n then has a
subsequence converging to a matrix pencil M , which is the desired determinantal
representation of f . �

Remark 2.9. The procedure of approximating a given hyperbolic form together
with an interlacer as in the proof above may be difficult to carry out in practice. How-
ever, the generalized Dixon process can often be applied (with small modifications
if needed) even when the genericity assumptions fail.

As a further consequence, we can prove the following rationality result.

Theorem 2.10. Let f ∈ Q[x, y, z]d be a polynomial hyperbolic with respect to
e ∈R3 whose real projective zero set is smooth. Then its hyperbolicity cone is of the
form

{(x, y, z) ∈ R3
: x A+ y B+ zC � 0}

where A, B,C are symmetric matrices with rational entries of size at most
(d+1

2

)
.

Proof. Let m ∈Q[x, y, z]ed−1 be the vector of all monomials of degree d − 1, and
let e =

(d+1
2

)
. The equation

(2.11) (x A+ y B+ zC) ·m = f · v
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poses linear conditions on the entries of the symmetric e × e matrices A, B,C
and on the entries of v ∈ Re. These linear conditions are defined over the rational
numbers.

We now apply the above construction to f with a strict interlacer g satisfying
the genericity assumptions (G1), (G2), and (G3) whose existence is guaranteed by
Lemma 2.1. The vector space V from step (1) is just the vector space of all ternary
forms of degree d−1, and the ai form a basis of V . Thus, we can find an invertible
matrix S ∈ GLe(R) that maps the vector a = (a1, . . . , aN )

t to the vector m of all
monomials of degree d − 1. In step (7) of our construction we have seen that there
is a matrix N such that our symmetric determinantal representation M of f · h
satisfies M · N = γ · f h · Ie. Moreover, the first column of N is h · a. Thus, we
have that M · a = γ · f · δ1. Now we get the identity

S−t M S−1
·m = γ · f · S−tδ1.

This is a solution over R to (2.11) with e0 A + e1 B + e2C positive definite and
det(x A+ y B + zC) = h · f where h is a product of linear forms whose zero set
does not intersect the hyperbolicity cone of f .

Since the rational solutions to (2.11) are dense in the solution set over the real num-
bers, we can find rational matrices A, B,C satisfying (2.11) with e0 A+ e1 B+ e2C
being positive definite, as well. Then det(x A+ y B+ zC) is not the zero polynomial
and is divisible by f , since the pencil has a nonzero kernel vector whenever f
vanishes at (x, y, z) by (2.11). If A, B,C are chosen close enough to our original
solution, the other factor of det(x A+ y B+ zC) will not intersect the hyperbolicity
cone of f either. �

Remark 2.12. One might be tempted to generalize Theorem 2.10 to singular f
using the determinantal representation det(M) = h · f , where h is a product of
linear forms, obtained in Corollary 2.8 by a limit argument. In order to make the
arguments from the preceding proof work, the first column of Madj would have to be
of the form h ·a where a is a vector whose entries span a subspace of R[x, y, z]d−1

that is defined over the rationals. It is not clear whether this is always the case.

The next example shows that the smallest size of a rational spectrahedral repre-
sentation is in general larger than the degree of the curve.

Example 2.13. Consider the univariate polynomial p = x3
−6x−3 ∈Q[x]. It has

three distinct real zeros but is irreducible over the rational numbers by Eisenstein’s
criterion. The plane elliptic curve defined by y2

= p(x) is hyperbolic. Its hyper-
bolicity cone has the following spectrahedral representation with rational 4× 4
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Figure 5. Hyperbolic cubic (in blue), an interlacer touching in 2
real points (in green) and the linear factor (dashed in blue).

matrices:(x, y, z) ∈ R3
:


3z y −x − z −3x + z
y −x + 2z 0 −y

−x − z 0 z x + 4z
−3x + z −y x + 4z −x + 18z

� 0

.
This was obtained by applying our construction to the interlacer y2

+3xz+ z2 with
two real contact points (Figure 5).

It also has a 3× 3 spectrahedral representation with real matrices by the Helton–
Vinnikov theorem. It does, however, not have such a representation with rational
3× 3 matrices. Indeed, any such representation would yield a contact interlacer
defined over the rational numbers by taking some principal 2× 2 minor. This
interlacer would give rise to a divisor D defined over the rational numbers with 2D=
6P∞ where P∞ is the point of the curve at infinity. Thus, D−3P∞ would be an even
theta characteristic defined over the rationals. On the other hand, the three even theta
characteristics of the curve are given by Pi−P∞ for P1, P2, P3 the three intersection
points of the curve with the x-axis. These are clearly not defined over the rationals.

3. Bézout matrices

Let f, g ∈ R[t] be two univariate polynomials having degrees deg( f ) = d and
deg(g)= d − 1. The Bézout matrix of f and g is defined as follows. We write

f (s)g(t)− f (t)g(s)
s− t

=

d∑
i, j=1

bi j si−1t j−1

for some real numbers bi j . Then the Bézout matrix is defined as B( f, g)= (bi j )i j .
Note that B( f, g) is always a real symmetric matrix. The Bézout matrix can be
used to detect the properties of being real-rooted and interlacing.
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Theorem 3.1 (see, e.g., [Kreı̆n and Naı̆mark 1981, §2.2]). Let f, g ∈ R[t] be
univariate polynomials with d = deg( f ) = deg(g)+ 1. Then the following are
equivalent:

(i) the Bézout matrix B( f, g) is positive semidefinite and

(ii) the polynomial g interlaces f .

Furthermore, the Bézout matrix has full rank if and only if f and g have no common
zero.

In the multivariate case we can proceed analogously. Let f, g ∈R[x0, . . . , xn] be
homogeneous polynomials of degrees d and d − 1, respectively. We assume that f
and g do not vanish at e = (1, 0, . . . , 0). Then, writing x = (x1, . . . , xn), we have

f (s, x)g(t, x)− f (t, x)g(s, x)
s− t

=

d∑
i, j=1

bi j si−1t j−1

for some homogeneous polynomials bi j ∈ R[x1, . . . , xn] of degree 2d − (i + j).
Again, we define the Bézout matrix as B( f, g)= (bi j )i j . It follows from the above
theorem that B( f, g) is positive definite for every 0 6= x ∈ Rn if and only if f is
hyperbolic with respect to e and g is a strict interlacer of f .

Remark 3.2. The Bézout matrix B( f, g) is closely related to the Wronskian poly-
nomial W( f, g) = De f · g − f ·Deg. Namely, if we let w = (1, x0, . . . , xd−1

0 )t ,
then W( f, g)= wt

·B( f, g) ·w. Indeed, by the definition of the Bézout matrix the
right-hand side equals

lim
s→t

(
f (s, x)g(t, x)− f (t, x)g(s, x)

s− t

)
=W( f, g).

We also note that, for square-free polynomials f , the polynomial g of degree
deg( f )− 1 is uniquely determined by W( f, g).

We can use the Wronskian polynomial W( f, g) to describe the set Int( f, e) of
interlacers of f in direction e, which is a convex cone. By [Kummer et al. 2015,
Corollary 2.7], Int( f, e) can be represented as a linear image of a section of the
cone of positive polynomials of degree 2d − 2, where d = deg f :

Int( f, e)= {g ∈ R[x, y, z]d−1 :W( f, g)≥ 0}.

Whenever W( f, g) is a sum of squares, the cone Int( f, e) can be sampled by solving
a linear matrix inequality as shown in the following example.

Example 3.3. The cubic f = x3
+ 2x2 y − xy2

− 2y3
− xz2 is hyperbolic with

respect to e = (1, 0, 0), and C( f, e) is the green region in Figure 6.
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Figure 6. A cubic hyperbolic curve (in blue) with three interlacers,
one defined over Q (in dashed black) and two over an extension of
degree 4 (in green). The dashed blue line is the extra factor in the
determinantal representation.

Let g = x2
+ g110xy+ g101xz+ g020 y2

+ g011 yz+ g002z2 be a generic quadratic
form such that g(e)= 1. The Wronskian of f, g in direction e is the ternary quartic

W( f, g)= 2g110x3 y+2g110x2 y2
+2g110 y4

+2g101x3z+2g101x2 yz+2g101 y3z

+3g020x2 y2
+4g020xy3

−g020 y4
−g020 y2z2

+3g011x2 yz+4g011xy2z

−g011 y3z−g011 yz3
+3g002x2z2

+4g002xyz2
−g002 y2z2

−g002z4

+ x4
+ x2 y2

+ x2z2
+4xy3.

Let G = (Gi j ) be a symmetric 6× 6 matrix of unknowns, and consider the linear
system W( f, g)= mt

·G ·m, where m is the vector of monomials of degree 2 in
x, y, z. We obtain that G (the Gram matrix of W( f, g) [Powers and Wörmann
1998]) has the form

G =


1 g110 g101 G14 g101−G23+

3
2 g011 G16

g110 H22 G23 2g020+2 −G34+2g011 −G35+2g002

g101 G23 1+3g002−2G16 G34 G35 0
G14 2g020+2 G34 2g110−g020 g101−

1
2 g011 G46

H15 2g011−G34 G35 g101−
1
2 g011 −2G46−g020−g002 −

1
2 g011

G16 2g002−G35 0 G46 −
1
2 g011 −g002

 ,

where

H15 = g101−G23+
3
2 g011 and H22 = 3g020+ 2g110+ 1− 2G14.

Let p1 = (1, 1, 0) and p2 = (1,−1, 0). Interlacers in Int( f, e) vanishing in p1

and p2 can be computed through the quantified linear matrix inequality

(3.4) there exists Gi j : g(p1)= g(p2)= 0, G � 0.
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Solving (3.4) symbolically using [Henrion et al. 2019] yields the parametrization
of an interlacer g = x2

− y2
+ t · z2, where t is any of the two real roots t1, t2 of

q(t)= 49t4
− 20t3

+ 22t2
+ 12t + 1 (the green curves in Figure 6).

Since the matrices G corresponding to the two interlacers have rank two, the
corresponding Wronskian polynomials are sums of two squares. Choosing a rational
t1 < r < t2 gives a rational interlacer, for instance g = x2

− y2
−

1
5 z2.

As in Example 2.13, our construction yields rational 4×4 determinantal represen-
tations of f times a rational linear polynomial that can be built from the interlacer
g = x2

− y2
−

1
5 z2:

24
125 f · (2x − y)= det


5x + 10y −x − 2y −4z 2z
−x − 2y x 0 0
−4z 0 4x + 2y −2x − 4y
2z 0 −2x − 4y 4x + 2y

 .
The matrix on the right-hand side of the previous equality gives a spectrahedral
representation of C( f, e) (the green region in Figure 6).

In the following, we show how our construction gives a sum-of-squares decompo-
sition, i.e., a representation B( f, g)= St S for some (not necessarily square) matrix S
with polynomial entries, for any curve f hyperbolic with respect to (1, 0, 0) and
any strict interlacer g.

We have seen that there is a basis g1, . . . , gN of R[x, y, z]d−1 with g1 = g and
real symmetric matrices A, B,C of size N such that A is positive definite and

(3.5) (x A+ y B+ zC) · v = δ1 · f

where v = (g1, . . . , gN )
t and δ1 ∈ RN is the first unit vector. Let us write v =

h0xd−1
+ · · ·+ hd−1 for some hi ∈ R[y, z]Ni , and let S be the matrix with columns

hd , . . . , h0. We claim that B( f, g) = St AS. Indeed, by [Kummer 2017, §3], we
have that B( f, g̃) = St AS for some g̃ ∈ R[x, y, z]d−1. Furthermore, taking the
derivative of (3.5) yields

A · v+ (x A+ y B+ zC) ·Dev = δ1 ·De f.

Now it follows by multiplying with vt from the left and another application of (3.5)
that

vt
· A · v+ f · δt

1 ·Dev = v
t
· A · v+ vt

· (x A+ y B+ zC) ·Dev = v
t
· δ1 ·De f.

Thus, by Remark 3.2, applied with v = Sw, we find

W( f, g̃)= wt B( f, g̃)w = wt St ASw = vt
· δ1De f − f · δt

1Dev =W( f, g),

which implies g = g̃, again by Remark 3.2, since f is square-free.
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Remark 3.6. It has been shown in [Kummer 2017] that a sum-of-squares rep-
resentation B( f, g) = St AS of a Bézout matrix of a hyperbolic polynomial f
with a positive definite matrix A as above gives rise to a definite determinantal
representation of some multiple of f . Now we have seen that for every strict
interlacer of a hyperbolic curve there is a sum-of-squares decomposition of the
corresponding Bézout matrix which even gives rise to a spectrahedral representation
of the hyperbolicity cone.
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