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DEFORMATIONS OF LINEAR LIE BRACKETS

PIER PAOLO LA PASTINA AND LUCA VITAGLIANO

A VB-algebroid is a vector bundle object in the category of Lie algebroids.
We attach to every VB-algebroid a differential graded Lie algebra and we
show that it controls deformations of the VB-algebroid structure. Several
examples and applications are discussed. This is the first in a series of pa-
pers devoted to deformations of vector bundles and related structures over
differentiable stacks.

Introduction

Lie algebroids are ubiquitous in differential geometry: they encompass several
algebraic and geometric structures such as Lie algebras, tangent bundles, foliations,
Poisson brackets, Lie algebra actions on manifolds and so on, and they are the infin-
itesimal counterparts of Lie groupoids. The notion of Lie algebroid appeared for the
first time in the work of Pradines [1967] and has become more and more important in
the last fifty years. In particular, deformations of Lie algebroids have been discussed
by Crainic and Moerdijk [2008], while deformations of Lie groupoids have been
studied very recently by Crainic, Mestre and Struchiner [Crainic et al. 2015].

VB-algebroids are vector bundle objects in the category of Lie algebroids
[Mackenzie 1998a; Gracia-Saz and Mehta 2010]. They emerge naturally in the
study of Lie algebroids. For instance, the tangent and the cotangent bundles of a
Lie algebroid are VB-algebroids. Additionally, VB-algebroids are generalizations
of ordinary representations of Lie algebroids: specifically they are equivalent to
2-term representations up to homotopy of Lie algebroids, hence to (special kinds of)
representations of Lie algebroids on graded vector bundles [Arias Abad and Crainic
2012; Gracia-Saz and Mehta 2010]. Finally, VB-algebroids are the infinitesimal
counterparts of VB-groupoids. The latter serve as models for vector bundles over
certain singular spaces: differentiable stacks [Behrend and Xu 2011]. Examples of
differentiable stacks are orbifolds, leaf spaces of foliations and orbit spaces of Lie
group actions.

This is the first in a series of papers devoted to deformations of vector bundles
over differentiable stacks and related deformation problems. A first step in this
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direction has been taken by del Hoyo and Ortiz [2016], who have shown that the
VB-cohomology of a VB-groupoid is actually VB-Morita invariant, i.e., it is an
invariant of the associated vector bundle of differentiable stacks. Notice that several
important geometric structures, like Riemannian metrics, symplectic forms, complex
structures, etc., can be seen as vector bundle maps. In order to study deformations
of the former, it is then useful to study deformations of vector bundles themselves
first. In this paper, we begin this program working at the infinitesimal level, i.e.,
studying deformations of VB-algebroids. More precisely, we study deformations
of VB-algebroid structures on double vector bundles. In the second paper of the
series we will study deformations of VB-groupoids and their behavior under the
Lie functor [La Pastina and Vitagliano 2019].

The paper is divided into two main sections. The first one presents the general
theory, and the second one discusses examples and applications. In turn, the first
section is divided into four subsections. In Section 1.1 we recall from [Crainic
and Moerdijk 2008] the differential graded Lie algebra (DGLA) controlling de-
formations of Lie algebroids. We also discuss gauge equivalent deformations,
something that is missing in the original discussion by Crainic and Moerdijk. In
Section 1.2 we recall the basics of VB-algebroids, in particular their description
in terms of graded manifolds. In Section 1.3 we discuss deformations of VB-
algebroids. Let (W ⇒ E; A ⇒ M) be a VB-algebroid. In particular W ⇒ E
is a Lie algebroid, so it has an associated deformation DGLA. We show that
deformations of (W ⇒ E; A ⇒ M) are controlled by the sub-DGLA of linear
cochains, originally introduced in [Esposito et al. 2016], that we call the linear
deformation complex, and we provide various equivalent descriptions of this object.
The most efficient one involves the homogeneity structure of W → A, i.e., the
action of the monoid R≥0 on the total space by fiber-wise homotheties: linear
deformation cochains are precisely those that are invariant under the action by
(nonzero) homotheties. It is clear that this action induces graded subalgebras of the
algebras of functions, differential forms and multivectors on the total space of a
vector bundle and can be used to define linear objects in these algebras, thus giving
a unified framework to the original definitions in [Bursztyn and Cabrera 2012]
and [Iglesias-Ponte et al. 2012]. We recall this briefly in the Appendix. Another
important description of the linear deformation complex is in terms of graded
geometry. It is well known that Lie algebroids are equivalent to DG-manifolds
concentrated in degree 0 and 1 and VB-algebroids are equivalent to vector bundles
in the category of such graded manifolds [Mehta 2006; Vaintrob 1997; Voronov
2012]. Moreover, it is (implicitly) shown in [Crainic and Moerdijk 2008] that the
deformation DGLA of a Lie algebroid A ⇒ M is isomorphic to the DGLA of
vector fields on A[1], giving an elegant and manageable interpretation. A similar
interpretation becomes very useful in the case of VB-algebroids.
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In Section 1.4 we show that it is possible to “linearize” deformation cochains
of the top algebroid W ⇒ E of a VB-algebroid (W ⇒ E; A⇒ M), adapting a
technique from [Cabrera and Drummond 2017]. The main consequence is that
the linear deformation cohomology is embedded, as a graded Lie algebra, in the
deformation cohomology of the top algebroid.

In the second section of the paper we present examples. We discuss in detail
particularly simple instances of VB-algebroids coming from linear algebra, namely
VB-algebras and LA-vector spaces (Sections 2.1 and 2.2 respectively). VB-algebras
are equivalent to Lie algebra representations, and our discussion encompasses the
classical theory of Nijenhuis and Richardson [1966; 1967a]. In Section 2.3, we
discuss deformations of the tangent and the cotangent VB-algebroids of a Lie alge-
broid. Partial connections along foliations and Lie algebra actions on vector bundles
can be also encoded by VB-algebroids and we study the associated deformation
complexes in Sections 2.4 and 2.5 respectively. We also discuss VB-algebroids
of type 1 in the classification of Gracia-Saz and Mehta [2010]. Their deformation
cohomology is canonically isomorphic to that of the base algebroid (Section 2.6).

We usually indicate with a bullet • the presence of a degree in a graded vec-
tor space. If V • is a graded vector space, its shift by one V [1]• is defined by
V [1]k = V k+1. We assume the reader is familiar with graded manifolds and the
graded geometry description of Lie algebroids. Here, we only recall that a graded
manifold is concentrated in degree k, . . . , k + l, if the degrees of its coordinates
range from k to k+ l and a DG-manifold is a graded manifold equipped with an
homological vector field. For instance, if A⇒ M is a Lie algebroid, then shifting
by one the degree of the fibers of the vector bundle A→ M, we get a DG-manifold
A[1], concentrated in degree 0 and 1, whose homological vector field is the de
Rham differential dA of A. Explicitly, the algebra of smooth functions on A[1] is

C∞(A[1])=�•A := 0(∧
•A∗).

The correspondence A A[1] establishes an equivalence between the category
of Lie algebroids and the category of DG-manifolds concentrated in degree 0 and 1
[Vaintrob 1997]. We stress that the graded manifold A[1] is obtained from A by
assigning a degree 1 to the linear fiber coordinates. We warn the unfamiliar reader
that, despite the notation, the shift A  A[1] is (related but) different from the
degree shift for a graded vector space discussed at the beginning of this paragraph.
The reader can find more details in [Mehta 2006] which is also our main reference
for graded geometry.

1. Deformations of VB-algebroids

1.1. Deformations of Lie algebroids. A Lie algebroid A⇒ M over a manifold M
is a vector bundle A→ M with a Lie bracket [−,−] on its space of sections 0(A)
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and a bundle map ρ : A→ TM, satisfying the Leibniz rule:

[α, fβ] = ρ(α)( f )β + f [α, β]

for all α, β ∈ 0(A), f ∈ C∞(M).
We briefly recall the deformation theory of Lie algebroids, originally due to

Crainic and Moerdijk [2008], adding some small details about equivalence of
deformations which are missing in the original treatment. We begin with a vector
bundle E→ M. Let k ≥ 0.

Definition 1.1.1. A multiderivation of E with k entries (and C∞(M)-multilinear
symbol), also called a k-derivation, is a skew-symmetric, R-k-linear map

c : 0(E)× · · ·×0(E)→ 0(E)

such that there exists a bundle map σc : ∧
k−1 E→ TM, the symbol of c, satisfying

the following Leibniz rule:

c(α1, . . . , αk−1, f αk)= σc(α1, . . . , αk−1)( f )αk + f c(α1, . . . , αk),

for all α1, . . . , αk ∈ 0(E), f ∈ C∞(M).

1-derivations are simply derivations, 2-derivations are called biderivations. The
space of derivations of E is denoted by D(E) (or D(E,M) if we want to insist
on the fact that the base of the vector bundle E is M). The space of k-derivations
is denoted Dk(E) (or Dk(E,M)). In particular, D1(E) = D(E). We also put
D0(E) = 0(E) and D•(E) =

⊕
k≥0 D

k(E). Then D•(E)[1], endowed with the
Gerstenhaber bracket J−,−K, is a graded Lie algebra. We recall that, for c1∈D

k(E),
and c2 ∈D

l(E), the Gerstenhaber product of c1 and c2 is the R-(k+ l − 1)-linear
map c1 ◦ c2 given by

(c1 ◦ c2)(α1, . . . , αk+l−1)

=

∑
τ∈Sl,k−1

(−1)τ c1(c2(ατ(1), . . . , ατ(l)), ατ(l+1), . . . , ατ(l+k−1))

for all α1, . . . , αk+l−1 ∈ 0(E), and the Gerstenhaber bracket is defined by

Jc1, c2K= (−1)(k−1)(l−1)c1 ◦ c2− c2 ◦ c1.

The graded Lie algebra D•(E)[1] first appeared in [Grabowska et al. 2003].
The group of vector bundle automorphisms of E acts naturally on multiderivations

of E . If φ : E→ E is an automorphism covering the diffeomorphism φM : M→ M,
then φ acts on sections of E (by pull-back) via the following formula:

φ∗α := φ−1
◦α ◦φM , α ∈ 0(E),
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and it acts on higher degree multiderivations via:

(φ∗c)(α1, . . . , αk) := φ
∗(c(φ−1∗α1, . . . , φ

−1∗αk))

for all α1, . . . , αk ∈ 0(E), c ∈ Dk(E). Moreover, φ acts in the obvious way on
sections of the dual bundle E∗. It is clear that

(1-1)

φ∗( f α)= φ∗M f ·φ∗α,

φ∗(c(α1, . . . , αk))= (φ
∗c)(φ∗α1, . . . , φ

∗αk),

φ∗M〈ϕ, α〉 = 〈φ
∗ϕ, φ∗α〉,

for all α, α1, . . . , αk ∈ 0(E), f ∈ C∞(M), and ϕ ∈ 0(E∗), where 〈−,−〉 :
E∗⊗ E → R is the duality pairing. Finally, φ acts on the exterior algebras of E
and E∗, and it also acts on vector bundle maps ∧•E→ TM in the obvious way.

A direct computation shows that the action of vector bundle automorphisms on
multiderivations does also respect the Gerstenhaber bracket, i.e.,

(1-2) φ∗Jc1, c2K= Jφ∗c1, φ
∗c2K

for all c1, c2 ∈D
•(E). Additionally,

(1-3) φ∗σc = σφ∗c

for all c ∈D•(E).
If A ⇒ M is a Lie algebroid, the Lie bracket bA = [−,−] on sections of A

is a biderivation and it contains the full information about A⇒ M. Additionally,
JbA, bAK= 0 as a consequence of the Jacobi identity. We summarize this remark
with the following:

Proposition 1.1.2. Lie algebroid structures on A→ M are in one-to-one corre-
spondence with Maurer–Cartan elements in the graded Lie algebra D•(A)[1], i.e.,
degree 1 elements b such that Jb, bK= 0.

Now, fix a Lie algebroid structure A⇒M on the vector bundle A→M, and let bA

be the Lie bracket on sections of A. Equipped with the Gerstenhaber bracket and
the interior derivation δ := JbA,−K, D•(A)[1] is a differential graded Lie algebra
(DGLA), denoted C •def(A) (or C •def(A,M) if we want to insist on the base manifold
being M) and called the deformation complex of A. The cohomology of C •def(A) is
denoted H •

def(A) (or H •

def(A,M)), and called the deformation cohomology of A.

Remark 1.1.3. Notice that we adopt a different convention from that of [Crainic and
Moerdijk 2008], where Ck

def(A) is the space of k-derivations. With that convention,
however, C •def(A) is a DGLA only up to a shift.
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The differential δ : C •def(A)→ C •+1
def (A) is given, on k-derivations, by

(1-4) δc(α1, . . . ,αk+1)=
∑

i

(−1)i+1
[αi ,c(α1, . . . , α̂i , . . . ,αk+1)]

+

∑
i< j

(−1)i+ j c([αi ,α j ],α1, . . . , α̂i , . . . , α̂ j , . . . ,αk+1).

Definition 1.1.4. A deformation of bA is any (other) Lie algebroid structure on the
vector bundle A→ M.

It is clear that b = bA+ c satisfies Jb, bK= 0 if and only if

δc+ 1
2Jc, cK= 0,

i.e., c is a (degree 1) solution of the Maurer–Cartan equation in the DGLA C •def(A).
Hence Proposition 1.1.2 can be rephrased saying that deformations of bA are in
one-to-one correspondence with Maurer–Cartan elements of C •def(A).

Now, let b0, b1 be deformations of bA. We say that b0 and b1 are equivalent
if there exists a fiber-wise linear isotopy taking b0 to b1, i.e., there is a smooth
path of vector bundle automorphisms φt : A→ A, t ∈ [0, 1], such that φ0 = idA

and φ∗1 b1 = b0. On the other hand, two Maurer–Cartan elements c0, c1 are gauge-
equivalent if they are interpolated by a smooth path of 1-cochains ct , and ct is a
solution of the following ODE:

(1-5) dct
dt
= δ1t + Jct ,1tK

for some smooth path of 0-cochains (i.e., derivations) 1t , t ∈ [0, 1].
Notice that (1-5) is equivalent to

(1-6) dbt
dt
= Jbt ,1tK,

where bt = bA+ ct .

Proposition 1.1.5. Let b0 = bA+ c0, b1 = bA+ c1 be deformations of bA. If b0, b1

are equivalent, then c0, c1 are gauge-equivalent. If M is compact, the converse is
also true.

Proof. Suppose that b0 and b1 are equivalent deformations, and let φt : A→ A be a
fiber-wise linear isotopy taking b0 to b1. Set bt = φ

−1
t
∗b0 = bA+ ct , and let 1t be

the infinitesimal generator of φt , i.e.,

(1-7) dφ∗t
dt
= φ∗t ◦1t .

Notice that

Jbt , btK= Jφ−1
t
∗b0, φ

−1
t
∗b0K= φ−1

t
∗Jb0, b0K= 0,
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so bt is a deformation of bA for all t . Moreover, φ∗t (bt(α, β))= b0(φ
∗
t α, φ

∗
t β) for

all α, β ∈ 0(A). Differentiating with respect to t , we obtain:

φ∗t

(
1t(bt(α, β))+

dbt

dt
(α, β)

)
= b0(φ

∗

t (1t(α)), φ
∗

t β)+ b0(φ
∗

t α, φ
∗

t (1t(β)))

= φ∗t (bt(1t(α), β)+ bt(α,1t(β))),

so
dbt

dt
(α, β)= bt(1t(α), β)+ bt(α,1t(β))−1t(bt(α, β)),

i.e., (1-6), hence (1-5), holds, as desired.
Conversely, suppose that M is compact and there exist a family of derivations 1t

and a family of 1-cochains bt such that (1-5) or, equivalently, (1-6) holds. Let X t be
the symbol of 1t . From compactness, X t is a complete time-dependent vector field
on M, i.e., it generates a complete flow (φM)t . The time dependent derivation 1t

generates a flow by vector bundle automorphisms φt : A→ A, covering the complete
flow (φM)t (and implicitly defined by the ODE (1-7)). By linearity, φt is a complete
flow itself. We want to show that

(1-8) φ∗t (bt(α, β))= b0(φ
∗

t α, φ
∗

t β), α, β ∈ 0(A).

For t = 0 this is obviously true and the derivatives of both sides are the same
because of (1-6). So we have (1-8), and, by taking t = 1, we conclude that φt is a
(fiber-wise linear) isotopy taking b0 to b1. �

Remark 1.1.6. An infinitesimal deformation of a Lie algebroid A ⇒ M is an
element c ∈ C1

def(A) such that δc = 0, i.e., a 1-cocycle in C •def(A). As usual in
deformation theory, this definition is motivated by the fact that, if ct is a smooth
path of Maurer–Cartan elements starting at 0, then (dct/dt)|t=0 is an infinites-
imal deformation of A. More generally, the cocycle condition δc = 0 is just
the linearization at c = 0 of the Maurer–Cartan equation. Hence, 1-cocycles in
C •def(A) can be seen as the (formal) tangent vectors to the variety of Maurer–Cartan
elements. Similarly, 1-coboundaries can be seen as tangent vectors to the gauge
orbit through 0. We conclude that H 1

def(A) is the formal tangent space to the moduli
space of deformations under gauge equivalence.

Remark 1.1.7. The deformation complex of a Lie algebroid has an efficient de-
scription in terms of graded geometry. In fact, graded geometry becomes very
useful when dealing with several issues related to VB-algebroids.

Let A⇒ M be a Lie algebroid and let (�•A = 0(∧
•A∗), dA) be its de Rham

complex (sometimes we will use�•A,M for A-forms, if we want to insist on M being
the base manifold). Cochains in �•A can be seen as functions on the DG-manifold
A[1] obtained from A shifting by one the fiber degree. The Q-structure on A[1] is
simply dA. Additionally, there is a canonical isomorphism C •def(A)∼= X(A[1])• of
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DGLAs, where X(A[1])• is the space of vector fields on the DG-manifold A[1] (in
other words, X(A[1])• is the space of (graded) derivations of �•A). With the graded
commutator and the adjoint operator [dA,−], X(A[1])• is indeed a DGLA. The
isomorphism C •def(A)→ X(A[1])•, c 7→ δc can be described explicitly as follows.
Let c ∈ Ck(A) and let σc be the symbol of c. Then δc ∈ X(A[1])• is the degree k
vector field that takes ω ∈�p

A, to δcω ∈�
k+p
A with

(1-9) δcω(α1, . . . ,αk+p)=
∑
τ∈Sk,p

(−1)τσc(ατ(1), . . . ,ατ(k))ω(ατ(k+1), . . . ,ατ(k+p))

−

∑
τ∈Sk+1,p−1

(−1)τω(c(ατ(1), . . . ,ατ(k+1)),ατ(k+2), . . . ,ατ(k+p)),

where Sl,m denotes (l,m)-unshuffles. Notice that c can be reconstructed from δc by
using formula (1-9) for p = 0, 1:

(1-10) δc f (α1, . . . , αk)= σc(α1, . . . , αk) f,

and

(1-11) δcϕ(α1, . . . , αk+1)=∑
i

(−1)k−iσc(α1, . . . , α̂i , . . . , αk+1)〈ϕ, αi 〉+ 〈ϕ, c(α1, . . . , αk+1)〉,

where f ∈ C∞(M), ϕ ∈�1
A = 0(A

∗), and α1, . . . , αk+1 ∈ 0(A).

1.2. Double vector bundles and VB-algebroids. In this section we recall the basic
definitions and properties of double vector bundles and VB-algebroids that will
be useful later. For all the necessary details about the homogeneity structure of
a vector bundle, including our notations, we refer to the Appendix, which we
recommend reading before continuing with the bulk of the paper. We only recall
here that, given a vector bundle E → M, the homogeneity structure of E is the
action h : R≥0 × E → E , (λ, e) 7→ hλe := λ · e, of nonnegative reals on E by
homotheties (fiber-wise multiplication by scalars).

Definition 1.2.1. A double vector bundle (DVB for short) is a vector bundle in the
category of vector bundles. More precisely, it is a commutative square

(1-12)
W

qW
��

p̃
// E

q
��

A
p
// M

where all four sides are vector bundles, the projection qW :W → A, the addition
+A :W ×A W →W, the multiplication λ ·A :W →W by any scalar λ ∈ R in the
fibers of W→ A and the zero section 0̃A

: A→W are vector bundle maps covering
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the projection q : E→ M, the addition + : E ×M E→ E , the scalar multiplication
λ · : E → E and the zero section 0E

: M→ E , respectively. The projection, the
addition, the scalar multiplication and the zero section of a vector bundle will be
called the structure maps. DVB (1-12) will be also denoted by (W → E; A→ M).

Notice that W is a vector bundle over E and over A, so it carries two homogeneity
structures. However, we will mainly use the latter and denote it simply by h. For
many more details on DVBs we refer to [Mackenzie 2005] and [Gracia-Saz and
Mehta 2010].

Let (W→ E; A→M) be a DVB. The manifold W will be called the total space.
Consider the submanifold

C := ker(W → E)∩ ker(W → A)⊂W.

In other words, elements of C are those projecting simultaneously on the (images
of the) zero sections of A and E (which are both diffeomorphic to M). The fiber-
wise operations of the vector bundles W → E and W → A coincide on C (see
[Mackenzie 2005]), so they define a (unique) vector bundle structure on C over M.
The vector bundle C→ M is called the core of (W → E; A→ M).

In the following, we denote by0(W, E) the space of sections of W→ E . Sections
of C→M can be naturally embedded into 0(W, E), via the map 0(C)→0(W, E),
χ 7→ χ , defined by:

(1-13) χ e = 0̃E
e +A χq(e), e ∈ E .

The image of the inclusion χ 7→ χ is, by definition, the space 0core(W, E) of core
sections of W → E .

There is another relevant class of sections of W → E : linear sections. We say
that a section of W→ E is a linear section if it is a vector bundle map covering some
section of A→ M. The space of linear sections of W → E is denoted 0lin(W, E).
We will usually denote by α̃, β̃, . . . the sections in 0lin(W, E). The C∞(E)-module
0(W, E) is spanned by 0core(W, E) and 0lin(W, E).

Linear and core sections of W → E can be efficiently characterized using the
homogeneity structure h. Namely, the following lemma holds.

Lemma 1.2.2. A section w ∈ 0(W, E) is

(1) linear if and only if h∗λw = w for every λ > 0;

(2) core if and only if h∗λw = λ
−1w for every λ > 0.

More generally, we say that a section w of W → E is of weight q if h∗λw = λ
qw

for every λ > 0. Using this terminology, linear sections are precisely sections of
weight 0 and core sections are sections of weight −1. It is easy to check that there
are no nonzero sections of W → E of weight less than −1.
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Remark 1.2.3. Let (W→ E; A→M) be a DVB, let C be its core and let W ∗A→ A
be the dual vector bundle of W → A. Then

W ∗A

��

// C∗

��

A // M

is a DVB, called the dual of W over A, whose core is E∗. We refer to [Mackenzie
2005] for the structure maps of the dual DVB.

Example 1.2.4. A distinguished example of a DVB is the tangent double of a
vector bundle. If E→ M is a vector bundle, then

TE

��

// E

��

TM // M

is a DVB with core canonically isomorphic to E . It is easy to see that linear sections
of TE → E are precisely linear vector fields (see the Appendix). Moreover, the
inclusion 0(E)→ 0core(TE→ E) is the classical vertical lift, identifying a section
of E with a fiber-wise constant vertical vector field on E itself. We will also call
core vector fields the core sections of TE→ E .

The dual of TE over E is

T ∗E

��

// E

��

E∗ // M

We now pass to VB-algebroids.

Definition 1.2.5. A VB-algebroid is a DVB as in (1-12), equipped with a Lie
algebroid structure W ⇒ E such that the anchor ρW :W → TE is a vector bundle
map covering a vector bundle map ρA : A→ TM and the Lie bracket [−,−]W on
sections of W → E satisfies

(1-14)

[0lin(W, E), 0lin(W, E)]W ⊂ 0lin(W, E),

[0lin(W, E), 0core(W, E)]W ⊂ 0core(W, E),

[0core(W, E), 0core(W, E)]W = 0.

Notice that, using the grading defined above, property (1-14) is equivalent to
asking that the Lie bracket on 0(W, E) is of weight 0. This can be made very precise
using the action of vector bundle automorphisms on multiderivations (see below).
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Remark 1.2.6. Let (W ⇒ E; A⇒ M) be a VB-algebroid with core C , and let
(W ∗→ C∗; A→ M) be its dual DVB. One can show that there is a canonical VB-
algebroid structure (W ∗A⇒C∗; A⇒ M) on the latter, called the dual VB-algebroid.
The dual VB-algebroid will appear only marginally in the sequel, so we do not dis-
cuss the details of this construction. For more information, see [Mackenzie 1998b].

Graded geometric description. There is a very useful description of VB-algebroids
in terms of graded geometry. We begin discussing linear vector fields on (the total
space of) a vector bundle E→M of graded manifolds. First we fix our notation. As
already mentioned, a section φ of the dual bundle E∗→M determines a fiber-wise
linear function `φ on E . As in the nongraded case, a section ε of E itself determines
a fiber-wise constant vector field ε↑ ∈ X(E)•, its vertical lift, uniquely defined by

ε↑(`φ) := (−)
|ε||φ|
〈φ, ε〉.

We denote by Xcore(E)• the space of core vector fields, i.e., fiber-wise constant
vertical vector fields on E . The correspondence ε 7→ ε↑ establishes a graded
C∞(M)•-module isomorphism 0(E)• ∼= Xcore(E)•. Now let X ∈ X(E)•. Then X is
linear if it preserves fiber-wise linear functions. Equivalently, X is linear if the
(graded) commutator [X,−] preserves fiber-wise constant vector fields. We denote
by Xlin(E)• the space of linear vector fields on E . Notice that linear vector fields
also preserve fiber-wise constant functions. Finally, similarly as in the nongraded
case, denote by D(E)• the space of graded derivations of E . There is a canonical iso-
morphism of graded Lie algebras and graded C∞(M)•-modules Xlin(E)•→D(E)•,
X 7→ DX , implicitly defined by (DXε)

↑
= [X, ε↑], for all ε ∈ 0(E)•.

Now, we have already recalled that Lie algebroids are equivalent to DG-manifolds
concentrated in degree 0 and 1. For VB-algebroids we have an analogous result
[Voronov 2012] that we now briefly explain. Recall that a DG-vector bundle is a vec-
tor bundle of graded manifolds E→M such that E and M are both DG-manifolds,
with homological vector fields QE and QM, respectively, and, additionally, QE
is linear, and projects onto QM. Equivalently E → M is a vector bundle of
graded manifolds, M is a DG-manifold, with homological vector field QM, E is
equipped with a homological derivation DE , i.e., a degree 1 derivation such that
[DE , DE ] = 0, and, additionally, the symbol of DE is precisely QM. For more
details about DG-vector bundles see, e.g., [Vitagliano 2016].

Finally, let (W→E; A→M) be a DVB. If we shift the degree in the fibers of both
W→ E and A→M (and use the functoriality of the shift) we get a vector bundle of
graded manifolds, denoted W [1]E→ A[1]. If (W⇒ E; A⇒M) is a VB-algebroid,
then W [1]E → A[1] is a DG-vector bundle concentrated in degree 0 and 1.

Theorem 1.2.7 (see [Voronov 2012]). The correspondence (W ⇒ E; A⇒ M) 
(W [1]E→ A[1]) establishes an equivalence between the category of VB-algebroids
and the category of DG-vector bundles concentrated in degree 0 and 1.
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1.3. The linear deformation complex of a VB-algebroid. In this subsection we
introduce the main object of this paper: the linear deformation complex of a VB-
algebroid, first introduced in [Esposito et al. 2016] (for different purposes). Actually,
the whole discussion in Section 1.1 extends to VB-algebroids. We skip most of the
proofs; they can be carried out in a very similar way as for plain Lie algebroids.

We begin with a DVB (W → E; A→ M). Denote by D•(W, E) the space of
multiderivations of the vector bundle W → E . As in Section 1.2, denote by h the
homogeneity structure of W → A. The action of h induces a grading on the space
of multiderivations.

Definition 1.3.1. A multiderivation c ∈D•(W, E) is homogeneous of weight q (or,
simply, of weight q) if h∗λc = λqc for every λ > 0. A multiderivation is linear if it
is of weight 0, and it is core if it is of weight −1.

We denote by D•q(W, E) the space of multiderivations of weight q, and by
D•lin(W, E) and D•core(W, E), respectively, the spaces of linear and core multi-
derivations.

As 0core(W, E) and 0lin(W, E) generate 0(W, E), a multiderivation is com-
pletely characterized by its action, and the action of its symbol, on linear and core
sections. From (1-1) and the fact that there are no nonzero sections of weight
less than −1, it then follows there are no nonzero multiderivations of weight less
than −1. Moreover:

Proposition 1.3.2. Let c be a k-derivation of W → E. Then c is linear if and only
if all the following conditions are satisfied:

(1) c(α̃1, . . . , α̃k) is a linear section,

(2) c(α̃1, . . . , α̃k−1, χ1) is a core section,

(3) c(α̃1, . . . , α̃k−i , χ1, . . . , χ i )= 0,

(4) σc(α̃1, . . . , α̃k−1) is a linear vector field,

(5) σc(α̃1, . . . , α̃k−2, χ1) is a core vector field,

(6) σc(α̃1, . . . , α̃k−i−1, χ1, . . . , χ i )= 0

for all linear sections α̃1, . . . , α̃k , all core sections χ1, . . . , χ i of W → E , and
all i ≥ 2.

Proof. This follows directly from Lemma 1.2.2; see also [Esposito et al. 2016]. �

In particular, a linear k-derivation is uniquely determined by its action on k linear
sections and on k − 1 linear sections and a core section, and by the action of its
symbol on k− 1 linear sections and on k− 2 linear sections and a core section; see
also [Esposito et al. 2016, Theorem 3.34].

It immediately follows from (1-2) that D•lin(W, E)[1] is a graded Lie subalgebra
of D•(W, E)[1]. The following proposition is then straightforward.
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Proposition 1.3.3. VB-algebroid structures on the DVB (W → E; A→ M) are in
one-to-one correspondence with Maurer–Cartan elements in D•lin(W, E)[1].

Fix a VB-algebroid structure (W⇒ E; A⇒M) on the DVB (W→ E; A→M),
and denote by bW the Lie bracket on sections of W → E . We also denote by
C •def(W, E) the deformation complex of the top algebroid W⇒ E . It is clear that bW

is a linear biderivation of W → E , i.e., bW ∈D
2
lin(W, E). Hence D•lin(W, E)[1] is

a sub-DGLA of C •def(W, E), denoted C •def,lin(W ), and called the linear deformation
complex of W ⇒ E . Its cohomology is denoted H •

def,lin(W ) and called the linear
deformation cohomology of (W ⇒ E; A⇒ M).

Definition 1.3.4. A linear deformation of bW (or simply a deformation, if this does
not lead to confusion) is a VB-algebroid structure on the DVB (W → E; A→ M).

Exactly as for Lie algebroids, Proposition 1.3.3 is equivalent to saying that
deformations of bW are in one-to-one correspondence with Maurer–Cartan elements
of C •def,lin(W ).

Let b0, b1 be linear deformations of bW . We say that b0 and b1 are equivalent if
there exists a DVB isotopy taking b0 to b1, i.e., a smooth path of DVB automor-
phisms φt : W → W, t ∈ [0, 1] such that φ0 = idW and φ∗1 b1 = b0. On the other
hand, two Maurer–Cartan elements c0, c1 in C •def,lin(W ) are gauge-equivalent if
they are interpolated by a smooth path of 1-cochains ct ∈ C •def,lin(W ), and ct is a
solution of the ODE

dct

dt
= δ1t + Jct ,1tK

for some smooth path of 0-cochains 1t ∈ C •def,lin(W ), t ∈ [0, 1]. Equivalently,

dbt

dt
= Jbt ,1tK,

where bt = bW + ct .

Proposition 1.3.5. Deformations of the VB-algebroid (W ⇒ E; A ⇒ M) are
controlled by the DGLA C •def,lin(W ) in the following sense. Let b0 = bW + c0, b1 =

bW + c1 be linear deformations of bW . If b0, b1 are equivalent, then c0, c1 are
gauge-equivalent. If M is compact, the converse is also true.

Proof. The proof is similar to that of Proposition 1.1.5, with linear derivations
replacing derivations and DVB automorphisms replacing vector bundle automor-
phisms. We only need to be careful when using the compactness hypothesis.
Recall from [Esposito et al. 2016] that a linear derivation generates a flow by DVB
automorphisms. In particular, if1t is a time-dependent linear derivation of W→ E ,
then its symbol X t = σ(1t) ∈ X(E) is a linear vector field, hence it generates a
flow by vector bundle automorphisms of E . From the compactness of M, it follows
that X t , hence the flow of 1t , is complete. �
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Remark 1.3.6. An infinitesimal deformation of (W ⇒ E; A⇒ M) is an element
c∈C1

def,lin(W ) such that δc= 0, i.e., c is a 1-cocycle in C •def,lin(W ). If ct is a smooth
path of Maurer–Cartan elements starting at 0, then (dct/dt)|t=0 is an infinitesimal
deformation of (W ⇒ E; A⇒ M). Similarly as for Lie algebroids, H 1

def,lin(W ) is
the formal tangent space to the moduli space of linear deformations under gauge
equivalence. It also follows from standard deformation theory arguments that
H 2

def,lin(W ) contains obstructions to the extension of an infinitesimal linear defor-
mation to a formal one. Finally, we interpret 0-degree deformation cohomologies.
It easily follows from the definition that 0-cocycles in C •def,lin(A) are infinitesimal
multiplicative (IM) derivations of (W ⇒ E; A⇒ M) i.e., derivations of W → E
generating a flow by VB-algebroid automorphisms [Esposito et al. 2016]. Among
those, 1-cocycles are inner IM derivations, i.e., IM derivations of the form [α̃,−] for
some linear section α̃ of W → E . So H 0

def,lin(W ) consists of outer IM derivations.
See [Esposito et al. 2016] for more details.

Alternative descriptions. Let (W⇒ E; A⇒M) be a VB-algebroid. Then W⇒ E is
a Lie algebroid. As in the graded geometric description section we denote by W [1]E
the DG-manifold obtained from W shifting by the degree in the fibers of W→ E . So
C •def(W )∼=X(W [1]E)•. Moreover, it is easy to see from (1-9) and Proposition 1.3.2
that a deformation cochain c ∈ C •def(W ) is linear if and only if the corresponding
vector field δc ∈X(W [1]E)• is a linear vector field with respect to the vector bundle
structure W [1]E → A[1]. So there is a canonical isomorphism of DGLAs

C •def,lin(W )∼= Xlin(W [1]E)•.

As linear vector fields are equivalent to derivations, we also get

(1-15) C •def,lin(W )∼=D(W [1]E , A[1])•

as DGLAs.

Deformations of A from linear deformations of W . There is a natural surjection
C •def,lin(W )→ C •def(A) which is easily described in the graded geometric picture:
it is just the projection

Xlin(W [1]E)•→ X(A[1])•

of linear vector fields on the base. Equivalently, it is the symbol map

σ :D(W [1]E , A[1])•→ X(A[1])•.

In particular, we get a short exact sequence of DGLAs

(1-16) 0→ End(W [1]E)•→ Xlin(W [1]E)•→ X(A[1])•→ 0,

where End(W [1]E)• is the space of (graded) endomorphisms of W [1]E → A[1].
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Equivalently, there is a short exact sequence

(1-17) 0→ End(W [1]E)•→ C •def,lin(W )→ C •def(A)→ 0.

Note that the sub-DGLA End(W [1]E)• controls deformations of (W⇒ E; A⇒M)
that fix A⇒ M , i.e., deformations of W that fix bA (the Lie algebroid structure
on A) identify with Maurer–Cartan elements in End(W [1]E)•. Finally, we obtain a
long exact sequence

(1-18) · · ·→H k(End(W [1]E))→H k
def,lin(W )→H k

def(A)→H k+1(End(W [1]E))→···

connecting the linear deformation cohomology of W with the deformation coho-
mology of A.

Remark 1.3.7. A description of the subcomplex End(W [1]E)• ⊂ Xlin(W [1]E)• is
not needed in terms of more classical data in this paper. However, we stress that
this description exists in analogy with [Esposito et al. 2016, Theorem 3.34].

Deformations of the dual VB-algebroid. We conclude this section by noting that
the linear deformation complex of a VB-algebroid is canonically isomorphic to
that of its dual. Let (W ⇒ E; A⇒ M) be a VB-algebroid with core C , and let
(W ∗A⇒ C∗; A⇒ M) be the dual VB-algebroid.

Theorem 1.3.8. There is a canonical isomorphism of DGLAs

C •def,lin(W )∼= C •def,lin(W
∗

A).

Proof. There is an easy proof exploiting graded geometry. We only sketch it, and
leave the straightforward details to the reader. So, first of all, it is easy to see, e.g.,
in local coordinates, that the vector bundles of graded manifolds W ∗A[1]C∗→ A[1]
and W [1]∗E → A[1] are actually isomorphic up to a shift in the degree of the fiber
coordinates. Additionally, derivations of a vector bundle of graded manifolds are
canonically isomorphic to that of

(1) its dual,

(2) any vector bundle obtained from it by a shift in the degree of the fibers.

We conclude that

C •def,lin(W )∼=D(W [1]E , A[1])• ∼=D(W [1]∗E , A[1])•

∼=D(W ∗[1]C∗, A[1])• ∼= C •def,lin(W
∗

A). �

1.4. From deformation cohomology to linear deformation cohomology. Let
(W⇒ E; A⇒M) be a VB-algebroid. We have shown that deformations of the VB-
algebroid structure are controlled by a sub-DGLA C •def,lin(W ) of the deformation
complex C •def(W ) of the top Lie algebroid W⇒ E . In the next section, we show that
the inclusion C •def,lin(W ) ↪→C •def(W ) induces an inclusion H •

def,lin(W ) ↪→ H •

def(W )



280 PIER PAOLO LA PASTINA AND LUCA VITAGLIANO

in cohomology. In particular, given an infinitesimal linear deformation that is trivial
as infinitesimal deformation of the Lie algebroid W ⇒ A, i.e., it is connected to
the zero deformation by an infinitesimal isotopy of vector bundle maps, then it is
also trivial as infinitesimal linear deformation, i.e., it is also connected to the zero
deformation by an infinitesimal isotopy of DVB maps.

The key idea is adapting to the present setting the “homogenization trick” of
[Cabrera and Drummond 2017]. Let E → M be a vector bundle. In their paper,
Cabrera and Drummond consider the following natural projections from C∞(E) to
its C∞(M)-submodules C∞q (E) (of weight q homogeneous functions):

(1-19) prq : C
∞(E)→ C∞q (E), f 7→

1
q!

dq

dλq |λ=0h∗λ f.

Notice that prq( f ) is just the degree q part of the (fiber-wise) Taylor polynomial
of f . In the following, we adopt the notations from the Appendix and denote

(1-20)
core := pr0 : C

∞(E)→ C∞core(E), f 7→ fcore = h∗0 f,

lin := pr1 : C
∞(E)→ C∞lin(E), f 7→ flin =

d
dλ
|λ=0h∗λ f,

where C∞core(E) := C∞0 (E), and C∞lin(E) := C∞1 (M).
Formula (1-19) does not apply directly to multiderivations. To see why, let

(W → E, A→ M) be a DVB, let h be the homogeneity structure of W → A, and
let c ∈D•(W, E). Then the curve λ 7→ h∗λc is not defined in 0. Actually, λ= 0 is a
“pole of order 1” for h∗λc. More precisely, we have the following:

Proposition 1.4.1. The limit
lim
λ→0

λ · h∗λc

exists and defines a core multiderivation ccore.

Proof. The existence of the limit can be shown in coordinates. Also, for every µ 6= 0,

h∗µccore = h∗µ( lim
λ→0

λ · h∗λc)= lim
λ→0

λ · h∗µh∗λc = lim
λ→0

µ−1(λµ · h∗λµc)= µ−1ccore. �

The next proposition can be proved in the same way.

Proposition 1.4.2. The limit

lim
λ→0

(h∗λc− λ−1
· ccore)

exists and defines a linear multiderivation clin.

So far we have defined maps

(1-21)
core :D•(W, E)→D•core(W, E), c 7→ lim

λ→0
λ · h∗λc

lin :D•(W, E)→D•lin(W, E), c 7→ lim
λ→0

(h∗λc− λ−1
· ccore)

that split the inclusions in D•(W, E). We call the latter the linearization map.
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Remark 1.4.3. Once we have removed the singularity at 0, we can proceed as
in (1-19) and define the projections on homogeneous multiderivation of positive
weights q > 0:

prq :D
•(W, E)→D•q(W, E), c 7→

1
q!

dq

dλq |λ=0(h∗λc− λ−1
· ccore).

Now, let (W⇒ E, A⇒M) be a VB-algebroid. Then we have a linearization map

lin : C •def(W )→ C •def,lin(W ).

Theorem 1.4.4 (linearization of deformation cochains). The linearization map is a
cochain map splitting the inclusion C •def,lin(W ) ↪→C •def(W ). In particular there is a
direct sum decomposition

C •def(W )∼= C •def,lin(W )⊕ ker(lin)•.

of cochain complexes. Hence, the inclusion of linear deformation cochains into
deformation cochains induces an injection

(1-22) H •

def,lin(W ) ↪→ H •

def(W ).

Proof. We only have to prove that the linearization preserves the differential
δ = JbW ,−K (here, as usual bW is the Lie bracket on sections of W ⇒ E). Using
the fact that bW is linear, we have that δ commutes with h∗λ. From (1-4) it is obvious
that δ preserves limits. So

(δc)core = lim
λ→0

λ · h∗λ(δc)= lim
λ→0

λ · δ(h∗λc)= δ
(

lim
λ→0

λ · h∗λc
)
= δccore,

and

(δc)lin = lim
λ→0

(h∗λ(δc)− λ
−1δ(ccore))= δ

(
lim
λ→0

(h∗λc− λ−1
· ccore)

)
= δclin,

as desired. �

The inclusion (1-22) can be used to transfer vanishing results from deformation
cohomology of the Lie algebroid W ⇒ E to the linear deformation cohomology
of the VB-algebroid (W ⇒ E; A ⇒ M). For example, if H 0

def(W ) = 0, every
Lie algebroid derivation of W ⇒ E is inner, and hence every IM derivation of
the VB-algebroid W is inner. Similarly, if W ⇒ E has no nontrivial infinitesimal
deformations, so does (W ⇒ E; A⇒ M), and so on.

As a first example, consider a vector bundle E→ M. Then

TE

��

+3 E

��

TM +3 M

is a VB-algebroid.
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Proposition 1.4.5. The linear deformation cohomology of (TE ⇒ E; TM ⇒ M)
is trivial.

Proof. From Theorem 1.4.4, H •

def,lin(TE) embeds into the deformation cohomology
H •

def(TE) of the tangent algebroid TE ⇒ E which is trivial; see, for example,
[Crainic and Moerdijk 2008]. �

Other applications of Theorem 1.4.4 will be considered in Section 2.
Remember from Section 1.3 that a linear deformation cochain c ∈ Ck

def,lin(W ) is
completely determined by its action on k linear sections and on k−1 linear sections
and a core section, and the action of its symbol on k − 1 linear sections and on
k− 2 linear sections and a core section. We conclude this subsection providing a
slightly more explicit description of the linearization map (1-21) in terms of these
restricted actions.

Proposition 1.4.6. Let c ∈ Dk(W ; E). Then clin is completely determined by the
following identities:

(1) clin(α̃1, . . . , α̃k)= c(α̃1, . . . , α̃k)lin,

(2) clin(α̃1, . . . , α̃k−1, χ)= c(α̃1, . . . , α̃k−1, χ)core,

(3) σclin(α̃1, . . . , α̃k−1)= σc(α̃1, . . . , α̃k−1)lin,

(4) σclin(α̃1, . . . , α̃k−2, χ)= σc(α̃1, . . . , α̃k−2, χ)core

for all α̃1, . . . , α̃k ∈ 0lin(W, E), χ ∈ 0core(W, E).

Proof. We first compute

ccore(α̃1, . . . , α̃k)= lim
λ→0

λ · (h∗λc)(α̃1, . . . , α̃k)

= lim
λ→0

λ h∗λ(c(α̃1, . . . , α̃k))= c(α̃1, . . . , α̃k)core.

Then

clin(α̃1, . . . , α̃k)= lim
λ→0

(h∗λc− λ−1
· ccore)(α̃1, . . . , α̃k)

= lim
λ→0

(
h∗λ(c(α̃1, . . . , α̃k))− λ

−1c(α̃1, . . . , α̃k)core
)

= c(α̃1, . . . , α̃k)lin.

Identity (2) can be proved in a similar way. To prove (3) first notice that

σccore = σlimλ→0 λ·h∗λc = lim
λ→0

λ · σh∗λc = lim
λ→0

λ · h∗λσc,

where we used (1-3). Hence

σccore(α̃1, . . . , α̃k−1)= lim
λ→0

(λ · h∗λσc)(α̃1, . . . , α̃k−1)

= lim
λ→0

(λ · h∗λ(σc(α̃1, . . . , α̃k−1)))= σc(α̃1, . . . , α̃k−1)core.



DEFORMATIONS OF LINEAR LIE BRACKETS 283

Similarly,
σclin = σlimλ→0(h∗λc−λ−1·ccore)

= lim
λ→0

σh∗λc−λ−1·ccore

= lim
λ→0

(h∗λσc− λ
−1σccore),

hence

σclin(α̃1, . . . , α̃k−1)= lim
λ→0

(
(h∗λσc)(α̃1, . . . , α̃k−1)− λ

−1σccore(α̃1, . . . , α̃k−1)
)

= lim
λ→0

(
h∗λ(σc(α̃1, . . . , α̃k−1))− λ

−1σc(α̃1, . . . , α̃k−1)core
)

= σc(α̃1, . . . , α̃k−1)lin.

Identity (4) can be proved in a similar way. �

2. Examples and applications

In this section we provide several examples. Examples in Sections 2.1, 2.4 and 2.5
parallel the analogous examples in [Crainic and Moerdijk 2008], connecting our
linear deformation cohomology to known cohomologies. Examples in Sections 2.2,
2.3 and 2.6 are specific to VB-algebroids.

2.1. VB-algebras. A VB-algebra is a vector bundle object in the category of Lie
algebras. In other words, it is a VB-algebroid of the form

h +3

��

{0}

��

g +3 {∗}

In particular, h and g are Lie algebras. Now, let C := ker(h→ g) be the core of
(h⇒ {0}; g⇒ {∗}). It easily follows from the definition of VB-algebroid that

• C is a representation of g, and

• h= gnC is the semidirect product Lie algebra,

• h= gnC→ g is the projection onto the first factor.

Let End C denote endomorphisms of the vector space C . In the present case, the
short exact sequence (1-16) reads

(2-1) 0→ C •(g,End C)→ C •def,lin(h)→ C •def(g)→ 0,

where C •(g,End C)=∧•g∗⊗End C is the Chevalley–Eilenberg complex of g with
coefficients in the induced representation End C , and C •def(g) = (∧

•g∗⊗ g)[1] is
the Chevalley–Eilenberg complex with coefficients in the adjoint representation.
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From the classical theory of Nijenhuis and Richardson [1966; 1967a; 1967b], the
latter controls deformations of g, while the former controls deformations of the
representation of g on C .

The sequence (2-1) has a natural splitting in the category of graded Lie algebras.
Namely, there is an obvious graded Lie algebra map

C •def(g)→ C •def,lin(h), c 7→ c̃

given by
c̃(v1+χ1, . . . , vk+1+χk+1) := c(v1, . . . , vk+1)

for all c∈Ck
def(g)=∧

k+1g∗⊗g, and all vi+χi ∈h=g⊕C , i=1, . . . , k+1. It is clear
that the inclusion C •def(g)→ C •def,lin(h) splits the projection C •def,lin(h)→ C •def(g).
Hence

(2-2) C •def,lin(h)
∼= C •(g,End C)⊕C •def(g).

as graded Lie algebras. However (2-2) is not a DGLA isomorphism. We now
describe the differential δ in C •def,lin(h) in terms of the splitting (2-2). First of all,
denote by θ : g→ EndC the action of g on C , and let

2 : ∧•g∗⊗ g→∧•g∗⊗End C,

be the map obtained from θ by extension of scalars. From the properties of the
action, 2 is actually a cochain map

2 : C •def(g)[−1] → C •(g,End C).

Finally, a direct computation reveals that the isomorphism (2-2) identifies the
differential in C •def,lin(h) with that of the mapping cone (denoted by Cone(2)):

(C •def,lin(h), δ)
∼= Cone(2)

as cochain complexes. Notice that the long exact cohomology sequence of the
mapping cone is just (1-18).

2.2. LA-vector spaces. An LA vector space is a Lie algebroid object in the category
of vector spaces. In other words, it is a VB-algebroid of the form

W +3

��

E

��

{0} +3 {∗}

In particular, W and E are vector spaces. Now, let C := ker(W → E) be the core
of (W ⇒ E; {0} ⇒ {∗}). It easily follows from the definition of VB-algebroid that
W identifies canonically with the direct sum C ⊕ E and all the structure maps are
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completely determined by a linear map ∂ :C→ E . Specifically, sections of W→ E
are the same as smooth maps E→ C , and given a basis (C I ) of C , the Lie bracket
on maps E→ C is given by

(2-3) [ f, g] = f I (∂C I )
↑g− g I (∂C I )

↑ f,

where f = f I C I and g = g I C I . It follows that the anchor ρ : W → TE is given
on sections by

(2-4) ρ( f )= f I (∂C I )
↑.

Linear deformations of (W ⇒ E; {0} ⇒ {∗}) are the same as deformations of ∂
as a linear map. Let us describe the linear deformation complex explicitly. As
the bottom Lie algebroid is trivial, C •def,lin(W ) consists of graded endomorphisms
End(C[1] ⊕ E)• of the graded vector space W [1]E = C[1] ⊕ E . From (2-3) and
(2-4) the differential δ in End(C[1]⊕ E)• is just the commutator with ∂ , meaning
that the deformation cohomology consists of homotopy classes of graded cochain
maps (C[1] ⊕ E, ∂)→ (C[1] ⊕ E, ∂). More explicitly, (End(C[1] ⊕ E)•, δ) is
concentrated in degrees −1, 0, 1. Namely, it is

0→ Hom(E,C)[1] δ0−→End(C)⊕End(E) δ1−→Hom(C, E)[−1] → 0,

where δ0 and δ1 are given by:

δ0φ = (φ ◦ ∂, ∂ ◦φ),

δ1(ψC , ψE)= ∂ ◦ψC −ψE ◦ ∂,

where φ ∈Hom(E,C), ψC ∈End(C) and ψE ∈End(E). We immediately conclude

H •

def,lin(W )= End(coker ∂ ⊕ ker ∂[1])•,

that is,
H−1

def,lin(W )= Hom(coker ∂, ker ∂),

H 0
def,lin(W )= End(coker ∂)⊕End(ker ∂),

H 1
def,lin(W )= Hom(ker ∂, coker ∂).

This shows, for instance, that infinitesimal deformations of a linear map ∂ : C→ E
are all trivial if and only if ∂ is injective or surjective, as expected.

2.3. Tangent and cotangent VB-algebroids. Let A⇒M be a Lie algebroid. Then
(TA⇒ TM; A⇒M) is a VB-algebroid, called the tangent VB-algebroid of A. The
structure maps of the Lie algebroid TA⇒ TM are defined as follows. First of all
recall that (TA→ TM; A→ M) is a DVB whose core is canonically isomorphic
to A itself. In particular, any section α of A determines a core section α of TA→TM.
A section α of A also determines a linear section Tα of TA→ TM : its tangent
map.
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Denote by τ : TM → M the projection. In the following, for a vector field
X ∈ X(M), we denote by X tan ∈ X(TM) its tangent lift. By definition, the flow
of X tan is obtained from the flow of X by taking the tangent diffeomorphisms.
Equivalently, X tan is the (linear) vector field on TM uniquely determined by

(2-5) X tan(`d f )= `d X ( f ) and X tan(τ
∗)= τ ∗X ( f )

for all f ∈C∞(M). Here `d f is the fiber-wise linear function on TM corresponding
to the 1-form d f (viewed as a section of the dual bundle T ∗M). Notice that (2-5)
can be used to define the tangent lift of vector fields on a graded manifold. This
will be useful below.

Now we come back to the tangent VB-algebroid (TA⇒ TM; A⇒ M). The
anchor ρTA : TA→ T TM is determined by

(2-6) ρTA(Tα)= ρ(α)tan, ρTA(α)= ρ(α)
↑,

and the bracket [−,−]TA in 0(TA, TM) is completely determined by:

(2-7) [Tα, Tβ]TA = T [α, β], [Tα, β]TA = [α, β], [α, β]TA = 0

for all α, β ∈ 0(A). The dual VB-algebroid (T ∗A⇒ A∗; A⇒ M) of the tangent
VB-algebroid is called the cotangent VB-algebroid. We want to discuss the linear
deformation cohomology of (TA⇒ TM; A⇒M) (hence of (T ∗A⇒ A∗; A⇒M)).
We use the graded geometric description. Deformation cochains of TA ⇒ TM
are vector fields on the graded manifold TA[1]TM obtained from TA shifting by
one the degree in the fibers of the vector bundle TA→ TM. Linear deformation
cochains are vector fields that are linear with respect to the vector bundle structure
TA[1]TM → A[1].

Lemma 2.3.1. Let T A[1] be the tangent bundle of A[1] and let τ : TA[1] → A[1]
be the projection. There is a canonical isomorphism of vector bundles of graded
manifolds

TA[1]TM
ι

//

%%

TA[1]

{{

A[1]

uniquely determined by the following condition:

(2-8) 〈ι∗`dω, Tα1 ∧ · · · ∧ Tαk〉 = `d〈ω,α1∧···∧αk〉

for all ω ∈ C∞(A[1])• = C •(A) of degree k, all sections α1, . . . , αk ∈ 0(A), and
all k. Additionally

(2-9) 〈ι∗`dω, Tα1 ∧ · · · ∧ Tαk−1 ∧αk〉 = τ
∗
〈ω, α1 ∧ · · · ∧αk〉.
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Formulas (2-8) and (2-9) require some explanations. The expression dω on the
left-hand side should be interpreted as a 1-form on A[1], the de Rham differential
of the function ω, and `dω is the associated fiber-wise linear function on T A[1].
The pull-back of `dω along ι∗ is a function on TA[1]TM , i.e., a C∞(TM)-valued,
skew-symmetric multilinear map on sections of TA→ TM. The Tα are the tangent
maps Tα : TM→ TA of the α : M→ A. In particular they are linear sections of
TA→ TM. The right-hand side of (2-8) is the fiber-wise linear function on TM
corresponding to the 1-form d〈ω, α1 ∧ · · · ∧ αk〉 on M. Here we interpret ω as a
skew-symmetric multilinear map on sections of A.

Proof of Lemma 2.3.1. Let (x i ) be coordinates on M, let (uα) be a local basis
of 0(A), and let (uα) be the associated fiber-wise linear coordinates on A. These
data determine coordinates (x i , ũα) on A[1] in the obvious way. In particular the x i

have degree 0 and the ũα have degree 1. We also consider standard coordinates
(x i , uα, ẋ i , u̇α) induced by (x i , uα) on TA. Notice that (uα, u̇α) are fiber-wise linear
coordinates with respect to the vector bundle structure TA→ TM. More precisely,
they are the fiber-wise linear coordinates associated to the local basis (T uα, ūα)
of 0(TA, TM). Next we denote by (x i , ẋ i , ũα, ˜̇uα) the induced coordinates on
TA[1]TM . They have degree 0, 0, 1, 1 respectively. We denote by (x i , ũα, X i , Ũα)

the standard coordinates on TA[1] induced by (x i , ũα). Define ι by putting

ι∗X i
= ẋ i and ι∗Ũα

= ˜̇uα.

A direct computation exploiting the appropriate transition maps reveals that ι is
globally well defined. Now we prove (2-8). We work in coordinates. Take a degree k
function ω = fα1···αk (x)ũ

α1 · · · ũαk on A[1]. A direct computation shows that

(2-10) ι∗`dω =
∂ fα1···αk

∂x i ũα1 · · · ũαk ẋ i
+ k fα1···αk ũα1 · · · ũαk−1 ˜̇uαk .

Now, let α1, . . . , αk ∈ 0(A), and a = 1, . . . , k. If αa is locally given by αa =

gαa (x)uα, then

Tαa =
∂gαa
∂x i ẋ i ūα + gαa T uα,

and, from (2-10),

〈ι∗`dω,Tα1 ∧ ·· · ∧ Tαk〉 = k!
(
∂ fα1···αk

∂x i gα1
1 · · ·g

αk
k + fα1···αk gα1

1 · · ·g
αk−1
k−1

∂gαk
k

∂x i

)
ẋ i

= k! ∂
∂x i ( fα1···αk gα1

1 · · ·g
αk
k )ẋ

i
= `d〈ω,α1∧···∧αk〉.

Identity (2-9) is proved in a similar way. To see that there is no other vector
bundle isomorphism ι : TA[1]TM → TA[1] with the same property (2-8) notice that
X i
= `dx i and Ũα

= `dũα . Now use (2-8) to show that ι∗X i
= ẋ i and ι∗Ũα

= ˜̇uα . �
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In the following we will identify TA[1]TM with TA[1] via the isomorphism ι of
Lemma 2.3.1. Now, recall that C •def,lin(TA) = Xlin(TA[1])• fits in the short exact
sequence of DGLAs:

(2-11) 0→ End(TA[1])•→ Xlin(TA[1])•→ X(A[1])•→ 0.

The tangent lift

(2-12) tan : X(A[1])• ↪→ X(TA[1])•, X 7→ X tan

splits the sequence (2-11) in the category of DGLAs. As X(A[1])• = C •def(A), we
immediately have the following:

Proposition 2.3.2. For every Lie algebroid A⇒ M there is a direct sum decompo-
sition

H •

def,lin(TA)= H •

def,lin(T
∗A)= H •(End(TA[1]))⊕ H •

def(A).

In the last part of the subsection we describe the inclusion (2-12) in terms of
deformation cochains. This generalizes (2-6) and (2-7) to possibly higher cochains.
Using the canonical isomorphisms C •def,lin(TA) = Xlin(TA[1])•, and C •def(A) =
X(A[1])• we get an inclusion

tan : C •def(A) ↪→ C •def,lin(TA), c 7→ ctan.

Proposition 2.3.3. Let c ∈ Ck−1
def (A). Then ctan ∈ Ck−1

def,lin(TA) satisfies:

(1) ctan(Tα1, . . . , Tαk)= T c(α1, . . . , αk),

(2) ctan(Tα1, . . . , Tαk−1, αk)= c(α1, . . . , αk),

(3) σctan(Tα1, . . . , Tαk−1)= σc(α1, . . . , αk−1)tan,

(4) σctan(Tα1, . . . , Tαk−2, αk−1)= σc(α1, . . . , αk−1)
↑

for all α1, . . . , αk ∈ 0(A). Identities (1)–(4) (together with the fact that ctan is a
linear cochain) determine ctan completely.

Proof. We begin with (3). Recall that the tangent lift X tan of a vector field
X is completely determined by (2-5) (and this remains true in the graded set-
ting). So, let X ∈ X(A[1])• be the graded vector field corresponding to c (hence
X tan ∈X(TA[1]TM) is the graded vector field corresponding to ctan), let f ∈C∞(M)
and let α1, . . . , αk−1 ∈ 0(A). Using (1-10), compute

σctan(Tα1, . . . , Tαk−1)`d f = 〈X tan(`d f ), Tα1 ∧ · · · ∧ Tαk−1〉

= 〈`d(X ( f )), Tα1 ∧ · · · ∧ Tαk−1〉.

From (2-8),

〈`d(X ( f )), Tα1 ∧ · · · ∧ Tαk−1〉 = `d〈X ( f ),α1∧···∧αk−1〉 = `d(σc(α1,...,αk−1) f )

= σc(α1, . . . , αk−1)tan`d f .
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Since σctan(Tα1, . . . , Tαk−1) and σc(α1, . . . , αk−1)tan are both linear and project
onto σc(α1, . . . , αk−1), this is enough to conclude that σctan(Tα1, . . . , Tαk−1) =

σc(α1, . . . , αk−1)tan. Identity (4) can be proved in a similar way using (2-9) and

σc(α1, . . . , αk−1)
↑`d f = τ

∗
〈d f, σc(α1, . . . , αk−1)〉 = τ

∗(σc(α1, . . . , αk−1) f ).

We now prove (1). Both sides of the identity are linear sections of TA→ TM
and one can easily check in local coordinates that a linear section α̃ is completely
determined by pairings of the form 〈`dϕ, α̃〉. Here, ϕ is a section of A∗ → M
seen as a degree 1 function on A[1], dϕ is its de Rham differential, and `dϕ is
the associated degree 1 fiber-wise linear function on TA[1], which, in turn, can be
interpreted as a 1-form on the algebroid TA⇒ TM, as in Lemma 2.3.1.

So, take ϕ ∈ 0(A∗), c ∈ Ck−1
def (A), α1, . . . , αk ∈ 0(A), and compute

〈`dϕ,ctan(Tα1, . . . ,Tαk)〉

= 〈X tot(`dϕ),Tα1∧·· ·∧Tαk〉−
∑

i

(−)k−iσctan(Tα1, . . . , T̂αi , . . . ,Tαk)〈`dϕ,Tαi 〉

= 〈`d(X (ϕ)),Tα1∧·· ·∧Tαk〉−
∑

i

(−)k−iσc(α1, . . . , α̂i , . . . ,αk)tan`d〈ω,αi 〉

= `d〈X (ϕ),α1∧···∧αk〉−

∑
i

(−)k−i`d(σc(α1,...,α̂i ,...,αk)〈ω,αi 〉)

= `d〈ϕ,c(α1,...,αk)〉=〈`dϕ,T c(α1, . . . ,αk)〉,

where we used, in particular, (1-9), the first equality in (2-5), identity (3), and (2-8).
So (1) holds.

Identity (2) can be proved in a similar way using (1-9), both identities (2-5),
identity (4), and (2-9). We leave to the reader the straightforward details. �

Remark 2.3.4. Proposition 2.3.3 shows, in particular, that the Lie bracket bA

on 0(A) and the Lie bracket bTA in 0(TA, TM) are related by bTA = (bA)tan.

2.4. Partial connections. Let M be a manifold, D⊂ TM an involutive distribution,
and let F be the integral foliation of D. In particular D⇒ M is a Lie algebroid
with injective anchor. A flat (partial) D-connection ∇ in a vector bundle E→ M
defines a VB-algebroid

H

��

+3 E

��

D +3 M

where H ⊂ TE is the horizontal distribution determined by D. Notice that the core
of (H⇒ E; D⇒M) is trivial, and every VB-algebroid with injective (base) anchor
and trivial core arises in this way. Hence, (small) deformations of (H⇒ E; D⇒M)
are the same as simultaneous deformations of the foliation F and the flat partial
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connection ∇. We now discuss the linear deformation cohomology. Denote by
q : E→M the projection. First of all, the de Rham complex of D⇒M is the same
as leaf-wise differential forms �•(F) with the leaf-wise de Rham differential dF .
Hence, the deformation complex of D consists of derivations of �•(F) (the differ-
ential being the graded commutator with dF ). As the core of (H ⇒ E; D⇒ M)
is trivial, there is a canonical isomorphism H ∼= q∗D of vector bundles over E .
It easily follows that the linear deformation complex (C •def,lin(H), δ) consists of
derivations of the graded module�•(F, E) of E-valued, leaf-wise differential forms,
and the differential δ is the commutator with the (leaf-wise partial) connection
differential d∇F . The kernel of C •def,lin(H)→ C •def(D) consists of graded �•(F)-
linear endomorphisms of �•(F, E). The latter are the same as End E-valued
leaf-wise differential forms �•(F,End E), and the restricted differential is the
connection differential (corresponding to the induced connection in End E).

Now, denote by ν = TM/D the normal bundle to F. It is canonically equipped
with the Bott connection ∇Bott, and there is a deformation retraction, hence a quasi-
isomorphism, π : C •def(D)→ �•(F, ν) that maps a deformation cochain c to the
composition π(c) of the symbol σc :∧

•D→TM followed by the projection TM→ν.
A similar construction can be applied to linear deformation cochains. To see this,
first notice that derivations of E modulo covariant derivatives along ∇, D(E)/ im∇,
are sections of a vector bundle ν̃→M. Additionally, ν̃ is canonically equipped with
a flat partial connection, also called the Bott connection and denoted∇Bott, defined by

∇
Bott
X (1mod im∇)= [∇X ,1]mod im∇

for all 1 ∈D(E), and X ∈ 0(D). The symbol map σ :D(E)→ X(M) descends
to a surjective vector bundle map ν̃→ ν, intertwining the Bott connections. As
End E ∩ im∇ = 0, we have ker(ν̃→ ν)= End E . In other words, there is a short
exact sequence of vector bundles with partial connections:

0→ End E→ ν̃→ ν→ 0.

Now, we define a surjective cochain map π̃ : C •def,lin(H)→�•(F, ν̃). Let c̃ be a
linear deformation cochain. Its symbol σc̃ maps linear sections of H→ E to linear
vector field on E . As H ∼= q∗D, linear sections identify with plain sections of D.
Accordingly σc̃ can be seen as a D(E)-valued D-form. Take this point of view
and denote by π̃(c̃) : ∧•D→ ν̃ the composition of σc̃ followed by the projection
D(E)→ 0(ν̃).

Summarizing, we have the commutative diagram

0 // �•(F,End E) // C •def,lin(H) //

π̃

��

C •def(D) //

π

��

0

0 // �•(F,End E) // �•(F, ν̃) // �•(F, ν) // 0
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The rows are short exact sequences of DG-modules, and the vertical arrows are DG-
module surjections. Additionally, π is a quasi-isomorphism. Hence, it immediately
follows from the snake lemma and the five lemma that π̃ is a quasi-isomorphism as
well. We have thus proved the following:

Proposition 2.4.1. There is a canonical isomorphism of graded vector spaces
between the linear deformation cohomology of the VB-algebroid (H⇒ E; D⇒M),
and the leaf-wise cohomology with coefficients in ν̃:

H •

def,lin(H)= H •(F, ν̃).

2.5. Lie algebra actions on vector bundles. Let g be a (finite-dimensional, real)
Lie algebra acting on a vector bundle E → M by infinitesimal vector bundle
automorphisms. In particular g acts on M and there is an associated action Lie
algebroid gn M⇒ M. Additionally, g acts on the total space E by linear vector
fields. Equivalently, there is a Lie algebra homomorphism g→D(E) covering the
(infinitesimal) action g→ X(M). It follows that (gn E ⇒ E; gn M ⇒ M) is a
VB-algebroid. We want to discuss linear deformation cohomologies of gn E⇒ E .
We begin reviewing remarks by Crainic and Moerdijk [2008] on the deformation
cohomology of gn M ⇒ M providing a graded geometric interpretation. The
deformation complex C •def(gnM) consists of vector fields on (g×M)[1]=g[1]×M.
Denote by

πg : g[1]×M→ g[1]

the projection. Composition on the right with the pull-back

π∗g : C
∞(g[1])•→ C∞(g[1]×M)•

establishes a projection from vector fields on g[1]×M to πg-relative vector fields
Xrel(πg)

•, i.e., vector fields on g[1] with coefficients in functions on g[1]×M :

(2-13) X(g[1]×M)•→ Xrel(πg)
•, X 7→ X ◦π∗g .

The kernel of projection (2-13) consists of πg-vertical vector fields Xπg(g[1]×M)•.
Denote by dg ∈X(g[1]×M)• the homological vector field on g[1]×M. The graded
commutator δ := [dg,−] preserves πg-vertical vector fields. Hence there is a short
exact sequence of cochain complexes:

(2-14) 0→ Xπg(g[1]×M)•→ X(g[1]×M)•→ Xrel(πg)
•
→ 0.

Now, X(g[1] × M)• is exactly the deformation complex of g n M. Similarly,
Xrel(πg)

• is (canonically isomorphic to) the Chevalley–Eilenberg cochain complex
of g with coefficients in C∞(M)⊗g, the tensor product of C∞(M) and the adjoint
representation, up to a shift by 1. Following [Crainic and Moerdijk 2008], we
shortly denote this tensor product by gM . Finally, Xπg(g[1] ×M)• is canonically
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isomorphic to the Chevalley–Eilenberg cochain complex of g with coefficients in
X(M). So there is a short exact sequence of cochain complexes

0→ C •(g,X(M))→ C •def(gn M)→ C •+1(g, gM)→ 0,

and a long exact cohomology sequence

(2-15) · · ·→H k(g,X(M))→H k
def(gnM)→H k+1(g,gM)→H k+1(g,X(M))→···

We pass to gnE . The linear deformation complex C •def,lin(gnE) consists of linear
vector fields on g[1]×E . As above, we consider the projection π̃g : g[1]×E→ g[1].
Composition on the right with the pull-back π̃∗g establishes a projection:

Xlin(g[1]× E)•→ Xrel(πg)
•, X 7→ X ◦ π̃∗g

(beware, the range consists of πg-relative, not π̃g-relative, vector fields) whose
kernel consists of π̃g-vertical linear vector fields X

πg
lin(g[1] × E)•. Hence there is

a short exact sequence of cochain complexes:

(2-16) 0→ X
π̃g
lin(g[1]× E)•→ Xlin(g[1]× E)•→ Xrel(πg)

•
→ 0.

Using the projection Xlin(g[1]× E)•→ X(g[1]×M)•, we can combine sequences
(2-16) and (2-14) in an exact diagram

0

��

0

��

0 // End(g[1]× E)•

��

End(g[1]× E)• //

��

0

��

0 // X
π̃g
lin(g[1]× E)• //

��

Xlin(g[1]× E)• //

��

Xrel(πg)
• // 0

0 // Xπg(g[1]×M)• //

��

X(g[1]×M)• //

��

Xrel(πg)
• //

��

0

0 0 0

where, as usual, End(g[1]× E)• consists of graded endomorphisms of the vector
bundle g[1]×E→g[1]×M (covering the identity). Now, Xlin(g[1]×E)• is the linear
deformation complex of (gn E⇒ E; gn M⇒ M), and End(g[1]× E)• is canoni-
cally isomorphic to the Chevalley–Eilenberg cochain complex of g with coefficients
in End E , endomorphisms of E (covering the identity). Finally, Xπ̃glin(g[1] × E)•

is canonically isomorphic to the Chevalley–Eilenberg cochain complex of g with
coefficients in D(E). The isomorphism

C •(g,D(E))
∼=
−→X

π̃g
lin(g[1]× E)•

maps a cochain ω⊗1 to the vector field π̃∗g( fω)X1, where fω is the function on
g[1] corresponding to ω ∈ C •(g), and X1 is the unique π̃g-vertical vector field on
g[1]× E projecting on the linear vector field on E corresponding to derivation 1.
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We conclude that there is an exact diagram of cochain complexes

0

��

0

��

0 // C •(g,End E)

��

C •(g,End E) //

��

0

��

0 // C •(g,D(E)) //

��

C •def,lin(gn E) //

��

C •+1(g, gM) // 0

0 // C •(g,X(M)) //

��

C •def(gn M) //

��

C •+1(g, gM) //

��

0

0 0 0

This proves the following:

Proposition 2.5.1. Let g be a Lie algebra acting on a vector bundle E → M by
infinitesimal vector bundle automorphisms. The linear deformation cohomology of
the VB-algebroid (gn E⇒ E, gn M⇒ M) fits in the exact diagram

...

��

...

��

...

��

...

��

· · · // H k(g,EndE)

��

H k(g,EndE) //

��

0 //

��

H k+1(g,EndE) //

��

· · ·

· · · // H k(g,D(E)) //

��

H k
def,lin(gnE) //

��

H k+1(g,gM) // H k+1(g,D(E)) //

��

· · ·

· · · // H k(g,X(M)) //

��

H k
def(gnM) //

��

H k+1(g,gM) //

��

H k+1(g,X(M)) //

��

· · ·

· · · // H k+1(g,EndE)

��

H k+1(g,EndE) //

��

0 //

��

H k+2(g,EndE) //

��

· · ·

...
...

...
...

2.6. Type 1 VB-algebroids. Let (W⇒ E; A⇒M) be a VB-algebroid with core C .
The core-anchor of (W ⇒ E; A⇒ M) is the vector bundle map ∂ :C→ E defined
as follows. Let χ be a section of C , and let χ be the corresponding core section
of W → E . The anchor ρ :W → TE maps χ to a core vector field ρ(χ) on E . In
turn ρ(χ) is the vertical lift of a section ε of E . By definition, ∂χ = ε.

According to a definition by Gracia-Saz and Mehta [2010], a VB-algebroid is
type 1 (resp. type 0) if the core-anchor is an isomorphism (resp. is the zero map).
More generally, (W ⇒ E; A ⇒ M) is regular if the core-anchor has constant
rank. In this case (W ⇒ E; A⇒ M) is the direct sum of a type 1 and a type 0
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VB-algebroid, up to isomorphisms. So type 1 and type 0 VB-algebroids are the
building blocks of regular VB-algebroids. In this subsection we discuss linear
deformation cohomologies of type 1 VB-algebroids.

Let (W ⇒ E; A⇒ M) be a type 1 VB-algebroid, and denote by q : E → M
the projection. Gracia-Saz and Mehta [2010] show that (W ⇒ E; A ⇒ M) is
canonically isomorphic to the VB-algebroid (q !A⇒ E; A⇒ M). Here q !A⇒ E
is the pull-back Lie algebroid. Recall that its total space q !A is the fibered product
q !A := TE dq×ρ A. Hence, sections of q !A→ E are pairs (X, α), where X is a
vector field on E and α is a section of the pull-back bundle q∗A→ E , with the
additional property that dq(Xe)= ρ(αq(e)) for all e ∈ E . Then there exists a unique
Lie algebroid structure q !A⇒ E such that the anchor q !A→ TE is the projection
(X, α) 7→ X, and the Lie bracket is given by

[(X, q∗α), (Y, q∗β)] = ([X, Y ], q∗[α, β]),

on sections of the special form (X, q∗α), (X, q∗β), with α, β ∈ 0(A). Finally,
(q !A⇒ E; A⇒ M) is a VB-algebroid, and every VB-algebroid of type 1 arises in
this way (up to isomorphisms).

As E → M is a vector bundle, it has contractible fibers. So, according to
[Sparano and Vitagliano 2018], q !A⇒ E and A⇒ M share the same deforma-
tion cohomology. As an immediate consequence we get that the canonical map
C •def,lin(q

!A)→ C •def(A) induces an injection in cohomology. We want to show
that it is a quasi-isomorphism. To do this it is enough to prove that the kernel
End(q !A[1]E)• of C •def,lin(q

!A)→ C •def(A) is acyclic. We use graded geometry
again. So, consider the pull-back diagram

q !A //

��

TE

dq
��

A
ρ
// TM

All vertices are vector bundles, and shifting by one the degree in their fibers, we
get a pull-back diagram of DG-manifolds:

q !A[1]E //

q̃
��

T [1]E

dq
��

A[1]
ρ
// T [1]M

This shows, among other things, that there is a canonical isomorphism

End(q !A[1]E)• = C •(A)⊗�•(M) End(T [1]E)•

of DG-modules. From Proposition 1.4.5, exact sequence (1-16), and the fact that the
deformation cohomology of TM⇒ M is trivial, End(T [1]E)• is acyclic. Actually
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there is a canonical contracting homotopy h′ : End(T [1]E)• → End(T [1]E)•−1.
Indeed, there is a canonical contracting homotopy H : X(T [1]E)•→ X(T [1]E)•−1

restricting to both Xlin(T [1]E)• and End(T [1]E)• (see, e.g., [Vitagliano 2014;
Sparano and Vitagliano 2018], for a definition of H ). Then, h′ is simply the restric-
tion of H, and it is graded C •(A)-linear. Finally, we define a contracting homotopy

h : End(q !A[1]E)•→ End(q !A[1]E)•−1

by putting h(ω⊗8) := (−)ωω⊗h′(8) for all ω ∈C •(A), and all8∈End(T [1]E)•.
Summarizing, we have proved:

Proposition 2.6.1. Let (W ⇒ E; A ⇒ M) be a type 1 VB-algebroid. Then the
canonical surjection C •def,lin(W )→ C •def(A) is a quasi-isomorphism. In particular,
H •

def,lin(W )= H •

def(A).

In essence, deforming a type 1 VB-algebroid is the same as deforming its base
Lie algebroid.

Appendix: The homogeneity structure of a vector bundle

Here, for the reader’s convenience, we recall the well-known concepts of homo-
geneity structure of a vector bundle and of linear multivectors on its total space.
We make no claim of originality: these ideas appeared (probably for the first time)
in [Grabowski and Rotkiewicz 2009], [Iglesias-Ponte et al. 2012] and [Bursztyn
and Cabrera 2012], respectively. In the last two references, the reader can also find
the proof of (a version of) Proposition A.0.3. With respect to those references, we
will offer just a slightly different point of view, in order to make the presentation
consistent. Notations and conventions in this appendix are used throughout the
paper, sometimes without further comments.

Let E→ M be a vector bundle. The monoid R≥0 of nonnegative real numbers
acts on E by homotheties hλ : E → E (fiber-wise scalar multiplication). The
action h : R≥0 × E → E , e 7→ hλ(e), is called the homogeneity structure of E .
The homogeneity structure (together with the smooth structure) fully characterizes
the vector bundle structure [Grabowski and Rotkiewicz 2009]. In particular, it
determines the addition. This implies that every notion that involves the linear
structure of E can be expressed in terms of h only: for example, a smooth map
between the total spaces of two vector bundles is a bundle map if and only if it
commutes with the homogeneity structures.

The homogeneity structure isolates a distinguished subspace in the algebra X•(E)
of multivectors on the total space E of the vector bundle.
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Definition A.0.1. A multivector X ∈ X•(E) is (homogeneous) of weight q if and
only if

(A-1) h∗λX = λq X

for all λ > 0. The space of k-vector fields of weight q on E will be denoted Xk
q(E).

We denote simply by C∞q (E) := X0
q(E) the space of functions of weight q and by

Xq(E) := X1
q(E) the space of vector fields of weight q .

Clearly, for q ≥ 0, weight q functions coincide with functions on E that are
fiber-wise polynomial of degree q , while for q < 0 there are no nonzero functions
of weight q . In particular, weight-zero functions are fiber-wise constant functions,
i.e., pull-backs of functions on the base M. We refer to them as core functions and
we denote C∞core(E) := C∞0 (E).

The functorial properties of the pull-back imply that the grading defined by
the weight is natural with respect to all the usual operations on functions and
(multi)vector fields. From this remark, we easily see that there are no nonzero
k-vector fields of weight less than −k.

Definition A.0.2. A function on E is linear if it is of weight 1. More generally, a
k-vector field is linear if it is of weight 1− k. We denote by C∞lin(E), Xlin(E) and
X•lin(E) the spaces of linear functions, vector fields and multivectors, respectively.

Linear functions are precisely fiber-wise linear functions. The definition of linear
multivectors may sound a little strange, but it is motivated (among other things) by
the following proposition:

Proposition A.0.3. Let X ∈ Xk(E). The following conditions are equivalent:

(1) X is linear;

(2) X takes

(a) k linear functions to a linear function,
(b) k− 1 linear functions and a core function to a core function,
(c) k− i linear functions and i core functions to 0, for every i ≥ 2;

(3) If (x i ) are local coordinates on M and (uα) are linear fiber coordinates on E ,
X is locally of the form

(A-2) X = Xα1···αk−1i (x) ∂

∂uα1
∧·· ·∧

∂

∂uαk−1
∧
∂

∂x i+Xα1···αk
β (x)uβ ∂

∂uα1
∧·· ·∧

∂

∂uαk
.
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