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Dedicated to Susan Montgomery

Ng and Schauenburg generalized higher Frobenius–Schur indicators to piv-
otal fusion categories and showed that these indicators may be computed
utilizing the modular data of the Drinfel’d center of the given category. We
consider two classes of fusion categories generated by a single noninvertible
simple object: near groups, those fusion categories with one noninvertible
object, and Haagerup–Izumi categories, those with one noninvertible object
for every invertible object. Examples of both types arise as representations
of finite or quantum groups or as Jones standard invariants of finite-depth
Murray–von Neumann subfactors. We utilize the computations of the tube
algebras due to Izumi and to Evans and Gannon to obtain formulae for the
Frobenius–Schur indicators of objects in both of these families.

1. Introduction

Fusion categories appear in a wide variety of mathematics and physics. Their
objects have the properties of complex representations of finite groups; in particular,
they are semisimple and have duals and tensor products. Important examples of
fusion categories come from the representations of Drinfel’d–Jimbo quantum groups
and Jones standard invariants of Murray–von Neumann subfactors. From the point
of view of these examples fusion categories encode symmetry data in the quantum
setting in the same way that finite groups do in the classical setting. Classification
problems for these categories do not come without considerable difficulty; therefore,
it is of great interest to find and understand categorical invariants.

The classical Frobenius–Schur indicator for finite groups was introduced in
1906. It determines if and how a given group representation is self-dual. This
was generalized to the setting of semisimple Hopf algebras by Linchenko and
Montgomery [2000] and further to the setting of quasi-Hopf algebras [Mason and
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Ng 2005; Ng and Schauenburg 2008] and to pivotal tensor categories [Ng and
Schauenburg 2007b].

The FS indicators are a complete invariant for the Tambara–Yamagami categories
[Basak and Johnson 2015]. These are the fusion categories having exactly one
noninvertible simple object ρ where HomC(ρ⊗ ρ, ρ)= 0. In the present paper we
consider the near-group categories: those with exactly one noninvertible simple
object ρ where dimC(HomC(ρ⊗ ρ, ρ))= m. (The Tambara–Yamagami categories
are near groups with m = 0.) We provide the required background on this in
Section 2.

Letting G be the group of invertible objects in our near-group category, we find
in Section 3 that for the near-group categories with m = |G| − 1 the indicators are
a complete invariant:

Corollary 3.3. The near-group categories with m = |G| − 1 are completely distin-
guished by their Frobenius–Schur indicators.

To make the computations here we utilize [Ng and Schauenburg 2007a, Theorem
4.1]: the Frobenius–Schur indicators of a spherical fusion category can be computed
using the ribbon structure of the Drinfel’d center of the category. A complete list of
near-group fusion categories in the case where m = |G| ≤ 13 was found in [Evans
and Gannon 2014]. In each of these examples the modular data for the Drinfel’d
centers are given by quadratic forms. From this we get in Section 4:

Theorem 4.8. In all known near-group categories with m = |G| the noninvertible
object has Frobenius–Schur indicators given by quadratic Gauss sums.

This theorem provides new evidence for [Evans and Gannon 2014, Conjecture 2]:
the modular data (matrix invariants from the braiding) of the centers of these near
groups are always given by quadratic forms. The form of the indicators strongly
suggests that these centers are formed from some “crossed product” construction
for modular categories. See also the “pasting” of modular data developed in [Evans
and Gannon 2011].

Finally, in Section 5, we observe a similar result which supports a similar
conjecture for the Haagerup–Izumi categories, which are a related family of singly
generated fusion categories having one noninvertible object for each invertible
object:

Theorem 5.4. All known Haagerup–Izumi categories have Frobenius–Schur indi-
cators given by quadratic Gauss sums.

2. Categorical invariants

Tensor categories are abelian monoidal categories (C,⊗,1) enriched over complex
vector spaces; see [Etingof et al. 2015] or [Bakalov and Kirillov 2001] for the
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specifics of these definitions. The Mac Lane strictness theorem allows us the
working assumption of strictness: the associativity natural isomorphism is the
identity morphism for every triple of objects. Thus, we may use diagrammatic
notation for the morphisms in these categories. Our notation is read from top to
bottom, tensor products are given by side-by-side concatenation, and 1 is not written
at all. For examples, the morphisms

idV : V → V, g : V →U ⊗W, f : 1→ V1⊗ · · ·⊗ Vn

are rendered in diagrammatic notation, respectively, as

V

V

V

g

U W

f

V1 · · · Vn

Composition of morphisms is given by stacking; for example, given morphisms
p : V →W and q :U → V , their composition is given by

U

q

V

p

W

=

U

p◦q

W

Categorifications of semisimple rings. Tensor categories should be thought of as
a categorification of the notion of a unital algebra. The abelian and monoidal
categorical structures are analogues of addition and multiplication, respectively.
This point of view asks an obvious question:

What are the tensor categories that categorify a given ring?

This question has produced several different interesting classification results for
semisimple tensor categories: those where every object is a direct sum of some
irreducible objects [Tambara and Yamagami 1998; Izumi 2001; Evans and Gannon
2014; 2017]. The set of (isomorphism classes) of the irreducible objects is denoted
Irr(C).

Here we consider fusion categories: these are semisimple tensor categories
(C,⊗,1) that are additionally:
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• finitely semisimple: |Irr(C)|<∞ and 1 ∈ Irr(C).
• rigid: objects V ∈ C have duals V ∗ ∈ C with corresponding maps evV :

V ∗⊗ V → 1 and dbV : 1→ V ⊗ V ∗. These are given, respectively, by the
diagrams

V ∗ V� � and � �
V V ∗

satisfying the relations

V� �
� �

V

=

V

V

and

V ∗ � �
� �

V ∗

=

V ∗

V ∗

These two requirements are meant to make the objects of C behave like group
representations. Indeed, the tensor category Rep(G) of complex representations of a
finite group G is the prototypical example of a fusion category: Maschke’s theorem
gives finite semisimplicity and the contragredient representation gives rigidity.

Now we make precise the notion of categorification. The Grothendieck ring K0(C)
of a fusion category C is the Z-based ring with basis Irr(C), multiplication given
by the tensor product in C, and addition given by the direct sum in C; that is, K0(C)
captures the ring structure of the category and forgets the morphisms. In the example
of Rep(G) it is the character ring R(G). We say that C categorifies a ring K if
K0(C)= K .

The simplest class of based rings to consider are the group rings ZG, which are
categorified precisely by the pointed fusion categories. These are the categories
VecωG of G-graded vector spaces where the associativity morphism for the tensor
product of three irreducible objects is given by a 3-cocycle ω ∈ Z3(G,C×). These
categories are classified to equivalence by the cohomology class of [ω]∈H 3(G,C×).
These facts are due to Mac Lane [Etingof et al. 2015, Proposition 4.10.3].

Here we will consider another level of complication, based rings with (only) one
noninvertible object:

Definition 2.1. Let G be a finite group. A fusion category C is a near group if its
Grothendieck ring is given by

K0(C)= NG(G,m) := Z[G ∪ {ρ}]

where multiplication is given by the group law and, where g ∈ G,

ρg = ρ = gρ and ρ2
= mρ+

∑
h∈G

h.



FROBENIUS–SCHUR INDICATORS FOR NEAR-GROUP CATEGORIES 341

Remark 2.2 [Evans and Gannon 2014, Theorem 2(a)]. When G is abelian the
multiplicity m is restricted to the values

• m = |G| − 1 or

• m = k|G| for some k ∈ N.

Consider the following important examples.

(1) The representation categories for the dihedral group of order 8 and the quater-
nion group of order 8 both categorify NG(Z/(2)×Z/(2), 0). These are exam-
ples of Tambara–Yamagami categories, which are the near groups with m = 0
[Tambara and Yamagami 1998].

(2) Rep(S3) and Rep(A4) categorify NG(Z/(2), 1) and NG(Z/(3), 2), respectively.
These are examples where m = |G| − 1.

(3) The principal even sectors of the D5 Murray–von Neumann subfactor also
categorify NG(Z/(2), 1).

(4) Rep(AGL1(Fq)) categorifies NG(Z/(q − 1), q − 2).

(5) The principal even sectors of the A4, E6, and Izumi–Xu subfactors categorify
NG(Z/(1), 1), NG(Z/(2), 2), and NG(Z/(3), 3), respectively.

Frobenius–Schur indicators. It is known that the Grothendieck ring and the asso-
ciativity natural isomorphism completely determine a fusion category up to monoidal
equivalence [Etingof et al. 2015, §§4.9–4.10]. The associativity data is encoded by
the 6j symbols, which are the matrix components of the linear maps induced by the
associativity natural isomorphism on triples of simple objects. Directly classifying
all 6j symbols having a given Grothendieck ring is difficult in general as it requires
finding solutions to large systems of nonlinear equations.

The near groups are spherical fusion categories. These are the fusion categories
equipped with a natural isomorphism of monoidal functors j : IdC −→∼ ( · )∗∗ (that
is, a pivotal structure) whose associated left and right quantum (or categorical)
trace functions agree for all objects V ∈ Irr(C) and morphisms f ∈ HomC(V, V ):

qtrr ( f ) :=

� �
f

V ∗

jV� �
=

� �
f

V ∗

j−1
V� �
=: qtrl( f ).

Note that these are complex numbers since we take V to be a simple object.
Since the traces agree we are able to define a quantum (or categorical) dimension
of objects V ∈ C by

qdim(V ) := qtr(idV )= qtrr (idV )= qtrl(idV ).
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The name spherical is motivated by imagining the strings in the morphism
diagrams to be inhabiting a sphere rather than a plane — this allows for the strands
on either side of the quantum traces to rotate around, giving the equality pictured
above in our planar diagrams.

For C a pivotal fusion category we can define a finer categorical invariant than
the Grothendieck ring:

Definition 2.3 [Ng and Schauenburg 2007b]. For V∈C we define the k-th Frobenius–
Schur indicator by the linear trace

νk(V )= Tr

E (k)V :

f

···

V V · · · V︸ ︷︷ ︸
n

7→

� �
f
	 ··· j−1

V

V · · · V V


with E (k)V a linear endomorphism of finite-dimensional vector space Hom(1, V⊗n)

taking V⊗n to be n-fold tensor product of V with all parentheses to the right.

The Tambara–Yamagami categories are an example of a fusion category family
where the Frobenius–Schur indicators are a finer invariant than the Grothendieck
ring [Ng and Schauenburg 2008]. In [Basak and Johnson 2015] it was shown that
the indicators are a complete invariant for the Tambara–Yamagami categories. That
is, the monoidal equivalence classes of fusion categories associated to the ring
NG(G, 0) are completely distinguished by their Frobenius–Schur indicators. We
give this property a name:

Definition 2.4. A ring K exhibits FS indicator rigidity if its categorifications can
all be distinguished by their Frobenius–Schur indicators.

The central question that motivates the present article is immediate:

What rings have FS indicator rigidity?

We will see in Corollary 3.3 that the near-group rings NG(G, |G| − 1) exhibit this
property.

Drinfel’d centers and modular data. The Drinfel’d center Z(C) of a spherical
fusion category C is modular [Müger 2003, Proposition 5.10]; that is, it is again
spherical with a nondegenerate braiding cV,W : V ⊗W → V ⊗W which is given
in diagrams by

cV,W =

V W

W V
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Combined with the spherical structure the braiding also endows the Drinfel’d center
with a ribbon structure, that is, a natural isomorphism θ of the identity functor
(satisfying some coherence axioms) given by

θV =

V��

	

j−1
V

V
Note that this is a scalar when V is a simple object.

Modular categories come with a projective representation of the modular group
called modular data. The representation is defined by sending the generators
s, t ∈ SL2(Z) to the S- and T -matrices

S =



� �� �
V W

� �� �


V,W∈Irr(C)

and T = Diag(θV )V∈Irr(C).

Most crucially, we can obtain the Frobenius–Schur indicators from the modular
data of the Drinfel’d center:

Theorem 2.5 [Ng and Schauenburg 2007a, Theorem 4.1]. Let C be a spherical
fusion category, and let F : Z(C)→ C be the forgetful functor. Then

νk(X)=
1

qdim(C)

∑
V∈Irr(Z(C))

θ k
V qdim(V ) dimC(HomC(F(V ), X))

where θV are the entries of the T -matrix for Z(C).

Izumi’s classification program. The classification parameters for the Tambara–
Yamagami categories were obtained by direct solution of the equations resulting
from the pentagon axiom for the associativity. This method is not feasible for more
complicated categories.

Masaki Izumi was able to extend this classification by using a fundamental
result due to Popa: every unitary (or C∗) fusion category tensor-generated by
one object can be embedded in the category of sectors of the hyperfinite type-III
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Murray–von Neumann subfactor R. Sectors are unitary equivalence classes of
endomorphisms of R; the tensor product of sectors is composition. Note that the 6j
symbols can be obtained from Izumi’s classification data; see [Suzuki and Wakui
2002] for the near-group category C with K0(C)= NG(Z/(3), 3) coming from the
E6 subfactor.

Izumi [2001] and Evans and Gannon [2014; 2017] have obtained the classification
parameters for the near-group families used in the sequel via this program; hence, our
fusion categories will be unitary. In particular, this means that a canonical spherical
structure can be chosen such that the quantum dimension and the Frobenius–Perron
dimension agree.

3. Frobenius–Schur indicators for near groups with m = |G| − 1

Let C be a fusion category such that K0(C)=NG(G, |G|−1). It is shown in [Evans
and Gannon 2014, Proposition 2] that such a fusion category can only exist if
G ∼= F×

|G|+1 is the multiplication group of a finite field. (So G is cyclic, and thus,
H 2(G,T)= 1.) Let p = char(F|G|+1).

Consider again the category Rep(AGL1(F|G|+1)). These provide the main exam-
ples of m = |G| − 1 near groups. In fact, by [Etingof et al. 2004, Corollary 7.4;
Evans and Gannon 2014, Proposition 5], these are the only fusion categories with
this Grothendieck ring unless |G| = 1, 2, 3, 7.

Indicators for C ' Rep(AGL1(Fq)). We may use classical methods to determine
the indicators for C that is tensor equivalent to the category of representations
of an affine general linear group of degree 1 over the finite field Fq . Recall that
θG

k (h)= |{g ∈ G | gk
= h}|.

Proposition 3.1. Suppose C is such that K0(C) = NG(G, |G| − 1) and |G| 6=
1, 2, 3, 7. Then C '⊗ Rep(AGL1(F|G|+1)) and

νk(ρ)= θ
G
k (e)− 1+ δ⌊ k

p
⌋
, k

p
.

Proof. Let |G| + 1 = q. Since AGL1(Fq) ∼= F+q o GL1(Fq) ∼= F+q o F×q we may
use Serre’s method of little groups [1977, §8.2, Proposition 25] to see that the
character ρ for the irreducible representation with degree > 1 is given by

ρ(a, b)=
δ1,b

q

∑
(x,y)∈AGL1(Fq )

η(y−1a)

for any nontrivial linear character η ∈ F̂+q .
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Now we may apply the classical formula for νk(ρ) [Isaacs 1976, Lemma 4.4]:

νk(ρ)=
1

q(q − 1)

∑
(a,b)∈FqoF×q

ρ((a, b)k)

=
1

q(q − 1)

∑
(a,b), bk=1

ρ((1+ b+ b2
+ · · ·+ bk−1)a, 1)

=
1

q(q − 1)

( ∑
(a,b), bk=1, b 6=1

ρ(0, 1)+
∑
n∈Fq

ρ(kn, 1)
)
.

Since ρ is a degree-(q−1) character, the left-hand sum in the last expression above
is equal to q(q − 1)(θ

F×q
k (1)− 1). The right-hand sum in the same expression is

equal to ∑
n∈Fq

∑
b∈F×q

η(b−1kn)=
{

q(q − 1) if p | k,
0 if p - k.

The p | k case is clear since then η(b−1kn) is identically 1. On the other hand,
η(b−1kn)= b ·η(kn) under the transpose of the left regular action of F×q

∼=GL1(Fq)

on F̂q ∼= Fq . Since (p, k)= 1 we have that

∑
n∈Fq

b · η(kn)=
∑
n∈Fq

b · η(n),

and since the action is faithful by definition, we know that b · η is not the trivial
representation for any b ∈ F×q . Hence, by orthogonality of characters the sum is 0.
The formula is now clear since the given Kronecker delta is 1 if p | k and is 0
otherwise. �

Indicators in general from modular data of Z(C). For |G| = 1, 3, 7 there is 1
additional monoidal equivalence class, and for |G| = 2 there are 2 additional
monoidal equivalence classes. The modular data for Drinfel’d centers of unitary
m = |G| − 1 near groups was computed in [Evans and Gannon 2014, Theorem 5].
We will appeal to Theorem 2.5 to compute the indicators for a general unitary
m = |G| − 1 near group.

Let ε ∈ Ĝ be the trivial character, and let F+
|G|+1 be the additive group of the

finite field. Excluding the case where |G| = 7 and s =−1 we have the following
data for the center Z(C):
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X ∈ Irr(Z(C)) F(X) cX,· given by θX

Ag (g ∈ G) g 1 1
6

⊕
x∈G x 1 1

Bωg (g ∈ G) ρ+ g ω ∈ Ĝ \ {ε} ω(g)

Cψ (ψ ∈ F̂+
|G|+1) ρ ψ ∈ F̂+

|G|+1 ζ1ψ(1)

where the half-braiding for Cψ on occurrences of ρ in objects of Z(C) is a morphism

eCψ (ρ) ∈ HomC(ρ⊗ ρ, ρ⊗ ρ)∼= C|G|⊕Mm(C)

given by

eCψ (ρ)= ζ1ψ(1)
(⊕

k∈G

(−1)mk Idk

)
⊕[ζγ (ψ ◦ σ)(γ )δσ 2(γ )∗,µ Idρ]γ,µ.

For the case where |G| = 7 and s =−1 we have:

X ∈ Irr(Z(C)) F(X) cX,· given by θX

Ag (g ∈ G) g 1 1
6

⊕
x∈G x 1 1

Bωg (g ∈ G, ω ∈ Ĝ \ {ε}) ρ+ g ω ∈ Ĝ \ {ε} ω(g)
E1 ρ+ ρ 1 i
E2 ρ+ ρ 1 −i

With the preceding data in hand we may now apply Theorem 2.5 to see:

Theorem 3.2. Suppose that C is a unitary fusion category such that K0(C) =
NG(G, |G| − 1). Then the indicators for the noninvertible object ρ are given by:

(1) If |G| 6= 7 or s = 1, then

νk(ρ)= (θ
G
k (e)− 1)+ ζ1

kδ⌊ k
p
⌋
, k

p
.

(2) If |G| = 7 and s =−1, then

νk(ρ)= (θ
G
k (e)− 1)+ (−1)k/2δ⌊ k

2

⌋
, k2
.

Proof. (1) Suppose |G| 6= 7 or s = 1. Then we have

νk(ρ)=
1

qdim(C)

( ∑
g∈G

ω∈Ĝ\{ε}

θ k
Bωg

qdim(Bωg )+
∑

ψ∈F̂+
|G|+1

θ k
Cθ qdim(Cψ)

)

=
1

qdim(C)

(
(|G| + 1)

∑
g∈G

ω∈Ĝ\{ε}

ω(g)k + |G|ζ1
k
∑

ψ∈F̂+
|G|+1

ψ(1)k
)
.
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Consider the first summand. Since G is abelian we may choose an isomorphism
h 7→ χh from G→ Ĝ. Then we have∑

g∈G
ω∈Ĝ\{ε}

ω(g)k =
(∑

g∈G

∑
ω∈Ĝ

ω(g)k
)
−

(∑
g∈G

ε(g)k
)

=

(∑
g∈G

∑
h∈G

χh(g)k
)
− |G|

=

(
|G|

∑
h∈G

νk(χh)

)
− |G|

= |G|(θG
k (e)− 1).

Consider the second summand. Since F+n+1 is the additive group of a finite
field we have that n + 1 = pl for some prime p and positive integer l and that
F+n+1
∼= (Zp)

l as groups. Under this identification the multiplicative unit 1 ∈ F+n+1
is a direct sum of generators of the copies of Zp:

∑
ψ∈F̂+

|G|+1

ψ(1)k =
∑

ψ∈F̂+
|G|+1

ψ(k1)=
{

0 if k1 6= 0,
pl if k1= 0

=

{
0 if p - k,
|G| + 1 if p | k

= (|G| + 1)δ⌊ k
p
⌋
, k

p
.

(2) Now suppose that |G| = 7 and s =−1. Then

νk(ρ)=
1

qdim(C)

( ∑
g∈G

ω∈Ĝ\{ε}

θ k
Bωg

qdim(Bωg )+ 2
2∑

i=1

θ k
Et

qdim(Et)

)

= θG
k (e)− 1+

4|G|ik(1+ (−1)k)
|G| + |G|2

= θG
k (e)− 1+

ik(1+ (−1)k)
2

= θG
k (e)− 1+ (−1)k/2δ⌊ k

2

⌋
, k2
. �

Corollary 3.3. The near-group fusion ring NG(G, |G| − 1) exhibits Frobenius–
Schur indicator rigidity.

Proof. The statement is vacuous in all but the cases where |G| = 1, 2, 3, 7. We shall
consider them now.
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If |G|=1, 3, 7, then there is one additional tensor equivalence class corresponding
to s = −1. By [Evans and Gannon 2014, p. 41] if |G| + 1 is even (i.e., a power
of 2), then ζ 2

1 = s; hence, ν2(ρ)= s in each of these three cases.
If |G| = 2, then s = 1 but instead b=µ where µ is some third root of unity. The

two nontrivial possibilities for µ correspond to the two additional tensor equivalence
classes for this type. By [Evans and Gannon 2014, p. 42] if µ= exp

(
±

2π i
3

)
, then

ζ1 = exp
(
∓

2π i
3

)
; hence, ν3(ρ)= µ. �

4. Frobenius–Schur indicators for near groups with m = |G|

For the rest of this article the group operation in G will be written additively. This
will be a more convenient notation for working with bilinear and quadratic forms.

Metric groups and the Fourier transform. Shimizu observed that the Fourier trans-
form for finite groups appears when computing Frobenius–Shur indicators for fusion
categories [Shimizu 2011]. A finite abelian group G is isomorphic to its linear
dual Ĝ via a nondegenerate symmetric bicharacter 〈 · , · 〉 with the identification

G→ Ĝ,

g 7→ 〈g, · 〉.

Symmetric bicharacters 〈 · , · 〉 : G×G→ T are in one-to-one correspondence with
bilinear forms β : G×G→Q/Z via the exponential

〈g, h〉 = e2π iβ(g,h).

A quadratic form is a function q : G→Q/Z with q(−g)= q(g) such that

∂q(g, h) := q(g)+ q(h)− q(gh)

is a symmetric bilinear form. A pair (G, q) is called a premetric group. If the
bilinear form ∂q is nondegenerate, then it is called a metric group.

Remark 4.1. If |G| is odd, then the correspondence between quadratic forms and
bilinear forms given by ∂ is one-to-one. If |G| is even, then the correspondence is
|G/2G|-to-one.

Now, using the bicharacter 〈 · , · 〉we can define the Fourier transform for complex
function f : G→ C on finite abelian groups:

f̂ (g)=
1
√
|G|

∑
h∈G

〈g, h〉 f (h).

The Fourier transform of the exponent of a quadratic form q at the unit element of
the group defines a very important invariant of premetric groups:
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Definition 4.2. Let (G, q) be a premetric group. Then the Fourier transform of e2π iq

at 0 ∈ G defines the Gauss sum:

2(G, q)=
1
√
|G|

∑
g∈G

e2π iq(g).

The Gauss sum is multiplicative over the (obviously defined) orthogonal direct
product of metric groups:

2(G ⊥ G ′, q + q ′)=2(G, q)2(G ′, q ′).

(This identity is for metric groups; hence, the quadratic forms must all be nonde-
generate.)

Izumi’s classification of m=|G| near groups. Izumi completely classified unitary
near-group fusion categories with m = |G| and where H 2(G,C×) = 1 in [Izumi
2000; 2001; 2017].

Theorem 4.3 [Izumi 2001, Theorem 5.3]. Unitary fusion categories C such that
K0(C)=NG(G, |G|) and H 2(G,C×)= 1 are classified up to monoidal equivalence
by the group G, a metric group structure 〈 · , · 〉 on G, and the following complex
parameters:

(1) a : G → T such that a(g) = e2π iq(g) for a quadratic form q with 〈g, h〉 =
e2π i∂q(g,h), i.e.,

a(0)= 1, a(g)= a(−g),
a(g+ h)
a(g)a(h)

= 〈g, h〉.

(2) b : G→ C and c ∈ T such that

2(G, q)= â(0)=
1
c3 ,

b(g)= a(g)b(−g),

b̂(0)=
−c

qdim(ρ)
, b̂(g)= cb(g), |b̂(g)|2 =

1
|G|
−

δg,0

qdim(X)
,∑

x∈G

b(x + g)b(x + h)b(x)= 〈g, h〉b(g)b(h)−
c

qdim(ρ)
√
|G|

.

Two such fusion categories NG(G1, 〈 · , · 〉1, a1, b1, c1),NG(G2, 〈 · , · 〉2, a2, b2, c2)

are monoidally equivalent if and only if

c1 = c2

and there is an isomorphism of metric groups φ : (G1, 〈 · , · 〉1)→ (G2, 〈 · , · 〉2) such
that

a2 = a1 ◦φ and b2 = b1 ◦φ.



350 HENRY TUCKER

Remark 4.4. If the requirement that H 2(G,C×)= 1 is relaxed, then a solution of
Izumi’s equations in Theorem 4.3 is sufficient to produce a near-group category
with the required K0 ring, but not necessary.

Indicators from modular data of Z(C). Izumi found the simple objects of Z(C)
along with their twists and half-braidings in [Izumi 2001, Theorem 6.8], which is
given as follows, where < is a chosen order on G:

X ∈ Irr(Z(C)) F(X) cX,· given by θX

Ag (g ∈ G) g 1 〈g, g〉
Bg (g ∈ G) ρ+ g 1 〈g, g〉
Cg,h (g < h ∈ G) ρ+ g+ h 1 〈g, h〉
E j for j = 1, . . . , 1

2 |G|(|G| + 3) ρ ω j

The ω j ∈µ∞⊆T are solutions to the system of equations (6.18)-(6.20) in [Izumi
2001, §6] parametrized by g ∈ G with coefficients given by the complex values
a(g), b(g), c ∈ C.

Proposition 4.5. Suppose C is unitary fusion category with Grothendieck ring
K0(C)= NG(G, |G|) and noninvertible object ρ. Let q be a quadratic form such
that 〈g, h〉 = e2π i∂q(g,h). Then the indicators for ρ are given by

νk(ρ)=
1
2θ

G
k (e)+

qdim(ρ)
qdim(C)

(√
|G|
2

2(G, 2kq)+
|G|(|G|+3)/2∑

j=1

ωk
j

)
.

Proof. Let dρ := qdim(ρ), and let < be an arbitrary ordering on the finite group G.
Again applying Theorem 2.5 we have

νk(ρ)=
1

qdim(C)

(
(1+ dρ)

∑
g∈G

θ k
Bg
+ (2+ dρ)

∑
g,h∈G
g<h

θ k
Cg,h
+ dρ

|G|(|G|+3)/2∑
j=1

θ k
E j

)

=
1

qdim(C)

(
dρ
2

∑
g∈G

〈g, g〉k +
2+ dρ

2

∑
g,h∈G

〈g, h〉k + dρ
∑

j

ωk
j

)
where the second equality is due to the symmetry of 〈 · , · 〉.

Now we consider the middle sum:∑
g,h∈G

〈g, h〉k =
∑
g∈G

∑
h∈G

〈g, hk
〉 = |G|

∑
g∈G

ν
groups
k (〈g, · 〉)= |G|θG

k (e).

The second equality is by definition of the Frobenius–Schur indicator for finite
groups (denoted νgroups

k ) [Isaacs 1976, (4.4)] and the third equality is by [Isaacs
1976, p. 49].
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Now let q be a quadratic form such that 〈g, h〉 = e2π i∂q(g,h), and consider the
first sum: ∑

g∈G

〈g, g〉k =
∑
g∈G

e2π i(2kq(g))
=
√
|G|2(G, 2kq).

Hence, the formula is now clear. �

Modular data for pointed modular categories. Recall that any pointed fusion cat-
egory is equivalent to VecωG for some [ω] ∈ H 3(G,C×). Now we consider pointed
modular categories. Since modular categories are also fusion categories they will
be equivalent as fusion categories to VecωG with G abelian. The braiding induces a
quadratic form cg,g = e2π iq(g), which gives G the structure of a metric group. Then
these categories are classified under braided equivalence up to isomorphism of
premetric groups. Note that in the case of odd-order groups if ω admits a braiding
it will be unique; the notational convention Vec(ω,c)G includes the braiding c. (This
is because the Eilenburg–Mac Lane abelian cohomology H 3

ab(G,C×) is isomorphic
to the group of quadratic forms on G [Eilenberg and Mac Lane 1953; 1954]. See
[Etingof et al. 2015, §8.4] for an outline of the proof in a more modern context.)

We now give the modular data for a pointed modular category. Define the bichar-
acter 〈g, h〉q := e2π i∂q(g,h). The modular data are given by the Weil representation
associated to the premetric group (G, q):

S = Sq
:=

1
√
|G|

(〈g, h〉q)g,h∈G, T = T q
:= (δg,he2π iq(g))g,h∈G .

Indicators when |G| is odd. When |G| is odd we have a one-to-one between
quadratic forms and bilinear forms given by the map q 7→ ∂q. Let q be the
quadratic form on G such that 〈g, h〉 = e2π i∂q(g,h). Then we define

NG(G, q, b, c) :=NG(G, 〈 · , · 〉q , e2π iq , b, c),

the corresponding near-group fusion category via the notation from Theorem 4.3.

Conjecture 4.6 [Evans and Gannon 2014, Conjecture 2]. Suppose |G| is odd. Then
there exists a metric group (G ′, q ′) of order |G| + 4 such that:

(1) Simple objects E j in the subsection starting on page 350 are indexed by g ∈ G
and x ∈ G ′ \ {e} where Eg,x = Eg,x−1 and

θEg,x = 〈g, g〉e2π i∂q ′(x).

(2) The modular data are given by the Kronecker product of the Weil representation
for (G, q)with another pair of modular data (S′, T ′) for a rank |G|+3 modular
category:

Sq,q ′
:= Sq

⊗ S′, T q,q ′
:= T q

⊗ T ′
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where we have

T ′ = Diag(1, 1, 〈g, g〉q , 〈x, x〉q ′)g∈G,x∈G ′ .

(See [Evans and Gannon 2014, Proposition 7] for the definition of S′.)

Remark 4.7. Evans and Gannon [2014] show that the conjecture is true for near
groups with |G| ≤ 13 odd.

Theorem 4.8. Suppose a unitary fusion category C with K0(C)= NG(G, |G|) and
|G| odd satisfies Conjecture 4.6. Then

νk(ρ)=
1
2θ

G
k (e)+

1
22(G, 2kq)2(G ′, 2kq ′).

Proof. Let N = (|G ′| − 1)/2, and enumerate G ′ as

G ′ = {e, x1, . . . , xN , x−1
1 , . . . , x−1

N }.

Let dρ := qdim(ρ) and 〈x, y〉q ′ := e2π i∂q(x,y). Starting with Proposition 4.5 we
have

νk(ρ)=
1
2θ

G
k (e)+

dρ
qdim(C)

(√
|G|
2

2(G, 2kq)+
∑
g∈G

1≤i≤N

〈g, g〉kq〈xi , xi 〉
k
q ′

)

=
1
2θ

G
k (e)+

dρ
√
|G|2(G, 2kq)
|G|(2+ dρ)

(
1
2 +

∑
1≤i≤N

〈xi , xi 〉
k
q ′

)

=
1
2θ

G
k (e)+

dρ
√
|G|2(G, 2kq)
|G|(2+ dρ)

( 1
2 +

1
2(2(G

′, 2kq ′)
√
|G| + 4− 1)

)
=

1
2θ

G
k (e)+

dρ
√
|G|
√
|G| + 4

2|G|(2+ dρ)
2(G, 2kq)2(G, 2kq ′),

and using the fact that d2
ρ = |G| + |G|dρ we have

dρ
√
|G|
√
|G| + 4

2|G|(2+ dρ)
=

dρ(2dρ − |G|)
2|G|(2+ d + ρ)

=
1
2

and then the formula for νk(ρ) is clear. �

As a corollary to the preceding theorem we obtain an easy and more natural
proof of [Evans and Gannon 2014, Proposition 7(b)]:

Corollary 4.9. The matrices (Sq,q ′, T q,q ′) are modular data for a near-group center
only if 2(G, 2q)2(G ′, 2q ′)=−1.

Proof. Suppose a near-group category C =NG(G, 〈 · , · 〉q , e2π iq , b, c) has a center
Z(C) with modular data given by (Sq,q ′, T q,q ′). Since the simple object ρ cannot
contain a copy of 1 we know that ν1(ρ)= 0. Therefore, by Theorem 4.8, we must
have 2(G, 2q)2(G ′, 2q ′)=−1. �
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Let
( p

q

)
be the Jacobi symbol.

Corollary 4.10. For |G| odd and k such that gcd(k, |G| · |G ′|)= 1 we have

νk(ρ)=
1
2

(
1−

(
k

|G| · |G ′|

))
.

Proof. Using the decomposition into irreducible metric groups given in [Wall 1963]
it is easy to see that

2(G, kq)2(G ′, kq ′)=
(

k
|G| · |G ′|

)
2(G, q)2(G ′, q ′).

See also [Basak and Johnson 2015, §3 and Lemma 3.2]. �

Corollary 4.11. 2(G ′, q ′)=−c3 where (G ′, q ′) is the metric group associated to
the center of NG(G, q, b, c).

Proof. We’ve seen in Theorem 4.3 that 2(G, q)= 1
c3 ; hence, the above follows by

the Corollary 4.9. �

The complete list of near-group categories with K0(C) = NG(G, |G|) for odd
|G| ≤ 13 was obtained in [Evans and Gannon 2014, Proposition 6] by finding
solutions to Izumi’s equations in Theorem 4.3. They also used Izumi’s methods
from [Izumi 2001, §6; 2017] to produce the modular data of their Drinfel’d centers;
see [Evans and Gannon 2014, §§4.3–4.4 and Table 2]. Collected below are the
modular data they found along with the Frobenius–Schur indicators of ρ for each
of these categories. Since |G| is odd, let q be the unique quadratic form associated
to the bicharacter 〈 · , · 〉 from the classification parameters.

The data uses the following notation:

• Column 1. C = NG(G, q, b, c)) with |G| odd as in the above notation. (For
clearer presentation, the parameters b and c will be given only if they are
necessary to establish in-equivalence.)

• Column 2. (G ′, q ′) is the metric group from the modular data of Z(C) from
Conjecture 4.6. Recall |G ′| = |G| + 4.

• ζk = exp
(2π i

k

)
∈ T primitive k-th root of unity.

|G| = 3 (G ′, q ′) ν3(ρ) ν7(ρ)

NG(Z/(3), 1
3 g2, · , · ) (Z/(7), 1

7 g2) 3+i
√

3
2

1+i
√

7
2

NG(Z/(3),−1
3 g2, · , · ) (Z/(7),− 1

7 g2) 3−i
√

3
2

1−i
√

7
2
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|G| = 5 (G ′, q ′) ν3(ρ) ν5(ρ) ν9(ρ)

NG(Z/(5), 2
5 g2, · , ζ3) (Z/(9), 2

9 g2) 1+ ζ3
5+
√

5
2 −1

NG(Z/(5), 2
5 g2, · , ζ3) (Z/(9),− 2

9 g2) 1+ ζ3
5+
√

5
2 −1

NG(Z/(5), 1
5 g2, · , 1) ((Z/(3))2, 1

3(g
2
+ h2)) −1 5−

√
5

2 2

|G| = 7 (G ′, q ′) ν7(ρ) ν11(ρ)

NG(Z/(7), 1
7 g2, · , · ) (Z/(11),− 2

11 g2) 7−i
√

7
2

1+i
√

11
2

NG(Z/(7),− 1
7 g2, · , · ) (Z/(11), 2

11 g2) 7+i
√

7
2

1−i
√

11
2

|G| = 9 (G ′, q ′) ν3(ρ) ν9(ρ) ν13(ρ)

NG(Z/(9), 1
9 g2, · , · ) (Z/(13),− 2

13 g2) 1− ζ3 3 1+
√

13
2

NG(Z/(9),− 1
9 g2, · , · ) (Z/(13), 2

13 g2) 1− ζ3 3 1+
√

13
2

NG((Z/(3))2, 1
3(g

2
− h2), · , · ) (Z/(13), 2

13 g2) 3 3 1+
√

13
2

|G| = 11 (G ′, q ′) ν3(ρ) ν5(ρ) ν11(ρ) ν15(ρ)

NG(Z/(11), 1
11 g2, · , ζ 7

12) (Z/(15), 2
15 g2) 1−i

√
3

2
1+
√

5
2

11−i
√

11
2

1+i
√

15
2

NG(Z/(11), 1
11 g2, · , ζ12) (Z/(15), 1

15 g2) 1+i
√

3
2

1−
√

5
2

11−i
√

11
2

1+i
√

15
2

NG(Z/(11),− 1
11 g2, · , ζ12) (Z/(15),− 1

15 g2) 1−i
√

3
2

1−
√

5
2

11+i
√

11
2

1−i
√

15
2

NG(Z/(11),− 1
11 g2, · , ζ 5

12) (Z/(15),− 2
15 g2) 1+i

√
3

2
1+
√

5
2

11+i
√

11
2

1−i
√

15
2

|G| = 13 (G ′, q ′) ν13(ρ) ν17(ρ)

NG(Z/(13), 1
13 g2, b1,−1) (Z/(17), 3

17 g2) 13−
√

13
2

1+
√

17
2

NG(Z/(13), 1
13 g2, b2,−1) (Z/(17), 3

17 g2) 13−
√

13
2

1+
√

17
2

NG(Z/(13), 2
13 g2, b3, 1) (Z/(17), 1

17 g2) 13+
√

13
2

1−
√

17
2

NG(Z/(13), 2
13 g2, b4, 1) (Z/(17), 1

17 g2) 13+
√

13
2

1−
√

17
2

Remark 4.12. See that for G=Z/(13)we have two pairs of inequivalent fusion cat-
egories with the same indicators; hence, the near-group fusion ring NG(Z/(13), 13)
does not have FS indicator rigidity. Note that the lesser odd order groups do exhibit
FS indicator rigidity.

5. Frobenius–Schur indicators for Haagerup–Izumi fusion categories

Near groups are examples of quadratic fusion categories: those tensor-generated by
a single noninvertible simple object ρ where the set of simple objects is given by

G ∪ {g⊗ ρ | g a coset representative in G/H}



FROBENIUS–SCHUR INDICATORS FOR NEAR-GROUP CATEGORIES 355

where H is some subgroup of G. Near groups correspond to H = G. On the other
end of the spectrum, the Haagerup–Izumi fusion categories correspond to H = {e}.

Definition 5.1. C is a Haagerup–Izumi fusion category if

K0(C)= HI(G) := Z[G ∪ {gρ | g ∈ G}]

where multiplication is given by the group law and

g(hρ)= (gh)ρ = (hρ)g−1,

(gρ)(hρ)= gh−1
+

∑
x∈G

xρ.

Classification and examples. The complete lists of Haagerup–Izumi categories
for G = Z/(3) and G = Z/(5) were found by Evans and Gannon [2017] without
assuming unitarity by generalizing Izumi’s methods to endomorphisms of Leavitt
algebras. These categories are classified up to isomorphism of the group G and the
parameters

• a sign ±,

• ω a third root of unity, and

• A ∈ M|G|(C) a complex matrix

all satisfying some relations given in [Evans and Gannon 2017, Theorem 1]. An
Haagerup–Izumi category with the above parameters will be denoted

HI(G,±, ω, A).

The notion of equivalence for the parameters is given in [Evans and Gannon 2017,
Theorem 2(b)]. In particular, the category is unitary if and only if both the sign is +
and A is hermitian [Evans and Gannon 2017, Theorem 2(c)].

The most important examples of HI categories are the Yang–Lee system of
sectors, which is the unique nonunitary such category with G the trivial group, and
the system of sectors for the Haagerup subfactor, which is a unitary HI category
with G = Z/(3).

Indicators when |G| is odd. When C is a Haagerup–Izumi fusion category the
modular data for the center Z(C) was computed by Evans and Gannon [2017, §6.3]
and is given as follows:
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X ∈ Irr(Z(C)) F(X) braiding θX

1 1 1 1
B 1+

∑
g∈G g⊗ ρ 1 1

Aψ = Aψ 21+
∑

g∈G g⊗ ρ ψ ∈ Ĝ \ {1} 1
C (h)
φ (h ∈ G+) h+ h−1

+
∑

g∈G g⊗ ρ φ ∈ Ĝ φ(h)
D j (1≤ j ≤ 1

2(|G|
2
+ 3))

∑
g∈G g⊗ ρ ζ j

In the preceding table G+ is defined by a partition G = G+ t {e} t G− where
(G+)−1

= G−, which is always possible since |G| is odd.
The ζ j are a solutions to a system of equations with coefficients given by±, ω, A.

These equations are (6.14) and (6.16)–(6.19) in [Evans and Gannon 2017, §6.2].
See [Evans and Gannon 2017, Proposition 2]. For G odd order they make another
conjecture:

Conjecture 5.2 [Evans and Gannon 2017, Conjecture 1]. Suppose |G| is odd. Then
there exists a metric group (H, q ′′) of order |G|2+ 4= 2m+ 1 such that the simple
objects D j are indexed by h ∈ H \ {e} where Dh = Dh−1 and

θDh = e2π imq ′′(h).

Remark 5.3. Evans and Gannon [2017, Theorem 3] show that the conjecture is
true for Haagerup–Izumi fusion categories with |G| = 1, 3, 5.

Theorem 5.4. Suppose C is a Haagerup–Izumi fusion category with |G| odd satis-
fying Conjecture 5.2. Then

νk(ρ)=
1
2θ

G
k (e)+

1
22(H, kmq ′′).

Proof. Let d = qdim(ρ) in the category C. Again by using Theorem 2.5

νk(ρ)=
1

qdim(C)

(
qdim(B)+

∑
ψ 6=ψ∈Ĝ

qdim(Aψ)

+

∑
e 6=h−1 6=h∈G

∑
φ∈Ĝ

θ k
Ch
φ

qdim(Ch
φ)+

∑
γ−1 6=γ∈H

θDγ
qdim(Dγ )

)
.

Letting |G| = 2n+ 1 and |H | = 2m+ 1 we may enumerate these odd order groups
as

G = {e, gi , g−1
i | 1≤ i ≤ n} and H = {e, h j , h−1

j | 1≤ j ≤ m},

which gives us

νk(ρ)=
1

qdim(C)

(
|G| + |G|d + |G|dn+ (2+ |G|d)

∑
gi ,φ

φ(gi )
k
+ |G|d

∑
h j∈H

ζ k
j

)
.
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By the same argument as in the proofs of Theorems 3.2 and 4.8 we can see∑
gi ,φ

φ(gi )
k
=
|G|
2
(θG

k (e)− 1).

Hence, using the expression for the center’s ribbon structure from Conjecture 5.2
and the fact that |H | = |G|2+ 4 and qdim(C)= 2|G| + d|G|2 we see

νk(ρ)=
|G|

qdim(C)

(
2+ |G|d

2
θG

k (e)+ d + dn−
|G|d

2
+ d

∑
h j∈H

e2π ikmq ′′(h j )

)

=
1
2θ

G
k (e)+

|G|
2 qdim(C)

(
2d + 2dn− |G|d + d(

√
|H |2(H, kmq ′′)− 1)

)
=

1
2θ

G
k (e)+

|G|d
√
|G|2+ 4

2 qdim(C)
2(H, kmq ′′)

=
1
2θ

G
k (e)+

1
22(H, kmq ′′). �

Now we collect in the tables below the values of the Frobenius–Schur indicators
for the Haagerup–Izumi categories constructed in [Evans and Gannon 2011]:

G = Z/(3) (H, q ′′) νk(ρ) ν3(ρ) ν13(ρ)

HI(Z/(3),+, 1, A1) (Z/(13), 1
13 g2) 1

2(1− (
1
13 k)) 1 1+

√
13

2

HI(Z/(3),+, 1, A2) (Z/(13), 1
13 g2) 1

2(1− (
1
13 k)) 1 1+

√
13

2

HI(Z/(3),−, 1, A3) (Z/(13), 2
13 g2) 1

2(1+ (
1
13 k)) 2 1+

√
13

2

HI(Z/(3),−, 1, A4) (Z/(13), 2
13 g2) 1

2(1+ (
1
13 k)) 2 1+

√
13

2

In the preceding table the integer k must be relatively prime to 3 · 13= 39.

G = Z/(5) (H, q ′′) νk(ρ) ν5(ρ) ν29(ρ)

HI(Z/(5),+, 1, A6) (Z/(29), 1
29 g2) 1

2(1− (
1
29 k)) 2 1+

√
29

2

HI(Z/(5),+, 1, A7) (Z/(29), 1
29 g2) 1

2(1− (
1
29 k)) 2 1+

√
29

2

HI(Z/(5),−, 1, A8) (Z/(29), 2
29 g2) 1

2(1+ (
1
29 k)) 3 1+

√
29

2

HI(Z/(5),−, 1, A9) (Z/(29), 2
29 g2) 1

2(1+ (
1
29 k)) 3 1+

√
29

2

In the preceding table the integer k must be relatively prime to 5 · 13= 65.

Remark 5.5. See that for each of Z/(3) and Z/(5)we have two pairs of inequivalent
fusion categories with the same indicators; hence, the Haagerup–Izumi fusion rings
do not have FS rigidity.

Note that in this case as well as the m = |G| = 13 near-group case the pairs
have centers with the same modular data (although it is not established whether the
centers are equivalent). In view of this we formulate the following conjecture.
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Conjecture 5.6. Two fusion categories with a given Grothendieck ring that are also
Morita equivalent cannot be distinguished by their Frobenius–Schur indicators.
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