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COMPACTNESS THEOREMS FOR
4-DIMENSIONAL GRADIENT RICCI SOLITONS

YONGJIA ZHANG

We prove compactness theorems for noncompact 4-dimensional shrinking
and steady gradient Ricci solitons, respectively, satisfying: (1) every bounded
open subset can be embedded in a closed 4-manifold with vanishing second
homology group, and (2) are strongly κ-noncollapsed on all scales with re-
spect to a uniform κ . These solitons are of interest because they are the only
ones that can arise as finite-time singularity models for a Ricci flow on a
closed 4-manifold with vanishing second homology group.

1. Introduction

Since the works of Cheeger and Gromov, compactness and precompactness theorems
have played a fundamental role in understanding the geometry and topology of
Riemannian manifolds. In the setting of the Ricci flow, Shi’s local derivative of
curvature estimates [1989] enabled Hamilton [1995a] to improve the convergence to
C∞-convergence of solutions. In dimension 3, in the setting of ancient noncollapsed
Ricci flow, this was remarkably strengthened by Perelman [2002] who proved that
the global curvature and bound follows from a curvature bound only at a single point.
In dimensions 4 and above, this is no longer possible because of the existence of
asymptotically conical singularity models, and in particular, asymptotically conical
shrinking gradient Ricci solitons. Besides the weakness of the hypotheses, one of
the strengths of Perelman’s compactness theorem is that it is indeed a compactness
result, not just a precompactness result. So the limit extracted from a subsequence
is in the same class of objects as the original sequence of objects, in Perelman’s
case, 3-dimensional ancient κ-solutions.

In this paper we consider 4-dimensional Ricci solitons satisfying a certain topolog-
ical condition which is of interest in the study of the Ricci flow on closed 4-manifolds
with vanishing second homology group, which include homotopy 4-spheres. In
singularity analysis of the Ricci flow in relation to developing a theory of Ricci flow
with surgery, one considers the case where the underlying manifold of the Ricci
shrinker is noncompact. In view of this, we seek a pointed compactness result.
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The large body of works by Munteanu and Wang on gradient Ricci solitons
[2011; 2012; 2014; 2015; 2016; 2017a] led them to conjecture that 4-dimensional
Ricci shrinkers may be classifiable. Indeed, this classification is completed under
the condition of nonnegative isotropic curvature, or nonnegative sectional curvature,
or nonnegative curvature operator; see [Li et al. 2018; Munteanu and Wang 2017b;
Naber 2010]. In the more general case, Munteanu and Wang have made substantial
progress towards their conjecture that such objects either are the quotients of splitting
Ricci shrinkers or are asymptotically conical Ricci shrinkers. In the most optimistic
version of their conjecture, one would expect that a generic Ricci flow with surgery
on a closed 4-manifold would only produce a quotient 2-surgery, a quotient 3-surgery,
or a smooth blow down, all in the case of a type I singularity. More conservatively,
one may not wish to rule out Ricci flat ALE spaces and cohomegeneity-one steady
gradient Ricci solitons forming generically as singularity models in dimension 4.
Returning to dimension 3, paradoxically Perelman’s theory of the space of non-
compact ancient κ-solutions with positive sectional curvature, which builds on
the work of Hamilton [1995b] and which is one of the deepest in the subject, is
about a space conjectured by Perelman to be only a single point, namely the Bryant
soliton. Brendle’s proof of the uniqueness of the Bryant soliton in the class of
nonflat 3-dimensional κ-noncollapsed steady Ricci solitons is also a deep result; see
[Brendle 2013]. For these reasons, one may expect that a 4-dimensional theory of
singularity models for Ricci flow may be related to the prototypical cases (perhaps
more so than in dimension 3), which are the shrinking and steady Ricci solitons.

A triple (Mn, g, f ), where (Mn, g) is a Riemannian manifold and f is a function
on Mn, is called a gradient Ricci soliton, if

Ric+∇2 f = λ
2

g,

where λ is a constant and when λ> 0, λ= 0 or λ< 0 the soliton is called shrinking,
steady or expanding, respectively. In this paper we focus on shrinking and steady gra-
dient Ricci solitons, or Ricci shrinkers and Ricci steadies for short, respectively. In
other words, we always let λ≥ 0. By scaling the metric and adding a constant to the
potential function f , a Ricci shrinker can always be normalized in the following way:

Ric+∇2 f = 1
2 g,(1-1)

|∇ f |2+ R = f,

and a non-Ricci-flat Ricci steady can be normalized in the following way:

Ric+∇2 f = 0,(1-2)
|∇ f |2+ R = 1.

Shrinking and steady gradient Ricci solitons are of great interest in the study of the
singularity formation for the Ricci flow. For instance, they arise as blow-up limits
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of finite-time singularities in Ricci flows; see [Enders et al. 2011; Gu and Zhu 2008;
Hamilton 1995b], and Ricci shrinkers are also blow-down limits of ancient solutions
with nonnegative curvature operator [Perelman 2002]. In this paper, we restrict our
attention to the shrinking and steady gradient Ricci solitons satisfying a topological
assumption, that is, every bounded open subset can be embedded in a closed 4-
manifold with vanishing second homology group. This condition was previously
considered by Bamler and Zhang [2017]. Besides that, we impose a uniform strong
noncollapsing assumption, which fortunately holds for singularity models; see
below. We define the following space of Ricci shrinkers and Ricci steadies.

Definition 1.1. Given κ > 0, M4(κ) is the collection of all the 4-dimensional
noncompact shrinking gradient Ricci solitons (M4, g, f, p), where p is the point
at which f attains its minimum, satisfying:

(a) (M4, g) is nonflat.

(b) Every bounded open subset of M4 can be embedded in a closed 4-manifold
N 4 with H2(N )= 0, where H2 is the second homology group with coefficients
in Z.

(c) (M4, g) is strongly κ-noncollapsed on all scales.

Definition 1.2. Given κ > 0, N 4(κ) is the collection of all the 4-dimensional
noncompact steady gradient Ricci solitons (M4, g, f, p), where p ∈ M is such that
f (p)= 0, satisfying:

(a) (M4, g) is nonflat.

(b) Every bounded open subset of M4 can be embedded in a closed 4-manifold
N 4 with H2(N )= 0, where H2 is the second homology group with coefficients
in Z.

(c) (M4, g) is strongly κ-noncollapsed on all scales.

Remarks: (1) In item (b) of Definition 1.1 and 1.2, one may simply assume that M4

can be embedded in N 4 and the same curvature estimates in Section 4 still hold.
However, our assumption is more natural in view of singularity models; see below
for more details.

(2) The closed 4-manifold N 4 mentioned in item (b) of both Definition 1.1 and 1.2
may depend on the soliton (M4, g, f, p) or even the open subset, we do not need to
assume that every soliton in M4(κ) or N 4(κ) satisfies this property for the same N 4.

(3) In Definition 1.1 the base point p is the always the minimum point of the
potential function f , whereas in Definition 1.2 the base point p can be fixed at any
point in M, since one can always replace f by f − f (p), and this does not affect
the normalization (1-2)
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(4) Since Ricci-flatness and strong noncollapsing condition implies ALE (Corol-
lary 8.86 in [Cheeger and Naber 2015]), by Theorem 6.1 such ALE manifold,
when regarded as Ricci steadies, cannot be included in N 4(κ). Henceforth, unless
otherwise stated, we always work on non-Ricci-flat Ricci steadies.

(5) There are only a few examples for simply connected 4-dimensional Ricci
shrinkers: S4, S2

× R2, S3
× R, S2

× S2, and the FIK shrinker (see [Feldman
et al. 2003]). Noncollapsed simply connected 4-dimensional Ricci steady has
more examples, except for the Bryant soliton [2005], there is a family of Ricci
steadies discovered by Appleton [2017]. However, Appleton’s solitons are not
κ-noncollapsed with respect to a uniform κ .

By strong noncollapsing we mean the following:

Definition 1.3. A Riemannian manifold (Mn, g) is strongly κ-noncollapsed on all
scales, where κ > 0, if the following holds. For all x ∈ M and r > 0, if R < r−2 on
B(x, r), then Vol(B(x, r))≥ κrn. Here we use R to denote the scalar curvature.

Our main theorems are the following:

Theorem 1.4. M4(κ) is compact in the smooth pointed Cheeger–Gromov sense,
where each (M4, g, f, p) ∈M4(κ) is normalized as in (1-1).

Theorem 1.5. N 4(κ) is precompact in the smooth pointed Cheeger–Gromov sense,
where each (M4, g, f, p) ∈N 4(κ) is normalized as in (1-2). Furthermore, for any
convergent sequence in N 4(κ), the limit is either the Euclidean space or still lies
in N 4(κ).

Here by saying that N 4(κ) is precompact we mean that for every sequence
{(M4

k , gk, fk, pk)}
∞

k=1 contained in N 4(κ), there exists a subsequence that converges
in the pointed smooth Cheeger–Gromov sense to a Ricci steady (M4

∞
, g∞, f∞, p∞);

by saying that M4(κ) is compact we mean that first of all it is precompact, and
furthermore, the limit of every convergent sequence in M4(κ) also lies in M4(κ).

A homotopy four-sphere, as a particular example, has vanishing second homology
group. When approaching the 4-dimensional smooth Poincaré conjecture using the
Ricci flow with surgery, the Ricci solitons that may arise in the analysis of the first
singularities, being the blow-up Cheeger–Gromov–Hamilton limit of the homotopy
four-sphere, satisfies the property that every open bounded subset can be embedded
in the original homotopy four-sphere. Furthermore, according to Perelman [2002],
every Ricci flow on closed manifold forming a finite-time singularity is strongly
κ-noncollapsed on some fixed finite positive scale, where κ > 0 depends only on
the initial data, the length of the time interval of the Ricci flow, and the scale (see
Theorem 6.74 in [Chow et al. 2007]). Thus any blow-up limit at the singular time
must be strongly κ-noncollapsed on all scales. Therefore, all Ricci shrinkers or
Ricci steadies that arise from such singularity analysis must lie in M4(κ) or N 4(κ),
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respectively. We hope that our result will be helpful to the finite-time singularity
analysis for the Ricci flow on 4-dimensional closed manifolds. We mention here
that Hamilton [1995b] classified finite-time singularities as type I and type II, while
Ricci shrinkers and Ricci steadies, being singularity models, are correspondent
to these two singularity types, respectively. It is known that the fixed-point blow-
up limit of a type I singularity is always a nonflat Ricci shrinker [Enders et al.
2011; Naber 2010], but it remains open whether a similar result is true for type II
singularities, that is, is the blow-up limit of a type II singularity, obtained by some
careful point picking, always a Ricci steady? Hamilton answered this question
positively under the assumption that the blow-up limit, obtained by some careful
point-picking, has nonnegative curvature operator; see [Hamilton 1993; 1995b].

Condition (b) in both Definition 1.1 and 1.2 plays a very important role in ruling
out the Ricci-flat limits. By the strong noncollapsing property, a Ricci-flat blow-
up limit of a Ricci flow at a finite-time singularity must have Euclidean volume
growth, and, according to Cheeger and Naber [2015], must be asymptotically locally
Euclidean (ALE for short), which cannot be embedded in any closed 4-manifold
with vanishing second homology group (see Corollary 5.8 in [Anderson 2010]; an
alternative proof by Richard Bamler is provided in Section 6). This idea gives a
uniform curvature growth estimate for every element in the space M4(κ) and a
uniform curvature bound for every element in the space N 4(κ); see Theorems 4.1
and 4.2 below, from which we obtain the compactness results. This argument is in
the spirit of Perelman’s bounded curvature at bounded distance result for κ-solutions
with nonnegative curvature operator (see section 11 of [Perelman 2002]). Perelman
also assumes a uniform κ , which is motivated by the reason that all these κ-solutions
arise from the same Ricci flow that forms a finite-time singularity. However, there
is always a universal κ for all the 3-dimensional κ-solutions that is not a shrinking
space form because of the classification of 3-dimensional Ricci shrinkers.

In their papers, Haslhofer and Müller [2011; 2015] have proved a compactness
theorem for 4-dimensional Ricci shrinkers, where they only assume a uniform lower
bound of the entropy, but where the limit could possibly be an orbifold shrinker. In
comparison, the strong noncollapsing assumption in our theorem is correspondent
to their bounded entropy assumption (indeed, it is clear that a uniform lower bound
of entropy implies κ-noncollapsing with respect to a universal κ; see [Carrillo
and Ni 2009; Yokota 2012], yet we do not know how it is related to our strong
noncollapsing assumption); in addition, we have a topological restriction. What is
novel in our work is that the orbifold Ricci shrinkers will never show up as limits.

From the proof of Theorem 1.4, we also get the following property of the
space M4(κ):

Corollary 1.6. There exist C1 > 0, C2 > 0, and C3 <∞ depending only on κ , such
that for every (M4, g, f, p) ∈M4(κ) the following hold:
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(a) R(p) > C1.

(b) R(x) > C2 f −1(x), for all x ∈ M.

(c) |π1(M)|< C3, where π1(M) is the fundamental group of M.

This paper is organized as follows. In Section 2 we collect some known results
for Ricci solitons, which are used in our arguments. In Section 3 we carry out
some a priori estimates. In Section 4 we prove curvature estimates for the Ricci
shrinkers in M4(κ) and for the Ricci steadies in N 4(κ). In Section 5 we prove
Theorems 1.4, 1.5, and Corollary 1.6. In Section 6 we provide an alternative proof
of Anderson’s theorem [2010].

2. Preliminaries

In this section we collect some well-known results that are used in our proof.
Notice that in this paper the Ricci soliton equations that we work with may not be
normalized as (1-1) or (1-2), since sometimes scaling is necessary. Hence we will
specify the Ricci soliton equations in every statement. We start with the following
differential equations for the geometric quantities on Ricci shrinkers and steadies.

Proposition 2.1. Let (M, g, f ) be a shrinking or steady gradient Ricci soliton
satisfying

Ric+∇2 f = λ
2

g,

where λ≥ 0. Then the following hold.

1 f R = λR− 2|Ric|2,(2-1)

1 f Ric= λRic+Rm ∗Ric,(2-2)

1 f Rm= λRm+Rm ∗Rm,(2-3)

1 f∇
k Rm= λ

(k
2
+ 1

)
∇

k Rm+
k∑

j=0

∇
j Rm ∗∇k− j Rm,(2-4)

where ∗ stands for some contraction and 1 f =1−〈∇ f,∇· 〉 is the f -Laplacian
operator.

Proof. Since every reference on these differential equations we can find deals only
with the case λ= 1 or λ= 0, we take (2-3) as an example to quickly sketch how
these formulae can be carried out; other equations can be proved in the same way.
Recall that the canonical form of a Ricci soliton g(t)= τ(t)ϕ∗t (g) evolves by the
Ricci flow (see Theorem 4.1 of [Chow et al. 2006]), where

τ(t)= 1− λt, d
dt
ϕt =

1
τ
∇ f ◦ϕt , ϕ0 = id.
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Taking Rm as a (4, 0)-tensor, we have Rm(g(t))=τ(t)Rm(ϕ∗t (g))=τ(t)ϕ
∗
t (Rm).

Hence by the standard curvature evolution equation (see Theorem 7.1 of [Hamilton
1982]) we have

1Rm+Rm ∗Rm=
∂

∂t

∣∣∣
t=0

Rm(g(t))=−λRm+L∇ f Rm,

where L stands for the Lie derivative. Let Y1, Y2, Y3, Y4 be four arbitrary vector
fields. Then

L∇ f Rm(Y1, Y2, Y3, Y4)=∇∇ f (Rm(Y1, Y2, Y3, Y4))−Rm(L∇ f Y1, Y2, Y3, Y4)

−Rm(Y1,L∇ f Y2, Y3, Y4)−Rm(Y1, Y2,L∇ f Y3, Y4)

−Rm(Y1, Y2, Y3,L∇ f Y4)

=∇∇ f Rm(Y1, Y2, Y3, Y4)+Rm(∇Y1∇ f, Y2, Y3, Y4)

+Rm(Y1,∇Y2∇ f, Y3, Y4)+Rm(Y1, Y2,∇Y3∇ f, Y4)

+Rm(Y1, Y2, Y3,∇Y4∇ f ).

Taking into account that ∇2 f = λ
2 g−Ric we obtain the conclusion. �

The following two propositions for the potential function growth rate and the
volume growth rate for Ricci shrinkers were proved by Cao and Zhou [2010], with
an observation of Munteanu [2009]. We use its sharpened version of Haslhofer and
Müller [2011]. Besides that, Munteanu and Wang [2014] proved a volume growth
estimate with an improved constant.

Proposition 2.2. Let (Mn, g, f ) be a noncompact shrinking gradient Ricci soliton
normalized as in (1-1). Let p be a point where f attains its minimum. Then the
following holds:

(2-5) 1
4(d(x, p)− 5n)2

+
≤ f (x)≤ 1

4(d(x, p)+
√

2n)2,

where u+ :=max{u, 0} denotes the positive part of a function.

Proposition 2.3. There exists C <∞ depending only on the dimension n, such that
under the same assumption of Proposition 2.2 the following holds:

(2-6) Vol(B(p, r))≤ Crn,

for all r > 0.

To locally estimate the Ricci curvature, we need the following local Sobolev
inequality, whose constant depends only on the local geometry.

Proposition 2.4. For all κ > 0, there exists C < ∞ and δ ∈ (0, 2), depending
only on κ and the dimension n ≥ 3 such that the following holds. Let (Mn, g) be
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a Riemannian manifold and x0 ∈ M, and assume that |Rm| ≤ 2 on B(x0, 2) and
Vol(B(x0, 2))≥ κ . Then

(2-7) ‖u‖L2n/(n−2) ≤ C‖∇u‖L2,

for all u ∈ C∞0 (B(x0, δ)).

Proof. This is a standard result; for the convenience of the readers we sketch the
proof. We follow the lines of reasoning of Lemma 3.2 of [Haslhofer and Müller
2011]. We need only to prove an L1 Sobolev inequality

(2-8) ‖u‖Ln/(n−1) ≤ C1‖∇u‖L1,

for all u ∈ C∞0 (B(x0, δ)), where δ and C1 depend only on κ and the dimension n.
Then (2-7) follows from (2-8). Indeed, C1 is equal to the isoperimetric constant
of B(x0, δ),

C1 = C I = sup |�|n/(n−1)/|∂�|,

where the supremum is taken over all the open sets � ⊂ B(x0, δ) with smooth
boundary. By a theorem of Croke [1980, Theorem 11], C I can be estimated by

C I ≤ C(n)ω−(n+1)/n,

where C(n) is a constant depending only on the dimension and ω is the visibility
angle defined by

ω = inf
y∈B(x0,δ)

|Uy|/|S
n−1
|,

where Uy = {v ∈ Ty B(x0, δ) : |v| = 1, the geodesic γv minimizes up to ∂B(x0, δ)}.
We restrict δ in

(
0, 1

2

)
and let y be an arbitrary point in B(x0, δ). Let

J (r, θ)dr ∧ dθ, J (r, θ)dr ∧ dθ

be the volume elements in terms of spherical normal coordinates around the point y
and in the hyperbolic space with constant sectional curvature −2, respectively. By
the relative volume comparison theorem, we have

c2κ −C3δ
n
≤ |B(x0, 1)| − |B(x0, δ)| ≤

∫
Uy

∫ 1+δ

0
J (r, θ) dr dθ

≤

∫
Uy

∫ 1+δ

0
J (r, θ) dr dθ ≤ C4|Uy|

( 3
2

)n
,

where c2, C3, and C4 are constants depending only on the dimension n. Taking δ =
(c2κ/(2C3))

1/n, we have that |Uy| is bounded from below by a constant depending
only on κ and the dimension n, for all y ∈ B(x0, δ), and the conclusion follows. �

We conclude this section with the following gap theorem of Yokota [2009; 2012],
which is used in the proof of Theorem 1.4 to show that the limit shrinker is nonflat.
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Proposition 2.5. There exists ε > 0 depending only on the dimension n such that
the following holds. Let (Mn, g, f ) be a shrinking gradient Ricci soliton, which is
normalized as in (1-1). If

1
(4π)n/2

∫
M

e− f dg > 1− ε,

then (Mn, g, f ) is the Gaussian shrinker, that is, (Mn, g) is the Euclidian space.

3. A priori estimates

The a priori estimates in this section hold for any dimension n ≥ 3. We start with a
localized derivative estimate for the Riemann curvature tensor.

Proposition 3.1. There exists C <∞ depending only on the dimension n such that
the following holds. Let (Mn, g, f ) be a shrinking or steady gradient Ricci soliton
such that

Ric+∇2 f = λ
2

g,

where λ≥0. Let x0∈M and r>0. If |Rm|≤r−2 and |∇ f |≤r−1 on B(x0, 2r), then

(3-1) |∇ Rm| ≤ Cr−3 on B(x0, r).

More generally, there exist Cl depending only on l ≥ 0 and the dimension n, such
that under the above assumptions, it holds that

(3-2) |∇
l Rm| ≤ Clr−2−l on B(x0, r).

Proof. The proof is a standard elliptic modification of Shi’s estimates [1989]. One
can also combine [Shi 1989] with the canonical form to obtain this result. For
the readers’ convenience we will give a proof for (3-1). The higher derivative
estimates (3-2) follow in a standard way by induction. We compute using (2-3)

1 f |Rm|2 = 2〈Rm,1 f Rm〉+ 2|∇ Rm|2

= 2|∇ Rm|2+ 2λ|Rm|2+Rm ∗Rm ∗Rm

≥ 2|∇ Rm|2−C1|Rm|3,

where C1 <∞ depends only on the dimension n. By (2-4), we have

1 f |∇ Rm|2 = 2〈∇ Rm,1 f∇ Rm〉+ 2|∇2 Rm|2

= 2|∇2 Rm|2+ 3λ|∇ Rm|2+Rm ∗∇ Rm ∗∇ Rm

≥ 2|∇2 Rm|2−C2|Rm||∇ Rm|2,

where C2 <∞ depends only on the dimension n.
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Defining u = (βr−4
+ |Rm|2)|∇ Rm|2, where β > 0 is a constant that we will

specify later, we have

1 f u = |∇ Rm|21 f |Rm|2+ (βr−4
+ |Rm|2)1 f |∇ Rm|2+ 2〈∇|Rm|2,∇|∇ Rm|2〉

≥ 2|∇ Rm|4−C1|∇ Rm|2|Rm|3

+ (βr−4
+ |Rm|2)(2|∇2 Rm|2−C2|Rm||∇ Rm|2)

− 8|∇ Rm| ·
∣∣∇|Rm|

∣∣ · |∇2 Rm| · |Rm|

≥ 2|∇ Rm|4−C1|∇ Rm|2|Rm|3

+ (βr−4
+ |Rm|2)(2|∇2 Rm|2−C2|Rm||∇ Rm|2)

−
1
2 |∇ Rm|4− 32|∇2 Rm|2|Rm|2,

where we have used Kato’s inequality as well as the Cauchy–Schwarz inequality.
Letting β = 16 and taking into account that |Rm| ≤ r−2 in B(x0, 2r), we have

1 f u ≥ 3
2 |∇ Rm|4−C3r−6

|∇ Rm|2 ≥ |∇ Rm|4−C4r−12,

where we have used the Cauchy–Schwarz inequality, and C3 and C4 are constants
depending only on n. By the definition of u we have |∇ Rm|4 ≥ (r8/289)u2; hence

(3-3) 1 f u ≥ c5r8u2
−C5r−12,

where c5 and C5 are constants depending only on n.
We let φ(x) = ϕ(d(x0, x)) be the cut-off function, where ϕ(s) = 0 for s ≥ 2r ,

ϕ(s)= 1 for s ∈ [0, r ], and

0≤ ϕ ≤ 1, −2r−1
≤ ϕ′(s)≤ 0, |ϕ′′(s)| ≤ 2r−2(3-4)

for all s ∈ [r, 2r ]. We compute

(3-5) 1 f (uφ2)=φ21 f u+u1 f φ
2
+2〈∇u,∇φ2

〉

≥ c5r8u2φ2
−C5r−12φ2

+2〈∇(uφ2),∇ logφ2
〉−8|∇φ|2u+u1 f φ

2.

The last two terms in (3-5) need to be estimated. We have

|∇φ|2 = ϕ′2|∇d|2 ≤ 4r−2,

and

1 f φ
2
= 2φ(ϕ′1 f d +ϕ′′|∇d|2)+ 2ϕ′2|∇d|2

= 2φ(ϕ′1d −ϕ′〈∇ f,∇d〉)+ 2φϕ′′|∇d|2+ 2ϕ′2|∇d|2

≥ 2
(
−

2(n− 1) coth (1)
r2 −

2
r2

)
−

4
r2 ≥−C6r−2,

where C6 is a positive constant depending only on the dimension n. In the above
derivation we have used |∇ f | ≤ r−1, the properties of ϕ (3-4), the Laplacian
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comparison theorem, and that ϕ′(s) = 0 for all s ∈ [0, r ]. Inserting the above
inequalities into (3-5), and defining G = uφ2, we have

(3-6) 1 f G ≥ c5r8 G2

φ2 −C5r−12φ2
+ 2〈∇G,∇ logφ2

〉−C7r−2 G
φ2 .

Let x1 ∈ B(x0, 2r) be a point where G attains its maximum. Taking into account
that 0≤ φ ≤ 1, it follows from (3-6) that

c5r8G(x1)
2
−C7r−2G(x1)−C5r−12

≤ 0,

which solves G(x1) ≤ C8r−10, where C7 and C8 depend only on n. Therefore
u(x)≤ C8r−10 on B(x0, r), where φ = 1 and G = u. It follows from the definition
of the function u that

|∇ Rm|2 ≤ Cr−6 on B(x0, r). �

The following proposition says that the smallness of the scalar curvature on a
ball implies the smallness of the Ricci curvature on a smaller ball. Our argument
is inspired by Theorem 3.2 in [Wang 2012]. The same idea was implemented in
[Bamler and Zhang 2017].

Proposition 3.2. For any κ > 0, there exists δ ∈ (0, 2) and C <∞, depending
only on κ and the dimension n, such that the following holds. Let (Mn, g, f ) be a
shrinking or steady gradient Ricci soliton such that

Ric+∇2 f = λ
2

g,

where λ≥ 0. Let x0 ∈ M and r ∈ (0, 1]. If

|Rm| ≤ 2, R ≤ r2, |∇ f | ≤ r on B(x0, 2) and Vol(B(x0, 2))≥ κ,

then

(3-7) |Ric| ≤ Cr on B
(

x0,
δ

2

)
.

Proof. We define a cut-off function that is similar to the one that we have used in
the proof of the last proposition. Let φ(x)= ϕ(d(x0, x)), where ϕ(s)= 0 for s ≥ 2,
ϕ(s)= 1 for s ∈ [0, 1], and

0≤ ϕ ≤ 1, −2≤ ϕ′(s)≤ 0, |ϕ′′(s)| ≤ 2,(3-8)

for s ∈ [1, 2]. Integrating (2-1) against φ, we have

2
∫
|Ric|2φ = λ

∫
Rφ−

∫
φ1R+

∫
〈∇ f,∇R〉φ

= λ

∫
Rφ−

∫
R1φ−

∫
φR1 f −

∫
R〈∇φ,∇ f 〉
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=

(
1− n

2

)
λ

∫
Rφ−

∫
R1φ+

∫
φR2
−

∫
R〈∇φ,∇ f 〉

≤ −

∫
R1φ+

∫
φR2
−

∫
R〈∇φ,∇ f 〉,

where we have used 1 f = n
2λ− R and Chen’s result [2009] that R ≥ 0 on a Ricci

shrinker or Ricci steady. By the Laplacian comparison theorem, the Bishop–Gromov
volume comparison theorem, and the property of φ (3-8), we have

−1φ ≤ C1, |〈∇φ,∇ f 〉| ≤ C2r, Vol(B(x0, 2))≤ C3,

where C1, C2, and C3 are positive constants depending only on the dimension n. It
then follows that ∫

|Ric|2φ ≤ C1C3r2
+C3r4

+C2C3r3,

and that
‖Ric‖L2(B(x0,δ)) ≤ C4r,

where C4 depends only on the dimension n, and δ ∈ (0, 2) is the positive number
given by Proposition 2.4 that depends only on κ and the dimension n.

We have the following inequality satisfied by |Ric|:

2|Ric|1 f |Ric| + 2
∣∣∇|Ric|

∣∣2 =1 f |Ric|2 = 2〈Ric,1 f Ric〉+ 2|∇ Ric|2

= 2λ|Ric|2+ 2|∇ Ric|2−Rm ∗Ric ∗Ric

≥ 2|∇ Ric|2−Rm ∗Ric ∗Ric .

Taking into account that |Rm|≤2 on B(x0, 2) and Kato’s inequality that
∣∣∇|Ric|

∣∣2≤
|∇ Ric|2, we have

(3-9) 1 f |Ric| ≥ −C5|Ric|,

where C5 depends on the dimension n. We use the local Sobolev inequality (2-7)
to apply the standard Moser iteration to the inequality (3-9). Notice that we need to
use |∇ f | ≤ r ≤ 1 when performing the iteration. Indeed, this is the only reason
why we have to put a restriction on the scale r . It follows that

sup
B(x0, δ/2)

|Ric| ≤ C6‖Ric‖L2(B(x,δ)) ≤ Cr,

where C depends only on κ and the dimension n. �

4. Curvature estimates

In this section we prove a bounded curvature at bounded distance theorem for
Ricci shrinkers in the space M4(κ) as well as a uniformly bounded curvature



COMPACTNESS THEOREMS FOR 4-DIMENSIONAL GRADIENT RICCI SOLITONS 373

theorem for Ricci steadies in N 4(κ). These results are analogues to Perelman’s
bounded curvature at bounded distance result (see section 11 of [Perelman 2002]).
The fact that the Ricci-flat limit does not appear in our argument plays a role
as equally important as the fact that the asymptotic volume ratio equals zero in
Perelman’s argument. However, our results are somewhat weaker than Perelman’s.
In Theorem 4.1 we are only able to fix the base point where the potential function
attains its minimum (or wherever is at a bounded distance to it), while in Theorem 4.2
the curvature bound is at a fixed scale instead of a relative scale, that is, the curvature
bound is in terms of a fixed number instead of the curvature at an arbitrary base
point. The reason in analysis is the following: to implement results in Section 3
in an argument of contradiction, the curvature largeness should be characterized
by |∇ f |2. Suppose around a point the curvature is large in some relative sense
but small compared to |∇ f |2. Then the a priori estimates we have established
in Section 3 do not hold any more, since the assumption |∇ f | ≤ r ≤ 1 made in
Proposition 3.2 is no longer valid after scaling, and Moser iteration does not yield
a nice bound for the Ricci curvature as in (3-7). To give a geometric understanding
for the aforementioned weakness, we take an asymptotic conical shrinker as an
example: one could take a sequence of points tending to infinity in an asymptotically
conical Ricci shrinker, and the associated pointed limit is the asymptotic cone of
the Ricci shrinker. Since this asymptotic cone is singular at its vertex, we have
neither Perelman’s bounded curvature at bounded distance nor compactness.

Theorem 4.1. There exists C <∞ and D <∞ depending only on κ , such that the
following holds. Let (M4, g, f, p) ∈M4(κ) be normalized as in (1-1). Then

|Rm|(x)≤ C if x ∈ B(p, 200),

|Rm|
f
(x)≤ D if x /∈ B(p, 200).

Proof. We argue by contradiction. Suppose the statement is not true, then there
exist a sequence of counterexamples {(M4

k , fk, gk, pk)}
∞

k=1 ⊂M4(κ) normalized
as in (1-1), and xk ∈ Mk , such that for all k ≥ 1, either

(a) xk ∈ Bgk (pk, 200) and |Rmk |(xk)≥ k, or

(b) xk /∈ Bgk (pk, 200) and |Rmk |
fk
(xk)≥ k.

Notice that by (2-5), we have fk(x) ≥ 1000 whenever x /∈ B(pk, 200); hence
|Rmk |(xk)→∞.

The following standard point picking technique is due to Perelman [2002].

Claim 1. There exists Ak→∞ and yk ∈ Bgk (xk, 1), such that

(4-1) |Rmk |(x)≤ 2Qk for all x ∈ Bgk (yk, Ak Q−1/2
k )⊂ Bgk (xk, 2),

where Qk = |Rmk |(yk)≥ |Rmk |(xk).
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Proof. Denote Q(0)
k = |Rmk |(xk) and y(0)k = xk , let Ak =

1
100(Q

(0)
k )1/2→∞. We

start from y(0)k . Suppose that y( j)
k is chosen and cannot be taken as yk . Let

|Rmk |(y
( j)
k )= Q( j)

k . Then there exists y( j+1)
k ∈ Bgk (y

( j)
k , Ak(Q

( j)
k )−1/2), such that

Q( j+1)
k = |Rmk |(y

( j+1)
k )≥ 2Q( j)

k . Hence we have

distgk (y
(0)
k , y( j+1)

k )≤ Ak(Q
(0)
k )−1/2

+ Ak(Q
(1)
k )−1/2

+ · · ·+ Ak(Q
( j)
k )−1/2

≤ Ak(Q
(0)
k )−1/2

(
1+

1
√

2
+ · · ·+

(
1
√

2

) j

+ · · ·

)
≤

1
100
× 4,

and it follows that y( j)
k ∈ Bgk (xk, 1) for all j ≥ 0. This procedure must terminate

in finite steps since the manifold Mk is smooth; then the last element chosen by
this procedure can be taken as yk . �

Since for any k≥ 1 there can be only two cases (a) or (b), then either for infinitely
many k, (a) holds, or, for infinitely many k, (b) holds. By passing to a subsequence,
we need only to deal with the following two cases.

Case I. xk ∈ Bgk (pk, 200) and |Rmk |(xk)≥ k, for all k ≥ 1.

Case II. xk /∈ Bgk (pk, 200) and |Rmk |
fk
(xk)≥ k, for all k ≥ 1.

We first consider Case I. We use Claim 1 to find yk ∈ Bgk (xk, 1), Qk =

|Rmk |(yk)≥|Rmk |(xk)→∞, and Ak→∞ such that (4-1) holds. By (2-5) we have

Rk + |∇ fk |
2
= fk ≤ 105

on Bgk (yk, Ak Q−1/2
k )⊂ Bgk (pk, 202). We scale gk with the factor Qk and use the

notations with overlines to denote the scaled geometric quantities, that is, gk=Qk gk ,
Rmk = Rm(gk), etc. Then we have that

(4-2) Rick +∇
2 fk =

Q−1
k
2

gk,

and that

|Rmk | ≤ 2,(4-3)

Rk + |∇ fk |
2
≤

105

Qk
:= r2

k → 0,(4-4)

on Bgk (yk, Ak), and by Proposition 3.1 and Proposition 3.2 that

|∇ Rmk | ≤ C1,(4-5)

|Rick | ≤ C2rk,(4-6)

on Bgk (yk, Ak−2), where C1 is a constant depending only on the dimension n = 4,
and C2 is a constant depending only on the dimension n = 4 and κ > 0. We
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can apply (4-3), (4-5), and the strong κ-noncollapsing assumption to extract from
{(Bgk (yk, Ak − 2), gk, yk)}

∞

k=1 a subsequence that converges in the pointed C2,α

Cheeger–Gromov sense to a complete nonflat Riemannian manifold (M∞, g∞, y∞)
with |Rm∞|(x∞)= 1. By (4-6), (M∞, g∞) must be Ricci-flat and therefore has Eu-
clidean volume growth, since it is also strongly κ-noncollapsed. By Corollary 8.86
of [Cheeger and Naber 2015], (M∞, g∞) is asymptotically locally Euclidean (ALE).
By the definition of ALE, we have that outside a compact set M∞ is diffeomorphic
to a finite quotient of R4

\B(O, 1), it follows that there exists an open set U∞⊂M∞
containing the point y∞, such that U∞ is compact and that M∞ is diffeomorphic
to U∞. By the definition of the pointed Cheeger–Gromov convergence, U∞ can be
embedded in infinitely many elements of the sequence {(M4

k , fk, gk, pk)}
∞

k=1, and
the images of the embeddings are bounded open sets. Furthermore, every one in the
sequence of shrinkers satisfies (b) in Definition 1.1; it follows that U∞ can also be
embedded in a closed 4-manifold with vanishing second homology group, which
is a contradiction against Theorem 6.1.

Case II is almost the same as Case I. By the same point picking and scaling
method we also get (4-2), (4-3), (4-5), and (4-6). The only place where special care
should be taken is (4-4). Notice that by (2-5), we have that fk(x)≥ 1000 whenever
distgk (x, pk)≥ 198. Moreover, since |∇

√
fk | ≤

1
2 , we have√

fk(x)≤
√

fk(xk)+ 1≤
√

10
9 fk(xk),

for all x ∈ Bgk (yk, Ak Q−1/2
k )⊂ Bgk (xk, 2). It follows that

Rk + |∇ fk |
2
=

fk
Qk
≤

10
9

fk(xk)

|Rmk |(xk)
:= r2

k → 0,

on Bgk (yk, Ak). Therefore (4-4) also holds in Case II and we obtain the same
contradiction as in Case I. �

Theorem 4.2. There exists C <∞ depending only on κ , such that the following
holds. Let (M4, g, f, p) ∈N 4(κ) be normalized as in (1-2). Then it holds that

|Rm|(x)≤ C for all x ∈ M.

Proof. We argue by contradiction. Suppose the statement is not true; then there
exist a sequence of counterexamples {(M4

k , fk, gk, pk)}
∞

k=1 ⊂ N 4(κ) normalized
as in (1-2), such that supx∈Mk

|Rmk(x)| →∞. By shifting the base points pk and
replacing fk by fk − fk(pk), we may assume that for each k

Qk := |Rmk(pk)| ≥
1
2 sup

x∈Mk

|Rmk(x)| →∞.

Now we scale the sequence {(M4
k , fk, gk, pk)}

∞

k=1 by the factors Qk and use the
notations with overlines to denote the scaled quantities as before, that is, gk = Qk gk ,
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Rmk = Rm(gk), etc. Then we have

Rick +∇
2 fk = 0, |∇ fk |

2
+ Rk =

1
Qk
:= r2

k → 0,

|Rmk |(x)≤ 2 for all x ∈ M, |Rmk |(pk)= 1.

Recall that all (Mk, gk) are κ-noncollapsed on call scales with respect to a uniform
κ > 0. It then follows from Propositions 3.1 and 3.2 that there exists C <∞ and
Cl<∞ for each l ∈Z+, where C , κ and Cl’s depend only on the dimension, such that

|∇
lRmk | ≤ Cl, |Rick | ≤ Crk→ 0.

Hence, by the noncollapsing condition, we can extract from {(Mk, gk, pk)}
∞

k=1 a sub-
sequence that converges in the smooth pointed Cheeger–Gromov sense to a smooth
manifold (M∞, g∞, p∞). By the choice of pk’s, we have that |Rm∞|(p∞)= 1> 0,
hence g∞ is nonflat. Since |Rick | converges to 0 uniformly, we have that g∞ is Ricci
flat. Finally, since (M∞, g∞) is also strongly κ-noncollapsed on all scales, it has
Euclidean volume growth, and hence must be ALE by Corollary 8.86 in [Cheeger
and Naber 2015]. The rest of the proof now follows similarly from Theorem 4.1. �

5. Proof of the main theorems

Proof of Theorem 1.4. By Theorem 4.1, Proposition 3.1, and (2-5), we obtain locally
uniform bounds for the curvatures, the derivatives of the curvatures, and the potential
functions for any sequence in the space M4(κ). Applying the standard regularity
theorem to the elliptic equation 1 f = n

2 − R, we also obtain locally uniform
bounds for the derivatives of the potential functions. Hence we can extract from any
sequence contained in M4(κ) a subsequence that converges in the smooth pointed
Cheeger–Gromov sense to a shrinking gradient Ricci soliton, also normalized as
in (1-1). It remains to show that the limit Ricci shrinker is in M4(κ). Item (c) in
Definition 1.1 is obvious, we proceed to show (a) and (b).

We let {(Mk, gk, fk, pk)}
∞

k=1 ⊂M4(κ), all normalized as in (1-1), and we let
(M∞, g∞, f∞, p∞) be their limit Ricci shrinker in the smooth pointed Cheeger–
Gromov sense, also normalized as in (1-1). By the definition of Cheeger–Gromov
convergence, we have that every open bounded subset in (M∞, g∞) can be em-
bedded in infinitely many (Mk, gk)’s in the sequence, and the images of these
embeddings are also bounded open sets, and therefore can be embedded in closed
4-manifolds with vanishing second homology group. To show that (M∞, g∞) is
nonflat, we make the following observation.

Claim 2. Vol f (g∞)= lim
k→∞

Vol f (gk),

where Vol f is the f -volume defined by Vol f (g)=
∫

M e− f dg.
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Proof. By the uniform rapid decay of e− f (2-5) and the uniform volume growth
bound (2-6) we have that for any η > 0, there exists A0 < ∞ such that for all
A > A0 it holds that

Vol f (gk)− η <

∫
Bgk (pk ,A)

e− fk dgk ≤ Vol f (gk),

for every k ≥ 1. The conclusion follows from first taking k→∞, and then A→∞,
and finally η→ 0. �

By Proposition 2.5 and Claim 2 we have

Vol f (g∞)= lim
k→∞

Vol f (gk)≤ (4π)n/2(1− ε),

where ε > 0 is given by Proposition 2.5. Hence (M∞, g∞, f∞, p∞) is not flat,
because the f -volume of the Gaussian shrinker is (4π)n/2. This completes the proof
of Theorem 1.4. �

Proof of Theorem 1.5. Combining Theorem 4.2, the fact that |∇ f | ≤ 1 by (1-2),
and Proposition 3.1, we have that any curvature derivative is uniformly bounded
for all elements in N 4(κ). Furthermore, since

f (p)= 0, |∇ f | ≤ 1, |∇2 f | = |Ric| ≤ C(κ),

we have a uniform growth estimate for | f |, and we can derive uniform higher
derivative estimates for f by using the elliptic equation 1 f = −R. Taking into
account the noncollapsing condition, we immediately obtain the precompactness.
By the same argument as in the proof of Theorem 1.4, we have that every possible
limit of a convergent sequence in N 4(κ) must satisfy (b) and (c) in Definition 1.2.
Such a limit can be either nonflat, hence lies in N 4(κ), or, flat, hence must be the
Euclidean space because of its maximum volume growth by (c). This completes
the proof of the theorem. �

Proof of Corollary 1.6. To prove (a) we argue by contradiction. Suppose there
exists {(Mk, gk, fk, pk)}

∞

k=1 ⊂M4(κ) such that Rk(pk)→ 0. By Theorem 1.4
we can extract a subsequence that converges to a shrinking gradient Ricci soliton
(M∞, g∞, f∞, p∞) with R∞(p∞) = 0, which by Chen [2009] is flat; this is a
contradiction.

To prove (b), we recall that by the proof of Chow, Lu, and Yang [Chow et al.
2011], we only need a uniform upper bound for f and a uniform lower bound for R
on a sufficiently large ball, say B(p, 1000), where the former is given by (2-5) and
the latter is proved in the same way as for (a).

To prove (c), we claim that there exist c > 0, depending only on κ , such that
Vol f (g) > c for all (M, g, f, p) ∈M4(κ). Suppose this is not true. As in the proof
of (a), we can find a sequence of counterexamples converging to a Ricci shrinker
(M∞, g∞, f∞, p∞) with Vol f (g∞)= 0, which is a contradiction. Hence we have
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Vol f (g)∈ [c, (4π)n/2(1−ε)] for all (M, g, f, p)∈M4(κ). The conclusion follows
from [Wylie 2008] and [Chow and Lu 2016]. �

6. Excluding instantons by a topological condition

In this section we provide an alternative proof for Corollary 5.8 of [Anderson 2010].
This proof is based in essence altogether on the personal notes of Richard Bamler,
to whom we are indebted for graciously providing them. However, any mistakes
in transcription is solely due to the author. Forasmuch as Anderson’s result is of
fundamental importance to our main theorem, we include this section for the sake
of completeness to help the readers to follow some details.

Theorem 6.1. Let N be a smooth closed 4-dimensional manifold such that

(6-1) H2(N )= 0,

where H2 is the second homology group with coefficients in Z. Then there is no
open subset U ⊂ N with the property that U admits an Einstein ALE metric.

We split the proof into the following lemmas.

Lemma 6.2. Let N be the closed manifold in the statement of Theorem 6.1. Let
U ⊂ N be an connected open subset such that ∂U ∼= S3/0 and H1(U, ∂U ) = 0,
where 0 is a finite group. Then the following hold.

H1(∂U )= H1(U )⊕ H1(U ),(6-2)

H2(U )= 0.(6-3)

Proof. By Poincaré duality, we have

H 2(N ;Z)∼= H2(N )= 0.

By the universal coefficient theorem, we have

0= H 2(N ;Z)∼= Hom(H2(N ),Z)⊕Ext(H1(N ),Z),

which implies that H1(N ) is torsion free, so henceforth we may assume

(6-4) H1(N )∼= Zd ,

where d ≥ 0. By Poincaré duality and by the universal coefficient theorem, we have

H2(∂U )∼= H 1(∂U )∼= Hom(H1(∂U ),Z)= 0,

where the last equality is because H1(∂U ) is a finite abelian group and hence purely
torsion. Then we have the Mayer–Vietoris sequence

0= H2(∂U )→ H2(U )⊕ H2(N\U )→ H2(N )= 0,

from whence we obtain

(6-5) H2(U )= H2(N\U )= 0.
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On the other hand, we consider the long exact sequence

(6-6) 0= H2(U )→ H2(U, ∂U )→ H1(∂U )→ H1(U )→ H1(U, ∂U )= 0.

It follows that H1(U ) is purely torsion since the third homomorphism above is
surjective and H1(∂U ) is finite. Hence by the universal coefficient theorem and by
Poincaré–Lefschetz duality we have

H2(U, ∂U )∼= H 2(U )∼= Hom(H2(U ),Z)⊕Ext(H1(U ),Z)∼= H1(U ),

where the last isomorphism follows from the fact that H1(U ) is purely torsion
and (6-5). Hence (6-6) is simplified as

(6-7) 0→ H1(U )→ H1(∂U )→ H1(U )→ 0.

To see (6-7) splits, we consider the following Mayer–Vietoris sequence

0= H2(N )→ H1(∂U )→ H1(U )⊕ H1(N\U )→ H1(N )∼= Zd ,

where we have used (6-4). If we write H1(U )⊕ H1(N\U ) ∼= H1(U )⊕ T ⊕ Ze,
where T is the torsion part of H1(N\U ), since H1(∂U ) is purely torsion, we
have that the image of the second homomorphism in the above sequence is in
H1(U )⊕ T ⊕{0}, whose image under the third homomorphism is 0. Hence we can
simplify the above sequence as

0→ H1(∂U )→ H1(U )⊕ T → 0.

The inclusion H1(U ) ↪→ H1(U )⊕ T ∼= H1(∂U ) gives a homomorphism H1(U )→
H1(∂U ), whose composition with the third homomorphism in (6-7) is the identity
on H1(U ). It follows that (6-7) splits and we have completed the proof. �

Lemma 6.3. Let S3/0 be a round space form, where 0 is a finite group. If
H1(S

3/0) ∼= G ⊕ G, for some group G, then either 0 is the binary dihedral
group D∗n with n being even, or 0 is the binary icosahedral group with order 120.

Proof. We shall check every possible group 0.

(a) Lens space: In this case H1(S
3/0)∼=0=Zm with m≥ 2, which is not possible.

(b) Prism manifold: In this case the fundamental group has the presentation

〈x, y | xyx−1
= y−1, x2k

= yn
〉×Zm,

where k,m ≥ 1, n ≥ 2, and m is coprime to 2n. Its abelianization is

H1(S
3/0)∼= 〈x, y | y = y−1, x2k

= yn
〉×Zm,

where y2
= 1. We have that H1(S

3/0)∼= Z2×Z2k ×Zm in the case n is even, and
that H1(S

3/0) ∼= Z2k+1 ×Zm in the case n is odd. Since m is coprime to 2n, we
have that the only possible case is when m = 1, n is even, and k = 1.
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(c) Tetrahedral manifold: In this case we have

0 = 〈x, y, z | (xy)2 = x2
= y2, zxz−1

= y, zyz−1
= xy, z3k

= 1〉×Zm,

where k,m ≥ 1 and m is coprime to 6. Then we have

H1(S
3/0)∼= 〈x, y, z | x2

= y2
= 1, x = y, y = xy, z3k

= 1〉×Zm

= 〈x, z | x2
= 1, x = x2, z3k

= 1〉×Zm = Z3k ×Zm .

Since m is coprime to 6, this case is not possible.

(d) Octahedral manifold: In this case we have

0 = 〈x, y | (xy)2 = x3
= y4
〉×Zm,

where m is coprime to 6. Then we have

H1(S
3/0)∼= 〈x, y | x = y2

= x2
〉×Zm = Z2×Zm .

Since m is coprime to 6, this case is not possible.

(e) Icosahedral manifold: In this case we have

0 = 〈x, y | (xy)2 = x3
= x3 y5

〉×Zm,

where m is coprime to 30. Then we have

H1(S
3/0)∼= 〈x, y | x = y2, x2

= y3
〉×Zm

= 〈x, y | x = y2, x2
= y3, y = 1〉×Zm = Zm .

The only possibility is m = 1. �

We still need to consider the two cases when 0 is the binary dihedral group D∗2n
or the binary icosahedral group. In both cases 0 can be embedded in SU (2). Indeed,
it is well known that the binary dihedral, tetrahedral, octahedral, and icosahedral
groups are all finite subgroups of SU (2); see [Kronheimer 1989].

Lemma 6.4. Let S3/0 be the spherical space form with 0 < O(4) being either
the binary dihedral group D∗2n or the binary icosahedral group. Then there exists a
complex structure on R4 such that 0 < SU (2)

Lemma 6.5. Let (U, g) be an Einstein ALE space which is asymptotic to S3/0,
where 0 < SU (2) is isomorphic to the binary dihedral group D∗2n or to the binary
icosahedral group. Then b2(U )≥ 1.

Proof. Assume that b2(U )= 0. Then we have χ(U )= 1− b1(U )− b3(U )≤ 1 and
τ(U )= 0. Using the Chern–Gauss–Bonnet theorem and the Atiyah–Patodi–Singer
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index theorem, we have (see (4.4) and (4.5) in [Nakajima 1990])

1≥ χ(U )= 1
8π2

∫
U
|W |2 dg+ 1

|0|
,

0= τ(U )= 1
12π2

∫
U
(|W+|2− |W−|2) dg− ηS(S

3/0),

where ηS stands for the eta invariant. Hence we have

2
3
≥

2
12π2

∫
U
|W−|2 dg+ 2

3|0|
+ ηS(S

3/0),

which implies

ηS(S
3/0)≤

2
3

(
1− 1
|0|

)
<

2
3
.

On the other hand, by [Nakajima 1990], if 0 is the binary dihedral group D∗2n , we
have

ηS(S
3/0)=

2(2n+ 2)2− 8(2n+ 2)+ 9
6 · 2n

=
8n2
+ 1

12n
>

2
3
.

Similarly, if 0 is the binary icosahedral group, then we have

ηS(S
3/0)=

361
180

>
2
3
.

In either case we yield a contradiction. �

Proof of Theorem 6.1. Let N be the manifold in Theorem 6.1 and U ⊂ N be a
connected open subset that admits an Einstein ALE metric.

Claim 3. H1(U, ∂U )= 0.

Proof. Suppose the claim does not hold. We first show that the boundary ∂Ũ of
the universal cover Ũ has more than one component. Since ∂U is a deformation
retraction of its collar neighbourhood, by excision we have

H1(U/∂U, ∂U/∂U )= H1(U, ∂U ) 6= 0.

Hence we have π1(U/∂U ) 6= 0. Let γ0 be a loop in U/∂U based at ∂U/∂U that
is not null-homotopic. Lifting this loop to U by the quotient map q :U →U/∂U,
we obtain a curve γ in U, whose ends lie in ∂U. By using the universal covering
map p : Ũ →U, we can lift γ to γ̃ , a curve in Ũ whose ends lie in ∂Ũ . If ∂Ũ is
connected, since Ũ is simply connected, we have that γ̃ is homotopic to a curve that
lies in ∂Ũ . Composing this homotopy with q ◦ p we obtain a homotopy between γ0

with a point; this is a contradiction. Hence ∂Ũ has more than one component.
Next we observe that if U admits an Einstein ALE metric, then we can lift

this metric to Ũ , which has more than one end. By Cheeger–Gromoll’s splitting
theorem, Ũ splits as the product of a line and a Ricci flat 3-manifold; hence this
metric is flat, which is a contradiction. �
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We continue the proof of Theorem 6.1. By (6-3) we have that b2(U )= 0. On the
other hand, combining (6-2) and Lemma 6.3 we have that ∂U ∼= S3/0, where 0
is either the binary dihedral group D∗2n or the binary icosahedral group. It follows
from Lemma 6.5 that b2(U )≥ 1, and we obtain a contradiction. �
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