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We initiate an investigation into how much the existing theory of (nonselfad-
joint) operator algebras on a Hilbert space generalizes to algebras acting
on L p-spaces. In particular we investigate the applicability of the theory of
real positivity, which has recently been useful in the study of L2-operator
algebras and Banach algebras, to algebras of bounded operators on L p-
spaces. In the process we answer some open questions on real positivity
in Banach algebras from work of Blecher and Ozawa.
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1. Introduction

In a series of recent papers (see, e.g., [Phillips 2012; 2013a; 2013b; 2014a; 2014b])
the second author has pointed out that the study of algebras of bounded operators on
Lp-spaces, henceforth, Lp-operator algebras, has been somewhat overlooked, and
has initiated the study of these objects. Subsequently others have followed him into
this inquiry (for example, Gardella, Thiel, Lupini, and Viola; see, e.g., [Gardella
and Thiel 2015a; 2015b; 2019; Gardella and Lupini 2017; Phillips and Viola 2017]).
However, as he has frequently stated, these investigations have been very largely
focused on examples; one still lacks an abstract general theory in this setting.

Here and in a sequel in preparation we initiate an investigation into how much the
existing theory of (nonselfadjoint) L2-operator algebras (see, e.g., [Arveson 1969;
Blecher and Le Merdy 2004; Blecher and Read 2011]) generalizes to the Lp case. We
restrict ourselves almost exclusively to the “isometric theory”; we may pursue the iso-
morphic theory elsewhere. In addition to establishing some general facts about Lp-
operator algebras, the main goal of the present paper is to investigate to what extent
the first author’s theory of real positivity (developed with Read, Neal, Ozawa, and
others; see, e.g., [Blecher and Read 2011; 2013; 2014; Blecher and Ozawa 2015]), is
applicable to Lp-operator algebras, particularly those which are approximately unital,
that is, have contractive approximate identities. As an easy motivation, notice that the
canonical approximate identity for the compact operators K(l p) is real positive, and
the real positive elements span B(Lp([0, 1])) (as they do any unital Banach algebra).

The theory of real positivity was developed as a tool for generalizing certain
parts of C∗-algebra theory to more general algebras. In [Blecher and Ozawa 2015]
this was extended to Banach algebras (see also [Blecher 2016] for a survey and
some additional results). All this theory of course therefore applies to Lp-operator
algebras. We refer to the first of these papers frequently, although most of our paper
may be read without a deep familiarity with that paper.

Some parts of [Blecher and Ozawa 2015] applied only to certain classes of Banach
algebras defined there, which were shown to behave in some respects similarly to L2-
operator algebras. For example, a nonunital approximately unital Banach algebra A
was defined there to be scaled if the set of restrictions to A of states on the multiplier
unitization A1 equals the quasistate space Q(A) of A (that is, the set of λϕ for λ ∈
[0, 1] and ϕ a norm 1 functional on A that extends to a state on A1). All unital Banach
algebras are scaled. In [loc. cit.], there are several pretty equivalent conditions for
a Banach algebra to be scaled (see the start of our Section 6 for some of these), and
this class of Banach algebras was shown to have several nice theoretical features,
such as a Kaplansky density type theorem. Thus it is natural to ask the following:

(1) To which of the classes defined in [Blecher and Ozawa 2015] do Lp-operator
algebras belong?
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(2) For those classes in [loc. cit.] to which they do not belong, to what extent do the
theorems for those classes from that paper still hold for Lp-operator algebras?

(3) To what extent do other parts of the theory of L2-operator algebras hold for
Lp-operator algebras?

We focus mostly here on the parts of the theory of Blecher with Read, Neal, and oth-
ers referred to above, that were not already extended to the general classes considered
in [Blecher and Ozawa 2015]. For example, one may ask if the material in Section 4
of that paper, and in particular the theory of hereditary subalgebras, improves (that
is, becomes closer to the L2-operator case) for Lp-operator algebras. Similarly, one
may ask about the noncommutative topology (in the sense of Akemann, Pedersen,
L. G. Brown, and others) of Lp-operator algebras. In papers of Blecher with Read,
Neal, and others referred to above, Akemann’s noncommutative topology of C∗-
algebras was fused with the classical theory of (generalized) peak sets of function
algebras to create a relative noncommutative topology for closed subalgebras of
C∗-algebras that has proved to have many applications. Examples given in [Blecher
and Ozawa 2015] show that not much of this will extend to general Banach algebras,
and it is natural to ask if Lp-operator algebras are better in this regard. Most of the
present paper and the sequel in preparation is devoted to answering these questions.
In the process we also answer some open questions from [loc. cit.].

We admit from the outset that for p 6= 2, and for some significant part of the
theory, the answer to question (2) above is, so far, in the negative. This may
change somewhat in the future, for example if we were able to solve some of the
open problems listed at the end of this paper. It should also be admitted that for
p 6= 2, the “projection lattice” of B(Lp(X, µ)) is problematic from our perspective
(see Example 3.2 and the sequel paper), in contrast to the projection lattices of
von Neumann algebras and L2-operator algebras.

Concerning question (1), several classes of Banach algebras introduced and
considered in [Blecher and Ozawa 2015] coincide for approximately unital Lp-
operator algebras. Indeed the classes of scaled and M-approximately unital Banach
algebras defined in that paper coincide for Lp-operator algebras, and these also turn
out to be the approximately unital Lp-operator algebras which satisfy the aforemen-
tioned Kaplansky density property. (We remark that the usual Kaplansky density
theorem variants for C∗-algebras can be shown to follow easily from the weak*
density of the subset of interest in A within the matching set in A∗∗. Our Kaplansky
density theorems have the latter flavor.) We show that some approximately unital
Lp-operator algebras are scaled and others are not. This answers the questions from
[loc. cit.] as to whether every approximately unital Banach algebra is scaled, or has
a Kaplansky density property. Also, nonscaled approximately unital Lp-operator
algebras may contain no real positive elements (whereas it was shown in [loc. cit.]
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that if they are scaled then there is an abundance of real positive elements, e.g.,
every element in A is a difference of two real positive elements).

Concerning question (3) above, indeed, some aspects of the theory improve. For
example, Section 4 of [loc. cit.] improves drastically in our setting, and indeed
Lp-operator algebras do support a basic theory of noncommutative topology and
hereditary subalgebras, unlike general Banach algebras. This is worked out in the
sequel paper in preparation, where the reader will find many more positive results
than in the present paper. It is worth remarking that the methods used here do not
seem to extend far beyond the class of Lp-operator algebras as we will discuss else-
where. However, most of our results for Lp-operator algebras in Sections 2 and 4 do
generalize to the class of SQp-operator algebras, by which we mean closed algebras
of operators on an SQp-space, that is, a quotient of a subspace of an Lp-space. (See,
e.g., [Le Merdy 1996] and [Junge 1996]. We thank Eusebio Gardella for suggesting
SQp-spaces after we listed in a talk the properties needed for our results to work.)

On the other hand, except cosmetically, not much to speak of in Section 3 of
[Blecher and Ozawa 2015] improves for Lp-operator algebras, in the sense of
becoming significantly more like the L2-operator algebra case. However several
of the concepts appearing throughout the latter paper become much simpler in our
setting. For example as we said above, three of the main classes of Banach algebras
considered there coincide. Also as we shall see the subscript and superscript e
which appear often in that paper may be erased in our setting, since we are able to
show that all Lp-operator algebras are Hahn–Banach smooth. Then of course the
Arens regularity of Lp-operator algebras means that many irritating features of the
bidual appearing in that paper disappear, such as mixed identities in A∗∗.

We now describe the contents of the present paper.
We will be assuming that p∈ (1,∞)\{2} in all results in the paper unless stated to

the contrary. As usual 1
p+

1
q =1. In the remainder of Section 1 we give some notation

and basic definitions. In Section 2 we discuss further notation and background. We
also collect a large number of useful general facts, many of which are well known.
They concern topics such as duals, bidual algebras, the multiplier unitization, states
and real positivity, hermitian elements, representations, etc. We just mention one
sample result from this section: if A is an approximately unital Lp-operator algebra
with p ∈ (1,∞), then there exists a measure space (X, µ) and a unital isometric
representation θ : A∗∗→ B(Lp(X, µ)) which is a weak* homeomorphism onto its
range, and such that θ(A) acts nondegenerately on Lp(X, µ).

In Section 3 we list the main examples of Lp-operator algebras which we use in
this paper for counterexamples, as well as some other basic examples not in the
literature. Some of these have real positive approximate identities, and others do
not. We also expose some of the aforementioned bad properties of the “projection
lattice” of B(Lp(X, µ)).



L p -OPERATOR ALGEBRAS WITH APPROXIMATE IDENTITIES, I 405

Section 4 contains many miscellaneous results. Here is a sample of these. We
show that the quotient of an Lp-operator algebra by an approximately unital closed
ideal satisfying a simple extra condition is again (isometrically) an Lp-operator
algebra. An example is presented to prove that this can fail if the ideal is only
assumed to be closed and approximately unital. We show that an Lp-operator
algebra A need not have a unique unitization, unlike in the case p = 2 (Meyer’s
unitization theorem). However there is a unique unitization if we restrict attention
to nondegenerately represented approximately unital Lp-operator algebras. The
nonuniqueness above is related to the fact that when p 6= 2 the Cayley transform
can take a real positive element of A to an element of norm greater than 1. We
study support idempotents of elements of A and their properties. We also give
some important consequences of the strict convexity of Lp-spaces. For example,
a state on a unital Lp-operator algebra that takes the value zero at a real positive
idempotent e is zero on the left or right ideal generated by e. We also deduce that
an Lp-operator algebra is Hahn–Banach smooth in its multiplier unitization. These
results have several significant applications in this paper and its sequel. For example
they yield in Section 4 several foundational properties of states and state extensions.

In Section 5 and Section 6 we discuss M-ideals and scaled Banach algebras. Our
main result here is that in the setting of approximately unital Lp-operator algebras,
the classes of scaled algebras and M-approximately unital algebras coincide. These
are also the algebras which satisfy the aforementioned Kaplansky density property,
as we show in Section 7. We will see for example that the algebra K(Lp(X, µ)) of
compact operators is in this class if and only if µ is purely atomic (Proposition 5.2).
The Lp-operator algebras with a hermitian contractive identity are also in this class.
We also show for example in these sections that every M-ideal J in an approximately
unital Lp-operator algebra A is an approximately unital closed ideal. Moreover, if
in addition A is scaled then so is J (this follows from Theorem 5.4 (3)(a)).

At the end of the paper we provide an index listing some of the main definitions
in this paper and where they may be found.

In the sequel paper in preparation we show that the theory of one-sided ideals,
hereditary subalgebras, open projections, etc. for Lp-operator algebras is quite
similar to the (nonselfadjoint) L2-operator algebra case. This is particularly so for
certain large classes of Lp-operator algebras. We feel that this is important, since
hereditary subalgebras play a large role in modern C∗-algebra theory, and thus
hopefully will be important for Lp-operator algebras too.

We end our introduction with a few definitions and basic lemmas.
We set R+ = [0,∞).

Notation 1.1. Let E be a normed vector space. Then Ball(E) is the closed unit
ball of E , that is,

Ball(E)= {ξ ∈ E : ‖ξ‖ ≤ 1}.
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Notation 1.2. Let p ∈ [1,∞]. Let E and F be normed vector spaces. We denote
by E ⊕p F their Lp direct sum, that is, the algebraic direct sum E ⊕ F with the
norm given for ξ ∈ E and η ∈ F by ‖(ξ, η)‖ = (‖ξ‖p

+‖η‖p)1/p if p <∞ and
‖(ξ, η)‖ =max(‖ξ‖, ‖η‖) if p =∞.

Although many of our Banach algebras have identities of norm greater than 1,
the adjectives “unital” or “approximately unital” for a Banach algebra will carry a
norm 1 requirement.

Definition 1.3. A unital Banach algebra is a Banach algebra with an identity 1 such
that ‖1‖ = 1.

Definition 1.4. A cai in a Banach algebra is a contractive approximate identity,
that is, an approximate identity (et)t∈3 such that ‖et‖ ≤ 1 for all t ∈ 3. An
approximately unital Banach algebra is a Banach algebra which has a cai.

When we write Lp or Lp(X) we mean the Lp-space of some measure space
(X, µ).

Definition 1.5. Recall that a Banach space E is strictly convex if whenever ξ, η ∈
E \ {0} satisfy

‖ξ + η‖ = ‖ξ‖+‖η‖,

then there is λ ∈ (0,∞) such that ξ = λη, and smooth if for given ξ ∈ E with
‖ξ‖ = 1, there is a unique η ∈ Ball(E∗) with 〈ξ, η〉 = 1.

If 1< p <∞, then Lp(X) is strictly convex (by the converse to Minkowski’s
inequality). Moreover, still assuming 1 < p < ∞, the space Lp(X) is smooth,
with η above given by the function

η(x)=
{
ξ(x)|ξ(x)|p−2, ξ(x) 6= 0
0, ξ(x)= 0

in Lq(X). We will frequently use the fact that Lp(X) is smooth and strictly convex
if 1< p <∞.

Definition 1.6. Let p ∈ [1,∞). An Lp-operator algebra is a Banach algebra which
is isometrically isomorphic to a norm closed subalgebra of the algebra of bounded
operators on Lp(X, µ) for some measure space (X, µ). When p = 2 we simply
refer to an operator algebra. (See the beginning of Section 2.1 of [Blecher and
Le Merdy 2004], except that we do not consider matrix norms in the present paper.)

Definition 1.7. Let A be an Lp-operator algebra (not necessarily approximately
unital). We say that an Lp-operator algebra B is an Lp-operator unitization of A if
either A is unital and B = A, or if A is nonunital, B is unital (in particular, by our
convention, ‖1‖ = 1), and A is a codimension one ideal in B.
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Definition 1.8 [Blecher and Le Merdy 2004, (A.9) on p. 364]. Let A be a nonunital
approximately unital Banach algebra (as in Definition 1.4). We define its multiplier
unitization A1 to be the usual unitization A+C ·1 with the norm

‖a+ λ1‖A1 = sup({‖ac+ λc‖ : c ∈ Ball(A)})

for a ∈ A and λ ∈ C. If A is already unital then we set A1
= A.

Remark 1.9. We recall the following easy standard facts.

(1) If A is an approximately unital Banach algebra, then the standard inclusion of
A in A1 is isometric.

(2) Let A be a Banach algebra, and let (et)t∈3 be any cai in A. Then

‖a+ λ1‖A1 = lim
t
‖aet + λet‖ = sup

t
‖aet + λet‖.

(3) If A is any nonunital Banach algebra, and B is a unital Banach algebra which
contains A as a codimension 1 subalgebra, then the map χ0 : B→ C, given by
χ0(a+ λ1B)= λ for a ∈ A and λ ∈ C, is contractive.

(4) If A is any nonunital Banach algebra with a cai, and B is a unital Banach algebra
which contains A as a codimension 1 subalgebra, then the map ψ : B→ A1,
given by ψ(a + λ1B) = a + λ1A1 for a ∈ A and λ ∈ C, is a contractive
homomorphism. Thus A1 has the smallest norm of any unitization. This
follows, e.g., by a small variant of the proof of Lemma 1.10.

Lemma 1.10. Suppose that A is a closed subalgebra of a nonunital approximately
unital Banach algebra B, and suppose that A has a cai but is not unital. Then for
all a ∈ A and λ ∈ C we have ‖a+ λ1‖A1 ≤ ‖a+ λ1‖B1 .

Proof. Clearly

sup({‖ac+ λc‖ : c ∈ Ball(A)})≤ sup({‖ac+ λc‖ : c ∈ Ball(B)}),

as desired. �

It is easy to find examples showing that the homomorphism above need not be
isometric, for example, with notation as in Example 3.2 (or Example 3.5) below,
C e2⊗ c0 ⊆ M p

2 ⊗ c0. However we have the following result.

Lemma 1.11. Let A and B be nonunital approximately unital Banach algebras.
Let ϕ : A→ B be a contractive (resp. isometric) homomorphism. Suppose that
there is a cai (et)t∈3 for A such that (ϕ(et))t∈3 is a cai for B. Then the obvious
unital homomorphism A1

→ B1 between the multiplier unitizations is contractive
(resp. isometric).

Proof. If a ∈ A and λ ∈ C then

‖ϕ(a)ϕ(et)+ λϕ(et)‖ ≤ ‖aet + λet‖.
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In the isometric case this is an equality. Taking limits over t and using Remark 1.9 (2)
gives the result. �

We recall two further standard facts. The first is that the relation K(L2(X))∗∗ =
B(L2(X)) is true with 2 replaced by any p ∈ (1,∞).

Definition 1.12. We recall that the bidual A∗∗ of a Banach algebra has in general
two canonical products, called the left and right Arens products [Palmer 1994,
Definition 1.4.1]. We say that A is Arens regular if these two products coincide.

Theorem 1.13. Let p ∈ (1,∞) and let (X, µ) be a measure space. Let q ∈ (1,∞)
satisfy 1

p +
1
q = 1. Then:

(1) There is an isometric isomorphism K(Lp(X, µ))∗ → Lq(X, µ)⊗̂Lp(X, µ)
(projective tensor product) which for ρ ∈ Lp(X, µ) and η ∈ Lq(X, µ) sends
η⊗ ρ to the operator ξ 7→ 〈ξ, η〉ρ.

(2) There is an isometric algebra isomorphism from K(Lp(X, µ))∗∗ (with either
Arens product) onto B(Lp(X, µ)) which extends the inclusion K(Lp(X, µ))⊆
B(Lp(X, µ)).

Proof. This follows from results of Grothendieck, as described in the theorem on
page 828 of [Palmer 1985], the discussion after that, and Theorems 1–3 there. It is
stated there that any Banach space X such that X and X∗ have the Radon–Nikodym
property and the approximation property, satisfies [Palmer 1985, Theorem 1] and
the aforementioned theorem of Grothendieck, giving (1), and also the case of (2)
for the first Arens product. By [Palmer 1985, Theorem 2], if X is also reflexive then
K(X) is Arens regular, so (2) holds as stated. See also the discussion on page 24,
Corollary 4.13, and Theorem 5.33 of [Ryan 2002] (and we thank M. Mazowita
for this reference). The explicit formulas there are useful to check directly the
Arens product assertion. One needs to know that Lp(X, µ) has the Radon–Nikodym
property and the approximation property, and this follows, e.g., from [Ryan 2002,
Example 4.5 and Corollary 5.45]. �

We remark that the last result and proof works with Lp replaced by any reflexive
space with the approximation property, since reflexive spaces have the Radon–
Nikodym property, and indeed [Ryan 2002, Corollary 4.7] implies that if E is
reflexive and has the approximation property, then so does E∗.

By Theorem 1.13, a net (xt)t∈3 in B(Lp(X)) converges weak* to x if and only
if, with 1

p +
1
q = 1,

∞∑
k=1

〈xtξk, ηk〉 →

∞∑
k=1

〈xξk, ηk〉

for all ξ1, ξ2, . . . ∈ Lp(X) and η1, η2, . . . ∈ Lq(X) with
∑
∞

k=1 ‖ξk‖p‖ηk‖q <∞

(or equivalently, by the usual trick, with
∑
∞

k=1 ‖ξk‖
p
p <∞ and

∑
∞

k=1 ‖ηk‖
q
q <∞).
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If (xt)t∈3 is bounded then by Banach duality principles this is equivalent to xt→ x
in the weak operator topology, that is, 〈xtξ, η〉 → 〈xξ, η〉 for all ξ ∈ Lp(X) and
η ∈ Lq(X). We will not use this here but it is well known that essentially the
usual L2-operator proof shows that the weak operator closure of a convex set in
B(Lp([0, 1])) equals the strong operator closure. Indeed, for a Banach space E ,
the strong operator continuous linear functionals on B(E) are the same as those
that are weak operator continuous.

The argument for the following well known lemma will be reused several times,
once in the form of an approximate identity bounded by M converging weak* to
an identity in A∗∗ of norm at most M.

Lemma 1.14. Let A be an approximately unital Arens regular Banach algebra.
Then A∗∗ has an identity 1A∗∗ of norm 1, and any cai for A converges weak* to 1A∗∗ .

Proof. The argument follows the proof of [Blecher and Le Merdy 2004, Proposi-
tion 2.5.8]. Since identities are unique if they exist, it suffices to show that every
subnet of any cai in A has in turn a subnet which converges to an identity for A∗∗.
Using Alaoglu’s theorem and since a subnet of a cai is a cai, one sees that it is
enough to show that if e ∈ A∗∗ is the weak* limit of a cai, then e is an identity
for A∗∗. Multiplication on A∗∗ is separately weak* continuous by [Blecher and
Le Merdy 2004, 2.5.3], so ea = ae = a for all a ∈ A. A second application of
separate weak* continuity of multiplication shows that this is true for all a ∈ A∗∗. �

2. Notation, background, and general facts

2A. Dual and bidual algebras.

Lemma 2.1. Let p ∈ (1,∞). Let A be an Lp-operator algebra (resp. SQp-operator
algebra). Then:

(1) A is Arens regular.

(2) Multiplication on A∗∗ is separately weak* continuous.

(3) A∗∗ is an Lp-operator algebra (resp. SQp-operator algebra).

Proof. We first recall (Theorem 3.3 (ii) of [Heinrich 1980], or [Le Merdy 1996], or
the remarks above Theorem 4.1 in [Daws 2010]) that any ultrapower of Lp-spaces
(resp. SQp-spaces) is again an Lp-space (resp. SQp-space). In the SQp-space case
this uses the well known fact that ultrapowers behave well with respect to subspaces
and quotients (this is obvious for subspaces, for quotients see, e.g., the proof of
Proposition 6.5 in [Heinrich 1980]). In particular, such an ultrapower is reflexive,
so every Lp-space (resp. SQp-space) is superreflexive. (See Proposition 1 of [Daws
2004].)

Now let E be an Lp-space (resp. SQp-space). Theorem 1 of [Daws 2004] implies
that B(E) is Arens regular. The proof of Theorem 1 of [Daws 2004] embeds
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B(E)∗∗ isometrically as a subalgebra of B(F) for a Banach space F obtained as
an ultrapower of lr (E) for an arbitrarily chosen r ∈ (1,∞) (called p in [Daws
2004]). We may choose r = p. Then lr (E) is isometrically isomorphic to an
Lp-space (resp. SQp-space). Since ultrapowers of Lp-spaces (resp. SQp-spaces) are
Lp-spaces (resp. SQp-spaces) as we said at the start of this proof, we have shown
that B(E)∗∗ is an Lp- (resp. SQp-) operator algebra.

Now suppose that A ⊆ B(E) is a norm closed subalgebra. Since B(E) is Arens
regular, A∗∗ is a subalgebra of B(E)∗∗ and A is Arens regular by [Blecher and
Le Merdy 2004, 2.5.2]. It is now immediate that A∗∗ is an Lp- (resp. SQp-) operator
algebra. It also follows from [Blecher and Le Merdy 2004, 2.5.3] that multiplication
on A∗∗ is separately weak* continuous. �

It follows from [Daws 2004, Proposition 8] that B(L1(X, µ)) is not Arens regular
unless L1(X, µ) is finite-dimensional.

Corollary 2.2. Let p ∈ (1,∞) and let (X, µ) be a measure space. Then multipli-
cation on B(Lp(X, µ)) is separately weak* continuous.

Proof. We have K(Lp(X, µ))∗∗ ∼= B(Lp(X, µ)) by Theorem 1.13 (2). �

Definition 2.3. Let p ∈ (1,∞). A dual Lp-operator algebra is a Banach algebra A
with a predual such that there is a measure space (X, µ) and an isometric and weak*
homeomorphic isomorphism from A to a weak* closed subalgebra of B(Lp(X, µ)).

By Corollary 2.2, the multiplication on a dual Lp-operator algebra is separately
weak* continuous.

Corollary 2.4. Let p ∈ (1,∞) and let A be an Lp-operator algebra. Then A∗∗ is a
dual Lp-operator algebra.

Proof. The embedding of B(Lp(X, µ))∗∗ in Lemma 2.1 coming from the proof
from [Daws 2004] is easily checked to be weak* continuous, hence a weak* home-
omorphism onto its range by the Krein–Smulian theorem. Hence B(Lp(X, µ))∗∗ is
a dual Lp-operator algebra. It easily follows that A∗∗ is too. �

Lemma 2.5. Let p ∈ (1,∞) and let A be a dual Lp-operator algebra. Then:

(1) The weak* closure of any subalgebra of A is a dual Lp-operator algebra.

(2) If A is approximately unital then A is unital.

Proof. The proofs are essentially the same as in the case p= 2, as done in the proof
of Proposition 2.7.4 of [Blecher and Le Merdy 2004]. �

2B. States, hermitian elements, and real positivity. We take states to be as at the
beginning of Section 2 of [Blecher and Ozawa 2015].
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Definition 2.6. If A is a unital Banach algebra, then a state on A is a linear
functional ω : A→ C such that ‖ω‖ = ω(1)= 1. If A is an approximately unital
Banach algebra, we define a state on A to be a linear functional ω : A→ C such
that ‖ω‖ = 1 and ω is the restriction to A of a state on the multiplier unitization A1

(Definition 1.8).
We denote by S(A) the set of all states on A, and write Q(A) for the quasistate

space (that is, the set of λϕ for λ ∈ [0, 1] and ϕ ∈ S(A)).
If e= (et)t∈3 is a cai for A, define

Se(A)= {ω ∈ Ball(A∗) : ω(et)→ 1}

and define
Qe(A)= {λϕ : λ ∈ [0, 1] and ϕ ∈ Se(A)}.

If A is a C∗-algebra (unital or not), this definition gives the usual states and
quasistates on A.

The first part of the following definition is Definition 2.6.1 of [Palmer 1994].

Definition 2.7. Let A be a unital Banach algebra, and let a ∈ A. We define the
numerical range of a to be {ϕ(a) : ϕ ∈ S(A)}.

If E is a Banach space and a ∈ B(E), we define the spatial numerical range of a
to be

{〈aξ, η〉 : ξ ∈ Ball(E) and η ∈ Ball(E∗) with 〈ξ, η〉 = 1}.

There are other definitions of the numerical range. For our purposes, only the
convex hull is important, and by Theorem 14 of [Lumer 1961], the convex hulls
of the numerical range and the spatial numerical range of an element in B(E) are
always the same.

Definition 2.8 (see Definition 2.6.5 of [Palmer 1994] and the preceding discussion).
Let A be a unital Banach algebra, and let a ∈ A. We say that a is hermitian if
‖ exp(iλa)‖ = 1 for all λ ∈ R.

If A is approximately unital we define the hermitian elements of A to be the
elements in A which are hermitian in the multiplier unitization A1 (Definition 1.8).

Lemma 2.9 (see [Palmer 1994, Theorem 2.6.7]). Let A be a unital Banach algebra,
and let a ∈ A. Then a is hermitian if and only if ϕ(a) ∈ R for all states ϕ of A.

Lemma 2.10. Let A be an approximately unital Banach algebra, and let B ⊆ A be
a closed subalgebra which contains a cai for A. Let a ∈ B. Then a is hermitian as
an element of B if and only if a is hermitian as an element of A.

Proof. By definition, we work in the multiplier unitizations. By Lemma 1.11, B1 is
isometrically a unital subalgebra of A1. The Hahn–Banach theorem now shows that
states on B1 are exactly the restrictions of states on A1. So the conclusion follows
from Lemma 2.9. �
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Definition 2.11. Let (X, µ) be a measure space that is not σ -finite. Recall that
a function f : X → C is locally measurable if f −1(E)∩ F is measurable for all
Borel sets E ⊆ C and all subsets F ⊆ X of finite measure. Two such functions are
“locally a.e. equal” if they agree a.e. on any such set F. We interpret L∞(X, µ)
as L∞loc(X, µ), the Banach space of essentially bounded locally measurable scalar
functions mod local a.e. equality.

Further recall that a measure space (X, µ) is decomposable if X may be parti-
tioned into sets X i of finite measure for i ∈ I such that a set F in X is measurable if
and only if F ∩ X i is measurable for every i ∈ I, and then µ(F)=

∑
i∈I µ(F ∩ X i ).

By, e.g., the corollary on page 136 in [Lacey 1974], any abstract Lp-space “is”
decomposable, indeed it is isometric to a direct sum of Lp-spaces of finite measures.
Thus, we may assume that all measure spaces (X, µ) are decomposable.

The following result is in the literature with extra hypotheses, such as if µ is
σ -finite [Gardella and Thiel 2019, Lemma 5.2]. (See also, e.g., Theorem 4 and the
remark following it in [Tam 1969], when in addition p is not an even integer.) We
are not aware of a reference for the general case, but it is probably folklore.

Proposition 2.12. Let p ∈ [1,∞) \ {2}. Let (X, µ) be a decomposable measure
space, and let a ∈ B(Lp(X, µ)) be hermitian. Then there is a real-valued function
f ∈ L∞(X, µ) such that a is multiplication by f , and such that | f (x)| ≤ ‖a‖ for
all x ∈ X.

Proof. Let X =
∐

i∈I X i be a partition of X into sets of finite measure as in
the discussion of decomposability above. For i ∈ I let ei ∈ B(Lp(X, µ)) be
multiplication by χX i . Since hermitian elements have numerical range contained
in R, we can apply Theorem 6 of [Payá-Albert 1982] (see the beginning of [Payá-
Albert 1982] for the definitions and notation), to see that a commutes with ei for
all i ∈ I. One easily checks that h = ei aei is a hermitian element of B(Lp(X i , µ)).
By the finite measure case of our result ([Gardella and Thiel 2019, Lemma 5.2]),
there is a real-valued function fi ∈ L∞(X i , µ) such that h is multiplication by fi .

We can clearly assume that fi is bounded by ‖ei aei‖ ≤ ‖a‖. Now define
f : X→R by f (x)= fi (x) when i ∈ I and x ∈ X i . Then f is bounded by ‖a‖, and
is measurable by the choice of the partition of X. For i ∈ I and ξ ∈ Lp(X i , µ) we
clearly have aξ = f ξ . It follows from density of the linear span of the subspaces
Lp(X i , µ) that a is multiplication by f . �

The σ -finite case is deduced in [Gardella and Thiel 2019] from the finite measure
case of Lamperti’s theorem [Fleming and Jamison 2003, Theorem 3.2.5] by consid-
ering the invertible isometries ei th for t ∈ [0, 1]. We mention another approach when
p is not an even integer. It is known ([Delbaen et al. 1998, Corollary 1.8]; we thank
Gideon Schechtman for this reference) that l p doesn’t contain a two-dimensional



L p -OPERATOR ALGEBRAS WITH APPROXIMATE IDENTITIES, I 413

Hilbert space, and so Theorem 4 of [Tam 1969] implies our conclusion. Lemma 11
of [Tam 1969] also proves the result in the case that µ has no atomic part in X i .

Definition 2.13. Let A be a unital Banach algebra. Let a ∈ A. We say that a is
accretive or real positive if the numerical range of a is contained in the closed right
half plane. That is, Re(ϕ(a))≥ 0 for all states ϕ of A.

If instead A is approximately unital, we define the real positive elements of A to
be the elements in A which are real positive in the multiplier unitization A1.

In both cases, we denote the set of real positive elements of A by rA.
Following page 8 of [Blecher and Ozawa 2015], we further define

cA∗ = {ϕ ∈ A∗ : Re(ϕ(a))≥ 0 for all a ∈ rA}.

The elements of cA∗ are called real positive functionals on A.

For other equivalent conditions for real positivity, see for example [Blecher 2016,
Lemma 2.4 and Proposition 6.6].

We warn the reader that rA∗∗ is defined after Lemma 2.5 of [Blecher and Ozawa
2015] to be a proper subset of the real positive elements in A∗∗, the set of elements
of A∗∗ which are real positive with respect to (A1)∗∗. One should be careful with
this ambiguity; fortunately it only pertains to second duals and seldom arises. (Also
see Proposition 4.26.)

Lemma 2.14. Let A be an approximately unital Banach algebra, and let B ⊆ A be
a closed subalgebra which contains a cai for A. Let a ∈ B. Then a is real positive
as an element of B if and only if a is real positive as an element of A.

Proof. The proof is the same as that of Lemma 2.10, using Definition 2.13 in place
of Lemma 2.9. �

Lemma 2.15. Let p ∈ [1,∞) \ {2}, let A be an approximately unital Lp-operator
algebra, and assume that the multiplier unitization A1 is again an Lp-operator
algebra. Let a ∈ A be hermitian. Then there exist b, c ∈ A, each of which is both
hermitian and real positive, such that

(2-1) a = b− c, bc = cb = 0, ‖b‖ ≤ ‖a‖, and ‖c‖ ≤ ‖a‖.

By Lemma 2.24, the hypothesis that A1 be an Lp-operator algebra is automatic
for p 6= 1.

It seems unlikely that Lemma 2.15 holds for a general Banach algebra.

Proof of Lemma 2.15. We may assume (using, e.g., the corollary on page 136 in
[Lacey 1974]) that (X, µ) is a decomposable measure space and A1 is a unital
subalgebra of B(Lp(X, µ)). Since a is hermitian in A1, Lemma 2.10 implies that a
is hermitian in B(Lp(X, µ)). Proposition 2.12 provides f ∈ L∞(X, µ) such that a
is multiplication by f , and such that | f (x)| ≤ ‖a‖ for all x ∈ X.
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Choose a sequence (rn)n∈N of polynomials with real coefficients such that
rn(λ)→ λ1/4 uniformly on [0, ‖a‖2]. Adjusting by constants and scaling, we may
assume that rn(0)= 0 and |rn(λ)|≤‖a‖1/2 for λ∈ [0, ‖a‖2]. Set sn(λ)= rn(λ

2)2 for
λ ∈ [−‖a‖, ‖a‖]. Then (sn)n∈N is a sequence of polynomials with real coefficients
such that rn(λ)→ |λ| uniformly on [−‖a‖, ‖a‖]. Moreover, for all n ∈N we have
sn(0)= 0 and 0≤ sn(λ)≤ ‖a‖ for all λ ∈ [−‖a‖, ‖a‖]. In particular, sn ◦ f →| f |
uniformly on X.

For n ∈N, define dn = sn(a), which is the multiplication operator by the function
sn ◦ f , and let d be the multiplication operator by | f |. Then dn ∈ A for all n ∈ N

and ‖dn − d‖→ 0, so d ∈ A and ‖d‖ ≤ ‖a‖. Therefore also

b = 1
2(d + a) and c = 1

2(d − a)

are in A. The conditions (2-1) are clearly satisfied.
The multiplication operator map from L∞(X, µ) to B(Lp(X, µ)) is an isometric

unital homomorphism. (Recall the convention that we are using L∞loc(X, µ) here.)
The functions 1

2(| f | + f ) and 1
2(| f | − f ) are nonnegative, hence both hermitian

and real positive in L∞(X, µ) (because L∞(X, µ) is a C∗-algebra). Lemmas 2.10
and 2.14 therefore imply that their multiplication operators b and c are both hermitian
and real positive in B(Lp(X, µ)). A second application of these lemmas shows that
the same holds in A1. By definition, this is also true in A. �

Definition 2.16. Let A be a unital or approximately unital Banach algebra. Taking 1
to be the identity of A1 in the approximately unital case, we define

FA = {a ∈ A : ‖1− a‖ ≤ 1}.

Proposition 2.17 [Blecher and Ozawa 2015, Proposition 3.5]. Let A be a unital
or approximately unital Banach algebra. Then, in the notation of Definitions 2.13
and 2.16, we have rA = R+ FA.

We recall some facts about roots of elements of rA.

Definition 2.18. Let A be a unital or approximately unital Banach algebra, let b∈ rA,
and let t ∈ (0, 1). If A is unital, we denote by bt the element bt constructed in [Li et al.
2003, Theorem 1.2]. If A is approximately unital, let A1 be the multiplier unitization,
recall that b ∈ rA1 by definition, and define bt to be as above but evaluated in A1.

The conditions required in [Li et al. 2003, Theorem 1.2] for the existence of bt

are weaker than what we require in Definition 2.18, but the case in Definition 2.18,
is all we need. Such noninteger powers, for the special case ‖b− 1‖< 1 and when
A is commutative, seem to have first appeared in Definition 2.3 of [Esterle 1978].
A discussion relating this definition to others, and giving a number of properties, is
contained in [Blecher and Ozawa 2015], from Proposition 3.3 through Lemma 3.8
there. In particular, (b1/n)n = b and t 7→ bt is continuous. For later use, we recall
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several of these properties and state a few other facts not given explicitly in [Blecher
and Ozawa 2015].

Proposition 2.19. Let A be a unital or approximately unital Banach algebra, and
let a ∈ rA.

(1) If t ∈ (0, 1) and ‖b− 1‖ ≤ 1 (that is, b ∈ FA), then

bt
= 1+

∞∑
k=1

t (t − 1)(t − 2) · · · (t − k+ 1)
k!

(−1)k(1− b)k,

with absolute convergence.

(2) If t ∈ (0, 1) and λ ∈ (0,∞) then (λx)t = λt x t.

(3) For all t ∈ (0, 1), ‖at
‖ ≤ 2‖a‖t/(1− t).

(4) For all t ∈ (0, 1), at is a norm limit of polynomials in a with no constant term.

(5) For all t ∈ (0, 1), at a = aat.

(6) limn→0 ‖a1/na− a‖ = limn→0 ‖aa1/n
− a‖ = 0.

(7) If a ∈ FA and t ∈ (0, 1), then ‖1− at
‖ ≤ 1.

Proof. For part (1), see the proof of [Blecher and Ozawa 2015, Proposition 3.3]
and the discussion in and before the remark before [Blecher and Ozawa 2015,
Lemma 3.6].

For (2), see the discussion after [Blecher and Ozawa 2015, Proposition 3.5].
Part (3) is a slight weakening of the second estimate in Lemma 3.6 of [Blecher

and Ozawa 2015].
Part (4) holds for a ∈ FA by the proof of Proposition 3.3 of [Blecher and Ozawa

2015]. By (2), it holds for a ∈ R+ FA. By continuity (Corollary 1.3 of [Li et al.
2003]), it holds for a ∈ R+ FA. Apply Proposition 2.17.

Part (5) is immediate from Part (4). Part (6) is Lemma 3.7 of [Blecher and Ozawa
2015].

For (7), use (1), together with

t (t − 1)(t − 2) · · · (t − k+ 1)
n!

(−1)k < 0

for k = 1, 2, . . . and
∞∑

k=1

t (t − 1)(t − 2) · · · (t − k+ 1)
k!

(−1)k =−1.

This completes the proof. �

Lemma 2.20. Suppose that A is a closed subalgebra of an approximately unital
Banach algebra B, and suppose that A has a cai. Then FB∩A⊆FA and rB∩A⊂ rA.



416 DAVID P. BLECHER AND N. CHRISTOPHER PHILLIPS

Proof. The first statement follows easily from Lemma 1.10. The second follows
from the first and the relations rA = R+ FA and rB = R+ FB (Proposition 2.17). �

Proposition 2.21. Let B be a nonunital approximately unital Banach algebra, and
let A ⊆ B be a closed subalgebra which contains a cai for B. Then:

(1) A1
⊆ B1 isometrically.

(2) FA = FB ∩ A and rA = rB ∩ A.

(3) Every state or quasistate on A may be extended to a state or quasistate on B.

Proof. Part (1) is Lemma 1.11. That FA = FB ∩ A is immediate from (1), and now
rA = rB ∩ A by, e.g., Proposition 2.17. Part (3) is obvious from (1), Definition 2.6,
and the Hahn–Banach theorem. �

Lemma 2.22. Suppose that an Arens regular Banach algebra A has a cai and also
has a real positive approximate identity. Then A has a cai in FA. If in addition A
has a countable bounded approximate identity, then A has a cai in FA which is a
sequence.

Proof. Corollary 3.9 of [Blecher and Ozawa 2015] implies that A has an approximate
identity in FA. Since FA is bounded, one may then use the argument in the second
paragraph of the proof of [Blecher 2016, Proposition 6.13] to see that A has a cai
(et)t∈3 in FA. If in addition A has a countable bounded approximate identity, then
one can use Corollary 32.24 of [Hewitt and Ross 1970] and its analog on the right
(see also Theorem 4.4 of [Blecher and Ozawa 2015]) to find x, y ∈ A with A =
x A= Ay. Choose t1, t2, . . .∈3with t1< t2< · · · and ‖ ftk x−x‖+‖y ftk−y‖<2−k ;
then ( ftk ) is a countable cai in FA. �

Corollary 2.23. Suppose that A is an approximately unital Arens regular Banach
algebra. If 1A∗∗ is a weak* limit of a bounded net of real positive elements in A,
then A has a real positive cai.

Proof. By a standard convexity argument, or, e.g., [Blecher and Ozawa 2015,
Lemma 2.1], A has a real positive bounded approximate identity. It follows from
Lemma 2.22 that A has a cai in FA. �

The hypothesis in the last result about 1A∗∗ being a weak* limit holds if A has one
of the Kaplansky density type properties, e.g., properties (1)–(3) in Proposition 7.1.
See also the proof of Proposition 6.4 of [Blecher and Ozawa 2015].

2C. More on the multiplier unitization. The multiplier unitization was defined in
Definition 1.8.

Lemma 2.24. Let E be a Banach space. Suppose that A is a nonunital closed
approximately unital subalgebra of B(E) which acts nondegenerately on E. Then
the multiplier unitization of A is isometrically isomorphic to A+C 1E , where 1E is
the identity operator on E.
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Proof. For a, c ∈ A and λ ∈ C, we clearly have

‖ac+ λc‖ = ‖(a+ λ1E)c‖ ≤ ‖a+ λ1E‖‖c‖.

So ‖a+ λ1‖A1 ≤ ‖a+ λ1E‖. The reverse inequality follows from the fact that if
(et)t∈3 is a cai for A, then aet + λet → a+ λ1E in the strong operator topology
on B(E). �

Lemma 2.25. Suppose that A is an approximately unital Arens regular Banach
algebra, and let e= (et)t∈3 be a cai for A. Then:

(1) The multiplier unitization of A is isometrically isomorphic to A+C 1A∗∗ in A∗∗.

(2) With Se(A) as defined in Definition 2.6, and identifying A∗ with the weak*
continuous functionals on A∗∗, we have

Se(A)= {ω ∈ S(A∗∗) : ω is weak* continuous}

(the normal state space of A∗∗).

(3) Se(A) and S(A) both span A∗, and both separate the points of A.

(4) In the notation found before Lemma 2.6 of [Blecher and Ozawa 2015] and in
Definition 2.13, we have

reA = rA and ceA∗ = cA∗ .

(5) If A is also nonunital then {ϕ|A : ϕ ∈ S(A1)} is the weak* closure in A∗ of any
one of the following sets in Definition 2.6: S(A), Se(A), Q(A), or Qe(A).

Proof. The proof of (1) is essentially the same as the proof of Lemma 2.24: for
a, c ∈ A and λ ∈ C, clearly

‖ac+ λc‖ = ‖(a+ λ1A∗∗)c‖ ≤ ‖a+ λ1A∗∗‖‖c‖.

So ‖a+ λ1‖A1 ≤ ‖a+ λ1A∗∗‖. The reverse inequality follows from the fact that if
(et)t∈3 is a cai, then Lemma 1.14 implies that aet + λet → a+ λ1A∗∗ weak*.

For (2), since et → 1 weak* in A∗∗ by Lemma 1.14, it is clear that weak*
continuous states on A∗∗ restrict to elements of Se(A). For the reverse inclusion,
let ω ∈ Se(A). Then ω∗∗ is a weak* continuous functional on A∗∗ and ‖ω∗∗‖ = 1.
That ω∗∗(1)= 1 follows from weak* continuity of ω∗∗ and the weak* convergence
et → 1.

The assertion about Se(A) in (3) follows from part (2) and Theorem 2.2 of
[Magajna 2009], according to which the normal state space of A∗∗ spans A∗ and
separates the points of A. The second assertion in (3) follows from the first assertion
and the inclusion Se(A) ⊆ S(A), which is in Lemma 2.2 of [Blecher and Ozawa
2015].

We prove (4). We need only prove reA ⊆ rA, since the reverse inclusion holds by
definition, and equality implies cA∗=c

e
A∗ by definition. So let a∈reA and letω∈ S(A).
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By definition, ω extends to a state ω1 on A1. By part (1) we have A1
⊆ A∗∗, so

the Hahn–Banach theorem provides an extension of ω1 to a state ϕ on A∗∗. Use
weak* density of the normal states in S(A∗∗) (which follows from Theorem 2.2
of [Magajna 2009]) to find a net (ϕt)t∈3 in the normal state space of A∗∗ which
converges weak* to ϕ. Now Re(ω(a))= limt Re(ϕt(a))≥ 0. So a ∈ rA.

Finally, we prove (5).
It follows from [Blecher and Ozawa 2015, Lemma 2.6] that, with overlines

denoting weak* closures, we have

S(A)= Q(A)⊆ {ϕ|A : ϕ ∈ S(A1)}.

Also, {ϕ|A : ϕ ∈ S(A1)} is shown to be weak* closed in the proof of that lemma.
Now suppose that ϕ ∈ S(A1) and set ψ = ϕ|A. Use the Hahn–Banach theorem

to extend ϕ to a state ρ on A∗∗. Use again weak* density of the normal states in
S(A∗∗) to find a net (ψt)t∈3 in the normal state space of A∗∗ which converges
weak* to ρ. Set ϕt = ψt |A for t ∈3. For a ∈ A we then have

ϕt(a)= ψt(a)→ ψ(a)= ϕ(a).

By part (2), this shows that ψ is in the weak* closure of Se(A). Since

Se(A)⊆ S(A)⊆ Q(A) and Se(A)⊆ Qe(A),

the assertion follows. �

The set rA∗∗ , as defined on page 11 of [Blecher and Ozawa 2015], may be a
proper subset of the accretive elements in A∗∗, even for approximately unital Lp-
operator algebras. In fact, the identity e of A∗∗ is certainly accretive in A∗∗, but need
not be accretive in (A1)∗∗. (Equivalently, by Lemma 2.29 (4), we need not have
‖1− e‖ ≤ 1.) This happens for A = K(Lp([0, 1])), by Proposition 3.10. However,
it follows from the later result Proposition 4.26 (and Proposition 4.24 (2)) that rA∗∗ ,
as defined on page 11 of [Blecher and Ozawa 2015], equals the accretive elements
in A∗∗ if A is a scaled approximately unital Lp-operator algebra.

Remark 2.26. The sets Se(A) and Qe(A) are easily seen to be convex in A∗. We
do not know whether S(A) and Q(A) are necessarily convex if A is a general
approximately unital Arens regular Banach algebra, since convex combinations of
norm 1 functionals may have norm strictly less than 1. However they are convex if
A is an approximately unital Lp-operator algebra, since Corollary 4.25 (1) implies
convexity of S(A), and this implies convexity of Q(A).

Proposition 2.27. Let p ∈ (1,∞). The multiplier unitization of an approximately
unital Lp-operator algebra is an Lp-operator algebra.

Proof. This follows from Lemma 2.25 (1) and the fact (Lemma 2.1 (3)) that biduals of
Lp-operator algebras are Lp-operator algebras (or from Lemmas 2.24 and 2.33). �
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Similarly, for p ∈ (1,∞) the multiplier unitization of an approximately unital
SQp-operator algebra is an SQp-operator algebra.

The multiplier algebra M(A), and the left and right multiplier algebras LM(A)
and RM(A), of an approximately Lp-operator algebra may be defined to be subsets
of A∗∗ just as in the operator algebra case. Then the multiplier unitization A1 is
contained in M(A) isometrically and unitally. If A is represented isometrically
and nondegenerately on Lp(X) then, just as in the operator algebra case, M(A),
LM(A), and RM(A) may be identified isometrically as Banach algebras with the
usual subalgebras of B(Lp(X)). See Theorem 3.19 of [Gardella and Thiel 2019],
and the discussion in that paper. One can also, for example, copy the proof of
Theorem 2.6.2 of [Blecher and Le Merdy 2004] for LM(A), and later results in
Section 2.6 of [Blecher and Le Merdy 2004] for RM(A) and M(A).

In particular, M(A), LM(A), and RM(A) are all unital Lp-operator algebras.
Similarly, LM(A) can be identified with the algebra of bounded right A-module
endomorphisms of A, as usual. One may also check that the useful principle in
[Blecher and Le Merdy 2004, Proposition 2.6.12] holds for approximately Lp-
operator algebras, with the same proof. (Also see Theorem 3.17 of [Gardella and
Thiel 2019].)

2D. Idempotents.

Definition 2.28. We recall that if A is a unital Banach algebra, then an idempotent
e ∈ A is called bicontractive if ‖e‖ ≤ 1 and ‖1− e‖ ≤ 1. We say that an element
s of a unital Banach algebra A is an invertible isometry if s is invertible, ‖s‖ = 1,
and ‖s−1

‖ = 1.

We collect some standard facts related to bicontractive idempotents.

Lemma 2.29. (1) Let A be a unital Banach algebra and let e ∈ A be a hermitian
idempotent. Then 1− 2e is an invertible isometry of order 2.

(2) Let A be a unital Banach algebra. Then every hermitian idempotent in A is
bicontractive.

(3) Let p ∈ [1,∞), let (X, µ) be a measure space, and let e ∈ B(Lp(X, µ)) be
an idempotent. Then e is bicontractive if and only if 1− 2e is an invertible
isometry.

(4) Let A be a unital Banach algebra and let e ∈ A be an idempotent. Then e is
real positive if and only if 1− e is contractive (‖1− e‖ ≤ 1).

The converse of (2) is false, even in Lp-operator algebras. See Lemma 6.11 of
[Phillips and Viola 2017], which is just the idempotent e2 of Example 3.2 for p 6= 2.

Part (3) fails in general unital Banach algebras. This failure is well known, and
our Example 4.7 contains an explicit counterexample.
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Proof of Lemma 2.29. For (1), by definition we have

‖1+ [exp(iλ)− 1]e‖ = ‖ exp(iλe)‖ ≤ 1

for all λ ∈ R. Setting λ = π gives ‖1− 2e‖ ≤ 1. One checks immediately that
(1− 2e)2 = 1, so in fact ‖1− 2e‖ = 1. The rest of (1) follows easily.

Part (2) follows from Lemma 6.6 of [Phillips and Viola 2017].
We prove (3). The forward direction follows from [Bernau and Lacey 1977,

Theorem 2.1] (or, when µ(X) = 1, from the corollary on page 11 of [Byrne and
Sullivan 1972]). Conversely, if ‖1− 2e‖ ≤ 1 then

‖e‖ =
∥∥1

2 [1− (1− 2e)]
∥∥≤ 1

2(‖1‖+‖1− 2e‖)≤ 1,

and the proof that ‖1− e‖ ≤ 1 is similar.
Part (4) is [Blecher and Ozawa 2015, Lemma 3.12]. �

Definition 2.30. We define two order relations on idempotents e, f in a Banach
algebra A. We write e ≤r f if f e = e and e ≤ f if e f = f e = e.

If A is a subalgebra of B(E) then, viewing these idempotents as operators on E ,
then e ≤r f simply says that Ran(e)⊆ Ran( f ). The second relation is the ordering
considered in, e.g., [Phillips and Viola 2017, Section 6].

Clearly e ≤ f and f ≤ e imply e = f . This isn’t true for the relation ≤r.

Lemma 2.31. Let p ∈ (1,∞), and let A be an approximately unital Lp-operator
algebra. Let e, f ∈ A be idempotents. Assume that e and f are both contractive or
both real positive. Then:

(1) f e = e if and only if e f = e.

(2) e ≤r f if and only if e ≤ f .

Proof. Part (2) is immediate from part (1), so we just prove part (1).
By definition (see Definition 2.13), we may work in the multiplier unitization A1,

which is a unital Lp-operator algebra by Proposition 2.27. So we can assume that
there is a measure space (X, µ) such that A is a unital subalgebra of B(Lp(X, µ)).

First suppose that e and f are contractive. Assume that f e = e. Then e f is
necessarily an idempotent, and is clearly contractive. Clearly Ran(e f )⊆ Ran(e).
Since e f e = e2

= e, we have Ran(e) ⊆ Ran(e f ). By [Cohen and Sullivan 1970,
Theorem 6], the range of a contractive idempotent on a smooth space determines
the idempotent. So e f = e, as desired.

Next assume that e f = e. Let q ∈ (1,∞) satisfy 1
p +

1
q = 1. Then e∗, f ∗ ∈

B(Lq(X, µ)) are contractive idempotents such that f ∗e∗ = e∗. The case already
considered implies e∗ f ∗ = e∗, whence f e = e.

Now suppose that e and f are real positive. Then 1− e and 1− f are contrac-
tive idempotents by Lemma 2.29 (4). So (1− e)(1− f ) = 1− f if and only if
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(1− f )(1− e)= 1− f by the contractive case. Expanding and rearranging, we get
f e = e if and only if e f = e. �

2E. Representations. We say a few words on representations.

Lemma 2.32. Let p ∈ (1,∞), let A be an Lp-operator algebra, let X be a measure
space, let M be a weak* closed subalgebra of B(Lp(X)), and let π : A → M
be a contractive homomorphism. Then there exists a unique weak* continuous
contractive homomorphism π̃ : A∗∗→ M which extends π .

Proof. The proof is the same as for the operator algebra case (2.5.5 in [Blecher and
Le Merdy 2004], but without the matrix norms) and using Lemma 2.1. �

Let π : A→ B(Lp(X)) be a contractive representation of an approximately unital
Lp-operator algebra. Then E = span(π(A)(Lp(X))) may not be an Lp-space on
a subset of X. Indeed, in Example 3.2, Ran(e2) is not an Lp-space on a subset.
However it is isometric to an Lp-space, as we will see next.

Some of the following follows from [Johnson 1972, Proposition 1.8] (we thank
Eusebio Gardella for this reference) and [Gardella and Thiel 2019, Theorem 3.12,
Corollary 3.13] (see also [Phillips and Viola 2017, Section 2]), but for completeness
we give a self-contained proof.

Lemma 2.33. Let p∈ (1,∞), let A be an approximately unital Banach algebra, and
let π : A→ B(Lp(X)) be a contractive representation. Set E= span(π(A)(Lp(X))).
Then there exists a unique contractive idempotent f ∈ B(Lp(X)) whose range is E.
Moreover, E and f have the following properties.

(1) For every cai (et)t∈3 for A, the net (π(et))t∈3 converges to f in both the
weak* topology and the strong operator topology on B(Lp(X)).

(2) For all a ∈ A we have π(a)= f π(a) f .

(3) The compression of π to E is a contractive representation, which is isometric
if π is isometric.

(4) The compression of π to E is nondegenerate.

(5) E is linearly isometric to an Lp-space.

Proof. Let q ∈ (1,∞) satisfy 1
p +

1
q = 1.

We claim that if (et)t∈3 is a cai in A such that (π(et))t∈3 converges weak*
to some f ∈ B(Lp(X)), then f is a contractive idempotent whose range is E .
Assume the claim has been proved. Since Lp(X) is a smooth space, such an
idempotent is unique by [Cohen and Sullivan 1970, Theorem 6]. The argument of
Lemma 1.14, with this uniqueness statement in place of uniqueness of the identity
in A∗∗, shows that such an idempotent f exists and that for any cai (et)t∈3 in A,
we have π(et)→ f weak*.



422 DAVID P. BLECHER AND N. CHRISTOPHER PHILLIPS

We prove the claim. We have ‖ f ‖ ≤ 1 and 〈 f π(a)ξ, η〉 = 〈π(a)ξ, η〉 for all
a ∈ A, ξ ∈ Lp(X), and η ∈ Lq(X). It follows that f ξ = ξ for all ξ ∈ E . So
E ⊆ Ran( f ). Also, if η ∈ E⊥ ⊆ Lq(X), then 〈 f ξ, η〉 = limt 〈π(et)ξ, η〉 = 0. Thus
E⊥ ⊆ Ran( f )⊥, whence Ran( f )⊆ E . The claim is proved. We now have the main
statement, and weak* convergence in (1).

Part (5) follows from the fact (Theorem 3 in Section 17 of [Lacey 1974]; see
also Theorem 4 of [Ando 1966]) that the range of a contractive idempotent on an
Lp-space is isometrically isomorphic to an Lp-space.

We prove (2). We know that f π(a) = π(a) for all a ∈ A, so we prove that
π(a) f = π(a). For ξ ∈ Lp(X) and η ∈ Lq(X), we have

〈π(a) f ξ, η〉 = 〈 f ξ, π(a)∗η〉 = lim
t
〈π(et)ξ, π(a)∗η〉

= lim
t
〈π(aet)ξ, η〉 = 〈π(a)ξ, η〉.

Thus π(a) f = π(a).
Part (3) is now immediate, as is (4) since π(et)π(a)ξ → π(a)ξ for a ∈ A and

ξ ∈ Lp(X).
We prove strong operator convergence in (1). It suffices to prove that π(et)ξ →

f ξ for ξ ∈ f Lp(X) and for ξ ∈ (1− f )Lp(X). The first of these follows from (4).
The second case is trivial: π(et)ξ = 0 by (2), and f ξ = 0. �

Remark 2.34. The last result also holds with Lp-spaces replaced by the SQp-spaces
mentioned in the introduction, although (5) would then say that E is an SQp-space.
The proof is essentially the same, except that (5) becomes trivial. We also need
to use the fact that SQp-spaces are smooth for p ∈ (1,∞). In fact, they are also
strictly convex. To see this, first observe that reflexivity of Lp-spaces implies
reflexivity of SQp-spaces. Next, Lp-spaces are both smooth and strictly convex, so
their subspaces are as well. So the duals of subspaces are both strictly convex and
smooth. By reflexivity, the quotient of a subspace is the dual of a subspace of the
dual, so both smooth and strictly convex.

If A is unital as a Banach algebra and also is an Lp-operator algebra then it
follows that A may be viewed as a subalgebra of B(Lp(X)) containing the identity
operator on Lp(X), for some measure space X. This was proved first in Section 2
of [Phillips and Viola 2017].

Corollary 2.35. Let p ∈ (1,∞). Let A be a dual unital Lp-operator algebra
(Definition 2.3). Then A has an isometric unital representation on an Lp-space
which is a weak* homeomorphism onto its range.

Proof. Let π : A→ B(Lp(X)) be an isometric representation which is a weak*
homeomorphism onto its range. As in Lemma 2.33, let E = span(π(A)(Lp(X)),
and let f be as there. Clearly f = π(1A). Define σ : A→ B(E)= f B(Lp(X)) f
by σ(a) = f π(a) f for a ∈ A. Lemma 2.33 implies that σ is an isometric unital
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representation on an Lp-space. In light of the Krein–Smulian theorem, all we
need to show is that the weak* topology on B(E) is the same as the restriction to
f B(Lp(X)) f of the weak* topology on B(Lp(X)). The inclusion of E in Lp(X)
as a complemented subspace gives an inclusion of K(E) in K(Lp(X)), and by
Theorem 1.13 (2) the second dual of this inclusion is B(E) ↪→ B(Lp(X)), which is
therefore a weak* homeomorphism onto its image. �

In particular, applying this principle to the bidual of an approximately unital
Lp-operator algebra A, we obtain a faithful normal isometric representation of
A∗∗ that can to some extent play the role of the enveloping von Neumann algebra
coming from the universal representation of a C∗-algebra.

Corollary 2.36. Let p ∈ (1,∞), and let A be an approximately unital Lp-operator
algebra. Then there exists a measure space (X, µ) and a unital isometric represen-
tation θ : A∗∗→ B(Lp(X, µ)) such that:

(1) θ is a weak* homeomorphism onto its range.

(2) θ |A acts nondegenerately on Lp(X, µ).

(3) For any cai (et)t∈3 in A, we have θ(et)→ 1 in the strong operator topology
on B(Lp(X, µ)).

Proof. This is clear from Corollary 2.35 and Lemma 2.33. �

3. Examples

As we mentioned in the introduction, so far the study of Lp-operator algebra has
been very largely example driven. Thus there is a wealth of examples in the literature,
or in preprint form. (See the works of Phillips, Viola, Gardella and Thiel, and others
referred to earlier.) In this section we discuss the main examples which we have
used, or which seem useful but are not in the literature. We recall again that, as
always, in this section p ∈ (1,∞) \ {2} unless stated to the contrary.

Notation 3.1. As in, for example, [Phillips and Viola 2017, Lemma 6.11], for n ∈N

and p ∈ [1,∞] we write l p
n for Lp of an n point space with counting measure, and

define M p
n = B(l p

n ).

Example 3.2. Let p ∈ [1,∞). Let en ∈ M p
n be the n× n matrix whose entries are

all 1
n . We will use en several times in this paper and so the calculations that follow

will be important for us. If p = 2 then en is a rank one projection. For the rest of
this example, assume p 6= 2, and let q ∈ (1,∞] satisfy 1

p +
1
q = 1.

Suppose n = 2. We have

1− 2e2 =

[
0 −1
−1 0

]
,

which is an invertible isometry. So ‖e2‖=‖1−e2‖= 1 by Lemma 2.29 (3), and e2 is
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real positive by Lemma 2.29 (4). However, e2 is not hermitian, by Proposition 2.12,
or by Lemma 6.11 of [Phillips and Viola 2017].

For the rest of this example, assume n ≥ 3 (as well as p 6= 2). We claim that
‖en‖ = 1 but ‖1− en‖ > 1, so that en is not bicontractive. Then Lemma 2.29 (4)
implies that en is not real positive.

To see that en is contractive, set

η = (1, 1, . . . , 1) ∈ l p
n and µ= 1

n (1, 1, . . . , 1) ∈ lq
n .

Then one easily checks that for all ξ ∈ l p
n we have enξ = 〈µ, ξ〉η, so ‖en‖ ≤

‖µ‖q‖η‖p = 1.
To show that ‖1− en‖> 1, by Lemma 2.29 (3) it is enough to prove that 1−2en

is not isometric. As pointed out to us by Eusebio Gardella, Lamperti’s theorem
[Fleming and Jamison 2003, Theorem 3.2.5] implies that the only matrices which
are isometries in the Lp-operator norm are the complex permutation matrices, and
clearly 1− 2en is not of this form. However, we can give a direct proof.

Define g : [1,∞)→ [0,∞) by

g(p)= ‖(1− 2en)(1, 0, 0, . . . , 0)‖p
p.

We have

(1− 2en)(1, 0, 0, . . . , 0)=
(

1− 2
n , −

2
n , −

2
n , . . . , −

2
n

)
,

so
g(p)=

(
1− 2

n

)p
+ (n− 1)

(
2
n

)p

for p ∈ [1,∞). One further has g(2)= 1 and

g′(p)=
(

1− 2
n

)p
log
(

1− 2
n

)
+ (n− 1)

(
2
n

)p
log
(

2
n

)
for all p ∈ [1,∞). Both the logarithm terms are strictly negative, so g′(p) < 0.
Therefore,

‖(1− 2en)(1, 0, 0, . . . , 0)‖p 6= 1

for all p ∈ [1,∞) \ 2. Thus ‖1− en‖> 1.
One can see easily that ‖1− en‖< 2 (this follows for example from a lemma in

the sequel paper), but we will not use this here.
Lemma 2.29 (4) implies that 1 − en is real positive. It follows also that the

“support idempotent” s(1− en) of 1− en (see Definition 4.12) is not contractive,
unlike support idempotents for real positive Hilbert space operators (see, e.g.,
Corollary 3.4 of [Blecher and Read 2013]). In turn this shows that, unlike the
Hilbert space operator case, the limit limm→∞ ‖x1/m

‖ need not equal 1 for real
positive elements in an Lp-operator algebra A (or even for elements of FA). We
are using the m-th root in Definition 2.18 and the discussions after it. We also see
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that, unlike the Hilbert space operator case in Proposition 2.3 of [Blecher and Read
2011], 1

2FA is not closed under n-th roots. Indeed,

1
2(1− en) ∈

1
2FA ⊆ Ball(A)

but
lim

m→∞

( 1
2(1− en)

)1/m
= s(1− en)= 1− en /∈ Ball(A).

Nonetheless it is true that FA is closed under n-th roots, by Proposition 2.19 (7).

Another example of bicontractive idempotents, related to the case of M p
2 dis-

cussed above, appears in the group Lp-operator algebra of a discrete group con-
taining elements of order 2. (See, e.g., [Phillips 2013a; Gardella and Thiel 2015a;
2015b].) These elements give projections in the group C∗-algebra, which are
actually in the purely algebraic group algebra. The corresponding idempotents in
the group Lp-operator algebra are bicontractive, and “look like” the bicontractive
idempotents in M p

2 . Since we make little use of group Lp-operator algebras in this
paper, we omit the details. As described below, however, they motivate Example 3.3.

Let E be a Banach space of the form Lp(X, µ) for some measure space (X, µ)
and some p ∈ (1,∞). Let e, f ∈ B(E) be commuting contractive idempotents. It
is very tempting to conjecture that, as in the Hilbert space operator case, e+ f −e f ,
which is an idempotent with range Ran(e) + Ran( f ), is also contractive. This
conjecture is false, as we will see in Example 3.3, even if e and f are bicontractive.
Thus, the lattice theoretic properties of (even commuting) bicontractive idempotents
on Lp-spaces are deficient. Indeed we shall see that there is a disappointing
comparison between the structure of the lattice of idempotents in B(Lp(X)) and the
beautiful and fundamental behavior of projections in von Neumann algebras. Our
example also does two other things. It shows that the product of two commuting
real positive idempotents need not be real positive. And it shows that on Lp, there
are commuting accretive operators whose geometric mean exists but is not accretive.
This shows that [Blecher and Wang 2016, Lemma 5.8] fails with Hilbert spaces
replaced by Lp-spaces.

The construction of the example is motivated as follows. Fix p ∈ (1,∞) \ {2}.
By Lemma 2.29 (3), commuting pairs of bicontractive idempotents in B(Lp(X, µ))
are in one-to-one correspondence with pairs of commuting invertible isometries
of order 2 in B(Lp(X, µ)), and therefore with representations of (Z /2 Z)2 on
Lp(X, µ) via isometries. In particular, the conjecture in the previous paragraph
holds for all (X, µ) (for our given value of p) if and only if it holds for the pair of
bicontractive idempotents coming from the universal isometric Lp representation
of (Z /2 Z)2. Since (Z /2 Z)2 is amenable, this will be true if and only if it holds
for the left regular representation of (Z /2 Z)2 on

l p((Z /2 Z)2)∼= l p
4 .
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Example 3.3. Fix p ∈ (1,∞)\{2}. There is a finite-dimensional unital Lp-operator
algebra (specifically M p

4 ) which contains the following:

(1) Two commuting bicontractive idempotents whose product is not bicontractive.

(2) Two commuting real positive idempotents whose product is not real positive.

(3) Two commuting accretive operators whose geometric mean exists but is not
accretive.

We work throughout in M p
4 . Define

s =


0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0

 ∈ M p
4 and t =


0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0

 ∈ M p
4 .

One checks that these are commuting isometries of order 2. Next, define

e = 1
2(1+ s) and f = 1

2(1+ t).

These are commuting idempotents, and they are bicontractive by Lemma 2.29 (3).
Then one checks that e f is the idempotent e4 of Example 3.2, and that e+ f −e f is
an idempotent. We claim that it is not contractive. First, we look at 1−(e+ f −e f ),
getting

1− (e+ f − e f )=
1
4


1 −1 −1 1
−1 1 1 −1
−1 1 1 −1

1 −1 −1 1

.
Define w = diag(1, −1, −1, 1), which is an invertible isometry in M p

4 . Then one
checks that w[1− (e + f − e f )]w−1

= e4 in the language of Example 3.2. In
that example we showed that this idempotent is contractive, and also showed that
1−w[1− (e+ f − e f )]w−1 is not contractive. Therefore also

e+ f − e f = w−1(1−w[1− (e+ f − e f )]w−1)w

is not contractive. This yields (1) for the bicontractive idempotents 1− e and 1− f .
Now define e0= 1−e and f0= 1− f . We have seen that e and f are contractive,

so e0 and f0 are real positive by Lemma 2.29 (4). However, 1− e0 f0 = e+ f − e f
is not contractive, so e0 f0 is not real positive, again by Lemma 2.29 (4). This is (2).

We turn to (3). We want invertible elements. Neither e nor f is invertible,
but this is easily fixed by adding ε1 to each of them, which does not change the
fact that they commute. We recall the well-known Ando et al. list of properties
that a “good” geometric mean should possess (see, e.g., page 306 of [Ando et al.
2004]). One of these is that the geometric mean of a and b should be a1/2 b1/2 (as
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in Definition 2.18) whenever a and b commute. One also needs to assume in our
case that these principal square roots exist.

Suppose that (ε1+e)1/2(ε1+ f )1/2 is accretive for all ε > 0. Using the Macaev–
Palant formula ‖a1/2

− b1/2
‖ ≤ K‖a− b‖1/2 (see Lemma 2.4 and the discussion

which precedes it in [Blecher and Wang 2016]; the proof is the same as Theorem 1
of [Macaev and Palant 1962], which is referenced there), letting ε→ 0 implies that
e1/2 f 1/2 is accretive. We have e1/2

= e and f 1/2
= f by, e.g., Proposition 2.19 (1).

So e f is accretive, a contradiction.

Example 3.4. Let p ∈ [1,∞). Given a closed linear subspace E ⊆ B(Lp(X)),
define U(E)⊆ B(Lp(X)⊕p Lp(X)) to be the set of operators which have the 2×2
matrix form

(3-1)
[
λ x
0 µ

]
with λ,µ ∈ C and x ∈ E . Then U(E) is a unital Lp-operator algebra. Moreover, if
F ⊆ Lp(Y ) and u : E→ F is linear, then the map U(u) : U(E)→ U(F), defined by

U(u)
([
λ x
0 µ

])
=

[
λ u(x)
0 µ

]
for λ,µ ∈ C and x ∈ E , is a unital homomorphism. We will show that if u is
contractive or isometric, then so is U(u).

To begin, we claim that if λ,µ ∈ C and x ∈ B(Lp(X)), then

(3-2)
∥∥∥∥[λ x

0 µ

]∥∥∥∥= ∥∥∥∥[|λ| ‖x‖0 |µ|

]∥∥∥∥,
with the norm on the right-hand side being taken in M p

2 . Hence the norm on U(E)
only depends on the norms of elements in E , not the elements themselves.

We prove the claim. Let λ,µ ∈ C and let x ∈ B(Lp(X)). Define

a =
[
λ x
0 µ

]
∈ B(Lp(X)⊕p Lp(X)) and c =

[
|λ| ‖x‖
0 |µ|

]
∈ M p

2 .

We have

(3-3) ‖a‖= sup
({
(‖λη+ xξ‖p

p+‖µξ‖
p
p)

1/p
: η, ξ ∈ Lp(X), ‖η‖p

p+‖ξ‖
p
p ≤ 1

})
.

The quantity inside the supremum is dominated by[
(|λ|‖η‖p +‖x‖‖ξ‖p)

p
+ (|µ|‖ξ‖p)

p]1/p
= ‖c(‖η‖p, ‖ξ‖p)‖p ≤ ‖c‖.

So ‖a‖ ≤ ‖c‖. To see the other direction we may assume that x 6= 0. Choose
scalars α, β with |α|p+|β|p ≤ 1 such that the norm of c is achieved at (α, β). Mul-
tiplying α and β by a complex number of absolute value 1, we may assume that β≥0.
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Since c(α, β) = (α|λ| + β‖x‖, β|µ|), we see that ‖c(α, β)‖p ≤ ‖c(|α|, β)‖p, so
we may also assume that α ≥ 0. If β = 0 then

‖c‖ = ‖c(α, β)‖p = |αλ| ≤ |λ| ≤ ‖a‖.

Otherwise, let ε > 0. Choose δ > 0 such that

δ < β‖x‖ and
(∣∣|λ|α+β‖x‖∣∣− δ)p

>
∣∣|λ|α+β‖x‖∣∣p

− ε.

Choose ξ ∈ Lp(X) of norm β so that |‖xξ‖p −β‖x‖|< δ. Then xξ 6= 0. Choose
ζ ∈ C such that |ζ | = 1 and ζλ= |λ|. Define η = ζα‖xξ‖−1

p xξ ∈ Lp(X). Then η
has norm α, so that ‖η‖p

p +‖ξ‖
p
p ≤ 1. Now

‖a(η, ξ)‖p
= ‖λη+ xξ‖p

p +‖µξ‖
p
p =

(∣∣∣∣ λζα‖xξ‖p
+ 1

∣∣∣∣‖xξ‖p

)p

+ |µβ|p

=
∣∣|λ|α+‖xξ‖p

∣∣p
+ |µβ|p >

(∣∣|λ|α+β‖x‖∣∣− δ)p
+ |µβ|p

>
∣∣|λ|α+β‖x‖∣∣p

− ε+ |µβ|p

= ‖c(α, β)‖p
p − ε = ‖c‖

p
− ε.

Since ε > 0 is arbitrary, the claim follows.
It follows that if u : E→ F as above is isometric, then so is U(u).
We claim that if u : E→ F is a linear contraction, then U(u) is also contractive.

By the previous claim, it suffices to prove that if λ,µ, ρ, σ ∈ [0,∞) and ρ ≤ σ ,
then

(3-4)
∥∥∥∥[λ ρ

0 µ

]∥∥∥∥≤ ∥∥∥∥[λ σ

0 µ

]∥∥∥∥.
We apply (3-3) to these matrices. For α, β ∈ C we have ‖(|α|, |β|)‖p = ‖(α, β)‖p.
Since λ, ρ ≥ 0, the expression |λα+ ρβ|p + |µβ|p becomes no smaller if α and β
are replaced by |α| and |β|, and similarly with σ in place of ρ. Therefore the norms
of the matrices in (3-4) are N (ρ) and N (σ ), with N given by

N (τ )= sup
({
((λα+ τβ)p

+ (µβ)p)1/p
: α, β ∈ [0,∞) satisfy α p

+β p
≤ 1

})
for τ ∈ [0,∞). Since all the variables are nonnegative, clearly ρ ≤ σ implies
N (ρ)≤ N (σ ). This yields (3-4). The claim is proved.

Example 3.4 is often useful for counterexamples because it can convert a bad
linear subspace of B(Lp(X)) into a suitably badly behaved Lp-operator algebra.
Note that if E is weak* closed in B(Lp(X)) then U(E) is a dual Lp-operator algebra
in the sense of Definition 2.3. This follows just as in Lemma 2.7.7 (1) of [Blecher
and Le Merdy 2004], but using the characterization of weak* convergent nets in
B(Lp(X)) given after Corollary 2.2.
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Example 3.5. Let p ∈ [1,∞). The set of continuous functions f : [0, 1] →
M p

2 is a unital Lp-operator algebra. We may view this as the canonical copy of
C([0, 1])⊗M p

2 inside the bounded operators on

Lp([0, 1])⊗ l p
2
∼= l p

2 (L
p([0, 1]))∼= Lp([0, 1])⊕p Lp([0, 1]).

The subalgebra consisting of functions with f (1) diagonal is also a unital Lp-
operator algebra. The subalgebras consisting of functions f with f (0)= 0, or with
f (0)= 0 and f (1) diagonal, are approximately unital Lp-operator algebras. Indeed,
if (en)n∈N is a cai for C0((0, 1]), then, using tensor notation, (en ⊗ 12)n∈N is a cai
for these algebras.

Example 3.6. Let p ∈ (1,∞). Let (X, µ) be a measure space, and, to avoid
trivialities, assume that Lp(X, µ) is not separable. Let A ⊆ B(Lp(X, µ)) be the
ideal of operators on Lp(X) with separable range, which is known to be a closed
ideal. We claim that A is an Lp-operator algebra with a cai, and, if X is a discrete
space with counting measure, even a cai consisting of hermitian and real positive
idempotents.

We prove the first part of the claim. If E ⊆ Lp(X) is any separable subspace, it
follows by Theorem 6 in Section 16 on page 146 of [Lacey 1974] and Lemma 2
in Section 17 on page 153 of [Lacey 1974] (see also Proposition 1.25 in [Phillips
2013a]), that E is contained in the range of a contractive idempotent with separable
range. (Spaces are assumed to be real in [Lacey 1974, Section 16], however the
complex case is no doubt well known to Banach space experts. Indeed by the
just cited results or their proofs, a separable subspace of Lp(X) is contained in a
separable closed sublattice F. Since the norm on F is p-additive, F is an abstract Lp-
space (see page 131 of [Lacey 1974] for definitions of these terms), so by Theorem 3
in both Sections 15 and 17 of [Lacey 1974], F is contractively complemented.)

Also, it is well known and an exercise that an operator x on a reflexive space has
separable range if and only if x∗ has separable range. Taking q ∈ (1,∞) to satisfy
1
p +

1
q = 1, we see that A∗ is the collection of operators on Lq(X, µ) with separable

range. For any x1, x2, . . . , xn ∈ A, the closure of the linear span of their ranges is
separable by standard arguments. It follows that there exist contractive idempotents
e and f with separable ranges such that xk = exk = xk f for k = 1, 2, . . . , n. Thus
A has a cai (et)t∈3, indeed a cai consisting of contractive idempotents and such
that for any finite set F ⊆ A there is t ∈3 such that et x = xet = x for all x ∈ F.
Indeed take 3 to be the collection of such finite subsets of A.

Now take X to be a set I with counting measure, so Lp(X) = l p(I ). For any
J ⊆ I let eJ be the canonical hermitian (diagonal) projection eJ onto the image of
l p(J ) in l p(I ). Suppose x1, x2, . . . , xn ∈ B(l p(I )) have separable ranges. Then, as
above, the closure E of the joint span of their ranges is separable. So there exists a
countable subset J of I (the union of the supports of elements in a countable dense
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set in E) such that all elements of E are supported on J. As in the last paragraph,
the net (eJ ), indexed by the countable subsets J of I ordered by inclusion, is a real
positive hermitian cai consisting of bicontractive idempotents (since 1− eJ = eI\J

is contractive).

Example 3.7. Let G be a locally compact group which is not discrete, with Haar
measure µ. Then L1(G) is approximately unital, and by Wendel’s theorem, its
multiplier algebra is M(G), the measure algebra on G. In particular, M(G) in
an L1-operator algebra. The identity of M(G) is δ1, the Dirac measure at 1G .
Hence the multiplier unitization of L1(G) is L1(G)+C δ1 ⊆ M(G)⊆ B(L1(G)).
If f ∈ L1(G) and λ ∈ C then

‖ f + λδ1‖ = sup
({∣∣∣∣∫

G
f g dµ+ λg(1)

∣∣∣∣ : g ∈ Ball(C0(G))
})
.

We claim that the multiplier unitization of L1(G) is L1(G)⊕1 C. Fix f ∈ L1(G)
and λ ∈ C; it is enough to prove that ‖ f + λδ1‖M(G) ≥ ‖ f ‖1+ |λ|. Given ε > 0,
choose h ∈ Ball(C0(G)) with

∣∣∫
G f h dµ

∣∣ > ‖ f ‖1 − ε. Replacing h by eiβh for
suitable β ∈R, we may assume that

∫
G f h dµ≥ 0. We have µ({1})= 0 since G is

not discrete. Choose by regularity a neighborhood U of 1 such that
∫

U | f | dµ < ε.
By Urysohn’s lemma there is a continuous function k1 : G→ [0, 1] with compact
support K contained in U and taking the value 1 at 1G . There is also a continuous
function k2 :G→[0, 1] which is 1 on G \U and is 0 on K. Choose θ ∈R such that
eiθλ=|λ|, and let g= hk2+eiθk1. Thus we have g ∈Ball(C0(G)) with λg(1)=|λ|,
and g = h on G \U. So∣∣∣∣∫

G
f g dµ−

∫
G

f h dµ
∣∣∣∣≤ 2

∫
U
| f | dµ < 2ε.

Using
∫

G f h dµ≥ 0 and λg(1)= |λ| ≥ 0, we have

‖ f + λδ1‖ ≥

∣∣∣∣∫
G

f g dµ+ λg(1)
∣∣∣∣> ∣∣∣∣∫

G
f h dµ+ λg(1)

∣∣∣∣− 2ε

=

∫
G

f h dµ+ |λ| − 2ε > ‖ f ‖1+ |λ| − 3ε.

Since ε > 0 is arbitrary, the claim is proved.
It follows (see Definition 2.16 and Proposition 2.17) that FL1(G) = rL1(G) = {0}.

By Lemma 2.15, L1(G) also has no nonzero hermitian elements. In particular,
L1(G) has no hermitian or real positive cai.

Example 3.8. A good example of an Lp-operator algebra with a real positive
cai but no hermitian cai is the set A of functions in the disk algebra vanishing
at 1, represented on Lp of the circle as multiplication operators. The disk algebra
contains no nontrivial hermitian elements, since the latter would be real-valued
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functions. However, A is approximately unital. One way to see this is to com-
bine Example I.1.4 (b) of [Harmand et al. 1993] (after Lemma I.1.5 there) with
Theorem 4.8.5 (1) of [Blecher and Le Merdy 2004], realizing the disk algebra
as an operator algebra by representing it on L2 of the circle (instead of Lp) as
multiplication operators.

Example 3.9. Let p ∈ [1,∞) \ {2}. We consider the algebras K(Lp(X, µ)) for
X =N with counting measure and X = [0, 1] with Lebesgue measure. The first has
a cai consisting of real positive, in fact, hermitian, idempotents. The second has a
cai, but contains no nonzero real positive elements, and in particular no nonzero
hermitian elements.

A hermitian element in B(Lp(X, µ)) is “multiplication by an essentially bounded
real-valued locally measurable function” (Proposition 2.12). Thus the hermitian
elements in B(l p) are the infinite diagonal matrices with bounded real entries.
Therefore the canonical approximate identity in K(l p) is a cai consisting of real
positive and hermitian elements. (Also see the discussion in [Phillips and Viola
2017, Section 6].)

Abbreviate A = K(Lp([0, 1])). This algebra is approximately unital by, e.g.,
Theorem 2 of [Palmer 1985]. We can in fact give a formula for cai (en)n=0,1,...

consisting of contractive finite rank idempotents which is increasing in the order ≤
in Definition 2.30. For n = 0, 1, . . . , for

ξ ∈ Lp([0, 1]), k = 1, 2, . . . , 2n, and x ∈
[

k− 1
2n ,

k
2n

)
,

define
(enξ)(x)= 2n

∫ k/2n

(k−1)/2n
ξ(t) dt.

One easily checks that (en)n=1,2,... has the properties claimed for it.
Assume now that p ∈ (1,∞) \ {2}. It is known (see Theorem 2 of [Benyamini

and Lin 1985]) there is no nonzero a ∈ A with ‖1 − a‖ ≤ 1. It follows from
Proposition 2.17 that rA = {0}. That is, for p ∈ (1,∞) \ {2}, there are no nonzero
real positive elements in A in the main sense of [Blecher and Ozawa 2015]. Hence
by Lemma 2.25 (4) and Lemma 2.1 (1), for every cai e, we have reA = {0}. (This
set was defined before Lemma 2.6 in [Blecher and Ozawa 2015]. In our present
case, by Lemma 2.25 (4) and Definition 2.13, reA is the set of elements x ∈ A with
Re(ϕ(x))≥ 0 for all ϕ ∈ S(A).) In particular, for p ∈ (1,∞) \ {2}, A has no real
positive cai. So, by Lemma 2.15 and Proposition 2.27, A has no hermitian cai.

It is easy to see directly that K(Lp([0, 1])) has no nonzero hermitian elements.
Indeed, Proposition 2.12 implies that a hermitian element in B(Lp([0, 1])) is the
multiplication operator M f by a bounded measurable real-valued function f . If
the range of such an operator M f is nonzero then it contains Lp(E) for some
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non-null E ⊆ [0, 1]. Indeed there is ε > 0 such that E = {x ∈ [0, 1] : | f (x)|>ε} has
strictly positive measure. So Lp(E) is contained in the range of multiplication by f .
Since the measure has no atoms, Lp(E) is infinite-dimensional. This cannot be if M f

is compact, since in that case its restriction to Lp(E) is compact and bounded below.

Proposition 3.10. Let p ∈ (1,∞) \ {2}. Set A = K(Lp([0, 1])). If e is the identity
of A∗∗, viewed as an element of (A1)∗∗, then ‖1− e‖> 1.

Proof. Suppose that ‖1−e‖≤ 1. Then by Goldstine’s theorem there are nets (at)t∈3

in A and (λt)t∈3 in C such that ‖λt 1+ at‖ ≤ 1 for all t ∈3 and λt 1+ at → 1− e
weak*. Applying the character annihilating A we see that λt → 1. Hence at →−e
weak*. Theorem 2 of [Benyamini and Lin 1985] provides δ > 0 such that whenever
b ∈ A satisfies ‖b‖ ≥ 1

2 then ‖1−b‖> 1+ δ. Choose t0 ∈3 such that |1− λt |<
δ
2

for t ∈3 with t ≥ t0. There is t1 ∈3 such that t1 ≥ t0 and ‖at1‖> ‖− e‖− 1
2 (for

otherwise ‖at‖≤ ‖−e‖− 1
2 for t ≥ t0, giving the contradiction ‖−e‖≤ ‖−e‖− 1

2 ).
Clearly ‖− e‖ ≥ 1. So ‖at1‖>

1
2 , whence ‖1+ at1‖> 1+ δ. But

‖1+ at1‖ ≤ |1− λt1 | + ‖λt1 + at1‖<
δ

2
+ 1.

This contradiction shows that ‖1− e‖ ≤ 1 is impossible. �

4. Miscellaneous results on L p-operator algebras

4A. Quotients and bi-approximately unital algebras.

Definition 4.1. Let A be an Lp-operator algebra and let J ⊆ A be a closed ideal.
We say that J is a bi-approximately unital ideal in A (or is bi-approximately unital
in A) if J is approximately unital and if there is an Lp-operator unitization B
of A (as in Definition 1.7) such that identity e of the bidual J ∗∗ is a bicontractive
idempotent in B∗∗.

Definition 4.2. Let A be an approximately unital Arens regular Banach algebra.
We say that A is bi-approximately unital if in the bidual (A1)∗∗ of its multiplier
unitization A1 the identity e of A∗∗ is a bicontractive idempotent.

The next lemma shows that the terminology is consistent.

Lemma 4.3. Let A be an approximately unital Lp-operator algebra. Then A
is bi-approximately unital in the sense of Definition 4.2 if and only if A is bi-
approximately unital as an ideal in itself in the sense of Definition 4.1.

Recall from Lemma 2.1 (1) that Lp-operator algebras are automatically Arens
regular.

Proof of Lemma 4.3. If A is bi-approximately unital in the sense of Definition 4.2,
we can take the Lp-operator unitization required in Definition 4.1 to be A1, recalling
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from Proposition 2.27 that A1 is an Lp-operator algebra. If A is bi-approximately
unital as an ideal in itself, let B be an Lp-operator unitization as required in
Definition 4.1, and let e be as there. The obvious homomorphism ϕ : B → A1

is contractive, by Remark 1.9 (4), so ϕ∗∗ : B∗∗ → (A1)∗∗ is contractive. Thus
‖ϕ∗∗(e)‖ ≤ ‖e‖ ≤ 1 and ‖1−ϕ∗∗(e)‖ ≤ ‖1− e‖ ≤ 1. Since ϕ∗∗(e) is the identity
of A∗∗ as in Definition 4.2, we have shown that A is bi-approximately unital. �

The algebra K(Lp([0, 1])) is an approximately unital Lp-operator algebra which
is not bi-approximately unital. See Example 3.9 and Proposition 3.10.

By Lemma 2.29 (3), A is bi-approximately unital if and only if A is a u-ideal in
A1 as defined at the beginning of Section 3 of [Godefroy et al. 1993], that is, that
‖1− 2e‖ ≤ 1 where e is the identity of A⊥⊥ in (A1)∗∗.

Lemma 4.4. Let A be an approximately unital Arens regular Banach algebra. If A
has a real positive bounded approximate identity, then A is bi-approximately unital
in the sense of Definition 4.2.

Proof. Lemma 2.22 implies that A has a cai in FA. This cai converges weak* to the
identity e of A∗∗ by Lemma 1.14. Since norm closed balls are weak* closed, we
get ‖e‖ ≤ 1 and ‖1− e‖ ≤ 1. Hence e is bicontractive. �

We conjecture that the converse of Lemma 4.4 is always true for Lp-operator
algebras, namely that a bi-approximately unital Lp-operator algebra A has a real
positive cai. Corollary 2.23 may be helpful for this question.

In [Gardella and Thiel 2016] it is shown that quotients of Lp-operator algebras
by closed ideals need not be Lp-operator algebras, giving a negative solution to
Problem 3.8 in [Le Merdy 1996]. Things are better if the ideal is approximately
unital.

Lemma 4.5. Let p ∈ (1,∞), let A be an Lp-operator algebra, and let J ⊆ A be a
closed ideal.

(1) If J is a bi-approximately unital ideal in A then A/J is an Lp-operator algebra.

(2) If J is approximately unital then there is a continuous bijective homomorphism
from A/J to an Lp-operator algebra whose inverse is also continuous.

Proof. We may suppose that A is unital with identity 1. Recall from Lemma 2.1 (2)
that multiplication on A∗∗ is separately weak* continuous. Also, the weak* closure
of J in A∗∗ is J⊥⊥.

Let (et)t∈3 be a cai for J. Since J is Arens regular (Lemma 2.1 (2)), Lemma 1.14
shows that there is e ∈ J ∗∗ which is an identity for J ∗∗ and such that (et)t∈3

converges weak* to e. Clearly ‖e‖ ≤ 1.
We claim that eA∗∗ = J⊥⊥ and A∗∗e= J⊥⊥. The proofs are the same, so we do

only the first. We have J⊥⊥ ⊆ eA∗∗ since e is an identity for J⊥⊥. Also, if a ∈ A
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then et a ∈ J for all t ∈3, and et a→ ea weak*, so ea is in the weak* closure of J
in A∗∗, which is J⊥⊥. Thus eA ⊆ J⊥⊥. Since multiplication on A∗∗ is separately
weak* continuous, it follows that eA∗∗ ⊆ J⊥⊥. The claim is proved.

For a ∈ A∗∗, since ae, ea ∈ J⊥⊥ and e is an identity for J⊥⊥, we get (ea)e= ea
and e(ae)= ae. So e is central in A∗∗.

Since e is an idempotent, we have an algebra homeomorphism (not necessarily
isometric) A∗∗/eA∗∗∼= (1−e)A∗∗. If J is bi-approximately unital, then ‖1−e‖= 1,
and this isomorphism is isometric. Therefore we have algebras homomorphisms

A/J ↪→ A∗∗/J⊥⊥ = A∗∗/eA∗∗→ (1− e)A∗∗ ↪→ A∗∗.

All maps are isometric except possibly the third, which is a homeomorphism in
general and is isometric if J is bi-approximately unital. Since A∗∗ is an Lp-operator
algebra by Lemma 2.1 (2), we are done. �

Remark 4.6. (1) Using an ultrapower argument, Charles Read showed in an
unfinished personal communication that the quotient B(l p)/K(l p) is isometrically
an Lp-operator algebra. This fact is also contained in Theorem 2.1 and Remark 2
of [Boedihardjo and Johnson 2015], combined with the fact (Theorem 3.3 (ii) of
[Heinrich 1980]) that ultrapowers of Lp-spaces are Lp-spaces. This result also
follows from Lemma 4.5 (1), since the canonical cai for K(l p) is bicontractive and
hence so is its weak* limit.

Read was also working on whether B(Lp)/K(Lp) is an Lp-operator algebra.
The results of [Boedihardjo and Johnson 2015] quoted above show that it is at least
isomorphic to one, a fact which also follows from Lemma 4.5 (2). We are studying
Read’s unfinished proof of the latter in hopes of answering this question.

(2) We remind the reader of an example from [Gardella and Thiel 2016]: the p
variant of the Toeplitz algebra quotiented by K(l p) is isomorphic to F p(Z), the
norm closed subalgebra of B(ll(Z)) generated by the bilateral shift and its inverse.
(This is the full group Lp-operator algebra of Z as defined in [Phillips 2013a]; see
Definition 3.3 and the discussion before Proposition 3.14 there.) In particular, it is
not C(T).

Example 4.7. We exhibit p ∈ (1,∞) \ {2} and an Lp-operator algebra A with a
closed approximately unital ideal J such that A/J is not isometrically isomorphic
to an Lp-operator algebra. This shows that Lemma 4.5 (2) can’t be improved. In our
example, A is commutative and three dimensional, and J has an identity e which is
central in A and with ‖e‖ = 1 (but ‖1− e‖> 1).

Fix n ∈ {2, 3, . . .}. (We will later take n = 3.) Let en be as in Example 3.2.
Define ζ = e2π i/n and s = diag(1, ζ, ζ 2, . . . , ζ n−1). For k = 0, 1, . . . , n − 1 set
fk = skens−k. We claim that:

(1) fk is a contractive idempotent for k = 0, 1, . . . , n− 1.
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(2) f0, f1, . . . , fn−1 are orthogonal, that is, f j fk = 0 if j 6= k.

(3)
∑n−1

k=0 fk = 1Mn , the n× n identity matrix.

For (1), recall from Example 3.2 that ‖en‖ = 1, and use ‖ fk‖ ≤ ‖s‖k‖en‖‖s−1
‖

k.
For (2) and (3), let u ∈ Mn be the matrix whose k-th column (starting the count at 0
instead of 1) is

1
√

n
sk(1, 1, . . . , 1)=

1
√

n
(1, ζ k, ζ 2k, . . . , ζ (n−1)k).

Computations show that u is unitary (in the p = 2 sense), and that

u∗enu = diag(1, 0, 0, . . . , 0) and u∗su =


0 0 · · · 0 1
1 0 · · · · · · 0
0 1

. . .
. . .

...
...
. . .

. . .
. . .

...

0 · · · 0 1 0

.

For k = 0, 1, . . . , n − 1, it follows that u∗ fku = (u∗su)k(u∗enu)(u∗su)−k is the
orthogonal projection (in the p = 2 sense) to the span of the k-th standard basis
vector (starting the count at 0 instead of 1). Parts (2) and (3) of the claim now
follow immediately.

Set n = 3 and let A be the subalgebra of M p
3 spanned by f0, f1, and f2. This

contains 1M3 . Let J =C e3, an ideal in A with an identity of norm 1. We claim that if

(4-1) p >
log(4)

log(4)− log(3)

then A/J is not isometric to an Lp-operator algebra. (This is presumably true for
all p ∈ [1,∞)\ {2}.) Indeed, the image f of f1 in A/J is a contractive idempotent.
It is actually bicontractive since

‖1− f ‖ = inf{‖1− f1+ λ f0‖ : λ ∈ C}

≤ ‖1− f1− f0‖ = ‖ f2‖ ≤ 1.

We claim that if p is as in (4-1) then ‖1−2 f ‖> 1. If we can prove this claim then
A/J cannot be an Lp-operator algebra by Lemma 2.29 (3).

To prove the last claim note first that since

1− 2 f1+ λ f0 = s1(1− 2e3+ λs−1
1 f0s1)s−1

1 ,

we have
‖1− 2 f ‖ = inf{‖1− 2 f1+ λ f0‖ : λ ∈ C}

= inf{‖1− 2e3+ λs−1
1 f0s1‖ : λ ∈ C}.
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With 1
p +

1
q = 1, the norm of 1− 2e3+ λs−1

1 f0s1 dominates the q-norm of the first
row of 1− 2e3+ λs−1

1 f0s1. This first row is

(4-2)
( 1

3 , −
2
3 , −

2
3

)
−

1
3λ (1 , ζ , ζ

2)= 1
3(1− λ , −2− λζ , −2− λζ 2).

We estimate the minimum of

|1− λ|q + |2+ λζ |q + |2+ λζ 2
|
q
= |1− λ|q + |2ζ + λ|q + |2ζ

2
+ λ|q .

Write λ= x + iy for real x and y. Then

2ζ + λ=−1+ x + i(y−
√

3) and 2ζ
2
+ λ=−1+ x + i(y+

√
3).

Thus we are minimizing

G(x, y)= ((1−x)2+y2)q/2+((1−x)2+(y−
√

3)2)q/2+((1−x)2+(y+
√

3)2)q/2.

Clearly G(x, y)≥ G(1, y) for all x, y ∈ R. So we must minimize the function

gc(y)= |y|q + |y− c|q + |y+ c|q

for c =
√

3. For any c > 0, this function is continuous, even, and clearly strictly
increasing on [c,∞). For y ∈ (0, c) we have

g′c(y)= q(yq−1
+ (c+ y)q−1

− (c− y)q−1).

Since q − 1 ≥ 0 and c + y > c − y > 0, it follows that g′c(y) > 0. By symme-
try, the minimum value of gc occurs at y = 0. So, for all x, y ∈ R, we have
G(x, y)≥ G(1, 0)= 2 · 3q/2.

Applying this estimate to the q-norm of the right-hand side of (4-2), we get

‖1− 2 f ‖q ≥
2 · 3q/2

3q = 2 · 3−q/2.

If q < 2 log(2)/ log(3), this quantity is greater than 1, and this happens exactly
when (4-1) holds. The claim is proved.

4B. Unitization of nonunital Lp-operator algebras. Unfortunately Meyer’s beau-
tiful unitization theorem (see [Blecher and Le Merdy 2004, Corollary 2.1.15])
for operator algebras on Hilbert spaces fails badly for Lp-operator algebras. That
is, unitizations of nonunital Lp-operator algebras are not unique isometrically
(Examples 4.8 and 4.9 below). However if two approximately unital Lp-operator
algebras A1 and A2 are isometrically isomorphic and they each act nondegenerately
on the Lp-spaces on which they act, then A1+C 1 is isometrically isomorphic to
A2+C 1. Indeed, for j = 1, 2, the algebra A j +C 1 is isometrically isomorphic to
the multiplier unitization of A j by Lemma 2.24.
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We now illustrate the failure of Meyer’s theorem, even in the case of approxi-
mately unital Lp-operator algebras. We give two versions. In the first, the algebras
are finite-dimensional and already unital, but degenerately represented. In the
second, the algebras are genuinely nonunital.

Example 4.8. Let M p
2 = B(l p

2 ) be as in Notation 3.1. Let e = e2 be as in
Example 3.2, and let f = e1,1, the (1, 1) standard matrix unit. Let 1= 1M2 be the
2× 2 identity matrix. Then C e∼= C f isometrically. We claim that C e+C 1 is not
isometric to C f +C 1, so that Meyer’s unitization theorem fails. The idempotents in
C f +C 1 are 0, f , 1− f , and 1, all of which are clearly hermitian. By Example 3.2,
however, e is a nonhermitian idempotent in C e+C 1. The claim follows.

Example 4.9. We continue with the notation in Example 4.8, to produce a nonunital
example where Meyer’s unitization theorem fails. Set A= c0⊕C e and B= c0⊕C f ,
both viewed as subalgebras of B(l p(N)⊕p l p

2 ). These are isometrically isomorphic
Lp-operator algebras, which are approximately unital. Indeed, they have obvious
increasing approximate identities consisting of hermitian idempotents. Write 1 for
the identity of B(l p(N)⊕pl p

2 ). We claim that A+C 1 is not isometrically isomorphic
to B+C 1. To see this, first observe that all elements of B+C 1 are multiplication
operators on l p(N)⊕pl p

2 = l p(Nq{0, 1}). It is immediate that all idempotents in this
algebra are hermitian. On the other hand, there is a canonical restriction homomor-
phism ρ : A+C 1→ B(l p

2 ), which is a unital contractive surjection to C e+C 1M2 ,
namely “compression” to the subspace l p

2 of l p(N)⊕p l p
2 . As we said in Example 4.8,

e∈C e+C 1M2 is a nonhermitian idempotent. However, g= (0, e)∈ A⊆ A+C 1 is an
idempotent such that ρ(g)= e. If g were hermitian, then e would be too, by [Phillips
and Viola 2017, Lemma 6.7]. So A+C 1 contains a nonhermitian idempotent.

In Example 4.9, one can show that the algebra B+C 1 is a spatial Lp AF algebra
in the sense of Definition 9.1 of [Phillips and Viola 2017], while A+C 1 isn’t.

We remark that [Phillips and Viola 2017, Proposition 9.9] gives conditions which
force uniqueness of the unitization of an Lp-operator algebra. The fact that Meyer’s
theorem fails for C e and C f in Example 4.8 shows, by Meyer’s proof (see [Blecher
and Le Merdy 2004, 2.1.14]), that, even in M p

2 = B(l p
2 ), some of the basic properties

of the Cayley transform for Hilbert space operators must fail for p 6= 2. We turn to
this next.

4C. The Cayley and F transforms. The Cayley transform κ(x)= (x−1)(x+1)−1

is an important tool for operator algebras on a Hilbert space, as is the fact that in
that setting κ(x) is a contraction for accretive x . In [Blecher and Read 2013; 2014]
the associated transform

F(x)= x(x + 1)−1
=

1
2(1+ κ(x))

is used. For L2-operator algebras it takes rA onto the strict contractions in 1
2FA.
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This all fails in full generality for Lp-operator algebras, which means that many of
the general results in [Blecher and Ozawa 2015] do not improve for Lp-operator
algebras.

Here are two things which do work. First, if A is an approximately unital Lp-
operator algebra then the F transform does map rA into FA. (By Lemma 3.4 of
[Blecher and Ozawa 2015], this is true for arbitrary approximately unital Banach
algebras.) Second, if A is any unital Banach algebra and x ∈ FA, then ‖κ(x)‖ =
‖1− 2F(x)‖ ≤ 1. Indeed, with y = x − 1, we have ‖y‖ ≤ 1, so that

‖κ(x)‖ =
∥∥(1+ 1

2 y
)−1( 1

2 y
)∥∥≤ ∥∥1

2 y
∥∥ ∞∑

k=0

∥∥1
2 y
∥∥k
≤ 1.

Example 4.10. We prove the existence of δ > 0 such that for all p ∈ [1, 1+ δ)
there is a unital finite dimensional Lp-operator algebra containing a real positive
element x for which ‖κ(x)‖> 1. Presumably this happens for all p ∈ [1,∞) \ {2},
but proving this may require more work.

Indeed, in M p
2 (Notation 3.1) consider

x =
[

1− i 1
1 1− i

]
and κ(x)= 1

5

[
1− 3i 1+ 2i
1+ 2i 1− 3i

]
.

Since x = 2e2− i1M2 in the notation of Example 3.2, it follows from considerations
in that example that x is real positive in M p

2 . However κ(x) applied to the unit
vector (1, 0) has p-norm 1

5(10p/2
+ 5p/2)1/p, which exceeds 1 for p ∈ [1, δ), for

some fixed δ > 0.
One may also arrive at this same example by modifying the L1-operator algebra

example given in Example 3.14 in [Blecher and Ozawa 2015]. It was stated there
that the convolution algebra l1(Z2) contains real positive elements x for which
‖κ(x)‖> 1. An explicit example of such an element was not given there though.
Let F p

r (Z2) be the reduced group Lp-operator algebra of the two element group (as
defined in [Phillips 2013a]). This is isometric, via the regular representation of Z2

on l p(Z2), to the unital subalgebra of M p
2 generated by the idempotent

e = 1
2

[
1 1
1 1

]
(called e2 in Example 3.2). This latter algebra contains our element x above. The
regular representation of Z2 on l p(Z2) sends the nontrivial group element to

s =
[

0 1
1 0

]
,

and we have the relations e = 1
2(s+ 1) and s = 2e− 1.



L p -OPERATOR ALGEBRAS WITH APPROXIMATE IDENTITIES, I 439

Moreover, F1
r (Z2)∼= l1(Z2) isometrically. Via these considerations, a real pos-

itive element w in Example 3.14 in [Blecher and Ozawa 2015] corresponds to a
real positive element a in F1

r (Z2) and a real positive matrix x in M1
2 . Moreover,

‖κ(w)‖> 1 if and only if ‖κ(a)‖> 1, in turn if and only if ‖κ(x)‖> 1. Since the
map F1

r (Z2)→ F p
r (Z2) is unital and contractive for p ∈ [1,∞), it follows easily

that a (resp. x) is also real positive in F p
r (Z2) (resp. M p

2 ). By “continuity in p”, the
Cayley transform of x in M p

2 is not contractive for p close to 1. A specific example
of this of course is the matrix x in the second paragraph of the present example.

4D. Support idempotents. There is some improvement over [Blecher and Ozawa
2015] in the theory of support idempotents.

Proposition 4.11. Let A be an approximately unital Arens regular Banach algebra,
and let x ∈ rA. Then, using the notation of Definition 2.18, the sequence (x1/n)n∈N

has a weak* limit s(x) ∈ A∗∗. Moreover:

(1) s(x) is an idempotent.

(2) s(x) is an identity for the second dual of the closed subalgebra of A generated
by x.

(3) s(x)x = xs(x)= x.

(4) With F as in Section 4C, we have s(F(x))= s(x).

(5) ‖1− s(x)‖ ≤ 1.

(6) s(x) is a real positive idempotent in A∗∗.

Definition 4.12. Let A and x ∈ A be as in Proposition 4.11. We call s(x) the
support idempotent of x .

Proposition 4.11 is proved in the discussion after Proposition 3.17 of [Blecher
and Ozawa 2015] (see also the discussion after Corollary 6.20 in [Blecher 2016]).
Our advantage here over the situation in those papers is that the weak* limit of x1/n

exists (it equals the identity for the second dual in (2) above), and so the support
idempotent s(x) is unique.

The support idempotent of x is minimal in several senses related to the orderings
in Definition 2.30.

Corollary 4.13. Under the hypotheses of Proposition 4.11, we furthermore have:

(1) If f ∈ A∗∗ is any idempotent with f x = x , then f s(x)= s(x), that is, s(x)≤r f
in the sense of Definition 2.30.

(2) If f ∈ A∗∗ is any idempotent with x f = x , then s(x) f = s(x).

(3) If f ∈ A∗∗ is any idempotent with f x = x and x f = x , then s(x) ≤ f in the
sense of Definition 2.30.
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Proof. By Proposition 2.19 (4), in part (1) we have f x1/n
= x1/n. Hence (1) follows

from x1/n
→ s(x) weak* and separate weak* continuity of multiplication ([Blecher

and Le Merdy 2004, 2.5.3]). Similarly for (2). Part (3) is now obvious. �

Thus s(x) is the smallest idempotent in A∗∗ with f x = x , in the ordering ≤r (or
with f x = x and x f = x , in the ordering ≤). Recall from Corollary 2.4 that if A
is an Lp-operator algebra then so is A∗∗, and so by Lemma 2.31 (2) we see that ≤
coincides with ≤r on real positive idempotents in A∗∗. Hence in this case s(x) is
the smallest idempotent in A∗∗ with f x = x (or with x f = x), in the ordering ≤.

In the case of a subalgebra of B(Lp(X)), we also get a support idempotent acting
on Lp(X).

Proposition 4.14. Let p ∈ (1,∞), let A ⊆ B(Lp(X)) be an approximately unital
closed subalgebra, and let x ∈ rA. Let s(x) be as in Proposition 4.11. Let ϕ :
A∗∗ → B(Lp(X)) be the contractive homomorphism obtained from the identity
representation of A as in Lemma 2.32, and set e = ϕ(s(x)). Then:

(1) e is an idempotent with range x Lp(X), and e is real positive if A is nondegen-
erate.

(2) ex = xe = x.

(3) x Lp(X) is a complemented subspace of Lp(X).

(4) Using the notation of Definition 2.18, x1/n
→ e in the strong operator topology

on B(Lp(X)).

(5) If A is nondegenerate and f ∈ B(Lp(X)) is any real positive idempotent with
f x = x or x f = x , then e ≤ f in the sense of Definition 2.30.

Nondegeneracy is probably needed for real positivity in (1) and for (5). Otherwise,
letting f be as in Lemma 2.33, our proof below only yields a real positive idempotent
in B( f Lp(X)).

Proof of Proposition 4.14. Let E ⊆ Lp(X) and the idempotent f ∈ B(Lp(X)) be as
in Lemma 2.33. We first claim that ϕ(1)= f . Indeed, this is always the case in the
situation of Lemma 2.33 provided that A is Arens regular, by the following simple
argument. Let (et)t∈3 be a cai for A. Then et → 1 weak* in A∗∗ by Lemma 1.14.
Therefore et→ ϕ(1) weak* in B(Lp(X)) by weak* to weak* continuity of ϕ. Also
et → f weak* in B(Lp(X)) by Lemma 2.33 (1). The claim is proved.

We have x1/n
→ e weak* in B(Lp(X)). Since ϕ is a homomorphism, e is

an idempotent satisfying ex = xe = x , which is (2). Using Proposition 4.11 (5)
and ϕ(1) = f , we get ‖ f − e‖ ≤ ‖ϕ‖‖ f − s(x)‖ ≤ 1. If A is nondegenerate,
then f = 1, so e is real positive by Lemma 2.29 (4). Since ex = x , we clearly
have x Lp(X) ⊆ eLp(X). So x Lp(X) ⊆ eLp(X). Since x1/nη→ eη weakly for
η ∈ Lp(X), it follows that x Lp(X) is weakly, hence norm, dense in eLp(X). Thus
eLp(X)= x Lp(X) and we now have all of (1), as well as (3).
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For η ∈ Lp(X) we have x1/nxη→ xη in norm. Since (x1/n)n∈N is a bounded
sequence (using Proposition 2.19 (3)), it follows that x1/neξ→ eξ for all ξ ∈ Lp(X).
Clearly x1/n(1−e)ξ = 0→ e(1−e)ξ also, using (2) and Proposition 2.19 (4). Thus
we have (4).

For (5), note that f x = x if and only if f e = e as in the proof of Corollary 4.13,
and similarly x f = x if and only if e f = e. Since f e = e if and only if e f = e by
Lemma 2.31 (1), the proof of (5) is clear (as in the proof of Corollary 4.13). �

It is shown in [Blecher and Ozawa 2015, Corollary 3.19] that if x, y ∈ rA then
x A ⊆ y A if and only if s(y)s(x)= s(x).

Lemma 4.15. Let p ∈ (1,∞). Let A be an approximately unital Lp-operator
algebra, and let x, y ∈ rA. Then x A = y A if and only if s(x)= s(y).

Proof. If s(x)= s(y) then x A = y A by [Blecher and Ozawa 2015, Corollary 3.18].
Conversely, if x A = y A then by [Blecher and Ozawa 2015, Corollary 3.18] we
have s(x)A∗∗ = s(y)A∗∗. It follows that s(x)s(y)= s(y) and s(y)s(x)= s(x). By
Proposition 4.11 (6) and Lemma 2.31 (2), the second equation implies s(x)s(y)=
s(x). So s(x)= s(y). �

Unlike the L2-operator algebra case (see, for example, [Blecher and Read 2011,
Lemma 2.5]), if x ∈ 1

2FA (that is, if ‖1− 2x‖ ≤ 1), then s(x) need not be contrac-
tive. An example is x = 1

2(1− e3), for e3 as in Example 3.2.

4E. Some consequences of strict convexity of Lp-spaces.

Lemma 4.16. Let E be a strictly convex Banach space, and let f ∈ B(E) be a
contractive idempotent. Let ξ ∈ E satisfy ‖ f ξ‖ = ‖ξ‖. Then f ξ = ξ .

Proof. This is well known. Suppose that ξ 6= f ξ . Set η = 1
2(ξ + f ξ). Then

‖η‖< ‖ f ξ‖, giving the contradiction ‖ f ξ‖ = ‖ f η‖ ≤ ‖η‖< ‖ f ξ‖. �

Lemma 4.17. Let p ∈ (1,∞), let E and F be Banach spaces, and let S⊆ B(E, F)
be a linear subspace. Define matrix norms on B(E, F) by interpreting elements of
Mn(B(E, F)) as linear maps from the l p direct sum of n copies of E to the l p direct
sum of n copies of F. Then any ϕ ∈ Ball(S∗) is p-completely contractive in the
sense of [Pisier 1990].

Proof. This follows by essentially the argument in the L2-operator space case, and
no doubt this is well known. By the usual argument (see, e.g., the proof of [Daws
2010, Lemma 4.2]), we have to show that∥∥∥∥ n∑

j,k=1

β j x j,kαk

∥∥∥∥≤ sup
({( n∑

j=1

∥∥∥∥ n∑
k=1

x j,kξk

∥∥∥∥p)1/p

:

n∑
k=1

‖ξk‖
p
≤ 1

})
,

where n ∈ N, β = (β1, β2, . . . , βn) ∈ Ball(lq
n ), α = (α1, α2, . . . , αn) ∈ Ball(l p

n ),
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ξ1, ξ2, . . . , ξn ∈ E , and x j,k ∈ S for j, k=1, 2, . . . , n. However the latter supremum
may be written as

sup
({∣∣∣∣ n∑

j=1

ψ j

( n∑
k=1

x j,kξk

)∣∣∣∣ :∑
k

‖ξk‖
p
≤ 1,

n∑
j=1

‖ψ j‖
q
≤ 1

})
,

where ξ1, ξ2, . . . , ξn ∈ E and ψ1, ψ2, . . . , ψn ∈ F∗. This supremum clearly domi-
nates

sup
({∣∣∣∣ n∑

j,k=1

β jψ(x j,kαkξ)

∣∣∣∣ : ψ ∈ Ball(F∗), ξ ∈ Ball(E)
})
,

since
∑n

j=1 ‖β jψ‖
q
≤ 1 and

∑n
k=1 ‖αkξ‖

p
≤ 1. This last supremum is equal to∥∥∑n

j,k=1 β j x j,kαk
∥∥. �

Both the following lemmas apply in particular to hermitian idempotents, by
parts (2) and (4) of Lemma 2.29.

Lemma 4.18. Let E be a Banach space, let ω ∈ Ball(E∗), and let ξ ∈ Ball(E).
Let ϕ be the vector state on B(E) given by ϕ(a) = 〈ω, aξ〉 for all a ∈ B(E). Let
e ∈ B(E) be a real positive idempotent, and suppose ϕ(e)= 0.

(1) If E is strictly convex then ϕ(ae)= 0 for all a ∈ A.

(2) If E∗ is strictly convex then ϕ(ea)= 0 for all a ∈ A.

Proof. From ϕ(e)= 0 we get ϕ(1− e)= 1. Also ‖1− e‖ ≤ 1 by Lemma 2.29 (4).
Suppose E is strictly convex. We have

‖(1− e)ξ‖ ≥ |ϕ(1− e)| = 1= ‖ξ‖.

So ξ = (1−e)ξ by Lemma 4.16. For a ∈ B(E) we then have ϕ(ae)= 〈ω, aeξ〉 = 0.
Now suppose E∗ is strictly convex. We have ‖(1− e)∗‖ = ‖1− e‖ ≤ 1, and

ϕ(a)= 〈a∗ω, ξ〉 for all a ∈ B(E), so

‖(1− e)∗ω‖ ≥ |ϕ(1− e)| = 1= ‖ω‖.

So ω = (1 − e)∗ω by Lemma 4.16, and for a ∈ B(E) we then have ϕ(ea) =
〈e∗ω, aξ〉 = 0. �

Lemma 4.19. Let p ∈ (1,∞), and let A be a unital Lp-operator algebra. Let
ϕ be a state on A and let e ∈ A be a real positive idempotent. If ϕ(e) = 0 then
ϕ(ae)= ϕ(ea)= 0 for all a ∈ A.

Proof. We may assume that A is a unital subalgebra of B(Lp(X)) for some X.
By Lemma 4.17, ϕ is p-completely contractive in the sense of [Pisier 1990]. So
by Theorem 2.1 of that paper and the remark after it, and using the fact that
ultraproducts of Lp-spaces are Lp-spaces (Theorem 3.3 (ii) of [Heinrich 1980]),
there exist an SQp-space E , ξ ∈ Ball(E), ω ∈ Ball(E∗), and a p-completely
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contractive map π : A→ B(E) such that ϕ(a)= 〈ω, π(a)ξ〉 for all a ∈ A. It is easy
to see and no doubt well known that π may be taken to be a unital homomorphism.
Then π(e) is an idempotent, and ‖1− π(e)‖ ≤ 1. As explained in Remark 2.34,
SQp-spaces are both smooth and strictly convex. So their duals are also strictly
convex. We may therefore apply Lemma 4.18 to the vector state 〈ω, · ξ〉 on B(E).
Thus for all a ∈ E we have

ϕ(ae)= 〈ω, π(a)π(e)ξ〉 = 0 and ϕ(ea)= 〈ω, π(e)π(a)ξ〉 = 0. �

Remark 4.20. (1) Lemma 4.19 holds if A is a unital SQp-operator algebra. The
proof is the same too, but with Lp replaced by SQp throughout. For further
details on the construction of π in this case see [Pisier 1990, Theorem 2.1]
and, e.g., [Daws 2010, Theorem 4.1].

(2) Lemma 4.19 holds for an approximately unital Lp- (or SQp-) operator al-
gebra A, and indeed holds for restrictions of states on any Lp- (or SQp-)
operator algebra unitization of A. This follows by applying the unital case to
the extending state on the unitization of A.

Corollary 4.21. Let p ∈ (1,∞). Let A be an approximately unital Lp-operator
algebra. If x ∈ rA and ϕ ∈ S(A) with ϕ(s(x)) = 0, then ϕ(x) = 0. Conversely, if
further x ∈ FA and ϕ(x)= 0 then ϕ(s(x))= 0.

Proof. We may work in A1 by extending ϕ to a state there, and we may thus assume
that A is unital.

The idempotent s(x) is real positive by Proposition 4.11 (6). Using Lemma 4.19,
Proposition 4.11 (3), and ϕ(s(x))= 0, we get ϕ(x)= 0.

On the other hand, if x ∈ FA and ϕ(x)= 0 then ϕ(1− x)= 1. As in the proof
of Lemma 4.19, there are an SQp-space F, a contractive unital homomorphism
π : A1

→ B(F), ξ ∈ Ball(F), and η ∈ Ball(F∗), such that ϕ = 〈π(·)ξ, η〉 for all
a ∈ A1. Then

1= ϕ(1− x)= 〈ω, (1−π(x))ξ〉 ≤ ‖π(1− x)ξ‖ ≤ 1.

Therefore, with 1
p +

1
q = 1, both ξ and (1−π(x))ξ define norm one linear function-

als on Lq(X) which take ω to 1. Strict convexity of Lq(X) implies (1−π(x))ξ = ξ .
So π(x)ξ = 0. Proposition 2.19 (4) now implies that π(x1/n)ξ = 0 for all n ∈ N.
Hence ϕ(x1/n)= 0. In the limit ϕ(s(x))= 0. �

Lemma 4.22 is a generalization of part of [Blecher and Read 2011, Lemma 2.10],
with a similar proof but using Corollary 4.21.

Lemma 4.22. Let p ∈ (1,∞). Let A be an approximately unital Lp-operator
algebra, and let x ∈ FA. The following are equivalent:

(1) s(x)= 1.
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(2) ϕ(x) 6= 0 for all ϕ ∈ S(A).

(3) Re(ϕ(x)) > 0 for all ϕ ∈ S(A).

If x ∈ rA then (3) implies (2) and (2) implies (1).

Proof. Let x ∈ rA. Then (3) implies (2) trivially. To show that (2) implies (1),
suppose (1) fails. Represent A∗∗ as a unital subalgebra of B(Lp(X)) for some X by
Corollary 2.36. Choose ξ ∈ Ball(Lp(X)) in the range of the idempotent 1− s(x),
and choose η ∈ Ball(Lp(X)∗) with 〈ξ, η〉 = 1. Then ϕ(x)= 〈xξ, η〉 defines a state
on A with ϕ(1− s(x))= 1. Since ϕ(s(x))= 0, Corollary 4.21 implies ϕ(x)= 0.

If x ∈ FA then (1) implies (2) by Corollary 4.21. For (2) implies (3), follow
part of the proof of [Blecher and Read 2011, Lemma 2.10]: |1−ϕ(x)| ≤ 1 is not
compatible with both ϕ(x) 6= 0 and Re(ϕ(x))≤ 0. �

4F. Hahn–Banach smoothness of Lp-operator algebras.

Definition 4.23. Let E be a Banach space and let M ⊆ E be a closed subspace.
We say that M is Hahn–Banach smooth in E if for every ω0 ∈ M∗ there is a unique
ω ∈ E∗ with ‖ω‖ = ‖ω0‖ and ω|M = ω0,

Existence of ω is just the Hahn–Banach theorem. When verifying this property,
we need only consider the case ‖ω0‖ = 1.

Proposition 2.1.18 in [Blecher and Le Merdy 2004] works for Lp-operator
algebras.

Proposition 4.24. Let p ∈ (1,∞). Let A be an approximately unital Lp-operator
algebra and denote the identity of A1 by 1.

(1) Let (et)t∈3 be a cai in A. Ifψ : A1
→C is a functional on A1, then limt ψ(et)=

ψ(1) if and only if ‖ψ‖ = ‖ψ |A‖.

(2) A is Hahn–Banach smooth in A1 (Definition 4.23).

Proof. We may assume that A is nonunital (the case of unital algebras being easy).
The forward direction of (1) is just as in the proof of [Blecher and Le Merdy

2004, Proposition 2.1.18].
For the other direction suppose thatψ : A1

→C with ‖ψ‖=‖ψ |A‖=1. As in the
proof of Lemma 4.19, there are an SQp-space F, a contractive unital homomorphism
π : A1

→ B(F), ξ ∈ Ball(F), and η ∈ Ball(F∗), such that ψ = 〈π(·)ξ, η〉 for all
a ∈ A1.

Apply the extension of Lemma 2.33 given in Remark 2.34 to the representa-
tion π |A. Let E ⊆ F and the idempotent f ∈ B(F) be as there. The extensions
of parts (1) and (3) of Lemma 2.33 imply that π(et)→ f weak* in B(F) and
π(a)= π(a) f for all a ∈ A. Thus, for all a ∈ A,∣∣〈π(a)ξ, η〉∣∣= ∣∣〈π(a) f ξ, η〉

∣∣≤ ‖a‖‖ f ξ‖.
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This shows that ‖ψ |A‖ ≤ ‖ f ξ‖. Hence, by hypothesis, ‖ f ξ‖ = ‖ξ‖ = 1. Since
E is strictly convex (see Remark 2.34), Lemma 4.16 implies f ξ = ξ , that is,
ξ ∈ span(π(A)E). Now, since π(et)→ f weak* we have

〈π(et)ξ, η〉 → 〈 f ξ, η〉 = 〈ξ, η〉,

which says that ψ(et)→ ψ(1).
For the deduction of (2) from (1), let ϕ ∈ A∗ satisfy ‖ϕ‖ = 1. Proceed as in the

proof of [Blecher and Le Merdy 2004, Proposition 2.1.18], but beginning by writing
ϕ ∈ A∗ as ϕ = 〈π(·)ζ, η〉 for E as above, and for a contractive homomorphism
π : A→ B(E), ζ ∈ Ball(E), and η ∈ Ball(E∗). This may be done for example by
considering a Hahn–Banach extension of ϕ to A1 and using the unital case above. �

Corollary 4.25. Let p ∈ (1,∞), and let A be a nonunital approximately unital
Lp-operator algebra.

(1) Let ϕ ∈ A∗ satisfy ‖ϕ‖ = 1. Then the following are equivalent:

(a) ϕ is a state on A, that is (see Definition 2.6), ϕ extends to a state on A1.
(b) ϕ(et)→ 1 for every cai (et)t∈3 for A.
(c) ϕ(et)→ 1 for some cai (et)t∈3 for A.
(d) ϕ(1A∗∗)= 1.

(2) Every state on A has a unique extension to a state on A1.

Proof. Everything is immediate from Proposition 4.24. �

Part (1) says that states on such algebras may be defined by any one of the
equivalent conditions in Lemma 2.2 of [Blecher and Ozawa 2015]. The change in
the statement of the last condition is justified by Lemma 1.14.

In the notation of Definition 2.6 (taken from [Blecher and Ozawa 2015]), for any
cai e = (et)t∈3 of A we have Se(A) = S(A). That is, states on an approximately
unital Lp-operator algebra are the contractive functionals ϕ with ϕ(et)→ 1, or
equivalently have norm 1 and extend to a state on A1 (or on A∗∗).

We remark that the last several results hold (beginning with Lemma 4.19) if A is
an approximately unital SQp-operator algebra. The proofs are almost identical, but
with the kinds of emendations prescribed in the proof of Lemma 2.1 for SQp-spaces,
Remark 4.20, and Remark 2.34.

The definition of a scaled Banach algebra, used in the next proposition, is stated
in the introduction (see also the beginning of Section 6 below).

Proposition 4.26. Suppose that A is an approximately unital scaled Banach alge-
bra, that A is Hahn–Banach smooth in A1 (Definition 4.23), and that A∗∗ is unital.
Then rA∗∗ as defined in [Blecher and Ozawa 2015] (after Lemma 2.5 there) agrees
with the set of accretive elements of the unital Banach algebra A∗∗.
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We are ignoring the statement in [Blecher and Ozawa 2015] that the definition
there is only to be applied when A∗∗ is not unital.

To be explicit, let R0 be the set of accretive elements of A∗∗, where A∗∗ is thought
of as a unital Banach algebra in its own right, and let R1 be the analogous subset
of (A1)∗∗. Then the assertion of the proposition is that R1 ∩ A∗∗ = R0.

Proof of Proposition 4.26. We may assume that A is nonunital (the case of unital
algebras being easy). To avoid confusion, we use the notation R0 and R1 above.

We show R1∩ A∗∗ ⊆ R0. Proposition 2.11 of [Blecher and Ozawa 2015] (which
works also when A∗∗ is unital) implies that the weak* closure of rA is R1 ∩ A∗∗.
So we need to show that rA ⊆ R0 and that R0 is weak* closed. The second part is,
e.g., Theorem 2.2 of [Magajna 2009]; the set DA∗∗ (following the notation there) is
{−a : a ∈ R0}. One way to see the first part is that part of the proof of Lemma 1.14
shows that every cai for A converges weak* to 1A∗∗ . Given this, the argument
for Lemma 2.25 (1) shows that the subalgebra A+C ·1A∗∗ ⊆ A∗∗ is isometrically
isomorphic to A1. Thus, if a ∈ rA, then a ∈ rA1 by Definition 2.13, so a ∈ R0 by
Lemma 2.14.

It remains to show that R0 ⊆ R1. Let a ∈ R0, and let ϕ be a state on (A1)∗∗. By
weak* density of the normal states in S((A1)∗∗) (which follows from Theorem 2.2
of [Magajna 2009]) there is a net (ψt)t∈3 in S(A1) such that ψt → ϕ weak*. For
t ∈3, since A is scaled, there are λ∈[0, 1] and ω∈ S(A) such thatψt =λω. Since A
is Hahn–Banach smooth in A1, [Blecher and Ozawa 2015, Lemma 2.2] implies that
the canonical weak* continuous extension of ω is a state on A∗∗. So Re(ω(a))≥ 0,
whence Re(ψt(a))≥ 0. Then Re(ϕ(a))= limt Re(ψt(a))≥ 0. So a ∈ R1. �

5. M-ideals

We recall the definitions of M-ideals and M-summands, together with some el-
ementary facts. See, for example, Definition I.1.1 of [Harmand et al. 1993] and
the discussion afterwards. If E is a Banach space and P ∈ B(E) is an idempotent,
then P is called an L-projection if ‖ξ‖ = ‖Pξ‖+ ‖(1− P)ξ‖ for all ξ ∈ E , and
an M-projection if ‖ξ‖ = max(‖Pξ‖, ‖(1− P)ξ‖) for all ξ ∈ E . The ranges of
L-projections and M-projections are called L-summands and M-summands. The
idempotent P is an M-projection if and only if P∗ is an L-projection, and is an
L-projection if and only if P∗ is an M-projection. Finally, a subspace J ⊆ E is
an M-ideal if J⊥ is an L-summand in E∗, equivalently (using [Harmand et al.
1993, Theorem I.1.9]), J⊥⊥ is an M-summand in E∗∗. By [Harmand et al. 1993,
Proposition I.1.2 (a)], if J is an M-summand, then there is exactly one contractive
idempotent with range J, namely the M-projection used in the definition.

Smith and Ward [1978] showed that the M-ideals in a C∗-algebra are exactly the
closed ideals in the usual sense (Theorem 5.3), that an M-ideal in a unital Banach
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algebra must be a subalgebra (Theorem 3.6), and that M-ideals in Banach algebras
are often ideals (see, for example, Theorem 3.8). Example 4.1 of [Smith and Ward
1978] shows that there are M-ideals in B(l1

2) which are subalgebras but not ideals
and do not have cais.

The following definition is from the introduction to [Blecher and Ozawa 2015].

Definition 5.1. Let A be a Banach algebra. We say that A is M-approximately
unital if A is an M-ideal in the multiplier unitization A1.

As in the introduction to [Blecher and Ozawa 2015], an M-approximately unital
Banach algebra is approximately unital. The papers [Blecher and Ozawa 2015;
Blecher 2016] give a number of properties of M-approximately unital Banach
algebras. For example, an M-approximately unital Banach algebra has a real
positive cai (et)t∈3 satisfying ‖1− 2et‖ ≤ 1 for all t ∈ 3 ([Blecher and Ozawa
2015, Theorem 5.2]), is Hahn–Banach smooth in its multiplier unitization (Propo-
sition I.1.12 of [Harmand et al. 1993]), and has the Kaplansky density properties
given in [Blecher and Ozawa 2015, Theorem 5.2 and Proposition 6.4].

Proposition 5.2. Let p ∈ (1,∞) \ {2} and let (X, µ) be a measure space. Then
K(Lp(X, µ)) is M-approximately unital if and only if µ is purely atomic.

Proof. Theorem 11 of [Lima 1979] states that K(Lp(X, µ)) is an M-ideal in
B(Lp(X, µ)) if and only if µ is purely atomic. By Theorem VI.4.17 in [Harmand
et al. 1993], K(Lp(X, µ)) is an M-ideal in B(Lp(X, µ)) if and only if it is an
M-ideal in K(Lp(X, µ))+C 1, where 1 is the identity operator on Lp(X, µ). By
Lemma 2.24, K(Lp(X, µ))+C 1 is the multiplier unitization of K(Lp(X, µ)). �

Lemma 5.3. Let A be an approximately unital Arens regular Banach algebra, and
let J ⊆ A be an M-ideal in A, with associated M-projection P : A∗∗→ J⊥⊥. Then
J is an approximately unital closed ideal if and only if P(1) is central in A∗∗.

Proof. By the discussion before Proposition 8.1 of [Blecher and Ozawa 2015],
centrality of P(1) implies that J is an approximately unital closed ideal.

If J is an approximately unital closed ideal then, as in the proof of Lemma 4.5,
there is a central idempotent e such that J⊥⊥ = eA∗∗ = A∗∗e. The uniqueness of
projections onto an M-summand implies that P is multiplication by e. So P(1)= e
is central. �

Theorem 5.4. Let p ∈ (1,∞) and let A be an Lp-operator algebra.

(1) Suppose that A is approximately unital. Then every M-ideal in A is an approx-
imately unital closed ideal.

(2) Suppose that A is unital. Then J ⊆ A is an M-summand if and only if there
is a central hermitian idempotent z ∈ A such that J = Az. In this case,
multiplication by z is an M-projection with range J.
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(3) Suppose that A is M-approximately unital (Definition 5.1). Then:

(a) Every M-ideal in A is M-approximately unital.
(b) The intersection of finitely many M-ideals in A is an M-ideal in A.
(c) The closed ideal generated by any collection of M-ideals in A is an M-

ideal in A.

Proof. We prove (2). We may assume (by the discussion above Proposition 2.12, or
the corollary on page 136 in [Lacey 1974]) that there is a decomposable measure
space X such that A is a unital subalgebra of B(Lp(X, µ)).

Suppose that z ∈ A is a central hermitian idempotent. Then z is a hermitian idem-
potent in B(Lp(X, µ)). It follows from Proposition 2.12 that z is multiplication by
the characteristic function of a locally measurable subset E of X. Thus for x, y ∈ A
(with suitable interpretation of the integrals below if E is only locally measurable),

‖zxz+ (1− z)y(1− z)‖p

= sup
({∫

E
|xzξ |p dµ+

∫
X\E
|y(1− z)ξ |p dµ : ξ ∈ Ball(Lp(X))

})
≤max(‖x‖, ‖y‖)p sup

({∫
E
|ξ |p dµ+

∫
X\E
|ξ |p dµ : ξ ∈ Ball(Lp(X))

})
=max(‖x‖, ‖y‖)p.

So multiplication by z is an M-projection on A and z A is an M-summand.
Conversely, let P be an M-projection on A, and let z= P(1). By [Smith and Ward

1978, Proposition 3.1], z is a hermitian idempotent. Also, P∗ is an L-projection,
so for any state ϕ on A, if P∗(ϕ) 6= 0 then ψ = ‖P∗(ϕ)‖−1 P∗(ϕ) is a state with
ψ(z)= 1 as in the proof of 4.8.5 in [Blecher and Le Merdy 2004]. It follows from
Lemma 4.19 that

ψ((1− z)A)= ψ(A(1− z))= 0.

So
ϕ(P((1− z)A))= ϕ(P(A(1− z)))= 0

for any state ϕ on A. Thus

P((1− z)A)= P(A(1− z))= 0

by Lemma 2.25 (3). A similar argument applied to 1− P shows that

(1− P)(z A)= (1− P)(Az)= 0.

So z A+ Az ⊆ P(A). Thus

P(a)= P(za+ (1− z)a)= P(za)= za,

for all a ∈ A, and similarly P(a) = az. So z is central and P(A) = Az. This
completes the proof of (2).
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We prove (1). Let J ⊆ A be an M-ideal. Since J⊥⊥ is an M-ideal in A∗∗,
since A is Arens regular (Lemma 2.1 (1)), and since A∗∗ is an Lp-operator algebra
(Lemma 2.1 (3)), we can apply part (2) and Lemma 5.3.

Part (3)(a) follows from [Blecher and Ozawa 2015, Proposition 3.2(3)] and
part (1), and (3)(b) and (3)(c) now follow from [Blecher and Ozawa 2015, Theo-
rem 8.3]. �

Remark 5.5. Let A be an approximately unital Lp-operator algebra. The proof of
Theorem 5.4 shows that the h-ideals, as defined at the beginning of Section 3 of
[Godefroy et al. 1993], are exactly the M-ideals. One may ask if these are also the
u-ideals as defined before our Lemma 4.4. This is not true: the idempotent e2 in
Example 3.2 gives a u-projection which is not an M-projection, since as we said
there e2 is not hermitian. Suppose that A is a u-ideal in its multiplier unitization A1,
or, equivalently, as pointed out before Lemma 4.4, that A is bi-approximately unital.
One may ask whether it follows that A is an M-ideal in A1. As we will see in
Corollary 6.2, the latter is equivalent to being scaled. Recall from Lemma 4.4
that an approximately unital Lp-operator algebra A with a real positive bounded
approximate identity is bi-approximately unital. (We conjectured after Lemma 4.4
that the converse is true.)

6. Scaled Lp-operator algebras

In the Introduction we said that an approximately unital Banach algebra A is
scaled if the set of restrictions to A of states on A1 equals the quasistate space
Q(A) of A. Equivalently, (see [Blecher and Ozawa 2015], before Lemma 2.7
there) an approximately unital Banach algebra is scaled if every real positive
functional (see Definition 2.13) is a nonnegative multiple of a state. That is, in
the notation of Definitions 2.6 and 2.13, we have cA∗ = R+ S(A), or, equivalently,
cA∗ ∩Ball(A∗)= Q(A).

Unital Banach algebras are scaled (this is a special case of [Blecher and Ozawa
2015, Proposition 6.2]), and all C∗-algebras are well known to be scaled.

If A is a nonunital approximately unital Arens regular Banach algebra, then the
support idempotent of A in (A1)∗∗ is the weak* limit in (A1)∗∗ of any cai in A.
This exists and is an identity for A∗∗ by the argument of Lemma 1.14. Clearly it is
central in (A1)∗∗.

Lemma 6.1. Suppose that A is a nonunital scaled approximately unital Arens
regular Banach algebra. Then the support idempotent of A in (A1)∗∗ is hermitian.

Proof. Suppose that A is scaled and (et)t∈3 is a cai for A. Then, as above, (et)t∈3

converges weak* to a central idempotent e ∈ (A1)∗∗ which is an identity for A∗∗.
If ϕ is a state on A1 then ϕ|A is a nonnegative multiple, r say, of a state on A,

so that ϕ(e) = limt ϕ(et) = r ≥ 0. So every weak* continuous state on (A1)∗∗ is
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nonnegative on e. Since the weak* continuous states on a dual Banach algebra
are weak* dense in the states by [Magajna 2009, Theorem 2.2], it follows from
Lemma 2.9 that e is hermitian. �

The last result says that scaled approximately unital Arens regular Banach
algebras are h-ideals in their multiplier unitizations as defined at the beginning of
Section 3 of [Godefroy et al. 1993].

Corollary 6.2. Suppose that A is an approximately unital Arens regular Banach
algebra with the property that whenever e ∈ (A1)∗∗ is a hermitian idempotent and
x, y ∈ A, then ‖exe+ (1− e)y(1− e)‖ ≤max(‖x‖, ‖y‖). Then A is scaled if and
only if A is M-approximately unital.

Proof. Since unital algebras are both scaled and approximately unital, we may
assume that A is nonunital. If A is M-approximately unital then A is scaled by
[Blecher and Ozawa 2015, Proposition 6.2]. For the other direction, by Lemma 6.1
and the hypothesis, the support idempotent e of A in (A1)∗∗ satisfies

‖ex + (1− e)y‖ ≤max(‖x‖, ‖y‖) for x, y ∈ A.

By Goldstine’s theorem and separate weak* continuity of multiplication ([Blecher
and Le Merdy 2004, 2.5.3]), this inequality holds for all x, y∈ A∗∗. So multiplication
by e is an M-projection on (A1)∗∗. Therefore A is an M-ideal in A1. �

Corollary 6.3. Let A be an approximately unital Lp-operator algebra. Then A is
scaled if and only if A is M-approximately unital.

Proof. Use Corollary 6.2 and a computation in the proof of Theorem 5.4 (2). �

Corollary 6.4. Let p ∈ (1,∞) and let A be a nonunital approximately unital
Lp-operator algebra. Then the following are equivalent:

(1) A is scaled.

(2) The support idempotent e of A in (A1)∗∗ (as defined at the beginning of the
section) is hermitian.

(3) The quasistate space Q(A) is weak* compact.

If these hold then, by Corollary 6.3, A has all the properties of M-approximately
unital algebras described after Definition 5.1.

Proof of Corollary 6.4. The implication from (1) to (2) is Lemma 6.1. For the
reverse, if e is hermitian then multiplication by e is an M-projection from (A1)∗∗

to A∗∗ by Theorem 5.4 (2), so A is M-approximately unital. Apply Corollary 6.3.
For the equivalence with (3), first, Q(A) is weak* compact if and only if it is

weak* closed. Also, Corollary 4.25 (1) implies convexity of Q(A), as explained in
Remark 2.26. Apply Lemma 2.7 (2) in [Blecher and Ozawa 2015]. �
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The following answers the open question from [Blecher and Ozawa 2015] as to
whether all approximately unital Banach algebras are scaled.

Corollary 6.5. If p ∈ (1,∞) \ {2} then K(Lp([0, 1])) is an approximately unital
Lp-operator algebra which is not scaled.

Proof. That K(Lp([0, 1])) has a cai is observed in Example 3.9. This algebra is not
M-approximately unital by Proposition 5.2, and so is not scaled by Corollary 6.3. �

Corollary 6.6. The algebra K(l p) is scaled.

Proof. This algebra is M-approximately unital by Proposition 5.2, hence scaled by
Corollary 6.3. �

The last result can also be deduced from Proposition 6.7.

Proposition 6.7. Let p ∈ (1,∞). Suppose that an Lp-operator algebra A has a cai
(et)t∈3 consisting of hermitian elements of A1. Then A is scaled.

Proof. Since unital algebras are scaled, we may assume that A is nonunital. With
et → e as usual, it follows as in the proof of Lemma 2.25 (4) (using the fact that
normal states are weak* dense) that e is hermitian and central in (A1)∗∗. It follows
from Theorem 5.4 or Corollary 6.4 that A is M-approximately unital and scaled. �

Proposition 6.7 may suggest that one requirement for a nonunital Lp-operator
algebra to be “C∗-like” is that it have a hermitian cai. The canonical cai for K(l p)

is a real positive hermitian cai as we said in Example 3.9. On the other hand the
cai for K(Lp([0, 1])) in Example 3.9 seems, perhaps surprisingly, to have no good
“positivity” properties. Indeed as we said in Example 3.9, A =K(Lp([0, 1])) has
no real positive cai. Of course for any approximately unital Lp-operator algebra
the identity e of A∗∗ is real positive in A∗∗. However e need not be real positive
(accretive) in (A1)∗∗, and certainly is not hermitian, as we said after the proof of
Lemma 2.25. Example 3.8 shows that the converse of Proposition 6.7 is false.

Proposition 6.8. Let p ∈ (1,∞). Suppose that A is a closed subalgebra of a scaled
Lp-operator algebra B, with a common cai. Then A is scaled.

Proof. We may assume that A is nonunital (unital algebras are scaled). We may
view A1

⊆ B1. Any state ϕ of A1 extends to a state of B1, and the restriction of this
extension to B equals λψ for some λ ∈ [0, 1] and ψ ∈ S(B). However ψ |A ∈ S(A)
since Corollary 4.25 (1) implies that ψ(et)→ 1, where (et)t∈3 is the common cai.
Since ϕ|A = λψ |A we are done. �

Remark 6.9. Approximately unital ideals in a scaled Lp-operator algebra A need
not be scaled, for example K(Lp([0, 1])) in B(Lp([0, 1])). (The latter is scaled
as is any unital Banach algebra, and we showed above that K(Lp([0, 1])) is not
scaled.) However if the approximately unital ideal is also an M-ideal in A, then it
is scaled by Theorem 5.4.
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7. Kaplansky density

One may ask if in an approximately unital Lp-operator algebra there are Kaplan-
sky density theorems analogous to the ones established by Blecher and Read for
approximately unital L2-operator algebras. See, e.g., [Blecher and Ozawa 2015,
Theorem 5.2 and Proposition 6.4] for a more general variant of the latter. As we said
in the introduction, the usual Kaplansky density theorem variants for C∗-algebras
can be shown to follow easily from the weak* density of the subset of interest in A
within the matching set in A∗∗; and our Kaplansky density theorems have this flavor.

In the following result, for an approximately unital Lp-operator algebra A we take
rA∗∗ to be the accretive elements in the unital Banach algebra A∗∗. This is different
from the definition after Lemma 2.5 in [Blecher and Ozawa 2015]. The two defini-
tions do coincide if also A is scaled, by Proposition 4.26 and Proposition 4.24 (2).

Proposition 7.1. Let p ∈ (1,∞) and let A be an approximately unital Lp-operator
algebra. The following are equivalent:

(1) rA is weak* dense in rA∗∗ .

(2) rA ∩Ball(A) is weak* dense in rA∗∗ ∩Ball(A∗∗).

(3) FA is weak* dense in FA∗∗ .

(4) A is scaled.

Proof. Since the definition of rA∗∗ in [Blecher and Ozawa 2015] coincides with
ours when A is scaled (as pointed out above), that (4) implies (1) follows from
Proposition 2.11 of [Blecher and Ozawa 2015]. The proof of Lemma 6.4 of [Blecher
and Ozawa 2015] works just as well for our version of rA∗∗ as for the one there,
and thus shows that (1) implies (2). By our Corollary 6.3 and by Theorem 5.2
of [Blecher and Ozawa 2015] it follows that (4) implies (3). That (3) implies (1)
follows easily from Proposition 2.17.

Assuming (2) we will prove (4) by showing that every nontrivial real positive func-
tional ϕ (see Definition 2.13) is a nonnegative multiple of a state. We may assume
that A is nonunital. The canonical weak* continuous extension ϕ̃ of ϕ to A∗∗ is real
positive by our assumption (2) and a standard approximation argument. Since A∗∗ is
unital it is scaled, so that ϕ̃= tψ for a stateψ on A∗∗ and some t>0. Thus ϕ= tψ |A.
The span of A and the identity of A∗∗ is the multiplier unitization of A by the last
paragraph of Section 1 of [Blecher and Ozawa 2015]. Hence ψ |A is a state on A. �

These hold in particular if A is unital. Such results also hold if A has the
following property: with 1 being the identity of some unitization of A, given ε > 0
there exists δ > 0 such that if y ∈ A with ‖1− y‖ < 1+ δ then there is z ∈ A
with ‖1− z‖ = 1 and ‖y− z‖< ε. This follows from [Blecher and Ozawa 2015,
Proposition 6.4] and the proof of [Blecher and Ozawa 2015, Theorem 5.2]. It may
be interesting to ascertain which Lp-operator algebras have this property.
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We end by mentioning some of what seem to us to be the most important open
questions related to the approach of this paper. See the “Remarks added in proof”
section below for the solution to several of these.

(1) Is there a Kaplansky density type theorem for a nonscaled approximately unital
Lp-operator algebra A? (See Proposition 7.1 for the scaled case.) For example,
one may ask if rA is weak* dense in r(A1)∗∗ ∩ A∗∗.

(2) Is every approximately unital subalgebra of B(l p) scaled?

(3) Let A be an approximately unital Lp-operator algebra. Is rA − rA always a
subalgebra?

(4) Is every bi-approximately unital Lp-operator algebra scaled? Does it have a
real positive cai? More drastically, if an Lp-operator algebra possesses a real
positive cai, then is it scaled?

8. Index

For the readers’ convenience we list, alphabetically but compactly, some of the
main definitions in this paper and where they may be found (the definition number,
which is usually their first occurrence).

Accretive: 2.13; approximately unital Banach algebra: 1.4; Arens products,
Arens regular: 1.12; bi-approximately unital algebra: 4.2; bi-approximately unital
ideal: 4.1; bicontractive idempotent: 2.28; cA∗ : 2.13; cai: 1.4; decomposable: 2.11;
dual Lp-operator algebra: 2.3; FA: 2.16; Hahn–Banach smooth: 4.23; hermit-
ian: 2.8; invertible isometry: 2.28; locally measurable, locally a.e.: 2.11; Lp-
operator algebra: 1.6; M-approximately unital: 5.1; M-ideal, M-projection, M-
summand: beginning of Section 5; multiplier unitization A1: 1.8; order on idempo-
tents e ≤r f , e ≤ f : 2.30; powers and roots bt : 2.18; quasistate space Q(A): 2.6;
rA: 2.13; real positive: 2.13; scaled: beginning of Section 6; smooth: 1.5; SQ p-
algebra, SQ p-space: the introduction; state space S(A): 2.6; strictly convex: 1.5;
support idempotent s(x): 4.12; unital Banach algebra: 1.3; unitization: 1.7.

Other definitions may be found in the introduction, or in the sections where they
first appear (often at the start of the section), but are not specifically numbered.
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Remarks added in proof

We are indebted to an anonymous reviewer of a different paper who referred us
to the paper [Berkson 1972], which contains somewhat of a systematic study of
hermitian idempotents on general Banach spaces, and which is well worth studying.
There is not much overlap with that paper but some of the motifs are similar. For
example Theorem 2.25 in Berkson’s paper is our Lemma 4.16, but as we said there,
this result is well known. Also, that paper has some nice examples in general
Banach spaces complementing some of the examples which we give.

The paper [Phillips and Viola 2017] is in the process of revision, and this will
change the section and result numbering. The references to that paper here refer to
the arXiv version 2, as linked to in our bibliography.

Finally, question (2) at the end of Section 7 and the first and third questions
stated in (4) there, have negative solutions. A counterexample to all three is the set
of continuous functions from [0, 1] to M p

2 with f (0) ∈ C e2. We give full details
elsewhere.
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