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ON THE BOUNDEDNESS OF
MULTILINEAR FRACTIONAL STRONG MAXIMAL

OPERATORS WITH MULTIPLE WEIGHTS

MINGMING CAO, QINGYING XUE AND KÔZÔ YABUTA

We investigate the boundedness of multilinear fractional strong maximal
operator MR,α associated with rectangles or related to more general ba-
sis with multiple weights A( Ep,q),R. In the rectangular setting, we first give
an end-point estimate of MR,α , which not only extends the famous linear
result of Jessen, Marcinkiewicz and Zygmund, but also extends the multilin-
ear result of Grafakos, Liu, Pérez and Torres (α= 0) to the case 0<α <mn.
Then, in the one weight case, we give several equivalent characterizations
between MR,α and A( Ep,q),R. Based on the Carleson embedding theorem
regarding dyadic rectangles, we obtain a multilinear Fefferman–Stein type
inequality, which is new even in the linear case. We present a sufficient
condition for the two weighted norm inequality of MR,α and establish a
version of the vector-valued two weighted inequality for the strong maximal
operator when m = 1. In the general basis setting, we study the properties
of the multiple weight A( Ep,q),R conditions, including the equivalent char-
acterizations and monotonic properties, which essentially extends previous
understanding. Finally, a survey on multiple strong Muckenhoupt weights
is given, which demonstrates the properties of multiple weights related to
rectangles systematically.

1. Introduction

The study of multiparameter operators originated in the works of Fefferman and
Stein [1982] on two-parameter singular integral operators. Journé [1985] gave
a multiparameter version of the T 1 theorem on product spaces. A new type of
the T 1 theorem on product spaces was formulated by Pott and Villarroya [2011].
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Martikainen [2012] demonstrated a two-parameter representation of singular inte-
grals in expression of the dyadic shifts, which was extended in the famous result of
Hytönen [2017] for the one-parameter case. More recently, using the probabilistic
methods and the techniques of dyadic analysis, Hytönen and Martikainen [2014]
gave a two-parameter version of the T 1 theorem in spaces of nonhomogeneous
type. A two-parameter version of the T b theorem on product Lebesgue spaces was
obtained by Ou [2015], where b is a tensor product of two pseudoaccretive functions.

It is also well known that the most prototypical representative of the multiparam-
eter operators is the following strong maximal operator MR:

MR f (x) := sup
R3x
R∈R

1
|R|

∫
R
| f (y)| dy, x ∈ Rn,

where R is the collection of all rectangles R ⊂ Rn with sides parallel to the
coordinate axes. It can be seen as a geometric maximal operator which commutes
with a full n-parameter group of dilations (x1, . . . , xn)→ (δ1x1, . . . , δnxn). The
strong L p(Rn)(1 < p < ∞) boundedness of MR was given by García-Cuerva
and Rubio de Francia [1985, p.456]. A maximal theorem was given by Jessen,
Marcinkiewicz and Zygmund in [Jessen et al. 1935]. They pointed out that unlike
the classical Hardy–Littlewood maximal operator, the strong maximal function is
not of weak type (1, 1). Moreover, they studied the end-point behavior of MR and
obtained the inequality

(1-1) |{x ∈ Rn
: MR f (x) > λ}|.n

∫
Rn

| f (x)|
λ

(
1+

(
log+
| f (x)|
λ

)n−1)
dx .

Córdoba and Fefferman [1975] gave a geometric proof of (1-1) and established a
covering lemma for rectangles. Their covering lemma is quite useful because it
overcomes the failure of the Besicovitch covering argument for rectangles with
arbitrary eccentricities. The selection algorithm given by Córdoba and Fefferman
was used many times to gain end-point estimates for MR, as demonstrated in
[Córdoba 1976; Fefferman 1981; Grafakos et al. 2011; Hagelstein and Parissis 2018;
Liu and Luque 2014; Long and Shen 1988; Luque and Parissis 2014; Mitsis 2006].

The corresponding weighted version of (1-1) with w ∈ A1,R was shown by
Bagby and Kurtz [1984]. In addition, the weighted weak type and strong type norm
inequalities for vector-valued strong maximal operators were obtained in [Capri and
Gutiérrez 1988]. It is worth pointing out that this was the first time that the Córdoba–
Fefferman covering lemma was not used in obtaining the end-point estimate of MR.
Subsequently, the above weighted results were improved by enlarging the range
of weights class in [Luque and Parissis 2014; Mitsis 2006]. Luque and Parissis
[2014] formulated a weighted version of the Córdoba–Fefferman covering lemma
and showed the weighted version of (1-1) for any n ≥ 2 and w ∈ A∞.R. For n = 2,
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the weighted endpoint estimate was first proved in [Mitsis 2006] for w ∈ Ap,R and
1< p <∞. Unfortunately, the combinatorics of two-dimensional rectangles used
there are not available in higher dimensions. To overcome this obstacle, Luque and
Parissis [2014] adopted a different approach, relying heavily on the best constant
of the weighted estimates of the strong maximal operator [Long and Shen 1988].

Grafakos et al. [2011] first introduced the multilinear version of the strong
maximal operator MR. Later, it was improved by Cao, Xue and Yabuta [Cao et al.
2017] to the multilinear fractional strong maximal operator MR,α

(1-2) MR,α( Ef )(x) := sup
R3x
R∈R

m∏
i=1

1
|R|1−α/(mn)

∫
R
| fi (y)| dy,

where 0≤ α <mn. Similarly, one can define the multilinear maximal function MB

on a general basis B if R is replaced by B in (1-2). In [Grafakos et al. 2011], it
is also proved that for a Muckenhoupt basis B, the multilinear maximal operator
MB is bounded from L p1(w1)× · · ·× L pm (wm) to L p,∞(v) provided that ( Ew, v)
are weights satisfying v ∈ A∞,B and the power bump condition for some r > 1,

(1-3) sup
B∈B

(
1
|B|

∫
B
v dx

) m∏
i=1

(
1
|B|

∫
B
w
(1−p′i )r
i dx

)p/p′i r

<∞.

It is also worth mentioning that the authors of [Grafakos et al. 2011] established
the sharp multilinear version of the endpoint inequality for MR. Subsequently,
under a weaker condition (Tauberian condition) than v ∈ A∞,B, Liu and Luque
[2014] investigated the strong boundedness of the two-weighted inequality for the
maximal operator MB. They showed that if the maximal operator MB satisfies
the Tauberian condition (called condition (A) in [Hagelstein et al. 2015; Jawerth
1986; Pérez 1993]) then MB enjoys the strong-type boundedness. Recently, Hagel-
stein et al. [2015] discussed the relationship between the boundedness of MB, the
Tauberian condition (AB,γ,µ) and the weighted Tauberian condition. Furthermore,
Hagelstein and Parissis [2018] proved that the asymptotic estimate for weighted
Tauberian constant associated to rectangles is equivalent to w ∈ A∞,R, which gives
a new characterization of the class A∞,R.

Inspired by [Grafakos et al. 2011], the authors [Cao et al. 2017] studied the
relationship between the multilinear fractional strong maximal operator MR,α and
multiple weights A( Ep,q),R associated with rectangles defined by

[ Ew, v]A( Ep,q),R := sup
R∈R
|R|

α
n+

1
q−

1
p

(
1
|R|

∫
R
ν dx

) 1
q

m∏
i=1

(
1
|R|

∫
R
w

1−p′i
i dx

) 1
p′i
<∞.

The dyadic reverse doubling condition associated with rectangles, which is weaker
than A∞,R, was also introduced. It was shown that if eachw

1−p′i
i satisfies the dyadic
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reverse doubling condition, then the two-weight boundedness of MR,α is equivalent
to ( Ew, v)∈ A( Ep,q),R. Significantly, a Carleson embedding theorem regarding dyadic
rectangles was established and was the core of the proof.

Motivated by [Cao et al. 2017; Grafakos et al. 2011; Liu and Luque 2014], here we
continue to investigate the boundedness of multilinear strong and fractional strong
maximal operators in the setting of rectangles and in the setting of a more general
basis. We are mainly concerned with the end-point behavior, characterizations of
two weighted norm inequalities and vector-valued norm inequalities. We will also
give a survey on multiple strong Muckenhoupt weights, which demonstrates the
properties of multiple weights associated with rectangles systematically.

2. Definitions and main results

Rectangular setting. We now formulate the main results of the maximal operators
related to rectangles. The first result is concerned with the end-point behavior
of MR,α.

Theorem 2.1. Let n ≥ 1, m ≥ 1 and 0≤ α <mn. Then for any λ> 0, the following
endpoint estimate holds:∣∣{x ∈Rn

;MR,α( Ef )(x)>λm}∣∣m−α/n

.m,n,α

m∏
i=1

[
1+
(
α

mn
log+

m∏
j=1

∫
Rn
8(m)n

(
| f j (y)|
λ

)
dy
)n−1]m∫

Rn
8(m)n

(
| fi (y)|
λ

)
dy,

where 8n(t) := t[1+ (log+ t)n−1
] and 8(m)n =

m︷ ︸︸ ︷
8n ◦ · · · ◦8n . Moreover, the expo-

nent is sharp in the sense that we cannot replace 8(m)n by 8(k)n for k ≤ m− 1.

Remark 2.2. If m=1 and α=0, then the above inequality in Theorem 2.1 coincides
with the inequality (1-1). In the multilinear setting, if α = 0, Theorem 2.1 recovers
the corresponding inequality in [Grafakos et al. 2011]. Therefore, Theorem 2.1 ex-
tends not only the linear result given by Jessen, Marcinkiewicz and Zygmund [Jessen
et al. 1935] but also extends the multilinear result proved by Grafakos et al. [2011].
Even in the linear setting, Theorem 2.1 is completely new for 0< α < n.

In order to state the other results, we need to introduce one more definition:

Definition 2.3 [Liu and Luque 2014]. Let 1< p <∞. A Young function 8 is said
to satisfy the B∗p condition, written8∈ B∗p, if there is a positive constant c such that∫

∞

c

8n(8(t))
t p

dt
t
<∞,

where 8n(t) := t[1+ (log+ t)n−1
] for all t > 0.
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We obtain the two weighted, vector-valued estimate of MR as follows:

Theorem 2.4. Let 1 < q < p <∞, r = p/q. Assume that A and B are Young
functions such that their complementary Young functions A and B satisfy A ∈ B∗r ′
and B ∈ B∗q , respectively. Let (w, v) be a couple of weights such that

(2-1) sup
R∈R
‖wq
‖

1/q
A,R ‖v

−1
‖B,R <∞.

For some fixed γ ∈ (0, 1) and for any nonnegative function h ∈ Lr ′(Rn) with
‖h‖Lr ′ (Rn) = 1, assume that MR satisfies the (AR,γ,h) condition and the (AR,γ,wq h)

condition. Then, the two weight vector-valued inequality holds for MR,

‖MR f ‖L p(`q ,w p) . ‖ f ‖L p(`q ,v p).

Remark 2.5. Theorem 2.4 was shown by Pérez [2000], whenever the family of
rectangles R is replaced by cubes. Moreover, in the scalar-valued case, Theorem 2.4
was proved by Liu and Luque [2014].

In order to establish the boundedness of the multilinear fractional strong maximal
operator MR,α, we give the definition of the corresponding multiple weights.

Definition 2.6 (class of A( Ep,q),R, [Cao et al. 2017]). Let 1 < p1, . . . , pm < ∞,
1
p =

1
p1
+ · · · +

1
pm

, and q > 0. Suppose that Ew = (w1, . . . , wm) and each wi is a
nonnegative locally integrable function on Rn . We say that Ew satisfies the A( Ep,q),R
condition or Ew ∈ A( Ep,q),R if it satisfies

[ Ew]A( Ep,q),R := sup
R

(
1
|R|

∫
R
ν

q
Ew

dx
)1/q m∏

i=1

(
1
|R|

∫
R
w
−p′i
i dx

)1/p′i
<∞,

where ν Ew =
∏m

i=1wi . If pi = 1,
( 1

R

∫
R w

1−p′i
i

)1/p′i is understood as (infR wi )
−1.

We formulate the weighted results of MR,α in the following characterizations:

Theorem 2.7. Let k∈N, 0≤α<mn, 1
p =

1
p1
+ · · ·+

1
pm

with 1< p1, . . . , pm<∞,
and 0< p ≤ q <∞ satisfying 1

q =
1
p −

α
n . Then the following are equivalent:

Ew ∈ A( Ep,q),R;(2-2)

Ewr
∈ A( Ep/r , q/r),R for some r > 1;(2-3)

MR,α : L p1(w
p1
1 )× · · ·× L pm (w pm

m )→ Lq(ν
q
Ew
);(2-4)

MR,α,8k+1 : L
p1(w

p1
1 )× · · ·× L pm (w pm

m )→ Lq(ν
q
Ew
).(2-5)

Remark 2.8. Although the fact that (2-2) is equivalent to (2-4) was given in [Cao
et al. 2017], we here present some new ingredients. In addition, Theorem 2.7 tells
us that the weight class A( Ep,q),R not only implies the boundedness of MR,α, but
that it also characterizes much bigger operators MR,α,8k+1 .
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Furthermore, we obtain the following result:

Theorem 2.9. Let 0≤ α <mn, 1
p =

1
p1
+ · · ·+

1
pm

with 1< p1, . . . , pm <∞, and
0 < p ≤ q <∞. If ( Ew, v) are weights such that v ∈ A∞,R and the power bump
condition holds for some r > 1,

(2-6) sup
R∈R
|R|

α
n+

1
q−

1
p

(
1
|R|

∫
R
v dx

) 1
q

m∏
i=1

(
1
|R|

∫
R
w
(1−p′i )r
i dx

) 1
r p′i
<∞,

then MR,α : L p1(w1)× · · ·× L pm (wm)→ Lq(v).

Corollary 2.10. Suppose that 0 ≤ α < mn and that 1
p =

1
p1
+ · · · +

1
pm

with
1< p1, . . . , pm < mn/α. Let each ui be a nonnegative locally integrable function.
Then Eu ∈ A Ep,R implies that

‖MR,α( Ef )‖L p(v p) ≤ C
m∏

i=1

‖ fi‖L pi (w
pi
i )
,

where v =
∏m

i=1 u1/pi
i and wi = Mαpi/m(ui ).

Finally, we end this subsection with a multilinear Fefferman–Stein type inequality.

Theorem 2.11. Let 0 ≤ α < mn, 1
p =

1
p1
+ · · · +

1
pm

with 1 < p1, . . . , pm <∞,
and 0 < p ≤ q <∞ satisfying 1

q =
1
p −

α
n . Then, for any weights Eω on Rn and

ν =
∏m

i=1 ω
1/m
i , we have that

‖MR,α( Ef )‖Lq (ν) ≤ C
m∏

i=1

‖ fi‖L pi ((MRwi )
pi /mq ),

where the constant C is independent of the weights Eω and Ef .

The general basis and two weight norm inequalities. In this subsection, we will
present some general results for the maximal operator defined on the general basis.
We start by introducing some definitions and notations, which will be used later.

By a basis B in Rn we mean a collection of open sets in Rn . We say that w is a
weight associated with the basis B if w is a nonnegative measurable function in Rn

such thatw(B)=
∫

B w(x) dx <∞ for each B ∈B. Moreover, w∈ Ap,B means that

sup
B∈B

(
1
|B|

∫
B
w dx

)(
1
|B|

∫
B
w1−p′ dx

)p/p′

<∞.

We say that B is a Muckenhoupt basis if MB : L p(w)→ L p(w) for any 1< p<∞
and for any w ∈ Ap,B.

We also need some basic property of Orlicz spaces. More details can be found in
[Rao and Ren 1991]. A Young function is a continuous, convex, increasing function
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8 : [0,∞)→ [0,∞) with 8(0) = 0 and such that 8(t)/t→∞ as t→∞. The
8-norm of a function f over a set E with finite measure is defined by

(2-7) ‖ f ‖8,E = inf
{
λ > 0;

1
|E |

∫
E
8

(
| f (x)|
λ

)
dx ≤ 1

}
.

For a given Young function 8, one can define a complementary function

8(s)= sup
t>0
{st −8(t)}, s ≥ 0.

Moreover, the generalized Hölder inequality holds:

(2-8)
1
|E |

∫
E
| f (x)g(x)| dx ≤ 2‖ f ‖8,E‖g‖8,E .

Definition 2.12. Suppose that the function ϕ : (0,∞) → (0,∞) is essentially
nondecreasing and limt→∞

ϕ(t)
t = 0. Assume that B is a basis and that {9i }

m
i=1 is a

sequence of Young functions. We define the multilinear Orlicz maximal operator
associated with the function ϕ by

M
B,ϕ,
−→
9
( Ef )(x)= sup

B3x
B∈B

ϕ(|B|)
m∏

i=1

‖ fi‖9i ,B, x ∈ Rn.

In particular, if9i (t)= t , i=1, . . . ,m, we denote M
B,ϕ,
−→
9

by MB,ϕ . If ϕ(t)= tα/n,
we denote M

B,ϕ,
−→
9

and MB,ϕ by M
B,α,
−→
9

and MB,α respectively. When B =R,
MB,α coincides with MR,α.

Definition 2.13. We say that the maximal operator MB satisfies the (AB,γ,µ) con-
dition with respect to some γ ∈ (0, 1) and a weight µ, if there exists a positive
constant CB,γ,µ such that, for all measurable sets E , it holds that

µ
(
{x ∈ Rn

: MB(1E)(x) > γ }
)
≤ CB,γ,µµ(E).

We summarize the main results as follows:

Theorem 2.14. Let 0< p≤ q <∞, 1
p =

1
p1
+· · ·+

1
pm

with 1< p1, . . . , pm <∞.
Let Ai , Bi and Ci (i = 1, . . . ,m) be Young functions such that A−1

i (t)C−1
i (t) ≤

B−1
i (t), t > 0 for each i = 1, . . . ,m. Assume that B is a basis and {Ci }

m
i=1 is a

sequence of Young functions satisfying

M
B,
−→
C : L

p1(Rn)× · · ·× L pm (Rn)→ L p(Rn).

If ( Ew, v) are weights such that M
B,ϕ,
−→
B satisfies the (AB,γ,vq ) condition and

(2-9) sup
B∈B

ϕ(|B|)|B|
1
q−

1
p

(
1
|B|

∫
B
vq dx

) 1
q

m∏
i=1

‖w−1
i ‖Ai ,B <∞,

then M
B,ϕ,
−→
B : L

p1(w
p1
1 )× · · ·× L pm (w

pm
m )→ Lq(vq).
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Corollary 2.15. Let 0 ≤ α < mn, 1
p =

1
p1
+ · · · +

1
pm

with 1 < p1, . . . , pm <∞,
and 0< p ≤ q <∞. Assume that B is a Muckenhoupt basis. If ( Ew, v) are weights
such that MB,α satisfies the (AB,γ,v) condition and the power bump condition

(2-10) sup
B∈B
|B|

α
n+

1
q−

1
p

(
1
|B|

∫
B
v dx

) 1
q

×

m∏
i=1

(
1
|B|

∫
B
w
(1−p′i )r
i dx

) 1
r p′i
<∞ for some r > 1,

then MB,α : L p1(w1)× · · ·× L pm (wm)→ Lq(v).

Remark 2.16. It is easy to see that our Corollary 2.15 extends Theorem 2.3 of
[Grafakos et al. 2011]. Indeed, under the same assumptions, the authors [Grafakos
et al. 2011] only achieved boundedness from L p1(w1)×· · ·×L pm (wm) to L p,∞(v).
On the other hand, we enlarge the range of α from α = 0 to 0≤ α < mn.

Finally, we present a two weighted norm inequality in the more general context
of Banach function spaces.

Theorem 2.17. Let 1
p =

1
p1
+· · ·+

1
pm

with 1< p1, . . . , pm<∞, and 0< p≤q<∞.
Let ϕ be a function as in Definition 2.12. Suppose that Y1, . . . , Ym are Banach
function spaces such that

M EY ′ : L
p1(Rn)× · · ·× L pm (Rn)→ L p(Rn).

If ( Ew, v) are weights such that M EY ′ satisfies the (AB,γ,vq ) condition and

(2-11) sup
B∈B

ϕ(|B|)|B|
1
q−

1
p

(
1
|B|

∫
B
vq dx

) 1
q

m∏
i=1

‖w−1
i ‖Yi ,B <∞,

then MB,ϕ : L p1(w
p1
1 )× · · ·× L pm (w

pm
m )→ Lq(vq).

This article is organized as follows. In Section 3, some important properties of
multiple weight A( Ep,q),R will be given. In Section 4, we shall prove Theorems 2.1
and 2.7. Section 5 is devoted to proving Theorem 2.11. As for the rest of the
theorems, we will complete their proofs in Section 6.

3. A survey on multiple strong Muckenhoupt weights

In this section, our goal is to study the properties of multiple weights related
to rectangles systematically. We first recall the definition of A Ep,R which was
introduced in [Grafakos et al. 2011].
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Definition 3.1. Let 1≤ p1, . . . , pm <∞. We say that m-tuple of weights Ew satisfies
the A Ep,R condition (or Ew ∈ A Ep,R) if

[ Ew]A Ep,R := sup
R∈R

(
1
|R|

∫
R
ν̂ Ew dx

) m∏
i=1

(
1
|R|

∫
R
w

1−p′i
i dx

)p/p′i
<∞,

where ν̂ Ew =
∏m

i=1w
p/pi
i . If pi = 1,

( 1
R

∫
R w

1−p′i
i

)1/p′i is understood as (infR wi )
−1.

The characterizations of multiple weights are as follows.

Theorem 3.2. Let 1 ≤ p1, . . . , pm <∞, 1
p =

1
p1
+ · · · +

1
pm

and p0 = min{pi }i .
Then the following statements hold:

(1) Ar1 Ep,R $ Ar2 Ep,R for any 1/p0 ≤ r1 < r2 <∞.

(2) A Ep,R =
⋃

1/p0≤r<1 Ar Ep,R.

(3) Ew ∈ A Ep,R if and only if

ν̂ Ew ∈ Amp,R and w
1−p′i
i ∈ Amp′i ,R, i = 1, . . . ,m,

where w
1−p′i
i ∈ Amp′i ,R is understood as w1/m

i ∈ A1,R if pi = 1.

Theorem 3.3. Let 1≤ p1, . . . , pm <∞, 1
p =

1
p1
+ · · ·+

1
pm

and 1
m ≤ p ≤ q <∞.

Then, it holds that

(i) Ew ∈ A( Ep,q),R if and only if

ν Ew
q
⊂ Amq,R and w

−p′i
i ∈ Amp′i ,R, i = 1, . . . ,m.

When pi = 1, w
−p′i
i is understood as w1/m

i ∈ A1,R.

(ii) Assume that 0<α <mn, p1, . . . , pm <
mn
α

and 1
q =

1
p −

α
n . Then Ew ∈ A( Ep,q),R

if and only if

ν Ew
q
∈ Aq(m−α/n),R and w

−p′i
i ∈ Ap′i (m−α/n),R, i = 1, . . . ,m.

When pi = 1, w
−p′i
i ∈ Ap′i (m−α/n),R is understood as wn/(mn−α)

i ∈ A1,R.

Theorem 3.4. Let 1< p1, . . . , pm <∞, 1
p =

1
p1
+ · · ·+

1
pm

, 1
m < p ≤ q <∞ and

p0 =min{pi }i . It holds that

(a) A( Ep,q,r2),R $ A( Ep,q,r1),R, whenever 1≤ r1 < r2 < p0.

(b) For any 1≤ r1 < p0,

A( Ep,q,r1),R =
⋃

r1<r<p0

A( Ep,q,r),R,

where A( Ep,q,s),R :=
{
Ew; Ews

= (ws
1, . . . , w

s
m) ∈ A( Ep/s, q/s),R

}
for any s ≥ 1.
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Proofs of Theorems 3.2–3.4. The argument used in [Chen et al. 2014, Theorems 2.4
and 3.11] relies only on the use of Hölder’s inequality, and doesn’t involve any
geometric property of cubes or rectangles. Hence we may also use the method
in [Chen et al. 2014] to complete our proof. Since the main ideas are almost
the same, we omit the proof here. It is worth mentioning that when considering
the strict inclusion relation in Theorem 3.2 (1) and Theorem 3.4 (a), we need the
characterization of |x |α ∈ Ap,R, which will be shown in Proposition 3.7 below. �

Definition 3.5. We say that a nonnegative measurable functionω satisfies the dyadic
reverse doubling condition, or ω ∈ RD(β), if ω is locally integrable on Rn and there
is a constant β > 1 such that βω(I )≤ ω(J ) for any I, J ∈ DR, where I ⊂ J and
|I | = 2−1

|J |.

Proposition 3.6. A∞,R(Rn)$ RD(β)(Rn), for any β > 1 and n ≥ 2.

Proof. The inclusion relation A∞,R(Rn) ⊂ RD(β)(Rn) has been proved in [Cao
et al. 2017, Proposition 4.2]. Thus, it suffices to show that there exists some weight
w ∈ RD(β)(Rn) \

⋃
1≤p<∞ Ap,R. This follows from the following fact.

Let ω0(t) be an even function on (−∞,∞), which is defined for t > 0 by

ω0(t)= (1− t)1[0,1)+
∞∑

k=1

[1− 2−k+1(t − 2k−1)] 1[2k−1,2k).

Then ω0 satisfies the dyadic reverse doubling condition with β= 4
3 , but ω0 6∈ A∞(R).

Moreover, if we define

ω j (x) := ω0(x j )dx1 · · · dxn, j = 1, . . . , n,

then it holds that ω j ∈ RD(β∗)
\ A∞,R(Rn), where β∗ =max{β, 2}.

Let us begin by showing ω0 6∈ A∞(R). For j ∈ N, we get∫ 1+ j−3

1− j−2
ω0(t) dt =

∫ 1

1− j−2
ω0(t) dt +

∫ 1+ j−3

1
ω0(t) dt =

1
2 j4 +

(
1
j3 −

1
2 j6

)
,

and so

ω0([1, 1+ j−3))

ω0([1− j−2, 1+ j−3))
=

1
j3 −

1
2 j6

1
2 j4 +

1
j3 −

1
2 j6

=

1− 1
2 j3

1+ 1
2 j −

1
2 j3

→ 1 as j→∞,

and
|[1, 1+ j−3)|

|[1− j−2, 1+ j−3)|
=

1
j + 1

→ 0 as j→∞.

From this we see that ω0 6∈ A∞(R).
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A direct proof that ω0 6∈ A∞(R). For 0< a < 1 and p > 2 we have∫ 1+a3

1−a2
ω0(t) dt =

∫ 1

1−a2
(1− t) dt +

∫ 1+a3

1
(2− t) dt

=
a4

2
+ a3
−

a6

2
≥

a3

2
+

a4

2
,

∫ 1+a3

1−a2
ω0(t)1−p′ dt =

∫ 1

1−a2
(1− t)1−p′ dt +

∫ 1+a3

1
(2− t)1−p′ dt

=
1

2− p′
[a2(2−p′)

+ 1− (1− a3)2−p′
] ≥

a2(2−p′)

2− p′
.

Hence for Ia = [1− a2, 1+ a3) we get(
1
|Ia|

∫ a3

−a2
ω0(t) dt

)(
1
|Ia|

∫ a3

−a2
ω0(t)1−p′ dt

)p−1

≥
1

a2+ a3

(
a3

2
+

a4

2

)(
1

a2+ a3

a2(2−p′)

2− p′

)p−1

& a×
(

a2(2−p′)

a2

)p−1

= a× a2(1−p′)(p−1)
= a−1.

This shows

sup
I :intervals

(
1
|I |

∫
I
ω0(t) dt

)(
1
|I |

∫
I
ω0(t)1−p′ dt

)p−1

=∞,

Hence ω0 6∈ A∞(R).
Next, we demonstrate ω0 ∈ RD(β) with β = 4

3 .
Let I ⊂ R be a dyadic interval, with I− and I+ the left and right children of I ,

respectively. Set I = [m2k, (m+ 1)2k), m, k ∈ Z. Since ω0 is even, it suffices to
consider m ≥ 0.

Case 1: m = 0, k ≥ 1. In this case, we have

(3-1) ω0(I )=
∫ 2k

0
ω0(t) dt =

∫ 1

0
ω0(t) dt +

k∑
j=1

∫ 2 j

2 j−1
ω0(t) dt

=
1
2
+

k∑
j=1

2 j−2
= 2k−1,

and

(3-2) ω0(I−)=
∫ 2k−1

0
ω0(t) dt = 2k−2, ω0(I+)=

∫ 2k

2k−1
ω0(t) dt = 2k−2.
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Thus, it holds that

(3-3) 2ω0(I+)= 2ω0(I−)= ω0(I ).

Case 2: m = 0, k ≤ 0. It is easy to get I = [0, 2k)⊂ [0, 1). Then we obtain

1
4
≤
ω0(I−)
ω0(I )

=
2k−1(1−2k−2)

2k(1−2k−1)
=

1
2

(
1
2
+

1
2−2k

)
≤

1
2
×

(
1
2
+ 1

)
=

3
4
,

and hence,

(3-4) 4
3ω0(I−)≤ ω0(I ), 4

3ω0(I+)≤ ω0(I ).

Case 3: m ≥ 1, m · 2k < 1. We have 0< m < 2−k
∈ Z+, and so 0< m ≤ 2−k

− 1.
Hence I = [m2k, (m+ 1)2k)⊂ (0, 1). So, we also have (3-4)

Case 4: m ≥ 1, m · 2k
≥ 1. There exists some ` ∈ {0, 1, 2, 3, . . . } such that

m2k
∈ [2`, 2`+1). Then it follows that 2`−k

≤m < 2`−k+1, which, together with the
fact that m ∈ Z+, implies that ` ≥ k. From this, we have m + 1 ≤ 2`−k+1, and so
(m+ 1)2k

≤ 2`+1. This means that

I = [m2k, (m+ 1)2k)⊂ [2`, 2`+1).

Therefore, we deduce that

1
2
≤
ω0(I−)
ω0(I )

=
2k−1

[
1−

(
m+ 1

4

)
2k−`

]
2k
[
1−

(
m+ 1

2

)
2k−`

]
=

1
2

(
1+

2k−`/4

1−
(
m+ 1

2

)
2k−`

)
≤

1
2
×

(
1+ 1

2

)
=

3
4
,

and
1
4
≤
ω0(I+)
ω0(I )

= 1− ω0(I−)
ω0(I )

≤
1
2
.

This implies that in this setting, the inequality (3-4) holds as well.
From Cases 1– 4, we see that ω0 satisfies the dyadic reverse doubling condition.
The proof in higher dimensions follows from the one-dimension result. �

Proposition 3.7. Let 1< p <∞. The strong Muckenhoupt weight has the charac-
terization: |x |α ∈ Ap,R(R

n) if and only if −1< α < p− 1.

Although this proposition is contained in [Kurtz 1980], we here present a new
proof.
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Proof. The “only if” part follows from Lemma 2.2 in [Kurtz 1980, p. 239], and the
following fact:

(3-5) w(t)= (1+ |t |)α ∈ Ap(R) if and only if − 1< α < p− 1.

Conversely, in the case −1 < α ≤ 0, we see that tα ∈ A1(R+) and is decreasing.
So, |x |α ∈ Ã1(R+), and hence by Theorem 4.4 in [Yabuta 2011] it belongs to
A1,R(R

n)⊂ Ap,R(R
n).

In the case 0<α< p−1, we have−1<α/(1− p)< 0, and so tα/(1−p)
∈ A1(R+)

and is decreasing. Hence |x |α = (|x |α/(1−p))1−p
∈ Ãp(R+), and so, as before, it

belongs to Ap,R(R
n).

Here,

Ãp(R+) :=

{ω(x)= ν1(|x |)ν2(|x |)1−p
: ν1,ν2 ∈ A1(R+) are decreasing or ν2

1 ,ν
2
2 ∈ A1(R+)}

and

Ã1(R+) := {ω(x)= ν1(|x |) : ν1 ∈ A1(R+) is decreasing or ν2
1 ∈ A1(R+)},

which are the weight classes introduced by Duoandikoetxea [1993]. �

4. Proofs of Theorem 2.1 and Theorem 2.7

To show the endpoint estimate of MR,α, we need the following key lemma:

Lemma 4.1 [Grafakos et al. 2011]. Let m ∈ N, and E be any set. If 8 is a
submultiplicative Young function, then there is a constant C such that whenever

1<
m∏

i=1

‖ fi‖8,E

holds, one can get
m∏

i=1

‖ fi‖8,E ≤ C
m∏

i=1

1
|E |

∫
E
8(m)(| fi (x)|) dx .

Proof of Theorem 2.1. Denote E = {x ∈ Rn
:MR,α f (x) > λm

}. Then there exists
a compact set K such that K ⊂ E and

|K | ≤ |E | ≤ 2|K |.

By the compactness of K, one can find a finite collection of rectangles {R j }
N
j=1

such that

(4-1) K ⊂
N⋃

j=1

R j and λm <

m∏
i=1

1
|R j |

1−α/(mn)

∫
R j

| fi (y)| dy, j = 1, . . . , N .
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According to the Córdoba–Fefferman rectangle covering lemma [1975], there are
positive constants δ, c depending only on n and a subfamily {R̃ j }

`
j=1 of {R j }

N
j=1

satisfying

(4-2)
∣∣∣ N⋃

j=1

R j

∣∣∣≤ c
∣∣∣⋃̀

j=1

R̃ j

∣∣∣,
and

(4-3)
∫
⋃`

j=1 R̃ j

exp
(
δ
∑̀
j=1

1R̃ j
(x)
) 1

n−1

dx ≤ 2
∣∣∣⋃̀

j=1

R̃ j

∣∣∣.
For convenience, we introduce the following notation: Ẽ =

⋃`
j=1 R̃ j and 9n(t)=

exp(t1/(n−1))− 1. Then the inequality (4-3) is the same as

1
|Ẽ |

∫
Ẽ
9n

(
δ
∑̀
j=1

1R̃ j
(x)
)

dx ≤ 1.

Furthermore, using the fact that

(4-4) ‖ f ‖8,E ≤ 1⇔
1
|E |

∫
E
8(| f (x)|) dx ≤ 1, for any set |E |<∞,

one can obtain

(4-5)
∥∥∥∑̀

j=1

1R̃ j

∥∥∥
9n,Ẽ
≤ δ−1.

Therefore, in all, combining the inequalities (4-1) and (4-2), we have

|Ẽ |1−α/(mn)
=

∣∣∣⋃̀
j=1

R̃ j

∣∣∣1−α/(mn)

≤

∑̀
j=1

|R̃ j |
1−α/(mn)

(
1
λm

m∏
i=1

1
|R̃ j |

1−α/(mn)

∫
R̃ j

| fi (y)| dy
)1/m

=

∑̀
j=1

( m∏
i=1

∫
R̃ j

| fi (y)|
λ

dy
)1/m

≤

( m∏
i=1

∑̀
j=1

∫
R̃ j

| fi (y)|
λ

dy
)1/m

=

( m∏
i=1

∫
Ẽ

∑̀
j=1

1R̃ j
(y)
| fi (y)|
λ

dy
)1/m

.
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Hence, from the Hölder’s inequalities (2-8) and (4-5), it now follows that

1≤
m∏

i=1

1
|Ẽ |

∫
Ẽ

∑̀
j=1

1R̃ j
(y) · |Ẽ |α/(mn) | fi (y)|

λ
dy

≤

m∏
i=1

∥∥∥∑̀
j=1

1R̃ j

∥∥∥
9n,Ẽ

∥∥∥|Ẽ |α/(mn) fi
λ

∥∥∥
8n,Ẽ

≤

m∏
i=1

δ−1
∥∥∥|Ẽ |α/(mn) fi

λ

∥∥∥
8n,Ẽ
=

m∏
i=1

∥∥∥δ−1
|Ẽ |α/(mn) fi

λ

∥∥∥
8n,Ẽ

.

Applying Lemma 4.1, we deduce that

1≤
m∏

i=1

1
|Ẽ |

∫
Ẽ
8(m)n

(
δ−1
|Ẽ |α/(mn) | fi (y)|

λ

)
dy.

Notice that the function 8(m)n is submultiplicative. Accordingly, we get

1.
m∏

i=1

1
|Ẽ |

∫
Ẽ
8(m)n (|Ẽ |α/(mn))8(m)n

(
| fi (y)|
λ

)
dy(4-6)

.
m∏

i=1

1
|Ẽ |1−α/(mn)

[
1+ (log+ |Ẽ |α/(mn))n−1]m ∫

Ẽ
8(m)n

(
| fi (y)|
λ

)
dy,

where we have used the fact that 8(m)n (t) . t[1+ (log+ t)n−1
]
m. Moreover, (4-6)

implies that

(4-7) |Ẽ |m−α/n .
m∏

i=1

[
1+ (log+ |Ẽ |α/(mn))n−1]m ∫

Rn
8(m)n

(
| fi (y)|
λ

)
dy.

In order to get a further estimate, we need a basic fact: if θ ∈ (0, 1), then there
exists a constant C0 > 1 and β small enough such that

(4-8) 0< β < 1−θ
mn

, 1+ log+ tθ ≤ tβ, if t > C0.

If |Ẽ |> C0, then by the inequalities (4-7) and (4-8) we have

|Ẽ |m−α/n . |Ẽ |m
2(n−1)β

m∏
i=1

∫
Rn
8(m)n

(
| fi (y)|
λ

)
dy,

and hence

|Ẽ |m−α/n−m2(n−1)β .
m∏

i=1

∫
Ẽ
8(m)n

(
| f (x)|
λ

)
dx .
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Therefore,

log+ |Ẽ |α/(mn) .
α

mn
log+

m∏
i=1

∫
Rn
8(m)n

(
| fi (y)|
λ

)
dy.

From this inequality and (4-7), we obtain

(4-9) |Ẽ |m−α/n .
m∏

i=1

[
1+

(
α

mn
log+

m∏
j=1

∫
Rn
8(m)n

(
| f j (y)|
λ

)
dy
)n−1]m

×

∫
Rn
8(m)n

(
| fi (y)|
λ

)
dy.

On the other hand, if |Ẽ | ≤ C0, then

1+ ( log+|Ẽ |α/(mn))n−1 . 1.

Hence,

(4-10) |Ẽ |m−α/n .
m∏

i=1

∫
Rn
8(m)n

(
| fi (y)|
λ

)
dy.

Consequently, combining (4-9), (4-10) with the fact that |E |. |Ẽ |, we deduce the
desired result. �

Next, we will demonstrate Theorem 2.7. The proof will be based on Theorem 2.14,
which will be proved in Section 6. First we recall the definition of the generalized
Hölder’s inequality on Orlicz spaces due to O’Neil [1965].

Lemma 4.2. If A, B and C are Young functions satisfying

A−1(t)C−1(t)≤ B−1(t) for any t > 0,

then for all functions f, g and any measurable set E ⊂ Rn , the following inequality
holds:

(4-11) ‖ f g‖B,E ≤ 2‖ f ‖A,E‖g‖C,E .

Proof of Theorem 2.7. The process of our proof is (2-3)⇔ (2-2)⇒ (2-5)⇒ (2-4)⇒
(2-2). In fact, (2-3)⇔ (2-2) is contained in [Cao et al. 2017, Theorem 2.2]. From
Lemma 4.2, it follows that MR,α( Ef )≤MR,α,8k+1(

Ef ). This shows (2-5)⇒ (2-4).
Moreover, taking fi =w

−p′i
i χR for a given rectangle R, we may obtain (2-4)⇒ (2-2).

Hence, it remains to prove (2-2)⇒ (2-5).
By Theorem 3.3 and [García-Cuerva and Rubio de Francia 1985, Theorem 6.7,

p. 458], it is easy to see that νq
Ew

satisfies the condition (A) and w
−p′i
i satisfies the
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reverse Hölder inequality. Thus, there exist constants ci > 0, ri > 1 (i = 1, . . . ,m)
such that

(4-12)
(

1
|R|

∫
R
w
−p′i ri
i dx

) 1
ri
≤

ci

|R|

∫
R
w
−p′i
i dx for any rectangle R.

For fixed k ∈ N, we introduce the notation

Ai (t)= tri p′i , Ci (t)= [t (1+ log+ t)k](ri p′i )
′

.

Thus, we can obtain that

A−1
i (t)= t1/(ri p′i ) and A−1

i (t)C−1
i (t)≈8−1

k+1(t).

Notice that Ci ∈ B∗pi
and Ci is submultiplicative. From [Liu and Luque 2014,

Proposition 2.2], it now follows that

MR,Ci : L
pi (Rn)→ L pi (Rn), i = 1, . . . ,m.

This yields immediately that

MR,
−→
C : L

p1(Rn)× · · ·× L pm (Rn)→ L p(Rn).

In addition, for a given rectangle R, (4-12) yields that

|R|
α
n+

1
q−

1
p

(
1
|R|

∫
R
ν

q
Ew

dx
) 1

q
m∏

i=1

‖w−1
i ‖Ai ,R

=

(
1
|R|

∫
R
ν

q
Ew

dx
) 1

q
m∏

i=1

(
1
|R|

∫
R
w
−ri p′i
i dx

) 1
ri p′i

.

(
1
|R|

∫
R
ν

q
Ew

dx
) 1

q
m∏

i=1

(
1
|R|

∫
R
w
−p′i
i dx

) 1
p′i

≤ [ Ew]A( Ep,q),R <∞.

This implies that ( Ew, ν Ew) satisfies the two weighted condition (2-9). By Theorem
2.14, we get

MR,α,8k+1 : L
p1(w

p1
1 )× · · ·× L pm (w pm

m )→ Lq(ν
q
Ew
).

Therefore, in all, we have completed the proof of Theorem 2.7. �

5. The multilinear Fefferman–Stein inequality

Before showing our multilinear Fefferman–Stein inequality, we present a Carleson
embedding theorem regarding dyadic rectangles.
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Theorem 5.1 [Cao et al. 2017]. Let 1 < p ≤ q <∞, ω be a nonnegative locally
integrable function on Rn. Assume that ω1−p′ satisfies the dyadic reverse doubling
condition with β > 1. Then the inequality∑

R∈DR

(∫
R
ω1−p′ dx

)−q/p′(∫
R

f (x) dx
)q

≤ C
(∫

Rn
f (x)pω dx

)q/p

holds for all nonnegative f ∈ L p(ω), where C depends on n, p, q and β.

Proof of Theorem 2.11. It suffices to show the above result for the dyadic version
of the maximal operator,

Md
R,α(
Ef )(x)= sup

R3x
R∈DR

m∏
i=1

1
|R|1−α/(mn)

∫
R
| fi (yi )| dyi , x ∈ Rn.

Adopting the policy in [Cao et al. 2017], we will obtain the general result from the
dyadic setting.

Without loss of generality, we can assume that Ef is bounded, Ef ≥ 0 and has a
compact support. Therefore, Md

R,α(
Ef )(x) <∞ for all x ∈ Rn.

According to the definition of Md
R,α(
Ef )(x), we have that for any x ∈ Rn , there

exists a dyadic rectangle R such that x ∈ R and

(5-1) Md
R,α(
Ef )(x)≤ 2

m∏
i=1

1
|R|1−α/(mn)

∫
R

fi (yi ) dyi .

For any dyadic rectangle R, define

E(R) := {x ∈ Rn
: (5-1) holds for R but not for any proper subset of it}.

From the definition of maximal operators and the inequality (5-1), it is obvious that

Rn
=

⋃
R∈DR

E(R).

Then it follows that

‖Md
R,α(
Ef )‖qLq (ν) ≤

∑
R∈DR

∫
E(R)

(
Md

R,α(
Ef )(x)

)q

ν dx

.
∑

R∈DR

( m∏
i=1

1
|R|1−α/(mn)

∫
R

fi (yi ) dyi

)q

ν(R).

Note that

ν(R)=
∫

R

m∏
i=1

ωi (x)1/m dx ≤
m∏

i=1

ωi (R)1/m .
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Thus we have

‖Md
R,α(
Ef )‖qLq (ν) .

∑
R∈DR

m∏
i=1

(
1
|R|

∫
R

fi (yi ) dyi · 〈ωi 〉
1/mq
R

)q

|R|q/pi

≤

∑
R∈DR

m∏
i=1

(
1
|R|

∫
R

fi (yi ) ·Md
Rωi (yi )

1/mq dyi

)q

|R|q/pi .

Therefore, by Hölder’s inequality
∑
∞

j=1
∏m

i=1 |ai j | ≤
∏m

i=1
(∑
∞

j=1 |ai j |
pi/p

)p/pi, we
further deduce that

‖Md
R,α(
Ef )‖qLq (ν) ≤

m∏
i=1

[ ∑
R∈DR

|R|q/p
(

1
|R|

∫
R

fi (yi ) ·Md
Rωi (yi )

1/mq dyi

)qpi/p ]p/pi

.
m∏

i=1

‖ fi‖
q
L pi ((Md

Rωi )
pi /mq )

,

where we used Theorem 5.1 with respect to the exponents (pi , qpi/p) for ω≡ 1. �

6. Proofs of Theorems 2.4, 2.9, 2.14, 2.17 and Corollaries 2.10, 2.15

To prove Theorem 2.14, we first introduce the definition of the general basis and a
key covering lemma.

Definition 6.1 [Jawerth 1986; Jawerth and Torchinsky 1984]. Let B be a basis and
let 0< α < 1. A finite sequence {Ai }

N
i=1 ⊂B of sets of finite dx-measure is called

α-scattered with respect to the Lebesgue measure if∣∣∣Ai ∩
⋃
s<i

As

∣∣∣≤ α|Ai | for all 1< i ≤ N .

Lemma 6.2 [Grafakos et al. 2011; Jawerth 1986]. Let B be a basis and let w
be a weight associated to this basis. Suppose further that MB satisfies the condi-
tion (AB,γ,w) for some 0< γ < 1. Then, given any finite sequence {Ai }

N
i=1 of sets

Ai ∈B, one can find a subsequence { Ãi }i∈I such that:

(a) { Ãi }i∈I is γ -scattered with respect to the Lebesgue measure.

(b) Ãi = Ai , i ∈ I .

(c) For any 1≤ i < j ≤ N + 1,

w

(⋃
s< j

As

)
. w

(⋃
s<i

As

)
+w

( ⋃
i≤s< j

Ãs

)
,

where Ãs =∅ when s 6∈ I.
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Proof of Theorem 2.14. The idea of the following arguments is essentially a combi-
nation of the ideas from [Grafakos et al. 2011; Jawerth 1986; Liu and Luque 2014].
Let N > 0 be a large integer. We will prove the required estimate for the quantity∫

{2−N<M
B,ϕ,

−→
9
( Ef )≤2N+1}

M
B,ϕ,
−→
9
( Ef )(x)qvq dx,

with a bound independent of N. We begin with the following claim.

Claim 6.3. For each integer k with |k| ≤ N, there exists a compact set Kk and a
finite sequence bk = {Bk

r }r≥1 of sets Bk
r ∈B such that

vq(Kk)≤ v
q({M

B,ϕ,
−→
9
( Ef ) > 2k

})≤ 2vq(Kk).

Moreover,
{⋃

B∈bk
B
}N

k=−N is decreasing and therefore⋃
B∈bk

B ⊂ Kk ⊂ {MB,ϕ,
−→
9
( Ef ) > 2k

},

and

(6-1) ϕ(|Bk
r |)

m∏
j=1

‖ f j‖9 j ,Bk
r
> 2k .

Proof. To see the claim, for each k we choose a compact set K̃k⊂{MB,ϕ,
−→
9
( Ef )>2k

}

such that
vq(K̃k)≤ v

q({M
B,ϕ,
−→
9
( Ef ) > 2k

})2≤ vq(K̃k).

For this K̃k , there exists a finite sequence bk = {Bk
r }r≥1 of sets Bk

r ∈B such that
every Bk

r satisfies (6-1) and such that K̃k ⊂
⋃

B∈bk
B ⊂ {M

B,ϕ,
−→
9
( Ef ) > 2k

}. Now,
we take a compact set Kk such that⋃

B∈bk

B ⊂ Kk ⊂ {MB,ϕ,
−→
9
( Ef ) > 2k

}.

Finally, to ensure that
{⋃

B∈bk
B
}N

k=−N is decreasing, we begin the above selection
from k = N and once a selection is done for k we do the selection for k− 1 with
the additional requirement K̃k−1 ⊃ Kk . This finishes the proof of the claim. �

We continue with the proof of Theorem 2.14. Since
{⋃

B∈bk
B
}N

k=−N is a se-
quence of decreasing sets, we set

�k =

{⋃
r Bk

r =
⋃

B∈bk
B when |k| ≤ N .

∅ otherwise.

Observe that these sets are decreasing in k, i.e., �k+1 ⊂�k when −N < k ≤ N.
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We now distribute the sets in
⋃

k bk over µ sequences {Ai (`)}i≥1, 0≤ `≤µ−1,
where µ will be chosen momentarily to be an appropriately large natural number.
Set i0(0)= 1. In the first i1(0)− i0(0) entries of {Ai (0)}i≥1, i.e., for

i1(0)≤ i < i1(0),

we place the elements of the sequence bN = {B N
r }r≥1 in the order indicated by the

index r . For the next i2(0)− i1(0) entries of {Ai (0)}i≥1, i.e., for

i1(0)≤ i < i2(0),

we place the elements of the sequence bN−µ. We continue in this way until we reach
the first integer m0 such that N−m0µ≥−N, when we stop. For indices i satisfying

im0(0)≤ i < im0+1(0),

we place in the sequence {Ai (0)}i≥1 the elements of bN−m0µ. The sequences
{Ai (`)}i≥1, 1≤ `≤ µ− 1, are defined similarly, starting from bN−` and using the
families bN−`−sµ, s = 0, 1, . . . ,ml , where ml is chosen to be the biggest integer
such that N − l −mlµ≥−N.

Since vq is a weight associated to B and it satisfies the condition (A), we can
apply Lemma 6.2 to each {Ai (`)}i≥1 for some fixed 0 < λ < 1. Then we obtain
sequences

{ Ãi (`)}i≥1 ⊂ {Ai (`)}i≥1, 0≤ `≤ µ− 1,

which are λ-scattered with respect to the Lebesgue measure. In view of the definition
of the set k and the construction of the families {Ai (`)}i≥1, we may use assertion (c)
of Lemma 6.2 to show that: for any k= N−`−sµwith 0≤`≤µ−1 and 1≤ s≤m`,

vq(�k)= v
q(�N−`−sµ). v

q(�k+µ)+ v
q
( ⋃

is(`)≤i≤is+1(`)

Ãi (`)

)

≤ vq(�k+µ)+

is+1(`)−1∑
i=is(`)

vq( Ãi (`)).

For the case s = 0, we have k = N − ` and

vq(�k)= v
q(�N−`).

i1(`)−1∑
i=i0(`)

vq( Ãi (`)).

Now, all these sets { Ãi (`)}
is+1(`)

i=is(`)
belong to bk with k = N − `− sµ and so

(6-2) ϕ(| Ãi (`)|)

m∏
j=1

‖ f j‖9 j , Ãi (`)
> 2k .
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Therefore, it now readily follows that∫
{2−N<M

B,ϕ,
−→
9
( Ef )≤2N+1}

M
B,ϕ,
−→
9
( Ef )(x)qvq dx .

N−1∑
k=−N

2kqvq(�k) :=11,

and thus, we have

(6-3) 11 =

µ−1∑
`=0

∑
0≤s≤m`

2q(N−`−sµ)vq(�N−`−sµ)

.
µ−1∑
`=0

∑
0≤s≤m`

2q(N−`−sµ)vq(�N−`−sµ+µ)

+

µ−1∑
`=0

∑
0≤s≤m`

2q(N−`−sµ)
is+1(`)−1∑

i=is(`)

vq( Ãi (`))

:=12+13.

To analyze the contribution of 12, we choose µ so large that 2−qµ
≤

1
2 . Therefore,

(6-4) 12 = 2−qµ
µ−1∑
`=0

∑
0≤s≤m`−1

2q(N−`−sµ)vq(�N−`−sµ)

≤ 2−qµ
N−1∑

k=−N

2kqvq(�k)≤
1
211.

Since everything involved is finite, 12 can be subtracted from 11. This yields that∫
{2−N<M

B,ϕ,
−→
9
( Ef )≤2N+1}

M
B,ϕ,
−→
9
( Ef )(x)qvq dx .11 .13.

Next we consider the contribution of13. For the sake of simplicity, for each ` we
let I (`) be the index set of { Ãi (`)}0≤s≤m`,is(`)≤i<is+1(`). By (6-2) and the generalized
Hölder’s inequality (4-11), we obtain

13.
µ−1∑
`=0

∑
i∈I (`)

vq( Ãi (`))

[
ϕ(| Ãi (`)|)

m∏
i=1

‖ fi‖8, Ãi (`)

]q

(6-5)

.
µ−1∑
l=0

∑
i∈I (`)

[ m∏
j=1

‖ f j‖
p
C j , Ãi (`)

| Ãi (`)|

]q/p

×

[
ϕ(| Ãi (`)|)| Ãi (`)|

1
q−

1
p

(
1

| Ãi (`)|

∫
Ãi (`)

vq dx
) 1

q
m∏

j=1

‖w−1
j ‖A j , Ãi (`)

]q
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.
µ−1∑
`=0

∑
i∈I (`)

[ m∏
j=1

‖ f jw j‖
p
C j , Ãi (`)

| Ãi (`)|

]q/p

≤

[ µ−1∑
`=0

∑
i∈I (`)

m∏
j=1

‖ f jw j‖
p
C j , Ãi (`)

| Ãi (`)|

]q/p

,

where in the third step we used the two-weight condition (2-9).
Now, we introduce the notations

(6-6) E1(`)= Ãi (`) and Ei (`)= Ãi (`) \
⋃
s<i

Ãs(`) for all i ∈ I (`).

Since the sequences { Ãi (`)}i∈I (`) are λ-scattered with respect to the Lebesgue mea-
sure, | Ãi (`)|≤

1
1−λ |Ei (`)| for each i . Then we have the following estimate for (6-5):

(6-7) 13 .

[
1

1− λ

µ−1∑
`=0

∑
i∈I (`)

m∏
j=1

‖ f jw j‖
p
C j , Ãi (`)

|Ei (`)|

]q/p

.

The collection {Ei (`)}i∈I (`) is a disjoint family; we can therefore use the fact that
M

B,
−→
C is bounded from L p1(Rn)×· · ·×L pm (Rn) to L p(Rn) to estimate (6-7). Then

13 .

[ µ−1∑
`=0

∑
i∈I (`)

∫
Ei (`)

(
M

B,
−→
C ( f1w1, . . . , fmwm)(x)

)p

dx
]q/p

.

[ ∫
Rn

(
M

B,
−→
C ( f1w1, . . . , fmwm)(x)

)p

dx
]q/p

.
m∏

i=1

‖ fiwi‖
q
L pi (Rn) =

m∏
i=1

‖ fi‖
q
L pi (w

pi
i )
.

Finally, letting N →∞, we finish the proof. �

Proof of Corollary 2.15. For each i=1, . . . ,m, we set w̃i :=w
1/pi
i and9i (t) := t pi

′r

for any t>0. Set ṽ :=v1/q. Then we can rewrite the power bump condition (2-10) as

sup
B∈B
|B|

α
n+

1
q−

1
p

(
1
|B|

∫
B
ṽq dx

) 1
q

m∏
i=1

‖w̃−1
i ‖9i ,B <∞.

In this case, for all x ∈ Rn ,

MB,8i
f (x)= sup

B3x
B∈B

{
1
|B|

∫
B
| f (y)|(p

′

i r)
′

dy
}1/(p′i r)

′

.
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Since B is a Muckenhoupt basis and (p′ir)
′ < pi , every MB,9 i

is bounded on
L pi (Rn). It is easy to see that

M
B,
−→
9
( Ef )(x)≤

m∏
i=1

MB,9 i
( fi )(x), x ∈ Rn,

which implies that M
B,
−→
9

is bounded from L p1(Rn)× · · · × L pm (Rn) to L p(Rn).
Therefore, from Theorem 2.14, it follows that

MB,α : L p1(w̃
p1
1 )× · · ·× L pm (w̃ pm

m )→ Lq(ṽq),

which completes the proof. �

Proof of Theorem 2.9. The fact that R is a Muckenhoupt basis can be found in
[García-Cuerva and Rubio de Francia 1985, p. 454]. Moreover, for the rectangle
family R, the A∞,R condition is equivalent to Tauberian condition (AR,γ,w), which
was proved in [Hagelstein et al. 2015, Corollary 4.8]. Therefore, Theorem 2.9
follows from these facts and Corollary 2.15. �

Proof of Corollary 2.10. From Theorem 3.2, it follows that v p
∈ Amp,R ⊂ A∞,R.

As for v =
∏m

i=1u1/pi
i and wi = Mαpi/m(ui ), it is easy to verify that ( Ew, v) satisfies

the power bump condition (2-6). Hence, it yields the desired result. �

Proof of Theorem 2.17. Theorem 2.17 follows by using similar arguments to those
in the proof of Theorem 2.14. The difference lies in the boundedness of M EY ′ and
the generalized Hölder’s inequality∫

Rn
| f (x)g(x)| dx ≤ ‖ f ‖X‖g‖X ′

for any Banach function space X. �

Proof of Theorem 2.4. It is well known that there exists some h ∈ Lr ′(Rn) with
norm ‖h‖Lr ′ (Rn) = 1 such that

‖MR f ‖p
L p(`q ,w p) =

∫
Rn

(∑
j

MR f j (x)qw(x)q
)r

dx

=

∑
j

∫
Rn

MR f j (x)qw(x)qh(x) dx .

In order to estimate
∫

Rn MR f j (x)qw(x)qh(x) dx for fixed j, we adopt a similar
method to that in the proof of Theorem 2.14. Since we obtained the inequality (6-4),
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we get for any fixed N > 0

3 j,N :=

∫
{2−N<MR f j (x)≤2N+1}

MR f j (x)qw(x)qh(x) dx

.
µ−1∑
`=0

∑
0≤s≤m`

is+1(`)−1∑
i=is(`)

(wqh)( Ãi (`))

(
1

| Ãi (`)|

∫
Ãi (`)

| f j (x)| dx
)q

.

Making use of the Hölder inequality and two weight condition (2-1), we deduce

3 j,N .
∑
`,s,i

‖wq
‖A, Ãi (`)

‖h‖A, Ãi (`)
‖ f jv‖

q
B, Ãi (`)

‖v−1
‖

q
B, Ãi (`)

| Ãi (`)|

.
∑
`,s,i

‖ f jv‖
q
B, Ãi (`)

‖h‖A, Ãi (`)
| Ãi (`)|.

Using the same notations {Ei (`)} as (6-6), we have

3 j,N .
∑
`,s,i

‖ f jv‖
q
B, Ãi (`)

‖h‖A, Ãi (`)
|Ei (`)|

≤

∑
`,i

∫
Ei (`)

MR,B( f jv)(x)q MR,Ah(x) dx

.
∫

Rn
MR,B( f jv)(x)q MR,Ah(x) dx .

Letting N →∞, we have∫
Rn

MR f j (x)qw(x)qh(x) dx .
∫

Rn
MR,B( f jv)(x)q MR,Ah(x) dx .

Therefore, from the Hölder inequality and Proposition 6.4, it follows that

‖MR f ‖qL p(`q ,w p) .
∥∥∥(∑

j=1

(MR,B( f jv))
q
)1/q∥∥∥q

L p(Rn)
‖MR,Ah‖Lr ′ (Rn)

.
∥∥∥(∑

j=1

( f jv)
q
)1/q∥∥∥q

L p(Rn)
‖h‖Lr ′ (Rn) = ‖ f ‖qL p(`q ,v p).

This completes the proof of Theorem 2.4. �

Proposition 6.4. Let 1 < q < p < ∞. Suppose 8 is a Young function such
that 8 ∈ B∗q . If the (AR,γ,g) condition holds for some fixed γ ∈ (0, 1) and any
nonnegative function g ∈ Lr ′(Rn) with ‖g‖Lr ′ (Rn) = 1, then we have

‖MR,8 f ‖L p(`q ,Rn) . ‖ f ‖L p(`q ,Rn).
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Proof. Set r = p/q . Then, it holds that

‖MR,8 f ‖qL p(`q ,Rn) = sup
‖g‖

Lr ′ (Rn )
=1

∣∣∣ ∫
Rn

∑
j

MR,8 f j (x)q g(x)dx
∣∣∣.

For fixed g ∈ Lr ′(Rn) with ‖g‖Lr ′ (Rn) = 1, from the Fefferman–Stein inequality for
the maximal operator MR,8 (see [Liu and Luque 2014, Theorem 2.1]), it follows that∣∣∣∫

Rn

∑
j

MR,8 f j (x)q g(x) dx
∣∣∣≤∑

j

∫
Rn

MR,8 f j (x)q |g(x)| dx

.
∑

j

∫
Rn
| f j (x)|q MRg(x) dx

≤

∥∥∥∑
j

| f j |
q
∥∥∥

Lr (Rn)
‖MRg‖Lr ′ (Rn)

. ‖ f ‖qL p(`q ,Rn)‖g‖Lr ′ (Rn) = ‖ f ‖qL p(`q ,Rn). �

Acknowledgements

The authors want to express their sincere thanks to the unknown referee for valuable
remarks which made this paper more readable.

References

[Bagby and Kurtz 1984] R. J. Bagby and D. S. Kurtz, “L(log L) spaces and weights for the strong
maximal function”, J. Analyse Math. 44 (1984), 21–31. MR Zbl

[Cao et al. 2017] M. Cao, Q. Xue, and K. Yabuta, “On multilinear fractional strong maximal operator
associated with rectangles and multiple weights”, Rev. Mat. Iberoam. 33:2 (2017), 555–572. MR
Zbl

[Capri and Gutiérrez 1988] O. N. Capri and C. E. Gutiérrez, “Weighted inequalities for a vector-valued
strong maximal function”, Rocky Mountain J. Math. 18:3 (1988), 565–570. MR Zbl

[Chen et al. 2014] S. Chen, H. Wu, and Q. Xue, “A note on multilinear Muckenhoupt classes for
multiple weights”, Studia Math. 223:1 (2014), 1–18. MR Zbl

[Córdoba 1976] A. Córdoba, “On the Vitali covering properties of a differentiation basis”, Studia
Math. 57:1 (1976), 91–95. MR Zbl

[Córdoba and Fefferman 1975] A. Corboda (i.e., Córdoba) and R. Fefferman, “A geometric proof of
the strong maximal theorem”, Ann. of Math. (2) 102:1 (1975), 95–100. MR Zbl

[Duoandikoetxea 1993] J. Duoandikoetxea, “Weighted norm inequalities for homogeneous singular
integrals”, Trans. Amer. Math. Soc. 336:2 (1993), 869–880. MR Zbl

[Fefferman 1981] R. Fefferman, “Strong differentiation with respect to measures”, Amer. J. Math.
103:1 (1981), 33–40. MR Zbl

[Fefferman and Stein 1982] R. Fefferman and E. M. Stein, “Singular integrals on product spaces”,
Adv. Math. 45:2 (1982), 117–143. MR Zbl

http://dx.doi.org/10.1007/BF02790188
http://dx.doi.org/10.1007/BF02790188
http://msp.org/idx/mr/801285
http://msp.org/idx/zbl/0583.42008
http://dx.doi.org/10.4171/RMI/949
http://dx.doi.org/10.4171/RMI/949
http://msp.org/idx/mr/3651015
http://msp.org/idx/zbl/1370.42014
http://dx.doi.org/10.1216/RMJ-1988-18-3-565
http://dx.doi.org/10.1216/RMJ-1988-18-3-565
http://msp.org/idx/mr/972649
http://msp.org/idx/zbl/0676.42018
http://dx.doi.org/10.4064/sm223-1-1
http://dx.doi.org/10.4064/sm223-1-1
http://msp.org/idx/mr/3268714
http://msp.org/idx/zbl/1311.42055
http://dx.doi.org/10.4064/sm-57-1-91-95
http://msp.org/idx/mr/0419714
http://msp.org/idx/zbl/0369.28001
http://dx.doi.org/10.2307/1970976
http://dx.doi.org/10.2307/1970976
http://msp.org/idx/mr/0379785
http://msp.org/idx/zbl/0325.42015
http://dx.doi.org/10.2307/2154381
http://dx.doi.org/10.2307/2154381
http://msp.org/idx/mr/1089418
http://msp.org/idx/zbl/0770.42011
http://dx.doi.org/10.2307/2374188
http://msp.org/idx/mr/601461
http://msp.org/idx/zbl/0475.42019
http://dx.doi.org/10.1016/S0001-8708(82)80001-7
http://msp.org/idx/mr/664621
http://msp.org/idx/zbl/0517.42024


BOUNDEDNESS OF MULTILINEAR FRACTIONAL STRONG MAXIMAL OPERATORS 517

[García-Cuerva and Rubio de Francia 1985] J. García-Cuerva and J. L. Rubio de Francia, Weighted
norm inequalities and related topics, North-Holland Math. Studies 116, North-Holland, Amsterdam,
1985. MR Zbl

[Grafakos et al. 2011] L. Grafakos, L. Liu, C. Pérez, and R. H. Torres, “The multilinear strong
maximal function”, J. Geom. Anal. 21:1 (2011), 118–149. MR Zbl

[Hagelstein and Parissis 2018] P. Hagelstein and I. Parissis, “Weighted Solyanik estimates for the
strong maximal function”, Publ. Mat. 62:1 (2018), 133–159. MR Zbl

[Hagelstein et al. 2015] P. Hagelstein, T. Luque, and I. Parissis, “Tauberian conditions, Muckenhoupt
weights, and differentiation properties of weighted bases”, Trans. Amer. Math. Soc. 367:11 (2015),
7999–8032. MR Zbl

[Hytönen 2017] T. P. Hytönen, “Representation of singular integrals by dyadic operators, and the A2
theorem”, Expo. Math. 35:2 (2017), 166–205. MR Zbl

[Hytönen and Martikainen 2014] T. Hytönen and H. Martikainen, “Non-homogeneous T 1 theorem
for bi-parameter singular integrals”, Adv. Math. 261 (2014), 220–273. MR Zbl

[Jawerth 1986] B. Jawerth, “Weighted inequalities for maximal operators: linearization, localization
and factorization”, Amer. J. Math. 108:2 (1986), 361–414. MR Zbl

[Jawerth and Torchinsky 1984] B. Jawerth and A. Torchinsky, “The strong maximal function with
respect to measures”, Studia Math. 80:3 (1984), 261–285. MR Zbl

[Jessen et al. 1935] B. Jessen, J. Marcinkiewicz, and A. Zygmund, “Note on the differentiability of
multiple integrals”, Fund. Math. 25 (1935), 217–234. Zbl

[Journé 1985] J.-L. Journé, “Calderón–Zygmund operators on product spaces”, Rev. Mat. Iberoam.
1:3 (1985), 55–91. MR Zbl

[Kurtz 1980] D. S. Kurtz, “Littlewood–Paley and multiplier theorems on weighted L p spaces”, Trans.
Amer. Math. Soc. 259:1 (1980), 235–254. MR Zbl

[Liu and Luque 2014] L. Liu and T. Luque, “A Bp condition for the strong maximal function”, Trans.
Amer. Math. Soc. 366:11 (2014), 5707–5726. MR Zbl

[Long and Shen 1988] R. L. Long and Z. W. Shen, “A note on a covering lemma of A. Córdoba and
R. Fefferman”, Chinese Ann. Math. Ser. B 9:3 (1988), 283–291. MR Zbl

[Luque and Parissis 2014] T. Luque and I. Parissis, “The endpoint Fefferman–Stein inequality for the
strong maximal function”, J. Funct. Anal. 266:1 (2014), 199–212. MR Zbl

[Martikainen 2012] H. Martikainen, “Representation of bi-parameter singular integrals by dyadic
operators”, Adv. Math. 229:3 (2012), 1734–1761. MR Zbl

[Mitsis 2006] T. Mitsis, “The weighted weak type inequality for the strong maximal function”, J.
Fourier Anal. Appl. 12:6 (2006), 645–652. MR Zbl

[O’Neil 1965] R. O’Neil, “Fractional integration in Orlicz spaces, I”, Trans. Amer. Math. Soc. 115
(1965), 300–328. MR Zbl

[Ou 2015] Y. Ou, “A T (b) theorem on product spaces”, Trans. Amer. Math. Soc. 367:9 (2015),
6159–6197. MR Zbl

[Pérez 1993] C. Pérez, “A remark on weighted inequalities for general maximal operators”, Proc.
Amer. Math. Soc. 119:4 (1993), 1121–1126. MR Zbl

[Pérez 2000] C. Pérez, “Sharp weighted inequalities for the vector-valued maximal function”, Trans.
Amer. Math. Soc. 352:7 (2000), 3265–3288. MR Zbl

[Pott and Villarroya 2011] S. Pott and P. Villarroya, “A T (1) theorem on product spaces”, preprint,
2011. arXiv

https://www.sciencedirect.com/bookseries/north-holland-mathematics-studies/vol/116
https://www.sciencedirect.com/bookseries/north-holland-mathematics-studies/vol/116
http://msp.org/idx/mr/807149
http://msp.org/idx/zbl/0578.46046
http://dx.doi.org/10.1007/s12220-010-9174-8
http://dx.doi.org/10.1007/s12220-010-9174-8
http://msp.org/idx/mr/2755679
http://msp.org/idx/zbl/1219.42008
http://dx.doi.org/10.5565/PUBLMAT6211807
http://dx.doi.org/10.5565/PUBLMAT6211807
http://msp.org/idx/mr/3738186
http://msp.org/idx/zbl/1385.42011
http://dx.doi.org/10.1090/S0002-9947-2015-06339-9
http://dx.doi.org/10.1090/S0002-9947-2015-06339-9
http://msp.org/idx/mr/3391907
http://msp.org/idx/zbl/1330.42013
http://dx.doi.org/10.1016/j.exmath.2016.09.003
http://dx.doi.org/10.1016/j.exmath.2016.09.003
http://msp.org/idx/mr/3654073
http://msp.org/idx/zbl/1402.42026
http://dx.doi.org/10.1016/j.aim.2014.02.011
http://dx.doi.org/10.1016/j.aim.2014.02.011
http://msp.org/idx/mr/3213300
http://msp.org/idx/zbl/1301.42030
http://dx.doi.org/10.2307/2374677
http://dx.doi.org/10.2307/2374677
http://msp.org/idx/mr/833361
http://msp.org/idx/zbl/0608.42012
http://dx.doi.org/10.4064/sm-80-3-261-285
http://dx.doi.org/10.4064/sm-80-3-261-285
http://msp.org/idx/mr/783994
http://msp.org/idx/zbl/0565.42008
http://dx.doi.org/10.4064/fm-25-1-217-234
http://dx.doi.org/10.4064/fm-25-1-217-234
http://msp.org/idx/zbl/0012.05901
http://dx.doi.org/10.4171/RMI/15
http://msp.org/idx/mr/836284
http://msp.org/idx/zbl/0634.42015
http://dx.doi.org/10.2307/1998156
http://msp.org/idx/mr/561835
http://msp.org/idx/zbl/0436.42012
http://dx.doi.org/10.1090/S0002-9947-2014-05956-4
http://msp.org/idx/mr/3256181
http://msp.org/idx/zbl/1305.42020
http://msp.org/idx/mr/968464
http://msp.org/idx/zbl/0671.42019
http://dx.doi.org/10.1016/j.jfa.2013.09.028
http://dx.doi.org/10.1016/j.jfa.2013.09.028
http://msp.org/idx/mr/3121727
http://msp.org/idx/zbl/1310.42011
http://dx.doi.org/10.1016/j.aim.2011.12.019
http://dx.doi.org/10.1016/j.aim.2011.12.019
http://msp.org/idx/mr/2871155
http://msp.org/idx/zbl/1241.42012
http://dx.doi.org/10.1007/s00041-005-5060-3
http://msp.org/idx/mr/2275389
http://msp.org/idx/zbl/1114.42007
http://dx.doi.org/10.2307/1994271
http://msp.org/idx/mr/194881
http://msp.org/idx/zbl/0132.09201
http://dx.doi.org/10.1090/S0002-9947-2015-06246-1
http://msp.org/idx/mr/3356933
http://msp.org/idx/zbl/1327.42018
http://dx.doi.org/10.2307/2159974
http://msp.org/idx/mr/1107275
http://msp.org/idx/zbl/0810.42008
http://dx.doi.org/10.1090/S0002-9947-99-02573-8
http://msp.org/idx/mr/1695034
http://msp.org/idx/zbl/0944.42012
http://msp.org/idx/arx/1105.2516


518 MINGMING CAO, QINGYING XUE AND KÔZÔ YABUTA

[Rao and Ren 1991] M. M. Rao and Z. D. Ren, Theory of Orlicz spaces, Monogr. Textbooks Pure
Appl. Math. 146, Dekker, New York, 1991. MR Zbl

[Yabuta 2011] K. Yabuta, “A remark on radial A p weights”, Hokkaido Math. J. 40:2 (2011), 241–249.
MR Zbl

Received October 5, 2017.

MINGMING CAO

SCHOOL OF MATHEMATICAL SCIENCES

BEIJING NORMAL UNIVERSITY

BEIJING

CHINA

m.cao@mail.bnu.edu.cn

QINGYING XUE

SCHOOL OF MATHEMATICAL SCIENCES

BEIJING NORMAL UNIVERSITY

BEIJING

CHINA

qyxue@bnu.edu.cn

KÔZÔ YABUTA

RESEARCH CENTER FOR MATHEMATICAL SCIENCES

KWANSEI GAKUIN UNIVERSITY

SANDA

JAPAN

kyabuta3@kwansei.ac.jp

http://msp.org/idx/mr/1113700
http://msp.org/idx/zbl/0724.46032
http://dx.doi.org/10.14492/hokmj/1310042830
http://msp.org/idx/mr/2840108
http://msp.org/idx/zbl/1231.42015
mailto:m.cao@mail.bnu.edu.cn
mailto:qyxue@bnu.edu.cn
mailto:kyabuta3@kwansei.ac.jp


PACIFIC JOURNAL OF MATHEMATICS
Founded in 1951 by E. F. Beckenbach (1906–1982) and F. Wolf (1904–1989)

msp.org/pjm

EDITORS

Don Blasius (Managing Editor)
Department of Mathematics

University of California
Los Angeles, CA 90095-1555

blasius@math.ucla.edu

Matthias Aschenbrenner
Department of Mathematics

University of California
Los Angeles, CA 90095-1555

matthias@math.ucla.edu

Daryl Cooper
Department of Mathematics

University of California
Santa Barbara, CA 93106-3080

cooper@math.ucsb.edu

Jiang-Hua Lu
Department of Mathematics

The University of Hong Kong
Pokfulam Rd., Hong Kong

jhlu@maths.hku.hk

Paul Balmer
Department of Mathematics

University of California
Los Angeles, CA 90095-1555

balmer@math.ucla.edu

Wee Teck Gan
Mathematics Department

National University of Singapore
Singapore 119076

matgwt@nus.edu.sg

Sorin Popa
Department of Mathematics

University of California
Los Angeles, CA 90095-1555

popa@math.ucla.edu

Paul Yang
Department of Mathematics

Princeton University
Princeton NJ 08544-1000
yang@math.princeton.edu

Vyjayanthi Chari
Department of Mathematics

University of California
Riverside, CA 92521-0135

chari@math.ucr.edu

Kefeng Liu
Department of Mathematics

University of California
Los Angeles, CA 90095-1555

liu@math.ucla.edu

Jie Qing
Department of Mathematics

University of California
Santa Cruz, CA 95064

qing@cats.ucsc.edu

PRODUCTION
Silvio Levy, Scientific Editor, production@msp.org

SUPPORTING INSTITUTIONS

ACADEMIA SINICA, TAIPEI

CALIFORNIA INST. OF TECHNOLOGY

INST. DE MATEMÁTICA PURA E APLICADA

KEIO UNIVERSITY

MATH. SCIENCES RESEARCH INSTITUTE

NEW MEXICO STATE UNIV.
OREGON STATE UNIV.

STANFORD UNIVERSITY

UNIV. OF BRITISH COLUMBIA

UNIV. OF CALIFORNIA, BERKELEY

UNIV. OF CALIFORNIA, DAVIS

UNIV. OF CALIFORNIA, LOS ANGELES

UNIV. OF CALIFORNIA, RIVERSIDE

UNIV. OF CALIFORNIA, SAN DIEGO

UNIV. OF CALIF., SANTA BARBARA

UNIV. OF CALIF., SANTA CRUZ

UNIV. OF MONTANA

UNIV. OF OREGON

UNIV. OF SOUTHERN CALIFORNIA

UNIV. OF UTAH

UNIV. OF WASHINGTON

WASHINGTON STATE UNIVERSITY

These supporting institutions contribute to the cost of publication of this Journal, but they are not owners or publishers and have no
responsibility for its contents or policies.

See inside back cover or msp.org/pjm for submission instructions.

The subscription price for 2019 is US $490/year for the electronic version, and $665/year for print and electronic.
Subscriptions, requests for back issues and changes of subscriber address should be sent to Pacific Journal of Mathematics, P.O. Box
4163, Berkeley, CA 94704-0163, U.S.A. The Pacific Journal of Mathematics is indexed by Mathematical Reviews, Zentralblatt MATH,
PASCAL CNRS Index, Referativnyi Zhurnal, Current Mathematical Publications and Web of Knowledge (Science Citation Index).

The Pacific Journal of Mathematics (ISSN 1945-5844 electronic, 0030-8730 printed) at the University of California, c/o Department
of Mathematics, 798 Evans Hall #3840, Berkeley, CA 94720-3840, is published twelve times a year. Periodical rate postage paid at
Berkeley, CA 94704, and additional mailing offices. POSTMASTER: send address changes to Pacific Journal of Mathematics, P.O.
Box 4163, Berkeley, CA 94704-0163.

PJM peer review and production are managed by EditFLOW® from Mathematical Sciences Publishers.

PUBLISHED BY

mathematical sciences publishers
nonprofit scientific publishing

http://msp.org/
© 2019 Mathematical Sciences Publishers

http://msp.org/pjm/
mailto:blasius@math.ucla.edu
mailto:matthias@math.ucla.edu
mailto:cooper@math.ucsb.edu
mailto:jhlu@maths.hku.hk
mailto:balmer@math.ucla.edu
mailto:matgwt@nus.edu.sg
mailto:popa@math.ucla.edu
mailto:yang@math.princeton.edu
mailto:chari@math.ucr.edu
mailto:liu@math.ucla.edu
mailto:qing@cats.ucsc.edu
mailto:production@msp.org
http://msp.org/pjm/
http://www.ams.org/mathscinet
http://www.emis.de/ZMATH/
http://www.viniti.ru/math_new.html
http://www.ams.org/bookstore-getitem/item=cmp
http://apps.isiknowledge.com
http://msp.org/
http://msp.org/


PACIFIC JOURNAL OF MATHEMATICS

Volume 303 No. 2 December 2019

385Polarization, sign sequences and isotropic vector systems
GERGELY AMBRUS and SLOAN NIETERT

401L p-operator algebras with approximate identities, I
DAVID P. BLECHER and N. CHRISTOPHER PHILLIPS

459The center of a Green biset functor
SERGE BOUC and NADIA ROMERO

491On the boundedness of multilinear fractional strong maximal operators
with multiple weights

MINGMING CAO, QINGYING XUE and KÔZÔ YABUTA

519Embedding and compact embedding for weighted and abstract Sobolev
spaces

SENG-KEE CHUA

569A pro-p group with infinite normal Hausdorff spectra
BENJAMIN KLOPSCH and ANITHA THILLAISUNDARAM

605Invariant connections and PBW theorem for Lie groupoid pairs
CAMILLE LAURENT-GENGOUX and YANNICK VOGLAIRE

669Random Möbius groups, I: Random subgroups of PSL(2,R)
GAVEN MARTIN and GRAEME O’BRIEN

703Puzzles in K-homology of Grassmannians
PAVLO PYLYAVSKYY and JED YANG

729Linearly dependent powers of binary quadratic forms
BRUCE REZNICK

757Stability of the existence of a pseudo-Einstein contact form
YUYA TAKEUCHI

0030-8730(201912)303:2;1-H

Pacific
JournalofM

athem
atics

2019
Vol.303,N

o.2


	1. Introduction
	2. Definitions and main results
	Rectangular setting
	The general basis and two weight norm inequalities

	3. A survey on multiple strong Muckenhoupt weights
	4. Proofs of Theorem 2.1 and Theorem 2.7
	5. The multilinear Fefferman–Stein inequality
	6. Proofs of Theorems Theorem 2.4, Theorem 2.9, Theorem 2.14, Theorem 2.17 and Corollaries Corollary 2.10, Corollary 2.15
	Acknowledgements
	References
	
	

