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SENG-KEE CHUA

Let � be an open set in a metric space H , 1 ≤ p0, p ≤ q <∞, a, b, γ ∈ R,
a ≥ 0. Suppose σ,µ,w are Borel measures. Combining results from earlier
work (2009) with those obtained in work with Wheeden (2011) and with
Rodney and Wheeden (2013), we study embedding and compact embed-
ding theorems of sets S ⊂ L1

σ,loc(�)× L p
w(�) to Lq

µ(�) (projection to the
first component) where S (abstract Sobolev space) satisfies a Poincaré-type
inequality, σ satisfies certain weak doubling property and µ is absolutely
continuous with respect to σ . In particular, when H = Rn, w,µ, ρ are
weights so that ρ is essentially constant on each ball deep inside in�\F, and
F is a finite collection of points and hyperplanes. With the help of a simple
observation, we apply our result to the study of embedding and compact
embedding of L p0

ργ (�)∩ E p
wρb(�) and weighted fractional Sobolev spaces to

Lq
µρa (�), where E p

wρb(�) is the space of locally integrable functions in �
such that their weak derivatives are in L p

wρb(�). In Rn, our assumptions are
mostly sharp. Besides extending numerous results in the literature, we also
extend a result of Bourgain et al. (2002) on cubes to John domains.

1. Introduction

Sobolev embedding, compact embedding and Poincaré inequalities are essential
tools in the study of elliptic partial differential equations (including Yamabe-type
problems)

(1-1) ∇ · (A(x)|∇u|p−2
∇u)+ λ|u|p−2u = |u|q−2u (q > p > 1),

where q is less than the critical exponent in the Sobolev embedding and A(x) is a
uniformly (or at least locally) positive definite matrix valued function. However,
stronger (for example weighted) Sobolev (and compact) embedding is needed if
A(x) fails to be uniformly positive definite or degenerate. In this direction, Caffarelli,
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Kohn and Nirenberg [Caffarelli et al. 1984] studied the following weighted Sobolev
interpolation inequalities

‖|x |αu‖Lq (Rn)
≤ C

(
‖|x |γ u‖Lr (Rn)

+‖|x |β∇u‖L p(Rn)

)
.

It has been extended to Lipschitz (and C0,λ) domains and various distant weights
by Gurka and Opic [1988; 1989; 1991] and Kufner [1985] (see also Brown and
Hinton [1988]). More recently, it has also been generalized to domains satisfying
chain conditions (such as John domains and generalized John domains [Hajłasz and
Koskela 1998; Chua 2005; 2009]).

Together with the Poincaré inequality, embedding and compact embedding
on Sobolev spaces are used in the studies of elliptic [Saloff-Coste 2002; Brezis
and Nirenberg 1983] and degenerate elliptic partial differential equations [Chua
and Wheeden 2017; Rodney 2010; Sawyer and Wheeden 2006]. For example,
boundedness and regularity of solutions can be obtained if the associate operator of
equations satisfies some structure conditions [Monticelli et al. 2012; 2015] while
existence of solutions can be assured by embedding and compact embedding [Chua
and Wheeden 2017]. Indeed, just Sobolev embedding alone (for the associated
operator) will lead to boundedness of solutions of degenerate equations [Chua
2017a]. We will study the counterpart of embedding and compact embedding
on abstract Sobolev spaces which include degenerate Sobolev spaces (including
weighted fractional Sobolev spaces) on irregular domains. We are able to obtain such
embeddings for (Borel) measures that need not be doubling nor reverse doubling
(on �). We will always assume a simple Poincaré-type inequality (1-4) and use it
to obtain various Poincaré inequalities via a standard technique of self improving
[Franchi et al. 2003; Chua and Wheeden 2008] on (weak) John domains and balls
without any chain or geodesic path condition (see Remark 2.8(3)). Such inequalities
are then used to obtain embedding and compact embedding on domains which are
a countable union of bounded overlapping (weak) John domains with the same
parameters (for example, a generalized John domain). We further provide a unified
approach for weights that are essentially constant (1-21) on δ-balls (balls that
are “deep” inside the domain). In particular, in case of Euclidean spaces, our
assumptions turn out to be simple (and sharp) for such an embedding to hold. As
applications, we extend many known results in the literature; for example, [Chanillo
and Wheeden 1992; Gatto and Wheeden 1989] (see Corollary 1.6, Remark 1.7);
Bourgain, Brezis and Mironescu [Bourgain et al. 2002] (that has been improved
by Mazya and Shaposhnikova [2002]). For the latter, we extend it to weighted
fractional Sobolev inequalities on John domains in Remark 1.7(3). Furthermore,
we extend a weighted Sobolev interpolation inequality by Caffarelli, Kohn and
Nirenberg [Caffarelli et al. 1984] to a weighted fractional interpolation inequality
with much more complicated weights that may not be doubling (see Theorem 1.14).
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In what follows, C will denote a generic positive constant while C(α, β, γ, . . . )
will denote a constant that is depending only on α, β, γ, . . . . When µ and w are
weights (nonnegative locally integrable Borel measurable functions), by abusing the
notation, dµ and dw will denote the measure µ dx and w dx respectively. When
� is a domain in the Euclidean space, E p

w(�) will denote the class of locally
Lebesgue integrable functions on � with weak derivatives in L p

w(�). We will write
W 1,p
w (�) = L p

w(�) ∩ E p
w(�). This space could be just a normed space (it is a

Banach space if w−1/(p−1) is locally integrable in � [Kufner and Opic 1984]). We
will also work on (weighted) fractional Sobolev spaces (0< α < 1)

Ŵ α,p
w (�)=

{
f ∈ L1

loc(�) : ‖ f ‖Ŵα,p
w (�)

=(∫
�

∫
B(x,ρ�(x)/2)

| f (x)− f (y)|p

|x − y|n+αp dyw(x)dx
)1/p

<∞

}
,

where ρ�(x) = inf{|x − y| : y ∈ �c
} (ρ�(x) =∞ if �c

= ∅). Note that a more
common (weighted) fractional Sobolev space is usually defined as

W α,p
w (�)=

{
f ∈ L1

loc(�) : ‖ f ‖Wα,p
w (�)

=(∫
�

∫
�

| f (x)− f (y)|p

|x − y|n+αp dyw(x)dx
)1/p

<∞

}
.

While it is clear that W α,p
w (�)⊂ Ŵ α,p

w (�), the converse is in general not true even
when w = 1 [Dyda et al. 2016]. In Euclidean spaces, we usually assume (Q is any
ball in Rn )

(1-2)
1
|Q|
‖ f − fQ‖L1(Q) ≤ a(Q)‖∇�α,p f ‖L p

w(Q)
, where fQ =

∫
Q

f dx/|Q|,

a(Q) is a ball set function and ∇�α,p f (0<α ≤ 1) could be either the usual gradient
|∇ f | (when α = 1) or the “fractional derivative,” that is

∇α f (x)=∇�α,p f (x)=
(∫

B(x,ρ�(x)/2)

| f (x)− f (y)|p

|x − y|n+αp dy
)1/p

.

For example, when 5Q ⊂ �, (1-2) is known to hold for w = 1 with a(Q) =
C |Q|α/n−1/p and hence also holds for any weight w with

a(Q)= C |Q|α/n
‖w−1/p

‖L p′ (Q).

For 0 < α < 1, see Remark 1.2(5). The case where α = 1 is well-known (for all
balls Q).
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Equation (1-2) can be used to obtain

(1-3) ‖ f − fB ′‖Lq
µ(�)
≤ C‖∇α f ‖L p

w(�)
,

where B ′ is a “central ball” in � (see Theorem 1.8). Hence (if µ(�) <∞)

‖ f ‖Lq
µ(�)
≤ C

(
‖ f ‖L1(�)

+‖∇α f ‖L p
w(�)

)
.

Moreover, as (1-3) will always imply the inequality (1-3) with fB ′ being replaced
by
∫
�

f dµ/µ(�), we also have

‖ f ‖Lq
µ(�)
≤ C

(
‖ f ‖L1

µ(�)
+‖∇α f ‖L p

w(�)

)
.

The case where dµ= dist(x, �0)
a dx and dw = dist(x, �0)

b dx , a ≥ 0, b ∈ R,
α = 1, �0 ⊂ �

c has been studied in [Chua and Wheeden 2011] when � is an
s-John domain (s ≥ 1). See [Gurka and Opic 1988; 1989; 1991] for some other
weights on C0,1/s domains. For negative a and 0< α < 1, see [Chua 2016; 2017b].
In this note, we will discuss the case where � (an open set in a metric space) is a
bounded overlapping countable union of weak John domains (see (1-7)) with a fixed
parameter. This includes generalized John domains [Chua 2009, Definition 1.2]
which include bounded and unbounded John domains [Väisälä 1989]. We also
allow �0 6⊂�

c and more complicated weights which may degenerate (0 or∞) in �.
Most of the previous studies assumed µ to be doubling or at least reverse doubling;
see [Chua and Wheeden 2011; Hajłasz and Koskela 1998; Hurri-Syrjänen 2004].
Indeed, they considered mostly the case a ≥ 0. Even though there were studies
for the case a < 0, the weight µ was known to be doubling (i.e., µdx is doubling)
[Chua 2009; 1995; Chua and Wheeden 2011]. For simplicity, we discuss only a few
typical applications that include the case where the power a may be negative and µ
may neither be δ-doubling (see below) nor reverse doubling. In order to overcome
this problem, we first observe that a John domain is still John domain after a finite
number of points is removed. We then see that the Sobolev space on the resulting
smaller domain contains the original Sobolev space.

For simplicity, we will consider mostly metric spaces where Sobolev spaces
are well studied [Cheeger 1999; Heinonen 2001; Hajłasz 1996; Keith 2004; Keith
and Zhong 2008] instead of quasimetric spaces even though the technique can be
extended to quasimetric spaces as in [Chua and Wheeden 2011; Chua et al. 2013;
Sawyer and Wheeden 2010]. Indeed, given any quasimetric d, there exists ε > 0
such that dε is bi-Lipschitz equivalent to a metric [Heinonen 2001, Proposition 14.5].
Note that our study will also include Alexandrov spaces and Carnot–Carathéodory
metric spaces.

Let 0<δ≤ 1
2 and� be an open set in a metric space. B(x, r) or Br (x)will denote

the metric (or quasimetric) ball with center x and radius r(B) = r . Furthermore,
CB=CB(x, r) will denote the ball B(x,Cr). We say B is a δ-ball of� if B/δ⊂�.
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We say σ is a δ-doubling measure on � if σ(2k B∩�)≤ (Dσ )
kσ(B) for all δ-balls

B of � and k ∈ N. Moreover, we say it is doubling on � if the above holds for all
balls with center in �. We say σ is doubling if it is doubling on the whole metric
space. Let w be a Borel measure on � and 1≤ τ ≤ 1/(2δ). We will be interested
in (abstract Sobolev space) S⊂ L1

σ,loc(�)× L p
w,loc(�) (or L1

σ,loc(�)× L p
w,loc(�)

n)
that satisfies the following Poincaré-type inequality:

(1-4)
1

σ(Q)
‖ f − fQ,σ‖L1

σ (Q)
≤ a(Q)‖g‖L p

w(τQ)

for all δ-balls Q of � and ( f, g) ∈S,

where fQ,σ =
∫

Q f dσ/σ(Q) and a(Q) is a ball set function (independent of
( f, g)). By f ∈ L1

σ,loc(�), we mean f ∈ L1
σ (B) for all δ-balls B. The definition

will be independent of δ ≤ 1
2 as � in this note is assumed to be at most a countable

union of bounded overlapping weak John domains � j such that σ is δ-doubling
on each � j . Such a simple Poincaré inequality is known to hold in Riemannian
manifolds with g= |∇ f | and Sobolev space on Carnot–Carathéodory metric spaces
with Hörmander vector fields [Lu 1992b; 1996; Franchi et al. 1995] with g = |X f |,
where X is the “differential operator” associated to the vector field. Indeed, in the
later case, it holds with σ = w = 1 and p = 1 on metric (associated to the vector
field) balls. Furthermore, similar to [Chua and Wheeden 2011], for any function f ,
b ∈ R and ω > 0, we define (the truncation of | f − b|)

f ωb =min
{
max{0, | f − b| −ω}, ω

}
.

We say that S satisfies (1-4) with the truncation property if for all ( f, g)∈S, b ∈R

and ω > 0, there exists gωb ∈ L p
w(�) such that ( f ωb , gωb ) satisfies the inequality (1-4)

and

(1-5) sup
ω>0,b∈R

∞∑
k=1

‖g2kω
b ‖

p
L p
w(�)
≤ (cT )

p
‖g‖p

L p
w(�)

(cT ≥ 1).

For example, if (1-4) holds for all Lipschitz functions u and their derivative |∇u| on
a Riemannian manifold, it will satisfy (1-4) with the truncation property. Similarly,
when X is a “differential operator” and g=|X f |, (1-4) also holds with the truncation
property. A more subtle (and not obvious) example will be the fractional derivatives
defined above; see Proposition 2.14. Note that our truncation property seems to be
weaker than the truncation property introduced in [Hajłasz and Koskela 2000]. For
example, fractional derivatives satisfy our truncation property while it is not clear
that they satisfy that of [Hajłasz and Koskela 2000].

Following [Hajłasz and Koskela 2000, p. 39], given 0 < c < 1, we say that a
domain � in a metric space 〈H, d〉 (or quasimetric space) is a weak John domain
if there is a fixed “center” x ′ ∈ � such that for any x 6= x ′ in �, there exists
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γ : [0, l] →� such that γ (0)= x , γ (l)= x ′ with

(1-6) d(γ (t1), γ (t0))≤ |t1− t0| for all t1, t0 ∈ [0, l]

and γ satisfies the weak John condition

(1-7) d(γ (t),�c)= inf{d(γ (t), y) : y 6∈�} ≥ c d(γ (t), x) for all t.

We will write �∈ J ′(c). The corresponding definition in [Chua and Wheeden 2008;
2011] replaces (1-7) by ρ(γ (t)) > ct , which is nominally a stronger assumption
since d(x, γ (t)) = d(γ (0), γ (t)) ≤ t by (1-7). The weak version (1-7) was first
given by Väisälä in Rn [Hajłasz and Koskela 2000, Theorem 9.6; Väisälä 1988,
Theorem 2.18] and shown to be equivalent to the strong version in Rn . It was
extended to metric spaces in [Hajłasz and Koskela 2000; Chua and Wheeden 2015].
We do not know an example when the weak version is true and the strong version
is false. In general, the weak version is easier to apply. See also [Martio and Sarvas
1979] for the definition and studies on John domains in Euclidean spaces. More
properties of weak John domains can be found in Section 2 and [Chua and Wheeden
2015, Section 2]. Note also that Lipschitz continuity (1-6) could be replaced by
just continuity. We now state the main theorem of this paper. The assumptions may
look complicated on general metric spaces, but most of them become simple (and
sharp) or redundant on Euclidean spaces.

Theorem 1.1. Let 1≤ p < q <∞. Let � be an open set in a metric space H and
let 0 < δ ≤ 1

2 , 1 ≤ τ ≤ 1/(2δ), µ,w, σ be Borel measures on H such that µ is
absolutely continuous with respect to σ . Suppose there exists 0< c<1 such that� is
a countable union of sets� j ∈ J ′(c) with

∑
j χ� j
≤ M , M ∈N and σ is δ-doubling

on each � j with doubling constant Dσ independent of j , i.e., σ(2k B ∩ � j ) ≤

(Dσ )
kσ(B) for all δ-balls B of � j and k ∈ N. Let S ⊂ L1

σ,loc(�)× L p
w,loc(�)

satisfy the Poincaré inequality (1-4) with the truncation property (1-5). Suppose
there exists a ball set function µ∗ with µ(B ∩� j )≤ µ

∗(B) for all balls B and � j ,
and

(i) µ∗ satisfies Condition (R) on each � j (with parameters independent of j):

Condition (R) There exist 0 < θ1 < θ2 < 1, A1, A2 > 0 such that for each x ∈
� j , there is a strictly decreasing sequence {r x

m}m∈N of positive real
numbers such that r x

m→ 0, r x
1 = diam(� j ), r x

m/2≤ r x
m+1 < r x

m and

(1-8) A1θ
k
1 ≤

µ∗(B(x, r x
m+k))

µ∗(B(x, r x
m))
≤ A2θ

k
2 for all m, k ∈ N.

(ii) There exists C1 > 0 such that for all j ,

(1-9) µ∗(B)1/qa(Q)≤ C1 for all balls B with center in � j and

Q ⊂ B, Q/δ ⊂� j with r(Q)≥ cδr(B)/(4τ).
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(iii) There exists Vµ ≥ 1 such that for all j , given any collection of balls BE =

{Brx (x) : x ∈ E} with E ⊂� j , it has a subfamily B′E of pairwise disjoint balls such
that

(1-10) µ(E)≤ Vµ
∑

B∈B′E

µ∗(B).

(We will say (µ,µ∗) satisfies the Vitali-type property on � j with constant Vµ.)

(I) Then

(1-11) ‖ f − fB ′j ,σ‖Lq
µ(� j )
≤ CcT C1V 1/q

µ ‖g‖L p
w(� j )

for all j and ( f, g) ∈S

where B ′j = B(x ′j , δd(x
′

j , �
c
j )), x ′j is the center of � j and C depends on q, p, θ1,

θ2, A1, A2, c, δ, τ and Dσ .

(II)(a) If in addition 1≤ p0 ≤ q and there exists C2 > 0 such that

(1-12) µ(� j )
1/q
≤ C2σ(� j )

1/p0 for all j,

then

(1-13) ‖ f ‖Lq
µ(�)
≤ C

(
C2 M1/p0‖ f ‖L p0

σ (�)
+C1cT V 1/q

µ M1/p
‖g‖L p

w(�)

)
for all ( f, g) ∈S where C depends on p0 and all those parameters given in (I).

(b) Furthermore, if µ(�) < ∞, then for every sequence {( fn, gn)} in S such
that { fn} and {gn} are bounded in L p0

σ (�) and L p
w(�) respectively, { fn} has a

subsequence that converges in L q̃
µ(�) for 1≤ q̃ < q to a function in Lq

µ(�).

(c) If p0 < q and instead of (1-12), we have

(1-14) µ(� j )
1/q−1/p0 ≤ C2 for all j,

then (1-13) and the conclusion in (a) will hold with L p0
σ (�) being replaced by

L p0
µ (�). Moreover, conclusion in (b) will hold with σ being replaced by µ (if
µ(�) <∞).

Remark 1.2. (1) If S only satisfies (1-4) without the truncation property and
µ(� j ) ≤ C3 <∞ for all j , then (1-13) holds with ‖ f ‖Lq

µ(�)
being replaced by

‖ f ‖L q̃
µ(�)

, p, p0 ≤ q̃ < q. Thus, (II)(b) remains true if µ(�) <∞, i.e., for every
sequence {( fn, gn)} in S such that { fn} and {gn} are bounded in L p0

σ (�) and L p
w(�)

respectively, { fn} has a subsequence that converges in L q̃
µ(�). A similar conclusion

holds for the case p0 < q under the assumption (1-14) for (II)(c).

(2) The case whereµ is reverse doubling on�⊂Rn has been discussed in [Chua and
Wheeden 2011, Remark 1.7(3)] when � is an s-John domain; see also [Drelichman
and Durán 2008] for 1-John domains.
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(3) Condition (1-9) can often be simplified. For example, it can be simplified to

(1-15) µ∗(Q)1/qa(Q)≤ C1 for all δ-balls Q

when µ∗ is doubling. For more discussion, see [Chua and Wheeden 2011, Re-
mark 1.7(4)].

(4) In particular, (1-11) holds with � j =� ∈ J ′(c) when µ is δ-doubling, under
the assumption (1-4) with the truncation property and µ(Q)1/qa(Q)≤ C1 for all
δ-balls Q. Note that in this case µ will satisfy Condition (R) and (µ,µ) will satisfy
Vitali-type property (1-10).

(5) In case �⊂ H = Rn , S= {( f,∇�α,p f ) : f ∈Sα(�),∇
�
α,p f ∈ L p

w(�)}, where
Sα(�) = L1

loc(�) for 0 < α < 1 and S1(�) = Liploc(�) the space of locally
Lipschitz continuous functions on �, then (1-4) is known to hold with dσ = dx ,
g = ∇�α,p f (see (1-2)), w a Muckenhoupt Ap weight (w ∈ Ap) and a(Q) =
Cwr(Q)αw(Q)−1/p (Cw = C(w)). Indeed, it holds for general weight w with

a(Q)= Cr(Q)α−n
‖w−1/p

‖L p′ (Q) (where 1/p+ 1/p′ = 1)

provided ‖w−1/p
‖L p′ (Q) <∞. The case α = 1 is well-known. For 0< α < 1, first

observe that

(1-16)
1
|Q|
‖ f − fQ‖L1(Q) ≤

1
|Q|

∫
Q

1
|Q|

∫
Q
| f (x)− f (y)| dy dx

≤ |Q|−1−1/p
∫

Q

(∫
Q
| f (x)− f (y)|p dy

)1/p

dx

≤ C |Q|α/n−1
∫

Q

(∫
Q

| f (x)− f (y)|p

|x − y|n+αp dy
)1/p

dx .

Now if Q is any ball with 5Q ⊂�, then Q ⊂ B(x, ρ(x)/2) for all x ∈ Q. Finally,
just apply Hölder’s inequality again. Some other discussion on fractional Poincaré
inequalities can be found in [Chua 2016; Mazya and Shaposhnikova 2002; Bourgain
et al. 2002]. Moreover, if α = 1, w = |Jφ|1−p/n , 1 < p < n, where Jφ is the
Jacobian of a quasiconformal map φ, (1-4) is known to be true with dσ = dw and
a(Q)= Cr(Q)w(Q)−1/p [Heinonen et al. 1993, p. 10].

In case where µ = w ∈ Ap and α = 1, compact embedding has already been
discussed in [Chua et al. 2013, Theorem 2.2] when �⊂ Rn is a John domain.

(6) When X is a “differential operator” such that

(1-17)
1

σ(Q)
‖ f − fQ,σ‖L1

σ (Q)
≤ a(Q)‖X f ‖L p

w(τQ)

for all f ∈ Liploc(�) and δ-balls Q, then Theorem 1.1 applies to any doubling
measure µ such that µ(Q)1/qa(Q)≤ C . For example, when a domain is equipped
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with Carnot–Carathéodory metric and X associated with a Hölmander’s vector
field, (1-17) is known to hold with w = σ = 1 and p = 1 by [Jerison 1986]; see
[Franchi et al. 1995] for more literature review. Indeed, a complete study can be
found in [Franchi et al. 1995] when weights are in (Muckenhaupt) Ap. We are able
to reproduce all results in [Franchi et al. 1995] by Theorem 1.1 since the Carnot–
Carathéodory metric balls are known to be Boman domains [Lu 1994, Lemma 3.1]
and (1-17) is known to hold when σ = 1 and w ∈ Ap with a(Q)=Cr(Q)w(Q)−1/p.
In particular, we obtain [Franchi et al. 1995, Theorem 2] with µ= w2 and w1 = w.
However, instead of assuming w ∈ Ap together with the balance condition [Franchi
et al. 1995, (1.5)], we only need to assume that µ is doubling and

µ(Q)1/qr(Q)‖w−1/p
‖L p′ (Q) ≤ C for all δ-balls in a given ball B.

On the other hand, if we take µ= w ∈ Ap, we then obtain the compact embedding
given in [Lu 1992a, Lemmas 2.6, 2.9 and Corollary 2.10], where it uses a quite
complicated method involving lifting and the Ascoli theorem. Indeed, it will
follow from our theorem that if D is a finite union of sets � j ∈ J ′(c), then the
embedding W 1,p

w (D) to Lq
w(D) is compact for 1 ≤ q < d/(d − 1) (where d is

the homogeneous dimension of the Carnot–Carathéodory metric) when p = 1
and 1 ≤ q ≤ dp/(d − 1)+ ε for some ε > 0 depending on w when 1 < p < d.
Furthermore, when w ∈ A1, the embedding of W 1,p

w (D) to Lq
w(D) is compact for

1 ≤ q < dp/(d − p). To see that, it suffices to note that w ∈ A1 implies w ∈ Ap

and

(1-18) w(τ B)≤ Cτ dw(B) for any ball B and τ > 1,

and hence if Br (x) is a δ-ball in a John domain D and R = diam(D), then

w(Br (x))1/qrw(Br (x))−1/p
≤ Cw(BR(x))1/q−1/p(r/R)d/q−d/pr.

The above is bounded if d/q − d/p + 1 ≥ 0. The claim will now follow from
Theorem 1.1. The rest of our observations can be done similarly. Furthermore, in
view of our theorem, we only needw to be Ap restricted to just δ-balls in the domain
and (1-18) instead of assuming w ∈ A1. A similar conclusion can be extended to
weighted fractional Poincaré inequalities (see Theorem 1.8). In particular in Rn ,
taking w = 1, we have the classical Rellich compact embedding. Note that some
studies on certain nonsmooth domains using a quasi-isometrical homeomorphism
can be found in [Goldshtein and Ukhlov 2009] for Ap weights.

(7) A not so refined Condition (R) was introduced in [Chua and Wheeden 2011,
(1-5)] where it was assumed without constants A1, A2. The present Condition (R)
appears to be weaker and easier to verify than that of [Chua and Wheeden 2011].
It is easy to see that a “reverse doubling weight” (on Rn) will induce a ball set
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function that satisfies Condition (R). For more discussion, see [Chua and Wheeden
2011, Remark 1.7(2)]. Indeed, in general, µ∗ satisfies Condition (R) on �⊂ Rn if
µ∗ :�× diam(�)→ R (written usually as µ∗(Br (x))) is positive continuous and
reverse doubling (i.e., there exists RC > 1 such that µ∗(B2r (x)) ≥ RCµ

∗(Br (x))
for all r ≤ diam(�)/2 and x ∈�); see [Chua and Wheeden 2011, Remark 1.7(2)]
when µ∗ is a measure. The assumption r x

1 = diam(�) is not essential. Indeed we
need only that µ(�)≤ Cµ∗(B(x, r x

1 )) for all x ∈�.

(8) If µ∗ satisfies Condition (R) on �, then for any fixed 0< δ ≤ 1
2 ,

lim
r→0

sup
{
µ∗(Br (x)) : x ∈�, Br (x) is a δ-ball of �

}
= 0.

(9) If either the Besicovitch covering property holds or µ (or µ∗) is doubling, then
(µ,µ∗) will satisfy the Vitali-type property. In particular, in Rn , (µ,µ) (and hence
(µ,µ∗)) will always satisfy the Vitali-type property (with parameter depending
only on n) by Besicovitch covering.

(10) In general, for any Borel measure µ, by the triangle inequality and Hölder’s
inequality, if D′ ⊂ D with µ(D′) > 0, then (for any constant C)

(1-19) ‖ f − fD′,µ‖Lq
µ(D)
≤ ‖ f −C‖Lq

µ(D)
+µ(D)1/q | fD′,µ−C |

≤ ‖ f −C‖Lq
µ(D)
+
µ(D)1/q

µ(D′)1/q

(∫
D′
| f −C |qdµ

)1/q

≤
(
1+ (µ(D)/µ(D′))1/q

)
‖ f −C‖Lq

µ(D)
.

Applying the above to (1-11) with D =� j and C = fB ′j ,σ , we have

(1-20) ‖ f − fD′,µ‖Lq
µ(D)
≤ CcT C1V 1/q

µ

(
1+ (µ(D)/µ(D′))1/q

)
‖g‖L p

w(D)
,

for all ( f, g) ∈S and D′ ⊂ D with µ(D′) > 0.

Next we will consider weighted versions of Theorem 1.1. We will be interested
in weights ρ being essentially constant on δ-balls of �, i.e., for all δ-balls of �,

ρ̄(B)= sup{ρ(y) : y ∈ B} ≤ C(ρ, δ)ρ(x) for all x ∈ B.

Furthermore, as we always assume δ ≤ 1
2 , we have

(1-21) ρ̄(B)≤ eρρ(x) for all x ∈ B with 2B ⊂�.

Indeed, many weights that have been studied in the literature satisfy (1-21). Let
us look at some examples.
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Example 1.3. (i) (1-21) holds if ρ(x)= inf{d(x, y) : y ∈�0}, with �0 ⊂�
c. In

general, it holds if

(1-22) ρ(x)=
l∏

i=1

ηi (x)αi

l ′∏
i=l+1

(
ηi (x)

1+ ηi (x)

)αi l ′′∏
i=l ′+1

(1+ ηi (x))αi ,

where ηi (x)= d(x, Si )= inf{d(x, y) : y ∈ Si } with Si ⊂�
c. A special case in Rn ,

(1-23) (1+ |x |)α0

l∏
i=1

(
|x − zi |

1+ |x − zi |

)αi

, l ∈ N, αi ≥ 0, zi ∈ Rn,

has been considered in [Chanillo and Wheeden 1992; Gatto and Wheeden 1989];
see Remark 1.7.

(ii) We say9 : [0,∞)→[0,∞) is doubling if it is a monotone increasing continuous
function such that there exists C9 > 1 with 9(2t)≤ C99(t) for all t > 0. Then

(1-24) ρ(x)=
l∏

i=1

9i (ηi (x))αi , αi ∈ R, αi 6= 0,

will satisfy (1-21) if all 9i are doubling and ηi are as in (1-22). In particular, when
αi > 0 for all i in (1-24), if µ is δ-doubling on � with doubling constant Dµ,
then ρdµ is δ-doubling on � with doubling constant C

(
{αi ,C9i }

l
i=1

)
Dµ. Thus,

weights in (1-23) are clearly δ-doubling (indeed, they are doubling on Rn). In
general, we will let I− = {i : αi < 0} and I+ be its complement. Then we know∏

i∈I+ 9i (ηi (x))αi is doubling on �.

(iii) In case H =Rn and Si ’s are finite and disjoint (i.e., Si ∩ S j =∅ for i 6= j ). Let

ρ(x)=
l∏

i=1

d(x, Si )
ai , −n < ai < 0 for all i.

Then ρ dx is δ-doubling on any bounded domain; see Proposition A.4. However,
this weight is neither doubling nor reverse doubling on any unbounded domain
when

∑
ai <−n as ρ(Rn)=

∫
Rn ρ(x) dx <∞.

(iv) In Rn (or other “nice” metric spaces), we do not need to assume
⋃l

i=1 Si ⊂�
c

(if Si ’s are finite) since we can consider � \
⋃l

i=1 Si in view of the fact that a weak
John domain with finitely many points being removed is still a weak John domain
by Proposition 2.9.

Theorem 1.4. Let 9i be as in Example 1.3(ii) and ηi be as in (1-22). Let η̄i (B)=
sup{ηi (x) : x ∈ B} and

ρ1(x)=
l∏

i=1

9i (ηi (x))ai , ρ2(x)=
l∏

i=1

9i (ηi (x))bi , ρ0(x)=
l∏

i=1

9i (ηi (x))γi
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with ai , bi , γi ∈ R, ai > 0 for all i . Under the assumption of Theorem 1.1(I), except
that (1-9) in condition (ii) is being replaced by

(1-25) for each j, µ∗(B)1/qa(Q)
l∏

i=1

9i (η̄i (Q))ai/q−bi/p
≤ C1

for all balls B with center in � j

and balls Q ⊂ B, Q/δ ⊂� j with r(Q)≥ cδr(B)/(4τ);

and the Vitali-type property holds for (ρ1µ,µ
∗
a) on each � j

(
where µ∗a(B) =

µ∗(B)
∏l

i=19i (η̄i (B))ai
)

instead of (1-10).

(I) Then (denoting ρ1 dµ by ρ1µ and similarly for ρ0 dσ and ρ2 dw)

(1-26) ‖ f − fB ′j ,σ‖Lq
ρ1µ(� j )

≤ CcT C1V 1/q
µ ‖g‖L p

ρ2w(� j )
for all j,

where the constant C depends also on {ai , bi ,C9i }
l
i=1 besides those listed in

Theorem 1.1 for (1-11).

(II)(a) If (1-12) is being replaced by (again 1≤ p0 ≤ q)

(1-27) µ(� j )
1/qσ(� j )

−1/p0

l∏
i=1

9i (η̄i (B ′j ))
ai/q−γi/p0 ≤ C2 for all j,

then

(1-28) ‖ f ‖Lq
ρ1µ(�)

≤ C
(
C2 M1/p0‖ f ‖L p0

ρ0σ (�)
+C1cT V 1/q

µ M1/p
‖g‖L p

ρ2w(�)

)
for all ( f, g) ∈S where C depends on {C9i , ai , bi , γi }

l
i=1 besides those parameters

listed in Theorem 1.1.

(b) Furthermore, if ρ1µ(�) <∞, then for every sequence {( fn, gn)} in S such
that { fn} and {gn} are bounded in L p0

ρ0σ (�) and L p
ρ2w(�) respectively, { fn} has a

subsequence that converges in Lq0
ρ1µ(�) for 1≤ q0 < q to a function in Lq

ρ1µ(�).

(c) If ρ1µ(� j )
1/q−1/p0 ≤ C2 instead of (1-27) (and 1 ≤ p0 < q), then similar

conclusions hold as in part (a) and (b) with L p0
ρ0σ (�) being replaced by L p0

ρ1µ(�).

Remark 1.5. Similarly, if we only assume (1-4) holds without the truncation prop-
erty, then for any 1≤ q0 < q , any L p0

ρ0σ (�)×L p
ρ2w(�) bounded sequence {( fn, gn)}

in S has a subsequence { fnk } that converges in Lq0
ρ1µ(�) provided ρ1µ(�) <∞;

see Remark 1.2(1).

As mentioned earlier, assumptions become simpler and sharp in Rn . In particular,
the following is an extension of [Chanillo and Wheeden 1992, Theorem 1; Gatto
and Wheeden 1989, Corollary 1.4].

Corollary 1.6. Let � ∈ J ′(c) (0< c< 1), �⊂ Rn , 1≤ p < q <∞, w ∈ Ap and
v = ρw such that ρ is essentially constant on δ-balls of � (1-21). Suppose µ is
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any Borel measure such that there is a doubling ball set function µ∗ (with doubling
constant D∗µ) with µ(B ∩�)≤ µ∗(B) for all balls B with center in �. If

(1-29) µ∗(B)1/q |B|α/n
≤ C∗1v(B)

1/p for all δ-balls in �,

then for all f ∈ Ŵ α,p
v (�) when 0< α < 1 ( f ∈ E p

v (�) when α = 1), we have

(1-30) ‖ f − fB ′‖Lq
µ(�)
≤ C(c, p, q, n, D∗µ)e

1/p
ρ C∗1 Cw‖∇�α,p f ‖L p

v (�)
,

where B ′ is the “central” ball of � (see Remark 1.2(5) for Cw) and hence

(1-31) ‖ f − f�,µ‖Lq
µ(�)
≤ C(c, p, q, n, D∗µ)e

1/p
ρ C∗1 Cw‖∇�α,p f ‖L p

v (�)
.

Moreover, if D ∈ J (c,∞) is a generalized John domain [Chua 2009, Definition 1.2]
such that (1-29) holds for all δ-balls in D, and

(1-32) lim
r→∞

inf{µ(Br (x)) : x ∈ D} =∞,

then for all 1 ≤ p0 < q, f ∈ L p0(D) ∩ E p
v (D) if α = 1, (L p0(D) ∩ Ŵ α,p

v (D) if
0< α < 1),

(1-33) ‖ f ‖Lq
µ(D)
≤ C(c, p, q, n)e1/p

ρ C∗1 Cw‖∇D
α,p f ‖L p

v (D)
.

Proof. We will use Theorem 1.1 with dσ = dx , the Lebesgue measure and δ= 1
5 . It

is clear that (µ,µ∗) satisfies the Vitali-type property (1-10). Next, since w ∈ Ap, we
have the Poincaré inequality (1-2) with a(Q)= Cw|Q|α/nw(Q)−1/p (Cw = C(w))
for all balls Q with 5Q ⊂ �; see Remark 1.2(5). Next, since ρ is essentially
constant on δ-balls of �, we have for all δ-balls Q of �,

(1-34)
1
|Q|
‖ f − fQ‖L1(Q) ≤ C(n)e1/p

ρ Cw|Q|α/nv(Q)−1/p
‖∇

�
α,p f ‖L p

v (Q)
.

Let S = {( f, g) : f ∈ Sα(�),∇
�
α,p f ∈ L p

v (�)} (see Remark 1.2(5)). Then S

satisfies (1-4) (with dσ = dx , τ = 1, w = v) with the truncation property by
Proposition 2.14. Next, (1-29) implies (1-9) with C1 = C(D∗µ)Cwe1/p

ρ C∗1 as µ∗ is
doubling. Indeed,

µ∗(Q)1/q |Q|α/nv(Q)−1/p
≤ C(D∗µ)C

∗

1 .

Moreover, (1-8) holds with A1, A2, θ1, θ2 depending on D∗µ (r x
m = diam(�)/2m−1).

Furthermore, (1-10) holds with Vµ = C(D∗µ). We can then conclude (1-30) for
f ∈ Sα(�) by Theorem 1.1(I). For α < 1, it is then clear that (1-30) holds for
f ∈ Ŵ α,p

v (�). For α = 1, first recall that for any ball B,

‖ f − fB,w‖L p
w(B)
≤ Cw|B|1/n

‖∇ f ‖L p
w(B)

for f ∈ E p
w(�) as w ∈ Ap.

By Propositions 2.12 and 2.11, we conclude by a density argument that (1-30) holds
for all f ∈ E p

v (�). Next, (1-30) implies (1-31) by Remark 1.2(10). For the second
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assertion, note that as D ∈ J (c,∞), for all K > 0, there exists {�K
j } ⊂ J ′(c) such

that diam(�K
j ) ∼ K , “center ball” BK

j of �K
j with r(BK

j ) ∼ K ,
⋃
�K

j = D and∑
χ
�K

j
≤ M = C(n). From the first part, we have (1-31) for �=�K

j for each j .
Hence by the triangle inequality and Hölder’s inequality, (and ∇�

K
j

α,p f ≤ ∇D
α,p f )

‖ f ‖Lq
µ(�

K
j )

≤ µ(�K
j )

1/q−1/p0‖ f ‖L p0
µ (�

K
j )
+C(c, n, p, q, D∗µ)e

1/p
ρ CwC∗1‖∇

D
α,p f ‖L p

v (�
K
j )
.

Now using the fact that q ≥ p0, p and summing up the above with respect to j , we
have

‖ f ‖q
Lq
µ(D)
≤ 2q−1 M

(
sup

j
µ(�K

j )
1−q/p0‖ f ‖q

L
p0
µ (D)
+C‖∇D

α,p f ‖q
L p
v (D)

)
.

Letting K →∞, we conclude (1-33) by (1-32). �

Remark 1.7. (1) In [Chanillo and Wheeden 1992; Gatto and Wheeden 1989], ρ
has been assumed to be a very special case (1-23) while we allow any general
weight that is essentially constant on δ-balls and we only assume (1-29) for δ-balls.
Moreover, [Chanillo and Wheeden 1992] only consider � to be balls, p > 1, α = 1
and µ is doubling. By using Corollary 1.6, we are able to extend the weight ρ
to (1-22) with each Si consisting of finitely many points. However, we need to
observe that �= B \

(⋃l ′′
i=1 Si

)
∈ J ′(c) for some fixed constant c depending only

the total number of distinct points in
⋃l ′′

i=1 Si (Proposition 2.9) and the fact that ρ
is essentially constant on δ-balls of �. Hence (1-30) will hold with α = 1 for balls
B if we assume the following balanced condition (given in [Chanillo and Wheeden
1992]):

(1-35)
(
|Q|
|B|

)1/n(
µ(Q)
µ(B)

)1/q

≤ C
(
v(Q)
v(B)

)1/p

for all δ-balls Q in B \
(⋃l ′′

i=1 Si
)

(instead of all balls Q in B given in [Chanillo and
Wheeden 1992]). Next, as Rn

\
(⋃l ′′

i=1 Si
)
∈ J (c,∞) [Chua 2009, Proposition 2.24],

we obtain [Gatto and Wheeden 1989, Corollary 1.4].

(2) It has been observed that if both µ and v are doubling, α = 1 and � is a
ball, then (1-35) is indeed necessary for (1-31) to hold for all Lipschitz continuous
functions [Chanillo and Wheeden 1992]; see also [Chanillo and Wheeden 1985,
p. 1192]. Note that (for α = 1) it is enough to assume only µ = µ∗ is doubling
without assuming v be doubling so that (1-29) is necessary for (1-31) to hold for all
Lipschitz continuous functions. To this end, first observe that when µ is doubling,
suppose f is a Lipschitz function that vanishes on a δ-ball B0 ⊂ �, by (1-19),
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taking D′ = B0 and D =�, (1-31) will imply
(1-36)

‖ f ‖Lq
µ(�)
≤ C(c, p, q, n, D∗µ)e

1/p
ρ C∗1 Cw

(
1+

(
µ(�)

µ(B0)

)1/q)
‖∇

�
α,p f ‖L p

v (�)
.

We now fix a Lipschitz function φ(x) on [0,∞) such that χ[0,1/2] ≤ φ ≤ χ[0,1] with
φ(x)= 2− 2x on

[ 1
2 , 1

]
. Given any δ-ball B in �, by translation, we may assume

0 is the center of B. Let f (x) = φ(|x |/r), where r = r(B). Then f vanishes
outside B. In particular, it vanishes on a ball B̃ such that �⊂ C(c, δ)B̃. Hence by
(1-36) and (1-31), we have

µ(B/2)1/p
≤ Cr−1v(B)1/q (if α = 1).

Since µ is doubling, we have (1-29) with µ∗ =µ. Unfortunately, for 0<α < 1, the
same method only produces (1-29) for δ-balls with radius comparable to ρ�(xB)

(xB is the center of B). This is not really surprising in view of the definition of our
fractional Sobolev norm.

(3) For 0 < α < 1, we can extend a result of Bourgain, Brezis, and Mironescu.
In [Bourgain et al. 2002], they discuss what happens in the fractional Poincaré
inequality on unit cubes when α→ 1. Recall that in [Mazya and Shaposhnikova
2002, Corollary 2 (see also the Erratum)] when αp < n, 1

p∗ =
1
p −

α
n , Q is a unit

cube in Rn and f ∈ L1(Q),

(1-37) ‖ f − fQ‖
p
L p∗ (Q)

≤ C(n, p)
1−α

(n−αp)p−1 ‖ f ‖p
Wα,p(Q)

= C(n, p)
1−α

(n−αp)p−1

∫
Q

∫
Q

| f (x)− f (y)|p

|x − y|n+αp dy dx .

Hence by dilation, for any cube Q, we have by Jensen’s inequality,

(1-38)
( 1
|Q|
‖ f − fQ‖L1(Q)

)p
≤

( 1
|Q|

)p/p∗

‖ f − fQ‖
p
L p∗ (Q)

≤ C(n, p)|Q|
αp
n −1 1−α

(n−αp)p−1 ‖ f ‖p
Wα,p(Q)

.

Now let � ∈ J ′(c). and suppose ρ is a weight that is essentially constant on δ-balls
of � (1-21). As cubes are metric balls under the metric

d∞(x, y)= max
1≤i≤n
{|xi − yi |},

for easy computation, we will use this metric instead of the Euclidean metric. Then
Q ⊂ B(x, ρ�(x)/2) for all x ∈ Q whenever 5Q ⊂�. Using (1-21) for ρ, we have

(1-39)
1
|Q|
‖ f − fQ‖L1(Q)

≤

(
C(n)|Q|αp/nρ(Q)−1eρ

1−α
(n−αp)p−1

)1/p
‖∇

�
α,p f ‖

L p
ρ (Q)

.
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If we assume that µ(Q)1/qρ(Q)−1/p
|Q|α/n

≤C∗ (with q > p) for all cubes Q with
5Q⊂� and µ is doubling with doubling constant Dµ, then we can use Theorem 1.4
(by similar argument as in the proof of Corollary 1.6) to get

(1-40) ‖ f − fQ′‖
p
Lq
µ(�)
≤ C(n, c, p, q, Dµ)eρ(C∗Cw)p 1−α

(n−αp)p−1 ‖ f ‖p
Ŵα,p
ρ (�)

= C(n, c, p, q, Dµ)eρ(CwC∗)p 1−α
(n−αp)p−1

×

∫
�

∫
B(x,ρ�(x)/2)

| f (x)− f (y)|p

|x − y|n+αp dy ρ(x)dx,

where Q′ is the “central cube” in �. Thus, we have extended the results of [Mazya
and Shaposhnikova 2002; Bourgain et al. 2002] to weighted fractional Sobolev
inequalities on John domains. Again, by Remark 1.2(10) we can replace fQ′ in
(1-40) by f�,µ.

We now discuss applications on Rn . As mentioned earlier, conditions are now
simpler and mostly sharp.

Theorem 1.8. (I) Let � ⊂ Rn , � ∈ J ′(c) (hence a John domain), 0 < c < 1. Let
1≤ p < q <∞. Let �0 ⊂�

c and define ρ(x)= d(x, �0)= inf{|x − y| : y ∈�0}.
Let Sα(�) be as in Remark 1.2(5). Let w be a weight on � and 0<α ≤ 1 such that
the Poincaré inequality (1-2) holds for all balls Q with 2Q ⊂ � and f ∈Sα(�).
Suppose C∗ > 0, β ∈ R such that

(1-41) a(Q)≤ C∗r(Q)β for all balls Q with 2Q ⊂�.

Suppose µ is another weight on Rn such that there exist Cµ, N > 0 with

(1-42) µ(B ∩�)≤ Cµr(B)N for all balls B.

Let a ≥ 0, b ∈ R. We define µa(E)=
∫

E ρ(x)
a dµ and wb similarly. Suppose

(1-43) β +
N
q
+min

{
0, a

q
−

b
p

}
≥ 0.

Then

(1-44) ‖ f − fB ′‖Lq
µa (�)
≤ CC∗C1/q

µ ρ̄(�)β+(N+a)/q−b/p
‖∇

�
α,p f ‖L p

wb (�)

for all f ∈Sα(�), where fB ′ =
∫

B ′ f dx/|B ′|, B ′ = B(x ′, d(x ′, �c)/4), x ′ is the
center of � where C depends only on c, N , n, p, q, a, b and β.

(II) Suppose D is a countable union of � j ∈ J ′(c) (0 < c < 1 is fixed) such that∑
j χ� j
≤M , M ∈N and M1≤ |� j | ≤M2 for all j , M1,M2> 0. Assume�0⊂Dc
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and

(1-45) for all j, µ(B ∩� j )≤ Cµ min{r(B)N , r(B)N1 ρ̄(B)N2}

for all balls B, r(B)≤ diam(� j ),

where ρ̄(B) = sup{ρ(x) : x ∈ B}, N1, N2 ∈ R, (usually N ≥ N1 + N2, N1 > 0,
N2 < 0) and

(1-46) a(Q)≤ C∗r(Q)β1 ρ̄(Q)β2 for all balls Q such that 2Q ⊂� j ,

where β1, β2 ∈ R. Moreover, for any γ ∈ R, we use ργ to denote the measure
defined by ργ (E)=

∫
E ρ(x)

γ dx. Suppose 1≤ p0 ≤ q such that

(i) β1+
N
q +min

{
0, β2+

a
q −

b
p

}
≥ 0; and

(ii) both min{a, N2+ a}/q ≤ γ /p0 and β2+
a
q −

b
p ≤ 0 in case ρ is unbounded

on D.

Then for all f ∈Sα(�),

(1-47) ‖ f ‖Lq
µa (D)
≤ CC1/q

µ

(
M1/p0‖ f ‖L p0

ργ
(D)+C∗M1/p

‖∇
D
α,p f ‖L p

wb (D)

)
,

where C depends also on N1, N2, p0, γ,M1 and M2 besides those listed above
for (1-44). Furthermore, if we have strict inequalities in both (i) and (ii) and
µa{x ∈ D : ρ(x) < r}<∞ for any r > 0, then given any sequence { fk} ⊂Sα(�)

such that both ‖ fk‖L
p0
ργ
(D) and ‖∇D

α,p fk‖L p
wb (D)

are bounded, it has a subsequence
that converges in Lq

µa
(D).

Remark 1.9. (1) In view of the fact that a John domain with finitely many points
removed is still a John domain (see Proposition 2.9), instead of assuming �0 ⊂�

c,
it suffices to assume �0 \ F ⊂�c (or Dc), where F is a set of finite points. Note
that Liploc(�)⊂ Liploc(� \ F) and L p0

σ (�)∩ E p
w(�)⊂ L p0

σ (� \ F)∩ E p
w(� \ F).

(2) Any finite union of John domains is an example of domain D for the above
theorem. Indeed, D can be a generalized John domain [Chua 2009, Definition 1.2
and Proposition 2.21].

(3) Strict inequalities in conditions (i) and (ii) will ensure that (1-47) holds with
some q̃ > q instead of q . Note that L q̃

µa (D)⊂ Lq
µa (D) when µa(D) <∞ and q̃ > q .

(4) Similar to the previous two theorems, we can replace fB ′ by f�,µa in (1-44).
Equation (1-47) will then also hold with ‖ f ‖L p0

ργ
(D) being replaced by ‖ f ‖L p0

µa (D)
if 1≤ p0 < q and sup j µa(� j )

1/q−1/p0 <∞. Conditions involving γ will then be
redundant.

(5) By a standard density argument, one could obtain compact embedding result
for the closure of Liploc(D)∩ L p0

ργ (D)∩ E p
wb(D) in L p0

ργ (D)∩ E p
wb(D).
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(6) Some discussions of power-type weights (including logarithm) on special union
of C0,s domains (bounded and unbounded) can be found in [Gurka and Opic 1988;
1989; 1991]. Note that weights are assumed to be positive and continuous on the
domain there.

(7) For the necessity of conditions, see Remark 1.11.

(8) If dµ= dw = dx is the Lebesgue measure, then N = N1 = n, β = α− n
p and

N2 = 0. The case α = 1 has already been studied in [Chua and Wheeden 2011;
Hajłasz and Koskela 1998].

(9) In most cases, N1 = n, N2 ≤ 0 and N ≤ n in the above theorem. A typical
example (a special case of Example 1.3(iii)) of µ will be

µ(E)=
∫

E
|x − z1|

a1 |x − z2|
a2 dx, where − n < a1, a2 < 0, z1 6= z2.

Note that µ(Rn) <∞ (and hence µ cannot be doubling on Rn) if a1+ a2 < −n.
Indeed, if ρ̄(B) = sup

{
min{|x − z1|, |x − z2|} : x ∈ B

}
, then for any ball B with

r(B)≤ C0, we have

µ(B)≤ C(C0)min{r(B)N , r(B)nρ̄(B)a1+a2} with N =min{n+ a1, n+ a2}.

For more details, see Proposition A.4.

(10) When � is a John domain, the case dµ= ρa
�dx , a < 0 such that ρa

�(�) <∞

but ρa
� may not be doubling has been studied in [Chua 2016].

In particular, when �0 \ F ⊂ G where G is the graph of a Lipschitz function
ψ : Rn−1

→ R with F being a finite set of points and D = Rn
\ (G∪ F), we have

an extension of [Mazya 2011, Theorem 1.4.2.1]. Indeed, we use only the fact that
Rn
\G ∈ J (c,∞) (generalized John domain). For example G can be a finite union

of hyperplanes that pass through a fixed point.

Corollary 1.10. Let 1≤ p, p0 < q and 0< α ≤ 1. Let F,G, �0 be as above. Let
ρ(x)= inf{|x− z| : z ∈�0}, N > 0, a ≥ 0, γ, b ∈R and µ be a weight on Rn such
that

µ(B)≤ Cr(B)N for all balls B.

Recall that µa(E) =
∫

E ρ(x)
a dµ and ργ (E) =

∫
E ρ(x)

γ dx. If N+a
q −

n+γ
p0
< 0,

and

(1-48) α+
N+a

q
−

n+b
p
= 0 and a

q
−min

{ b
p
,
γ

p0

}
≤ 0,

then for all f ∈ L p0
ργ (R

n)∩ E p
ρb(D) when α = 1 and f ∈ L p0

ργ (R
n)∩ Ŵ α,p

ρb (D) when
α < 1, where D = Rn

\ (G∪ F),

(1-49) ‖ f ‖Lq
µa (R

n)
≤ C‖∇D

α,p f ‖L p
ρb (D)

.
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Furthermore, (1-49) also holds for f ∈ L p0
µa (R

n)∩E p
ρb(D) (or L p0

µa (R
n)∩Ŵ α,p

ρb (D)
when α < 1) provided

α+
N+a

q
−

n+b
p
= 0 and a

q
−

b
p
≤ 0(1-50)

and lim
r→∞

inf{µa(Br (x)) : x ∈ Rn
} =∞.(1-51)

Remark 1.11. (1) Mazya [2011] considered the special case where α=1, a=b=0
and f ∈ C∞0 (R

n). Of course, C∞0 (R
n)⊂ L p0

ργ (R
n)∩ E p

ρb(Rn)⊂ L p0
ργ (R

n)∩ E p
ρb(D)

when ρb and ργ are both locally integrable. In general, C∞0 (D)⊂ L p0
ργ (R

n)∩E p
ρb(D).

(2) The above result is sharp. For example, when µ(B)≥ Cr(B)N for all δ-balls
B of �, then (1-50) is indeed necessary. It can be done by a standard translation
and dilation technique. We will only demonstrate the case where 0< α < 1. Fix a
C∞0 (or Lipschitz) function φ as in Remark 1.7(2). For simplicity, let us assume
�0 = {(x1, . . . , xn) ∈ Rn

: xi = 0 for some i} and F is a finite set. Suppose (1-49)
holds. Then we have if B is any δ-ball in D = Rn

\ (G ∪ F), as any appropriate
translation and dilation of φ is C∞0 (or Lipschitz with compact support), we have

µa(B/2)1/q ≤ Cr(B)−α(ρb(B))1/p.

Hence,
ρ̄(B)a/qr(B)N/q

≤ Cr(B)−α+n/pρ̄(B)b/p.

As we can take δ-balls B with ρ̄(B) comparable to r(B), the first condition of
(1-50) must hold. If we fix r(B) but let ρ̄(B)→∞, we see that a

q −
b
p ≤ 0.

Next we have another application that extends a compact embedding result of
[Xuan 2005, Theorem 2.1]. For simplicity, we shall only state that for Sobolev
space (i.e., α = 1).

Corollary 1.12. Let 1 ≤ p < q, µ and ρ be as in Corollary 1.10. Suppose D is a
bounded domain. If

(1-52) 1+ N
q
−

n
p
+min

{a
q
−

b
p
, 0
}
≥ 0,

then

(1-53) ‖ f ‖Lq
µa (D)
≤ C‖∇ f ‖L p

ρb (D)

for all f ∈ C∞0 (D). Furthermore, if in addition we have strict inequality in (1-52),
then the embedding of the closure of C∞0 (D) in E p

ρb(D) to Lq
µa (D) is compact.

Remark 1.13. (1) In particular, the above can be applied to compact embedding
of C∞0 (D) ∩ E p

ρβ (D) to Lq
ρb(D) when �0 = F = {0} ⊂ D. Note that E p

ρβ (D) ⊂
E p
ρβ (D \ {0}). To apply Corollary 1.12, we will take dµ = dx when β ≥ 0 and

µ(B)=
∫

B∩� |x |
β dx when−n<β<0. If B is any ball, it is clear that ρβ(B∩�)≤
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Cr(B)n+β when −n < β < 0 (and hence N = n + β in (1-52)). We obtain the
same conclusion as [Xuan 2005, Theorem 2.1] for β >−n. However, [Xuan 2005]
further assumes that β > p− n, p > 1 and D has C1 boundary.

(2) From the same construction as in Remark 1.11, (1-53) will imply (1-52) and
thus (1-52) is necessary. Note that ρ̄(B) will be bounded when B is a ball inside D.

Finally, we discuss an application related to Caffarelli, Kohn and Nirenberg-type
inequalities [Caffarelli et al. 1984]. Instead of considering only powers of |x | (i.e.,
�0 = {0}), we will consider more general power weights and include fractional
derivatives. The next theorem allows the case p = q as we will apply results from
[Chua 2009] instead of Theorem 2.4. For a more general extension, see Remark 3.2.

Theorem 1.14. Let D ⊂ Rn , 0 < α ≤ 1 and 1 ≤ p, p0 ≤ q. Suppose there exist
M>0, 0<c<1 such that D=

⋃
∞

j=1� j , � j ∈ J ′(c)with ε0/c0≤diam(� j )≤c0ε0,
(c0, ε0 > 0) for all j and

∑
χ
� j
≤ M. Let {zi }

l
i=1 ⊂ Rn , l ∈N (zi 6= zm for i 6=m)

and

(1-54) ρ1(x)=
l∏

i=1

|x − zi |
ai , ρ2(x)=

l∏
i=1

|x − zi |
bi , ρ0(x)=

l∏
i=1

|x − zi |
γi ,

with ai , bi , γi ∈R and ai >−n for all i . Let I− = {i : ai < 0}. Suppose further that

(i) b =min
{
α−

n+bi
p
+

n+ai
q
: i = 1, . . . , l

}
≥ 0 and

(ii)
∑ ai

q
≤min

{∑ bi
p
,
∑ γi

p0

} (
a =

n+
∑l

i=1 γi

p0
−

n+
∑l

i=1 ai

q

)
.

Then for all f ∈ L p0
ρ0 (D)∩ E p

ρ2(D) when α = 1
(

f ∈ L p0
ρ0 (D)∩ Ŵ α,p

ρ2 (D) when
α < 1

)
,

(1-55) ‖ f ‖Lq
ρ1 (D)
≤ C

(
M1/p0ε−a

0 ‖ f ‖L p0
ρ0 (D)
+M1/pεb

0‖∇
D
α,p f ‖L p

ρ2 (D)

)
,

where C depends only on

c, {ai , bi , γi }
l
i=1, n, p, q, p0, l and max{diam(� j ) : j ∈ N}/ζ

(where ζ = min{|zi − zm | : i 6= m, i,m ∈ I−}, taking ζ = ∞ when I− has ≤ 1
element). Furthermore, if we have strict inequalities in both (i) and (ii), then the
natural embedding of L p0

ρ0 (D) ∩ E p
ρ2(D)) (or L p0

ρ0 (D) ∩ Ŵ α,p
ρ2 (D) when α < 1) to

Lq
ρ1(D) is compact.
Finally, if D ∈ J (c, ε0) (generalized John domains [Chua 2009]), then

(1-56) ‖ f ‖Lq
ρ1 (D)
≤ Cε−a

‖ f ‖L p0
ρ0 (D)
+Cεb

‖∇
D
α,p f ‖L p

ρ2 (D)
for all ε ∈ (0, ε0),

with C depending on c, {ai , bi , γi }
l
i=1, n, p, q, p0, l and ε0/ζ .
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Remark 1.15. (1) If in addition a, b > 0, then (1-56) is equivalent to

(1-57) ‖ f ‖
Lq
ρ1 (D)
≤ C(‖ f ‖

L
p0
ρ0 (D)

)a/(a+b)(
‖∇

D
α,p f ‖

L p
ρ2 (D)
+ ε−a−b

0 ‖ f ‖
L

p0
ρ0 (D)

)b/(a+b)
;

see [Chua 2009, Remark 1.8(4)] for details.

(2) We may assume I− in the above has more than one i . In [Chua 2009, The-
orem 4.3; Caffarelli et al. 1984], the case with l = 1 in (1-54) and z1 = 0 was
considered, while we allow l > 1. Caffarelli et al. [1984] also showed that the
conditions (i) and (ii) are necessary. The main difference (for l > 1) is that when
l = 1 the measure induced is doubling (|x |α is doubling on Rn if α > −n) while
it may not be doubling when l > 1 (see Example 1.3(iii)). This creates a problem
for necessity of conditions. However, it is still possible to see that some of the
conditions remain necessary. Indeed, condition (i) is necessary for the following
weighted Poincaré inequality:

(1-58) ‖ f − f�,ρ1‖Lq
ρ1 (�)
≤ C‖∇�α,p f ‖L p

ρ2 (�)
for all f ∈ Liploc(�)

for any John domain �. To see this, just use the same Lipschitz function φ
constructed in Remark 1.7(2) to see that

ρ1(Q/2)1/q ≤ Cr(Q)−αρ2(B)1/p

for all δ-balls Q in �\{zi }
l
i=1. For each fixed i , one could choose r(Q)∼ d̄i (Q)=

supx∈Q |x − zi | and let r(Q)→ 0. It is now clear that (i) holds. It will be more
complicated if we only assume (1-56) holds. Condition (i) is still necessary for
(1-55) provided the Lq

ρ1 norm is not dominated by the L p0
ρ0 norm. Indeed using φ as

above again, for any δ-ball Q in D \ {zi }
l
i=1, (by translation and dilation) we may

assume φ has support in Q/2 and vanishes outside Q, we have by using (1-56),

ρ1(Q/2)1/q ≤ Cε−a
0 ρ0(Q)1/p0 +Cεb

0r(Q)−αρ2(Q)1/p.

As di (x)= |x − zi | are essentially constant on δ-balls, we have

|Q|1/q
∏

d̄i (Q)ai /q ≤ Cε−a
0 |Q|

1/p0
∏

d̄i (Q)γi /p0 +Cεb
0 |Q|

−α/n+1/p
∏

d̄i (Q)bi /p.

For each fixed i we could let r(Q)→ 0 with d̄i (Q)∼ r(Q). So if n+ai
q <

n+γi
p0

, we
must have n+ai

q ≥
n+bi

p −α.
Next, if we assume (1-56) holds for all D ∈ J (c, ε0), then for any ball Q with

r(Q) ≥ ε0 such that 2Q ⊂ Rn
\ {zi }

l
i=1, we may assume that Q is a connected

component of some D ∈ J (c, ε0). Taking f = χQ , since (1-56) holds, we have

|Q|1/q
∏

d̄i (Q)ai/q ≤ Cε−a
0 |Q|

1/p0
∏

d̄i (Q)γi/p0 .

It is then easy to see that
∑ ai

q ≤
∑ γi

p0
as we could let d̄i (Q)→∞ (while fix-

ing r(Q)).
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2. Preliminaries

For easy reference, we collect in this section some definitions and terminology from
[Chua 2009; Chua and Wheeden 2008; 2011].

Definition 2.1. A function d is called a (symmetric) quasimetric on a given set H
if d : H × H → [0,∞) and there is a constant κ ≥ 1 such that for all x, y, z ∈�,

(2-1)

d(x, y)= d(y, x),

d(x, y)= 0⇐⇒ x = y, and

d(x, y)≤ κ[d(x, z)+ d(z, y)].

If d is a quasimetric on H , we refer to the pair 〈H, d〉 as a quasimetric space.
In this section, unless otherwise mentioned, H will always be a quasimetric space
with quasimetric d and quasimetric constant κ . All measures on H will be defined
on a fixed σ -algebra 6 that includes all balls. When κ = 1, H will be a metric
space and we will just assume 6 to be the Borel algebra on H .

First, similar to [Chua and Wheeden 2008] for John domains, we see that δ-
doubling is equivalent to doubling on weak John domains.

Proposition 2.2. Let 0< δ ≤ 1
2κ

2. If �⊂ H , � ∈ J ′(c) with center x ′, then

(i) d(x ′, �c)≥ c diam(�)/(2κ);

(ii) for any x ∈�, 0< r0 < diam(�), B(x, r0) contains a δ-ball Q with r(Q)≥
Cr0, where C depends only on κ, δ and c, hence, a measure µ is δ-doubling
on � if and only if it is doubling on �.

Proof. Given any ε > 0, there exist z1, z2 ∈� with d(z1, z2) > diam(�)− ε. But

d(z1, z2)≤ κ(d(z1, x ′)+ d(z2, x ′)).

Hence, without loss of generality, we may assume d(z1, x ′)≥ d(z1, z2)/(2κ). By
the weak John condition (1-7), we have

d(x ′)= d(x ′, �c)≥ c d(z1, x ′)≥
c(diam(�)− ε)

2κ
,

and (i) will then follow as ε > 0 is arbitrary.
For part (ii), recall from (i) that d(x ′)≥ c

2κ diam(�). It suffices to show that if
x ∈� and δd(x)≤ r ≤ c diam(�)/(2κ), then Br (x) contains a δ-ball with radius
comparable to r (with constant independent of r and x). The case when x = x ′

in the above is easy. Now suppose x 6= x ′. It is again clear if x ′ ∈ Br (x). So we
may assume d(x, x ′) ≥ r . Next, we need only a continuous path γ : [0, l] → �

connecting x to x ′ such that d(γ (t),�c) ≥ c d(γ (t), x). Since d(γ (t), x) is a
continuous function on [0, l], there exists t0 such that d(γ (t0), x) = r/(2κ) and
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hence d(γ (t0))≥ cr/(2κ). We now observe that the δ-ball Br ′(γ (t0))⊂ Br (x) with
r ′ = cδr/(2κ). This concludes the proof of part (ii). �

Remark 2.3. Doubling or δ-doubling will imply reverse doubling if � is assumed
to have the “nonempty annuli property” (on symmetric quasimetric space; see [Chua
and Wheeden 2008, Proposition 2.3]). Clearly, any weak John domain satisfies this
“nonempty annuli property.”

Now, let us state a theorem that is similar to [Chua and Wheeden 2011, Theo-
rem 1.6].

Theorem 2.4. Let � ⊂ H , � ∈ J ′(c) with central point x ′, let 0 < δ ≤ 1/(2κ2),
1≤ τ ≤ 1/(2δκ2). Let 1≤ p < q <∞. Suppose µ, σ and w are measures (defined
on a fixed σ -algebra that includes all balls and�) where σ is δ-doubling on� and µ
is absolutely continuous with respect to σ . Let ( f, g) ∈ L1

σ,loc(�)× L p
w,loc(�) such

that (1-4) holds. Suppose there exists a ball set function µ∗ satisfying Condition (R)
such that µ(B ∩�)≤ µ∗(B) for all balls B with center in � and (µ,µ∗) satisfies
the Vitali-type property on � ((1-10) in Theorem 1.1). Suppose further that for any
ball B with center in � and r(B)≤ diam(�),

(2-2) µ∗(B)1/qa(Q)≤ C1

for all δ-balls Q ⊂ B such that r(Q)≥ cδr(B)/(4τκ). Then

(2-3) µ{x ∈� : | f (x)− fB ′,σ |> t} ≤ CCq
1 Vµ‖g‖qL p

w(�)
/tq for all t > 0,

where B ′ = B(x ′, δd(x ′)), and C depends on c, A1, A2, θ1, θ2, δ, τ, κ, p, q and the
doubling constant Dσ of σ but is independent of C1, Vµ and diam(�). Moreover,
if S satisfies (1-4) with the truncation property, then the following strong-type
inequality also holds:

(2-4) ‖ f − fB ′,σ‖Lq
µ(�)
≤ CcT C1V 1/q

µ ‖g‖L p
w(�)

,

where C depends on the parameters as above.

Remark 2.5. It follows from standard interpolation argument that (2-3) will imply

‖ f − fB ′,σ‖L q̃
µ(�)
≤ CC1V 1/q

µ µ(�)1/q̃−1/q
‖g‖L p

w(�)

for any 1 ≤ q̃ < q, where the constant C now also depends on q̃; see [Chua and
Wheeden 2008, Remark 1.3].

In order to prove the above theorem, we will first extend a Whitney-type lemma
similar to [Chua and Wheeden 2008, Proposition 2.6]. For simplicity, we will let
λ= κ + 2κ2.
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Proposition 2.6. Let 0< δ ≤ 1/(2κ2). Suppose �⊂ H such that d(x, �c) > 0 for
any x ∈� (when � 6= H ) and there is a δ-doubling measure σ on � with doubling
constant Dσ . Then there exists a covering W̃ = {B̃i } of � by δ-balls B̃i such that:

(a) r(Bi ) ≤ δd(xBi ) ≤ λ
2r(Bi ), where xBi is the center of Bi for all Bi ∈ W =

{2κ B̃i : B̃i ∈ W̃ } and given x ∈� there exists B̃ ∈ W̃ such that (δ′ = δ/λ3)

(2-5) B(x, δ′d(x))⊂ B̃ and B(x, λδ′d(x))⊂ 2κ B̃ ⊂ B(x, δd(x))⊂ 2κλ2 B̃.

(b) For every τ ≥ 1 that satisfies τδ ≤ 1/(2κ2), there is a constant K depending
only on τ, κ and Dσ so that the balls {τ Bi : Bi ∈W } have bounded intercepts
with bound K (i.e., each τ Bi intersects at most K −1 other τ B j in the family);
in particular, the balls {τ Bi : Bi ∈W } also have pointwise bounded overlaps
with overlap constant K . Indeed, the existence of the δ-doubling measure σ
guarantees that any collection of {τ B : B ∈F} has bounded intercepts whenever
F consists of disjoint δ-balls.

Now suppose further that � ∈ J ′(c) with center x ′. Then:

(c) For any x ∈ �, x 6= x ′, there exists a finite chain of δ-balls {Bi }
L
i=0 ⊂ W ,

depending on x and with L = L x , such that x ∈ B0, x ′ ∈ BL , BL is independent
of x and satisfies λ−2 B(x ′, δd(x ′))⊂ BL ⊂ B(x ′, δd(x ′)), Bi ∩ Bi+1 contains
a δ-ball B ′i with Bi ∪ Bi+1 ⊂ λ

4 B ′i for all i , and

(2-6) B0 ⊂
4λ4κ

cδ
Bi for all i .

Furthermore, there is a finite chain of δ-Whitney balls (B(x, r) is said to be a
δ-Whitney ball if r = δd(x)) {Qi }

L
i=0 depending on x with bounded intercepts

such that Q0 = B(x, δd(x)),QL = B(x ′, δd(x ′)), (1/λ2)Qi ⊂ Bi ⊂ Qi , and
Qi ∩Qi+1 contains a δ-ball Q′i with Qi ∪Qi+1 ⊂ λ

6Q′i .
(d) If Qi 6⊂ B(x, r), then r(Qi )≥ cδr/(2κ) where x and Qi are given in (c).

(e) For all ε > 0, the number of disjoint Qi (in (c)) having radius between ε and
2ε is at most C (depending only on δ, κ, Dσ and c).

Proof. The proof of this proposition is just a simple modification of that of [Chua
and Wheeden 2008, Proposition 2.6] even though the assumption on � is now
weaker. For completeness, we provide this proof in Appendix B; see also [Chua
and Wheeden 2015]. �

Proof of Theorem 2.4. The proof of this theorem is indeed similar but much
simpler than that of [Chua and Wheeden 2011, Theorem 1.6]. However, as weak
John domains are weaker than John domains, we will prove it using [Chua and
Wheeden 2008, Theorem 1.2]. For easy reference, we have stated it as Theorem A.1
in Appendix A, where we have changed the notation slightly. First as in [Chua
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and Wheeden 2011, (1-6)], for each x ∈ �, since µ∗ satisfies Condition (R), let
Bx

j = B(x, r x
j ) as in (1-8), condition (2) of Theorem A.1 will then hold with ℘ =

µ(�)/µ(B ′). Moreover, Proposition 2.6(c) enable us to construct (see [Chua and
Wheeden 2011, (1-6)]) a sequence {Qx

i }
∞

i=1 of δ-balls such that Qx
1 = B(x ′, δd(x ′))

and {Qx
i } has the intersection property

Qx
i ∩ Qx

i+1 contains a δ-ball Q′i with Qx
i ∪ Qx

i+1 ⊂ NQ′i

for some positive constant N independent of x and i . Equation (A-1) will then hold
as σ is δ-doubling. Moreover, for large i , Qx

i is centered at x ; in fact, for balls
Bx

j = B(x, r x
j ), there exist Kx , K ′x ∈ N such that τQx

i+Kx
= Bx

i+K ′x
for i ≥ 0. Bx

j
is a τδ-ball if j ≥ Kx , and Qx

i is not centered at x if i ≤ Kx (indeed, such Qx
i are

δ-Whitney balls constructed in Proposition 2.6(c)). We associate with each ball
Bx

j = B(x, r x
j ), j ≥ 1, the following special subcollection of {Qx

i } as in [Chua and
Wheeden 2011, (1-6)]:

(2-7) C(Bx
j )= {Q

x
i : τQx

i ⊂ Bx
j and τQx

i 6⊂ Bx
j+1}.

In case j ≥ Kx , then C(Bx
j ) consists of just the single ball τ−1 Bx

j = Qx
j . By

Proposition 2.6(d)–(e), we know that each C(B) has a bounded number (denoted
by L = C(δ, κ, Dσ , c)) of δ-balls Q and each δ-ball has radius ≥ cδr(B)/(4τκ).
Hence if I = {Bα} is a countable collection of pairwise disjoint balls Bx

j in the
above, then with the notation of condition (3) in Theorem A.1, we have by (2-2),
taking a∗(Q)= a(Q)‖g‖L p

w(τQ),∑
Bα∈I

(A(Bα)qµ∗(Bα))p/q
≤ L p/q

∑
Bα∈I

C p
1 ‖g‖

p
L p
w(Bα)
≤ L p/qC p

1 ‖g‖
p
L p
w(�)

.

Thus, (A-4) holds with θ = p/q and (Cq
0µ(�))

p/q
= C(δ, κ, Dσ , c)C p

1 ‖g‖
p
L p
w(�)

.
Finally, (A-2) holds with

p0 = 1, C( f, Qx
j )= fQx

j ,σ
and a∗(Qx

j )= a(Qx
j )‖g‖L p

w(τQx
j )

as fQx
i ,σ
→ f (x), σ -a.e. (and hence µ-a.e.) by the Lebesgue differentiation

theorem as σ is δ-doubling and note that a Vitali-type property (1-10) holds with
µ= µ∗ = σ (on metric spaces, see [Heinonen 2001]). Condition (4) holds because
we have assumed the Vitali-type property (1-10) holds. (2-3) now follows from
Theorem A.1.

Moreover, if the truncation property holds, the proof of the strong-type inequality
(2-4) follows exactly the same argument as in [Chua and Wheeden 2008, proof of
Theorem 1.10] (and has been used in many other papers listed there) and hence
omitted here. We shall only note that our conclusion follows from [Chua and
Wheeden 2011, Theorem 1.9]. �
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Next, we prove a self improving Poincaré-type property for balls. Note that a
metric ball will be a weak John domain if we assume certain geodesic path property.
However, we will establish it without such an assumption.

Proposition 2.7. Let 1 ≤ p < q and D be a measurable subset in H such that
d(x,Dc) > 0 for all x ∈ D (when D 6= H ). Let

0< δ ≤ 1/(2κ2) and 1≤ τ ≤ 1/(2δκ2).

Let σ,µ,w be measures on D such that σ is δ-doubling on D and µ is abso-
lutely continuous with respect to σ . Suppose (1-4) holds for all ( f, g) ∈ S ⊂

L1
σ,loc(D)× L p

w,loc(D) and δ-balls B in D. Suppose there exists a ball set function
µ∗ such that µ(B) ≤ µ∗(B) for all δ-balls B in D and such that Condition (R)
holds for any δ-ball Br (x0) with r x

1 = 2κr . Suppose further that

(2-8) µ∗(Q̃)1/qa(Q)≤ C1 for all δ-balls Q, Q̃,
Q ⊂ Q̃ and r(Q)≥ r(Q̃)/(2κ).

If (µ,µ∗) satisfies the Vitali-type property (1-10) on D, then for any ball B such
that λτ B is a δ-ball, we have

(2-9) µ{x ∈ B : | f (x)− fB,σ |> t} ≤
CCq

1 Vµ
tq ‖g‖q

L p
w(λτ B)

for all t > 0, ( f, g) ∈S,

where C depends on A1, A2, θ1, θ2, δ, τ, κ, c, p, q and the doubling constant Dσ

of σ . Furthermore, if S satisfies (1-4) with the truncation property, then we also
have the following strong-type inequality:

(2-10) ‖ f − fB,σ‖Lq
µ(B)
≤ CcT C1V 1/q

µ ‖g‖L p
w(λτ B) for all ( f, g) ∈S.

Proof. This is again a consequence of Theorem A.1 [Chua and Wheeden 2008,
Theorem 1.2]. For each ball Br (x0) such that Bλτr (x0) is a δ-ball, we will apply
Theorem A.1 with � = Br (x0). For each x ∈ Br (x0), we define Qx

1 = Br (x0),
Qx

2 = B(x, 2κr) and let r x
1 = 2κr . By Condition (R), there exists a sequence r x

j → 0
such that r x

j /2 ≤ r x
j+1 < r x

j and (1-8) holds. We now take Bx
j = Qx

j+1 = Br j (x)
for all j ≥ 1 and define C(Bx

j )= {B
x
j } for j > 1 and C(Bx

1 )= {B
x
1 , Br (x0)}. Note

that Bx
j are δ-balls and (A-3) holds with ℘ = 1 by Condition (R). Moreover, (A-1)

holds since σ is δ-doubling. Also, let

a∗(Qx
i )= a(Qx

i )‖g‖L p
w(τQx

i )
.

Similar to the proof of Theorem 2.4, (A-2) holds with p0 = 1 by (1-4). Take
θ = p/q . We now observe that if I is a subcollection of pairwise disjoint balls Bx

j
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defined above, we have∑
B∈I

(a∗(B)qµ∗(B))p/q
=

∑
B∈I

a(B)p
‖g‖p

L p
w(τ B)

µ∗(B)p/q

≤

∑
B∈I

C p
1 ‖g‖

p
L p
w(∪τ B)

≤ CC p
1 ‖g‖

p
L p
w(λτ Br (x0))

since {τ B}B∈I has bounded overlap (see Proposition 2.6(b)) and τ Bx
i ⊂ λτ Br (x0)

(see [Chua and Wheeden 2008, Observation 2.1(1)]). Equation (A-4) will then hold
with

Cq
0µ(�)= 2qCCq

1 ‖g‖
q
L p
w(λτ Br (x0))

since

a(Br (x0))
p
‖g‖p

L p
w(Bτr (x0))

µ∗(B2κr (x))p/q
≤ C p

1 ‖g‖
p
L p
w(Bτr (x0))

for any x ∈ Br (x0).

Again, note that fBr (x),σ → f (x) for σ -a.e. x as r → 0. The first part of the
proposition then follows from Theorem A.1 and once again the second part will
follow from the standard truncation argument. �

Remark 2.8. (1) λ= 3 when H is a metric space as κ = 1. Moreover, checking
through our proof, λ can be replaced by (1+ ε) (for any fixed ε > 0) provided for
all x ∈ Br (x0) such that B(1+ε)r (x0) is a δ ball, we have

(i) σ(Bεr (x)∩ Br (x0))≥ Cσσ(Bεr (x)∪ Br (x0));

(ii) µ∗(Bεr (x))1/qa(Br (x0))≤ C1;

(iii) µ(Br (x0))≤ ℘µ
∗(Bεr (x)).

Indeed, we will then choose Qx
2 to be B(x, εr) instead of B(x, 2r). The rest of the

proof is similar with the help of (i)–(iii).

(2) A similar inequality has been obtained in [Hajłasz and Koskela 2000, Theo-
rem 5.1] on metric spaces with λ being replaced by 5 and µ= w being doubling
and a(Q)= Cr(Q)µ(Q)−1/p [Hajłasz and Koskela 2000, (22)].

(3) It is often true that metric balls are weak John domains; for example, when
the ball satisfies the “geodesic path property.” In that case, ‖g‖L p

w(λτ B) in (2-9) and
(2-10) can be replaced by just ‖g‖L p

w(B)
using Theorem 2.4; see also [Heinonen

2001, Theorem 9.5] when µ = w is doubling and the main results in [Franchi
et al. 2003] for quasimetric balls. Indeed, in particular we obtain the main result of
[Franchi et al. 2003] without the assumption of “geodesic path property” or “chain
condition.”

(4) Equation (2-10) will imply

‖ f − fB,µ‖Lq
µ(B)
≤ CC1V 1/q

µ ‖g‖L p
w(λτ B) for all ( f, g) ∈S
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and hence by Hölder’s inequality,

(2-11) ‖ f − fB,µ‖L p
µ(B)
≤CC1V 1/q

µ µ(B)1/q−1/p
‖g‖L p

w(λτ B) for all ( f, g) ∈S.

The idea of John domains has been extended to generalized John domains which
include bounded and unbounded John domains in [Chua 2009]. It has been shown
in [Chua 2009, Proposition 2.24] that a generalized John domain in a metric space
that satisfies some “path property” is still a generalized John domain if a point is
being removed. Indeed, by a simple modification of that proof, we can also show
that a weak John domain in a metric space satisfying a “path property” (which is
slightly weaker than that of [Chua 2009]) is still a weak John domain if a point
has been removed. In particular, a John domain in Rn with finite number of points
being removed will still be a John domain.

Proposition 2.9. Let � be a subset of a metric space H and � ∈ J ′(c). Suppose �
satisfies the following path property:

Given any two points x, y ∈ Br (z) with B2r (z)⊂�, there exists a contin-
uous path η : [0, 1]→ Bθr2(z)\ Br1/θ (z) such that η(0)= x and η(1)= y
where r1 =min{d(x, z), d(y, z)} and r2 =max{d(x, z), d(y, z)} and θ is
a fixed constant > 1.

Then � \ {z} ∈ J ′(C(c, θ)) is also a weak John domain.

Proof. As the proof is very similar to the proof of [Chua 2009, Proposition 2.24],
we shall only provide it in Appendix B. �

Remark 2.10. (1) The above mentioned path property is weaker than the one used
in [Chua 2009, Proposition 2.24]. Indeed, this property is a consequence of the
“linearly connected property” defined in [Heinonen 2001, p. 64].

(2) Consequently, if �⊂ Rn is a weak John domain, then �\ {zi }
l
i=1, l ∈N is also

a weak John domain. Indeed, if � ∈ J ′(c), then � \ {zi }
l
i=1 ∈ J ′(c̃) with 0< c̃ < c

depending only on c, l and n.

Finally, let us discuss a density theorem that is an extension of [Hajłasz and
Koskela 1998, Theorem 3] (see also [Hajłasz 1993]). For convenience, we say
C∞(�) (or Liploc(�)) is dense in a norm space W if C∞(�)∩W (or Liploc(�)∩W )
is dense in W .

Proposition 2.11. Let 1 ≤ p0, p <∞. Let � be a domain in Rn , µ,w, ρ, ρ0 be
weights on � such that ρ, ρ−1

∈ L∞w,loc(�) (locally bounded with respect to the
measure dw) and ρ0, ρ

−1
0 ∈ L∞µ,loc(�). Suppose C∞(�) (or Liploc(�)) is dense in

W 1,p
w,loc(�)∩ L p0

µ,loc(�), i.e.,

(A) Given any x ∈�, there exists Brx (x)⊂� such that for all

f ∈W 1,p
w,loc(�)∩ L p0

µ,loc(�),
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and ε > 0, there exists φ ∈ C∞(�) (or Liploc(�)) such that

(2-12) ‖ f −φ‖W 1,p
w (Brx (x))

< ε and ‖ f −φ‖L p0
µ (Brx (x))

< ε.

Then C∞(�) (or Liploc(�)) is dense in W 1,p
wρ (�)∩ L p0

µρ0(�).

Proof. For each x ∈�, let Brx (x)⊂� such that (A) holds and Brx (x)⊂�. Since
� =

⋃
x∈� B(x, rx/2), there exists countable subfamily of bounded overlapping

balls {Bi }
∞

i=1 (Bi= B(x, rx/2) for some x) such that�⊂
⋃

i Bi . We will then choose
a partition of unity. Indeed, for each Bi , we find hi ∈ C∞0 (D) with χBi ≤ hi ≤ χ2Bi

and define ui = hi/
∑

k hk (ui = 0 if hi = 0). Next, for any f ∈W 1,p
wρ (�)∩L p0

µρ0(�),
since ρ−1

∈ L∞w,loc(�), ρ
−1
0 ∈ L∞µ,loc(�), it is clear that f ∈W 1,p

w,loc(�)∩ L p0
µ,loc(�).

Since ρ ∈ L∞w,loc(�) and ρ0 ∈ L∞µ,loc(�), for each Bi , there exists Ai > 0 such that
ρ ≤ Ai on 2Bi w-a.e. and ρ0 ≤ Ai on 2Bi µ-a.e. Now, by (A), given any ε > 0,
there exists gi ∈ C∞(�) such that

‖ f − gi‖L p
w(2Bi )

+‖∇( f − gi )‖L p
w(2Bi )

≤ ε/
(
2i (Ai )

1/p max{‖∇ui‖L∞(�), 1}
)

and ‖ f − gi‖L
p0
µ (2Bi )

< ε/(2i A1/p0
i ). Thus, by the triangle inequality and estimates

on ρ,

‖∇( f ui − gi ui )‖L p
wρ(�)

= ‖∇( f ui − gi ui )‖L p
wρ(2Bi )

= ‖ui∇( f − gi )+ ( f − gi )∇ui‖L p
wρ(2Bi )

≤ ‖∇( f − gi )‖L p
wρ(2Bi )

+‖∇ui‖L∞(�)‖ f − gi‖L p
wρ(2Bi )

≤ A1/p
i ‖∇( f − gi )‖L p

w(2Bi )
+ A1/p

i ‖∇ui‖L∞(�)‖ f − gi‖L p
w(2Bi )

≤ 2ε/2i .

Hence if g =
∑

gi ui , then g ∈ C∞(�) (or Liploc(�) when gi ∈ Liploc(�)) and

‖∇( f − g)‖L p
wρ(�)
=
∥∥∇( f

∑
ui −

∑
gi ui

)∥∥
L p
wρ(�)

since
∑

i ui = 1

=
∥∥∑

i ∇( f ui − gi ui )
∥∥

L p
wρ(�)

≤
∑

i ‖∇( f ui − gi ui )‖L p
wρ(�)
≤ 2ε.

Finally, it is easy to see that

‖ f − g‖L p
wρ(�)

, ‖ f − g‖L p0
µρ0 (�)

< 2ε. �

It is often true that the Poincaré inequality holds. The following observation is
useful in applying the density theorem.

Proposition 2.12. Let 1≤ p, p0<∞, τ ≥ 1 and µ,w be locally integrable weights
on a domain �⊂ Rn . Suppose for all balls B with 2τ B ⊂� and f ∈ C∞(�),

(2-13) ‖ f − fB,µ‖L
p0
µ (B)
≤ a(B)‖∇ f ‖L p

w(τ B),
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where a(B) is a finite ball set function that is independent of f . Suppose also
C∞(�) is dense in E p

w,loc(�), i.e., given any x ∈�, there exists Brx (x)⊂� such
that for any ε > 0, f ∈ E p

w,loc(�), there exists φ ∈ C∞(�) such that

(2-14) ‖∇( f −φ)‖L p
w(Brx (x))

< ε.

Then C∞(�) is also dense in E p
w,loc(�)∩ L p0

µ,loc(�).

Proof. The conclusion follows from (2-13) and (2-14). �

Remark 2.13. (1) One could generalize the above density theorem to domains in
Riemannian manifolds where there are partitions of unity.

(2) Under the assumptions of Proposition 2.11, C∞(�) is also dense in

L p
wρ0,loc(�)∩W 1,p

wρ,loc(�), L p
wρ0
(�)∩ E p

wρ(�), . . . , etc.

To see this, just check through the proof.

(3) If (2-13) holds and w ∈ Ap, then it follows from Proposition 2.12 that C∞(�)
is dense in L p0

µ (�)∩ E p
w(�) as C∞(�) is dense in W 1,p

w (�) [Turesson 2000].

(4) Condition (2-12) holds for example when w ∈ Ap and µ ∈ Ap0 . It is then easy
to see that C∞(�) is dense in L p0

µρ0(�) ∩ E p
wρ(�). The case where w = µ = 1,

p0 = p and ρ, ρ0 are positive continuous on � has been obtained in [Hajłasz and
Koskela 1998, Theorem 3].

(5) The density theorem for weighted Sobolev spaces of different definitions has
been studied in [Chiadò Piat and Serra Cassano 1994].

Finally, note that derivatives and the fractional derivatives satisfy the truncation
property.

Proposition 2.14. Let � be an open set in Rn and 1≤ p <∞ and 0< α ≤ 1. Let
w be any Borel measure on �. Then for any f ∈ L1

loc(�) (or Liploc(�) if α = 1),
we have

(2-15)
∞∑

k=1

‖∇
�
α,p f 2kω

b ‖
p
L p
w(�)
≤ C(p)‖∇�α,p f ‖p

L p
w(�)

for any ω > 0 and b ∈ R.

Proof. The case α = 1 is well-known and obvious as
∞∑

k=1

‖∇ f 2kω
b ‖

p
L p
w(�)
≤ ‖∇| f − b|‖p

L p
w(�)
≤ ‖∇ f ‖p

L p
w(�)

.

For 0 < α < 1, a result has been stated in [Dyda et al. 2016, Theorem 4.1].
Unfortunately, the statement is not quite the same as ours. So we will provide the
details here. Fix any ω > 0 and b ∈ R, let

Ai =
{

x ∈� : 2i−1ω < | f (x)− b| ≤ 2iω
}
.
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Then

∞∑
k=1

‖∇
�
α,p f 2kω

b ‖
p
L p
w(�)

=

∞∑
k=1

∫
�

∫
B(x,ρ�(x))

| f 2kω
b (x)− f 2kω

b (y)|p

|x − y|n+αp dy dw(x)

=

(
∞∑

k=1

∑
i≤k≤ j

∫
Ai

∫
A j∩B(x,ρ�(x))

+

∞∑
k=1

∑
j≤k≤i

∫
Ai

∫
A j∩B(x,ρ�(x))

)
| f 2kω

b (x)− f 2kω
b (y)|p

|x − y|n+αp dy dw(x).

If x ∈ Ai , y ∈ A j , i < j − 1, then

| f (x)− f (y)| ≥ | f (y)− b| − | f (x)− b| ≥ 2 j−2ω,

and | f 2kω
b (x)− f 2kω

b (y)| ≤ 2kω ≤ 42k− j
| f (x)− f (y)|.

On the other hand | f 2kω
b (x)− f 2kω

b (y)| ≤ | f (x)− f (y)| for all k. Hence,

(2-16) | f 2kω
b (x)− f 2kω

b (y)| ≤ 42k− j
| f (x)− f (y)| for all i ≤ k ≤ j .

Using the above (2-16), we have

∞∑
k=1

∑
i≤k≤ j

∫
Ai

∫
A j∩B(x,ρ�(x))

| f 2kω
b (x)− f 2kω

b (y)|p

|x − y|n+αp dy dw(x)

≤ 4p
∞∑

k=1

∑
i≤k≤ j

2(k− j)p
∫

Ai

∫
A j∩B(x,ρ�(x))

| f (x)− f (y)|p

|x − y|n+αp dy dw(x)

≤
4p

1− 2−p

∫
�

∫
B(x,ρ�(x))

| f (x)− f (y)|p

|x − y|n+αp dy dw(x).

A similar estimate can be done for the remaining term. �

3. Proof of the main theorem and related results

Proof of Theorem 1.1. First, on each � j , by Theorem 2.4, for any ( f, g) ∈S,

(3-1) ‖ f − fB ′j ,σ‖Lq
µ(� j )

≤ C
(
θ1, θ2, A1, A2, Dσ , δ, τ, c, q, p

)
cT C1V 1/q

µ ‖g‖L p
w(� j )

.
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Hence by the triangle inequality and Hölder’s inequality,

(3-2) ‖ f ‖Lq
µ(� j )
≤ ‖ fB ′j ,σ‖Lq

µ(� j )
+‖ f − fB ′j ,σ‖Lq

µ(� j )

≤
µ(� j )

1/q

σ(B ′j )1/p0
‖ f ‖L p0

σ (B ′j )
+CcT C1V 1/q

µ ‖g‖L p
w(� j )

≤ C(c, Dσ )C2‖ f ‖L p0
σ (� j )

+CcT C1V 1/q
µ ‖g‖L p

w(� j )

by (1-12) since σ is δ-doubling on � j (with doubling constant Dσ ) and � j ⊂

C(c, δ)B ′j . Hence,

(∑
‖ f ‖q

Lq
µ(� j )

)1/q
≤ CC2

(∑
‖ f ‖q

L
p0
σ (� j )

)1/q
+CcT C1V 1/q

µ

(∑
‖g‖q

L p
w(� j )

)1/q

≤ CC2
(∑
‖ f ‖p0

L
p0
σ (� j )

)1/p0
+CcT C1V 1/q

µ

(∑
‖g‖p

L p
w(� j )

)1/p
,

since 1≤ p, p0 ≤ q . Thus since
∑
χ
� j
≤ M ,

(3-3) ‖ f ‖Lq
µ(�)
≤ C

[
C2 M1/p0‖ f ‖L p0

σ (�)
+ cT C1V 1/q

µ M1/p
‖g‖L p

w(�)

]
for all ( f, g) ∈S. We will now apply Theorem A.2 to prove Theorem 1.1(II)(b)
and (II)(c).

First, by Proposition 2.7 and Remark 2.8(4) and Hölder’s inequality, we have

(3-4) ‖ f − fB,µ‖L p
µ(B)
≤ Cµ(B)1/p−1/q

‖g‖L p
w(3τ B)

for all ( f, g) ∈S and any δ-ball B of any � j . Now suppose {( fn, gn)} ⊂S such
that { fn} and {gn} are bounded in L p0

σ (�) and L p
w(�) respectively. Then { fn} is

also bounded in Lq
µ(�) by (3-3). Since µ(�) <∞, given any ε > 0, there exists

L ∈N such that µ
(
�\

⋃L
j=1� j

)
<ε/2. Next, for each 1≤ j ≤ L , let {Qi, j }

∞

i=1 be a
collection of bounded intersecting δ-balls of � j such that � j =

⋃
Qi, j guaranteed

by Proposition 2.6(a). Then there exists k j ∈ N such that

µ
(
� j \

⋃k j
i=1 Qi, j

)
< ε/(2L).

For each

(3-5) 0< r < δmin
{
d
(
�c

j ,
⋃k j

i=1 Qi, j
)
: 1≤ j ≤ L

}/
(6τ),

we choose any maximum family of pairwise disjoint balls {B(xm, r/3)}Km=1 con-
tained in

⋃
1≤ j≤L

⋃k j
i=1 Qi, j . Then it is easy to see that each Br (xm) is a δ-ball in

some � j and ⋃K
m=1 Br (xm)⊃

⋃
1≤ j≤L

⋃k j
i=1 Qi, j .
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Note that the family {B(xm, 3τr)}Km=1 has bounded overlaps. It is now clear by
(3-4) that

(3-6)
K∑

m=1

‖ fn − ( fn)Br (xm),µ‖
p
L p
µ(Br (xm))

≤

K∑
m=1

Cµ(Br (xm))
1−p/q
‖gn‖

p
L p
w(B(xm ,3τr))

≤ C sup
m
µ(Br (xm))

1−p/q
‖gn‖

p
L p
w(�)

.

We now choose r smaller if necessary such that the right hand side of (3-6) is
less than ε p, which is possible by Remark 1.2(8) and the fact that {gn} is bounded
in L p

w(�).
Taking {E`} as {Br (xm)}

K
m=1, by Theorem A.2, we conclude the proof of (II)(b).

Part (c) of (II) is similar but easier; see Remark 1.2(10).
Finally, note that if we only assume (1-4) without the truncation property, then

instead of (3-3), we will only have (if p0, p ≤ q̃ < q)

(3-7) ‖ f ‖
L q̃
µ(�)
≤ C sup

j
µ(� j )

1/q̃−1/q[C2 M1/p0‖ f ‖
L

p0
σ (�)
+C1V 1/q

µ M1/p
‖g‖

L p
w(�)

]
for all ( f, g) ∈S while (3-4) remains valid. Remark 1.2(1) is now clear.

Proof of Theorem 1.4. First, clearly,

ρ1µ(B ∩� j )≤ µ
∗(B)

l∏
i=1

9i (η̄i (B))ai for any � j .

We now see that µ∗(B)
∏l

i=19i (η̄i (B))ai satisfies Condition (R). Indeed since 9i ’s
are monotone increasing, ai > 0 and 9i (2t)≤ C9i9i (t) for all t > 0 and all i , we
have

9i (η̄i (B))ai ≤9i (η̄i (2B))ai ≤Cρ19i (η̄i (B))ai for all balls B with center in � j ,

where Cρ1 = C
(
{C9i , ai }

l
i=1

)
. Given any x ∈ � j , suppose Bi = B(x, r x

i ) is
the sequence given in Condition (R) for µ∗. The sequence will then work for
µ∗(B)

∏l
i=19i (η̄i (B))ai . That is, it satisfies Condition (R) (but with smaller con-

stant A1 and θ1 on the left). Next, for any δ-ball Q of � j , we have by (1-4),

(3-8) ‖ f − fQ,σ‖L1
σ (Q)
≤ a(Q)‖g‖

L p
w(τQ)

≤ C({C9i , bi }, p, τδ)a(Q)
l∏

i=1

9i (η̄i (Q))−bi /p
‖g‖

L p
ρ2w(τQ)

as τQ is a τδ-ball and ρ2 is essentially constant on τQ. Moreover, if Q ⊂ B,
where Q is a δ-ball, B is a ball with center in � j such that r(B) ≤ diam(� j )

and r(Q) ≥ cδr(B)/4, then since r(Q) ≤ η̄i (Q) ≤ η̄i (B) ≤ C(δ, c)η̄i (Q) and
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9i (2t)≤ C9i9i (t), ai > 0 for all i , we have by (1-25),

µ∗(B)1/qa(Q)
l∏

i=1

9i (η̄i (B))ai/q
l∏

i=1

9i (η̄i (Q))−bi/p

≤ C(δ, q, c, {ai , bi ,C9i })µ
∗(B)1/qa(Q)

l∏
i=1

9i (η̄i (Q))ai/q−bi/p

≤ C(δ, q, c, {ai , bi ,C9i })C1.

Hence, we have by Theorem 2.4 that (1-26) holds. Next, by the triangle inequality
and Hölder’s inequality,

‖ f ‖L p
ρ1µ(� j )

≤
ρ1µ(� j )

1/q

σ(B ′j )
‖ f ‖L p0

σ (B ′j )
+‖ f − fB ′j ,σ‖L p

ρ1µ(� j )
= I + I I.

Using (1-27), noting that σ is δ-doubling on � j on each j with doubling constant
Dσ and � j ⊂ C(c, δ)B ′j , we have

I ≤ C
(
δ, τ, c, {C9i , ai }, q, p0

)µ(� j )
1/q ∏l

i=19i (η̄i (B ′j ))
ai/q

σ(B ′j )1/p0
‖ f ‖L p0

σ (B ′j )

≤ C
(
c, δ, τ, {C9i, ai , γi }, p0, q

)∏l
i=19i (η̄i (B ′j ))

ai/q−γi/p0µ(� j )
1/q

σ(B ′j )1/p0
‖ f ‖L p0

ρ0σ (B
′

j )

≤ C
(
c, δ, τ, Dσ , {C9i , ai , γi }, p0, q

)
C2‖ f ‖L p0

ρ0σ (� j )
,

Combining with (1-26), we have

‖ f ‖L p
ρ1µ(� j )

≤ C
(
c, δ, τ, Dσ , {C9i , ai , bi , γi }, p, p0, q

)
×
(
C2‖ f ‖L p0

ρ0σ (� j )
+C1cT V 1/q

µ ‖g‖L p
ρ2w(� j )

)
.

Finally, we can conclude Theorem 1.4 by an argument as in the proof of Theorem 1.1.

Proof of Theorem 1.8. We will only prove the second part where D =
⋃
� j . We

will use Theorem 1.4 with dσ = dx the Lebesgue measure, 9 = 1, η = ρ, δ = 1
2

and µ∗(B)= Cµr(B)N . Since � j ⊂ Rn , (µa, µ
∗
a) (where µ∗a(B)= ρ̄(B)

aµ∗(B))
satisfies the Vitali-type property (1-10) with parameter depending only on n. Let S
be as in the proof of Corollary 1.6. Then the Poincaré inequality (1-4) holds for S
with σ = 1 and g =∇� j

α,p f by (1-2). Note that ∇� j
α,p f ≤ ∇D

α,p f . Again, S satisfies
(1-4) with the truncation property by Proposition 2.14.

Next, if B is a ball with center in � j , r(B)≤ diam(� j ) and Q is a δ-ball in B
such that r(Q)≥ c r(B)/8, by the fact that ρ̄(Q)≥ Cr(Q) and (1-46),

µ∗(B)1/qa(Q)ρ̄(B)a/q−b/p
≤ CC∗C1/q

µ r(Q)N/q+β1 ρ̄(Q)β2+a/q−b/p

≤ C
(
M2, a, b, p, q, N , β1, β2

)
C∗C1/q

µ
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since β1 +
N
q +min

{
0, β2 +

a
q −

b
p

}
≥ 0 (by (i)) and β2 +

a
q −

b
p ≤ 0 when ρ is

unbounded (by (ii)). Hence (1-25) holds. We now check that (1-27) holds. As
� j ⊂ C(c)B ′j , by (1-45),

(3-9) µ(� j )
1/q
|� j |

−1/p0 ρ̄(� j )
a/q−γ /p0

≤ CC1/q
µ min

{
r(B ′j )

N , r(B ′j )
N1 ρ̄(B ′j )

N2
}1/qr(B ′j )

−n/p0 ρ̄(� j )
a/q−γ /p0

≤ CC1/q
µ min

{
r(B ′j )

N/q−n/p0 ρ̄(B ′j )
a/q−γ /p0,

r(B ′j )
N1/q−n/p0 ρ̄(B ′j )

(N2+a)/q−γ /p0
}
,

which is bounded by C
(
M1,M2, a, b, p0, q, N , N2, N1, γ

)
C1/q
µ using (i), (ii) and

the fact that r(B ′j )≥ C(c,M1). Equation (1-47) will then hold for all f ∈Sα(D)
by Theorem 1.4.

For the part of compact embedding, as we now allow µa(D)=∞, we cannot
use Theorem 1.4 directly, we will use Theorem A.3 instead of Theorem A.2. Now,
suppose we have strict inequalities in conditions (i) and (ii). Then we can find
q̃ > q and ã > a such that conditions (i) and (ii) hold with a and q being replaced
by ã and q̃ respectively. We can then apply the first part of the theorem to conclude
that (1-47) holds with either a being replaced by ã or q being replaced by q̃ .

Now suppose {ui }
∞

i=1 ⊂ Sα(D) such that both ‖ui‖L
p0
ργ
(D) and ‖∇D

α,pui‖L p
wb (D)

are bounded. Then {ui } is a bounded sequence in both Lq
µã
(D) and L q̃

µa (D). Hence
it has a weakly convergent subsequence (in both Lq

µã (D) and L q̃
µa (D)) and for

convenience, we will still denote the subsequence by {ui } and we may also assume
that ‖ui‖Lq

µã (D)
≤ A for all i . Now, given any η>0, let Dη={x ∈D :ρ(x)<ηq/(a−ã)

}

and D′η = D \Dη. Then,

(3-10) ‖ui − u j‖
q
Lq
µa (D′η)

=

∫
D′η
|ui − u j |

qρ(x)a−ãdµã ≤ η
q
∫
D′η
|ui − u j |

qdµã

≤ (2A)qηq .

Again, by Proposition 2.7, for all i , we know inequality (2-11) holds with f = ui ,
g =∇D

α,pui , µ= µa , w = wb, λ= 3 and τ = 1. Next, given any ε > 0, as q > p,
by Remark 1.2(8), we see that there exists δε > 0 such that (A-7) holds with f = ui

if r(B) < δε and 6B ⊂ D. Further, since µa(Dη) <∞ by assumption, as {ui } and
{∇

D
α,pui } are bounded in L q̃

µa (Dη) and L p
wb(Dη) respectively, using Theorem A.3,

{ui } has a subsequence (still denoted by {ui }) converging in L q̃
µa (Dη) and hence

Cauchy. Thus, there exists Nε such that

(3-11) ‖ui − u j‖Lq
µa (Dη)

≤ ε if i, j ≥ Nε.

It is now clear that {ui } is a Cauchy sequence in Lq
µa (D).
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Proof of Corollary 1.10. Let f ∈ Liploc(D) ∩ L p0
ργ (R

n) if α = 1 (or, if α < 1,
f ∈ Ŵ α,p

ρb (D)∩ L p0
ργ (R

n)). It is known that Rn
\G ∈ J (c,∞) [Chua 1995, Proposi-

tion 2.7; 2009, Proposition 2.21]. Moreover, D = Rn
\ (G∪ F) ∈ J (c̃,∞) [Chua

2009, Proposition 2.24]. Thus, given any K > 0, there exists {�K
j } ⊂ J ′(c̃) such

that diam(�K
j ) ∼ K , center ball BK

j of �K
j with r(BK

j ) ∼ K ,
⋃
�K

j = D and∑
χ
�K

j
≤ C(n).

By (1-44), in Theorem 1.8(I), taking dw = dx , β = α− n/p and we have

‖ f − fBK
j
‖Lq

µa (�
K
j )
≤ C ρ̄(R)α+N+a/q−n+b/p

‖∇
D
α,p f ‖L p

ρb (�
K
j )

= C‖∇D
α,p f ‖L p

ρb (�
K
j )
.

Hence, by the triangle inequality, Hölder’s inequality, the fact that ρ̄(BK
j ) ≥

C diam(�K
j ) and ρ is essentially constant on BK

j , we have

(3-12) ‖ f ‖Lq
µa (B

K
j )

≤ Cµa(BK
j )

1/q
|BK

j |
−1/p0 ρ̄(BK

j )
−γ /p0‖ f ‖L p0

ργ
(BK

j )
+C‖∇D

α,p f ‖L p
ρb (�

K
j )

≤ C |�K
j |

N/nq−1/p0 ρ̄(BK
j )

a/q−γ /p0‖ f ‖L p0
ργ
(BK

j )
+C‖∇D

α,p f ‖L p
ρb (�

K
j )

≤ Cdiam(�K
j )
(N+a)/q−(n+γ )/p0‖ f ‖L p0

ργ
(�K

j )
+C‖∇D

α,p f ‖L p
ρb (�

K
j )

since a/q ≤ γ /p0. Finally, as q ≥ p, p0, we have by summing over �K
j ,

(3-13) ‖ f ‖Lq
µa (R

n)
≤ C K (N+a)/q−(n+γ )/p0‖ f ‖L p0

ργ
(D)+C‖∇D

α,p f ‖L p
ρb (R

n)
.

Taking K→∞, as (N+a)/q < (n+γ )/p0, we obtain (1-49) for α < 1. For α= 1,
recall that by Remark 2.13(4), we know Liploc(D) is dense in L p0

ργ (D)∩E p
ρb(D) and

this concludes the proof of the first part. Finally, the last part of the corollary follows
from Remark 1.2(10) and is similar to the proof of the second part of Corollary 1.6.
Indeed, instead of (3-12), we will have

‖ f ‖Lq
µa (�

k
j )
≤ Cµa(�

k
j )

1/q−1/p0‖ f ‖L p0
µa (�

k
j )
+C‖∇D

α,p f ‖L p
ρb (�

k
j )
.

Summing up as before, by (1-51), again letting K →∞, we now see that (1-49)
holds if f ∈ Liploc(D) ∩ L p0

µa (R
n) or f ∈ L p0

µa (R
n) ∩ Ŵ α,p

ρb (D). Obviously, the
condition involving γ is now redundant. Furthermore for α = 1, (1-49) holds for
all f ∈ L p0

µa (R
n)∩ E p

ρb(D) by Propositions 2.11 and 2.12.

Proof of Corollary 1.12. Since D is bounded, there exists a finite collection of
dyadic cubes {Rj } of the same size such that D ⊂

⋃
Rj and the center ball B ′j of

each Rj \ F does not intersect D. In particular fB ′j = 0 for each j if f ∈ C∞0 (D).
Hence, for each Rj \ F , by Theorem 1.8(I), we have (note that Rj \ F ∈ J ′(c) with
c independent of j by Proposition 2.9 since F is finite),

‖ f ‖Lq
µa (Rj )

= ‖ f ‖Lq
µa (Rj\F)

≤ CC1/q
µ ρ̄(Rj )

1+(N+a)/q−(n+b)/p
‖∇ f ‖L p

ρb (Rj )
.
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And hence

(3-14) ‖ f ‖Lq
µa (D)
≤ C‖∇ f ‖L p

ρb (D)

since q ≥ p. Now if the inequality in (1-52) is strict, we can find q̃ > q such
that the above inequality (3-14) holds with q being replaced by q̃. We can then
apply Theorem A.3 to conclude that the embedding of C∞0 (D) (and hence also the
closure of C∞0 (D) in E p

ρb(D)) to Lq
µa (D) is compact. This completes the proof of

Corollary 1.12.

Remark 3.1. If D is unbounded but there exists a collection of countable dyadic
cubes {Rj } of the same size such that D ⊂

⋃
Rj , |Rj | ≥ |D∩ Rj |/2 for all j and ρ

is bounded on
⋃

Rj , then by taking the “parents” of those Rj (for convenience, we
will still denote them by {Rj }), we may assume that the center ball B ′j of Rj \F does
not intersect D. We could then derive (3-14). Compact embedding of C∞0 (D) (and
hence also the closure of C∞0 (D) in E p

ρb(D)) to Lq
µa (D) can again be established

under similar assumptions if µa{x ∈ D : ρ(x) < r}<∞ for any r > 0.

Proof of Theorem 1.14. Instead of applying Theorem 1.8, we will apply techniques
similar to those of [Chua 2009, Theorem 4.1, 4.3]. Moreover, we will also need
either [Chua and Wheeden 2008, Theorem 2.9] or [Chua 2009, Theorem 2.11].
Note that a weak John domain is a Boman domain (see Proposition 2.6(c)). Next,
by Proposition 2.9, there exists c̃ depending only on l, c and n such that for each j ,
�̃ j =� j\F ∈ J ′(c̃), where F = {zi }

l
i=1. For convenience, we will let

(3-15) d̄i (B)= sup
x∈B
|x − zi | for each i.

If Q is a δ-ball
(
δ= 1

5

)
of �̃ j for any j , then by Remark 1.2(5), (1-2) will hold with

a(Q)= C(n)|Q|α/n−1/p and w = 1. Hence for all f ∈Sα(D̃), where D̃ = D \ F ,
since ρ1, ρ2 are both essentially constant on δ-balls with constant depending only
on {ai } and {bi } respectively,

‖ f − fQ‖Lq
ρ1 (Q)

≤ C
(
n, p, q, {ai , bi }

l
i=1
)
|Q|α/n−1/p+1/q ρ̄1(Q)1/q ρ̄2(Q)−1/p

‖∇
D̃
α,p f ‖L p

ρ2 (Q)
,

where ρ̄i (Q)= supx∈Q ρi (x). Thus,

(3-16) ‖ f − fQ‖Lq
ρ1 (Q)

≤ C
(
n, p, q, {ai , bi }

l
i=1
)
r(Q)α−n/p+n/q

l∏
i=1

d̄i (Q)ai/q−bi/p
‖∇

D̃
α,p f‖L p

ρ2 (Q)

≤ C
(
c̃, n, p, q, {ai , bi }

l
i=1, c0

)
εb

0‖∇α,p f ‖L p
ρ2 (Q)
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since

r(Q)α−n/p+n/q
l∏

i=1

d̄i (Q)ai/q−bi/p
≤ C

(
c̃, n, p, q, {ai , bi }

l
i=1
)
r(Q)b

as d̄i (Q)≥ r(Q) and assumptions (i) and (ii).
By Proposition A.4, ρ1 is δ-doubling on �̃ j with doubling constant

C
(
{ai }

l
i=1, c0ε0/ζ, n

)
.

we can conclude (by either [Chua 2009, Theorem 2.11] or [Chua and Wheeden
2008, Theorem 2.9] as John domains are Boman domains [Buckley et al. 1996])
that

(3-17) ‖ f− fB ′j‖Lq
ρ1 (�̃ j )

≤C
(
c̃, n, p, q, {ai , bi }

l
i=1, c0ε0/ζ, c0

)
εb

0‖∇
D̃
α,p f ‖L p

ρ2 (�̃ j )
.

Using the triangle inequality and Hölder’s inequality, we have

‖ f ‖Lq
ρ1 (�̃ j )

≤ ρ1(�̃ j )
1/q
|B ′j |

−1/p0‖ f ‖L p0 (B ′j )
+Cεb

0‖∇
D̃
α,p f ‖L p

ρ2 (�̃ j )
= I + I I.

Using the fact that ρ0 is essentially constant on B ′j , we have

I ≤ C
(

p0, {γi }
l
i=1, c̃

)
ρ1(�̃ j )

1/q
|B ′j |

−1/p0

l∏
i=1

d̄i (B ′j )
−γi/p0‖ f ‖L p0 (B ′j )

≤ C
(

p0, q, c̃, {ai , γi }
l
i=1
)
|B ′j |

1/q−1/p0

l∏
i=1

d̄i (B ′j )
ai/q−γi/p0‖ f ‖L p0

ρ0 (B
′

j )

≤ C
(
c̃, p0, q, {ai , γi }

l
i=1, c0

)
ε

1/q−1/p0+
∑
(ai/q−γi/p0)

0 ‖ f ‖L p0
ρ0 (B

′

j )

= C
(
c̃, p0, q, {ai , γi }

l
i=1, c0

)
εa

0‖ f ‖L p0
ρ0 (B

′

j )

as diam(�̃ j )∼ ε0 (with constant c0) and
∑

ai/q ≤
∑
γi/p0. Since 1≤ p, p0 ≤ q ,

we have

‖ f ‖Lq
ρ1 (D)
≤

(∑
j

‖ f ‖q
Lq
ρ1 (�̃ j )

)1/q

≤ Cεa
0

(∑
j

‖ f ‖q
L

p0
ρ0 (B

′

j )

)1/q

+Cεb
0

(∑
j

‖∇
D̃
α,p f ‖q

L p
ρ2 (� j )

)1/q

≤ Cεa
0

(∑
j

‖ f ‖p0

L
p0
ρ0 (B

′

j )

)1/p0

+Cεb
0

(∑
j

‖∇
D̃
α,p f ‖p

L p
ρ2 (� j )

)1/p

≤ Cεa
0 M1/p0‖ f ‖L p0

ρ0 (D)
+Cεb

0 M1/p
‖∇

D̃
α,p f ‖L p

ρ2 (D)
.
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Hence we have (1-55) when 0< α < 1. If α = 1, we use density of Liploc(D̃) in
L p0
ρ0 (D̃)∩ E p

ρ2(D̃) which contains L p0
ρ0 (D)∩ E p

ρ2(D); see Remark 2.13(4).
Next, if we have strict inequalities in both conditions (i) and (ii), we can find

q̃ > q and α1 > a1 such that both conditions (i) and (ii) hold with q being replaced
by q̃ and a1 being replaced by α1. We define

ρ1(x)=
l∏

i=1

|x − zi |
αi ,

where αi = ai for i = 2, . . . , l and α1 is chosen above. Then (1-55) holds with either
q being replaced by q̃ or ρ1 being replaced by ρ1. In case ρ1(D) <∞, the fact
about compact embedding will follow from Theorem A.3. Next, in case ρ1(D)=∞,
clearly D is unbounded. Suppose { fi } is a bounded sequence of functions in L p0

ρ0 (D)
and E p

ρ2(D) (or Ŵ α,p
ρ2 (D)). We will show that it has a subsequence that is Cauchy

in Lq
ρ1(D). First, as (1-55) holds with either q being replaced by q̃ or ρ1 being

replaced by ρ1, we know the sequence is also bounded in Lq
ρ1(D) and L q̃

ρ1(D).
Thus it has a weakly convergent subsequence (still denoted by { fi }) in Lq

ρ1(D) and
‖ fi‖Lq

ρ1 (D)
≤ A. Similar to the proof of Theorem 1.8, given any η > 0, we define

Dη =
{

x ∈ D : |x − z1|< η
q̃/(a1−α1)

}
and D′η =D \Dη. As the rest of the proof is almost identical to that of Theorem 1.8,
we will not repeat it here.

Finally, if in particular D ∈ J (c, ε0) (see [Chua 2009]), we have (1-55) for all
0< ε < ε0 with ε being replaced by ε.

Remark 3.2. Suppose µ,w are Borel measures such that µ is δ-doubling on D
with D given in Theorem 1.14. Checking through the proof above, we see that

(3-18) ‖ f ‖Lq
µρ1 (D)

≤ C
(
M1/p0ε−a

0 ‖ f ‖L p0
µρ0 (D)

+M1/pεb
0‖g‖L p

wρ2 (D)

)
provided f and g are measurable functions on D such that

(3-19) ‖ f − fQ,µ‖Lq
µ(Q)
≤ Cr(Q)β‖g‖L p

w(Q)
for all δ-balls Q of D

and condition (i) in Theorem 1.14 holds with α being replaced by β (β ≥ 0). See
also Theorem 1.8.

Appendix A.

For convenience, we state [Chua and Wheeden 2008, Theorem 1.2] here for easy
reference.

Theorem A.1. Let σ and µ be measures on a σ -algebra 6 of subsets of X. Let
� be a measurable subset of X and f a fixed measurable function which satisfies
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the following assumptions for some constants 0< p0, q <∞, 0< θ < 1, Cσ ≥ 1,
0< θ1 < θ2 < 1, 0< A1, A2 <∞ and ℘ ≥ 1:

(1) For each x ∈ �, there is a sequence of measurable sets {Qx
i }
∞

i=1, depending
on x , and a fixed set B ′ ⊂ X such that Qx

1 = B ′,

(A-1) 0< σ(Qx
i ∪ Qx

i+1)≤ Cσσ(Qx
i ∩ Qx

i+1) <∞, i = 1, 2, . . . ,

and

(A-2)
(

1
σ(Qx

i )

∫
Qx

i

| f −C( f, Qx
i )|

p0 dσ
)1/p0

≤ a∗(Qx
i ),

where {C( f, Qx
i )} is a sequence of constants that converges to f (x) and {a∗(Qx

i )}

is a sequence of nonnegative numbers.

(2) For each x ∈�, there is a sequence {Bx
j }
∞

j=1 of measurable sets and a sequence
{µ∗(Bx

j )} of positive numbers such that

(A-3) µ(�)≤ ℘µ∗(Bx
1 ) and A1θ

k
1 ≤

µ∗(Bx
j+k)

µ∗(Bx
j )
≤ A2θ

k
2 , j, k ∈ N.

(3) Let F = {Bx
j }x∈�, j∈N. Assume for any Bx

j ∈ F, there is C(Bx
j )⊂ {Q

x
l }l∈N such

that for each x ∈�,
⋃

j∈N C(Bx
j )= {Q

x
l }l∈N and C(Bx

i )∩ C(B
x
j )=∅ when i 6= j .

Further, for any countable subcollection I of pairwise disjoint sets {Bα} in F, let

A(Bα)=
∑

Q∈C(Bα)

a∗(Q)

and assume that

(A-4)
∑
Bα∈I

(
A(Bα)qµ∗(Bα)

)θ
≤ (Cq

0µ(�))
θ .

(4) Suppose the collection F is a cover of Vitali-type of subsets of � with respect to
(µ,µ∗), i.e., given any measurable set E ⊂� and a collection BE = {Bx

i(x) : x ∈ E},
there is a countable pairwise disjoint collection B′E ⊂ BE such that

µ(E)≤ Vµ
∑

Bα∈B′E

µ∗(Bα), Vµ ≥ 1.

Then

(A-5) sup
t>0

tµ{x ∈� : | f (x)− fB ′ |> t}1/q ≤ CC0[℘Vµ µ(�)]1/q ,

where C depends on Cσ , p0, q, A1, A2, θ, θ1 and θ2.

We will now state a general theorem that gives a necessary condition for precom-
pact subsets of L p spaces.
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Theorem A.2 [Chua et al. 2013, Theorem 1.2]. Let w be a finite measure on a
σ -algebra 6 of subsets of a set �, with � ∈6. Let 1≤ p <∞, 1< N ≤∞ and P
be a bounded subset of L N

µ (�). Suppose there is a positive constant C so that for
every ε > 0, there are a finite number of sets E` ∈6 with

(i) µ
(
� \

⋃
` E`

)
< ε and µ(E`) > 0;

(ii) for every f ∈ P ,

(A-6)
∑
`

|| f − fE`,µ||
p
L p
µ(E`)
≤ Cε p where fE`,µ =

∫
E`

f dµ/µ(E`).

Then for every sequence { fk} ⊂ P , there is a single subsequence { fki } and a
function f ∈ L N

µ (�) such that fki → f pointwise µ-a.e. in � and in L q̃
µ(�) norm

for 1≤ q̃ < N.

Next, we state a useful special case of the above on Euclidean spaces. It is an
extension of [Chua et al. 2013, Theorem 2.1]. Here we include the case of fractional
derivatives. As almost the same proof as in [Chua et al. 2013] will give us the
theorem, we shall not prove it.

Theorem A.3 [Chua et al. 2013, Theorem 2.1]. Let �̃ ⊂ � be both open sets
in Rn . Let µ,w be Borel measures on � with µ(�̃)= µ(�) <∞. Let 1≤ p <∞,
0< α ≤ 1, 1< N ≤∞, τ0 ≥ 1 and S⊂ L N

µ (�)∩ E p
w(�) or L N

µ (�)∩ Ŵ α,p
w (�),

and suppose that for all ε > 0, there exists δε > 0 such that

(A-7) ‖ f − fB,µ‖L p
µ(B)
≤ ε‖∇α,p f ‖L p

w(τ0 B) for all f ∈S

and all Euclidean balls B with r(B) < δε and 2τ0 B ⊂ �̃. Then for any sequence
{ fk} ⊂ S that is bounded in L N

µ (�) ∩ E p
w(�) or L N

µ (�) ∩ Ŵ α,p
w (�), there is a

subsequence { fki } and a function f ∈ L N
µ (�) such that fki → f pointwise µ-a.e.

in � and in L q̃
µ(�) norm for 1≤ q̃ < N.

Finally, note that ρ1 in Theorem 1.14 is δ-doubling with doubling constant
independent of �̃ j . Indeed, we have the following more general result.

Proposition A.4. Let {Si }
l
i=1, l ∈ N be such that each Si is a set of finite points

in Rn and Si ∩ S j = ∅ if i 6= j . Suppose � is an open set with diam(�) ≤ d,
ai >−n for all i and z ∈�c for all z ∈

⋃l
i=1 Si . Then the weight

∏l
i=1 d(x, Si )

ai is
δ-doubling on� with doubling constant depends only on n, {ai }

l
i=1, and d/ζ , where

ζ =min
{
|z− y| : z 6= y, z, y ∈

⋃
i∈I− Si = S′

}
, I− = {i : ai < 0} (independent of

d when S′ has ≤ 1 point).

Proof. The result is easy when S′ has ≤ 1 point; recall that |x |α is doubling on Rn

for α >−n and see Example 1.3(ii). Moreover, again by Example 1.3(ii), we only
need to show that

∏
i∈I− d(x, Si )

ai is δ-doubling on �. Thus, we will only show
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that ρ(x)=
∏

i∈I− d(x, Si )
ai induces a δ-doubling measure on �. For convenience,

we will let
d̄i (B)= sup

x∈B
d(x, Si ).

Let β =
∑

i∈I− ai . Given any ball B with 2B ⊂�, clearly (as ai < 0 for all i)

(A-8) ρ(B)≥ C(n, {ai })

(∏
i∈I−

d̄i (B)ai

)
r(B)n ≥ C(n, {ai })dβr(B)n.

Now, let B̃ be a ball with the same center as B and r(B̃)≥ 2r(B). Since

B̃ ⊂
(⋃

z∈S′
(B(z, ζ/2)∩ B̃)

)
∪ {x ∈ B̃ : |x − z| ≥ ζ/2 ∀z ∈ S′}.

For the first term note that the number of such balls B(z, ζ/2) that intersect B̃ is
less than C(n)max{1, (4r(B̃)/ζ )n)}. Now suppose B(z, ζ/2) intersects B̃, z ∈ S1.
We see that as −n < ai < 0,

ρ(B(z, ζ/2)∩ B̃)≤ C(n, {ai })(ζ/2)β−a1

∫
B(z,ζ/2)∩B̃

|x − z|a1 dx

≤ C(n, {ai })ζ
β−a1 min{r(B̃)n+a1, (ζ/2)n+a1}.

Hence if r(B̃)≥ ζ/4, we have

ρ(B̃)≤
∑
z∈S′

ρ(B(z, ζ/2)∩ B̃)+ ρ{x ∈ B̃ : |x − z| ≥ ζ/2 ∀z ∈ S′}

≤ C(n, {ai })ζ
β(4r(B̃)/ζ )n)ζ n

+C(n, {ai })ζ
βr(B̃)n

≤ C(n, {ai })ζ
βr(B̃)n.

On the other hand, if r(B̃)≤ζ/4, then there is at most one z1∈S′ with d(z1, B̃)<ζ/4.
For simplicity, let us assume z1 ∈ S1. We have

ρ(B̃)≤ ρ(B(z1, ζ/2)∩ B̃)+ ρ{x ∈ B̃ : |x − z| ≥ ζ/2 ∀z ∈ S′}

≤ C(n, {ai })ζ
β−a1r(B̃)n+a1 +C(n, {ai })ζ

βr(B̃)n

≤ C(n, {ai })ζ
β−a1r(B̃)n+a1 .

Moreover, if d(z, B̃) ≥ ζ/4 for all z ∈ S′, we have ρ(B̃) ≤ C(n, {ai })ζ
βr(B̃)n . It

is now easy to see that

ρ(B̃)/ρ(B)≤ C(ζ, n, {ai }i∈I ′)max
i
{(r(B̃)/r(B))n+ai , (ζ/d)β−ai }.

In the above, we have assumed that the total number of points in
⋃

Si is more
than 1. If there is only one point z, it is well-known that the weight |x− z|a induces
a measure that is doubling on Rn if a >−n. �
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Appendix B.

Proof of Proposition 2.6. In this proof, we will only assume the following condi-
tion:

There is a fixed “center” x ′ ∈� such that for any x 6= x ′ in �, there exists
γ : [0, l]→� such that γ (0)= x , γ (1)= x ′ and γ is “continuous,” i.e.,

(B-1) for all ε > 0 and t0 ∈ [0, l], there exists δ > 0 such that

d(γ (t), γ (t0)) < ε when |t − t0|< δ, t ∈ [0, l];

and γ satisfies the weak John condition

(B-2) d(γ (t),�c)= inf{d(γ (t), y) : y 6∈�} ≥ c d(γ (t), x) for all t.

Note that while (B-2) remains the same, the main paper assumes γ is Lipschitz
continuous instead of (B-1).

Even though we have allowed τδ ≤ 1/(2κ2) here instead of τδ < 1/(2κ2)

in [Chua and Wheeden 2008, Proposition 2.6], the proof of part (a) and (b) are
essentially the same. For (2.5), just see [Chua and Wheeden 2008, (2.6)]. However,
the assumptions in (c)–(e) are more different from those of [Chua and Wheeden
2008, Proposition 2.6]; we will provide a proof here. We will now prove (c). Fix
a point x ∈ �, and let γ (t), t ∈ [0, l], be a curve connecting x and x ′ satisfying
conditions guaranteed by the weak John property (B-2). With δ′= δ/λ3, we begin by
constructing a special sequence of δ′-Whitney balls centered along γ . For t ∈ [0, l],
let

Rγ (t) = B
(
γ (t), δ′d(γ (t))

)
.

Use (2-5) to pick B̃0 ∈ W̃ containing Rγ (0), and let

t1 = sup{t ∈ [0, 1] : γ (t) ∈ B̃0}.

Note that t1 > 0 by continuity of γ . Moreover, Rγ (t1) intersects B̃0 by definition
of t1 and continuity of γ . We then use (2-5) again to choose a ball B̃1 ∈ W̃
containing Rγ (t1). Then clearly B̃0 intersects B̃1. If t1 = l, we stop the construction
process. If t1 < l, we define

t2 = sup{t ∈ [t1, l] : γ (t) ∈ B̃1}

and choose B̃2 ∈ W̃ containing Rγ (t2). Again, t1 < t2 ≤ l and B̃1 ∩ B̃2 6= ∅. In
general, if 0= t0 < t1 < · · ·< tk and B̃0, B̃1, . . . , B̃k with B̃i ∩ B̃i+1 6=∅ have been
constructed and if tk < l, we continue by defining

(B-3) tk+1 = sup{t ∈ [tk, l] : γ (t) ∈ B̃k}
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and using (2-5) to pick B̃k+1 ∈ W̃ containing Rγ (tk+1). As before, we have tk <
tk+1 ≤ l and B̃k ∩ B̃k+1 6=∅. We stop the construction if tk+1 = l.

Let us show that the process must end after a finite number of steps, i.e., that
there is a positive integer L = L x such that tL = l. To see this, note that since γ is
continuous, taking ε =min{cδ′d(γ (t1), x), δ′d(x)}, we can find η > 0 such that

(B-4) d(γ (s1), γ (s2)) < ε if |s1− s2|< η and s1, s2 ∈ [0, l].

Claim: |tk − tk+1| ≥ η for all k ≥ 1 such that tk+1 < l.

Note that we are done if tk+1 = l. Suppose |tk+1 − tk | < η, then there exists
l ≥ t ′ > tk+1 and |t ′− tk |< η. But by (B-4), we have d(γ (t ′), γ (tk)) < ε. On the
other hand by (B-2)

δ′d(γ (tk))≥ cδ′d(γ (tk), x)≥ cδ′d(γ (t1), x)≥ ε,

as γ (tk) 6∈Rγ (0) if k > 1 and hence γ (t ′) ∈Rγ (tk) ⊂ B̃k while t ′ > tk+1 and it is a
contradiction to (B-3). This proves the claim. It is now easy to see that L−1≤ l/η.

For each B̃i constructed above, let Bi = 2κ B̃i just as in the proof of [Chua and
Wheeden 2008, Proposition 2.6(c)], we see that except for (2-6), the first part of (c)
is proved.

Let us now prove (2-6). The case when B0∩Bi 6=∅ is easy since then B0⊂ λ
4 Bi

(see [Chua and Wheeden 2008, p. 2996]) and hence (2-6) is obvious.
Next, suppose that B0 ∩ Bi = ∅. The following is just a simple modification

of [Chua and Wheeden 2008, p. 2996]. Due to the construction of Bi , there is
a point ξ ∈ B̃i ∩ γ [0, l]. Since ξ /∈ B0 and x ∈ B̃0 = B0/(2κ), the quasitriangle
inequality gives d(ξ, x)≥ r(B0)/(2κ). Similarly, since x /∈ Bi and ξ ∈ B̃i , we have
d(ξ, x)≥ r(Bi )/(2κ). Hence,

d(ξ, x)≥
1

2κ
max{r(B0), r(Bi )}.

We can use this to show that

B0 ⊂
λ2d(ξ, x)

r(Bi )
Bi .

In fact, if z ∈ B0 then

d(z, xBi )≤ κ[d(z, x)+ d(x, xBi )]

≤ κ
[
κ{d(z, xB0)+ d(x, xB0)}+ κ{d(xBi , ξ)+ d(ξ, x)}

]
< κ

[
2κr(B0)+ κr(B̃i )+ κd(ξ, x)

]
,

and thus by the previous estimate for d(ξ, x), we have

d(z, xBi ) < (4κ
3
+ 2κ2) d(ξ, x) < λ2d(ξ, x)
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as desired. To complete the proof of (2-6), we now recall from (B-2) that d(ξ)≥
c d(x, ξ). But since ξ ∈ Bi and Bi is a δ-ball (δ ≤ 1/(2κ2)), triangle inequality and
(a) give

d(ξ)≤ 2κd(xBi )≤ 2κ λ
2

δ
r(Bi ).

Combining estimates, we obtain d(ξ, x)≤ (2κλ2/(cδ))r(Bi ), so that

B0 ⊂
λ2d(ξ, x)

r(Bi )
Bi ⊂

2κλ4

cδ
Bi ,

which proves (2-6) in all cases.
To prove the last statement in (c), we return to the δ′-Whitney balls {Rγ (ti )}

L
i=0

centered on the weak John curve γ from x to x ′, and define balls Qi by

Qi = λ
3Rγ (ti ).

Then Qi has center on γ and is a δ-Whitney ball since r(Qi ) = λ
3δ′d(γ (ti )) =

δd(γ (ti )). The same argument as in the proof of [Chua and Wheeden 2008, Propo-
sition 2.6(c)] then establishes the second part of (c).

To verify part (d), note that the hypothesis Qi 6⊂ B(x, r) implies there exists z∈Qi

such that d(z, x)≥ r . Let xi = γ (ti ) be the center of Qi and ri = r(Qi ). Then by the
triangle inequality and the fact that d(xi , x)= d(γ (ti ), x)≤ d(γ (ti ))/c = ri/(cδ),
we have

r ≤ d(z, x)≤ κ(d(z, xi )+ d(xi , x))≤ κ cδ+1
cδ

ri <
2κri
cδ

.

This completes the proof of (d).
To prove part (e), we will again use the estimate

r(Qi )= δd(γ (ti ))≥ cδd(γ (ti ), x),

which follows from the weak John condition (B-2). Thus if r(Qi )≤ 2ε, then

2ε ≥ cδd(γ (ti ), x) and hence Q⊂ B(x, 4κε/(cδ)).

However, as there is a δ-doubling measure σ on �, the number of disjoint Q of
radius between ε and 2ε is bounded with bound depending only on Dσ , κ, δ and c.
This completes the proof of Proposition 2.6.

Proof of Proposition 2.9. For this proof, we will be again assuming only (B-1)
instead of Lipschitz continuity.

Let x ′ be the central point of � and let d(z, �c)= (θ + 2)ε. We will consider
two cases:

Case (i): x ′ ∈ Bε(z). We will assume Bε(z) 6= � as the case Bε(z) = � follows
immediately from the path property. Using the path property, we know that there



564 SENG-KEE CHUA

exists x ′′ 6∈ Bε(z) such that d(x ′′, z)= ε. Moreover, note that

d(x ′, �c)≤ d(x ′, z)+ d(z, �c)≤ (θ + 3)ε.

For any x ∈�\{z}, x 6= x ′′, we will now construct a continuous path connecting
x to x ′′. First suppose x ∈ Bε(z). By assumption, there exists continuous

η : [0, 1] → Bθε(z) \ Bd(x,z)/θ (z).

Clearly d(η(t),�c) > 2ε > 2
θ

d(η(t), z) and d(η(t), z) > 1
1+θ d(η(t), x) since

d(η(t), x)≤ d(η(t), z)+ d(x, z)≤ (1+ θ)d(η(t), z).

Next, suppose x 6∈ Bε(z). Since �∈ J ′(c), there exists continuous γ : [0, l]→�

such that γ (0)= x , γ (l)= x ′ and

(B-5) d(γ (t),�c)≥ c d(γ (t), x) for all t ∈ [0, l].

Since γ (l) ∈ B(z, ε), we now define

t ′ = inf{t ∈ [0, l] : γ (t) ∈ Bε(z)}.

Note that by continuity, we know d(γ (t ′), z)= ε. Since t ′ < l, by the path property,
there exists a continuous η : [t ′, l] → Bθε(z) \ Bε/θ (z) such that η(t ′)= γ (t ′) and
η(l)= x ′′. Note that d(η(t),�c), d(η(t), z)≥ ε/θ . Since

(B-6) d(η(t), x)≤ d(η(t), z)+ d(z, x ′)+ d(x, x ′) < θε+ ε+ 1
c

d(x ′, �c)

<
2θ+3

c
ε,

it is now clear that

d(η(t),�c
∪ z)≥ c0d(η(t), x) with c0 =

c
(2θ + 3)θ

.

Combining γ with η, we obtain a continuous curve satisfying (B-2) connecting
x to x ′′.

Case (ii): x ′ 6∈ Bε(z). Again, there exists a continuous γ : [0, l] → � such that
γ (0)= x and γ (l)= x ′ satisfies (B-5). We now consider two subcases.

Subcase (a): γ [0, l] ∩ Bε(z)=∅. Then d(γ (t), z)≥ ε for all t . Moreover,

(B-7) d(γ (t),�c)≤ d(γ (t), z)+ d(z, �c)≤ (θ + 3) d(γ (t), z).

Hence
d(γ (t),�c

∪ {z})≥ 1
θ+3

d(γ (t),�c)≥
c

θ+3
d(γ (t), x).

Subcase (b): γ [0, l] ∩ Bε(z) 6=∅. Similar to case (i), we will let

t ′ = inf{t : γ (t) ∈ Bε(z)}.
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Moreover, we also let
t ′′ = sup{t : γ (t) ∈ Bε(z)}.

Again, there exists η : [t ′, t ′′]→ Bθε(z)\ Bε/θ (z) with η(t ′)= γ (t ′), η(t ′′)= γ (t ′′).
We now define

γ̃ =

{
γ (t) for t ∈ [0, t ′] ∪ [t ′′, l],
η(t) for t ∈ [t ′, t ′′].

The case t ∈ [0, t ′] ∪ [t ′′, l] follows from (B-7) and the case t ∈ [t ′, t ′′] follows
from (B-6).
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