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We introduce a geometrically natural probability measure µ on the group
PSL(2,R), identified as the group of all Möbius transformations of the
hyperbolic plane, which is mutually absolutely continuous with respect to
the Haar measure. Our aim is to study topological generation and ran-
dom subgroups, in particular random two-generator subgroups where the
generators are selected randomly. This probability measure in effect es-
tablishes an isomorphism between random n-generator groups and collec-
tions of n random pairs of arcs on the circle. Our aim is to estimate the like-
lihood that such a random group topologically generates (or, conversely, is
discrete). We also want to calculate the precise expectation of associated
parameters, the geometry and topology, and to establish the effectiveness
of tests for discreteness. We achieve an interesting mix of bounds and
precise results. For instance, if f, g ∈∗ PSL(2,R) (that is, selected via
µ), then 0.85 < Pr{〈 f, g〉 = PSL(2,R)} < 0.9, thus the probability the
group is discrete is at least 1

10 (Theorem 8.3) and this increases to 2
5 if we

condition the selection to hyperbolic elements (Theorem 11.6). Further, if
ζ is a primitive n-th root of unity, n ≥ 2, and f (z) = ζ z is the elliptic of
order n, and we choose g ∈∗PSL(2,R) conditioned to be hyperbolic, then
Pr{〈 f, g〉 = PSL(2,R)} = 1− 2/n2 (Theorem 12.5). We establish results
such as the p.d.f. for the translation length τ f of a random hyperbolic to
be H[τ ] = −4/π2 tanh τ

2 log tanh τ
4 (Theorem 4.9), along with related

geometric invariants.

1. Introduction

This article is motivated in part by generalisations of a couple of specific problems
and then explores the more general question of random subgroups of PSL(2,R).
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Here we will mean that generators are selected randomly from a probability distri-
bution on PSL(2,R) and not the limiting random process as described in [Calegari
and Walker 2015] and the references.

First, consider a well known and important result from [Kantor and Lubotzky
1990] (see also [Dixon 1969] and [Liebeck and Shalev 1995]) that shows that the
probability that a pair of uniformly and randomly selected elements u, v ∈u G of a
classical finite group G generates tends to 1 as the order of the group tends to∞.
Here the notation ∈u means randomly selected from the uniform distribution. So,
for instance,

Pr{〈u, v〉 = PSL(2, q) : u, v ∈u PSL(2, q)} → 1 as q→∞.

An earlier result of Auerbach [1934] shows that for a compact Lie group G, a
generic pair (u, v) with respect to the product Haar measure on G×G topologically
generates, that is

Pr{〈u, v〉 = G : u, v ∈u G} = 1.

There are very recent strengthenings of this result [Noskov 2018]. We ask if we can
give meaning to, and answer, a similar question for a noncompact Lie group such
as PSL(2,R) or PSL(2,C) where there can be no invariant probability measure.

For us, there are other questions as well. These are motivated by the increasing
number of computer-supported searches of moduli spaces of discrete groups to solve
problems in geometry and topology in recent times. These include the smallest
volume hyperbolic manifold [Gabai et al. 2011], the noncompact manifold [Cao
and Meyerhoff 2001], the orbifold (Siegel’s problem) [Gehring and Martin 2009;
Marshall and Martin 2012] and perhaps the biggest search of all in [Gabai et al.
2003] establishing topological rigidity. Many of these searches are based on tests
for discreteness and related geometric estimates. Thus we ask how effective are
elementary discreteness tests such as Jørgensen’s inequality? This question can be
phrased as follows: Suppose we somehow choose u, v ∈ PSL(2,C), what is the
probability that | tr2(u)− 4| + | tr[u, v] − 2| ≤ 1?

Another question is, given 〈u, v〉 discrete in PSL(2,R) or PSL(2,C), what is
the distribution of the possible topologies of the quotient of the natural action on
hyperbolic space. As an example, if we choose two “random” hyperbolic elements
which generate a discrete group, then generically the quotient space is either the
two-sphere with three holes, or a torus with one hole, with the latter occurring with
probability 1

3 and determined by whether or not the axes cross. We might also ask
for the distribution of the dimension of the limit set, or shortest geodesic and so
forth. We will answer some of these questions here and leave others to a sequel.
For groups generated by two nilpotent elements (parabolic) of PSL(2,C), we give
explicit answers in [Martin et al. 2019].
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In each case there are a few problems to address: what generate means, how to
measure effectiveness in a probabilistic sense, and what the “correct” probability
density is. The first problem is straightforward.

Definition. Let G be a topological group. We say g1, g2, . . . , gn topologically
generate if

(1.1) 〈g1, g2, . . . , gn〉 = G.

Notice that if G is a Lie group, then the left-hand side is a closed Lie subgroup,
and so a Lie group itself. In PSL(2,R) these closed Lie subgroups can only be
finite, discrete, R or S. While in PSL(2,C) we have the same description if we
add PSL(2,R). As an example, the n-torus T n

= 〈a〉 for a generic a ∈ T n (with
respect to the usual volume form). Advancing Auerbach’s result, Noskov [2018]
proved that for any compact simple Lie group G and any g ∈ G \ {I } the subset of
{h ∈ G : 〈g, h〉 = G} is nonempty and Zariski open in G.

Now we must discuss probability measures. In the case of locally compact
topological groups (which we will not stray from) there is always an invariant Haar
measure. However, there can be no invariant probability measure unless the group
is compact. Thus for PSL(2,R) and PSL(2,C), our first significant problem is
to define a geometrically natural probability measure on these spaces. Desirable
properties should be that it is mutually absolutely continuous with respect to Haar
measure, and invariant under the maximal compact subgroup. This latter property is
useful from a computational point of view when using the Iwasawa decomposition.
Another desirable property would be that the measure is “geometrically natural”
and, finally, that we are able to be compute with it. Unfortunately this will also
mean that parabolic elements and elements with a specific finite order occur with
probability zero since this is the case for Haar measure. We deal with these cases
by conditioning the selection.

In this paper we will focus on the case of PSL(2,R). This group acts as Möbius
transformations (that is, linear fractional transformations or isometries) of hyper-
bolic 2-space. For us a random group will mean a finitely generated subgroup of
PSL(2,R) where the generators are selected from our probability measure. Our
ultimate aim is to study random subgroups of PSL(2,C) viewed as isometries of
hyperbolic 3-space, but the two-dimensional case is quite distinct in many ways —
for instance, since the trace is a continuous function to R, the set of precompact
cyclic subgroups (the elliptic elements) has nonempty interior, and therefore will
have positive measure in any reasonable imposed measure (for our measure, the
set of elliptics and the set of hyperbolics are both of measure equal to 1

2 ). For
PSL(2,C) this should not be the case.
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However, the motivation for the probability measure we chose is similar in both
cases. We seek something “geometrically natural” and with which we can compute.
We should expect that almost surely (that is, with probability 1) a finitely generated
subgroup of the Möbius group is free.

Let us give a couple of examples of the sorts of results we present. We write
f ∈∗ PSL(2,R) to mean that f is a random variable in PSL(2,R) selected using
the probability density described in Section 2A, although in what follows we chose
a Möbius representation for PSL(2,R).

Theorem 1.2. (1) Suppose f, g ∈∗ PSL(2,R). Then

0.85< Pr{〈 f, g〉 = PSL(2,R)}< 0.9.

(2) Suppose f, g ∈∗ PSL(2,R) are hyperbolic. Then

2
5 < Pr{〈 f, g〉 = PSL(2,R)}< 3

5 .

(3) For f ∈∗ PSL(2,R) hyperbolic, the p.d.f. for the translation length τ( f ) is

H [τ ] = −
4
π2 tanh

τ

2
log tanh

τ

4
.

We also consider such things as the probability distribution of the trace of f , the
probability that the axes of randomly chosen hyperbolic generators cross and so
forth. Finally we look at some specific cases where the calculations simplify a bit.
For instance we prove the following theorem.

Theorem 1.3. Let f (z)= ζ nz, n be an integer at least 2, and let g ∈∗ PSL(2,R)

be hyperbolic. Then

Pr
{
〈 f, g〉 = PSL(2,R)

}
= 1−

2
n2 .

To study these questions, our main idea is to set up a topological isomorphism
between n pairs of random arcs on the circle and n-generator Möbius groups. We
then determine the statistics of a random cyclic group completely and then consider
pairs of generators. Unfortunately we are unable to determine the statistics of
commutators of pairs of generators. This is an important challenge with topological
consequences and which we only partially resolve.

2. Random Möbius groups

We introduce specific definitions in the context of Möbius groups of the hyperbolic
plane, identified as the unit disk with the hyperbolic metric. These will naturally
motivate more general definitions for the case of Möbius groups of hyperbolic
3-space in later work.
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If A ∈ PSL(2,C) has the form

(2.1) A =±
(

a c
c̄ ā

)
, |a|2− |c|2 = 1,

then the associated linear fractional transformation f : Ĉ→ Ĉ defined by

(2.2) f (z)=
az+ c
c̄z+ ā

preserves the unit circle since∣∣∣∣az+ c
c̄z+ ā

∣∣∣∣= |z̄|∣∣∣∣ az+ c
āz̄+ c̄|z|2

∣∣∣∣,
with the implication that |z| = 1 implies | f (z)| = 1.

The rotation subgroup K of the disk, z 7→ ζ 2z, |ζ | = 1, and the nilpotent or para-
bolic subgroup P (conjugate to the translations) have the respective representations(

ζ 0
0 ζ̄

)
, |ζ | = 1,

(
1+ i t t

t 1− i t

)
, t ∈ R.

The group of all matrices satisfying (2.1) will be denoted F . It is not difficult to
construct an algebraic isomorphism F ≡ PSL(2,R) ≡ Isom+(H2), the isometry
group of two-dimensional hyperbolic space (see [Beardon 1983]) and we will often
abuse notation and use A from (2.1) and the mapping f from (2.2) interchangeably.
Despite some efforts to directly use PSL(2,R), we feel the approach we take is geo-
metrically more natural by working in F . In particular, our measures are obviously
invariant under the action of the compact group K . We also seek distributions from
which we can make explicit calculations and which are geometrically natural (see,
in particular, Lemma 4.2).

2A. The probability distribution. Our probability space is (F , µF ), the space of
matrices with the following imposed distributions of the entries of an element of F .

(i) ζ = a/|a| and η = c/|c| are chosen uniformly in the circle S, with arclength
measure.

(ii) t = |a| ≥ 1 is chosen so that

2 arcsin(1/t) ∈ [0, π]

is uniformly distributed.

Notice that the product ζη is uniformly distributed on the circle as a simple conse-
quence of the rotational invariance of arclength measure. Further, this measure is
equivalent to the uniform probability measure arg(a) ∈ [0, 2π ]. It is thus clear that
this selection process is invariant under the rotation subgroup of the circle.
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Next, if θ is uniformly distributed in [0, π], then the probability distribution
function for sin θ is 1

π
(1/
√

1− y2) for y ∈ [−1, 1]. Since t 7→ 1/t , for t > 0, is
strictly decreasing, we can use the change of variables formula for distribution
functions to deduce the p.d.f. for |a|.

Lemma 2.3. The random variable |a| ∈ [1,∞) has the p.d.f.

F|a|(x)=
2
π

1

x
√

x2− 1
.

Next notice that the equation 1+ |c|2 = |a|2 tells us that arctan(1/|c|) is also
uniformly distributed in [0, π].

Thus we require that the matrix entries a and c have arguments arg(a) and
arg(c) uniformly distributed on R mod 2π . We write this as arg(a)∈u [0, 2π ]R and
arg(c) ∈u [0, 2π ]R. We illustrate with a lemma.

Lemma 2.4. If arg(a), arg(b) ∈u [0, 2π ]R, then arg(ab), arg(a/b) ∈u [0, 2π ]R.
Hence arg(ak)= k arg(a) ∈u [0, 2π ]R for k ∈ Z.

Proof. The usual method of calculating probability distributions for combinations
of random variables via characteristic functions shows that if θ, η are selected
from a uniformly distributed probability measure on [0, 2π ], then the p.d.f. for
θ + η ∈ [0, 4π ] is given by

(2.5) g(ζ )=
{
ζ/(8π2), 0≤ ζ < 2π,
(4π − ζ )/(8π2), 2π ≤ ζ ≤ 4π.

We reduce mod 2π and observe
ζ

8π2 +
4π − ζ

8π2 =
1

2π
and this gives us once again the uniform probability density on [0, 2π ]. The
remaining results are easy consequences. �

In what follows we will also need to consider variables supported in [0, π] or
smaller subintervals and as above we will write this as a ∈u [0, π]R and so forth.
Most often we will also drop the subscript R.

In a moment we will calculate some distributions naturally associated with
Möbius transformations such as traces and translation lengths. Every Möbius
transformation of the unit disk D can be written in the form

(2.6) z 7→ ζ 2 z−w
1− w̄z

, |ζ | = 1, w ∈ D.

Thus one could consider another approach by choosing distributions for ζ ∈ S

and w ∈ D. It seems clear one would want ζ uniformly distributed in S. The real
question is by what probability measure should w be chosen on D? If w is chosen
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rotationally invariant, then the choice boils down to probability measures on radii.
The choices we have made turn out as follows. The matrix representation of (2.6)
in the form (2.1) is

ζ 2 z−w
1− w̄z

↔


ζ

√
1−|w|2

−
ζw
√

1−|w|2

−
ζ w̄
√

1−|w|2
ζ

√
1−|w|2

.
Hence ζ and w/|w| will be uniformly distributed in S. Then, |w|< 1 necessarily
and

arccos(|w|)= arcsin(
√

1− |w|2) ∈ [0, π/2]

is uniformly distributed and we find |w| = | f (0)| has the p.d.f. 2/(π
√

1− y2),
y ∈ [0, 1]).

Corollary 2.7. Let f ∈ F be a random Möbius transformation. Then the p.d.f. for
y = | f (0)| is 2/(π

√
1− y2). The expected value of | f (0)| is

E[‖ f (0)|] =
2
π

∫ 1

0

y√
1− y2

dy =
2
π
= 0.63662 . . .

The hyperbolic distance here between 0 and E[| f (0)|] is

log
1+ | f (0)|
1− | f (0)|

= log
π + 2
π − 2

= 1.50494 . . . .

3. Fixed points

The fixed points of a random f ∈ F are solutions to the same quadratic equation
and one should therefore expect some correlation. From (2.2) we see the fixed
points are the solutions to az+ c = z(c̄z+ ā). That is

(3.1) z± =
1
c̄
(i=m(a)±

√
<e(a)2− 1), |a|2 = 1+ |c|2.

We consider two cases. Further we will soon establish that Pr{|<e(a)| ≤ 1} = 1
2 , so

each case occurs with equal probability.

Case 1: ( f elliptic or parabolic). |<e(a)| ≤ 1 and so arg(z±)= π
2 + arg(c). Thus

the argument of both fixed points is the same and that angle is uniformly distributed
in [0, π].

Case 2: ( f hyperbolic). <e(a) > 1 and |z±| = 1. We calculate the derivative

| f ′(z±)| =
1

|c̄z±+ ā|2
=

1

|<e(a)±
√
<e(a)2− 1|2

.

Hence | f ′(z+)|< 1 and z+ is an attracting fixed point, with z− being repelling.
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Figure 1. The p.d.f. HY for the angle φ/2 between fixed points of
a random hyperbolic f ∈ F and the convolution HY ∗ HY .

We have chosen arg(c) to be uniformly distributed and so the argument of
either fixed point, say z+, is uniformly distributed. The interesting question is the
distribution of the angle (at 0) between the fixed points. That is the argument of
z+z−. This will reflect the correlation we are looking for. This angle is easily seen
to be the angle φ ∈ [0, π] where cos(φ/2)= =m(a)/|c|. Then

cos(φ/2)= =m(a)/|c| =
|a| sin θ√
|a|2− 1

=
sin θ
cosα

,

where we are able to assume that both θ and α are uniformly distributed in [0, π/2]
and we are conditioned by sin θ ≤ cosα.

We will calculate the distribution of sin θ/cosα carefully when we come to the
calculation of the parameters determining a Möbius group. We report the p.d.f. here
as follows.

Theorem 3.2. The distribution of the random variable X = sin(θ)/cos(α), for θ
and α uniformly distributed in [0, π/2] is given by the formula

(3.3) h X (x)=
4
π2x

log
1+ x
1− x

, 0≤ x < 1.

We can now use the change of variables formula to compute the p.d.f. for φ/2.
That is, we want the distribution for Y = cos−1(h X (x)), given h X (x)≤ 1. We can
compute this distribution to be

hY (y)=
4
π2 tan(y) log

1+ cos(y)
1− cos(y)

.

Theorem 3.4. Let φ ∈ [0, π] be the angle subtended at 0 by the fixed points of a
random hyperbolic element in F . Then the p.d.f. for η = φ/2, as seen in Figure 1,
is given by

(3.5) HY (η)=
4
π2 tan(η) log

1+ cos(η)
1− cos(η)

.
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Some hyperbolic trigonometry reveals the hyperbolic line between a pair of
points z± ∈ S meets the closed disk of hyperbolic radius r (denoted Dρ(r)) when
the angle φ formed at 0 satisfies cosh(r)≥ 1/sin(φ/2). If z± are the fixed points of
a hyperbolic element f , then this hyperbolic line joining them is called the axis of f ,
denoted axis( f ). We can therefore compute the probability that the axis of a random
hyperbolic element meets Dρ(r) by setting δ = sin−1(1/ cosh(r)) and computing

P(axis( f )∩Dρ(r) 6=∅)=
4
π2

∫ δ

0
tan(η) log

1+ cos(η)
1− cos(η)

dη

=
4
π2

∫ tanh(r)

0

1
x

log
1+ x
1− x

dx

=
4
π2 [Li2(tanh(r))−Li2(− tanh(r))].

Here Li2(s)=
∑
∞

1 n−2sn is a polylog function. Thus, for instance, this probability
exceeds 1

2 as soon as r > 0.678 . . . and exceeds 0.95 as soon as r > 2.24419.
Now, the bisector ζ f of the smaller circular arc between the fixed points of a

random hyperbolic element of f is uniformly distributed on the circle. Then, given
f and g random hyperbolic elements of F and angles φ f and φg between their
fixed points, the p.d.f. for φ f /2+φg/2 is the convolution HY ∗ HY . We note that
eiθ
= ξ = ζ f ζ g is uniformly distributed as well. Given ξ , the fixed points of f and

of g intertwine (so that the axes cross) if both φ f +φg ≥ 2θ and |φ f −φg|< 2θ .
We can use the distributions above to calculate these probabilities, but it is quite
complicated and we will find another route to this probability a bit later.

4. Isometric circles and traces

The isometric circles of the Möbius transformation f defined at (2.2) are defined to
be the two circles

C+ =
{
|z+

ā
c̄
| =

1
|c|

}
, C− =

{
z : |z−

a
c̄
| =

1
|c|

}
,

which are paired by the action of f and f −1, with f ±1(C±)= C∓. The isometric
disks are the finite regions bounded by these two circles. Since |a|2 = 1+ |c|2 ≥ 1,
both these circles meet the unit circle in an arc of angle θ ∈ [0, π]. Some elementary
trigonometry reveals that

(4.1) sin(θ/2)= 1/|a|.

Thus by our choice of distribution for |a| we obtain the following key result.

Lemma 4.2. The arcs determined by the intersections of the finite disks bounded by
the isometric circles of f , where f is chosen according to the distributions (i) and (ii),
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are centred on uniformly distributed points of S and have arc length uniformly
distributed in [0, π].

It is this lemma which supports our claim that the p.d.f. on F is natural and
suggests the way forward for an analysis of random subgroups of PSL(2,C).

The isometric circles of f are disjoint if∣∣∣∣ac̄ + ā
c̄

∣∣∣∣≥ 2
|c|
.

This occurs if |tr( f )| = |a+ ā| = 2|<e(a)| ≥ 2. Since the disjointness of isometric
circles has important geometric consequences we will need to find the p.d.f. for
the random variable t = |tr( f )|. As |<e(a)| = |a| | cos(θ)|, for a fixed θ ∈ [0, π/2],
the probability

(4.3) Pr[{|a| ≥ 1/ cos θ}] = 1− 2
π

∫ 1/ cos θ

1

dx

x
√

x2− 1
= 1− 2

π
θ.

As a/|a| is uniformly distributed on the circle, we have θ |[0, π/2] uniformly
distributed in [0, π/2]. Therefore using the obvious symmetries we may calculate

Pr[{|a+ ā| ≥ 2}] = 2
π

∫ π/2

0
1− 2

π
θ dθ = 1

2
.

Corollary 4.4. Let f ∈ F be a Möbius transformation chosen randomly from the
distribution described in (i) and (ii). Then the probability that the isometric circles
of f are disjoint is equal to 1

2 .

Therefore we have the following simple consequence concerning random cyclic
groups.

Corollary 4.5. Let f ∈ F be a Möbius transformation chosen randomly from the
distribution described in (i) and (ii). Then the probability that the cyclic group 〈 f 〉
is discrete is equal to 1

2 .

Proof. The matrix A ∈ SL(2,C) represents an elliptic or parabolic Möbius transfor-
mation f if and only if−2≤ tr A≤ 2. This occurs with probability 1

2 . The matrix A
represents an elliptic transformation of finite order, or a parabolic transformation if
and only if tr(A)=±2 cos(pπ/q), p, q ∈Z, and this set is countable and therefore
has measure zero. The result follows. �

We now note the following trivial consequence.

Corollary 4.6. Let f, g ∈ F be Möbius transformations chosen randomly from the
distribution described in (i) and (ii). Then the probability that the group 〈 f, g〉 is
discrete is no more than 1

4 .
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Actually we can use (4.3) to determine the p.d.f. for |tr(A)|. We will do this two
ways. First, for s ≥ 2,

Pr[{| tr(A)| ≥ s}] = Pr[{2|a| cos θ ≥ s}] = Pr[{|a| ≥ s/(2 cos θ)}]

= 1−
4
π2

∫ π/2

0

∫ s/2 cos θ

1

dx

x
√

x2− 1
dθ

= 1−
4
π2

∫ π/2

0
cos−1

(
2 cos θ

s

)
dθ.

We can now differentiate this function of s under the integral, integrate with respect
to θ (using the symmetry to reduce it to being over [0, π/2]) to obtain the probability
density function for |tr(A)| (for |tr(A)| ≥ 2),

F[s] =
4
π2 s

cosh−1
[

s
√

s2− 4

]
,

with s ≥ 2. This gives the distribution for tr2 A as

G[t] =
2
π2 t

cosh−1
( √

t
√

t − 4

)
=

2
π2 t

log
√

t + 2
√

t − 4
, t ≥ 4.

Then the random variable β = tr2 A− 4≥ 0 has distribution

(4.7) G[β] =
1

π2(β + 4)
log
(

1+
8+ 4
√
β + 4
β

)
, β ≥ 0.

We could now follow through a similar, but more difficult, calculation to determine
the distribution for β in the interval −4≤ β ≤ 0. It turns out to be

(4.8) G[β] =
1

π2(β + 4)
log
(

2+
√
β + 4

2−
√
β + 4

)
, β ∈ [−4, 0].

We will return to this in a moment through a different approach as we can im-
mediately use (4.7) to find the distribution of the translation length of hyperbolic
elements.

As we have seen, every element f ∈ F which is not elliptic (conjugate to
a rotation, equivalently β( f ) ∈ [−4, 0)) or parabolic (conjugate to a translation,
equivalently β( f )= 0) fixes two points on the circle and the hyperbolic line axis( f )
with those points as endpoints. The transformation acts as a translation by constant
hyperbolic distance τ( f ) along its axis. This number τ( f ) is called the translation
length and is related to the trace via the formula β( f )= 4 sinh2 τ/2 [Gehring and
Martin 1994]. We obtain the distribution for τ = τ( f ) from the change of variables
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Figure 2. The p.d.f. for the translation length τ of a random hy-
perbolic element of F .

formula for p.d.f. using (4.7)

H [τ ] =
2
π2 tanh

τ

2
log
(

cosh τ
2 + 1

cosh τ
2 − 1

)
=−

4
π2 tanh

τ

2
log tanh

τ

4
.

Unlike our earlier distribution G, the p.d.f. for τ has all moments. In particular
once we observe ∫

∞

0
t tanh

t
2

log
[

tanh
t
4

]
dt =−π2 log 2,

we have the following theorem.

Theorem 4.9. For randomly selected hyperbolic f ∈∗ F the p.d.f. for the transla-
tion length τ = τ( f ), as seen in Figure 2, is

(4.10) H [τ ] = −
4
π2 tanh

τ

2
log tanh

τ

4

and the expected value of the translation length is E[τ ] = 4 log 2≈ 2.77259 . . .

However there is another way to see these results and which is more useful in
what is to follow in that it more clearly relates to the geometry.

5. The parameter β = tr2(A)− 4

Theorem 5.1. If a Möbius transformation f is randomly chosen in F , then

(5.2) β( f )= 4
(

cos2(θ)

sin2(α)
− 1

)
, θ ∈u [0, 2π ], α ∈u

[
0, π

2

]
,

where 2α is the arc length intersection of the isometric circles of f with S and θ is
the argument of the leading entry of A, the matrix representative for f .
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Proof. Let A=
(a

c̄
c
ā

)
. Then β = tr2 A−4= [2<e(a)]2−4= 4|a|2 cos2(θ)−4 and

the result follows by (4.1) and Lemma 4.2. �

Theorem 5.3. The distribution of the random variable

w =
cos2(θ)

sin2(α)
for θ ∈u [0, 2π ] and α ∈u

[
0, π

2

]
is given by the formula

(5.4) h(w)=
1
π2w

log
∣∣∣∣√w+ 1
√
w− 1

∣∣∣∣, w ≥ 0.

Proof. The probability distribution functions of x = cos2(θ) and y = sin2(α) are
independent and identically distributed F(x) and F(y),

(5.5) F(x)=
1

π
√

x(1− x)
.

F is monotonic for x, y∈
[
0, 1

2

)
and also for x, y∈

(1
2 , 1

]
and antisymmetric about 1

2 .
Therefore we can use the change of variables formula and the Mellin convolution
to compute the p.d.f. Write x = cos2(θ), y = sin2(α) and w = cos2(θ)/sin2(α).
We use the Mellin convolution for quotients as in [Springer 1979]. For x, y ∈ (0, 1)
the upper integration limits for the convolution integral are y < 1× 1

w
whenever

w > 1 and y < 1 otherwise; accordingly the Mellin convolution for the quotient of
the probability distribution functions over (0,∞) is calculated as follows, where
we have ensured the piecewise differentiability of the integrand.

(5.6) h(w)=
∫ 1

0
y f (x) f (y)dy for w< 1 and

∫ 1
w

0
y f (x) f (y)dy for w≥ 1

and the indefinite integral embedded in both components of (5.6) is given as

(5.7)
∫

y f (yw) f (y) dy =
∫

y
1

π
√

yw(1− yw))
1

π
√

y(1− y)
dy

=
2
π2w

log
(
w
√
(y− 1)+

√
w(yw− 1)

)
.

Simplification of the log term in (5.7) yields

log
(
w(w(2y− 1)− 1+ 2

√
w(y− 1)(yw− 1))

)
=


e0 = log(−w(w+ 1− 2

√
w)) at y = 0,

e1 = log(w(w− 1)) at y = 1,

e 1
w
= log(−w(w− 1)) at y = 1

w
,
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Figure 3. The p.d.f. for the parameter β( f ) for a random element f ∈ F.

and accordingly the definite integrals in (5.6) evaluate to∫ 1

0
y f (yw) f (y)dy =

1
π2w

(e1− e0)

and ∫ 1
w

0
y f (yw) f (y)dy =

1
π2w

(e1/w − e0).

If we now let v =
√
w, then

e1− e0 = log(w(w− 1))− log(−w(w+ 1− 2
√
w))= log

(
1+
√
w

1−
√
w

)
and

e1/w − e0 = log(−w(w− 1))− log(−w(w+ 1− 2
√
w))= log

(√
w+ 1
√
w− 1

)
We deduce that the distribution of w = cos2(θ)/sin2(α) is given by (5.4). �

From this, and a little obvious manipulation to see these formulas actually agree
with those obtained earlier, we obtain the result we were looking for.

Theorem 5.8. The distribution of β( f ) for f randomly chosen from F , as in
Figure 3, is given by

(5.9) G[β] =
1

2π2(β + 4)
log
∣∣∣∣√β + 4+ 2
√
β + 4− 2

∣∣∣∣, β ≥−4.

This is quite a slowly converging integral, G[x] ≈ 2/(π2x3/2) for x � 1. In
order to discuss the effectiveness of Jørgensen’s inequality [1976] we will want the
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Figure 4. The graph of ‖A− I‖2 together with the planes t2
= 2

and t2
= 4.

cumulative distribution for |β|. We put down what we need in the following. The
proof simply consists of calculating the integral.

Theorem 5.10. For f randomly chosen from F , s ≥ 0, and β = β( f ),

Pr{−s ≤ β ≤ 0} = 1
2
+

1
π2

(
Li2(1− s/4)− 4 Li2

(√
1− s/4

))
Pr{0≤ β ≤ s} = 2

3
+

2
π2

[
Li2

(
−

√
s+ 4+ 2
√

s+ 4− 2

)
+Li2

(
−4

√
s+ 4− 2

)
+ log

(√
s+ 4+ 2
√

s+ 4− 2

)
log
(

2
√

s+ 4
√

s+ 4− 2

)]
.

This result gives us an indication of how likely it is that Jørgensen’s inequality
will have useful content since if we choose a random hyperbolic element in F , then
Pr{0< β < 1} ≈ 0.175745.

5A. The metric in PSL(2,R). Here we would like to identify the p.d.f. for the
distance between an element of PSL(2,R) and the identity when that element A ∈∗
PSL(2,R). Again we will see an elliptic/hyperbolic dichotomy in the singularities
of the metric. We choose a representative A with positive trace,(

eiφ csc(θ) eiα cot(θ)
e−iα cot(θ) e−iφ csc(θ)

)
, θ ∈u

[
0,
π

2

]
, φ ∈u

[
−
π

2
,
π

2

]
,

and calculate

‖A− I‖2 = 2|eiφ csc(θ)− 1|2+ 2 cot2(θ)= 4 csc2(θ)− 4 csc(θ) cos(φ),

as illustrated in Figure 4.



684 GAVEN MARTIN AND GRAEME O’BRIEN

2 4 6 8 10 12 14

0.1

0.2

0.3

0.4 	

0 2 4 6 8 10 12
0.000

0.005

0.010

0.015

0.020

Figure 5. The p.d.f. of ‖A− I‖. Inset a run on 107 random trials.

Then ‖A− I‖2 ≥ t2 implies t2 sin2(θ)+4 sin(θ) cos(φ)−4≤ 0 and hence, since
sin θ ≥ 0,

(5.11) sin θ ≤
2
t2

(√
cos2 φ+ t2− cosφ

)
.

Notice that the right-hand side of (5.11) is ≤ 1. We want to find the measure of the
subset of

[
0, π2

]
×
[
−
π
2 ,

π
2

]
where (5.11) holds to find the p.d.f. Fix φ, then the length

of the θ-interval where (5.11) holds is π
2 − arcsin(2/(t2)(

√
cos2 φ+ t2− cosφ)),

until 2/(t2)(
√

cos2 φ+ t2 − cosφ) = 1 whereafter the length stays 0. This latter
condition is 1= t2/4+ cosφ which places no restriction on φ ∈

[
−
π
2 ,

π
2

]
as soon

as t2
≥ 4. Otherwise we only add up the lengths while |φ| ≤ arccos

(
1− t2

4

)
. We

now have the following theorem after making the change of variables x = cos(φ)
for t ≥ 4, and related changes for 0≤ t ≤ 4 to simplify their form so as to be able
to differentiate under the integral sign to obtain the p.d.f.

Theorem 5.12. The cumulative distribution for ‖A− I‖, as shown in Figure 5, is

4
π2

∫ 1

1− t2
4

π

2
−sin−1

(
2
t2

(√
x2+t2−x

)) dx
√

1−x2

=
2
π

cos−1
(

1−
t2

4

)
+

4
π2

∫ 1

0
t sin−1

[
2z+

2
√

t4z2+8t2(2−z)+16−8
t2

]
dz√

z(8−t2z)

for 0≤ t ≤ 4, and

1−
4
π2

∫ 1

0
sin−1

(
2
t2

(√
x2+ t2− x

)) dx
√

1− x2

for 4≤ t .



RANDOM MÖBIUS GROUPS, I: RANDOM SUBGROUPS OF PSL(2,R) 685

6. The topology of the quotient space

Topologically there are two surfaces whose fundamental group is isomorphic to
F2, the free group on two generators. These are the 2-sphere with three holes S2

3,
and the torus with one hole T 2

1 . Thus a group 0 = 〈 f, g〉 generated by two random
hyperbolic elements of F if discrete, has quotient space D2/0 ∈ {S2

3, T 2
1 }. We

would like to understand the likelihood of one of these topologies over the other.
The topology is determined by whether the axes of f and g cross (giving T 2

1 ) or
not (giving S2

3). This is the same thing as asking if the hyperbolic lines between the
fixed points of f and the fixed points of g cross or not, and this in turn is determined
by a suitable cross ratio of the fixed points. In fact, the geometry of the commutator
γ ( f, g) = tr[ f, g] − 2 determines not only the topology of the quotient, but also
the hyperbolic length of the shortest geodesic — it is represented by either f , g, or
[ f, g] = f g f −1g−1 and their Nielsen equivalents. In fact the three numbers β( f ),
β(g) and γ ( f, g) determine the group 〈 f, g〉 uniquely up to conjugacy. Since we
have already determined the natural probability densities for β( f ) and β(g) we
need only identify the p.d.f. for γ = γ ( f, g) to find a conjugacy invariant way to
identify random discrete groups. Unfortunately this is not so straightforward and
we do not know this distribution. However important aspects of this distribution
can be determined.

6A. Commutators and cross ratios. We follow [Beardon 1983] and define the
cross ratio of four points z1, z2, z3, z4 ∈ C to be

(6.1) [z1, z2, z3, z4] =
(z1− z3)(z2− z4)

(z1− z2)(z3− z4)
.

In order to address the distribution of γ ( f, g)= tr[ f, g]−2, we need to understand
the cross ratio distribution. This is because of the following result from [Beardon
1983, §7.23 and §7.24] together with a little manipulation.

Theorem 6.2. Let `1, with endpoints z1 and z2, and `2, with endpoints w1 and w2,
be hyperbolic lines in the unit disk model of hyperbolic space. So z1, z2, w1, w2 are
in S, the circle at infinity. Let δ be the hyperbolic distance between `1 and `2, and
should they cross, let θ ∈ [0, π/2] be the angle at the intersection. Then

(6.3) sinh2[1
2(δ+ iθ)

]
×[z1, w1, z2, w2] = −1.

The number δ+ iθ is called the complex distance between the lines `1 and `2

where we put θ=0 if the lines do not meet. The proof of this theorem is simply to use
Möbius invariance of the cross ratio and the two different models of the hyperbolic
plane. If the two lines do not intersect, we choose the Möbius transformation
which sends the disk to the upper half-plane and {z1, z2} to {−1,+1} and {w1, w2}
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to {−s, s} for some s > 1. Then δ = log s and

[−1,−s, 1, s] =
−4s

(1− s)2
=

−4
(eδ/2− e−δ/2)2

=−
1

sinh2(δ/2)
,

while if the axes meet at a finite point, we choose a Möbius transformation of the
disk so the line endpoints are ±1 and e±iθ and the result follows similarly.

Next, Lemma 4.2 of [Gehring and Martin 1994] relates the parameters and cross
ratios.

Theorem 6.4. Let f and g be Möbius transformations and let δ+iθ be the complex
distance between their axes. Then

(6.5) 4γ ( f, g)= β( f ) β(g) sinh2(δ+ iθ).

We note from (6.3) that sinh2(δ+ iθ)= (1−2/[z1, w1, z2, w2])
2
−1. For a pair

of hyperbolics f and g we have β( f ), β(g)≥ 0 with δ = 0 if the axes meet. Thus
the axes cross if and only if γ < 0, or equivalently,

(6.6) [z1, w1, z2, w2]> 1.

Actually to see the latter point, we choose the Möbius transformation which sends
z1 7→ 0, z2 7→∞, w1 7→ 1. Then z2 7→ z, say, and

[z1, w1, z2, w2] =
(0− 1)(∞− z)
(0−∞)(1− z)

=
1

1− z
.

The image of the axes (and therefore the axes themselves) cross when z < 0,
equivalently when (6.6) holds.

6B. Cross ratio of fixed points. Supposing that f and g are randomly chosen
hyperbolic elements, we want to discuss the probability of their axes crossing, if f
has fixed points z1, z2 and g has fixed points w1, w2. We identified the formula
for the fixed points above at (3.1) and if we notate the random variables (matrix
entries) a, c for f and α, β for g we have

z1, z2 =
1
c̄
(i=m(a)±

√
<e(a)2− 1), |a|2 = 1+ |c|2,

w1, w2 =
1
β̄
(i=m(α)±

√
<e(α)2− 1), |α|2 = 1+ |β|2,

and as both elements are hyperbolic we have <e(a) ≥ 1 and <e(α) ≥ 1. We put
U = i=m(a)+

√
<e(a)2− 1 and V = i=m(α)+

√
<e(α)2− 1. Then

[z1, w1, z2, w2] =
4
√
<e(a)2− 1

√
<e(α)2− 1

c̄ β̄
(U

c̄ −
V
β̄

)(
−Ū

c̄ −
−V̄
β̄

) = 2
√
<e(a)2− 1

√
<e(α)2− 1

<e[U V̄ ] −<e[cβ̄]
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since, as we recall, 1= |zi | = |U |/|c|, and similarly |V |/|β| = 1. Thus we want to
understand the statistics of the cross ratio, and in particular to determine when

(6.7) [z1, w1, z2, w2] =
2
√
<e(a)2− 1

√
<e(α)2− 1

<e[U V̄ ] −<e[cβ̄]
≥ 1.

We have

a =
1

sin θ
eiφ, θ ∈u [0, π/2], φ ∈u [0, 2π ], c = cot θeiδ, δ ∈u [0, 2π ],

α =
1

sin η
eiψ , η ∈u [0, π/2], ψ ∈u [0, 2π ] β = cot ηeiζ , ζ ∈u [0, 2π ].

Then
√
<e(a)2− 1 =

√
cos2 φ/ sin2θ − 1,

√
<e(α)2− 1 =

√
cos2 ψ/sin2η− 1,

8= arg cβ̄ is uniformly distributed in [0, 2π ] and

<e[U V̄ ]−<e[cβ̄] =
sinφ
sin θ

sinψ
sin η

+

√
cos2 φ

sin2 θ
− 1

√
cos2 ψ

sin2 η
− 1−cot η cot θ cos8.

This gives

2
√
<e(a)2− 1

√
<e(α)2− 1

<e[U V̄ ] −<e[cβ̄]

=

2
√

cos2 φ− sin2 θ

√
cos2 ψ − sin2 η

sinφ sinψ +
√

cos2 φ− sin2 θ

√
cos2 ψ − sin2 η− cos η cos θ cos8

=
2
√

1− X2
√

1− Y 2

XY +
√

1− X2
√

1− Y 2− cos8
= Z ,

where we define the random variables X = sinφ/cos θ , and Y = sinψ/cos η. To
have Z ≥ 1, we need |X | ≤ 1, |Y | ≤ 1 and

(6.8)
√

1− X2
√

1− Y 2 ≥ cos8− XY.

If this last condition holds, then [z1, w1, z2, w2] ≥ 1 requires

(6.9)
√

1− X2
√

1− Y 2 ≥ XY − cos8.

Notice that X, Y and 8 ∈u [0, 2π ] are independent, with X and Y identically
distributed. Unfortunately

√
1− X2

√
1− Y 2± XY is difficult to find directly as

√
1− X2

√
1− Y 2 and XY are not independent. We therefore write

X = sin S, S ∈
[
−
π

2
,
π

2

]
, Y = sin T, T ∈

[
−
π

2
,
π

2

]
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so that
√

1− X2
√

1− Y 2± XY = cos(S∓ T ) and we have the two requirements

(6.10) cos(S∓ T )≥± cos(8).

Following the arguments of Section 5, we have the probability distribution functions
X and S, with probability distribution functions, respectively,

FX (x)=
2
π2x

log
∣∣∣∣1+ x
1− x

∣∣∣∣, −1≤ x ≤ 1,

FS(θ)=
2
π2 cot(θ) log

∣∣∣∣1+ sin(θ)
1− sin(θ)

∣∣∣∣, −
π

2
≤ θ ≤

π

2
.

We can remove various symmetries and redundancies for the situation to simplify.
For instance we may assume S ≥ 0 and reduce to ranges where cos is either
increasing or decreasing so we can remove it. We quickly come to the following
conditions equivalent to (6.10) with S and T identically distributed as above and
8 ∈u [0, π/2]:

(6.11) 0≤ S, −8≤ S− T ≤8, and S+ T +8≤ π.

This now sets up an integral which we implemented on Mathematica numerically
and which returned the value 0.429 . . . . In the next section we correlate this with
independent experiments to determine when γ ≤ 0. This agrees with the results of
integration as above at (6.11). We record this in the following.

Theorem 6.12. Let f, g be randomly chosen hyperbolic elements of F . Then the
probability that the axes of f and g cross is ≈ 0.429.

We should point out here the following well-known observation.

Lemma 6.13. Let f, g ∈ F . If γ ( f, g) < 0, then both f and g are hyperbolic.

Proof. As the result is conjugacy invariant we may first suppose f is hyperbolic
and represented by f =

(
λ
0

0
1/λ

)
, and g =

(a
c

b
d

)
, with ad − bc = 1. We calculate

γ = −(λ− 1/λ)2bc < 0. Thus f hyperbolic gives bc > 0, ad = 1+ bc > 1 and
(a + d)2 > 4 showing g is hyperbolic. If f is parabolic we put f =

(1
0

1
1

)
, and

calculate γ ( f, g)= c2
≥ 0. Finally, we write f =

( cosα
− sinα

sinα
cosα

)
if f is elliptic, and

compute that
γ ( f, g)= (a2

+ b2
+ c2
+ d2
− 2) sin2 α ≥ 0. �

In contrast to Theorem 6.12, we have the following result.

Theorem 6.14. Let ζ1, ζ1 and η1, η2 be two pairs of points, each randomly and
uniformly chosen on the circle. Let α be the hyperbolic line between ζ1 and ζ2 and
let β be the hyperbolic line between η1 and η2. Then the probability that α and β
cross is 1

3 .
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Figure 6. Histogram of the cross ratio of the fixed points of a
randomly chosen pair of hyperbolic elements.

Proof. We can forget the points come in pairs and label them zi , i = 1, 2, 3, 4, in
order around the circle. There are three different cases, all with the same probability.

• z1 connects to z2, hence z3 to z4 and the lines are disjoint.

• z1 connects to z3, hence z2 to z4 and the lines intersect.

• z1 connects to z4, hence z2 to z3 and the lines are disjoint. �

Together these theorems quantify the degree to which the fixed points are corre-
lated on the circle. We also include the following example.

In the histogram in Figure 6, the singularities are at 0 and 1. We make the
observation that it seems quite likely that Pr{[z1, w1, z2, w2] > 1} = 1

5 . It is
somewhat of a chore to calculate the cross ratio distribution Xcr of four randomly
selected points on the circle. This is done in [Martin 2019] and the distribution is
very similar to that above, with singularities at 0 and 1. However for that distribution
the probabilities are Pr{Xcr < 0} = Pr{0 < Xcr < 1} = Pr{Xcr > 1} = 1

3 (as can
be seen from the action of the group S4 on the cross ratio [Beardon 1983]). This
shows the distributions are definitely different.

7. The effectiveness of Jørgensen’s inequality

In order to computationally explore the moduli spaces of discrete groups we need
effective tests for discreteness in groups of Möbius transformations. In practice, it is
very difficult to discern if a group is discrete, especially if we know a priori that the
group is free on its generators. Discreteness is typically established by constructing
a fundamental domain using the Poincaré polyhedral theorem, or using arithmetic
information [Gehring et al. 1997], or algorithmically [Gilman 1995]. We would
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like to discern, with high confidence, that a group is discrete. The most common
test is the following from [Jørgensen 1976] (see also [Gehring and Martin 1991a]).

Theorem 7.1 (Jørgensen’s inequality). Let A, B ∈ SL(2,C). Suppose that 〈A, B〉
is discrete and not virtually abelian. Set β = tr2(A)−4 and γ = tr[A, B]−2. Then
|γ | + |β| ≥ 1, and if γ 6= β, then |β − γ | + |β| ≥ 1 also.

Another common test used can be found in [Gehring and Martin 1991b; Cao
1995].

Theorem 7.2. Let A, B ∈ SL(2,C). Suppose that 〈A, B〉 is discrete and not virtu-
ally abelian. Then

|γ (γ −β)| ≥ 2− 2 cos(π/7)= 0.198 . . .

All these tests are sharp: there are nonelementary discrete examples where
equality holds (for example, lattices). We have already seen that a randomly
selected hyperbolic element in F has |β|< 1 with probability about 0.175745. Thus
for a group generated by random hyperbolics f1, f2, . . . , fn , the probability that
one has |βi |< 1, so we can even consider the inequality, is quite high:

Pr{βi < 1 for some i = 1, 2 . . . , n} ≥ 1−
( 33

40

)n
.

Further, we are at liberty to consider other generators. For instance in the case of
two generators, as in Figure 7, we note that 〈 f, g〉 = 〈 f, g f 〉 = 〈 f, g f −1

〉 (but do
note that if f and g are randomly selected, then f g etc. are not). The unfortunate
thing here is that all these pairs of generators have the same commutator,

γ ( f, g)= γ ( f, g f ±1)= γ (g, f g±1).

In fact the commutator value γ is an invariant of the Nielsen class of generators, and
since a random group is free with probability 1, all generating pairs are equivalent.
That is, any generating pair has the same value for γ . Thus the principal obstruction
to the effectiveness of a discreteness test such as those at Theorems 7.1 and 7.2 is
the value of the trace of the commutator. We now explore this.

If we select two random Möbius transformations, say,

f =
(

eiφ1 csc(θ1) ei(α1) cot(θ1)

e−iα1 cot(θ1) e−iφ1 csc(θ1)

)
, g =

(
eiφ2 csc(θ2) eiα2 cot(θ2)

e−iα2 cot(θ2) e−iφ2 csc(θ2)

)
,

and then compute and simplify (making some variable substitutions etc.) γ =
γ ( f, g)= tr[ f, g] − 2, we find

(7.3) γ = 4 csc2 θ1 csc2 θ2
[
2 cos2 θ1(sin2 φ2− sin2 α cos2 θ2)

+ cos2 θ2 sin2 φ1− 2 cosα cos θ1 cos θ2 sinφ1 sinφ2
]
.
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Figure 7. Histogram of γ values conditioned by f and g in
PSL(2,R) hyperbolic.

Here θ1, θ2 ∈u [0, π/2], α, φ1, φ2 ∈u [0, π]. There seems to be no easy way to
compute this p.d.f.

We made several independent runs through about 107 random matrix pairs of
hyperbolic elements to generate the histogram in Figure 7. We found the probability
that γ < 0 to be about 0.429601, in alignment with Theorem 6.12. Notice that if
tr[ f, g] ∈ [−2, 2], then almost surely 〈 f, g〉 is not discrete since [ f, g] would be
elliptic.

We also found

Pr{−4≤ γ ≤ 0} ≈ 0.162 . . .(7.4)

Pr{|γ | + |β( f )| ≤ 1 or |γ | + |β(g)| ≤ 1} ≈ 0.113 . . .(7.5)

Pr{|γ (γ −β( f ))| ≤ 0.198 or |γ (γ −β(g))| ≤ 0.198} ≈ 0.119 . . .(7.6)

Pr{ f g or f g−1 is elliptic } ≈ 0.203 . . .(7.7)

Of course these tests for nondiscreteness are not independent. If we put them all
together and use additional inequalities found by replacing f by f g or f g−1 we
found the following.

Conjecture 7.8. Let 〈 f, g〉 ∈ F be randomly chosen hyperbolic elements. Then

Pr
{
〈 f, g〉 = F

}
> 0.414986 . . .

That is to say we found that with probability 0.414986 . . . one of the discreteness
tests is violated. This probability was not supported by rigorous calculations.
However, it is not difficult to establish the lower bound 0.4 rigorously. We discuss
this in the next section in a different setting but the ideas are the same.
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8. Discreteness

An easy lower bound for the probability a group generated by two random elements
of F is discrete based on the following Klein combination theorem (or “ping pong”
lemma).

Lemma 8.1. Let fi , i = 1, 2, . . . , n, be hyperbolic transformations of the disk
whose isometric disks are all disjoint. Then the group generated by these hyperbolic
transformations 〈 f1, f2, . . . , fn〉 is discrete and isomorphic to the free group Fn .

We have already seen that the probability that the isometric disks of a randomly
chosen f ∈ F are disjoint is 1

2 .

Lemma 8.2. Let α and β be arcs on S1 with uniformly randomly chosen midpoints
ζα and ζβ and subtending angles θα and θβ uniformly chosen from [0, π]. The
probability that α and β meet is 1

2 .

Proof. The smaller arc subtended between ζα and ζβ has length 2= arg(ζαζ β) and
is uniformly distributed in [0, π]. Then α and β are disjoint if 2−θα/2−θβ/2≥ 0.
Since 22 − θα − θβ is uniformly distributed in [−2π, 2π ], the probability this
number is positive is 1

2 . �

Using Lemma 8.1 this quickly gives us the obvious bound that if f, g ∈ F are
randomly chosen, then the probability that 〈 f, g〉 is discrete is at least 1

64 . For n
generator groups this number is at least 2−(2n−1)!. However we are going to have to
build a bit more theory to prove the following substantial improvements of these
estimates.

Theorem 8.3. The probability that randomly chosen f, g ∈∗ F generate a discrete
group 〈 f, g〉 is at least 1

10 .

Theorem 8.4. The probability that two randomly chosen hyperbolic transformation
f, g ∈∗F have disjoint isometric circles, and hence generate a discrete group 〈 f, g〉,
is at least 1

5 .

Theorem 8.3 follows from Theorem 8.4 and Theorem 11.1 (another discreteness
test) and the fact that the probability we choose two hyperbolic elements is inde-
pendent and of probability equal to 1

4 . We now give a proof for Theorem 8.4. It is
an immediate consequence of Lemmas 8.1 and 9.4 below.

9. Random arcs on a circle

Let α be an arc on the circle S. We denote its midpoint by mα ∈S and its arclength
by `α ∈ [0, 2π ]. Conversely, given mα ∈S and `α ∈ [0, 2π ] we determine a unique
arc α = α(mα, `α) with this data.

A random arc α is the arc uniquely determined when we choose mα ∈S uniformly
(equivalently, arg(mα) ∈u [0, 2π ]) and `α ∈u [0, 2π ]. We will abuse notation and
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also refer to random arcs when we restrict to `α ∈u [0, π] as for the case of isometric
disk intersections. We will make the distinction clear in context.

A simple consequence of our earlier result is the following corollary.

Corollary 9.1. If mα,mβ ∈u S and `α, `β ∈u [0, π], then Pr{α ∩β =∅} = 1
2 .

We need to observe the following lemma.

Lemma 9.2. If mα,mβ ∈u S and `α, `β ∈u [0, 2π ], then Pr{α ∩β =∅} = 1
6 .

Proof. We need to calculate the probability that the argument of ζ = mαmβ is
greater than (`α + `β)/2. Now θ = arg(ζ ) is uniformly distributed in [0, π]. The
joint distribution is uniform, and so we calculate

Pr{θ ≥`α+`β}=
1
π3

∫ ∫ ∫
{θ≥α+β}

dθ dα dβ=
1
π3

∫ π

0

∫ θ

0

∫ θ−α

0
d β dα dθ= 1

6 . �

Next we consider the probability of disjoint pairs of arcs.

Lemma 9.3. Let mα1,mα2,mβ1,mβ2 ∈u S and `α, `β ∈u [0, π]. Set

αi = α(mαi , `αi ), βi = α(mβi , `βi ).

Then the probability that all the arcs αi , βi , i = 1, 2, are disjoint is 1
20 ,

Pr{(α1∩α2)∪ (β1∩β2)∪ (α1∩β1)∪ (α1∩β2)∪ (α2∩β1)∪ (α2∩β2)=∅} = 1
20 .

Proof. We first observe that the events

(α1 ∩β1)=∅, (α1 ∩β2)=∅, (α2 ∩β1)=∅, (α2 ∩β2)=∅

are not independent since (among other reasons) α1 and α2, and similarly β1 and β2,
may overlap. The probability that (α1∩β1)=∅ and (α2∩β2)=∅ we have already
determined to be equal to 1

4 =
1
2 ×

1
2 . The result now follows from Lemma 9.4. �

Lemma 9.4. Let mα1,mα2,mβ1,mβ2 ∈u S and `α, `β ∈u [0, π]. Set

αi = α(mαi , `αi ), βi = α(mβi , `βi ),

and suppose we are given that (α1∩α2)= (β1∩β2)=∅. Then the probability that
all the arcs αi are disjoint from the arcs β j , i, j = 1, 2, is 1

5 ,

Pr{(α1 ∩β1)∪ (α1 ∩β2)∪ (α2 ∩β1)∪ (α2 ∩β2)=∅} = 1
5 .

Proof. Conditioned by the assumption that α1 and α2 are disjoint, and that β1 and
β2 are disjoint, we note the events

(α1 ∩β1)=∅, (α1 ∩β2)=∅, (α2 ∩β1)=∅, (α2 ∩β2)=∅
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are independent. A little trigonometry reveals that

αi ∩β j =∅↔
`α + `β

2
≤ 2 arcsin

|mαi −mβ j |

2
= arg(mαi mβ j ).

Now the four variables θi, j = arg(mαi mβ j ), i, j = 1, 2, are uniformly distributed
in [0, π] and independent. We require mini, j θi, j ≥ (`α+`β)/2. Now 1

2(`α+`β)=ψ

is uniformly distributed in [0, π] and

(9.5) Pr{min
i, j
θi, j ≥ ψ} =

(
1− ψ

π

)4
.

Since 1
π

∫ π
0

(
1− ψ

π

)4
=

1
5 , the result claimed follows. �

In passing we further note that (9.5) gives us a density function ρ(ψ)= 4
(
1− ψ

π

)3

and hence an expected value of

4
π2

∫ π

0
ψ
(

1− ψ
π

)3
dψ = 4

∫ 1

0
(1− t)t3 dt = 1

5
.

Generalising this result for a greater number of disjoint pairs of arcs quickly gets
quite complicated. We state without proof the following, which we will not use.

Lemma 9.6. Let mα1,mα2,mβ1,mβ2,mγ1,mγ2 ∈u S and `α, `β, `γ ∈u [0, π]. Set

αi = α(mαi , `αi ), βi = α(mβi , `βi ), γi = α(mγi , `γi ).

Then the probability that all the arcs αi , βi , γi , i = 1, 2, are all disjoint is 3
1000 .

One can get results if there is additional symmetry; for instance, if the lengths of
all the arcs are the same.

Theorem 9.7. Let mi1,mi2 ∈u S1, i = 2, . . . , n, and `α ∈u [0, π]. Then the proba-
bility that the arcs αi j = α(mi j , `α) are disjoint is

(9.8)
1

(2n)n!

∫ 1

0

[2−x]∑
k=0

(−1)k
(n

k

)
(2− x − k)n dx .

Proof. We cyclically order the set {mii : i = 2, . . . , n, j = 1, 2} and let θk be the
angle between the k-th and (k+1)-st point (mod k). Then

∑2n
k=1 θk = 2π . The arcs

are disjoint if θk ≥ `α. We have 2n − 1 independent random variables {θk}
2n−1
k=1

which, firstly, must have a minimum which exceeds α, and secondly, must satisfy
2π −

∑2n−1
k=1 θk ≥ `α . The first of these requirements gives us a factor 1

2n , and from
the second we note that the sum of m uniformly distributed random variables in
[0, 1] has the Irwin–Hall distribution

(9.9) Fn(x)=
1

(m− 1)!

[x]∑
k=0

(−1)k
(m

k

)
(x − k)m−1.
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Thus

Pr
{

2−
`α

π
≥

2n−1∑
k=1

θk

π

}
=

∫ 2−t

0
F2n−1(t) dt.

The result follows. �

As an example, for two pairs of equilength arcs we have

F3(x)=


x2/2, 0≤ x ≤ 1,

(−2x2
+ 6x − 3)/2, 1≤ x ≤ 2,

(x2
− 6x + 9)/2, 2≤ x ≤ 3.

We see that∫ 2−t

0
F3(x) dx =

∫ 1

0
F3(x) dx +

∫ 2−t

1
F3(x) dx = 1

6
+

2
3
−

t
2
−

t2

2
+

t3

3∫ 1

0

∫ 2−t

0
F3(x) dxdt = 1

6
+

∫ 1

0

2
3
−

t
2
−

t2

2
+

t3

3
dt = 1

6
+

1
3
=

1
2

and the probability that two pairs of random equiarclength arcs with arclength
uniformly distributed in [0, π] are disjoint is 1

8 . Similarly for three pairs the
probability is 9

200 .

10. Random arcs to Möbius groups

Given data mα1,mα2 ∈ S with arclength `α ∈ [0, π] we see, just as above, that the
arcs centred on the mαi and of length `α determine a matrix which can be calculated
by examination of the isometric circles. We have

(10.1) A =
(

a c
c̄ ā

)
, c = i

√
mα1 mα2 cot

`α

2
, a = i

√
mα1 mα2 cosec

`α

2
,

where we make a consistent choice of sign by ensuring c/a = mα1 cos(`α/2). Of
course, interchanging mα1 and mα2 sends a to −ā, and so the data actually uniquely
determines the cyclic group 〈 f 〉 generated by the associated Möbius transformation

f (z)=−mα2

z+mα1 cos `α2
z cos `α2 +mα1

and not necessarily f itself.
As a consequence we have the following theorem.

Theorem 10.2. There is a one-to-one correspondence between collections of n
pairs of random arcs and n-generator Fuchsian groups preserving the associated
probability distributions.
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A randomly chosen 〈 f 〉 ⊂ F according to the distribution defined in Section 2A,
corresponds uniquely to mα1,mα2 ∈u S1 and `α ∈u [0, π] with the distribution
defined in Section 9.

Notice also that if we recognise the association of cyclic groups with the data and
say two cyclic groups are close if they have close generators, then this association
is continuous.

We have already seen that, for a pair of hyperbolic elements, if all the isometric
disks are disjoint then the “ping pong” lemma implies discreteness of the groups in
question. Then the association between Fuchsian groups and random arcs quickly
establishes Theorems 8.3 and 8.4 via Lemma 9.4.

If f is a parabolic element of F , then the isometric circles are adjacent and meet
at the fixed point. Conversely, if two random arcs of arclength `α are adjacent we
have arg(mα1mα2)= `α, and from (10.1)

a = i
(

cos
`α

2
+ i sin

`α

2

)
cosec

`α

2
=−1+ i cot

`α

2

and tr2(A)− 4 = 0 so that A represents a parabolic transformation. Similarly, if
the arcs overlap, then tr2(A)≤ 2 and A represents an elliptic transformation.

Theorem 10.3. Let f, g be randomly chosen parabolic elements in F , by which we
mean the isometric circles have diameter chosen as in Section 2A but are conditioned
to be tangent. Then the probability 〈 f, g〉 is discrete is at least 1

6 .

Proof. It is not difficult to see that in fact the point of tangency is uniformly
distributed in the circle and from our discussion above we see that this is the same
as considering pairs of adjacent arcs. So as f and g are parabolic, their isometric
disks are tangent and the point of intersection lies in a random arc of arclength
uniformly distributed in [0, 2π ]. Discreteness follows from the “ping pong” lemma
and Lemma 9.2. �

11. Another discreteness criterion

Theorem 8.4 gives a discreteness criterion based on the disjointness of isomeric
circles. Another criterion can be found as the first condition in [Rosenberger 1986,
Theorem 3].

Theorem 11.1. Let f and g be hyperbolic. If γ ( f, g)≤−4, then 〈 f, g〉 is discrete.

With f and g selected randomly we recall from (7.3) that the condition γ ≤−4
reads as

(11.2) − sin2 θ1 sin2 θ2 ≥ 2 cos2 θ1(sin2 φ2− sin2 α cos2 θ2)

+ cos2 θ2 sin2 φ1− 2 cosα cos θ1 cos θ2 sinφ1 sinφ2.
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In our computational investigations we were drawn to the following remarkable
observation.

Conjecture 11.3. Let f, g ∈∗ F be hyperbolic and suppose the pairs of isometric
circles are not disjoint. Then

(11.4) Pr{γ ( f, g)≤−4} = 1
5 .

The expression in (11.2) provides good gradient bounds for a test and we were
able to search this space to verify the conjecture to two decimal places. To gain just
a little bit more accuracy without a great deal more care (and time) in our searches,
we added in the additional result adapted from [Rosenberger 1986, Theorem 2].

Theorem 11.5. Let f and g be hyperbolic and γ ( f, g) > 0. Then 〈 f, g〉 is discrete
if there are representatives A and B in PSL(2,R), for f and g, respectively, such
that

(1) 0≤ tr(A)≤ tr(B)≤ | tr(AB)|,

(2) tr(AB)≤−2.

Of course the theorem applies to Nielsen equivalent pairs of generators. If
f, g ∈∗ F , we can compute

tr( f )= 2 csc θ1 cosφ1,

tr(g)= 2 csc θ2 cosφ2,

tr( f g)= 2 csc θ1 csc θ2(cos θ1 cos θ2 cosα+ cosφ1+φ2),

tr( f g−1)= 2 csc θ1 csc θ2(cos(φ1−φ2)− 2 cos θ1 cos θ2 cosα).

Rearranging to avoid singularities for our gradient estimates (because of our nor-
malisations we use f and g−1), the tests we therefore derive from Theorem 11.5 are

(1) sin(θ2) cos(φ1)≤ sin(θ1) cos(φ2),

(2) sin(θ1) cos(φ2)≤ | cos(φ1−φ2)− 2 cos(θ1) cos(θ2) cos(α)|,

(3) cos(φ1−φ2)+ sin(θ1) sin(θ2)≤ cos(θ1) cos(θ2) cos(α).

A few simple experiments show that if f and g are hyperbolic with intersection
isometric circles, then the test above as well as that obtained by the interchange of θ1

and θ2 (and the immaterial interchanging of φ1 and φ2) occurs about 5% of the time.
It is easy to prove that it happens at least 2% of the time, giving us an easy error
bound for our computational verification of Conjecture 11.3. Putting these together,
with the bound from isometric circle disjointness yields the following theorem.

Theorem 11.6. Let f, g ∈∗ F be hyperbolic. Then

(11.7) Pr{〈 f, g〉is discrete} ≥ 2
5 .



698 GAVEN MARTIN AND GRAEME O’BRIEN

12. Representations of Zn ∗Z in PSL(2,R)

The discreteness criteria we have used above are not particularly sophisticated,
but only minor improvements are known in the generality in which we use them.
These amount to looking at deeper level configurations of isometric circles and
quickly become extremely complicated. However there is one case where rather
more precise results are known in general and that is the case where one generator
has order 2. For Fuchsian groups we know more when a generator has finite order.
In [Gehring et al. 2001], precise results are given to determine when G = 〈 f, g〉 is
discrete, where β(g)=−4, β( f ) ∈ R and γ ( f, g) ∈ R.

It is important to note that this case is not so special, as evidenced by Theorem 12.1.

Theorem 12.1 [Gehring and Martin 1994]. Let 〈 f, g〉 be a discrete subgroup of
PSL(2,C). Then there is an elliptic 8 of order 2 such that 〈 f,8〉 is discrete, and

γ ( f, g)= tr[ f, g] − 2= tr[ f,8] − 2= γ ( f,8)

This theorem explains in part why we would like to identify the p.d.f. for γ ( f, g).
Care must be taken in using this result in our setting since although f, g might be
randomly selected, it is not the case that 8 is.

If we choose a random matrix B conditioned by the assumptions tr(B)= 0, and
another random matrix A, then we have the forms

A =
(

eiφ csc(η) eiα cot(η)
e−iα cot(η) e−iφ csc(η)

)
, B =

(
i csc(θ) eiψ cot(θ)

e−iψ cot(θ) −i csc(θ)

)
,

where all the angles are chosen uniformly in [0, π] and we have simplified the
variables, replacing η and θ with η/2 and θ/2 as above:

β = 4 csc2(η) cos2(φ)− 4,

γ = 4 cot2(η)(csc2(θ)− cot2(θ) sin2(α))+ 4 csc2(η) cot2(θ) sin2(φ)

−8 cot(η) csc(η) cot(θ) csc(θ) sin(φ) cos(α),

where we have assumed β ≥ 0 to simplify the last equation and written α for α−ψ
since both are uniformly distributed.

Now by [Gehring et al. 2001, Theorem 3.1], the group 〈A, B|A2
= 1〉 projects to

a faithful discrete nonelementary subgroup of PSL(2,R) if and only if 4≤β+4≤ γ .
After some manipulation, we need to decide when

sin2(α) sin2(η) sin2(θ)≤ (cos(α) cos(η)− cos(θ) cos(φ))2.

Some parity and symmetry considerations reduce the problem to finding 8/π4 times
the measure of the set

{(η, θ, α, φ) ∈ [0, π/2]2×[0, π]2 : sinα sin η sin θ ≤ cosα cos η− cos θ cosφ}.
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We could not find a closed form for this number, but used numerical techniques to
obtain the following theorem.

Theorem 12.2. Let f, g ∈∗ F be conditioned by f 2
= 1. Then

Pr{〈 f, g〉} = F} = 0.706± 0.001.

However there is one family of special cases to which we can give a precise
theorem. A slight generalisation of [Gehring et al. 2001] yields the following:

Lemma 12.3. Let 0 = 〈 f, g〉 be a Möbius group with f n
= 1 and g hyperbolic.

Then 0 is discrete and free on its generators if and only if

γ ≥
(√
β + 4+ 2 cos πn

)2
,

where β = tr2(g)− 4.

The “boundary groups” are the groups with presentation 〈a, b|an
= b∞ = 1〉.

Thus if A∼ f : z→ ζ z with ζ n
= 1 and B ∼ g ∈∗ F is hyperbolic and randomly

chosen, then we compute

β = tr2(B)− 4= 4 csc2 η cos2 φ− 4, γ = tr[A, B] − 2= 4 sin2 π
n cot2 η,

and our test for discreteness is γ ≥
(√
β + 4+ 2 cos πn

)2. That is,

4 sin2 π
n cot2 η ≥

(
2 csc η cos(φ)+ 2 cos πn

)2
.

We want to take the square roots here. Since η ∈u
[
0, π2

]
, the left-hand side is

positive. Similarly, since φ ∈u [0, π] it makes no difference to assume φ ∈u
[
0, π2

]
.

We therefore should determine when

(12.4) sin
(
π
n − η

)
≥ cos(φ), η, φ ∈u

[
0, π

2

]
.

It is immediate that this probability is no more than 1
n as the right-hand side is

positive. In fact, this shows that for the angles distributed as above,

Pr
{

sin
(
π
n − η

)
≥ cos(φ)

}
=

1
n Pr{sin(θ)≥ cos(φ)}.

This probability is then

4
π2

∫ π/n

0

∫ sin(θ)

0

dxdθ
√

1− x2
=

2
n2 .

In terms of our original question about topological generation this reads as:

Theorem 12.5. Let f (z) = ζ z and ζ n
= 1. Let g ∈∗ F be a randomly chosen

hyperbolic. Then

Pr
{
〈 f, g〉 = F

}
= 1−

2
n2 .
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