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PUZZLES IN K-HOMOLOGY OF GRASSMANNIANS

PAVLO PYLYAVSKYY AND JED YANG

Knutson, Tao, and Woodward (2004) formulated a Littlewood–Richardson
rule for the cohomology ring of Grassmannians in terms of puzzles. Vakil
(2006) and Wheeler and Zinn-Justin (2017) have found additional triangu-
lar puzzle pieces that allow one to express structure constants for K-theory
of Grassmannians. Here we introduce two other puzzle pieces of hexagonal
shape, each of which gives a Littlewood–Richardson rule for K-homology
of Grassmannians. We also explore the corresponding eight versions of K-
theoretic Littlewood–Richardson tableaux.

1. Introduction

Cohomology rings of flag varieties are a major object of interest in algebraic
geometry, see [Fulton 1984; Manivel 2001] for an exposition. Perhaps the most well-
studied and well-understood examples are the cohomology rings of Grassmannians,
with a distinguished basis of Schubert classes. A Littlewood–Richardson rule is a
combinatorial way to compute the structure constants for this basis. Equivalently,
those are the same structure constants cνλµ with which certain symmetric func-
tions — Schur functions sλ — multiply: sλsµ =

∑
ν cνλµsν . In their groundbreaking

work Knutson, Tao, and Woodward [Knutson and Tao 1999; Knutson et al. 2004]
introduced puzzles, which allow for a powerful formulation of the Littlewood–
Richardson rule. Puzzles are tilings of triangular boards with specified boundary
conditions by a set of tiles shown in Figure 1. Using puzzles Knutson, Tao, and
Woodward studied the faces of the Klyachko cone.
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Figure 1. The Knutson–Tao–Woodward tiles.
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Figure 2. The four K-theoretic tiles.

There is a cohomology theory for each one-dimensional group law [Hazewinkel
1978; Lenart and Zainoulline 2017]. For the additive group law x ⊕ y = x + y one
has the usual cohomology, while the multiplicative group law x ⊕ y = x + y+ xy
gives the K-theory. K-theory of Grassmannians was extensively studied, starting
with the works of Lascoux and Schützenberger. In [Lascoux and Schützenberger
1982] they introduced the Grothendieck polynomials as representatives of K-theory
classes of structure sheaves of Schubert varieties. Fomin and Kirillov [1995]
studied those from combinatorial point of view, introducing the stable Grothendieck
polynomials Gλ. Stable Grothendieck polynomials are symmetric power series that
form a rather precise K-theoretic analogue of Schur functions: their multiplicative
structure constants are the same as those for classes of the structure sheaves of
Schubert varieties in the corresponding K-theory ring.

The first K-theoretic Littlewood–Richardson rule was obtained by Buch [2002].
Vakil [2006] has extended puzzles to K-theory, giving a puzzle version of the rule.
His extension works by adding a single additional tile to the set of tiles from the work
of Knutson, Tao and Woodward [Knutson et al. 2004]. Later, Wheeler and Zinn-
Justin [2017] found an alternative K-theoretic tile, that gives the structure constants
of dual K-theory in an appropriate sense. Both Vakil and Wheeler–Zinn-Justin tiles
have triangular shape and can be seen in Figure 2.

In this work we present two new tiles, adding either one of which to the standard
collection allows one to recover structure constants of the Schubert basis in the
K-homology ring of the Grassmannians, as studied by Lam and Pylyavskyy [2007].
Equivalently, the corresponding puzzles produce a combinatorial rule for the co-
product structure constants of the stable Grothendieck polynomials. The first such
rule was obtained by Buch [2002]. The tiles have hexagonal shape and can be seen
in Figure 2.

The paper proceeds as follows. In Section 2 we recall the known results on the
cohomology ring of Grassmannians, including tableaux and puzzles formulations
of the Littlewood–Richardson rule. In Section 3 we recall the K-theoretic version
of the story, and state our main results regarding the two new hexagonal tiles.
We also systematize the eight different tableaux formulations of the K-theoretic
Littlewood–Richardson rule, some of which are new. The proofs are postponed to
Section 4. In Section 5 we conclude with remarks, including the relation of our
work to that of Pechenik and Yong [2017] on genomic tableaux.
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2. Puzzles and tableaux

2A. Cohomology of Grassmannians. Let Gr(k, n) be the variety of k-dimensional
subspaces of Cn . Recall that a partition λ= (λ1, λ2, . . . , λk) is a weakly decreasing
sequence λ1 ≥ λ2 ≥ · · · ≥ λk ≥ 0 of finitely many nonnegative integers. Restrict
to the set of partitions with k parts and with λ1 ≤ n − k. Fix a complete flag
0= V0 ⊂ V1 ⊂ · · · ⊂ Vn = Cn , with dim(Vi )= i . The Schubert variety in Gr(k, n)
associated to λ is the set

Xλ =
{
W ∈ Gr(k, n) | dim(W ∩ Vn+k+i−λi )≥ i, ∀i ∈ [k]

}
.

The associated classes [Xλ] in the cohomology ring H∗(Gr(k, n),Z) are known
to form a basis, with the structure constants cνλµ called Littlewood–Richardson
coefficients:

[Xλ] · [Xµ] =
∑
ν

cνλµ[Xν].

Littlewood–Richardson coefficients can also be described in the following ele-
mentary way. The Young diagram, or simply, diagram, of a partition λ is a collection
of boxes, top and left justified, with λi boxes in row i . For example, this is the
diagram of the partition λ= (4, 3, 1):

If λ is a partition whose diagram fits inside that of partition ν, the skew diagram of
shape ν/λ is the diagram consisting of the boxes of the diagram of ν outside that
of λ. For example, the following is the diagram of (4, 3, 1)/(2, 1):

Given a (possibly skew) diagram and a set V , a V -tableau T is a filling of the boxes
with values in V. If V is omitted, it is understood that V is the positive integers.
The shape of T , denoted shape(T ), is the shape of the diagram. We say that T
is semistandard if the values are weakly increasing from left to right in rows and
strictly increasing from top to bottom in columns. The reverse row word of T ,
denoted row(T ), is the sequence of values of T , read row by row, top to bottom,
right to left. For example,

T = 1 1

2 2

1

is a semistandard tableau with shape(T )= (4, 3, 1)/(2, 1) and row(T )= 11221.
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Let x1, x2, . . . be commutative variables, and let xT denote the monomial
xw1 xw2 · · · xwr where row(T )= w1w2 · · ·wr . The Schur polynomial sλ is given by

sλ(x)=
∑

T

xT ,

where the sum runs over all semistandard tableaux T of shape λ. It is well known
that sλ is symmetric and {sλ}λ is a linear basis for the space of all symmetric
polynomials (see, e.g., [Stanley 1999]). We may therefore expand the product sλsµ
uniquely as a sum of Schur polynomials sν as

sλsµ =
∑
ν

cνλµsν .

It turns out that the cνλµ are exactly the Littlewood–Richardson coefficients we
described above. They are nonnegative integers, and are zero whenever |ν| 6=
|λ| + |µ|, where |λ| is the number of boxes of λ. In other words, we can let the
sum above run over only ν such that |ν| = |λ| + |µ|. This implies that the sum has
finitely many terms.

The Littlewood–Richardson coefficients are ubiquitous, appearing naturally in a
variety of contexts. In addition to the Schubert calculus context explained above,
they also appear in the representation theory of symmetric groups and of general
linear groups, in the theory of orthogonal polynomials, etc. There are also many
combinatorial rules for computing cνλµ. In what follows we recall three rules, two
involving counting tableaux and one involving counting puzzles.

2B. Tableau versions of the Littlewood–Richardson rule. Let w = w1w2 · · ·wr

be a sequence of positive integers. The content of w, denoted content(w), is
(m1,m2, . . . ,mk) such that mi is the number of occurrences of i in the sequencew.1

We say w is ballot if content(w1 · · ·wi ) is a partition for every i . In other words,
in every initial segment of w, the number j occurs at least as many times as the
number j + 1. The content of T , denoted content(T ), is simply content(row(T )).
We say that T is ballot if row(T ) is.

Theorem 2.1 (Littlewood–Richardson rule, skew version). For partitions λ,µ, ν
such that |ν| = |λ| + |µ|, the coefficient cνλµ is the number of semistandard ballot
tableaux of shape ν/λ and content µ.

Example 2.2. Let λ= (2, 1), µ= (3, 2), and ν= (4, 3, 1) in the following examples.
The following are the (only) two ways to fill according to the Littlewood–Richardson
rule.

1 1

2 2

1

1 1

1 2

2

1For example, if w = row(T ), then in the monomial xT , the exponent of xi is mi .
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This shows that cνλµ = 2. For visual purposes, we gray out the boxes corresponding
to λ instead of removing them. (This will be useful later when we temporarily write
numbers in removed boxes.)

Given two partitions λ and µ, let the ⊕ diagram of shape µ⊕ λ be obtained by
putting the diagrams of µ and λ corner to corner, with µ to the lower left and λ to
the upper right. For example,

is a diagram of shape (3, 1)⊕ (2, 2).

Theorem 2.3 (Littlewood–Richardson rule, ⊕ version). For partitions λ,µ, ν such
that |ν| = |λ|+|µ|, the coefficient cνλµ is the number of semistandard ballot tableaux
of shape µ⊕ λ and content ν.

Example 2.4. We continue with λ,µ, ν from the example above. The following
are the two corresponding fillings using the⊕ version of the Littlewood–Richardson
rule.

1 1

2

1 1 3

2 2

1 1

2

1 1 2

2 3

These are displayed in the same order under the bijection that is described in later
sections.

Of course, any ⊕ diagram µ⊕ λ is also a skew diagram of shape

(λ1+µ1, . . . , λk +µ1, µ1, . . . , µk).

Nevertheless, we think of these classes of shapes separately, since we will have
pairs of tableaux rules, one involving shape ν/λ and one involving shape µ⊕ λ.
We refer to ν/λ as skew shape (and use grayed out boxes) and refer to µ⊕ λ as ⊕
shape (without using grayed out boxes).

2C. Puzzle version of the Littlewood–Richardson rule. Let n ≥ k be positive
integers. Refer to the partition of k rows of length n− k as the ambient rectangle.
From now on, we consider only partitions whose diagrams fit inside this ambient
rectangle. (To consider bigger partitions, simply specify a larger ambient rectangle.)
On the lower right boundary of a partition inside the ambient rectangle, write a
0 on each horizontal edge and a 1 on each vertical edge (see Figure 3). A binary
string of length n with k ones and n− k zeros is obtained by reading these numbers
from top right to bottom left.

Here we consider tilings on the triangular lattice. Knutson, Tao, and Woodward
[Knutson et al. 2004] introduced the following puzzle pieces (see Figure 4).
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λ= (4, 2, 1) ←→ ←→

001

001

01

01

←→ 0010010101

Figure 3. Bijection between partitions, Young diagrams, and bi-
nary strings; n = 10, k = 4.
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Figure 4. Puzzle pieces.
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Figure 5. Boundary 1νλµ with λ= (2, 1, 0), µ= (3, 2, 0), and ν = (4, 3, 1).

• 0-triangle: unit triangle with edges labeled by 0, two rotations;

• 1-triangle: unit triangle with edges labeled by 1, two rotations; and

• rhombus: formed by gluing two adjacent unit triangles together, with edges
labeled by 0 if clockwise of an acute angle and 1 if clockwise of an obtuse
angle, three rotations.

A tiling is an assembly of (lattice) translated copies of tiles, where edge labels
of adjacent tiles must match. We are interested in tiling an upright triangular region
1νλµ whose boundary labels of the left, right, and bottom sides, read left-to-right,
are the binary strings corresponding to λ, µ, and ν (see Figure 5).

Littlewood–Richardson coefficients can be calculated by counting puzzle tilings:
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Theorem 2.5 [Knutson et al. 2004]. Suppose λ,µ, ν are partitions fitting inside an
(n− k)× k ambient rectangle, with |ν| = |λ| + |µ|. The number of puzzle tilings
with boundary 1νλµ is cνλµ.

Example 2.6. Continuing with the running example from the previous section,
since cνλµ = 2, there are two tilings of 1νλµ:

Here and subsequently, some edges (namely, the edges within a region of 0-triangles
and the 1-edges of a sequence of rhombi) are omitted to suggest the structure of
puzzle tilings.

The bijection between the tableau rule and the puzzle rule can be seen with Tao’s
“proof without words” (see [Vakil 2006]). More details of this bijection is given
when we generalize it in Section 4B. The reader is encouraged to use Zinn-Justin’s
puzzle viewer [2016] to aid in visualizing these puzzles.

3. K-theoretic puzzles and tableaux

In this section, we discuss four K-theoretic analogues of the Littlewood–Richardson
coefficients. These coefficients can be calculated using four puzzle rules and eight
tableaux rules.

3A. K-theory and K-homology of Grassmannians. Just as in the case of ordi-
nary cohomology, the classes of the structure sheaves OXλ form a basis for the
Grothendieck ring K ◦(Gr(k, n)). The associated structure constants cνλµ are given
by

[OXλ] · [OXµ] =
∑
ν

cνλµ[OXν ],

and generalize the usual Littlewood–Richardson coefficients in the sense that one
recovers the latter for triples λ,µ, ν such that |λ| + |µ| = |ν|. An elementary
construction of those structure constants also exists, with the K-theoretic analogue
of a Schur function sλ being the single stable Grothendieck polynomial Gλ given
by the formula

Gλ =

∑
T

(−1)|T |−|λ|xT ,
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where the sum runs over all semistandard set-valued tableaux T of shape λ, and
|T | is the length of row(T ). The equivalence of this definition to other definitions
is established by Buch [2002].

In addition to the K-theory ring K ◦(Gr(k, n)) one can also consider a K-homology
ring K◦(Gr(k, n)). The classes of the ideal sheaves IXλ of the boundary of the
Schubert varieties Xλ form a basis in this ring. It turns out that this basis and the
basis of classes of structure sheaves OXλ in K ◦(Gr(k, n)) are dual in a precise sense.
The structure constants dνλµ of the classes [IXλ] are given by

[IXλ] · [IXµ] =
∑
ν

dνλµ[IXν ],

and also constitute a generalization of the classical Littlewood–Richardson coeffi-
cients, recovering the latter in the case |λ| + |µ| = |ν|. We refer the reader to [Lam
and Pylyavskyy 2007] for details. The same reference also gives a definition of
dual stable Grothendieck polynomials gλ, which generalize Schur functions in the
sense of their structure constants being exactly the dνλµ.

One can recover the dνλµ directly from the stable Grothendieck polynomials Gλ

however, as follows. Buch has showed that the linear span of {Gλ}λ inherits from
symmetric functions the structure of a bialgebra, with product given by

GλGµ =

∑
ν

(−1)|ν|−|λ|−|µ|cνλµGν

and coproduct 1 given by

1(Gν)=
∑
λ,µ

(−1)|ν|−|λ|−|µ|dνλµGλ⊗Gµ.

In other words, the product structure constants cνλµ for the Gλ are the coproduct
structure constants for the gλ, and vice versa.

It turns out that

cνλµ = 0 when |ν|< |λ| + |µ| and dνλµ = 0 when |ν|> |λ| + |µ|.

So we might as well restrict the first and second sums to the cases where |ν| ≥
|λ| + |µ| and |ν| ≤ |λ| + |µ|, respectively. Unlike the classical case, this does not
immediately show that the sums are finite, but indeed they are (Corollaries 5.5
and 6.7 of [Buch 2002]).

As we mentioned above, when |ν| = |λ| + |µ|, the number cνλµ is indeed the
classical Littlewood–Richardson coefficient described in previous sections. Since
this is the only case where the classical cνλµ is possibly nonzero, by an abuse of
notation, we use the same symbol to denote both. It is therefore paramount to
require |ν| = |λ| + |µ| when discussing cνλµ in the classical case.
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Figure 6. Four additional puzzle pieces.

The following slight variants of cνλµ and dνλµ arise naturally in the study of puzzles.
Let G̃λ = Gλ · (1−G1). Define c̃νλµ as the unique numbers such that

G̃λ · G̃µ =

∑
ν

(−1)|ν|−|λ|−|µ|c̃νλµG̃ν .

We again restrict to |ν| ≥ |λ|+|µ|, the only time when c̃νλµ is possibly nonzero. The
meaning of the G̃λ in that they also represent ideal sheaves of Schubert varieties in
certain rings is explained in [Wheeler and Zinn-Justin 2017].

Finally, let d̃νλµ be given by dν
′

λ′µ′ , where λ′ is the transpose of λ, i.e., mirror the
diagram of λ across the line x+ y = 0. Since the number of boxes is preserved, the
only time d̃νλµ is possibly nonzero is when |ν| ≤ |λ| + |µ|. The d̃νλµ form the same
collection of structure constants as the dνλµ, just indexed differently.

3B. The four K-theoretic puzzles. Consider the puzzle pieces shown in Figure 6.
We refer to these puzzle pieces using the corresponding pictograms shown in

the figure. If X is (the pictogram of) an additional puzzle piece, an X-puzzle is a
puzzle tiling where, in additional to the usual puzzle pieces, translated copies of X
can be used. There are known interpretations of -puzzles and -puzzles.

Theorem 3.1 [Vakil 2006]. Supposeλ,µ,ν are partitions fitting inside an (n−k)×k
ambient rectangle, with |ν| ≥ |λ| + |µ|. The number of -puzzle tilings with
boundary 1νλµ is cνλµ.

Theorem 3.2 [Wheeler and Zinn-Justin 2017]. Suppose λ,µ, ν are partitions fitting
inside an (n−k)×k ambient rectangle, with |ν|≥ |λ|+|µ|. The number of -puzzle
tilings with boundary 1νλµ is c̃νλµ.

We establish interpretations of -puzzles and -puzzles.

Theorem 3.3. Suppose λ,µ, ν are partitions fitting inside an (n−k−1)×k ambient
rectangle,2 with |ν| ≤ |λ|+ |µ|. The number of -puzzle tilings with boundary 1νλµ
is dνλµ.

Theorem 3.4. Suppose λ,µ, ν are partitions fitting inside an (n − k)× (k − 1)
ambient rectangle, with |ν| ≤ |λ| + |µ|. The number of -puzzle tilings with
boundary 1νλµ is d̃νλµ.

2For technical reasons, we require partitions to be slightly smaller. See Section 5A.
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3C. The eightfold way. Like the classical case, where the puzzle rule corresponds
to a pair of tableau rules (involving diagrams of shapes ν/λ and µ⊕λ, respectively),
we describe four pairs of K-tableau rules corresponding to the four K-puzzle rules.

A set-valued tableau is a V -tableau where V consists of nonempty subsets of
{1, . . . , k}. To understand the semistandard condition in this context, we agree that
for A, B ∈ V , A is (strictly) less than B if max A is (strictly) less than min B. When
forming the reverse row word, a value A ∈ V is expanded as the numbers in the set
A, written from largest to smallest.

Buch [2002] gives a combinatorial rule for calculating the K-theory Littlewood–
Richardson coefficient cνλµ by counting certain set-valued tableaux of ⊕ shape.

Theorem 3.5 ( rule,⊕ version). The coefficient cνλµ is the number of semistandard
ballot set-valued tableaux of shape µ⊕ λ and content ν.

To describe the skew version of the K-theory rule, we consider a new kind of
tableaux. A circle tableau T is a V -tableau where V consists of {1, . . . , k} and the
circled numbers { 1 , . . . , k }.

We say T is a right (resp. left) circle tableau if each i is the rightmost (resp.
leftmost) i or i in its row. (In other words, for each i , only the rightmost (resp.
leftmost) i in a row is optionally circled.) Moreover, circled values may only occur
in the bottom k rows (that is, anywhere in shape ν/λ, bottom half in shape µ⊕ λ).

We say T is semistandard if it is semistandard when the circled values are treated
as if they are not circled. Its content is content(w) where w is row(T ) with the
circled values omitted.

Let w be an initial segment of row(T ). If w ends with i , replace it with an
uncircled i + 1. Remove all other circled entries. Call the result the incremented
erasure of w. Analogously, call the result the unincremented erasure of w if the
final i is replaced with an uncircled i instead. We say that a right (left) circle
tableau is ballot if all its incremented (unincremented) erasures are ballot.

Pechenik and Yong [2017] give a combinatorial rule for calculating the K-theory
Littlewood–Richardson coefficient cνλµ by counting certain genomic tableaux of
skew shape. We give an equivalent formulation (see Section 5C) here in terms of
circle tableaux.

Theorem 3.6 ( rule, skew version). The coefficient cνλµ is the number of semis-
tandard ballot right circle tableaux of shape ν/λ and content µ.

An outer corner of (the diagram of) a partition µ is a box whose addition results
in a diagram of a partition.

Theorem 3.7 ( rule,⊕ version). The coefficient c̃νλµ is the number of semistandard
ballot set-valued tableaux of shape µ+⊕λ and content ν, where µ+ is µ with some
number (possibly zero) of its outer corners added.
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Theorem 3.8 ( rule, skew version). The coefficient c̃νλµ is the number of semis-
tandard ballot left circle tableaux of shape ν/λ and content µ.

Recall that a circle tableau of shape µ⊕ λ does not have circles in the rows
corresponding to λ.

Theorem 3.9 ( rule,⊕ version). The coefficient dνλµ is the number of semistandard
ballot right circle tableaux of shape µ⊕ λ and content ν.

An inner corner of (the diagram of) a partition λ is a box whose removal results
in a diagram of a partition.

Theorem 3.10 ( rule, skew version). The coefficient dνλµ is the number of semi-
standard ballot set-valued tableaux of shape ν/λ− and content µ, where λ− is λ
with some number (possibly zero) of its inner corners removed.

A circle tableau of shape µ⊕ λ is limited if it has no i in row i of the bottom
half for any i .

Theorem 3.11 ( rule, ⊕ version). The coefficient d̃νλµ is the number of limited
semistandard ballot left circle tableaux of shape µ⊕ λ and content ν.

Theorem 3.12 ( rule, skew version). The coefficient d̃νλµ is the number of semis-
tandard ballot set-valued tableaux of shape ν/λ and content µ.

Note that the limited condition present in the ⊕ version of the rule does not
appear in the skew version. Instead, the limited condition arises implicitly in the
skew version of the rule (Theorem 3.6). In that case, the ballot condition implies
the limited condition. See Section 4D for details.

4. Proofs

4A. Proof of Theorem 3.10. Given a sequence w = (w1, . . . , wr ) and an interval
[a, b], let w|[a,b] be the sequence obtained by shifting the numbers down to the
interval [1, b−a+1] by subtracting a−1 from each number wi in the range [a, b]
(and omitting numbers that are out of the range).

Theorem 4.1 [Buch 2002]. The coefficient dνλµ is the number of semistandard set-
valued tableaux T of shape ν with content (λ, µ) = (λ1, λ2, . . . , λk, µ1, . . . , µk),
such that row(T )|[1,k] and row(T )|[k+1,2k] are both ballot.

For notational convenience, local to this proof only, a Buch tableau is one
described in Theorem 4.1. and a tableau is one described in Theorem 3.10. There
is a simple bijection between Buch tableaux and tableaux.

Indeed, let T be a tableau. Increase each number in T by k. Extend the shape
of T to ν by filling in the first λi boxes of T with i in row i . The result is clearly a
Buch tableau.
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Figure 7. Left: a beam of length 3. Right: three beams of length 1.

Figure 8. All the ways beams can meet.

Conversely, let T be a Buch tableau. It is easy to see that, as T is semistandard
and row(T )|[1,k] is ballot, the λi occurrences of i are exactly in the first λi boxes of
row i . Remove these “small” numbers. A remaining “big” number in row i cannot
be in the first λi − 1 boxes, since the λi -th box contained a small number. It can be
in the λi -th box only if the λi -th box in the next row did not contain a small number.
In other words, only if this box is an inner corner of λ. We therefore conclude that
the shape of the remaining tableau is ν/λ with some (possibly zero) inner corners
of λ added. Decrease k from all the remaining numbers to obtain a tableau.

This concludes the proof of Theorem 3.10.

4B. Proof of Theorem 3.3. We prove Theorem 3.3 by establishing a bijection
between -puzzles and the tableaux described in Theorem 3.10. For notational
convenience, we do so by considering an example when k = 4. The general case is
similar.

First, we consider the structure of a generic -puzzle. In a tiling, the rhombi
form beams, a sequence of rhombi adjacent by their 1-edges. The number of rhombi
in the beam is its length. If beams are adjacent to each other because some rhombi
are adjacent by their 0-edges, we consider the beams as separate beams of width
one (see Figure 7). Otherwise, three beams can meet at a 1-triangle or a , as in
Figure 8.

If no piece is used, the structure is simple, and can be seen in Tao’s “proof
without words” (see [Vakil 2006]). From the bottom boundary, each 1-edge is
adjacent to an upward beam (possibly of zero length). The top of each upward
beam must be an upright 1-triangle. The left and right side of the 1-triangle are
each adjacent to a leftward and a rightward beam, respectively. A leftward beam
terminates either at the left boundary or the right side of an upside-down 1-triangle.
Similarly, a rightward beam terminates at the right boundary or the left side of an
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Figure 9. An example tiling.

upside-down 1-triangle. These upside-down 1-triangles have upward beams on their
top edges. The rest of the puzzle is filled with 0-triangles.

Now we consider adding in the piece (see Figure 9). Since the piece has
1-edges in the same orientation as the upright 1-triangle, it can be placed on top
of an upright beam to replace an upright 1-triangle. It also must have a leftward
and a rightward beam adjacent to its two other 1-edges. As compared to using a
1-triangle instead of the piece, the length of the leftward beam is decreased by
one, and the rightward beam is shifted up by one.

In Figure 9, the upright beams have labels. We refer to the beam with label x
as the x-beam. By abuse of notation, we also let x denote the length (that is, the
number of rhombi) of the x-beam. For each x-beam, set x ′ to x . Increment x ′ by
one if the x-beam is capped with a on top (as opposed to a triangle). In the
example in the figure, t ′, q ′, and s ′ are the ones that are incremented. The boundary
also has some length labels. We use the same labels as those in Tao’s “proof without
words.”

Note that these numbers completely determine the tiling. Indeed, let us describe
a process to assemble such a tiling based on the numbers. Place (the rhombi of)
the bottom beams according to their lengths (e.g., u, s, p, and h). Place 1-triangles
or hexagons on top of them based on whether x ′ = x or not. Extend the leftmost
leftward beam and the rightmost rightward beam to the boundary. In the middle,
extend each pair of leftward and rightward beams until they meet each other. That
is the unique position to place an upside-down 1-triangle. If we had k beams at the
bottom, there are now k− 1 upside-down 1-triangles. Repeat the process according
to the lengths of the second level of upward beams (e.g., t , q , and m). The puzzle
can be built level by level, each time with one fewer upward beam. Finally, fill the
rest of the puzzle with 0-triangles.
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We now describe a bijection from the -puzzles to skew tableaux. In the boxes
of a diagram of shape ν/λ, fill out according to the following schematic plan

1u

1t 2s

1r 2q 3p

1o 2n 3m 4h

where, a number x followed by a letter y in the schematic plan means to fill the
number x in y consecutive boxes. If y′ > y, write an additional x in the previous
box, without using space. Circle such a number for easy reference. The grayed out
boxes correspond to λ and may contain circled numbers; the white boxes correspond
to ν/λ and each has exactly one uncircled number. Call this tableau T .

Example 4.2. Applying the bijection described to the puzzle results in the following
tableau.

1 1 1 1

1 1 1 2 2 2 2

1 1 2 2 2 3 3

1 1 2 3 3 3 3 3 4

From the tiling, one could read off certain equalities and inequalities (see
Figure 10).

Shape. The top left picture shows that

ν2+ 3= 1+ j + 1+ k+ 1+ `= s+ t + 1+ b+ 1+ c+ 1+ d = s+ t + λ2+ 3,

or ν2− λ2 = s+ t . This means that the s+ t uncircled numbers we fill in row 2 of
ν/λ precisely takes up the ν2−λ2 boxes. In other words, the shape is unaffected by
the tiles, except for the possibility of writing 1 in the shaded boxes, discussed
below.

Content. The top right picture shows that s ′+1+q ′+1+n′ = h+1+g+1+h =
µ2+ 2, or µ2 = s ′+ q ′+ n′, leading to content(T )= µ where i is treated as i .

Ballot. The lower left picture shows that u′+ t ′ ≥ s ′+ q ′ ≥ p′+m′. This directly
translates to the ballot condition of T , again by treating i as i .

Semistandard. The lower right picture shows a final type of inequalities, which are
slightly more complicated. Let x ≥z y be a shorthand for x ≥ y+ z′− z. In other
words, x ≥z y means x ≥ y if z′ = z, and means x > y if z′ = z+ 1. If there are
no tiles, the two thick lines in the picture must not cross, yielding inequalities
b ≥ r and b+ t ≥ r + q. Because of the tiles, these inequalities must be strict.
Therefore we get b ≥t r and b+ t ≥s r + q instead. These inequalities translate to
the semistandard condition of T by considering all pairs of numbers in adjacent
boxes. Also note that if b = 0, then b ≥t r says that t = t ′ (and r = 0), so there
cannot be a 1 in row 2 if λ2= λ3. Similarly, there cannot be a 1 in row 4 if λ4= 0.
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Figure 10. Inequalities from puzzles.

In general, 1 can only be written in the boxes corresponding to the inner corners
of λ.

Finally, uncircle the circled numbers in T . Since circled numbers either share
boxes with uncircled numbers or occur in the inner corners of λ, what we get is a
set-valued tableau of shape ν/λ−, where λ− is λ with some inner corners removed.
This concludes one direction of the bijection.

Reversing the bijection is straightforward. First, we reverse the last step. Let T ′

be a set-valued tableau of shape ν/λ− and content µ, where λ− is λ with some of
its inner corners removed. Circle all the numbers in boxes corresponding to inner
corners of λ and all but the smallest number in each of the boxes corresponding
to ν/λ. This tableau with circles is in fact T as described in the middle of the
bijection above. Indeed, as T ′ is ballot, the numbers appearing in row i are all at
most i . Also, if we were to get two i in some row, the right i is sharing its box
with a smaller number, so this row is not weakly increasing from left to right, a
contradiction to the fact that T ′ is semistandard.

It remains to assemble the puzzle from the tableau T by reversing the first half
of the bijection. From bottom to top, add in beams of rhombi of the correct height
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based on the multiplicities of numbers in the tableau, place an upright 1-triangle or
hexagon on top of each beam depending on the existence of a corresponding circled
number, and join these together using rhombi and upside-down 1-triangles in the
only way possible. Repeat with the next set of beams and such. Fill the remaining
region with 0-triangles. This construction works, and no tiles need to overlap or
extend beyond the boundary, exactly because the inequalities we derived above
are satisfied if they came from such a tableau. Checking the details is routine and
therefore omitted.

4C. Proof of Theorem 3.9. We prove Theorem 3.9 by establishing a bijection
between these tableaux and -puzzles. This bijection is extremely similar to the
bijection in the previous proof. We follow the same outline and use the same
running examples.

Given a -puzzle, in the boxes of a diagram of shape µ⊕ λ, fill out according
to the following schematic plan

1d 1c 1b 1a

2d 2c 2b

3d 3c

4d

1u 2t 3r 4o

2s 3q 4n

3p 4m

4h

where, as before, a number x followed by a letter y means to write x in y adjacent
boxes. If y′ > y, write an additional x in the next box, in its own space. Circle such
a number. Note that every box has exactly one number, which may or may not be
circled. Call this tableau T .

Example 4.3. Applying the bijection described to the puzzle results in the following
tableau.

1 1 1 1 1 1 1 1 1 1 1

2 2 2 2 2 2 2 2

3 3 3 3 3

4

1 1 1 1 2 2 2 3 3 4 4

2 2 2 2 3 3 3 4

3 3 4 4 4 4 4

4

We read off exactly the same equalities and inequalities from Figure 10. However,
we interpret them differently.

Content. The top left picture shows that ν2−λ2 = s+ t , leading to content(T )= ν
where i is ignored.

Shape. The top right picture shows that µ2 = s ′+ q ′+ n′, showing that i shall
occupy its own box.
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Semistandard. The lower left picture shows that u′+ t ′ ≥ s ′+ q ′ ≥ p′+m′. This
directly translates to the semistandard condition of T , where i is treated as i .

Ballot. The lower right picture shows the final type of inequalities, whose interpre-
tation is still slightly more complicated. Following the notation from the previous
proof, we get b+ t ≥s r + q as one of these inequalities. Let us see how this kind
of inequalities interact with the ballot condition. Let w be an initial segment of
row(T ). As an example, let us compare the number of 2s and 3s. We may as
well extend w with some more 3s without adding 2s. For example, suppose w
ends between the 2s and 3s of row 2. There are at least as many (uncircled) 2s as
(uncircled) 3s in w if and only if b+ t ≥ r + q . If there is a 2 between the 2s and
3s of row 2, the incremented erasure of w would have an extra 3. Therefore we
must have b+ t ≥s r + q . Other requirements of the ballot condition all amount to
inequalities of this type.

This establishes one direction of the bijection. As before, reversing the bijection
and proving correctness is straight-forward, so we omit the details.

4D. Bijection between puzzles and tableaux. Rather than repeat similar proofs
over and over, we present in table form the inequalities that can be read off from
puzzles and their corresponding interpretations in both skew and ⊕ tableaux rules.

For , like for , we let x ′ = x + 1 if the added tile is above the x-beam;
otherwise x ′ = x . For and , replace “above” in the definition above with
“below.” Consequently, u′, s ′, p′, h′ are undefined for and .3 As before, x ≥z y
is a shorthand for x ≥ y+ z′− z.

We first redescribe rules in Table 1 to help orient the reader.
The inequalities for , shown in Table 2, are very similar to those for . The

main difference is seen in the last rows of the tables. Consider the semistandard
condition of the skew rule. While the inequality a≥u t dictates that 1 in row 1 is to
be written in the box before the 1s corresponding to u, the inequality a ≥t t instead
dictates that 1 in row 2 is to be written in the box after the 1s corresponding to t .
Similarly, for the ⊕ rule’s ballot condition, the erasure is not incremented. The
other difference is marked with ( ) due to being upside down. We see that the
limited condition arises naturally in the ⊕ rule. Its counterpart in the skew rule is
that the shape ν/λ cannot be enlarged by adding corners.

As compared to , the inequalities for (Table 3) look quite different on the
surface. However, it turns out we are essentially swapping the skew and ⊕ rules
with each other. Indeed, the only other difference is that , being upside down,

3The and are “upside down” in the sense that they replace the upside down 1-triangle .
Heuristically, since there are fewer opportunities to use these tiles, their corresponding set-valued
tableaux have no option to fill a larger shape and circle tableaux have no i in row i . The rules in the
tables where this manifests itself are marked with ( ).
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ν/λ µ⊕ λ

ν1− λ1 = u

ν2− λ2 = s+ t

ν3− λ3 = p+ q + r

ν4− λ4 = h+m+ n+ o

Shape:
i takes no space

set-valued

Content:
ignore i

µ1 = u′+ t ′+ r ′+ o′

µ2 = s ′+ q ′+ n′

µ3 = p′+m ′

µ4 = h′

Content:
i 7→ i

Shape:
i takes a box

u′ ≥ s ′ ≥ p′ ≥ h′

u′+ t ′ ≥ s ′+ q ′ ≥ p′+m ′

u′+ t ′+ r ′ ≥ s ′+ q ′+ n′

Ballot:
i 7→ i

Semistandard:
i 7→ i

a ≥u t, b ≥t r, c ≥r o, d ≥o 0

b+ t ≥s r + q, c+ r ≥q o+ n, d + o ≥n 0

c+ r + q ≥p o+ n+m, d + o+ n ≥m 0

d + o+ n+m ≥h 0

Semistandard:
i in previous box

shape becomes ν/λ−

Ballot:
keep only last i
i 7→ i + 1

Table 1. rules.

ν/λ µ⊕ λ

ν1− λ1 = u

ν2− λ2 = s+ t

ν3− λ3 = p+ q + r

ν4− λ4 = h+m+ n+ o

Shape:
i takes no space

set-valued

Content:
ignore i

µ1 = u+ t ′+ r ′+ o′

µ2 = s+ q ′+ n′

µ3 = p+m ′

µ4 = h

Content:
i 7→ i

Shape:
i takes a box

no i in row i ( )

u ≥ s ≥ p ≥ h

u+ t ′ ≥ s+ q ′ ≥ p+m ′

u+ t ′+ r ′ ≥ s+ q ′+ n′

Ballot:
i 7→ i

Semistandard:
i 7→ i

a ≥t t, b ≥r r, c ≥o o

b+ t ≥q r + q, c+ r ≥n o+ n

c+ r + q ≥m o+ n+m

Semistandard:
i in next box

stay within shape ( )

Ballot:
keep only last i
i 7→ i

Table 2. rules.
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ν/λ µ⊕ λ

ν1− λ1 = u

ν2− λ2 = s+ t ′

ν3− λ3 = p+ q ′+ r ′

ν4− λ4 = h+m ′+ n′+ o′

Shape:
i takes a box

no i in row i ( )

Content:
i 7→ i

µ1 = u+ t + r + o

µ2 = s+ q + n

µ3 = p+m

µ4 = h

Content:
ignore i

Shape:
i takes no space

set-valued

u ≥t s ≥q p ≥m h

u+ t ≥r s+ q ≥n p+m

u+ t + r ≥o s+ q + n

Ballot:
keep only last i
i 7→ i + 1

Semistandard:
i in previous box

stay within shape ( )

a ≥ t ′, b ≥ r ′, c ≥ o′

b+ t ′ ≥ r ′+ q ′, c+ r ′ ≥ o′+ n′

c+ r ′+ q ′ ≥ o′+ n′+m ′

Semistandard:
i 7→ i

Ballot:
i 7→ i

Table 3. rules.

is less frequently usable, as denoted by ( ) in two places. The first is the limited
condition for the skew rule. However, any i in row i would violate the ballot
condition, so the limited condition need not be explicitly stated in Theorem 3.6.
The counterpart of the limited condition in the ⊕ rule is that the shape cannot be
enlarged by adding corners, as in the case of .

The close relation between (shown in Table 4) and is similar to that between
and . Indeed, one difference of compared to is that its erasure is not

incremented and i goes in the next box, just like . On the other hand, the other
difference is that does not have ( ) restrictions,4 like . The lack of perfect
symmetry is somewhat puzzling.

4E. Correspondence to coefficients. In the previous section, we presented in table
form the relevant parts of the bijection between the four puzzle rules given in
Section 3B and the eight tableau rules given in Section 3C. What remains is to
relate these to the coefficients defined in Section 3A.

Buch [2002] proved Theorem 3.5, establishing that the rules count cνλµ. We
proved above that the rules count dνλµ. In the following two section, we establish

rules and rules, respectively.

4So, in the⊕ rule, i can be written in the next box, even protruding beyond the shape µ. However,
if µ2 = µ3, say, the inequalities s ≥p p and s+ q ≥m p+m prohibit 3 and 4 , respectively, from
protruding in row 3. As such, µ+ is µ with some outer corners added.



722 PAVLO PYLYAVSKYY AND JED YANG

ν/λ µ⊕ λ

ν1− λ1 = u′

ν2− λ2 = s ′+ t ′

ν3− λ3 = p′+ q ′+ r ′

ν4− λ4 = h′+m ′+ n′+ o′

Shape:
i takes a box

Content:
i 7→ i

µ1 = u+ t + r + o

µ2 = s+ q + n

µ3 = p+m

µ4 = h

Content:
ignore i

Shape:
i takes no space

set-valued

u ≥s s ≥p p ≥h h

u+ t ≥q s+ q ≥m p+m

u+ t + r ≥n s+ q + n

Ballot:
keep only last i
i 7→ i

Semistandard:
i in next box

shape becomes µ+

a ≥ t ′, b ≥ r ′, c ≥ o′

b+ t ′ ≥ r ′+ q ′, c+ r ′ ≥ o′+ n′

c+ r ′+ q ′ ≥ o′+ n′+m ′

Semistandard:
i 7→ i

Ballot:
i 7→ i

Table 4. rules.

4F. Proof of Theorem 3.7. Wheeler and Zinn-Justin [2017] proved Theorem 3.2,
so we already know that the rules count c̃νλµ. Regardless, here we provide a
simple calculation as a way to establish the rules from the rules, and that
serves as an alternative proof to the result of Wheeler and Zinn-Justin.

By definition, we have

Gµ ·G1 =
∑
µ′

(−1)|µ
′
|−|µ|−1cµ

′

µ1Gµ′ .

By Theorem 3.5, the coefficient cµ
′

µ1 is 1 if µ′ is µ with a positive number of outer
corners added,5 and 0 otherwise. So

Gλ · (Gµ ·G1)= Gλ

∑
µ′

(−1)|µ
′
|−|µ|−1Gµ′

=

∑
µ′

(−1)|µ
′
|−|µ|−1

∑
ν

(−1)|ν|−|λ|−|µ
′
|cνλµ′Gν

=−

∑
ν,µ′

(−1)|ν|−|λ|−|µ|cνλµ′Gν,

5Consider the shape 1⊕µ. The numbers filled in the lower box corresponds to the rows of µ′/µ.
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where µ′ runs over µ with a positive number of outer corners added. By definition,
we have∑
ν

(−1)|ν|−|λ|−|µ|c̃νλµGν = Gλ ·Gµ · (1−G1)

=

∑
ν

(−1)|ν|−|λ|−|µ|cνλµGν +

∑
ν,µ′

(−1)|ν|−|λ|−|µ|cνλµ′Gν,

so
c̃νλµ = cνλµ+

∑
µ′

cνλµ′ .

By Theorem 3.5, c̃νλµ is the number of semistandard ballot set-valued tableaux of
shape µ+⊕ λ and content ν, where µ+ is either µ or µ with a positive number of
outer corners added, as desired.

4G. Proof of Theorem 3.4. By Theorem 3.3, it suffices to show a bijection between
-puzzles with boundary 1νλµ and -puzzles with boundary 1ν

′

λ′µ′ . The bijection
is simple: mirror the puzzle across a vertical line and swap the 0 and 1 labels. This
is clearly an involution. Each of the original puzzle pieces is mapped to a valid
puzzle piece. The and pieces are mapped to each other. The boundary is
mapped from 1νλµ to 1ν

′

µ′λ′ .
6 Finally, by definition, dνλµ = dνµλ, so we are done.

5. Final remarks

5A. Consider the example λ = (2, 1), µ = (4, 2), and ν = (4, 3, 1). The skew
tableau

1 1 1

2 2

1

corresponds to the -tiling

Since the shapes all fit in a 4×3 box, one might think n = 7 is sufficient side length
for a puzzle. However, the piece will protrude to the left of the puzzle with side
length 7.

6Indeed, recall that the binary string of a partition λ corresponds to the boundary of the diagram
of λ. Reversing the string rotates (the boundary of) the diagram by 180◦. Swapping 0 and 1 in the
string flips the diagram across the line x = y. Composing these two transformations flips the diagram
across the line x + y = 0.
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Figure 11. The complete set of tiles.

In Theorem 3.3, we dealt with this issue by increasing the puzzle side length by
one. More precisely, puzzles of side length n+ 1 corresponds to using the standard
ambient rectangle of size (n−k)×k. So, to keep the side length of puzzles fixed at
n, we must use a slightly narrower ambient rectangle of size (n−1−k)×k instead.

This is analogous for Theorem 3.4. As we can see from the bijection outlined in
its proof, we need the transposed partitions to fit inside a slightly narrower ambient
rectangle, so the partitions themselves must fit inside a slightly shorter ambient
rectangle of size (n− k)× (k− 1) instead.

5B. Another way to solve the protrusion issue outlined above is to add an additional
trapezoid piece

0

10

1
1

as if to allow the hexagonal tile to protrude to the left. (By the way things are
set up, the hexagon never needs to protrude to the right or below.) However, we do
not want this piece used elsewhere. So we must make some more modifications.
Figure 11 shows the complete set of tiles.

Consider the northeast–southwest slanting 1 edges. A 1-edge on the bottom-right
side of pieces are now labeled with 2, so the new trapezoid piece cannot be used
except at the left boundary. An old piece with a 1-edge on its top-left side must be
duplicated, with a version for use at the left boundary and another for use in the
interior.

Modification to is similar.

5C. Theorem 3.6 provides a skew tableau rule for calculating the K-theoretic
Littlewood–Richardson coefficients cνλµ using right circle tableaux. Pechenik and
Yong [2017] give the same rule using genomic tableaux (definitions therein).

Theorem 5.1 ( , [Pechenik and Yong 2017], K-theory, skew version). The coeffi-
cient cνλµ is the number of semistandard ballot genomic tableaux of shape ν/λ and
content µ.
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Figure 12. Mosaic version of the Knutson–Tao–Woodward tiles.

These two rules are virtually identical, as there is a simple bijection between
right circle tableaux and genomic tableaux. Indeed, let a semistandard ballot right
circle tableau of shape ν/λ and content µ be given. By semistandardness, the boxes
filled with i and i form a horizontal strip. From left to right, rewrite these as i1, i2,
i3, and so on. Whenever i is encountered, the next subscript used is the same as
the current subscript. By ballotness, the rightmost i in the tableau is not circled, so
this rule is well-formed. It is easy to see that this yields a semistandard genomic
tableau of the same shape and content. One can also check that the tableau is ballot.

Conversely, given a semistandard ballot genomic tableau, the boxes filled with i j

for a fixed i form a horizontal strip. From left to right, circle an entry if its subscript
is the same as the next one. Erase all subscripts. The correctness of this bijection is
straightforward and left as exercise to the reader.

Example 5.2. The structure constant c(4,2,1)(2,1),(2,1) is computed by the circle tableaux
1 1

2

1

1 1

1

2

1 1

2

2

and by the corresponding genomic tableaux
11 12

21

11

11 12

11

21

11 12

21

21

5D. Purbhoo [2008] introduced mosaics, a useful variation of puzzles. These pieces
do not need edge labels. Instead, edges labeled with 0 are rotated 30◦ anticlockwise.
Below, the edge labels have been retained for clarity. Figure 12 shows the mosaic
version of the ordinary Knutson–Tao–Woodward puzzle pieces.

Figure 13 shows the mosaic version of the four additional K-theoretic tiles. Note
that the four tiles have the same geometric shape.
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Figure 13. Mosaic version of the four additional K-theoretic tiles.
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