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LINEARLY DEPENDENT POWERS
OF BINARY QUADRATIC FORMS

BRUCE REZNICK

Given an integer d ≥ 2, what is the smallest r so that there is a set of binary
quadratic forms { f1, . . . , fr} for which { f d

j } is nontrivially linearly depen-
dent? We show that if r ≤ 4, then d ≤ 5, and for d ≥ 4, construct such a set
with r =bd/2c+2. Many explicit examples are given, along with techniques
for producing others.

1. Introduction

For a fixed positive integer k, let Hk(C
2) denote the (k + 1)-dimensional vector

space of binary forms of degree k with complex coefficients. We say that two
such forms are distinct if they are not proportional, and we say that a set F =

{ f1, . . . , fr } ⊂ Hk(C
2) is honest if its elements are pairwise distinct. For d ∈N, let

Fd
= { f d

1 , . . . , f d
r }; if F is honest, then so is Fd .

When k = 1, there is a simple classical criterion for the linear dependence of Fd ;
see, e.g., [Reznick 2013a, Theorem 4.2].

Theorem 1.1. If F= { f1, . . . , fr } ⊂ H1(C
2) is honest, then Fd

= { f d
1 , . . . , f d

r } is
linearly independent if and only if r ≤ d + 1.

A version of this criterion is generally true for k ≥ 2; see, e.g., [Reznick 2013b,
Theorem 1.8]. (The proofs of these theorems are given at the start of Section 2.)

Theorem 1.2. If F = { f1, . . . , fr } ⊂ Hk(C
2), then it is generally true that Fd is

linearly independent if and only if r ≤ kd + 1.

But there are singular cases, and these will be the focus of this paper. It is easy
to find smaller values of r for which Fd is linearly dependent; for example, the
Pythagorean parametrization gives three quadratics whose squares are dependent:

(1-1) (x2
− y2)2+ (2xy)2 = (x2

+ y2)2.
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There are other ways of finding small dependent sets: let {g j (x, y)} be an honest
set of d + 2 linear forms; then both {g j (xk, yk)} and {`(x, y)k−1g j (x, y)} (for a
fixed linear form `) will be dependent sets in Hk(C

2).
Given r, d ∈ N, we say that an honest set of forms { f1, . . . , fr } ⊆ Hk(C

2) is a
Wk(r, d)-set if { f d

j } is linearly dependent. For example, (1-1) presents the W2(3, 2)-
set {x2

−y2, 2xy, x2
+y2
}. Let8k(d) denote the smallest r for which a Wk(r, d)-set

exists; clearly, 8k(d)≥ 3. Theorem 1.1 implies that 81(d)= d + 2.
Our goal in this paper is twofold. First, we give upper and lower bounds for8k(d)

for k ≥ 2. Second, we describe all W2(82(d), d)-sets for d ≤ 5. In (5) and (6)
below, we use a peculiar-looking function. If e | d , let

2e(d) := 1+min
t∈N

(
t · d

e
+

⌊e
t

⌋)
.

We summarize our main results.

Theorem 1.3 (main theorem). (1) 8k+1(d)≤8k(d).

(2) 8k(2)= 3.

(3) (Liouville) 8k(d)≥ 4 for d ≥ 3 and all k.

(4) (Hayman) 8k(d) > 1+
√

d + 1 for d ≥ 3 and all k.

(5) (Molluzzo, Newman, and Slater) 8d(d)≤2d(d)= 1+b
√

4d + 1c.

(6) If e | d, then 8e(d)≤min{2k(d) : k ≥ e, k | d}.

(7) 8k(d)= 4 for d = 3, 4, 5 and k ≥ 2.

(8) 82(d)≥ 5 for d ≥ 6.

(9) 82(d)= 5 for d = 6, 7.

(10) 82(14)≤ 6.

(11) 82(d)≤ bd/2c+ 2 for d ≥ 4.

All new parts of the main theorem except (8) and (11) have short proofs; these
are given in Section 2. Examples give upper bounds for 8k(d); lower bounds
are harder to find. The anomalous value in (10) for d = 14 is difficult to explain,
and prevents us from conjecturing (11) as the exact value. This problem has been
studied in [Gundersen and Hayman 2004; Newman and Slater 1979] without the
degree condition on the summands. The recent [Nenashev et al. 2017] contains a
generalization of this question, replacing f d

i with
∏

j f a j
i j for fixed tuples (a j ).

If F is a Wk(r, d)-set, then there is an obvious way to transform the linear
dependence of the d-th powers into a more natural expression for any m, 1≤ m ≤
r − 1:

(1-2)
r∑

j=1

λ j f d
j = 0 (λ j 6= 0) =⇒ p =

m∑
j=1

f̃ d
j =

r∑
j=m+1

f̃ d
j ,
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where f̃ j = (±λ j )
1/d f j , for some p. In particular, a Wk(2m, d)-set addresses the

classical question of parametrizing two equal sums of m d-th powers. In this case,
we say that (1-2) gives two representations of p as a sum of m d-th powers.

If αx + βy and γ x + δy are distinct, then the map M := (x, y) 7→ (αx + βy,
γ x + δy) is an invertible change of variables (or linear change for short); let
( f ◦M)(x, y) denote f (αx +βy, γ x + δy). (This is a scaling if β = γ = 0.) If all
members of F are subject to the same linear change, then the linear dependence of
their d-th powers is unaltered. Any Wk(r, d)-set can have its elements permuted
and multiplied by various nonzero constants without essentially affecting the nature
of the dependence.

So suppose F is a Wk(r, d)-set and

(1-3)
r∑

j=1

λ j f d
j = 0.

If π ∈ Sr is a permutation of {1, . . . r}, c = (c1, . . . , cr ) ∈ (C \ {0})r , M is a linear
change, and g j = c j ( fπ( j) ◦M), 1≤ j ≤ r , then (1-3) is equivalent to

(1-4)
r∑

j=1

(λπ( j) · c−d
j )gd

j = 0.

In this situation, we say that F = { f j } and G = {g j } (and the corresponding
identities (1-3) and (1-4)) are cousins. It is easy to show cousinhood by exhibiting
M , π , and c. Proving that F and G are not cousins may require ad hoc arguments.

We aim to present identities as symmetrically as possible, often guided by an old
idea of Felix Klein. Associate to each nonzero linear form `(x, y)= sx − t y the
image of t/s ∈C∗ on the unit sphere S2 under the Riemann map. (Assign `(x, y)= y
to∞ and (0, 0, 1).) Then associate to the binary form φ(x, y)=

∏k
j=1(s j x − t j y)

the image under the Riemann map of {t j/s j }, and call it the Klein set of φ. Given
(1-3), we shall be interested in the Klein set of

∏r
j=1 f j . In (1-1), the Klein set

of (x2
− y2)(2xy)(x2

+ y2) is the regular octahedron with vertices {±ek}.
Under the linear change M : (x, y) 7→ (αx+βy, γ x+δy), t/s 7→ T (t/s), where

T is the Möbius transformation T (z) = (δz − β)/(−γ z + α). Every rotation of
the sphere corresponds to a Möbius transformation of the complex plane, and so a
rotation of the Klein set can be effected by imposing a linear change on the forms.
(Unfortunately, not every Möbius transformation gives a rotation.) It often happens
that p =

∑
f d

j and p = p ◦ M , but
∑
( f j ◦ M)d gives a different representation

for p.
A trivial remark is surprisingly useful:

p = f d
1 + f d

2 = f d
3 + f d

4 =⇒ q = f d
1 − f d

3 = f d
4 − f d

2
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for suitable forms p, q; we call this a flip. For k = 2 and d = 3, 4, it can happen
that q has a third representation as q = f d

5 + f d
6 , but that no such new expression

exists for p. If f d
1 + f d

2 = f d
3 + f d

4 and gd
1 + gd

2 = gd
3 + gd

4 = gd
5 + gd

6 , then
F= { f1, . . . , f4} is a cousin of G= {g1, . . . , g4} and we say that F is a subcousin
of G′ = {g1, . . . , g6}.

We now present some examples of small dependent sets of d-th powers. For
integer m ∈ N, let ζm = e2π i/m be a primitive m-th root of unity, with the usual
conventions that ω = ζ3 and i = ζ4. A few interesting Klein sets will be noted.

The cubic identity with the simplest coefficients is probably

(1-5) (x2
+ xy− y2)3+ (x2

− xy− y2)3 = 2(x2)3+ 2(−y2)3 = 2x6
− 2y6.

The right-hand side of (1-5) is unchanged by the scalings y→ωy and y→ω2 y, so
(1-5) shows that 2x6

− 2y6 is a sum of two cubes in four different ways. Under the
linear change (x, y) 7→ (α+β, α−β), (1-5) is due to Gérardin in 1910 [Dickson
1966, p. 562]; in its present form, it was noted by Elkies [Darmon and Granville
1995, p. 542].

Here are two very simple quartic identities. The first generalizes to higher even
degree (see (2-6)), and the second is in Z[x, y]:

(x2
+ y2)4+ (ωx2

+ω2 y2)4+ (ω2x2
+ωy2)4 = 18(xy)4.(1-6)

(x2
+ 2xy)4+ (2xy+ y2)4+ (x2

− y2)4 = 2(x2
+ xy+ y2)4.(1-7)

These are cousins. Upon making the linear change (x, y) 7→ (i(x−ωy), (x−ω2 y))
and division by

√
−3, (1-6) becomes (1-7) up to a permutation of terms. The Klein

set of (1-6) is a regular hexagon at the equator plus the poles.
A remarkable identity for d= 5 was discovered independently by A. H. Desboves

[1880; Dickson 1966, p. 684] and N. Elkies in 1995 [Darmon and Granville 1995,
p. 542]:

(1-8)
3∑

k=0

(−1)k(ik x2
+
√
−2xy+ i−k y2)5 = 0.

The Klein set of (1-8) is a cube with vertices
{(
±
√

2/3,0,±
√

1/3
)
,
(
0,±

√
2/3,±

√
1/3
)}

.
The next two examples appear to be new in detail, but are in the spirit of [Reznick

2003, §4]; the third explicitly appears there as (4.15); each is derived in Section 2:
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3∑
k=0

ik(x2
+ ik y2)6 = 80(xy)6,(1-9)

3∑
k=0

(
i−k x2

+

√
−6/5 xy+ ik y2)7

= 26
√

3 ·
(
−

√
8/5 xy

)7
,(1-10)

4∑
j=0

(ζ
j

5 x2
+ i xy+ ζ− j

5 y2)14
= 57(xy)14.(1-11)

The Klein set of (1-11) is the regular icosahedron, oriented so the vertices are the
two poles plus two parallel regular pentagons at latitude z =±

√
1/5.

The second main focus of this paper is the characterization of W2(82(d), d)-sets
for d = 3, 4, 5. The characterization of Wk(3, 2)-sets is classical, and can be proved
by emulating the standard analysis of a2

+ b2
= c2 over N.

Theorem 1.4. If p, q, r ∈ C[x1, . . . , xn], n ≥ 1, and p2
+ q2
= r2, then there exist

f, g, h ∈ C[x1, . . . , xn] so that p = f (g2
− h2), q = f (2gh), and r = f (g2

+ h2).

The proof of the following theorem will be found in the companion paper
[Reznick 2020].

Theorem 1.5. Every W2(4, 3)-set is a subcousin of a member of the W2(6, 3)
family given below, for some α 6= 0,±1:

(1-12) (αx2
− xy+αy2)3+α(−x2

+αxy− y2)3

= (ω2αx2
− xy+ωαy2)3+α(−ω2x2

+αxy−ωy2)3

= (ωαx2
− xy+ω2αy2)3+α(−ωx2

+αxy−ω2 y2)3

= (α2
− 1)(αx3

+ y3)(x3
+αy3).

If the first two lines of (1-12) are read as f 3
1 + f 3

2 = f 3
3 + f 3

4 , then f 3
1 − f 3

4 = f 3
3 − f 3

2
also has a third representation as a sum of two cubes, but f 3

1 − f 3
3 = f 3

4 − f 3
2 does

not.

(Put (α, x, y) 7→ (i, ζ 3
8 x, ζ 5

8 y) in the first line of (1-12) to get (1-5).) After the
linear change (x, y) 7→ (i x +

√
3y, i x −

√
3y), (1-12) becomes

(1-13) ((1− 2α)x2
+ 3(1+ 2α)y2)3+α((2−α)x2

− 3(2+α)y2)3

= ((1+α)x2
+6αxy+3(1−α)y2)3+α(−(1+α)x2

−6xy+3(1−α)y2)3

= ((1+α)x2
−6αxy+3(1−α)y2)3+α(−(1+α)x2

+6xy+3(1−α)y2)3.

If α ∈Q, then all forms in (1-13) are in Q[x, y], and if α is a rational cube, then
(1-13) gives solutions to f 3

1 + f 3
2 = f 3

3 + f 3
4 in Q[x, y]. Historically, these were

used to parametrize solutions to the Diophantine equations a3
+b3
= c3
+d3 over N.
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Theorem 1.6. Every W2(4, 4)-set is a cousin of (1-6) or a subcousin of (1-14):

(1-14) (x2
+
√

3xy− y2)4− (x2
−
√

3xy− y2)4

= (ω2x2
+
√

3xy−ωy2)4− (ω2x2
−
√

3xy−ωy2)4

= (ωx2
+
√

3xy−ω2 y2)4− (ωx2
−
√

3xy−ω2 y2)4

= 8
√

3xy(x6
− y6).

In an earlier version of this work (see, e.g., [Reznick 2003, (3.9)]), the identity

(1-15) (
√

3x2
+
√

2xy−
√

3y2)4+ (
√

3x2
−
√

2xy−
√

3y2)4

= (
√

3x2
+ i
√

2xy+
√

3y2)4+ (
√

3x2
− i
√

2xy+
√

3y2)4

= 18x8
− 28x4 y4

+ 18y8

was given as an alternative in Theorem 1.6; (1-15) turns out to be a subcousin
of (1-14); see Theorem 3.4. When scaled, (1-15) appears in [Desboves 1880, p. 243].
The set in (1-6) is not a subcousin of (1-14): three of the quadratics in (1-6) are
linearly dependent, and no three quadratics in (1-14) are dependent.

The situation for quintics is simpler.

Theorem 1.7. Every W2(4, 5)-set is a cousin of (1-8).

Here is an outline of the rest of the paper. In Section 2, we prove Theorems 1.1
and 1.2 and Theorem 1.3 except (8). We also recall “synching” from [Reznick 2003]
as a tool for finding “good” Wk(r, d)-sets — the idea was inspired by a formula of
Molluzzo [1972] — and use it to prove several parts of Theorem 1.3.

In Section 3, we recall two results familiar to nineteenth-century algebraists: a
specialization of Sylvester’s algorithm for determining the sums of two d-th powers
of linear forms and a result on the simultaneous diagonalization of quadratic forms.
We use these to lay out our strategy for proving Theorem 1.3(8). Suppose

p(x, y)= f d
1 (x, y)+ f d

2 (x, y)= f d
3 (x, y)+ f d

4 (x, y)

for an honest set { f1, f2, f3, f4} of quadratics. There is a linear change which
simultaneously diagonalizes f1 and f2 (making p even), but neither f3 nor f4 is
even. We then make a systematic study of noneven { f3, f4} for which p= f d

3 + f d
4

is even, and check back to see whether p can be written as f d
1 + f d

2 . For d ≥ 3,
a shorter method can be used to prove Theorem 1.5; see the companion paper
[Reznick 2020].

Section 4 is devoted to implementing in detail the strategy outlined above; this
simultaneously proves Theorems 1.6 and 1.7, as well as Theorem 1.3(8). The proofs
of Theorems 4.1 and 4.3 contain a great deal of “equation wrangling”; however,
the reader should know that this has been greatly condensed from earlier drafts.
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In Section 5, we do a brief review of the literature in the subject and derive the
examples for d ≤ 5 via a priori constructions. We also give an explanation of (1-11),
based on the properties of symmetric polynomials, which is similar to the derivation
of (1-8) given in [Reznick 2003]. Corollaries 5.2 and 5.3 present the classification
of forms which can be written as a sum of two d-th powers of quadratic forms and,
for d ≥ 4, those which have more than one representation. We suggest some further
areas of exploration and finish with Conjecture 5.4 about the true growth of 8k(d).

2. Some proofs, and synching

We begin with proofs of Theorems 1.1 and 1.2.

Proof of Theorem 1.1. If r > d+1= dim(Hd(C
2)), then Fd is dependent. Suppose

r≤d+1, and let fi (x, y)=αi x+βi y. Define (if necessary) distinct f j for r+1≤ j≤
d+1 by (α j , β j )= (1,m j ), where m jαi 6=βi , 1≤ i ≤r , and express { f d

1 , . . . , f d
d+1}

in terms of the basis
{(d
v

)
xd−v yv

}
. The resulting (d+1)×(d+1)matrix, [αd−v

i βvi ], is
Vandermonde with determinant

∏
1≤i< j≤d+1(αiβ j −α jβi ) 6= 0 since F is honest. �

Proof of Theorem 1.2. Again, if r > kd + 1, then Fd is linearly dependent by
dimension. Suppose f j (x, y) =

∑k
`=0

(k
`

)
α`, j xk−`y`. If r < kd + 1, again add

pairwise distinct elements and assume that r = kd + 1. Express { f d
j } in terms

of the monomial basis
{(kd

v

)
xkd−v yv

}
, obtaining a square matrix of order kd + 1

whose entries are polynomials in the variables {α`, j }, and whose determinant is a
polynomial P({α`, j }). If we specialize to f j (x, y) = (x + j y)k , 1 ≤ j ≤ kd + 1,
then α`, j = j`, and Fd

= Gkd for G = {x + j y}. By Theorem 1.1, Gkd is linearly
independent; hence, P({ j`}) 6= 0, and so P is not identically zero. That is, Fd ,
generally, is linearly independent. �

We defer the proofs of Theorem 1.3(5), (6), and (11) until we have defined
synching; (8) will require Sections 3 and 4.

Partial proof of Theorem 1.3. (1) If g j (x, y) = x f j (x, y), then
∑
λ j f d

j = 0 =⇒∑
λ j gd

j = 0.

(2) This follows from (1-1) and (1).

(3) As noted in (1-2), the existence of a Wk(3, d)-set for d ≥ 3 would imply the
existence of a nontrivial identity

f d
1 (x, y)+ f d

2 (x, y)= f d
3 (x, y).

After a linear change, we may assume that f j (x, y) is not a multiple of yk . Let
p j (t) = f j (t, 1). Then pd

1 (t) + pd
2 (t) = pd

3 (t), where the p j are nonconstant
polynomials. In 1879, Liouville proved that the Fermat equation Xd

+Y d
= Zd has

no nonconstant solutions over C[t] for d ≥ 3. (See [Ribenboim 1979, pp. 263–265]
for a proof.)
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(4) More generally, the elements of any Wk(r, d)-set can be scaled as in (1-2)
so that

∑r−1
j=1 f d

j (x, y) = f d
r (x, y). Once again, by letting p j (t) = f j (t, 1) and

q j (t)= f j (t)/ fr (t)we obtain a set of r−1 rational functions so that
∑r−1

j=1 qd
j (t)= 1.

A theorem of Hayman [1985] says that if {φ j }, 1≤ j ≤ r−1, are r−1 holomorphic
functions in n complex variables, no two of which are proportional, and

∑r−1
j=1 φ

d
j =1,

then d < (r − 1)2− 1, so r > 1+
√

d + 1. This was the culmination of the work of
Green [1975] and others; see [Gundersen and Hayman 2004, pp. 438–440] for a
clear exposition and history.

(7) The equality for k = 2 follows from combining (3) with (1-5), (1-6), and (1-8);
for k ≥ 3, apply (1).

(9) Subject to the as-yet unproved (8), this follows from (1-9) and (1-10).

(10) This follows from (1-11). �

Recall that for an integer m ≥ 2 and for s ∈ Z,

(2-1)
1
m

m−1∑
j=0

ζ s j
m =

{
0 if m - s,
1 if m | s.

Synching was introduced in [Reznick 2003, §4] and is a generalization of the familiar
formulas in which 1

2( f (x, y)± f (x,−y)) give the even and odd parts of f .

Theorem 2.1. Suppose p(x, y)=
∑k

i=0 ai xk−i yi
∈ Hk(C

2) and r ∈ Z. Then

(2-2)
1
m

m−1∑
j=0

ζ−r j
m p(x, ζ j

m y)=
∑

i≡r (mod m)
0≤i≤k

ai xk−i yi .

Proof. We expand the left-hand side of (2-2), switch the order of summation,

1
m

m−1∑
j=0

ζ−r j
m p(x, ζ j

m y)=
k∑

i=0

(
1
m

m−1∑
j=0

ζ−r j
m ζ i j

m

)
ai xk−i yi ,

and then apply (2-1) to the inner sum of ζ (i−r) j
m . �

In our applications, p = f d ; for example, if p(x, y)= (x +αy)d , then

(2-3)
1
m

m−1∑
j=0

ζ−r j
m (x + ζ j

mαy)d =
∑

−r/m≤i≤(d−r)/m

( d
r+im

)
αr+im xd−r−im yr+im .

Proof of Theorem 1.3(5) and (6). We generalize an identity found in Molluzzo’s
thesis [1972] (with `= d) and discussed in [Newman and Slater 1979, p. 485]; it
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follows from (2-3) with r = 0 that

(2-4)
m−1∑
j=0

(x`+ ζ j
m y`)d = m

bd/mc∑
i=0

( d
im

)
x`d−im`yim`.

Suppose now that d = ee′, ` = e, and m = te′ is a multiple of e′. Then the
left-hand side of (2-4) is a sum of m d-th powers, and since d | im` = i td, the
right-hand side is a sum of 1+ bd/mc d-th powers. Thus, the total number of
summands is 1+t ·d/e+be/tc. We choose t to minimize this sum, obtaining2e(d).

Newman and Slater took d = e, so e′ = 1 [1979, p. 485]; the minimum in 2d(d)
is found by choosing m ∈ {b

√
dc, 1+b

√
dc}, giving 8d(d)= 1+b

√
4d + 1c.

If e < d, then 2e(d) is generally larger than 2d(d), since some m are skipped
in computing the minimum; however, 2e(d) need not be monotone in e, so
Theorem 1.3(1) need not be implemented. �

The first instance of nonmonotonicity in 2e(d) occurs at d = 72; in general,
28n(72n2) = 29n(72n2) = 1+ 17n, but 212n(72n2) = 1+ 18n. This suggests
interesting questions in combinatorial number theory which we hope to pursue
elsewhere.

When d is even, we have a more symmetric specialization of (2-3):

Corollary 2.2. We have

(2-5)
1

s+ 1
·

s∑
j=0

(ζ
− j
2s+2x + ζ j

2s+2 y)2s
=

(2s
s

)
x s ys .

Proof. Set r = s, d = 2s, and m = s+ 1 in (2-3). Since |r/m| = |(d − r)/m|< 1,
the summation on the right-hand side has a single term, i = 0, and (2-3) becomes

1
s+ 1

·

s∑
j=0

ζ
−s j
s+1 (x + ζ

j
s+1 y)2s

=

(2s
s

)
x s ys
;

(2-5) follows from ζ
−s j
s+1 (x+ζ

j
s+1 y)2s

=ζ
−2s j
2s+2 (x+ζ

2 j
2s+2 y)2s

= (ζ
− j
2s+2x+ζ j

2s+2 y)2s . �

Proof of Theorem 1.3(11) for even d. Take (x, y) 7→ (x2, y2) in (2-5) to obtain

(2-6)
s∑

j=0

(ζ
− j
2s+2x2

+ ζ
j

2s+2 y2)2s
= (s+ 1)

(2s
s

)
(xy)2s,

a linear dependence among s+2 2s-th powers of an honest set of quadratic forms. �

If s = 2v, we have (ζ− j
4v+2, ζ

− j
4v+2)= ((−ζ

v
2v+1)

j , (−ζ v+1
2v+1)

j ), so

(2-7)
2v∑
j=0

((ζ v2v+1)
j x2
+ (ζ v+1

2v+1)
j y2)4v = (2v+ 1)

(4v
2v

)
(xy)4v.
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When s = 1, we have ζ2 = −1 and (2-7) reduces to (1-1); when s = 2 and 3,
(2-7) becomes (1-6) and (1-9). Taking (x, y) 7→ (e−iθ (x+ iy), eiθ (x− iy)) in (2-5)
(see [Reznick 2013a, (5.8)], which is incorrect — unfortunately missing the factor
of 2−2s) gives

(2-8)
1

s+ 1

s∑
j=0

(
cos
(

jπ
s+ 1

+θ

)
x+sin

(
jπ

s+ 1
+θ

)
y
)2s

=
1

22s

(2s
s

)
(x2
+ y2)s,

θ ∈ C.

With θ ∈ R, (2-8) was a nineteenth-century quadrature formula; see the discussion
after [Reznick 2013a, Corollary 5.6] for details. Taking θ ∈ R and (x, y) 7→
(x2
− y2, 2xy), so that x2

+ y2
7→ (x2

+ y2)2 in (2-8), gives a nice family of
W2(s+ 2, 2s) cousins in R[x, y].

There doesn’t seem to be such a simple proof of Theorem 1.3(11) for odd d , and
we need to introduce powers of trinomials as summands. More generally, it is useful
to present two quadratic cases, which are corollaries of Theorem 2.1; note that

ζ−r j
m (ζ− j

m x2
+αxy+ ζ j

m y2)d = ζ−(r+d) j
m (x2

+αζ j
m xy+ ζ 2 j

m y2)d

gives (2-9) the shape of Theorem 2.1 for p(x, y)= (x2
+αxy+ y2)d .

Corollary 2.3. Suppose d,m ∈ N, v ∈ Z, and α ∈ C. Let

(2-9) 9(v,m, d;α) :=
1
m

m−1∑
j=0

ζ−v j
m (ζ− j

m x2
+αxy+ ζ j

m y2)d .

(i) If m > d , then

(2-10) 9(0,m, d;α)=
(bd/2c∑

r=0

d!
(r !)2(d − 2r)!

αd−2r
)

xd yd .

(ii) If 2m > d ≥ m, then

(2-11) 9(0,m, d;α)=
(bd/2c∑

r=0

d!
(r !)2(d − 2r)!

αd−2r
)

xd yd

+

(b(d−m)/2c∑
r=0

d!
r ! (r +m)! (d −m− 2r)!

αd−m−2r
)
(xd+m yd−m

+ xd−m yd+m).

Proof. By the trinomial theorem,

(x2
+αxy+ y2)d =

∑
r+s+t=d

d!
r ! s! t !

αs x2r+s ys+2t
;

note that (2r + s, s + 2t) = (2d − i, i)⇐⇒ r − t = d − i ; all sums can only be
taken over r, s, t ≥ 0. In each case, m is relatively large compared to d and very



LINEARLY DEPENDENT POWERS OF BINARY QUADRATIC FORMS 739

few terms will be nonzero. In (i), x2d−i yi appears when i ≡ d (mod m). Since
d < m, this only occurs when i = d, so r = t and the coefficient of xd yd is found
by summing (d!/r ! s! t !)αs over the set {(r, s, t)= (r, d − 2r, r)}. Similarly, in (ii),
v = 0 and 2m > d, so we have three cases r − t ∈ {−m, 0,m}, and the terms sum
as indicated. �

We use (2-11) when d −m ≥ 2 by choosing α = α0 to be a nonzero root of
the polynomial coefficient of (xd+m yd−m

+ xd−m yd+m), so that the terms on both
sides of the expression are d-th powers. In general, the Klein set of 9(v,m, d;α)
will consist of two parallel regular m-gons, whose altitude and relative orientation
depends on α. If (xy)d appears in the identity, then the two poles are added.

Proof of Theorem 1.3(11) for odd d. Suppose d = 2s+ 1≥ 5. We have

(2-12) 9(0, s+ 1, 2s+ 1;α)=
s∑

j=0

(ζ
− j
s+1x2

+αxy+ ζ j
s+1 y2)2s+1

= As(α)x3s+2 ys
+ Bs(α)x2s+1 y2s+1

+ As(α)x s y3s+2,

As(α)=
(2s+1

s

)
αs
+ (2s+ 1)

( 2s
s−2

)
αs−2
+ · · · .

Let α= α0 be a nonzero root of As(α); this exists because s ≥ 2, so (2-12) becomes

9(0, s+ 1, 2s+ 1;α0)= B(α0)(xy)2s+1,

which is a sum of s+ 1 (2s+ 1)-th powers equal to another (2s+ 1)-th power. �

Alternate proof of Theorem 1.3(11) for d = 2s, s ≥ 3. Suppose s ≥ 3. Then

(2-13) 9(0, s+ 1, 2s;α)= Ãs(α)(x3s+1 ys−1
+ x s−1 y3s+1)+ B̃s(α)x2s y2s,

Ãs(α)=
( 2s

s−1

)
αs−1
+ (2s)

(2s−1
s−3

)
αs−3
+ · · · .

Again, choose α = α0 to be a nonzero root of Ãs . �

By looking at the pattern of linear dependence among the elements, it is not hard
to show that the families in (2-6) and (2-13) are not cousins.

Here are other synching examples; (2-10) requires m>d . We have9(0,4,3;α)=
(α3
+ 6α)x3 y3, so 9(0, 4, 3,

√
−6) gives a W2(4, 3)-set. In (ii) we need d ∈

[m+2, 2m). For m = 3, this implies that d = 5, and we obtain a variant of [Reznick
2003, (4.12)]:

(2-14) 39(0, 3, 5;α)=
2∑

j=0

(ωk x2
+αxy+ω−k y2)5

= 15(1+ 2α2)(x8 y2
+ x2 y8)+ 3α(α4

+ 20α2
+ 30)x5 y5

=⇒ 9
(
0, 3, 5;

√
−1/2

)
=
(√
−9/2 xy

)5
.
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The linear change (x, y) 7→ (
√
−2x − (1+

√
3)y,−(1+

√
3)x +

√
−2y), applied

to (2-14), gives 3(1+
√

3) times a flip of (1-8). The Klein set here is again a cube,
rotated so the vertices are the two poles and antipodal equilateral triangles at z=± 1

3 .
For m = 4, the possibilities are d = 6, 7; we have

49
(
0, 4, 6;

√
−2/5

)
=

3∑
k=0

(
i−k x2

+

√
−2/5 xy+ ik y2)6

= 11 ·
(√
−8/5 xy

)6
;

9
(
0, 4, 7;

√
−6/5

)
is just (1-10).

Two other examples show the range of Corollary 2.3. First,

49(2, 4, 4;α)=
3∑

j=0

(−1)k(i−k x2
+αxy+ ik y2)4 = 8(2+ 3α2)(x6 y2

+ x2 y6).

On taking α = α0 =
√
−2/3, transposing two terms to get two equal sums of two

fourth powers, and after multiplying through by
√

3, we obtain (1-15). For d = 5,
we may recover (1-8) as 49(2, 4, 5,

√
−2) from

49(2, 4, 5;α)=
3∑

j=0

(−1)k(i−k x2
+αxy+ ik y2)5 = 40α(2+α2)(x7 y3

+ x3 y7).

An unusual phenomenon occurs with 9(0, 5, 14;α): by the general method,

9(0, 5, 14;α)= A(α)(x24 y4
+ x4 y24)+ B(α)(x19 y9

+ x9 y19)+C(α)x14 y14.

It turns out that A(α) and B(α) have the common factor 1+ α2. Upon setting
α = i , we obtain (1-11). A computer search has not found other examples of this
phenomenon. As noted earlier, the Klein form of (1-11) is an icosahedron, but an
icosahedron can be rotated so that its vertices lie in four horizontal equilateral trian-
gles. This suggests that (1-8) should be the cousin of a union of two 9(v, 3, 14;α).
Indeed, with φ = (1+

√
5)/2 as usual,

(2-15)
2∑

k=0

(ωk x2
+φ2xy−ω−k y2)14

+

2∑
k=0

(ωkφx2
−φ−1xy−ω−kφy2)14

= 0.

The Schönemann coefficients of the icosahedron, {(φ2
+ 1)−1/2

· (±φ,±1, 0)} and
their cyclic images, lead to yet another cousin of (1-8):

(2-16) (x2
+ 2φxy− y2)14

+ (x2
− 2φxy− y2)14

+

(
(φ+ i)

(
x2
−

1− 2i
√

5
y2
))14

+

(
(φ− i)

(
x2
−

1+ 2i
√

5
y2
))14

= (φx2
+ 2i xy+φy2)14

+ (φx2
− 2i xy+φy2)14.
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The corresponding quadratics for a dodecahedron, alas, give a W2(10, 14)-set.
There is no reason for synching to be limited to trinomials. Here is an example

of a W4(4, 3)-set of linearly independent elements:

(2-17)
3∑

k=0

(−1)k(x4
+ ik
√

6x3 y− 6i2k x2 y2
−
√

6i3k xy3
+ y4)3 = 0;

the quartics are linearly independent.
Finally, we compare Theorem 1.3(5), (6), and (11). The bound in (11) is linear

in d and weaker than (5). This leads to the natural question: what is the smallest d
so that k ≥ 2 and 8k+1(d) < 8k(d)? Taking Theorem 1.3(7), (10), and (11) into
account, we must have d ≥ 6, and the smallest d for which (5) or (6) beats the
bound for k = 2 in (11) is d = 15: 1+b

√
61c = 8< 9= 2+

⌊15
2

⌋
.

3. Overview of W2(4, d)-sets and tools.

In order to prove Theorem 1.3(8), we need an abbreviated version of Sylvester’s
algorithmic theorem from 1851 on the representation of forms as a sum of powers
of linear forms. We refer the reader to [Reznick 2013a, Theorem 2.1] for the general
theorem and proof.

Theorem 3.1 (after Sylvester). Suppose d ≥ 3 and

(3-1) p(x, y)=
d∑

j=0

(d
j

)
a j x2d−2 j y2 j , q(x, y)=

d∑
j=0

(d
j

)
a j xd− j y j .

Then p is a sum of d-th powers of two honest even quadratic forms if and only if
there exists a nonsquare quadratic form h(u, v)= c0u2

+ c1uv+ c2v
2
6= 0 so that

(3-2)


a0 a1 a2

a1 a2 a3
...

...
...

ad−2 ad−1 ad

 ·
c0

c1

c2

=


0
0
...

0

 .
Sketch of the proof. A comparison of the coefficients of monomials in p and q
shows that

p(x, y)= (α1x2
+β1 y2)d + (α2x2

+β2 y2)d

⇐⇒ q(x, y)= (α1x +β1 y)d + (α2x +β2 y)d .

Assuming α j 6= 0, q(x, y)= (α1x+β1 y)d+(α2x+β2 y)d implies that a j = λ1γ
j

1 +

λ2γ
j

2 , where λi = α
d
i and γi = βi/αi , so (a j ) satisfies the linear recurrence given

by (3-2) with c0= γ1γ2, c1=−(γ1+γ2), and c2= 1; h(u, v)= (γ1u−v)(γ2u−v).
Conversely, any solution (a j ) to this recurrence has the indicated shape. If α2 = 0,
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then α1 6= 0 by honesty; a j = λ1γ
j

1 for j ≤ d − 1 and (3-2) holds with h(u, v)=
u(γ1u− v). �

The matrix in (3-2) is called the 2-Sylvester matrix for p (or q). A necessary
condition for p to be a sum of two d-th powers is that the 2-Sylvester matrix of p
(with d − 2 rows) has rank ≤ 2. As d increases, this becomes increasingly harder.

We also need a special case of a classical result about simultaneous diagonaliza-
tion; there doesn’t seem to be an easy-to-find modern proof.

Theorem 3.2 (diagonalization). If f1 and f2 are relatively prime binary quadratic
forms, then there is a linear change M so that f1 ◦M and f2 ◦M are both even.

Proof. Suppose without loss of generality that rank( f1)≥ rank( f2). If rank( f1)= 1,
then ( f1, f2)= (`

2
1, `

2
2) and a linear change takes (`1, `2) 7→ (x, y). Otherwise, there

exists M1 so that ( f1 ◦M1)(x, y)= x2
+ y2 and ( f2 ◦M1)(x, y)= ax2

+bxy+cy2.
Since these are relatively prime, a± ib− c 6= 0.

Drop “M1”, and observe that for any z ∈ C, f1 is fixed by any orthogonal linear
change Mz : (x, y) 7→ ((cos z)x + (sin z)y,−(sin z)x + (cos z)y), under which the
coefficient of xy in f2 ◦ Mz is (a − c) sin 2z + b cos 2z. If a = c, let z = π/4.
Otherwise, choose z so that tan 2z =−b/(a−c); this is possible, since the range of
tan z is C \ {±i}. The coefficient of xy in f2 ◦Mz vanishes, so f1 ◦Mz and f2 ◦Mz

are both even. �

Suppose d ≥ 3 and we have a W2(4, d)-set, flipped and normalized so that

(3-3) p(x, y)= f d
1 (x, y)+ f d

2 (x, y)= f d
3 (x, y)+ f d

4 (x, y),

for an honest set { f1, f2, f3, f4} of binary quadratic forms.

Theorem 3.3. If (3-3) holds, then there exists a linear change after which both f1

and f2 are even, so p is even. We have gcd( f1, f2)= gcd( f3, f4)= 1, but it is not
true that f3 and f4 are both even.

Proof. If gcd( f1, f2)= ` for a linear form `, so that f1 = ``1 and f2 = ``2, then

`d
| f d

3 + f d
4 =

d−1∏
k=0

( f3+ ζ
k
d f4).

Since d ≥ 3, ` must divide at least two different quadratic factors on the right, say
` | f3+ ζ

k1
d f4, f3+ ζ

k2
d f4 for k1 6= k2. This implies that ` | f3, f4 and f3 = ``3 and

f4 = ``4 for linear `3, `4. Hence, we can factor `d from (3-3) to obtain `d
1 + `

d
2 =

`d
3 + `

d
4 , which contradicts Theorem 1.1, since d ≥ 3. Similarly, gcd( f3, f4)= 1.

Thus, f1 and f2 are relatively prime, and by Theorem 3.2, we may simultaneously
diagonalize them, after which (dropping M),

p(x, y)= (α1x2
+β1 y2)d + (α2x2

+β2 y2)d = f d
3 (x, y)+ f d

4 (x, y).
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Suppose f3(x, y)= α3x2
+β3 y2 and f4(x, y)= α4x2

+β4 y2 are both even. Then

(3-4) (α1x2
+β1 y2)d + (α2x2

+β2 y2)d = (α3x2
+β3 y2)d + (α4x2

+β4 y2)d

=⇒ (α1x +β1 y)d + (α2x +β2 y)d = (α3x +β3 y)d + (α4x +β4 y)d .

Since { f j } is honest, (3-4) violates Theorem 1.1, so f3 and f4 are not both even. �

Here then is our strategy. We seek to find all pairs { f3, f4} which are not both
even but for which f d

3 + f d
4 is even. Then, from among those, we need to find those

which can also be written as a sum of two d-th powers of even quadratic forms.
How can it happen that f d

3 + f d
4 is even when at least one of { f3, f4} is not even?

Two cases come readily to mind:

(3-5) (ax2
+ bxy+ cy2)d + (ax2

− bxy+ cy2)d ,

and, if d is even,

(3-6) (ax2
+ cy2)d + b(xy)d .

We call (3-5) and (3-6) the tame cases; otherwise { f3, f4} are in the wild case. There
is an important practical distinction. The tame expressions are formally symmetric
under y 7→ −y, but wild expressions are not. Thus, any wild (3-3) implies the
existence of a third representation for p a sum of two d-th powers.

The case d = 3 is best handled by other techniques and is covered in the compan-
ion paper [Reznick 2020]. In preparation for implementing this strategy, we calculate
the tame and wild cases which might occur from the list of W2(4, d)-sets for d ≥ 4
in Theorems 1.6 and 1.7. Each identity (3-3) has two flips f d

1 − f d
3 = f d

4 − f d
2

and f d
1 − f d

4 = f d
3 − f d

2 , and since either side can be diagonalized, there are
potentially six cases. (If there are three equal sums, there are potentially fifteen
cases.) Fortunately, symmetry reduces the number of cases substantially.

Theorem 3.4. (i) The diagonalizations of (1-6) are, up to scaling,

(3-7) (x2
+ y2)4− 18(xy)4 =−(ωx2

+ω2 y2)4− (ω2x2
+ωy2)4

= x8
+ 4x6 y2

− 12x2 y2
+ 4x2 y6

+ y8

and

(3-8) −(2x2
+ 2y2)4+ 18(x2

− y2)4

= (x2
+ 2
√
−3xy+ y2)4+ (x2

− 2
√
−3xy+ y2)4

= 2(x8
− 68x6 y2

+ 6x4 y4
− 68x2 y6

+ y8).
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(ii) The diagonalizations of (1-14) are, up to scaling,

(3-9) (αx2
−βy2)4− (βx2

−αy2)4

= (ωx2
−
√

3xy−ω2 y2)4− (ω2x2
−
√

3xy−ωy2)4

= (ωx2
+
√

3xy−ω2 y2)4− (ω2x2
+
√

3xy−ωy2)4

=
√
−3(x8

− 14x6 y2
+ 14x2 y6

− y8),

where α = (2+
√
−3)/2 and β = (2−

√
−3)/2, and

(3-10) ((1+
√
−6)x2

+ (1−
√
−6)y2)4+ ((1−

√
−6)x2

+ (1+
√
−6)y2)4

= (x2
+ 2
√
−6xy+ y2)4+ (x2

− 2
√
−6xy+ y2)4

= 2(x8
− 140x6 y2

+ 294x4 y4
− 140x2 y6

+ y8).

(iii) The diagonalization of (1-8) is, up to scaling,

(3-11) ((1−
√
−2)x2

+ (1+
√
−2)y2)5+ ((1+

√
−2)x2

+ (1−
√
−2)y2)5

= (x2
− 2
√
−2xy+ y2)5+ (x2

+ 2
√
−2xy+ y2)5

= 2(x10
− 75x8 y2

+ 90x6 y4
+ 90x4 y6

− 75x2 y8
+ y10).

Proof. (i) First, in (1-6), the summands on the left are cyclically permuted by
(x, y) 7→ (ωx, ω2 y), so there is only one choice up to scaling. One is already
diagonalized as in (3-7). To diagonalize the left-hand side in (3-7), take (x, y) 7→
(x + y, x − y) and multiply through by −1, to obtain (3-8).

(ii) It is convenient to name the forms from (1-14) in (3-12) . Let

(3-12)

f1,1(x, y)= x2
+
√

3xy− y2, f1,2(x, y)= x2
−
√

3xy− y2,

f1,3(x, y)= f1,1(ω
2x, ωy), f1,4(x, y)= f1,2(ω

2x, ωy),

f1,5(x, y)= f1,1(ωx, ω2 y), f1,6(x, y)= f1,2(ωx, ω2 y),

f 4
1,1− f 4

1,2 = f 4
1,3− f 4

1,4 = f 4
1,5− f 4

1,6 = 8
√

3xy(x6
− y6).

Let M1 denote the linear change (x, y) 7→ (ω2x, ωy), so that M1 cycles f1,1 7→

f1,3 7→ f1,5 7→ f1,1 and f1,2 7→ f1,4 7→ f1,6 7→ f1,2. Let M2 denote the linear
change (x, y) 7→

√
1/2(x + iy, i x + y), which has two nice properties. First,

M2 cycles f1,3 7→ f1,5 7→ f1,6 7→ f1,4 7→ f1,3, but it also takes ( f1,1, f1,2) 7→

(αx2
−βy2, βx2

−αy2). On the Riemann sphere, M1 induces a 2π/3 rotation on
the axis of the poles, and M2 induces the rotation taking (a, b, c) 7→ (a, c,−b).

By repeatedly using M1 and M2, the fifteen pairs { f1,i , f1, j } which might be
simultaneously diagonalized given the identity f 4

1,3− f 4
1,4 = f 4

1,5− f 4
1,6 reduce to

two cases, after linear changes. We have already seen one: M2 diagonalizes (1-14)
into (3-9).
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For the other, note that

(3-13) f 4
1,4(x, y)+ f 4

1,5(x, y)= f 4
1,3(x, y)+ f 4

1,6(x, y)

=−(x8
+ 14x6 y2

+ 42x4 y4
+ 14x2 y6

+ y8).

An appeal to Theorem 3.1 shows that the octic in (3-13) is not a sum of two
fourth powers of even quadratic forms. Under the linear change M3, which takes
(x, y) 7→ (x−(

√
2−1)y, i(

√
2−1)x+ iy) and division by

√
2−2, (3-13) becomes

(3-10).

(iii) We name the quadratics from (1-8) in (3-14). Let M4 be the scaling (x, y) 7→
(ζ8x, ζ 3

8 y), which takes (x2, xy, y2) 7→ (i x2,−xy,−iy2), so that

(3-14)

f2,1(x, y)= x2
+
√
−2xy+ y2, f2,2 = f2,1 ◦M4,

f2,3 = f2,2 ◦M4, f2,4 = f2,3 ◦M4,

f 5
2,1+ f 5

2,2+ f 5
2,3+ f 5

2,4 = 0.

Thus, M4 cycles f2,1 7→ f2,2 7→ f2,3 7→ f2,4 7→ f2,1. The symmetry of the Klein set
for { f2, j } (the cube) suggests that we define M5 to be the linear change (x, y) 7→√

1/2 ·(−x+ζ 5
8 y, ζ 3

8 x+ y). Then M5 fixes f2,1 and f2,4 and permutes f2,2 and f2,3.
Thus, M4 maps the flip f 5

2,1+ f 5
2,2 =− f 5

2,3− f 5
2,4 into f 5

2,2+ f 5
2,3 =− f 5

2,4− f 5
2,1

and M5 maps it into f 5
2,1+ f 5

2,3=− f 5
2,2− f 5

2,4, so up to cousin, we need only consider
one flip. The easiest one to deal with is f 5

2,1+ f 5
2,3 =− f 5

2,2− f 5
2,4. This is

(3-15) (x2
+
√
−2xy+ y2)5+ (−x2

+
√
−2xy− y2)5

=−(i x2
−
√
−2xy− iy2)5− (−i x2

−
√
−2xy+ iy2)5

= 2
√
−2xy(5x8

− 6x4 y4
+ 5y8).

Upon taking (x, y) 7→ (x + iy, x − iy), and dividing by
√
−2, (3-15) becomes

(3-11). And under the linear change, (x, y) 7→
√

1/2(x + iy, x − iy), (1-15) also
becomes (3-11). The Klein set of the summands in (3-11) is a rotated cube lying in
the planes y =±

√
1/3, so that the edge

(
0,±

√
1/3,

√
2/3
)

lies on top. �

4. Finishing the proof

We first make a simplifying observation in the tame case. If ( f3, f4) is given in
(3-5) or (3-6) and a = 0 (or c = 0), then f3 and f4 have a common factor of y
(or x), violating Theorem 3.3. Similarly, we may assume that b 6= 0. Thus, after
scaling, we may assume that (3-5) and (3-6) take the shape

(x2
+ bxy+ y2)d + (x2

− bxy+ y2)d , b 6= 0,(4-1)

(x2
+ y2)2e

+ b
(2e

e

)
(xy)2e, b 6= 0.(4-2)
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Theorem 4.1. The only W2(4, d)-sets which come from a tame representation for
d ≥ 4 are given in Theorem 3.4 by (3-7), (3-8), (3-10), and (3-11). These sets are
all cousins or subcousins of the families in Theorems 1.6 and 1.7.

Proof. We analyze (4-2) first. The 2-Sylvester matrix of (x2
+ y2)4+ 6b(xy)4 is

(4-3)

 1 1 1+ b
1 1+ b 1

1+ b 1 1

 ,
which has rank 2 only if −b2(b+ 3)= 0; if b =−3, we obtain (3-7).

If d = 2s ≥ 6 and p2s,b(x, y)= (x2
+ y2)2s

+ b
(2s

s

)
(xy)2s , then the (2s− 1)× 3

2-Sylvester matrix consists of (4-3), with s− 2 rows of (1, 1, 1) appended both at
the top and the bottom. Such a matrix has rank 2 only if b = 0.

For (4-1), we first observe that

(4-4) (x2
+bxy+ y2)d + (x2

−bxy+ y2)d = 2
∑

0≤i≤d/2

( d
2i

)
(x2
+ y2)d−2i (xy)2i .

Suppose d = 4. Then the sum in (4-4) becomes

2x8
+ (8+ 12b2)x6 y2

+ (12+ 24b2
+ 2b4)x4 y4

+ (8+ 12b2)x2 y6
+ 2y8.

Apply Theorem 3.1: the 2-Sylvester matrix has discriminant− 1
27 b8(12+b2)(24+b2)

and has rank 2 only if b2
∈ {−12,−24}. These cases are presented in (3-8) and

(3-10), and are a cousin of (1-6) and a subcousin of (1-14), respectively.
Suppose d = 5. Then applying Theorem 3.1 to (4-4) gives a 4 × 3 matrix;

computing the 3× 3 minors shows that the matrix has rank 2 only when b = 0 or
b2
=−8. Taking b =

√
−8, we obtain (3-11), which is a cousin of (1-8).

Now suppose d ≥ 6; (4-4) gives

a0 = ad = 2,

a1 = ad−1 = 2+ b2(d − 1),

a2 = ad−2 = 2+ b2(d − 2)(12+ (d − 3)b2)/6,

a3 = ad−3 = 2+ b2(d − 3)(180+ b2(30d − 120)+ b4(d2
− 9d + 20))/60.

The submatrix of the 2-Sylvester matrix consisting of the first and last two rows is
a0 a1 a2

a1 a2 a3

a3 a2 a1

a2 a1 a0

 .
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The 1, 2, 4 minor of this submatrix is

−
b8

9(d − 1)

(d+1
5

)
(12+ b2(d − 3))(24+ b2(2d − 7)).

If b2
=−12/(d − 3), then the 1, 2, 3 minor becomes

55296d2(d + 1)(d − 4)
25(d − 3)5

6= 0.

However, if b2
=−24/(2d − 7), then all four minors vanish. (Note that d = 4, 5

then give b2
= −24 and b2

= −8, which we have already seen.) We recompute
the ak for b2

=−24/(2d − 7), and find that the first three rows of the 2-Sylvester
matrix give∣∣∣∣∣∣

a0 a1 a2

a1 a2 a3

a2 a3 a4

∣∣∣∣∣∣=−3538944(d − 5)(d − 4)d(1+ d)(2d − 1)2

175(2d − 7)6
6= 0.

Thus, no tame representations exist when d ≥ 6. �

Suppose now that we have a wild representation

(4-5) p(x, y)= (a1x2
+ b1xy+ c1 y2)d + (a2x2

+ b2xy+ c2 y2)d

=

2d∑
i=0

si (a1, b1, c1, a2, b2, c2; d)x2d−i yi ,

where d ≥ 4, s2 j+1(a1, b1, c1, a2, b2, c2; d)= 0 for 0≤ j ≤ d−1, (b1, b2) 6= (0, 0),
and (4-5) is not in the form (3-5) or (3-6).

Lemma 4.2. Suppose p 6= 0 and (4-5) holds. Then, after a scaling of x and y,

(4-6) p(x, y)= pλ,α,β(x, y) := (x2
− λαxy+ y2)d + λ(x2

+αxy+βy2)d ,

where αλ 6= 0, βd−1
= 1, and λ2

6= 1.

Proof. First suppose b1 = 0 in (4-5). Then s1 = dad−1
2 b2 and s2d−1 = db2cd−1

2 .
Since (b1, b2) 6= (0, 0), we have a2= c2= 0 and p(x, y)= (a1x2

+c1 y2)d+(b2xy)d

is even, so d is even and we have (3-6). A similar argument lets us conclude that
b2 6= 0.

Suppose now that a1 = 0. Then s1 = dad−1
2 b2 = 0, and b2 6= 0 implies a2 = 0.

It then follows that y divides both f3 and f4, contradicting Theorem 3.3. Thus,
a1 6= 0, and by similar arguments, we have a2c1c3 6= 0. That is, we may assume
that all the coefficients in (4-5) are nonzero.

We now scale x and y so that a1 = c1 = 1 and let λ= ad
2 , so that, after renaming,

(4-7) p(x, y)= (x2
+α1xy+ y2)d + λ(x2

+α2xy+βy2)d ,
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where all parameters are nonzero. Returning to the computation,

s1 = d(α1+ λα2)= 0, s2d−1 = d(α1+ λα2β
d−1)= 0.

It follows that α1=−λα2, and since λα2 6= 0, it also follows that βd−1
= 1. We now

write α = α2, so that α1 =−λα, and (4-7) becomes (4-6). Finally, if λ2
= 1, then

either λ= 1 (and (4-6) reduces to (3-5)), or λ=−1 (and (4-6) implies p = 0). �

Theorem 4.3. For d ≥ 4, the only W2(4, d)-set which comes from a wild represen-
tation is found in (3-10), and is a subcousin of (1-14).

Proof. In view of Lemma 4.2, we simplify our notation: let

(4-8) pλ,α,β(x, y)=
2d∑

i=0

ai (λ, α, β; d)x2d−i yi .

Since pλ,α,β(x, y) is even, so is pλ,α,β(y, x), as is their difference. For this reason,
write

(4-9) λ−1(pλ,α,β(x, y)− pλ,α,β(y, x))= (x2
+αxy+βy2)d−(βx2

+αxy+y2)d

=

2d∑
i=0

bi (α, β, d)x2d−i yi .

We need to find the conditions under which a2 j+1(λ, α, β; d)= 0 for 1≤ 2 j + 1≤
2d − 1. Since λbi (α, β)= ai (λ, α, β; d)− a2d−i (λ, α, β; d) and λ 6= 0, it suffices
to consider a2 j+1(λ, α, β; d)= b2 j+1(α, β, d)= 0 for 1≤ 2 j + 1≤ d .

It follows from the definition and βd−1
= 1 that

(4-10) pλ,α,β(x, y)= pλ,−α,β(x,−y), pλ,α,β(x, y)= pλβ,α/β,1/β(y, x),

so that, up to linear change, if α2
= κ is known, then choosing α =±

√
κ gives two

equations that are cousins. Also, any solution for a particular value β = β0 will be
a cousin of a solution in which β = β−1

0 . This reduces the number of choices to
check.

We now have

a1(λ, α, β)=−dαλ+ dαλ= 0, b1(α, β)= dα(βd−1
− 1)= 0,

a3(λ, α, β)=
λαd(d − 1)

6
· ((d − 2)α2(1− λ2)+ 6(β − 1)),

b3(α, β)=
αd(d − 1)

6
· (1−βd−3)(6β +α2(d − 2)).

Now we claim that β 6= 1 and either

(4-11) β =−1, α2
=

12
(d − 2)(1− λ2)

(and d is odd),
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or

(4-12) β =
1
λ2 , α2

=−
6

λ2(d − 2)
.

Indeed, since α(1− λ2) 6= 0, the equation a3 = 0 implies that β 6= 1 and

(4-13) α2
=

6(1−β)
(d − 2)(1− λ2)

.

The equation b3 = 0 implies that (1− βd−3)(6β + α2(d − 2)) = 0. If βd−3
= 1,

then βd−1
= 1 implies β2

= 1, and β = 1 is ruled out, so β =−1 and d is odd and
(4-13) implies (4-11). Otherwise, we have by (4-13)

0= 6β +α2(d − 2)= 6β +
6(1−β)
(1− λ2)

=
6(1−βλ2)

1− λ2 ,

so 1= βλ2 and by (4-13),

α2
=

6(1− λ−2)

(d − 2)(1− λ2)
=−

6
λ2(d − 2)

;

this is summarized as (4-12).
If d = 4, then only (4-12) can apply. Since β3

= 1, β 6= 1, and ω ·ω2
= 1, we

can use (4-10) to assume that β = ω2. It follows from (4-12) that

ω2
=

1
λ2 , α2

=−
3
λ2 =⇒ λ=±ω2, α2

=−3ω2.

By (4-10), it suffices to take α =
√
−3ω, but there are two values for λ: λ=±ω2.

There are two wild cases: since λα =±
√
−3 and (ω2)4 = ω2, these are

(4-14) p4,±(x, y) := (x2
∓
√
−3xy+ y2)4±ω2(x2

+
√
−3ωxy+ω2 y2)4

= (x2
∓
√
−3xy+ y2)4± (ω2x2

+
√
−3xy+ωy2)4.

We scale the two cases of (4-14) to make them easier to work with. First

(4-15) ω2 p4,+(x, ωiy) := q1(x, y)=−x8
− 14x6 y2

− 42x4 y4
− 14x2 y6

− y8

= (ω2x2
−
√

3xy−ωy2)4+ (ωx2
+
√

3xy−ω2 y2)4.

The second line in (4-15) is f 4
1,4 + f 4

1,5, which gives a new representation after
y 7→ −y, namely, f 4

1,3+ f 4
1,6; see (3-13). However, the 2-Sylvester matrix of q1

has rank 3, so this case does not fall under Theorem 3.3.
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For the other case, we have

(4-16) −ω2 p4,−(x, ωiy) := q2(x, y)

=−(ω2x2
−
√

3xy−ωy2)4+(ωx2
−
√

3xy−ω2 y2)4

=
√
−3(x8

−14x6 y2
+14x2 y6

− y8).

The 2-Sylvester matrix of q2 has rank 2, so it has a representation as a sum of two
fourth powers. Indeed, (4-16) is embedded in (3-9), with two other representations
of q2: one from taking y 7→ −y in (4-16), and the other by applying Theorem 3.1.

Now suppose d ≥ 5; more equations need to be satisfied. If (4-11) holds, then

a5 =−
8
√

3λ(1+ λ2)(d + 1)d(d − 1)(d − 3)
5((d − 2)(1− λ2))3/2

= 0,

so λ2
=−1, and (4-11) becomes

(4-17) β =−1, λ2
=−1, α2

=
6

d − 2
.

If (4-12) holds, then

(4-18) a5 =−

√
6(λ4
− 1)(2d + 1)d(d − 1)(d − 4)

10λ4(d − 2)3/2
.

Since λ2
6= 1, (4-18) implies λ2

= −1, and simplification yields (4-17) again.
Observe that λ=±i implies that d ≡ 1 (mod 4).

If d = 5, then β =−1, λ2
=−1, and α2

= 2. We choose α =
√

2 and obtain two
solutions, for λ= i and λ=−i , which we rewrite in terms of the f2, j , upon noting
that ±i = (±i)5:

(4-19)

p5,+(x, y)= (x2
−i
√

2xy+y2)5+i(x2
+
√

2xy−y2)5 =− f 5
2,3− f 5

2,4

= (1+i)(x10
+15i x8 y2

−30x6 y4
+30i x4 y6

−15x2 y8
−iy10),

p5,−(x, y)= (x2
+i
√

2xy+y2)5−i(x2
+
√

2xy−y2)5 = f 5
2,1+ f 5

2,4

= (1−i)(x10
−15i x8 y2

−30x6 y4
−30i x4 y6

−15x2 y8
+iy10).

The expressions in (4-19) are close cousins; in fact, p5,−(x, y) = −i p5,+(x, iy).
Theorem 3.1 shows that neither has a representation as a sum of two even fifth
powers; however, p5,−(x, y)+ i p5,+(x, iy)= 0 is a cousin of (1-8).

Suppose now that d ≥ 6; since d ≡ 1 (mod 4), we have d ≥ 9. It turns out that
b5 = 0 under the conditions of (4-17), but

(4-20) a7

(
±i,

√
6

d − 2
,−1, d

)
=±

8i
√

2(2d − 1)(d3
− d)(d − 3)(d − 5)

35
√

3(d − 2)5/2
= 0

is clearly impossible for d ≥ 9, so we are finally done with the wild case. �
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Proof of Theorems 1.3(8), 1.6, and 1.7. Combine Theorems 3.3, 4.1, and 4.3. �

5. Final remarks

Derivations and historical examples. It is foolhardy for a living author to claim
priority for any polynomial identity which is verifiable by hand and so might well
have been given as a school algebra assignment. We have given previous attributions
when we could find them; the pre-1920 literature was scoured by Dickson [1966],
but with Diophantine equations over N in mind: the coverage of parametrizations
over C must be regarded as incomplete. For example, [Desboves 1880] includes
both (1-15) and (1-8), and Dickson only cites the latter, perhaps because there were
no real quintic parametrizations.

Any four binary quadratic forms are linearly dependent, so any W2(4, d)-set
satisfies both f d

1 + f d
2 = f d

3 + f d
4 and c1 f1+c2 f2+c3 f3+c4 f4 = 0 for suitable ci .

It is remarkable that one can find the W2(4, d)-sets for d = 4, 5 by guessing a
simple choice of ci .

For example, Desboves [1880, p. 241] found his version of (1-8) by assuming
f1+ f2 = f3+ f4 and f 5

1 + f 5
2 = f 5

3 + f 5
4 and parametrizing to get

0= ( f + g)5+ ( f − g)5− (( f +h)5+ ( f −h)5)= 10 f (g2
−h2)(2 f 2

+ g2
+h2).

He then set { f, g, h}= {2xy, x2
−2y2, i(x2

+2y2)} via Theorem 1.4, and by scaling
via y 7→

√
−1/2 y, this becomes essentially (1-8). Similarly, after noting that

( f + g)4+ ( f − g)4− (( f + h)4+ ( f − h)4)= 2(g2
− h2)(6 f 2

+ g2
+ h2),

Desboves solved 6 f 2
+ g2
+ h2
= 0 and derived a cousin of (1-15).

One might also guess f1+ f2+ f3 = 0; an old observation (at least back to Proth
in 1878 [Dickson 1966, p. 657]) notes that

(5-1) f 4
1 + f 4

2 + (− f1− f2)
4
= 2( f 2

1 + f1 f2+ f 2
2 )

2,

so if f 2
1 + f1 f2 + f 2

2 = g2, we obtain a W2(4, 4)-set. Take f1 = x2
+ y2 and

f2=ωx2
+ω2 y2; this implies−( f1+ f2)=ω

2x2
+ωy2 and f 2

1 + f1 f2+ f 2
2 =3x2 y2

and hence (1-6).
In 1904, Ferrari [Dickson 1966, p. 654] gave the ostensibly ternary identity

(5-2) (a− b)4(a+ b+ 2c)4+ (b+ c)4(b− c− 2a)4+ (c+ a)4(c− a+ 2b)4

= 2(a2
+ b2
+ c2
− ab+ ac+ bc)4.

Let x = a− b and y = b+ c, so that x + y = a+ c. Then (5-2) becomes (1-7):

x4(x + 2y)4+ y4(−2x − y)4+ (x + y)4(y− x)4 = 2(x2
+ xy+ y2)4.
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One can derive (1-14) by guessing (a+d)4−(a−d)4= (b+d)4−(b−d)4= (c+
d)4− (c−d)4 for quadratics a, b, c, d with a, b, c distinct and d 6= 0. Then routine
computations lead to a+b+c= 0 and d2

=−(a2
+ab+b2). Now set a= x2

+ y2,
b = ωx2

+ω2 y2, and c = ω2x2
+ωy2, with d2

=−(a2
+ ab+ b2)=−3x2 y2, and

take y 7→ iy to get (1-14).
We derived (1-8) in [Reznick 2003, pp. 119–120] using Newton’s theorem

on symmetric polynomials. Every symmetric quaternary quintic polynomial p
is contained in the ideal I = (t1 + t2 + t3 + t4, t2

1 + t2
2 + t2

3 + t2
4 ). In particular,

t5
1 + t5

2 + t5
3 + t5

4 ∈ I, so

f1+ f2+ f3+ f4 = 0, f 2
1 + f 2

2 + f 2
3 + f 2

4 = 0 =⇒ f 5
1 + f 5

2 + f 5
3 + f 5

4 = 0.

Upon setting f4=− f1− f2− f3, the equation f 2
1 + f 2

2 + f 2
3 +(− f1− f2− f3)

2
= 0

can be analyzed as in Theorem 1.4 to obtain (1-8).
We present a similar ad hoc, post hoc derivation for (1-11).

Theorem 5.1. Suppose S(t1, . . . , t6) is a symmetric polynomial of degree 7. Then

S ∈ I :=

( 6∑
k=1

tk,
6∑

k=1

t2
k ,

6∑
k=1

t4
k

)
.

Proof. Let ek denote the k-th elementary symmetric polynomial. We have
∑6

k=1 t2
k =

e2
1−e2 and

∑6
k=1 t4

k =e4
1−4e2

1e2+2e2
2+4e1e3−4e4. Thus, I= (e1, e2, e4). By New-

ton’s theorem, S is a linear combination of monomials in the ek : ea1
1 ea2

2 ea3
3 ea4

4 ea5
5 ea6

6 ,
where

∑
kak = 7. But 7 cannot be written as a nonnegative linear combination

of 3, 5, and 6, so each monomial in any such expression must contain one of
{e1, e2, e4}. �

Observe now that if we define h j = (ζ
j−1

5 x2
+ i xy+ ζ−( j−1)

5 y2)2 for 1≤ j ≤ 5
and h6 =−5x2 y2, then a synching computation shows that

∑6
j=1 h j =

∑6
j=1 h2

j =∑6
j=1 h4

j = 0. Theorem 5.1 implies that
∑6

j=1 h7
j = 0; that is, (1-11). The mystery

now is why these particular squares work.
Jordan Ellenberg has suggested the following explanation to the author: the

surface cut out by
∑6

j=1 X j =
∑6

j=1 X2
j =

∑6
j=1 X4

j is a Hilbert modular surface
[Ellenberg 2005, Lemma 2.1]. He adds (personal communication, 2012), “Dollars
to donuts the nice low-degree rational curve you find on this surface arises as a
modular curve on this modular surface, parametrizing abelian surfaces isogenous
to a product of elliptic curves.”

Representations as a sum of at most two d-th powers of quadratic forms. Which
forms p ∈ H2d(C

2) can be written as a sum of two d-th powers of linear forms, and
in how many ways? Let Ad,2= {(α1x+β1 y)d+ (α2x+β2 y)d}. It is tautological to
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say that p ∈ Ad,2 if and only if there is a linear change taking p into xd or xd
+ yd .

(A practical test is given by Theorem 3.1.)

Corollary 5.2. If p ∈ H2d(C
2) is not a d-th power, then p is a sum of two d-th

powers of quadratic forms if and only if either (i) p = `dq, where q ∈ Ad,2, or
(ii) after a linear change in p, p(x, y)= q(x2, y2), where q ∈ Ad,2.

Proof. Sufficiency is clear. Conversely, suppose p= f d
1 + f d

2 and { f1, f2} is honest.
As in Theorem 3.2, there are two cases. If gcd( f1, f2)= ` for a linear form `, then
f j = `` j , giving case (i). Otherwise, we make a linear change which simultaneously
diagonalizes f1, f2, giving case (ii). �

If p is a sum of two d-th powers in more than one way, then the two representa-
tions together give a W2(d, 4)-set. The question is not interesting for d = 2, since
p = f 2

+ g2
⇐⇒ p = ( f + ig)( f − ig), so two representations as a sum of two

squares amount to two different factorizations into equal degrees. The situation for
d = 3 is discussed in detail in [Reznick 2020]; by Theorem 1.3(8), it suffices now
to consider d = 4, 5.

If p itself is a d-th power, then by Theorem 1.3(3), it does not have another rep-
resentation as a sum of two d-th powers. In view of Theorems 1.6, 1.7, and 3.4, we
have an immediate corollary. We choose even representatives (from Theorem 3.3),
and they also happen to be symmetric (we have taken y 7→ ζ16 y in (3-9)).

Corollary 5.3. (i) The form p ∈ H8(C
2) has exactly two different representations

as a sum of two fourth powers of binary forms if and only if , after a linear
change, it is x8

+ 4x6 y2
− 12x4 y4

+ 4x2 y6
+ y8, x8

− 68x6 y2
+ 6x4 y4

−

68x2 y6
+ y8, or x8

− 140x6 y2
+ 294x4 y4

− 140x2 y4
+ y8.

(ii) The form p ∈ H8(C
2) has three different representations as a sum of two

fourth powers of binary forms if and only if , after a linear change, it is
x8
− 7
√

2(1+ i)x6 y2
− 7
√

2(1+ i)x2 y6
+ y8.

(iii) The form p ∈ H10(C
2) has two different representations as a sum of two fifth

powers of binary forms if and only if , after a linear change, it is x10
−75x8 y2

+

90x6 y4
+ 90x4 y6

− 75x2 y8
+ y10.

Open questions. We have already noted that there exist k ≥ 2 and d ≥ 6 so that
8k(d) > 8k+1(d). Gundersen [1998] found three meromorphic (not rational)
functions g j (t) so that g6

1+g6
2+g6

3 = 1. It is unknown whether this can be achieved
with rational functions. If so, a Wk(4, 6)-set would exist for some k > 2.

In case m = rs, an m-synching on m can be viewed as r coordinated s-synchings.
We have not found a useful instance in this when r = s = 2, although (2-15) shows
what can happen with (r, s)= (2, 3). We hope that improvements on the bounds
may come from careful investigations in this direction.
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Another natural question is to restrict our attention to forms with coefficients
in a fixed subfield of C, such as Q or R. Real forms with even degree also lead to
a discussion of “signatures”. From the Diophantine point of view, the equations
A4
+ B4

+C4
= D4 and A4

+ B4
=C4

+D4 are completely different questions. In
this point of view, the real equation (1-7) is “(3, 1)”. In 1772, Euler gave a famous
(2, 2) “septic” example of a W7(4, 4)-set [Dickson 1966, pp. 644–646; Hardy and
Wright 1979, (13.7.11); Lander 1968]. So far as we have been able to determine
there are no known real solutions of this kind of smaller degree, nor proofs that
they cannot exist.

Theorem 1.4 shows that (1-1) is “universal” in presenting all Wk(3, 2)-sets; that
is, projectively, all families come from the substitution (x, y) 7→ (g, h). Are the
solutions given in Theorems 1.5, 1.6, and 1.7 also universal in this sense? The
answers are “no” for d = 3, 4. These families are all linearly dependent. For
d = 3, the family in (2-17) is linearly independent, as are the parametrizations of
the Euler–Binet solutions to x3

+ y3
= u3
+ v3 (see, e.g, [Hardy and Wright 1979,

(13.7.8)]), when viewed as elements of C[a, b, λ]. For d = 4, it can be checked
that the Euler septics are also linearly independent. The case d = 5 is open. Can
the Wk(4, d)-sets themselves be parametrized for k ≥ 3?

Finally, we note that the intricate calculations of Sections 3 and 4 suggest that
new methods will be needed to study Wk(r, d)-sets for r > 4 or k > 2. In their
absence, we make a few remarks about the growth of 8k(d) for fixed k as d→∞.
By Theorems 1.1 and 1.3, we have 81(d)= d+2 and 82(d)≤ bd/2c+2 for d ≥ 4,
with equality if 4 ≤ d ≤ 7 and one exceptional value at d = 14. Furthermore, if
d = rk for integral r , then taking by setting `= k, `′ = m = r , and t = 1 in (2-4),
we see that8k(d)≤ 1+r+k = d/k+k+1. Based on this thin reed of information,
we make the following conjecture.

Conjecture 5.4. For fixed k, 8k(d)= d/k+ k+ 1+O(1) as d→∞.
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